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Abstract

Malignant pleural mesothelioma (MPM) is a rare but devastating malignancy of the pleural

lining caused largely by exposure to asbestos. It presents insidiously with symptoms of

chest pain and breathlessness and at the time of presentation the disease is often diffusely

spread throughout the chest cavity. There are few effective therapies available with the

mainstay of treatment being chemotherapy. The role of surgery is controversial with the

only large scale randomised controlled trial showing a trend to worse outcome in patients

undergoing surgery. The average survival is 9-12 months from diagnosis and 5-year survival

rates are only 2%. New therapies are desperately needed.

There is increasing interest in combined gene and cell therapy approaches and for a

malignant disease this is particularly appealing. Mesenchymal stem cells (MSCs) are known

to home to tumours and are readily transduced with viral vectors making them ideal cells

for delivering targeted therapy. TNF-related apoptosis inducing ligand (TRAIL) is an exciting

anti-cancer therapy as it selectively causes apoptosis in cancer cells without affecting

healthy cells. This makes the combination of MSCs carrying TRAIL (MSCTRAIL) a viable

prospect for the targeted treatment of MPM.

Here I show that lentiviral vectors expressing TRAIL were used to transduce human bone

marrow-derived MSCs (MSCTRAIL) which induced apoptosis and cell death in multiple

human MPM cell lines. I produced a luciferase-expressing lentiviral vector and MPM cells

were transduced successfully to express luciferase (MPMLuc). These cells were used to

establish a murine model of MPM and enabled me to track tumour growth in vivo using

bioluminescent imaging. I demonstrated that systemic delivery of MSCTRAIL to MPM

tumours resulted in a significant reduction in tumour growth but topical delivery was not

effective. Using dual bioluminescent and fluorescent imaging I showed that MSCs home to

tumours when delivered both systemically and topically but that they engraft in greater

numbers following systemic delivery. Combining chemotherapy with MSCTRAIL showed

promising effects in vitro but was not effective in reducing tumour burden in vivo although

this may be due to using a sub-therapeutic dose of chemotherapy. In summary, human

bone marrow derived MSCs were shown to localise to areas of MPM and when modified to

express TRAIL and delivered systemically they significantly reduced tumour burden.
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1 Introduction

1.1 Malignant Pleural Mesothelioma

1.1.1 Epidemiology and Aetiology

Malignant mesothelioma is a rare but devastating malignancy that is found most commonly

within the pleura of the lung. It also develops in the peritoneum, pericardium and tunica

vaginalis although at much lower frequencies. The majority of cases of mesothelioma are

caused by exposure to asbestos – a link that was clearly established in the 1960’s [1].

Although asbestos mining was banned in most developed countries during the 1980’s and

1990’s it is still mined today in Russia, China, Brazil and Canada and is widely used both in

these countries and other emerging countries such as India.

Asbestos is the main aetiological agent of malignant mesothelioma and describes a group of

six silicate minerals that are able to form very thin fibres. These minerals are amosite

(brown), crysotile (white), crocidolite (blue), anthophyllite, tremolite and actinolite. Those

most commonly used in industry are amosite, crysotile and crocidolite. Crysotile asbestos

belongs to the serpentine group of asbestos fibres and is less biopersistant in the lungs than

the other amphibole fibres giving it less carcinogenic potency. As most asbestos exposure is

work-related, mesothelioma is largely considered to be an occupational disease and

because past exposure was more common in occupations with a predominantly male

workforce the current incidence of mesothelioma is higher in males than females.

Other potential causes of mesothelioma have been identified including radiotherapy for

other malignancies such as lung and breast cancer [2], and a link between simian virus 40

(SV40) has been proposed but is controversial [3, 4]. Although tobacco smoking itself is not

carcinogenic to the pleura it is known that patients who smoke and have been exposed to

asbestos have a higher risk of developing lung cancer [5].
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The lag time from asbestos exposure to development of mesothelioma is on average 30-40

years and consequently deaths from this cancer are continuing to increase. The UK

mortality rate has increased from <160 in 1968 to >2000 in 2005 [6] and in Europe is

predicted to peak between 2015 and 2020 [7]. For countries still mining and using asbestos

in large quantities rates of mesothelioma are likely to continue increasing until long after its

use is banned.

