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A 2D model is developed for fluid flow, mass transport and cell distribution in a hollow fibre membrane
bioreactor. The geometry of the modelling region is simplified by excluding the exit ports at either end
and focusing on the upper half of the central section of the bioreactor. Cells are seeded on a porous
scaffold throughout the extracapillary space (ECS), and fluid pumped through the bioreactor via the
lumen inlet and/or exit ports. In the fibre lumen and porous fibre wall, flow is described using Stokes and
Darcy governing equations, respectively, while in the ECS porous mixture theory is used to model the
cells, culture medium and scaffold. Reaction–advection–diffusion equations govern the concentration of
a solute of interest in each region. The governing equations are reduced by exploiting the small aspect
ratio of the bioreactor. This yields a coupled system for the cell volume fraction, solute concentration and
ECS water pressure which is solved numerically for a variety of experimentally relevant case studies. The
model is used to identify different regimes of cell behaviour, and results indicate how the flow rate can
be controlled experimentally to generate a uniform cell distribution under regimes relevant to nutrient-
and/or chemotactic-driven behaviours.

Keywords: tissue engineering; multi-phase flow; asymptotic reduction.

1. Introduction

In our society, there is an increasing need for replacement tissue and organs as a result of damage due to
trauma, disease or old age. In a 2001 review (Lysaght et al., 2001), it was reported that existing organ
and tissue replacement therapies account for 8% of all medical expenditure worldwide, equivalent to an
annual cost of $350 billion. Tissue engineering is a promising alternative, as long as it has the potential to
reduce these costs and improve patient prognoses. In vitro, it has been described as the cultivation and
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394 N. C. PEARSON ET AL.

growth of transplantable human tissue to restore, maintain or improve tissue function (Langer et al.,
1993). One approach is to seed cells on a biodegradable or resorbable 3D scaffold and culture the
resulting construct in a bioreactor. When the desired quantity and type of fully developed, functional
tissue has been produced, it is transplanted into the patient and, over time, the scaffold is degraded or
resorbed so that only tissue remains (Tabata, 2000; Stock et al., 2001; Cortesini, 2005; Dawson et al.,
2008). Alternative in vivo methods are also used, where the initial cell–scaffold construct is transplanted
directly to the appropriate site and left to develop, exploiting the body as a bioreactor (MacArthur et al.,
2004; Stevens, 2008; Geris et al., 2010).

The advantage of tissue engineering over donor transplants is that replacement tissue can be grown
from cells that are much more readily available than donor organs, therefore reducing waiting times for
the transplant. Since the patient’s own (autologous) cells are often used, there is a significantly reduced
risk of rejection of the new tissue (Stock et al., 2001). This approach can also be used as an alternative
to artificial implants such as hip or knee replacements, which have a limited lifespan and can cause
allergic reactions (Pörtner et al., 2005).

Tissue engineering is not without its drawbacks, however. The immense cost of even small-scale
experiments has limited progress in the field to date, and prevented widespread scale-up for clinical use.
This is despite significant research being carried out: e.g. there are over 5600 PubMed articles from
the last 15 years on cartilage tissue engineering alone, yet no routine clinical solutions. The wide range
of cell types under investigation, each with its own specific properties, also means that there is no one
method that will work for all tissues. Issues to consider include how to seed the cells in order to control
tissue generation and to ensure effective mass transport throughout the system. Furthermore, the correct
choice of scaffold material and bioreactor geometry is vital in enabling the affordable production of a
large enough quantity of viable cells. Cells are extremely sensitive to their surroundings, and internal
bioreactor conditions must allow cells to be appropriately stimulated to mimic the in vivo environment,
while at the same time avoiding cell damage or death (Stock et al., 2001; Martin et al., 2004, 2005;
Pörtner et al., 2005). As a result of this, a vast array of bioreactor designs and materials exist, each need-
ing a different set of operating conditions to successfully grow a particular tissue (Pörtner et al., 2005).

1.1 Hollow fibre membrane bioreactors

We focus on hollow fibre membrane bioreactors (HFMBs), which consist of a cylindrical, hollow glass
module with an exit port at the up- and down-stream ends (see Fig. 1). A synthetic, porous hollow
fibre (which mimics a capillary in vivo and is impermeable to cells) is inserted through the centre and
fixed to the module at the ends. The choice of fibre materials depends on the desired characteristics,
e.g. pore size, porosity and hydrophilicity. Scaffold materials vary, but required features include con-
trolled degradation, retention of shape, effective nutrient delivery and biocompatibility (Murphy et al.,
2000; Khademhosseini et al., 2006; Dawson et al., 2008). Cell seeding involves suspending the cells in
a collagen gel solution, which is then injected through the exit ports, and the gel left to set (see Ye et al.,
2007 for more details). This method results in a cell-seeded natural scaffold throughout the extracap-
illary space (ECS). Alternatively, the cells can be seeded on the outer surface of the fibre in a similar
manner (Ellis, 2006).

Culture medium (containing multiple nutrients and growth factors) is then driven through the fibre
lumen and/or the exit ports by a pump at a prescribed flow rate. In the case of lumen-driven flow, the
medium reaches the cells via the porous fibre walls and flows out through the end of the fibre lumen
(the retentate) or either of the exit ports (the permeate). The ratio of retentate to permeate is controlled by
imposing a downstream pressure via a clamp at the lumen exit (the exit ports being left at atmospheric
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MULTIPHASE MODELLING OF TISSUE GROWTH 395

Fig. 1. Top: photograph of a single HFMB module (ruler scale in cm). The exit ports (one of which is closed off here) can be
seen, along with the hollow fibre which runs through the centre of the module. Cells are seeded in a natural scaffold throughout
the ECS. Middle: cross-section of the boxed region (not to scale). The lower half (below the x-axis) is excluded, and the upper
half is the idealized 2D modelling region with the x-axis running along the lumen centreline. Bottom: cross-section detail of a
typical hollow fibre membrane. Images courtesy of Dr Marianne Ellis, Centre for Regenerative Medicine, University of Bath.

pressure). The porous fibre wall, or membrane, separates the cells from the main flow in the lumen
so that relatively large flow rates can be used without exposing cells to high fluid shear stresses. In
addition, the alternative flow route in via the exit ports allows greater control of the cell environment.
The great advantage of HFMBs is that the surface area to which culture medium is supplied is large
compared with the bioreactor volume, providing efficient delivery conditions. As a comparison with
standard flask culture, a 1 m3 flask would be required in order to grow the same number of cells as in a
0.5 l HFMB. This bioreactor, therefore, has great potential as a method to generate replacement tissues
on a clinical scale (Shipley et al., 2010). However, this is still very much an open research area, and
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396 N. C. PEARSON ET AL.

outstanding problems include how best to initially seed the cells to obtain the desired final distribution
and to find optimal flow rates to ensure sufficient delivery of nutrients to, and removal of waste products
from, the cells. Only when these issues have been resolved will such procedures present feasible future
alternatives to current tissue replacement strategies.

1.2 Multiphase modelling

Given the considerable cost and complexity of tissue engineering experiments, it is clear that math-
ematical modelling of the systems could provide great benefit. In particular, since many bioreactor
experiments are still at a relatively early stage of development, a rare opportunity exists to use mathe-
matical modelling to inform and direct experiments. In the interest of brevity, we summarize the existing
literature most relevant to the model presented here; for a more complete overview, we refer the reader
to the recent review by O’Dea et al. (2013).

We adopt a mixture theory approach, which can be applied to a system of two or more interact-
ing and interpenetrating phases; see Whitaker (1967, 1973), Gray (1975), Drew (1983) and Quintard
et al. (1994) for more details. Microscale governing equations for each phase are averaged over a suit-
able representative volume, resulting in a continuum model that describes the macroscale dynamics of
each phase. This technique allows the behaviour of inherently complex systems to be modelled rela-
tively simply, with the possibility of solution of the governing equations by analytical and/or numerical
methods. Individual phases can be tracked independently on the macroscale without needing to resolve
microscale dynamics, but still allowing the incorporation of important microscale effects. These effects,
along with interactions between phases, are included via constitutive laws. As well as tissue engineering,
the approach has been used to model tumour growth (Byrne et al., 2003; Franks et al., 2003), biofilms
(Cogan et al., 2004), cell motility (Alt et al., 1999; Byrne et al., 2004; King et al., 2005; Kimpton et al.,
2013) and even soil dynamics (Theodorakopoulos, 2003).

In vitro tissue growth has been modelled using mixture theory by Lemon et al. (2006). The scaffold,
cells and culture medium (modelled as water) are all treated as separate phases. Constitutive equa-
tions are chosen to describe the interactions between the rate of production of and the stress terms in
each phase, and the linear stability of the equilibrium state of the system is analysed. This analytical
approach is used to show that cells seeded into a scaffold in a static set-up can either disperse or aggre-
gate depending on the relative strengths of cell–cell interactions and cell–scaffold tractions, and the
results agree qualitatively with those from experiments. This work is built upon in O’Dea et al. (2010)
and Osborne et al. (2010), where the mixture theory approach is applied to a perfusion bioreactor set-
up. This consists of a tissue-scaffold construct placed in a cylindrical chamber through which culture
medium is driven using a pump. In O’Dea et al. (2010), the dependence of cell population behaviour on
fluid shear stress, pressure and local cell density is analysed in a 2D Cartesian geometry. The governing
equations are simplified in the limit where the aspect ratio of the bioreactor channel is small, and then
solved using both analytical and numerical approaches. The results show that cell movement depends
greatly upon cell density and the relative importance of cell aggregation and repulsion, while different
mechanotransduction mechanisms produce qualitative variations in the composition of the cell–scaffold
construct. Osborne et al. (2010) add to this by solving the full system from O’Dea et al. (2010) numer-
ically using finite element methods. They find that the long-wavelength approach used in O’Dea et al.
(2010) is good at predicting average behaviour; however, to determine detailed spatial distribution of
cells, it is necessary to consider solutions of the full system.

The model presented here is 2D for simplicity to enable analytical progress. It is expected, however,
that results from a 3D (axisymmetric) set-up would be qualitatively similar; we hope to verify this in
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future work. The flow in the lumen is modelled by the Navier–Stokes equations. In the membrane, the
flow is governed by Darcy’s law, which we put into the context of the multiphase formulation in order to
give self-consistent boundary conditions. In the ECS the governing equations are derived using mixture
theory, and we model the scaffold (comprised of a natural matrix such as collagen), culture medium
and cells as three distinct phases. Interactions between these phases are incorporated via extra pressure,
force and drag terms in the governing equations. In particular, we are concerned with the dynamics
of the cell population and how they depend on experimentally controllable aspects of the bioreactor
environment such as flow rate and nutrient concentration.

