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Methods 

 
Electronic Structure Calculations 

The calculations performed in this work are based on density functional theory 
(DFT) using the Vienna Ab Initio Simulation Package (VASP) (33-35). To solve the 
Kohn-Sham equations, this code makes use of a development of the one-electron wave 
function in a basis of plane waves. The effect of the core electrons on the valence 
electrons is described by the projector augmented wave method (PAW) (36,37).  The 
generalized gradient approximation (GGA) was used with the functional of Perdew and 
Wang (38). A convergence of the plane-wave expansion was obtained with a cut-off of 
400 eV. 

We ran finite temperature ab initio molecular dynamics (AIMD). The VASP code 
uses the Verlet algorithm to integrate the classical Newton’s equations of motion. A time 
step of 1.5 fs was used for the integration. Simulations were performed at constant 
temperature using an Andersen thermostat, with a restarting value of 150 cycles. 

The simulation box for the pure hcp-Fe was the same as used previously (9) to 
determine the elastic constants of pure hcp-Fe iron. This consisted of a 4x2x2 supercell 
of the 4-atom C-centred crystallographic cell of the hcp structure with orthogonal axes. A 
k-points grid of 4 irreducible k-points was used. 

Simulations were performed at nominal temperatures of 6500, 7000, 7250, 7500, 
and 8000 K since results for lower temperatures had already been obtained (9). 
Simulations were run for between 10 and 15 ps. The actual temperature of the 
simulation was determined from an average excluding the first 2 ps of the simulation. 
Stresses were determined as outlined below. To ensure that we were computing the 
stresses of solid phases, we retrieved the radial distribution function (RDF) and the root-
mean-square displacements (RMSD) for the last 3.5 ps of each simulation. 

 
Elastic Properties 

In order to obtain the elastic properties at 360 GPa we used the same procedure as 
before (9). In summary, we first optimised the unit-cell parameters using VASP-NPT 
simulations for the isothermal-isobaric ensemble using the barostat implemented in 
VASP by Hernández (39,40); we ran this simulation for up to 5 ps. The average lattice 
parameters from these NPT simulations were then used to create a unit cell to which 
distortions were applied (see below); the stresses on the simulation box were then 
obtained from VASP-NVT simulations run over ~10 ps (for simulations at target 
temperatures of 7000 and 7500 K, 15 ps were used to ensure convergence). 

Once the equilibrium structure of each system was obtained, the elastic constants, 
cij, were evaluated by distorting the unit cells according to the two distortion matrices 
shown below: 

 

 
 
Within the Voigt average (9,41) the elastic properties (incompressibility: K; shear 

modulus: G) are given by: 
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   Equation S1 

 
Finally, we obtained the adiabatic incompressibility, KS, from the relation 
 

 
 
using values of the volumetric thermal expansion coefficient, =10-5 K-1 and the 

Grüneisen parameter, = 1.5 (e.g., ref. 4,42).  
 
The isotropic wave propagation velocities in the material can then be evaluated 

from the bulk and shear moduli, and the density, ρ, as follows: 
 

       Equation S2 

 
 
Temperature dependence of the shear modulus and estimate of melting temperature 

We used the Nadal-Le Poac (NP) shear modulus model, based on Lindemann 
melting theory, to describe the temperature dependence of G at a fixed pressure (13). 
This takes the form: 

 

   Equation S3 

 
where 
 

        Equation S4 

 

      Equation S5 

and 
 

        Equation S6 

 
In Eqs 3-6, G is the shear modulus, P is pressure, T is temperature, G0 is the shear 

modulus at 0 K and 0 GPa, η is the compression, Tm is the melting temperature,  is the 
density, m is the atomic mass, kb is the Boltzmann constant, f is the Lindemann constant 
for the material and ζ is a material parameter. We have fitted our results to this model 
with 4 adjustable parameters, i.e., C, ζ, Tm, and GP (we note that, within the model, 
∂G/∂P and η are assumed to be temperature independent and, since our calculations are 
at constant P, GP may be taken as a constant). With this model we can obtain the 
melting temperature of the material and its Lindemann constant. This last value is in the 
range of 0.1-0.3 for most materials. 
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Supplementary Text 