1.1.2 Clinical Presentation, diagnosis and staging

Although mesothelioma can present in a number of tissues >90% of cases are within the

pleura and therefore called malignant pleural mesothelioma (MPM). These patients present

with symptoms of breathlessness and chest pain that are often insidious in onset and at

time of diagnosis they often have advanced disease. Chest x-ray and CT scanning usually

show evidence of pleural effusions and once removed there is often irregular pleural

thickening within the chest cavity. A definitive diagnosis is often challenging and almost

always requires a pleural biopsy most commonly obtained by thoracoscopy. Even when

good tissue samples are obtained diagnosis can be challenging. Firstly it requires detection

of characteristic morphological abnormalities consistent with a malignant process of the

pleural lining, which in itself can be difficult as mesothelioma is a very heterogeneous cancer

and may resemble both benign pleural lesions and metastatic lesions both of which are

more common than mesothelioma in the general population. In addition to H&E

examination a definitive diagnosis of mesothelioma requires immunohistochemical

confirmation using a panel of both positive and negative markers. These markers are

somewhat dependent on what the mesothelioma subtype is and what the differential

diagnosis is [8]. There are three distinct subtypes: epithelioid (50-60%), sarcomatoid (10%)

and biphasic (30-40%) [9] and of these the sarcomatoid subtype is associated with the

poorest prognosis.

A staging system is often used to describe the anatomical extent of a tumour and in the case

of MPM there are at least five different staging systems. They are based on the TNM

(tumour-node-metastasis) system which is used for the majority of cancer subtypes but its
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main drawback when used in MPM is the inaccuracy in describing the T and N-extent using

existing imaging techniques. The most recent classification proposed by the International

Mesothelioma Interest Group (IMIG) is the most widely used and recommended by the

Union International Contre le Cancer (UICC) [10].

All staging systems are surgically based and only correlate survival with stage in terms of

early (stage I and II) or late stage (stage III and IV) disease [11]. A number of prognostic

factors have been described in large multicentre series and independently validated [12].

Factors such as performance status (see appendix 1), stage and weight loss are common to

other tumours and non-epithelioid subtype is consistently associated with a poorer

prognosis. Other biological factors such as low haemoglobin, high lactate dehydrogenase,

high white blood cell count and high thrombocyte count have been associated with a poor

prognosis. Based on these factors, three prognostic scoring methods have been developed

by the European Organisation for Research and Treatment of Cancer (EORTC) and the

Cancer and Leukaemia Group B (CALGB) [13, 14]. Currently the only prognostic factors of

clinical importance are the performance status of the patient and Histopathological subtype.

1.1.3 Treatment

Current treatment options are poor and first line chemotherapy with cisplatin and

pemetrexed offers an average survival of 12 months [15]. The role of surgery is

controversial with the only large scale clinical trial showing a trend to worse outcomes in

patients undergoing surgery [16].

1.1.3.1 Surgery

There are two main surgical procedures offered: extrapleural pneumonectomy (EPP) which

is performed with curative intent and partial pleurectomy/decortication which is done for

symptom control and palliation. EPP is a radical surgical procedure with limited evidence of

efficacy but has been shown to improve survival in a specific sub-group of patients, those

with epithelioid histology, negative surgical resection margins and no evidence of extra-

pleural nodal involvement [17]. However it is associated with a high morbidity and

mortality of 50% and 4% respectively [18] and current guidelines are that EPP should only be
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performed in the context of a clinical trial, in specialised centres as part of multi-modality

treatment. The MARS (Mesothelioma and Radical Surgery) trial was set up to define the

role of EPP in context of trimodal therapy and patients were assigned to EPP followed by

post-operative hemithorax irradiation or to no EPP. The primary endpoint of the study was

the feasibility of randomising 50 patients in 1 year and it was not powered to analyse the

effectiveness of surgery. The study results were published in 2011 and despite meeting the

primary end point of feasibility it was determined that due to the high morbidity associated

with EPP both in this trial and other non-randomised studies radical surgery in the form of

EPP within trimodal therapy offers no benefit and causes potential harm to the patient [19].