1.3 Paper outline

In Section 2, we describe the model setup, outlining the governing equations and boundary conditions
in each region in Sections 3.1–3.4. The resulting system is non-dimensionalized in Section 4.1, using
a lubrication approach to exploit the small aspect ratio of the bioreactor. In Sections 4.2–4.4, we use
systematic asymptotic methods to reduce the system from 16 to 3 unknowns. This results in a cou-
pled system of partial differential equations (PDEs) at leading order in the lumen aspect ratio for the
cell volume fraction, global concentration of solute and reduced water pressure, along with analyti-
cal expressions for the remaining variables. Typical dimensionless parameter values for this model are
given in Section 4.5. In Section 5, we present and compare a number of different case studies relating
to possible experimental setups, including nutrient-limited cell growth, response to a delivered or pro-
duced chemoattractant and backflow through the ECS. We consider the effect of flow rate on cell yield
and distribution and determine optimal flow rates for each case study in order to achieve a spatially
uniform cell distribution. We conclude by discussing our findings in Section 6.

2. Model description

We consider an idealized problem, motivated by taking a cross-section of an HFMB module and exclud-
ing the end regions containing the exit ports. The central domain is modelled in 2D Cartesian coordinates
(x, y), with the x-axis along the lumen centreline (which is assumed straight) and the y-axis pointing
upwards (see Fig. 1). This makes the problem amenable to analytic techniques while still capturing key
features of the bioreactor. For simplicity, we consider the upper half of the bioreactor only, so that the
modelling region 0< x< L, 0< y<H consists of three rectangular compartments: the lumen, porous
membrane and ECS. The exact up- and down-stream boundary conditions will be chosen to mimic the
up- and down-stream exit port configurations for a specific experimental setup. We first consider the
setup shown in Fig. 1, in which only the downstream exit port is open. In Section 5.6, we briefly look
at the case where both exit ports are open and there is a flow driven through the downstream exit port
in the opposing direction to the flow in the lumen.

In the first flow regime (where only the downstream exit port is open), the culture medium (mod-
elled as water) is pumped into the lumen and, due to an imposed pressure at the downstream end, flows
out either through the lumen or through the ECS. The up- and down-stream ends of the porous mem-
brane are sealed so that no fluid or cells can leave the system there. The ECS is comprised of the cells
(one cell type only), culture medium and a natural scaffold. We assume that there is no deposition or
degradation of this scaffold (so that it is fixed and inert) and that initially the cells are seeded uniformly
throughout the ECS. In addition, the porous membrane is impermeable to the cells so that they cannot
leave the ECS. When considering interphase pressures in the ECS, we include tractions between the
cells and the scaffold only, assuming that tractions between the cells and fluid, and between the fluid
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and scaffold, are negligible by comparison. We assume also that the drag between the water and cells is
much smaller than that between the scaffold and water or between the scaffold and cells. These simpli-
fying assumptions are motivated by the fact that we expect the cells to strongly adhere to the scaffold.
The culture medium contains a solute of interest, which is either a nutrient (e.g. oxygen) or a chemoat-
tractant (a chemical that induces a motile response from the cells; e.g. see Postlethwaite et al., 1987;
Giannobile, 1996; Chen et al., 2003). The simpler geometry and small aspect ratio of the domain moti-
vate the non-dimensionalization in Section 4.1 and allow us to derive a system of governing equations
in the lumen, porous membrane and ECS which can be studied analytically.

3. Governing equations

Now we outline the governing equations for each of the three regions of the bioreactor: the lumen, the
porous membrane and the ECS. We denote by h1, h2 and h3 the heights of the lumen, porous membrane
and ECS, respectively, with the total height of the half-bioreactor given by H = (h1 + h2 + h3). The
total bioreactor length is denoted by L, and we note that h1, h2 and h3 are comparable, with h1/L � 1,
so that the aspect ratio of each region is small. We state relevant boundary conditions in Section 3.4.
Parameter values are determined later in Section 4.5.

3.1 Lumen

The lumen is defined as the region 0< x< L, 0< y< h1. Here, there are no cells, so we consider the
flow of water and transport of solute only. The former is modelled using the incompressible Stokes
equations. Conservation of mass gives

∇ · ul = 0, (3.1)

where ul = (ul, vl) is the water velocity in the lumen, and the density of water, ρw, is assumed constant.
We exploit the fact that inertial effects in the lumen are negligible (this is confirmed in Section 4.5), so
that conservation of momentum yields

∇ · σ l − ρwg = 0, (3.2)

where σ l is the stress tensor for the water in the lumen, given by

σ l = −p̄lI + μw[∇ul + (∇ul)
T], (3.3)

p̄l is the water pressure in the lumen, μw is the water viscosity (assumed constant) and g = (0, g) is
the acceleration due to gravity. In this work, we shall consider flow rates that are towards the lower
end of those employed experimentally (see Table 1), and we must account for the effects of gravity in
this instance. We introduce the reduced water pressure pl, defined by pl = p̄l + ρwgy, and subsequently
similarly define reduced pressures in the porous membrane and ECS.

Conservation of mass for the solute concentration is given by the advection–diffusion equation

∂cl

∂t
+ ∇ · (clul)= D∇2cl, (3.4)

where t is time, cl is the solute concentration per unit volume in the lumen and D is the diffusion
coefficient for the solute in water (assumed constant).
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Table 1 Dimensional parameters. The different units for the cell death rate
coefficient Γwn (which appears in Jn in Section 5) depend on which case study is
under consideration

Parameter Dimensional value and units References

h1 200 µm Shipley et al. (2010)
h2 200 µm Shipley et al. (2010)
h3 600 µm Shipley et al. (2010)
L 0.1 m Shipley et al. (2010)
ρw 1 g cm−3 Shipley et al. (2012)
μw 10−3 Pa s Shipley et al. (2012)
k 6.73 × 10−16 m2 Obtained experimentally
patm 14.69 psia Shipley et al. (2010)
Ql,in 1.02 × 10−11 − 1.02 × 10−8 m2 s−1 a

Qe,in 5.1 × 10−14 − 5.1 × 10−11 m2 s−1 —
Γnw 5.79 × 10−6 s−1 a

Γwn 4.13 × 10−7 s−1 or 9.09 × 10−8 mol m−3 s−1 a

cin 0.22 mol m−3 Shipley et al. (2012)
D 3 × 10−9 m2 s−1 Shipley et al. (2012)
U∗ 1.0239 × 10−8 m s−1 a

C∗ 0.22 mol m−3 Shipley et al. (2012)
aValues based on estimations by our experimental collaborators.

3.2 Porous membrane

The membrane occupies the region 0< x< L, h1 < y< h1 + h2. Here, we model the flow using Darcy’s
law for flow in porous media, which takes into account the microscale effects of viscosity on the
macroscale:

um = − k

μw
∇pm, (3.5)

where um = (um, vm) is the water velocity in the porous membrane, k is the porous membrane perme-
ability (assumed constant) and pm = p̄m + ρwgy is the reduced water pressure in the membrane. Fur-
thermore, conservation of fluid mass yields

∇ · um = 0, (3.6)

where we have assumed that the porous membrane pore fraction φ is constant. Similar to the above,
conservation of mass for the solute concentration is given by the advection–diffusion equation

∂(φcm)

∂t
+ ∇ · (φcmum)= φD∇2cm, (3.7)

where cm is the solute concentration per unit volume of water in the membrane and we have assumed
that the effective diffusion coefficient for the solute in the membrane is proportional to the pore fraction.
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400 N. C. PEARSON ET AL.

3.3 Extracapillary space

Finally, we consider the ECS, occupying 0< x< L, h1 + h2 < y<H and comprised of cells, water and
scaffold. In prescribing the governing equations for the multiphase flow in the ECS, we follow closely
the works of Lemon et al. (2006) and O’Dea et al. (2010).

We denote the cell, water and scaffold volume fractions by θn, θw and θs, respectively, where θs is
assumed to be constant. We apply the no voids constraint that

θn + θw + θs = 1. (3.8)

Conservation of mass for the cells and water is given by

∂θn

∂t
+ ∇ · (θnun)= Jn,

∂θw

∂t
+ ∇ · (θwuw)= Jw, (3.9)

where un = (un, vn) and uw = (uw, vw) are the cell and water velocities, respectively, Jn represents the net
cell production rate and Jw represents the net water production rate. Here, we have made the assumption
that the cells and water are of equal and constant density, i.e. that ρn = ρw, which is a good approxima-
tion since cells are mainly comprised of water (Lemon et al., 2006). We impose Jw = −Jn so that mass
is conserved. To keep the analysis as general as possible, we assume only that Jn is a function of θn

and cw (the solute concentration per unit volume of water in the ECS), prescribing a functional form in
Section 5 for each experimentally motivated case study that is considered.

Conservation of momentum for the two phases (neglecting inertia) is given by

∇ · (θnσ n)+
∑
j |= n

fnj − θnρwg = 0, ∇ · (θwσ w)+
∑
j |= w

fwj − θwρwg = 0, (3.10a,b)

where σ n and σ w are the macroscale stress tensors for the cell and water phases, respectively, and
fij (i, j = n, w, s, i |= j) represents the interphase force exerted on the ith phase by the jth phase. By
Newton’s third law, we have fij = −fji.

We pose constitutive forms for σ i and fij, following the approach of Lemon et al. (2006). Firstly, we
model the cell phase as a viscous liquid, and so let

σ n = −p̄nI + μnτ n, (3.11)

where p̄n is the cell intraphase pressure, I is the identity tensor, μn is the effective viscosity of the cell
population and τ n is the deviatoric stress tensor for the cell phase, given by

τ n = ∇un + (∇un)
T − 2

3 (∇ · un)I, (3.12)

where superscript T denotes transpose. We decompose the cell pressure p̄n into the water pressure p̄w

plus an extra component Π ,

p̄n = p̄w +Π , (3.13)

and for now we assume only that Π is a function of θn and cw. In Section 5, motivated by O’Dea
et al. (2010) and Byrne et al. (2004), we split Π into two components Πn and Πc which, respectively,
account for cell–cell interactions (such as osmotic stress and surface tension in the cell membranes) and
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chemotaxis, and take the following forms:

Π =Πn +Πc, Πn = θn

(
−ν + δaθn

1 − θs − θn

)
, Πc = χ exp

(
−cw

c̄

)
, (3.14)

where ν, δa, χ and c̄ are positive constants. The first term in Πn represents the fact that cells tend to
aggregate at low densities, i.e. when θn is small, while the second models the repulsive forces which
arise due to contact inhibition (O’Dea et al., 2010). The function Πc represents chemotactic movement
up gradients in the solute, with a greater effect in areas of lower concentration, a behaviour which has
been observed experimentally by Jeon et al. (2002).

For the water phase, we assume the stress tensor

σ w = −p̄wI, (3.15)

so that the force balance (3.10b) and constitutive laws prescribed below for the interphase forces (see
(3.16)) lead to the transport of water being governed by Darcy’s law.