Root-Mean-Square Displacement and Radial Distribution Function 
As stated in main text, we performed RMSD and RDF analysis to discern between 

solid and liquid structures and confirm that simulated structures at 7350 K or below were 
solids. At 7350 K and below, RMSD (Fig. S1A) shows the typical behavior for solids, i.e. 
an almost oscillating behavior around a constant value with simulation time. In contrast, 
beyond the melting point, at 8000 K, hcp-Fe shows a RMSD increasing with time, the 
expected behavior for liquids. This is confirmed by the RDF (Fig S1B). At 7350 K and 
below, two well-defined peaks for the first and second coordination shells exists at 2.1 
and 3.3 Å. At 8000 K, the peak of the second coordination shell at 3.3 Å is lost, as 
expected in liquids, since no long-range order exists.  

 
Atomic Defects Before and After Melting 

Atomic defects are a good indicator of how close the system is from melting and 
how the melt propagates into the solid structure (27-31); the percentage of defects 
increases in the solid structure with temperatures up to 40%, where a collapse in the 
solid structure occurs and it melts. After this point, the percentage of defects increases 
substantially to 70% or 80%.  

The procedure to evaluate the number of defects is the same as that presented in 
previous papers (27-31). A defect is defined as an over- or under-coordinated atom 
(coordination number different to 12 in the first shell). The first coordination shell is 
formed by those atoms closer to the atomic center than the first minimum in the RDF, 
i.e., those atoms closer to the atomic center than 1.21 times the average interatomic 
distance (first maximum in the RDF). After counting all defective atoms in a time step, we 
averaged that number for the last 5 ps of simulation. The final values show that hcp-Fe is 
a solid at 7350 K and below, and liquid at 8000 K. (Fig. S3). 

 
Simulation Temperature 

We set the thermostat at a nominal, starting temperature, as explained in the 
Methods section. We checked the temperature at the end of every simulation and we 
took the time-averaged temperature for each simulation and the standard deviation. That 
final value is the simulation temperature we give in the paper.  

The statistical error is evaluated using the blocking method for correlated data (43). 
The standard deviation is defined as: 
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where a new set of n’ data is created to evaluate the minimum standard deviation 
for this method. After the standard deviation was obtained, we applied a t-student test 
(we take t=3 for n=∞ and 99.9% of confidence). The final statistic error in temperature 
goes from ±10 to ±40 K when the temperature increases from 2000 to 8000K, this 
represents in all cases an error of 0.5% in the temperature determination. 
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Fig. S1. Root-Mean-Square Displacement (A) and Radial Distribution Function (B) 
analysis for hcp-Fe as a function of the temperature for the last 3.5 ps of simulation. In 
Fig. S1A the left vertical axis corresponds to the 8000 K simulation; the right vertical axis 
corresponds to the lower temperature simulations. 
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Fig. S2. Calculated shear modulus for hcp-Fe as a function of simulation temperature at 
360 GPa. The black solid curve is a fit to the NP model (19) and the dashed line is the 
melting temperature obtained from this model. The grey band represents the minimum 
and maximum melting temperatures of hcp-Fe at 360 GPa (18). 
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Fig. S3. Percentage of atomic defects in the hcp-Fe structure at 360 GPa as a function 
of temperature. The system melts when atomic defects are present in 40% of the 
system, indicated by the dashed. 
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Table S1. Elastic properties and densities for hcp-Fe alloys and PREM at 360 GPa. 

 
 

 TFinal 
(K) 

 
(kg m-

3) 

c11  
(GPa) 

c12 c33 c13 c44 K 

(GPa) 
G Vp  

(km 
s-1) 

Vs 

Fe 0* 14185 2493 1151 2689 1085 577 1590 655 13.18 6.80 

 2000* 14138 2355 1282 2571 1083 476 1623 553 12.92 6.26 

 5400* 13739 1924 1310 2108 1098 237 1560 320 12.05 4.83 

 6600 13628 1814 1298 2063 1130 236 1562 288 11.90 4.58 

 7000 13529 1710 1304 1882 1060 203 1481 247 11.57 4.24 

 7250 13495 1424 1182 1822 1051 162 1384 181 10.99 3.67 

 7340 13482 1167 1050 1784 1014 110 1253 125 10.26 3.04 

PREM†  13090        11.26 3.67 

* ref.9; † ref.10 .  
 
 
 