Partial pleurectomy/decortication can be defined as significant but incomplete resection of

pleural tumour and is of particular utility to relieve an entrapped lung which may in turn

relieve a restrictive ventilatory defect and reduce chest wall pain. This form of surgery

should not be performed with curative intent but does have a role in a sub-group of patients

who may obtain symptom control.

1.1.3.2 Chemotherapy and Radiotherapy

For the vast majority of patients with mesothelioma first line treatment is a combination

chemotherapy regimen of pemetrexed (an anti-folate drug) and a platinum based drug

(either cisplatin or carboplatin). Although this combination has been shown in randomised

controlled trials to improve response rate compared to cisplatin alone (41% compared to

17% with single agent cisplatin) [20, 21] its benefit over active symptom control (ASC) has

not yet been established.

Other combination regimens including gemcitabine/platinum and vinorelbine/cisplatin

which demonstrated response rates of 12-40% but again none have been shown to have any

benefit over active symptom control [22]. The MSO1 trial run by the Medical Research

Council and British Thoracic Society randomised 409 patients to either ASC, ASC and

vinorelbine or ACS plus MVP (mitomycin, vinorelbine and cisplatin) and the combination of

ASC plus vinorelbine resulted in a non-significantly increased median survival compared to

either ASC alone and ASC plus MVP (9.4 months vs 7.6 or 7.8 months; HR 0.81, p=0.11) [23].
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However as the gold standard for first line treatment is cisplatin/pemetrexed in combination

the results of this study are difficult to interpret.

For the majority of patients who have failed first line chemotherapy the disease has often

progressed making them unfit for further treatment. For those that are suitable for further

treatment there is no clearly agreed gold standard for second line therapy. Selected

patients who received pemetrexed-based chemotherapy first line have been given repeated

treatment with a pemetrexed containing regimen for disease progression ≥2 years after 

initial treatment which appears to be feasible [24]. For the same group of patients both

oxaliplatin with or without gemcitabine and gemcitabine with vinorelbine have also been

evaluated [25, 26] and shown some activity. For those patients who have not received

pemetrexed first line a number of studies looked at the use of pemetrexed both as a single

agent and in combination but benefits are limited [27] [28].

Radiotherapy plays only a limited role in the treatment of MPM and this is largely due to the

extensive nature of the disease and the high risk of toxicity to the underlying lung [29].

Data from a phase II study in which high-dose hemi-thoracic radiation was administered

following EPP showed low loco-regional recurrence [30] and a study looking at the role of

intensity-modulated radiotherapy after EPP has also shown good local control but with

severe pulmonary toxicity [31]. In view of the limited data, the general recommendation is

that post-operative radiotherapy following EPP should only be performed within the setting

of a clinical trial and at specialist centres.

Despite there being no proven role for radiotherapy in radical treatment of MPM there is a

much clearer role for palliative radiotherapy for pain relief. Many patients with MPM will

suffer from significant chest pain secondary to malignant infiltration of the chest wall and

symptomatic benefit can be provided by radiotherapy to the affected area. Port site

radiotherapy has been traditionally used to reduce the risk of tumour seeding along

thoracoscopy and thoracentesis site but recent data suggests that this too may be

ineffective [32] and there are currently two clinical trials on-going to assess this; SMART

(Surgical and large bore pleural procedures in malignant pleural Mesothelioma And
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Radiotherapy Trial) and PIT (Prophylactic Irradiation of Tracts in Patients with Malignant

Pleural Mesothelioma).

1.1.3.3 Novel Agents

The resistance of MPM to conventional treatments has generated significant interest in

identifying new therapeutic strategies. These include anti-angiogenic drugs,

immunotherapies and molecules to target both the growth factor and apoptotic pathways.