Next we impose constitutive laws for the interphase forces fij in (3.10) of the form

fij = pijθj∇θi − pjiθi∇θj + γijθiθj(uj − ui)= −fji (i, j = n, w, s), (3.16)

where pij = pji (i, j = n, w, s) represents the interphase pressure exerted on the ith phase by the jth phase.
Each interphase force fij is decomposed into three components: see Lemon et al. (2006) for details.
The first represents the interfacial force exerted on the ith phase by the jth phase. The second term of
each force represents the reaction to the corresponding interfacial force exerted on the jth phase by the
ith phase. Finally, the third term represents drag between the phases, where γij is the drag coefficient
(assumed constant). We note that any forces involving the scaffold phase will be simplified by the fact
that ∇θs = us = 0 due to our assumption that the scaffold is rigid with constant volume fraction.

The pressure pij = pji (i, j = n, w, s) is assumed to consist of the water pressure p̄w, which is ‘contact
independent’, and an extra pressure ψij due to the tractions between the ith and jth phases:

pij = p̄w + ψij. (3.17)

Since we consider the tractions between the cells and scaffold only, we can simplify the system by
taking ψij =ψji = 0 unless i = n and j = s. We take ψns to be a constant function:

ψns = −η, (3.18)

where η is a positive constant representing the cells’ affinity for the scaffold. We note that this is a
simplified version of the form used in O’Dea et al. (2010) which depends on θn, and we will keep the
more general form ψns =ψns(θn) until Section 5 in order to keep our derivation as general as possible.

We define reduced pressures in the ECS as in the lumen and porous membrane by setting

pw = p̄w + ρwgy, pn = p̄n + ρwgy = pw +Π . (3.19)

Making use of the constitutive relations (3.11–3.13) and (3.15–3.17), neglecting drag between the
cells and water as stated in Section 2 and substituting in for pw from (3.19), the resulting governing
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equations for the cell phase in the ECS are given by

∂θn

∂t
+ ∇ · (θnun)= Jn, −θn∇pw − ∇(θnΠ)+ ∇ · (θnμnτ n)+ ψnsθs∇θn − γnsθnθsun = 0, (3.20)

and for the water phase are

∂θw

∂t
+ ∇ · (θwuw)= −Jn, −θw∇pw − γwsθwθsuw = 0. (3.21a,b)

We note that in (3.21b) we have indeed recovered Darcy’s law, which models the microscale effects of
the water viscosity on the macroscale. Now we return briefly to the membrane flow model to define the
stress tensor in the context of the multiphase formulation. We note that within this framework Darcy’s
law corresponds to the force balance

∇ · σ m − μw

k
um − ρwg = 0, (3.22)

with

σ m = −p̄mI, (3.23)

this being the only choice for σ m which is consistent with the choice for σ w above.
Finally, conservation of mass for the solute in the ECS is given by

∂(θwcw)

∂t
+ ∇ · (θwcwuw)= D∇ · (θw∇cw)+ R, (3.24)

where we have assumed that mass transport only occurs in the water phase. We have assumed that the
effective diffusion coefficient for the solute in the water phase is proportional to the water volume frac-
tion. Here, R is a reaction term which may depend on θn and/or cw. Specific forms will be given in
Section 5, where it accounts for either the uptake of nutrient, or the production or uptake of chemoat-
tractant.

Across the three regions, we have a system of 16 equations for the 16 unknowns ui, vi (i = l, m, n, w),
pi, ci (i = l, m, w), θn and θw. Now we impose boundary conditions to close the problem.

3.4 Boundary conditions

In the following, nl = nm = ne = (0, 1) are the upward pointing normals to the lumen, porous membrane
and ECS, respectively.

As we consider the upper half of the bioreactor only, we impose symmetry and no flux conditions
on the lumen centreline so that

∂ul

∂y
= 0, vl = 0,

∂cl

∂y
= 0 on y = 0. (3.25)

On the lumen–membrane interface, we impose no slip, as well as continuity of water flux, of normal
stress, of concentration and of solute flux so that

ul = 0, vl = φvm, nl · σ l · nl = nl · σ m · nl, cl = cm,
∂cl

∂y
= φ

∂cm

∂y
on y = h1, (3.26a–e)
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MULTIPHASE MODELLING OF TISSUE GROWTH 403

where we have assumed that all of the fluid stress from the lumen is taken up by the fluid in the mem-
brane so that condition (3.26c) reduces to continuity of (reduced) pressure in the leading-order model
(the gravitational contributions will cancel). The assumption of continuity of pressure at the boundary
between flow through materials of different permeabilities is also taken in Beavers et al. (1967) and
Joseph et al. (1964). The no slip condition (3.26a) is motivated by the work of Shipley et al. (2010) who
found that slip is insignificant for these membranes.

The membrane–ECS interface is impermeable to cells as the mean pore radius (≈ 1 µm) is much
smaller than that of a cell (≈ 5 µm), and hence we impose no flux of cells here. In addition, we impose
no slip of cells, along with continuity of flux of water, of normal stress, of concentration and of flux
of solute. We make the constitutive assumption that all the stress is taken up by the water in the ECS,
not the cells, which again ensures continuity of (reduced) water pressure across the membrane–ECS
interface at leading order in the reduced model. These give

un = 0, θwvw = φvm, nm · σ m · nm = nm · σ w · nm,

cm = cw, φ
∂cm

∂y
= θw

∂cw

∂y
on y = h1 + h2. (3.27a–e)

The bioreactor boundary y = H is a solid boundary on which we impose no flux and slip of cells,
and no flux of water or solute, so that

un = 0, vw = 0, θw

(
cwvw − D

∂cw

∂y

)
= 0 on y = H . (3.28)

Boundary conditions at the up- and down-stream ends of the bioreactor are chosen to represent
conditions in the excluded regions near the exit ports and at the lumen inlet and outlet, and will be
prescribed as required in Section 4.3. Initial conditions are imposed as necessary in Section 5.

4. Model reduction

The choice of non-dimensionalization is motivated by lubrication theory. This scaling is appropriate in
the lumen, due to its small aspect ratio and negligible inertial effects, and results in a reduced pressure
which is independent of y, allowing us to explicitly solve for the flow velocity there. The ECS also has
a small aspect ratio and negligible inertia, and hence this scaling is physically relevant in the multiphase
region too. This leads to the reduced pressure term dominating in the y-force balance in the water phase,
and both the reduced pressure and intra-/inter-phase pressure terms dominating in the y-force balance
in the cell phase. As a result, both the reduced pressure and cell volume fraction are independent of y at
leading order in the ECS. This allows significant simplification of the governing equations and results
in a coupled system of three second-order non-linear PDEs at leading order in the lumen aspect ratio to
solve for the cell volume fraction, solute concentration and reduced water pressure in the ECS, along
with corresponding expressions for the remaining leading-order unknowns.
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4.1 Non-dimensionalization

We non-dimensionalize as follows, using hats to denote dimensionless variables:

x = Lx̂, y = εLŷ, hi = εLĥi (i = 2, 3), H = εLĤ , t = L

U∗ t̂,

ul = μn

μw
U∗ûl, vl = εμn

μw
U∗v̂l, ui = U∗ûi, vi = εU∗v̂i (i = m, w, n),

pi = patm + μnU∗

ε2L
p̂i (i = l, m, w), Πi = μnU∗

ε2L
Π̂i (i = n, c), ψns = μnU∗

ε2L
ψ̂ns,

ci = C∗ĉi (i = l, m, w), R= R∗R̂, Jn = U∗

L
Ĵn,

(4.1)

where ε= h1/L is the (small) aspect ratio of the bioreactor and C∗, R∗ and U∗ are (respectively) typical
concentration, reaction and porous membrane/ECS velocity scales. We have multiplied the velocity
scales in the lumen by a factor of μn/μw so that the same pressure scales can be applied throughout the
system. As previously stated, we expect inertial effects to be negligible compared with viscosity, and
hence have employed a viscous pressure scaling throughout. The resulting horizontal velocity scale in
the lumen, μnU∗/μw, represents the typical horizontal velocity of the fluid flowing through the lumen
as determined by the imposed lumen inlet flow rate. We choose the timescale L/U∗ and take the inverse
of this as the scale for Jn so that the timescales for advection in the ECS/porous membrane regions and
proliferation are assumed comparable. We also choose the reaction rate timescale so that R∗ = DC∗/L2

without loss of generality. For now we consider the biologically plausible regime where the viscosity
of the cell phase (on the macroscale) is much greater than that of water due to the presence of the
cytoskeletal network, the cells’ adherence to the scaffold and the effect of cell–cell interactions (on the
microscale). In particular, we consider the limit in which μw/μn = λε for some λ= O(1) as ε→ 0. We
note that other limits may also be physically relevant, but would involve solving a much more complex
system. Relevant dimensionless parameter values will be determined in Section 4.5.

In the following, we move into component form, substituting for the reduced pressures through-
out and eliminating vm in favour of ∂pm/∂y in the boundary conditions (3.26b) and (3.27b) using the
y-component of (3.5). Dropping hats, the dimensionless system of equations in the lumen (for 0< y< 1)
is therefore

∂ul

∂x
+ ∂vl

∂y
= 0, −∂pl

∂x
+ ε2 ∂

2ul

∂x2
+ ∂2ul

∂y2
= 0, −∂pl

∂y
+ ε4 ∂

2vl

∂x2
+ ε2 ∂

2vl

∂y2
= 0, (4.2)

ε2 Pe

[
λε
∂cl

∂t
+ ∇ · (clul)

]
= ε2 ∂

2cl

∂x2
+ ∂2cl

∂y2
, (4.3)

where Pe = LU∗/(λεD) is the Péclet number for axial flow in the lumen. Similarly, the porous mem-
brane equations become (for 1< y< 1 + h2)

um = −ε2κ
∂pm

∂x
, vm = −κ ∂pm

∂y
, ε2 ∂

2pm

∂x2
+ ∂2pm

∂y2
= 0 (4.4a–c)

and

λε3 Pe

[
∂cm

∂t
+ ∇ · (cmum)

]
= ε2 ∂

2cm

∂x2
+ ∂2cm

∂y2
, (4.5)
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Table 2 Dimensionless parameters

Parameter Definition Value Restriction (if any)

ĥ2 h2/(εL) 1 —
ĥ3 h3/(εL) 3 —
θs — 0.4a 0< θs < 1
ε h1/L 2 × 10−3 —
λ μw/(εμn) 1 ε� λ� 1/ε
ε2Pe εLU∗/(λD) 6.83 × 10−4 ε3 � ε2Pe � ε

ε2Re ερwLU∗/(λμw) 2.05 × 10−6 ε2Re � 1
φ — 0.77b —
κ k/(λε5L2) 2.1 ε� κ � 1/ε
Q̂l,in λQl,in/(LU∗) 0.01–10 —
Q̂e,in Qe,in/(εLU∗) 0.025–25 —
ν̂ λε3Lν/(μwU∗) 0.3c —
δ̂a λε3Lδa/(μwU∗) 0.1c —
η̂ λε3Lη/(μwU∗) 0.3c —
χ̂ λε3Lχ/(μwU∗) 9.06 ε� χ̂ � 1/ε
ˆ̄c c̄/C∗ 5 —
ζns γnsL2λε3/μw 1 ε� ζns � 1/ε
ζws γwsL2λε3/μw 0.1 ε� ζws � ζns

Γ̂nw LΓnw/U∗ 56.52 ε� Γ̂nw � 1/ε
Γ̂wn LΓwn/U∗ or LΓwn/(U∗C∗) 4.04 ε� Γ̂wn � 1/ε
Γ̂R1 L2ΓR1/(C∗D) or L2ΓR1/D 50 ε� Γ̂R1 � 1/ε
Γ̂R2 L2ΓR2/(C∗D) 50 ε� Γ̂R2 � 1/ε
K̂, K̂1 K/C∗, K1/C∗ 1 —
ĉin cin/C∗ 1 —
Pd — 2.59 —
aLemon et al. (2006).
bMeneghello et al. (2009).
cO’Dea et al. (2010).

where κ = k/(λε5L2) is the dimensionless permeability. We will assume a dominant balance between
the radial terms in (4.4b), and so take κ = O(1) (see Table 2).