Mesothelioma cells are known to overexpress angiogenic factors such as vascular

endothelial growth factor (VEGF) and its receptor VEGFR, platelet derived growth factor

(PDGF) and its receptor (PDGFR) and epidermal growth factor receptor (EGFR). Drugs

against all of these targets have been tested in clinical trials with limited effect. The VEGF-

blocking monoclonal antibody, bevacizumab, in combination with cisplatin/gemcitabine

showed no improvement in overall survival or progression free survival in a phase II

randomized trial [33]. When combined with cisplatin and pemetrexed a phase II/III trial

showed a response rate of 14% and a 6 month disease control rate of 73.5% in the

bevacizumab arm compared with 43.2% in the control arm [34]. Other VEGF targeting

strategies have looked at blocking the tyrosine kinase (TK) domain of the VEGFR and

cedarinib has shown some activity in MPM patients following first line treatment with

platinum based chemotherapy [35] and a phase I/II trial to assess it in combination with

cisplatin and pemetrexed in chemotherapy naïve patients is currently recruiting

(NCT01064648).

Human tumour necrosis factor α (TNF-α) has shown promising pre-clinical activity against 

tumour endothelial cells but with high toxicity.  A modified TNF-α molecule fused to a cyclic 

tumour-homing peptide (NGF0hTNF) which selectively binds to CD13 on tumour cells has

been assessed as a single agent in a phase II clinical trial and shown promising results [36].

A phase III randomised trial comparing best investigator choice vs NGR-hTNF is currently

being planned (NCT01098266).

Mesothelin is a 40kDa protein present on normal mesothelial cells. As it is overexpressed in

malignant mesothelioma and is immunogenic, it is a potential antigenic target for a

therapeutic cancer vaccine. Mesothelin has been targeted both with a monoclonal antibody



26

(amatuximab) and with an immunotoxin-linked antibody (SS1P) and studies using both of

these agents have shown some efficacy [37, 38].

Growth factor pathways are a potential target for mesothelioma therapies and it is known

that the PDGF-α receptor is overexpressed in mesothelioma cells [39].  There are currently 

two phase II trials assessing the use of a TK inhibitor of PDGFR, imatinib, in combination with

other agents as both first and second line therapy (NCT00402766, NCT00551252).

1.2 Apoptosis

Apoptosis is the tightly regulated multi-step pathway of programmed cell death. This

pathway is inherent to every cell and the balance of pro-apoptotic and anti-apoptotic

signalling ensures that homeostasis is maintained. In the formation of cancer the balance of

these signals is altered, the apoptotic pathway is disrupted resulting in reduced cell death,

unlimited cell proliferation and ultimately tumour formation.

Apoptosis is activated via two main pathways; the intrinsic or the extrinsic pathway (Figure

1.1). Although the pathways have different mechanisms of activation they both trigger the

same downstream pathway.
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Figure 1.1 Schematic representation of the apoptotic pathways

The extrinsic apoptosis pathway is initiated by the binding of a death ligand to a specific

receptor. This leads to recruitment of Fas associated death domain (FADD) and caspase 8,

termed the death inducing signalling complex (DISC), and a resulting caspase cascade.

Traditional cancer therapeutics work via the intrinsic apoptosis pathway, which centres on

DNA damage, the activation of the proapoptotic members of the Bcl-2 family, Bax and Bak,

and the release of cytochrome c from the mitochodria. Cytochrome c forms an apoptosome

with caspase 9 and apoptotic protease-activating factor 1 (Apaf 1), leading to activation of

the effector caspases and apoptosis. The pathways are interlinked as demonstrated and are

heavily regulated with multiple activators (represented by arrows) including Smac/DIABLO

and inhibitors (represented by headless arrows) such as inhibitors of apoptosis (IAPs), and

cellular FLICE-like inhibitory protein (cFLIP).
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Mitochondria are essential to living organisms and it is these organelles that are pivotal for

apoptosis via the intrinsic pathway. Apoptotic proteins trigger the pathway by inducing

changes of the mitochondrial membrane such as increased permeability or the formation of

mitochondrial pores resulting in the leakage of apoptotic effectors. Mitochondrial proteins

called SMACs (small mitochondria-derived activator of caspases) leak through the pores in

the mitochondrial membranes and bind to inhibitors of apoptosis (IAPs) deactivating them.

When functioning normally, IAPs inhibit the activity of a number of caspases. Caspases are

cysteine-aspartate-proteases that are synthesised as precursors, and the initiator caspases

(2, 8 and 9) cleave the inactive pre-cursor forms of the effector caspases (3, 6 &7) to

activate them. Once activated the effector caspases cleave DNA and other intracellular

structures resulting in apoptosis [40].

In addition to releasing SMACs to trigger apoptosis, the damaged mitochondria also release

cytochrome c. Once released, this protein binds with apoptotic protease activating factor-1

(Apaf-1) and adenosine triphosphate (ATP), which then bind to pro-caspase 9 forming a

protein complex called an apoptosome. This apoptosome cleaves the pro-caspase 9 to

caspase 9 which in turn triggers the effector caspase 3 and apoptosis. The release of

cytochrome c is dependent on activation of Bax, a member of the Bcl-2 family, which is

ultimately regulated by the tumour suppressor gene p53 [41]. p53 has a critical role in the

control of the cell cycle by preventing cell replication if there is DNA damage. If DNA is

damaged the levels of p53 accumulate and when levels are high enough they arrest the cells

at G1 or interphase to allow time for DNA repair to occur. If the damage is extensive and

repair is not successful then p53 will induce cell apoptosis. Any disruption to the production

or regulation of p53 will result in impaired apoptosis and possible tumour formation.

Existing chemotherapy and radiotherapy agents work by inducing apoptosis via the intrinsic

pathway, however, one of the main problems with relying on the activation of this pathway

to initiate cancer cell death is that the majority of human tumours acquire p53 mutations

[42]. With these mutations, p53 dependent apoptosis is not triggered and cancer cells will

continue to grow.
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Because of this inherent chemoresistance, there has been considerable interest in

stimulating apoptosis via the extrinsic pathway as a new target for inducing cancer cell

death. The extrinsic pathway is p53 independent and is activated by death inducing ligands

which are members of the tumour necrosis factor (TNF) superfamily and include TNF, Fas-

ligand (Fas-L) and TNF related apoptosis inducing ligand (TRAIL). TNF is a monocyte-derived

cytotoxin which is thought to have a role in tumour regression, septic shock and cachexia

[43, 44]. The expression of both TNF and Fas-L is tightly controlled but the main concern

with using these molecules as a clinically useful therapy is that they induce apoptosis of

healthy cells as well as cancer cells. In addition to the induction of apoptosis, TNF triggers a

significant inflammatory response and subsequent hypotension if used clinically whilst Fas-L

causes hepatocyte apoptosis and subsequent hepatic injury. TRAIL, however, is able to

selectively trigger apoptosis of malignant cells whilst having no effects on healthy cells

making it an exciting candidate for cancer therapy.

1.3 TRAIL

1.3.1 Cellular and physiological effects of TRAIL

TRAIL is a type 2 transmembrane protein first identified in 1995 as sharing sequence

homology to the extracellular domain of Fas-L [45]. TRAIL can bind to any of five receptors

that are found on the surface of all human cells. There are two active receptors; death

receptor 4 (DR4) and death receptor 5 (DR5) which both have active cytoplasmic death

domains (Figure 2). TRAIL binds as a homotrimer to either of these receptors causing

receptor trimerisation and the recruitment of Fas-activated death domain (FADD) along with

procaspases 8 and 10 resulting in the formation of a death inducing signalling complex

(DISC). Procaspases 8 and 10 are then proteolytically cleaved to form the active caspases 8

and 10 which in turn induce downstream activation of caspases 3, 6 and 7 (also termed the

effector caspases) resulting in apoptosis.
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Figure 1.2 Schematic representation of TRAIL receptors

TRAIL has 5 receptors. DR4 and DR5 contain active cytoplasmic death domains, leading to

apoptosis. The decoy receptors DcR1 and DcR2 lack active death domains; DcR1 lacks an

intracellular region and is attached to the cell membrane by a glycophospholipid, DcR2 has a

shortened and inactive cytosolic portion. Osteoprotegerin (OPG) is a soluble receptor, its

role as a decoy receptor in TRAIL has not been fully established.
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In addition to the active receptors three decoy receptors have also been identified; decoy

receptor 1 (DcR1), decoy receptor 2 (DcR2) and osteoprotegerin (OPG). These differ from

the active receptors by having either truncated or absent cytoplasmic portions meaning

they are unable to bind to FADD or form the DISC so apoptosis cannot occur. The precise

function of the decoy receptors is not clear although in vitro data suggests that over

expression of decoy receptors can inhibit TRAIL-induced apoptosis [46]. The importance of

OPG has not been established as TRAIL binds with lower affinity than to DR4 or DR5 and its

main role seems to be in the regulation of bone turnover and osteoclast remodelling [47].