In the ECS (1 + h2 < y< 1 + h2 + h3), the no voids condition is unchanged:

θn + θw + θs = 1. (4.6)

The dimensionless conservation of mass equations are

∂θn

∂t
+ ∂

∂x
(θnun)+ ∂

∂y
(θnvn)= Jn,

∂θw

∂t
+ ∂

∂x
(θwuw)+ ∂

∂y
(θwvw)= −Jn; (4.7)
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406 N. C. PEARSON ET AL.

conservation of momentum for the cell phase is given by

− θn
∂pw

∂x
− ∂

∂x
(θnΠ)+ ψnsθs

∂θn

∂x
+ 2ε2

3

∂

∂x

[
θn

(
2
∂un

∂x
− ∂vn

∂y

)]

+ ∂

∂y

[
θn

(
∂un

∂y
+ ε2 ∂vn

∂x

)]
− ζnsθnθsun = 0, (4.8)

− θn
∂pw

∂y
− ∂

∂y
(θnΠ)+ ψnsθs

∂θn

∂y
+ ε2 ∂

∂x

[
θn

(
∂un

∂y
+ ε2 ∂vn

∂x

)]

+ 2ε2

3

∂

∂y

[
θn

(
2
∂vn

∂y
− ∂un

∂x

)]
− ε2ζnsθnθsvn = 0; (4.9)

and for the water phase is

− θw
∂pw

∂x
− ζwsθwθsuw = 0, −θw

∂pw

∂y
− ε2ζwsθwθsvw = 0, (4.10)

where ζij = γijL2ε2/μn for i = n, w, j = s are dimensionless. The dimensionless solute transport equation
is

λε3 Pe

[
∂

∂t
(θwcw)+ ∇ · (θwcwuw)

]
= ε2 ∂

∂x

(
θw
∂cw

∂x

)
+ ∂

∂y

(
θw
∂cw

∂y

)
+ ε2R. (4.11)

Finally, the boundary conditions on the lumen centreline become

∂ul

∂y
= 0, vl = 0,

∂cl

∂y
= 0 on y = 0; (4.12)

on the lumen–membrane interface

ul = 0, ε
∂pm

∂y
= − 1

λκφ
vl, pl + 2ε2

3

(
∂ul

∂x
− 2

∂vl

∂y

)
= pm,

cl = cm,
∂cl

∂y
= φ

∂cm

∂y
on y = 1;

(4.13a–e)

on the membrane–ECS interface

un = vn = 0, vw = −κφ
θw

∂pm

∂y
, pw = pm,

cm = cw, φ
∂cm

∂y
= θw

∂cw

∂y
on y = 1 + h2;

(4.14)

and on the bioreactor boundary

un = vn = vw = 0, θw

(
λε3 Pe cwvw − ∂cw

∂y

)
= 0 on y = H . (4.15)
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MULTIPHASE MODELLING OF TISSUE GROWTH 407

4.2 Derivation of the reduced model

Next we use asymptotic analysis to derive a reduced system of governing equations at leading order
in ε, before introducing up- and down-stream boundary conditions to close the problem. We begin
by expanding each dependent variable as an asymptotic series in powers of ε. For example, we let
ul ∼ ul0 + εul1 + ε2ul2 + · · · and similarly expand the remaining velocities vl, ui, vi (i = m, w, n); the
reduced pressures pi (i = l, m, w); the concentrations ci (i = l, m, w) and the volume fractions θn and
θw. We will consider the regime where Pe = O(1) (see Table 2), corresponding to a dominant balance
between axial diffusion and advection in the lumen. In the following, we omit subscript 0 from the
leading-order variables except where needed for clarity.

Substituting the expansions into lumen equations (4.2) and (4.3) and boundary conditions (4.12) and
(4.13a,b) and equating coefficients of ε0 gives

∂ul

∂x
+ ∂vl

∂y
= 0,

∂2ul

∂y2
= ∂pl

∂x
,

∂pl

∂y
= 0,

∂2cl

∂y2
= 0 for 0< y< 1, (4.16)

with

∂ul

∂y
= 0, vl = 0,

∂cl

∂y
= 0 on y = 0 (4.17)

and

ul = vl = 0 on y = 1, (4.18)

which yields

pl = pl(x, t),
∂2pl

∂x2
= 0, ul = 1

2

∂pl

∂x
(y2 − 1), vl ≡ 0, cl = cl(x, t). (4.19)

In the porous membrane, governing equations (4.4) and (4.5) become

um ≡ 0, vm = −κ ∂pm

∂y
,

∂2pm

∂y2
= 0,

∂2cm

∂y2
= 0 for 1< y< 1 + h2, (4.20a–d)

and so our assumption on the size of κ induces a pressure gradient at leading order across the porous
membrane. Boundary conditions (4.13c–e) yield

pl = pm, cl = cm, φ
∂cm

∂y
= ∂cl

∂y
≡ 0 on y = 1. (4.21)

Equations (4.20c,d) thus integrate to give

pm = P(x, t)(y − 1)+ pl(x, t), cm(x, t)≡ cl(x, t), (4.22)

for some function P(x, t) which is determined as part of the solution to the reduced model.
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408 N. C. PEARSON ET AL.

In the ECS (1 + h2 < y<H), equating coefficients of ε0 in (4.6) yields

θn + θw + θs = 1; (4.23)

(4.7) becomes

∂θn

∂t
+ ∂

∂x
(θnun)+ ∂

∂y
(θnvn)= Jn,

∂θw

∂t
+ ∂

∂x
(θwuw)+ ∂

∂y
(θwvw)= −Jn; (4.24a,b)

equations (4.8) and (4.9) give

−θn
∂pw

∂x
− ∂

∂x
(θnΠ)+ ψnsθs

∂θn

∂x
− ζnsθnθsun + ∂

∂y

(
θn
∂un

∂y

)
= 0, (4.25)

−θn
∂pw

∂y
− ∂

∂y
(θnΠ)+ ψnsθs

∂θn

∂y
= 0; (4.26)

and equations (4.10) and (4.11) are now

−θw
∂pw

∂x
− ζwsθwθsuw = 0, −θw

∂pw

∂y
= 0,

∂

∂y

(
θw
∂cw

∂y

)
= 0. (4.27a–c)

Boundary conditions (4.14) and (4.15) yield

un = vn = 0, vw = −κφ
θw

∂pm

∂y
, pw = pm,

cm = cw, φ
∂cm

∂y
= θw

∂cw

∂y
on y = 1 + h2

(4.28a–f)

and

un = vn = vw = 0, θw
∂cw

∂y
= 0 on y = H . (4.29a–d)

From (4.27c) and boundary conditions (4.28e,f) and (4.29d), we find that the solute concentration is
uniform across the bioreactor at leading order, with cl = cm = cw = c(x, t), for some global concentration
c(x, t) which is also determined as part of the solution to the reduced model.

Equation (4.27b) tells us that the reduced water pressure pw is independent of y, and thus it follows
from (4.26) and (4.23), respectively, that the leading-order cell and water volume fractions θn and θw

are also independent of y. In addition, from (4.25) and boundary conditions (4.28a) and (4.29a) we can
deduce that

un(x, y, t)= M (x, t)

θsζns

[
(coshα2 − coshα1) sinh

(√
θsζnsy

) + (sinhα1 − sinhα2) cosh
(√
θsζnsy

)
sinhα1 coshα2 − coshα1 sinhα2

− 1

]
,

(4.30)
where

α1 =
√
θsζnsH , α2 =

√
θsζns(H − h3), M (x, t)= ∂pw

∂x
+ Φ(θn, c)

θn

∂θn

∂x
+Π ′

c
∂c

∂x
,

Φ(θn, c)=Π + θnΠ
′
n − ψnsθs, Π ′

c = −χ
c̄

exp
(
−c

c̄

)
;

(4.31)
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while (4.27a) and (4.28d), respectively, give

uw(x, t)= − 1

θsζws

∂pw

∂x
, pw(x, t)= h2P(x, t)+ pl(x, t). (4.32)

Furthermore, by integrating (4.24) over the ECS and applying boundary conditions (4.28b,c) and
(4.29b,c), we obtain the following equations for θn and pw (via P(x, t)):

∂θn

∂t
+ ∂Qn

∂x
= Jn,

∂

∂x
(Qn + Qw)= −κφ

h3
P(x, t), (4.33a,b)

where the cell flux Qn and water flux Qw are given by

Qn = F

[
∂pw

∂x
θn +Φ(θn, c)

∂θn

∂x
+ θnΠ

′
c
∂c

∂x

]
, Qw = − θw

θsζws

∂pw

∂x
, (4.34)

with

F = 2 cosh(α3)− α3 sinh(α3)− 2

θsζnsα3 sinh(α3)
, α3 = α1 − α2 = h3

√
θsζns. (4.35)

Now we determine an equation for c before introducing up- and down-stream boundary conditions
to close the resulting coupled system. Equation (4.11) implies that ∂cw/∂y is of O(ε2) and therefore
∂cw1/∂y = 0. Hence, equating coefficients of ε2 in the solute equations in each region (briefly returning
to subscript 0 notation for leading-order variables for clarity), we obtain

Pe

[
∂

∂x
(cl0 ul0)+ ∂

∂y
(cl0 vl0)

]
= ∂2cl0

∂x2
+ ∂2cl2

∂y2
for 0< y< 1, (4.36)

∂2cm0

∂x2
+ ∂2cm2

∂y2
= 0 for 1< y< 1 + h2, (4.37)

∂

∂x

(
θw0

∂cw0

∂x

)
+ ∂

∂y

(
θw0

∂cw2

∂y
+ θw2

∂cw0

∂y

)
+ R0 = 0 for 1 + h2 < y<H . (4.38)

The corresponding boundary conditions are given by

∂cl2

∂y
= 0 on y = 0, (4.39)

∂cl2

∂y
= φ

∂cm2

∂y
, cl2 = cm2 on y = 1, (4.40a,b)