One of the key factors regarding TRAIL is its ability to induce apoptosis selectively in tumour

cells, whilst sparing normal cells. The mechanism underlying this selectivity is not fully

understood, but multiple hypotheses have been investigated. Initial thoughts regarding the

control of TRAIL induced apoptosis were the balance between the active TRAIL receptors

and decoy receptors, which could explain the difference in sensitivity between tumour cells

and normal cells to TRAIL-induced apoptosis. The decoy receptors have been shown to

provide some protection to cells against the activities of TRAIL. Transient transfection

experiments using DcR1 and DcR2 have demonstrated its ability to inhibit TRAIL-induced

apoptosis [48, 49]. Although the mechanism of this effect has yet to be fully clarified it is

proposed to be due to competitive inhibition and the formation of ineffective mixed

receptor complexes [50]. Interestingly, DcR2 receptors lacking their intracellular domain do

not protect cells from apoptosis suggesting that some intracellular mechanism is necessary

for the decoy effect [51]. Despite this initial hypothesis, most studies have failed to show a

correlation between the expression of these receptors and susceptibility to TRAIL-induced

apoptosis [50] and experiments with receptor specific monoclonal antibodies have also

suggested that decoy receptor expression does not explain the relative sensitivity of a cell

[52]. Even the relative importance of DR4 and DR5 to the apoptosis of individual cells

appears to differ between cell types and cannot be determined by the receptor expression.

B chronic lymphocytic leukaemia cells rely predominantly on DR4 to transmit the apoptotic

signal, however have DR5 more abundantly expressed [53].
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Another suggested mechanism is post-translational modification of DR4 and DR5 receptors.

Tumours may over-express O-glycosyltransferase which leads to O-glycosylation of TRAIL

receptors, enhancing ligand-mediated receptor clustering, DISC formation and caspase 8

activation [54]. Cells sensitive to TRAIL-mediated apoptosis have O-glycosylation of DR4 and

DR5, whereas inhibition of this post-translational modification suppressed apoptosis [54].

The association of TRAIL receptors with lipid rafts may also be important. Lipid rafts are

cholesterol and sphingolipid rich areas in the cell membranes that concentrate signalling

molecules and provide specific and distinct signalling, which may be different to the actions

of the same proteins in different subcellular locations. It has recently been demonstrated

that TRAIL receptors not associated with lipid rafts may preferentially activate the non-

apoptotic signalling pathways in response to TRAIL, such as NFB and ERK [55].

Whatever the mechanism responsible for the selectivity of tumour cells to TRAIL, it is clear

that cancer cells contain multiple molecular abnormalities, which normally lead to their

death by apoptosis. Even malignant cells that have developed the ability to evade these

normal safety mechanisms are primed for apoptosis and hence may be more sensitive to

death ligand targeting.

TRAIL induces apoptosis via the extrinsic pathway as described above and whilst this is its

main mechanism of action it also exerts some effect on the intrinsic pathway by crosstalk in

the form of Bid activation, a member of the Bcl family. Bid activation causes mitochondrial

instability and the release of cytochrome c increasing apoptosis. In return activation of the

intrinsic pathway with chemotherapy or radiotherapy results in up-regulation of the active

DR4 and DR5 TRAIL receptors [56, 57] so augmenting the action of the extrinsic pathway.