φ
∂cm2

∂y
= θw0

∂cw2

∂y
, cm2 = cw2 on y = 1 + h2 (4.41a,b)

and

∂cw2

∂y
= 0 on y = H . (4.42)

We integrate (4.36–4.38) with respect to y across the lumen, porous membrane and ECS, respectively,
and add them together (multiplying the integrated form of (4.37) by the pore fraction φ first). Applying
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boundary conditions (4.39), (4.40a), (4.41a) and (4.42) then yields

∂Qc

∂x
= −h3R(θn, c), (4.43)

where the solute flux Qc is given by

Qc = 1

3
Pe
∂pl

∂x
c + b(θn)

∂c

∂x
, b(θn)= 1 + h2φ + h3(1 − θs − θn). (4.44)

4.3 Boundary conditions for the reduced model

To close the coupled system given by (4.33a,b) and (4.43), we prescribe up- and down-stream boundary
conditions appropriate to this flow regime. In order to determine these boundary conditions exactly, it
would be necessary to determine the local flow dynamics just outside the edges of our modelling region
by solving the 2D problem for the cross-section of the whole bioreactor. This would be extremely
computationally expensive, and for our simplified setup, we instead impose conditions that mimic the
expected behaviour in these up- and down-stream regions. We note that this approach allows a rapid
exploration of parameter space. Firstly, we prescribe a volume flux into the lumen, setting

∫ 1

0
ul dy = Ql,in at x = 0, (4.45)

for a non-dimensionalized volume flux per unit length in the z-direction (perpendicular to x and y) Ql,in,
which is assumed constant. Additionally, we anticipate a small flux into the ECS (from fluid which has
already permeated through the fibre from the lumen), and set∫ H

1+h2

θwuw dy = Qe,in at x = 0, (4.46)

where Qe,in (assumed constant) is the non-dimensionalized volume flux per unit length in the z-direction.
Here, we fix a value that is much less than the flux into the lumen, motivated by the expectation that the
permeate flow rate in the ECS will be much lower than that in the lumen. We also carry out a sensitivity
analysis of this and other key parameters in Section 5.5.

Next, we prescribe a downstream lumen pressure (controlled experimentally by a clamp as discussed
previously), setting

pl = Pd at x = 1, (4.47)

where Pd is dimensionless, fixed and constant. At the downstream ECS end, we mimic the atmospheric
pressure conditions at the bioreactor exit ports, and so take (given the choice of non-dimensionalization
in (4.1))

pw = 0 at x = 1. (4.48)

We impose no flux of cells out of the reduced region by setting

Qn = 0 at x = 0, 1. (4.49)

This mimics the fact that filters are used at the exit ports (which lie just outside our modelled region) to
avoid losing cells out of the bioreactor.
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MULTIPHASE MODELLING OF TISSUE GROWTH 411

Depending on whether the solute is being delivered at the lumen inlet or not, we impose either an
experimentally fixed concentration cin upstream (in which case C∗ = cin) or no total flux of solute in.
These give, respectively,

c = 1 or Qc = 0 at x = 0. (4.50)

We also require a concentration boundary condition at the lumen exit. Here, there is no constraint on the
concentration in an experimental setup. Our choice of boundary condition is motivated by the fact that
we would expect the concentration to be constant in space after it leaves the lumen due to the effect of
diffusion. We therefore impose no diffusive flux out:

∂c

∂x
= 0 at x = 1. (4.51)

We note that this is also the boundary condition which has the least influence on the concentration field
(prescribing a downstream concentration, for instance, would have a large effect on the concentration
elsewhere in the bioreactor) and that this still allows an advective flux out of the bioreactor.

These boundary conditions allow us to solve explicitly for more of the leading-order unknowns in
terms of θn, c and pw, so that in the lumen,

ul(y)= − 3
2 Ql,in(y

2 − 1), vl ≡ 0, pl(x)= 3Ql,in(1 − x)+ Pd; (4.52)

in the membrane,

um ≡ 0, vm(x, t)= −κP(x, t), pm(x, y, t)= 3Ql,in(1 − x)+ P(x, t)(y − 1)+ Pd; (4.53)

and in the ECS,

uw(x, t)= − 1

θsζws

∂pw

∂x
, (4.54)

un(x, y, t)= M (x, t)

θsζns

[
(coshα2 − coshα1) sinh

(√
θsζnsy

) + (sinhα1 − sinhα2) cosh
(√
θsζnsy

)
sinhα1 coshα2 − coshα1 sinhα2

− 1

]
,

(4.55)

where P is given in terms of pw by

P(x, t)= 1

h2
[pw(x, t)− 3Ql,in(1 − x)− Pd], (4.56)

and α1, α2 and M (x, t) are as given in (4.31). We note that (4.24a,b) still hold for vn and vw, respectively.

4.4 Summary of reduced model

The reduced model for θn(x, t), c(x, t) and pw(x, t) is given by

∂θn

∂t
+ ∂Qn

∂x
= Jn,

∂Qc

∂x
= −h3R(θn, c),

∂

∂x
(Qn + Qw)= − κφ

h2h3
[pw − 3Ql,in(1 − x)− Pd] for 0< x< 1,

(4.57)
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where the fluxes are defined by

Qn = F

[
∂pw

∂x
θn +Φ(θn, c)

∂θn

∂x
+ θnΠ

′
c
∂c

∂x

]
, (4.58)

Qc = −Pe Ql,inc + b(θn)
∂c

∂x
, Qw = − θw

θsζws

∂pw

∂x
, (4.59)

with

F = 2 cosh(α3)− α3 sinh(α3)− 2

θsζnsα3 sinh(α3)
, α3 = h3

√
θsζns, Φ(θn, c)=Π + θnΠ

′
n − ψnsθs,

Π ′
c = −χ

c̄
exp

(
−c

c̄

)
, b(θn)= 1 + h2φ + h3(1 − θs − θn),

(4.60)

the boundary conditions are

Qn = 0, c = 1 or Qc = 0, Qw = Qe,in

h3
at x = 0, (4.61)

Qn = 0,
∂c

∂x
= 0, pw = 0 at x = 1, (4.62)

and the initial condition on θn is taken to be

θn(x, 0)= θ∗
n (x) for 0< x< 1, (4.63)

for some initial profile θ∗
n (x). Thus, the original system ((3.1–3.8) and (3.20–3.24)) has been reduced

from 16 to 3 unknowns, and from 2D to 1D, having eliminated the dependence on y. We have an
advection–reaction–diffusion PDE for θn, and quasi-steady second-order non-linear ordinary differen-
tial equations (ODEs) for c and pw. The main effects contributing to the cell flux Qn are cell advec-
tion (dependent on the water pressure gradient and chemotaxis), cell diffusion (dependent on the cell
intraphase pressure and cell–scaffold interphase pressure) and the cell–scaffold drag (through F). The
water flux Qw contains an advection term that also depends on the water pressure gradient and water-
scaffold drag. Finally, the solute flux Qc has an advective term dependent on the lumen flow rate, and a
diffusive term that is affected by the widths and (effective) porosities of the membrane and ECS. This
coupled system can now be solved numerically, given appropriate constitutive forms for Jn and R.

4.5 Parameter values

Now we determine the sizes of the dimensionless parameters, guided by our experimental collaborators
and dimensional values obtained from the literature where possible. This justifies the distinguished
limit taken to obtain our leading-order system in the previous section. Typical dimensional parameter
values are given in Table 1, with dimensionless parameters summarized in Table 2. The column entitled
‘Restriction’ in Table 2 states any asymptotic bounds on the parameter in question required for the
validity of the analysis (compared with our small parameter ε= 0.002). We also discuss parameter
choices for which either no data are available in the literature and therefore assumptions must be made,
or there exist a variety of possible values.

Firstly, we set the membrane/ECS velocity scaling U∗ by using an experimental lumen flow rate
of 3.86 × 10−4 ml min−1, which is equivalent in volume to that used in flask culture (in which 50 ml
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MULTIPHASE MODELLING OF TISSUE GROWTH 413

of culture medium is supplied every 3 days to cells covering a 75 cm2 cross-section). Achieving such
a small flow rate in an HFMB setup is one of the aims of current experiments being undertaken by
our collaborators in Dr Marianne Ellis’ group in the Centre for Regenerative Medicine, University of
Bath. The corresponding lumen velocity is 5.12 × 10−6 m s−1 and hence our membrane/ECS velocity
scaling U∗ = 1.02 × 10−8 m s−1. It is not known whether such a low flow rate will guarantee sufficient
supply of nutrient to the cell population, and this is something that we will verify as part of our results
in Section 5. We set C∗ to be 0.22 mol m−3, a typical inlet concentration for oxygen when culturing
a variety of cell types (Shipley et al., 2012). When the type of solute is specified in Section 5, it is
assumed that the typical concentration scalings for chemoattractant are similar to those for oxygen and
so the same value for C∗ is used throughout.

Using the parameter values in Table 1, we note that the reduced Reynolds number in the lumen
ε2Re = 2.05 × 10−6, which justifies the lubrication approximation taken in (3.2). We can also find the
Reynolds number in the membrane, Rem = ρwLU∗/μw = 0.001, which justifies the use of Darcy’s law
in this region. As mentioned in Section 4.2, we consider the regime in which Pe = O(1). This is appro-
priate, since, given the choice of flow velocity U∗, the Péclet number Pe = 170.75.

In the membrane, we set κ = O(1) as discussed previously (in fact, κ ≈ 2.1 using the parameter
values in Table 1).

In the ECS, although we do not have data indicating typical sizes of the drag terms, we take both
ζns and ζws to be of O(1) so that their effects are retained at leading order in ε, but set ζws < ζns (as we
would expect physically). In Πc, the coefficient χ̂ is chosen so that the effects of chemotaxis appear at
leading order, while the parameter c̄ is taken to have a value comparable with a typical concentration.

A number of dimensionless parameters appear in the constitutive forms of Jn and R in Section 5. In
Jn, the (dimensional) cell proliferation rate coefficient Γnw is chosen to correspond to one cell division
every 48 h, and we assume that cells live, on average, for 28 days when fixing the (dimensional) cell
death rate coefficient Γwn (values based on estimations by our experimental collaborators). In R, the
dimensionless uptake coefficient Γ̂R1 (which is the same for nutrient and chemoattractant) is taken to
be of O(1), as is the dimensionless chemoattractant-production-rate coefficient Γ̂R2, so that we obtain a
balance between uptake and production. Finally, the uptake constants K and K1 which appear in Jn and
R, respectively, are taken to be comparable with a typical dimensionless concentration value.

Finally, to determine values for Ql,in, we have taken a plausible range of 3D flow rates (3.86 ×
10−6 − 3.86 × 10−3 ml min−1). These values have been converted into 2D fluxes (in m2 s−1) by divid-
ing by the vertical length scaling εL. The dimensionless downstream pressure Pd can take a range of
values in an experimental setup and hence is set to be of order unity in our model. The exact value has
been calculated using the relationship between flow rate, downstream pressure and permeate to feed
ratio determined by Shipley et al. (2010) using a flow rate of 3.86 × 10−4 ml min−1 and (dimensional)
permeate to feed ratio of 0.005 (see Section 4.3).

5. Numerical results: case studies

Having developed a model for the leading-order cell volume fraction θn, solute concentration c and
reduced water pressure pw, we consider a number of experimentally relevant case studies which corre-
spond to typical nutrient and chemoattractant scenarios. In Section 5.1, we consider a nutrient delivered
at the lumen inlet which limits cell proliferation rate and neglect the effect of chemotaxis. In Sec-
tions 5.2 and 5.3, we consider a chemoattractant, respectively, delivered at the lumen inlet or produced
by the cells, and in Section 5.4 we model both a delivered nutrient and a produced chemoattractant.
Therefore, in each case, we choose different forms for the cell mass transfer term Jn, reaction term R
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and inlet concentration boundary condition. The forms for these terms are chosen based on discussions
with experimental collaborators, and results indicate the typical behaviour to be expected from the sys-
tem in question, with the aim of informing bioreactor operating conditions (specifically, flow rates). We
investigate the sensitivity of these results to various parameter values of interest in Section 5.5. Finally,
in Section 5.6 we consider an alternative flow regime where there is a downstream flux into the lumen
and a backflow in the ECS instead of a downstream flux into both.

Results are obtained using a finite-difference scheme implemented in MATLAB. The system
(4.57–4.62) was discretized in x, resulting in a coupled system consisting of an ODE in time for θn

and algebraic equations for c and pw at each grid point (denoted by θn,i, ci and pi). This was then solved
in MATLAB using the inbuilt ODE solver ode15s given an initial profile for θn (see (4.63)). We found
that for arbitrary, smooth initial conditions, the steady state obtained is independent of the choice of θ∗

n .
For the results presented in this paper, we take θ∗

n to be the constant value 0.3 without loss of generality.
A convergence test was carried out to ensure that the second-order scheme converges as expected as the
step size Δx → 0. Once the accuracy of the scheme had been verified, we applied our general model to
specific experimental setups.

In each experimentally motivated case study in Sections 5.1–5.4, we first investigate the steady-state
distributions of the cells, the relevant solute(s) and the reduced water pressure for a number of different
flow rates in a representative range of Ql,in for which our asymptotic solution is valid (see Table 2).
The system is deemed to have reached a steady state at time T if the maximum change in θn, c and pw

between time T − 0.062 and T (corresponding to a dimensional time of around 1 week) is < 10−4, and
hence the end times are different for each case study. We note that results from each case study within
an experimentally relevant time frame are very close to the steady states shown here. The maximum
change in each of θn, c and pw between an experimental end-time solution and the steady-state solution
is <10% for each case study. Specifically, the results from Section 5.6 are within 10% of the steady
state after a dimensional time of around 2 weeks, those from Sections 5.2 and 5.3 after 3 weeks, those
from Section 5.5 after 4 weeks and results from Sections 5.1 and 5.4 after 6 weeks.

Next, we consider the effect of flow rate on cell yield and cell distribution in each case study by
finding the mean and standard deviation of θn for a range of Ql,in values. In this work, the mean μ is
given by

μ=
∫ 1

0
θn(x, T) dx, (5.1)

and the standard deviation σ by

σ =
√∫ 1

0
(θn(x, T)− μ)2 dx, (5.2)

where T is the relevant end time. The MATLAB function trapz is used to estimate μ and σ for a
given θn. This analysis is motivated by maximizing either the cell yield or spatial uniformity of the cell
population in a particular experimental scenario. Focusing on the latter, for each case study we find
the flow rate Ql,opt which results in the most uniformly distributed cell population by minimizing σ
with respect to Ql,in. For this, as well as plotting Ql,in versus σ as described above, we use the inbuilt
MATLAB function fminbnd to find the minimum standard deviation of θn within the flow rate range
considered, i.e. 0.01<Ql,in < 10. Results for this optimal flow rate are presented alongside those for the
full range of Ql,in values. By also considering the value of μ as the flow rate is adjusted, we are able to
determine whether or not cell yield is being compromised by requiring a uniform cell distribution.
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In Section 5.5, we vary a number of key parameters and investigate their effect on μ and σ . Finally,
in Section 5.6 where there is a backflow in the ECS, we consider steady-state results for a range of Qe,in

values, including the optimal flow rate Qe,opt for which the standard deviation σ of θn is at a minimum.
In the case studies in Sections 5.1 and 5.4 which explicitly include nutrient, we check that the optimal

flow rates result in a nutrient concentration that is above the minimum required for cell viability through-
out the bioreactor. This minimum is taken to be a dimensional concentration of 8 × 10−2 mol m−3,
which is at the upper end of the range of minimum oxygen concentrations required for functional cells
(see Shipley et al., 2011) and here corresponds to a dimensionless concentration of 0.36. For the case
studies in which nutrient concentration is not explicitly taken into account (Sections 5.2, 5.3), we assume
that the cells are supplied with sufficient nutrient for all flow rates in the relevant range, and that there is
enough nutrient to ensure that there is no limiting effect on cell proliferation rate. The first assumption
is confirmed by the fact that the nutrient concentration in Section 5.4 (where both nutrient and chemoat-
tractant are explicitly modelled) is above 0.36 for all flow rates considered. However, in Section 5.1
where only nutrient is considered, the nutrient concentration does fall below 0.36 at the downstream
end of the bioreactor for the lowest flow rate Ql,in = 0.01. Hence, if such low flow rates are to be used,
the cells may not have a sufficient supply of nutrient throughout the bioreactor. The second assumption
is shown to not have a significant effect on trends in results. This is seen by comparing the cell distribu-
tions from Sections 5.3 (where nutrient is not included and assumed to be in abundance) and 5.4 (where
nutrient concentration is explicitly modelled). Unless stated otherwise, all parameter values are taken
from Table 2 and the (dimensionless) flux ratio Qe,in/Ql,in is kept constant and equal to 2.5. We note that
although the kinetic parameter values used here are fairly generic, specific cell types could be explored
as required.

5.1 Nutrient-driven proliferation

In the first case study, we consider a nutrient of concentration c(x, t) that is supplied at the lumen inlet
and does not induce a chemotactic response from the cells. This could represent, for instance, hepato-
cytes in a liver sinusoid (which can be modelled using an HFMB for tissue engineering applications).
Gradients in many chemical components, including oxygen, are set up along the length of a sinusoid.
These gradients correlate with changes in metabolic cell function along the sinusoid, but do not induce
cellular migration (Williams et al., 2013). The corresponding inlet boundary condition is

c = 1 at x = 0, (5.3)

and χ = 0 in Πc in (4.33a). The cell mass transfer term Jn takes the form

Jn = Γnwθnθwc

K + c
− Γwnθn, (5.4)

where Γnw, Γwn and K are all constants. The first term is motivated by the form of the corresponding
mass transfer terms in Lemon et al. (2006) and O’Dea et al. (2010) with an additional dependence on
the cell volume fraction so that there is no proliferation in the absence of either water (and hence solute)
or cells. We have also included a dependence on the nutrient concentration via Michaelis–Menten-type
kinetics. The second term represents the rate of cell death which is assumed proportional to the cell
volume fraction. The reaction term R is taken to be

R= −ΓR1θnθwc

K1 + c
, (5.5)
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where ΓR1 and K1 are constant. This represents the rate of nutrient uptake by the cells, which is assumed
to be of Michaelis–Menten form and proportional to the volume fractions of cells and water (for the
same reasons as discussed above).

The results for this case study can be seen in Figs 2(a) and 4(a). We see in the plot of θn that for
the lowest flow rate there is slight bunching upstream of the cell population due to the higher nutrient
concentration (and hence cell proliferation rate) in that region. As the flow rate is increased, the dis-
tribution of cells becomes relatively uniform along the bioreactor, due to the concentration becoming
more uniform (see c plot, Fig. 2(a)). For the highest flow rate, there is significant downstream bunching
of cells as the cells are also advected along the bioreactor. We also note that c is above the required min-
imum of 0.36 for cell viability except for the lowest flow rate Ql,in = 0.01, when the cells towards the
downstream end of the bioreactor may not have a sufficient nutrient supply. We can see that the optimal
flow rate Ql,opt = 7.16 × 10−2 results in a relatively uniform distribution of cells along the bioreactor,
with σ taking a minimum value of 6.7 × 10−3. The plot of pw shows that the reduced water pressure is
monotonically decreasing along the bioreactor for all flow rates. Figure 4(a) shows that there is a slight
trade-off between cell yield and distribution, with the mean μ at a maximum around Ql,in = 1, which
corresponds to a greater value of σ than the minimum one.

5.2 Chemoattractant: endocrine signalling

A second situation is that of a delivered chemoattractant to which the cells respond. This is similar to
endocrine signalling, where the stimulus is delivered via the bloodstream (represented by the lumen in
an HFMB). This type of signalling is involved in, e.g. regulating the metabolic activity of liver and
muscle cells (Berridge, 2012). In this case, we impose an inlet concentration so that

c = 1 at x = 0. (5.6)

We assume that cell proliferation is not limited by the chemoattractant concentration and that there is
also sufficient nutrient in the system (the concentration of which we do not track) so that its concentra-
tion does not affect the growth rate. Therefore, we take

Jn = Γnwθnθw − Γwnθn, (5.7)

where Γnw and Γwn are constants. The reaction term takes the form

R= −ΓR1θnθwc, (5.8)

where ΓR1 is constant. This represents the rate of chemoattractant uptake by the cells, which is taken to
be proportional to the concentration of chemoattractant and the volume fractions of cells and water.