Although TRAIL exerts its main effects via the apoptotic pathway it has also been shown to

activate non-apoptotic pathways.  It up-regulates transcription factors c-Jun and NFҡB via 

stimulation of the JNK, p38 and IKK kinase pathways [58]. The importance of these

pathways is not clearly understood nor is their mechanism of action [58, 59] although they

have a predominantly anti-apoptotic role and are therefore thought to enable the cell to

maintain a balance between survival and death.
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The physiological functions of TRAIL are not clearly understood but it is secreted from

almost all normal cells. The predominant role of this protein is thought to be in the immune

surveillance of the host to tumours and virus-infected cells. TRAIL knockout mice have an

increased rate of TRAIL-sensitive tumour development following application of the known

carcinogen methylcholanthrene (MCA), a finding that is replicated when a neutralising anti-

TRAIL antibody is used [60, 61]. This action is thought to be mediated by natural killer (NK)

cells and dependent on interferon gamma (IFNɣ) [60].  NK cells, monocytes, T cells and 

dendritic cells have all been shown to have TRAIL dependent anti-tumour effects when

stimulated with IFNɣ strengthening the role of TRAIL in NK mediated immunosurveillance 

against tumours [62].

1.3.2 TRAIL as an anti-tumour therapy

The use of TRAIL to activate the extrinsic apoptotic pathway is an exciting prospect in the

treatment of cancers. In vitro data has shown that a wide number of tumours of many

different tissue types exhibit reduced growth rates when treated with recombinant TRAIL

whilst similar tests on normal cell types, including fibroblasts, epithelial cells, smooth muscle

cells and astrocytes show no such effect [42]. Both recombinant TRAIL and monoclonal

antibodies to the active TRAIL receptors (DR4 and DR5) have been shown to cause apoptosis

in a variety of cancer cell lines [63, 64]. Tumour cells modified to express TRAIL undergo

increased apoptosis as determined by flow cytometry [65] and induce death of

neighbouring tumour cells via a bystander effect [66].

Despite promising results with both recombinant TRAIL and TRAIL receptor antibodies a

number of problems have been identified. Recombinant TRAIL is delivered intravenously

and has a pharmacokinetic half-life of 32 minutes [67] meaning repeated high dose systemic

delivery is needed to produce the desired local effect. Monoclonal antibodies have the

advantage of a receptor specific high affinity binding enabling a prolonged half-life when

compared with recombinant TRAIL, but this specificity may in turn be its downfall when you

consider the presence of decoy receptors whose importance is not yet clearly established.

Despite these concerns both recombinant TRAIL and the monoclonal TRAIL antibodies to
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DR4 and DR5 have been tested in both phase I and phase II clinical trials in both

haematological malignancies and solid organ tumours with moderate effect [68-71].

The ideal aim of a clinical therapy is to deliver a therapeutically relevant dose of a treatment

to a targeted area of disease with as low toxicity as possible. An ideal cancer therapy would

involve a vehicle that homes to and resides at the site of the tumour and delivers a low but

consistent dose of treatment that can be activated and inactivated as required.

Adenoviruses have been used to allow long term stable incorporation of DNA into the host

cell genome and, using this system, TRAIL has been directly injected into tumours causing a

reduction in tumour growth in a number of tumour xenograft models including colon and

prostate [65].

1.3.3 TRAIL in combination with other agents

In addition to its use as a single agent TRAIL has been studied in combination with a number

of other agents. It would appear logical that by triggering both the intrinsic and extrinsic

apoptotic pathways there would be an appropriate increase in cell death. However results

from a number of in vitro studies suggest that there is a synergistic effect when using TRAIL

in combination with other agents, a phenomenon attributed to the crosstalk between the

two pathways. The mechanism behind this synergy is not clearly elucidated and a number

of studies have proposed different hypotheses relating to different elements of the

apoptotic pathway. Both radiotherapy and a number of different chemotherapy drugs,

including doxorubicin, etoposide, paclitaxel and the vinka alkaloids have been shown to

upregulate TRAIL receptors on the cell surface [72, 73] along with histone deacetylase

inhibitors (HDACIs) [74]. Alternative studies have suggested that doxorubicin acts by

clustering receptors into lipid rafts [75] or by down regulating inhibitors of the apoptotic

pathway [76]. These chemotherapy and TRAIL combinations have been so effective that

they have induced TRAIL sensitivity in lines previously known to be resistant such as

malignant pleural mesothelioma. In this disease, studies looking at a number of agents

including etoposide [77, 78], doxorubicin, cisplatin and gemcitabine [79] in combination
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with recombinant TRAIL have implicated downstream caspase activation rather than

receptor up regulation.