The results for this case study can be seen in Figs 2(b) and 4(b). Here, we see that for low flow rates
there is upstream bunching of θn due to the negative gradient in c, which causes an increase in cells
upstream due to chemotaxis. However, as the flow rate increases further and this gradient decreases,
advection dominates and the cell volume fraction increases downstream once more. In this case, the
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(a)

(b)

(c)

Fig. 2. Steady-state distributions of the cell volume fraction θn, nutrient concentration c and reduced ECS water pressure pw
versus x for a range of flow rates Ql,in including the optimal value Ql,opt. (a) Nutrient-driven proliferation case study results
(from Section 5.1), end time T = 1.2, optimal flow rate Ql,opt = 7.16 × 10−2 and corresponding standard deviation σ = 6.7 ×
10−3. (b) Endocrine signalling case study results (from Section 5.2), end time T = 0.6, optimal flow rate Ql,opt = 0.1033 and
corresponding standard deviation σ = 1.6 × 10−3. (c) Paracrine signalling case study results (from Section 5.3), end time T = 0.6,
optimal flow rate Ql,opt = 1.0532 and corresponding standard deviation σ = 1.49 × 10−2. Parameter values are as in Table 2.

most uniform distribution of cells occurs for Ql,opt = 0.1033, with σ = 1.6 × 10−3. Once again, the
reduced water pressure is monotonically decreasing in x for all flow rates. In Fig. 4(b), we see that this
time the value of μ is fairly constant across the range of flow rates considered, but drops off slightly for
higher flow rates.
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5.3 Chemoattractant: paracrine signalling

The third case study models the concentration c(x, t) of a chemoattractant that is produced by the cells
and also induces a chemotactic response. This local signalling between cells is known as paracrine
signalling, and controls processes such as neutrophil chemotaxis during inflammatory responses, and
the migration of haematopoietic stem cells in bone marrow (Berridge, 2012). Bioreactor expansion
of haematopoietic stem cells in particular is needed for many therapeutic applications (see Liu et al.,
2006). In this situation, we assume that no chemoattractant is supplied at the inlet and hence impose the
boundary condition

Qc = 0 at x = 0. (5.9)

We take the same mass transfer term as in Section 5.2:

Jn = Γnwθnθw − Γwnθn. (5.10)

Since we must also consider production of the chemoattractant here, R takes the form

R= ΓR2θn − ΓR1θnθwc, (5.11)

where ΓR2 is constant. The additional first term in (5.11) signifies production of chemoattractant by the
cells at a rate proportional to the cell volume fraction and represents situations where the chemoattrac-
tant is always produced by the cells (hence higher concentrations where there are more cells, a situation
which could arise, for instance, with stem cells).

Results for this case are shown in Figs 2(c) and 4(c). Overall, we can see that as the flow rate
increases the extent of the downstream bunching of cells increases. However, between Ql,in = 0.1 and
Ql,in = 1, the opposite trend is seen. For the lower flow rate of Ql,in = 0.1, the (positive) gradient in c
is sufficiently large for chemotaxis to have a noticeable effect, resulting in an increased cell volume
fraction downstream. However, once Ql,in is increased to 1, the concentration is much more uniform,
and therefore, so too is the distribution of cells. When the flow rate is further increased to 10, advection
dominates and the cells are swept downstream (results not shown). As in Section 5.1, the reduced water
pressure is again monotonically decreasing in x for all flow rates.

Here, the optimal flow rate within the range considered is Ql,opt = 1.0532, where the standard devia-
tion of θn is at a minimum value of 1.49 × 10−2. We also see in Fig. 4(c) that the mean μ does not vary
much with Ql,in in this case, and hence we would expect a similar yield of cells no matter which flow
rate was chosen. However, the optimal flow rate Ql,opt does correspond to a maximum cell yield, as well
as a minimum in σ .

5.4 Nutrient and chemoattractant concentrations

In the next case study, we consider two solutes: a nutrient that is supplied at the lumen inlet and a
chemoattractant that is produced by the cells and induces a chemotactic response. The coupled sys-
tem to solve can be derived as before to yield (where subscript 1 refers to nutrient and subscript 2 to
chemoattractant concentration)

cl,i = cm,i = cw,i = ci(x, t) for i = 1, 2, (5.12)
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where θn, c1, c2 and pw satisfy

∂θn

∂t
+ ∂Qn

∂x
= Jn,

∂Qci

∂x
= −h3Ri(θn, ci) (i = 1, 2),

∂

∂x
(Qn + Qw)= − κφ

h2h3
[pw − 3Ql,in(1 − x)− Pd] for 0< x< 1,

(5.13)

and the fluxes are defined by

Qn = F

[
∂pw

∂x
θn +Φ(θn, c2)

∂θn

∂x
+ θnΠ

′
c
∂c2

∂x

]
, (5.14)

Qci = −Pe Ql,inci + b(θn)
∂ci

∂x
(i = 1, 2), Qw = − θw

θsζws

∂pw

∂x
, (5.15)

with

F = 2 cosh(α3)− α3 sinh(α3)− 2

θsζnsα3 sinh(α3)
, α3 = h3

√
θsζns, Φ(θn, c2)=Π + θnΠ

′
n − ψnsθs,

Π ′
c = −χ

c̄
exp

(
−c2

c̄

)
, b(θn)= 1 + h2φ + h3(1 − θs − θn).

(5.16)

The corresponding boundary conditions are

Qn = 0, c1 = 1, Qc2 = 0, Qw = Qe,in

h3
at x = 0, (5.17)

Qn = 0,
∂ci

∂x
= 0 (i = 1, 2), pw = 0 at x = 1. (5.18)

The mass transfer term is taken to be that from Section 5.1, while the reaction terms take the appro-
priate forms from Sections 5.1 and 5.3:

Jn = Γnwθnθwc1

K + c1
− Γwnθn, R1 = −ΓR1,1θnθwc1

K1 + c1
, R2 = ΓR2,2θn − ΓR1,2θnθwc2, (5.19)

with the uptake constants ΓR1,1 and ΓR1,2 and production constant ΓR2,2 set to the same values as the
corresponding parameters in the single-solute case (where ΓR1 = ΓR2 = 50).

Results for this extended system can be seen in Figs 3 and 4(d) and correspond to the case study in
Section 5.3 when nutrient is explicitly modelled. Figures 2(c) and 3 show the same overall trend in cell
distribution as the flow rate increases. However, in Fig. 3 there is also an overall increase in cell yield as
the flow rate increases. We also note that here the cell volume fraction is lower in general. This is due
to the decreased proliferation rate since we are assuming here that nutrient can have a limiting effect
on cell proliferation rate, while in Section 5.3 it was assumed to be in abundance. We also see similar
trends in chemoattractant concentration and reduced water pressure, albeit with higher overall values
when nutrient is not explicitly modelled. This is due to the higher cell volume fraction overall which
results in more chemoattractant being produced. We note that the distribution of nutrient is similar to
that seen in Fig. 2(a) and that here the nutrient concentration is always above that required for cell
viability. In this case, the optimal flow rate is Ql,opt = 1.341, with a corresponding standard deviation
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Fig. 3. Steady-state distributions of the cell volume fraction θn, nutrient concentration c1, chemoattractant concentration c2 and
reduced ECS water pressure pw versus x for a range of flow rates Ql,in including the optimal value Ql,opt. Results are from
the nutrient and chemoattractant case study presented in Section 5.4, end time T = 1.5 and optimal flow rate Ql,opt = 1.341
(corresponding standard deviation σ = 1.31 × 10−2). Parameter values are as in Table 2.

of σ = 1.31 × 10−2. Figure 4(d) shows that this flow rate produces a relatively high cell yield, and
confirms that σ is at a minimum.

5.5 Parameter sensitivity

We next investigate how sensitive our model results are to the key dimensionless parameters Qe,in, η,
ζns, ζws, κ , φ and λ. We note that in each case the parameter value in question is varied within a range
that retains the validity of our asymptotic analysis.

5.5.1 Effect of Qe,in. To examine how sensitive our model results are to the dimensionless ECS flux,
we firstly calculate the mean and standard deviation of θn for a range of values of Qe,in. Results for all
case studies are summarized in Table 3 and indicate that overall, increasing Qe,in greatly increases the
standard deviation σ of θn but only slightly reduces the mean μ of θn. Plots of the final cell, nutrient
concentration and pressure distributions for the nutrient-driven proliferation case study from Section 5.1
can be seen in Fig. 5 and show that increasing Qe,in results in increased downstream bunching of cells.
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(a) (b)

(c) (d)

Fig. 4. Plots of the mean μ of θn (solid line) and the standard deviation σ of θn (dash-dotted line) versus Ql,in for case study results
from (a) nutrient-driven proliferation (Section 5.1), (b) endocrine signalling (Section 5.2), (c) paracrine signalling (Section 5.3)
and (d) nutrient and chemoattractant concentrations (Section 5.4). The dashed vertical line in each plot corresponds to the optimal
flow rate Ql,opt for which σ is at its minimum value. Parameter values are as in Table 2.

5.5.2 Effect of η, ζns and ζws. Now we compare steady-state cell distributions for varying values of
the cell–scaffold affinity parameter η, the dimensionless cell–scaffold drag ζns and water-scaffold drag
ζws (see Fig. 6(a–c)). As expected, increasing either η or ζns results in a lesser degree of downstream cell
bunching (and therefore smaller standard deviation σ of θn) due to the increased cell–scaffold affinity
or scaffold drag, respectively. Increasing ζws gives the opposite effect, due to the higher drag between
the water and cells and therefore increased advection.

5.5.3 Effect of membrane properties κ and φ. Next we consider the effect of the membrane porosity
φ and dimensionless permeability κ on the cell population distribution. Increasing both parameters
results in more downstream bunching of cells and therefore greater standard deviation σ of θn (see
Fig. 6(d) and (e)). This is due to the increased flow into the ECS from the membrane (from either a
greater porosity or permeability) and therefore greater effect of advection on the cells.
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Table 3 Values of the mean μ of θn and the standard deviation σ of θn for different values of the ECS
flux Qe,in, and percentage change overall for each case study. The lumen flux Ql,in is fixed at 1 and all
other parameter values are as in Table 2

Case study μ (Qe,in = 0.1) μ (Qe,in = 2.5) μ (Qe,in = 10) Overall % change in μ

Section 5.1 nutrient 0.455 0.4544 0.4503 −1.03
Section 5.2 endocrine 0.5279 0.5278 0.5273 −0.11
Section 5.3 paracrine 0.5277 0.5276 0.5269 −0.15
Section 5.4 nutrient and
chemoattractant

0.4553 0.4551 0.4546 −0.15

σ (Qe,in = 0.1) σ (Qe,in = 2.5) σ (Qe,in = 10) Overall % change in σ

Section 5.1 nutrient 0.015 0.0226 0.0486 224
Section 5.2 endocrine 0.0055 0.0088 0.0191 247
Section 5.3 paracrine 0.0118 0.0149 0.0242 105
Section 5.4 nutrient and
chemoattractant

0.0112 0.0136 0.0208 85.7

Fig. 5. Steady-state distributions of the cell volume fraction θn, nutrient concentration c and reduced ECS water pressure pw
versus x from the nutrient-driven proliferation case study (Section 5.1) for a range of values of the ECS flux Qe,in and fixed lumen
flux Ql,in = 1 (end time T = 0.9). All other parameter values are as in Table 2.

5.5.4 Effect of viscosity parameter λ. We lastly look at the effect of λ, which enters the viscosity
ratio through μw/μn = λε so that decreasing λ increases the effective viscosity of the cells μn. Results
show that when the cells are more viscous, the distribution is less uniform overall (i.e. the standard
deviation σ of θn is greater) and also have more of a tendency to bunch downstream (see Fig. 6(f)).

5.6 Backflow

Finally, with the aim of counteracting downstream bunching effects without using a chemoattractant,
we consider the influence of an opposing flow in the ECS by imposing an inlet flux at the downstream
end: ∫ H

1+h2

θwuw dy = −Qe,in at x = 1. (5.20)
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Steady-state distributions of the cell volume fraction θn versus x from the nutrient-driven proliferation case study in
Section 5.1 (end time T = 0.9) for a range of values of (a) the cell–scaffold affinity parameter η, (b) the cell–scaffold drag ζns,
(c) the cell–water drag ζws, (d) the dimensionless membrane permeability κ , (e) the membrane porosity φ and (f) the viscosity
parameter λ. The (dimensional) lumen flux Ql,in is fixed at 1.02 × 10−9 m2 s−1. All other parameter values are as in Table 2.

This corresponds to the following downstream boundary condition for the water flux

Qw = Qe,in

h3
at x = 1. (5.21)

We also need to impose an upstream pressure boundary condition. Unlike the standard flow regime
(where atmospheric pressure is imposed), here we impose a prescribed (dimensionless) upstream pres-
sure Pu so that

pw = Pu at x = 0. (5.22)

Experimentally, this corresponds to an additional clamp controlling the pressure at the upstream exit
port. This is necessary in order to avoid a dominating upstream flow in this setup, and so to obtain a
uniform cell population in the absence of chemotaxis. If a zero pressure was imposed upstream, we
would always have a positive water pressure gradient in the ECS and therefore net upstream advection
of the cells. The value of Pu could be controlled experimentally, and here we choose illustrative values
to demonstrate possible behaviours in this flow regime.
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(a)

(b)

(c)

Fig. 7. Steady-state distributions of the cell volume fraction θn, nutrient concentration c, reduced ECS water pressure pw and net
cell proliferation function Jn versus x in the backflow regime of the nutrient-driven proliferation case study (Section 5.1) for a
range of ECS flow rates Qe,in including the optimal value Qe,opt (end time T = 0.7). (a) θn, c and pw for fixed Ql,in = 2 and Pu = 6,
optimal ECS flow rate Qe,opt = 1.1205, with corresponding standard deviation σ = 0.0015; (b) θn, c and pw for fixed Ql,in = 5
and Pu = 15, optimal ECS flow rate Qe,opt = 5.8443, with corresponding standard deviation σ = 0.0103; (c) Jn for fixed Ql,in = 2,
Pu = 6 (left) and Ql,in = 5, Pu = 15 (right). All other parameter values are as in Table 2.
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advective flux
diffusive flux

(a)

advective flux
diffusive flux

(b)

advective flux
diffusive flux

(c)

Fig. 8. Plots of streamlines for the cell (left) and water (centre) velocities, and advective and diffusive cell fluxes (right), for the
nutrient-driven proliferation case study (Section 5.1), with fixed Ql,in = 5 and Pu = 15. In (a) Qe,in = 0.01, in (b) Qe,in = Qe,opt =
5.8443 and in (c) Qe,in = 10. All other parameter values are as in Table 2. Streamlines were calculated using the streamslice
function in MATLAB.
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We investigate the effect of this flow regime using the nutrient-driven proliferation case study from
Section 5.1 as an example. Our aim is to see whether a uniform distribution of cells can be obtained
without the effect of chemotaxis but for higher flow rates than those in Section 5.1. Hence, once again
we look for flow rates that minimize the standard deviation σ of θn. Given that the fluxes Ql,in and Qe,in

should now be imposed independently of one another, we fix a value of Ql,in and allow Qe,in to vary.
Plots of the cell, nutrient concentration and reduced water pressure distributions and the proliferation
function Jn for a range of values of Qe,in can be seen in Fig. 7. From this, we can see that as Qe,in is
increased, the cell distribution switches from downstream to upstream bunching as expected, and we
note that the pressure gradient changes from negative to positive. It is also still possible to obtain a fairly
uniform cell population in the case where Ql,in = 2 and Pu = 6 (corresponding σ = 0.0015), whereas for
Ql,in = 5 and Pu = 15, the profile is peaked in shape (σ = 0.0103). The plot of Jn confirms that regions
of lower cell volume fraction correspond to a higher net proliferation rate.

To further illustrate the behaviour of the system in the case where Ql,in = 5 and Pu = 15, Fig. 8 shows
plots of the cell and water streamlines, and the advective and diffusive cell flux contributions for each
Qe,in value. In Fig. 8(a), we observe a net flow of water downstream as the lumen flow is dominating,
resulting in the downstream bunching of cells observed in Fig. 7(b). In contrast, Fig. 8(c) shows results
for Qe,in = 10, when the ECS flow dominates and the net flow (and cell bunching) is upstream. In the
flux figures, we note the switch in the respective directions of the advective and diffusive cell fluxes
between Fig 8(a) and (c). Finally, in Fig. 8(b), for the optimal value of Qe,in we can see that there is a
balance between forward and backward water flow in the ECS, with a stagnation point at around x = 0.6
which corresponds to the peak in θn observed in Fig. 7(b). This stagnation point is also present in the
cell velocity streamlines, which in general show a flow in the direction opposite to that of the water.
Furthermore, we note that, apart from near x = 0, there is a flow of water into the membrane from the
ECS.

6. Conclusions

In conclusion, we have developed a multiphase model of fluid flow, cell population evolution and solute
transport in a simplified HFMB setup. The governing equations have been reduced through careful
asymptotic analysis to exploit the separation of length scales inherent in the experimental setup. The
resulting leading-order system of equations has been solved numerically. The model developed thus far
is generic, and results speculative due to the number of assumptions necessary at this stage. However,
we believe that the work presented here is instructive in demonstrating the range of possible behaviours
in such a setup and in predicting trends arising from varying flow rates and certain other key parameters.
Given the early stage of experiments in this field, there are currently no data available to validate our
model. However, the results presented here provide a suggested range of flow rates to be experimentally
tested to see whether the cell behaviours predicted by our model are observed. We have also identified
a number of experiments which we hope will be carried out in the near future (for instance, determining
the fluid flux into the ECS from the lumen which is currently unknown) and which will greatly improve
the parametrization of our model. Furthermore, the model in its current form could easily be applied
to specific cell types and experimental setups through the choice of boundary conditions and specific
kinetic parameter values.

To demonstrate the variety of possibly steady-state cell distributions, we have investigated and com-
pared a number of different case studies which represent different experimental setups. In each case,
there is a complex interaction between the effects of advection, diffusion and chemotaxis on the cell
population. This has been shown to result in a variety of steady states, with cells mainly aggregated
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up- or down-stream, or more uniformly distributed. We have shown that in almost all cases the require-
ment for a sufficient nutrient supply to maintain cell function is satisfied, but for the nutrient-only case
study from Section 5.1, this may not be true throughout the bioreactor for the lowest flow rate consid-
ered. When chemoattractant is delivered into the system, we observe competition between advection
and chemotaxis: initial upstream bunching of cells due to the chemoattractant concentration gradient is
overcome by downstream advection of cells for large enough flow rates. This competition also results
in a non-monotonic relationship between cell distribution and increasing flow rate which is observed in
Section 5.3, where chemoattractant is produced by the cells. By comparing the results from Section 5.3
with those in Section 5.4, we have also shown that explicitly modelling nutrient gives a similar trend in
cell distribution as the flow rate is increased. In the alternative flow regime where there is a backflow in
the ECS, we observe that the competition between the up- and down-stream flow rates can also result
in bunching at either end of the bioreactor, or towards the centre.

We have additionally found ‘optimal’ flow rates by minimizing the standard deviation of the cell
volume fraction and considering the corresponding cell yield. The extent to which a given setup is able
to achieve a uniform cell population, and the shape of the resulting cell distribution, varies from case to
case. For instance, when cells are undergoing paracrine signalling and/or nutrient-limited proliferation,
the most uniform distribution possible has slight downstream bunching of the cell population. In con-
trast, in the case where endocrine signalling occurs, the most uniform distribution involves both up- and
down-stream cell aggregation, with a dip towards the middle of the modelling domain. However, our
results all show that provided an appropriate flow rate is chosen, each case study is capable of providing
a cell population with relatively little variation (the largest σ being 1.49 × 10−2 in Section 5.3) and that
despite the low experimental flow rates considered here (Ql,in = 0.01 − 10 approximately correspond-
ing to 3.86 × 10−6 − 3.86 × 10−3 ml min−1), these flow rates ensure sufficient nutrient delivery to cells
in all but one case. We also note that the minimum values of σ and optimal cell distributions found in
the matching case studies with and without nutrient (from Sections 5.3 and 5.4) are very similar, and
hence can conclude that the trends in uniform cell distributions found here do not heavily depend upon
the inclusion (or exclusion) of nutrient.

Furthermore, in most cases we either see relatively little variation in the mean value μ of θn, or find
that minimizing the standard deviation σ of θn gives a value of μ that is very close to its maximum, and
hence by choosing optimal flow rates based on cell distribution, we are not compromising on cell yield.
In the nutrient-only case (Section 5.1), however, the optimal flow rate gives a lower cell yield than could
be achieved with higher flow rates, and hence in this situation a trade-off may have to be made between
desired cell yield and distribution. We note that the framework outlined here could also be used to find
optimal conditions in the case where a non-uniform distribution of cells is required.

Finally, we have used the nutrient-limited growth case study from Section 5.1 to investigate the
sensitivity of our results to a number of key dimensionless parameters and the alternative flow regime
where there is an upstream flux into the ECS. For instance, we have found that increasing the flux into
the ECS does not significantly affect cell yield, but does decrease the uniformity of the cell distribution
by causing more downstream bunching. In the case of backflow, we have shown that by choosing an
appropriate upstream lumen flow rate and downstream ECS flow rate, it is possible to generate a uniform
distribution of cells in this alternative flow regime, without the need for chemotaxis and with a higher
flow rate than in the standard flow regime.

There are a number of assumptions or simplifications in our current model that should be explored
further. Firstly, we greatly simplified the bioreactor geometry in order to obtain our 2D rectangular
modelling region. The corresponding axisymmetric problem and comparisons with results presented
here will be a focus of future work. In addition, solving the full problem numerically (in the whole
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bioreactor region including the exit ports) would give great insight into the validity of the model reduc-
tion presented here. However, this would be very difficult numerically and is beyond the scope of this
paper. Secondly, we assume that the ECS scaffold is rigid and inert, neglecting any degradation or ECM
deposition by the cells. This simplification allows us to make analytical progress which would not be
possible if all the three phases were active. However, we hope to include the production and decay of
scaffold in future work. In addition, we have assumed that the effective viscosity of the bulk cell phase
is much greater than that of the water. Although this seems sensible, the validity of this assumption
should be investigated if possible.

As mentioned previously, the constitutive forms of the kinetic functions Jn and R have been cho-
sen to demonstrate the range of behaviour that could be expected from this system, and would need
validation in order for this model to be applied to a specific experimental setup. However, given that
our analysis was carried out for general Jn and R, it would be straightforward to obtain new results for
different kinetic functions. In addition, the kinetic parameter values currently used are not specific to
any one cell type and, again, the model could easily be altered for specific cell types, given appropriate
data. It is noted that these alterations could quantitatively alter our findings (for instance, proliferation
could become the dominating effect over advection and therefore lead to more uniform cell distributions
for higher flow rates than observed here), but we would expect results to correlate qualitatively to one
of the case studies presented here.
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