Although initial interest focussed on combining existing cancer treatments with TRAIL this

has now widened to other agents that act directly on the downstream apoptotic pathway.

New targets have been the inhibitors of apoptosis such as c-FLIP (cellular flice-like inhibitory

protein) [80], Bcl2 [81] and IAP inhibitors [82] and blocking these molecules has led to

increases in TRAIL induced apoptosis and blocking of the pro-apoptotic mediators with NFҡB 

[83] and PI3K [84] inhibitors which can overcome TRAIL resistance in pancreatic cancer cells.

1.3.3.1 cFLIP and Histone Deacetylase Inhibitors

c-FLIP is currently generating significant interest as a possible mechanism of TRAIL

resistance and is increasingly becoming a target for new treatments. c-FLIP has 3 splice

variant forms; c-FLIPL (long 55kDa), c-FLIPs (short 26kDa) and c-FLIPR (Raji 24kDa) and the

long and short forms are structurally similar to pro-caspase 8 (Figure 1.3). During death

receptor mediated apoptosis, pro-caspase 8 is recruited to the DISC and cleaved to produce

initially an intermediate sub-unit followed by two active sub-units. Both variants of c-FLIP

have been shown to block different steps of caspase 8 activation preventing the initiation of

the caspase cascade and subsequent apoptosis [85]. In addition to blocking pro-apoptotic

pathways it is thought to trigger the pro-survival pathways NFҡB and ERK [86] and is 

therefore thought to play a key role in balancing pro and anti-apoptotic signals.
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Figure 1.3 Structure of cFLIP variants. There are 3 cFLIP variants all of which contain two

death effector domains (DED) at their N-terminal. cFLIPL also contains two caspase like

domains and can act as an anti-apoptotic or pro-apoptotic factor depending on its

interaction with the DISC. cFLIPS, cFLIPR and two cFLIP cleavage products produced by

cleavage of cFLIPL by pro-caspase 8, all act as anti-apoptotic proteins (adapted from [87]).
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c-FLIP has been observed to be over-expressed in a number of malignancies including

ovarian [88], breast [89], prostate [90] and colorectal [91] cancer cell lines and has been

implicated as a possible cause of resistance to tested agents. In malignant mesothelioma c-

FLIP over-expression has also been reported and silencing with siRNA results in increased

Fas-induced apoptosis of the malignant cells [92] [93]. A number of conventional

chemotherapy agents have been shown to alter c-FLIP expression and they either allow

apoptosis alone or induce increased sensitivity to TRAIL.

Histone deacetylase inhibitors (HDACi) are an exciting class of anti-cancer drugs that have a

number of biological effects that influence tumour growth and survival; including inhibition

of cell cycle progression, induction of tumour cell apoptosis and suppression of

angiogenesis. One of the key roles of HDACi in preclinical cancer models is the induction of

apoptosis and this can occur through activation of either the intrinsic or extrinsic apoptotic

pathways [94] and it has been shown that HDACi down-regulate cFLIP and other

downstream regulators of the apoptotic pathways [95] such as XIAP. Whilst some in vitro

studies have looked at the combination of HDACi and activators of the TRAIL pathway and

shown significant synergistic effects, the only combination assessed in in vivo studies is a

DR5 mAB and the HDACi, SAHA (suberoylanilide hydroxamic acid, vorinostat, Zolinza) to a

syngeneic mouse model of breast cancer [96]. The mechanism of action is thought to be an

increase in TRAIL sensitivity by a combination of DR5 up-regulation [97, 98] and c-FLIP

down-regulation [99, 100]. SAHA has been assessed as a single agent in a phase III,

randomised, double blind, placebo-controlled trial in patients with advance mesothelioma

as a second line therapy (NCT00128102) but the results are not yet reported.

1.3.4 The need for better TRAIL targeting

So far the majority of studies looking at the utility of TRAIL as an anti-cancer therapy have

looked at recombinant TRAIL and monoclonal antibodies to the active death receptors. The

main problems with using recombinant TRAIL is that it is dependent on intravenous delivery

meaning there is no specific targeting of the therapy to the site of disease. In addition the

half-life of the drug is only 32 minutes [67] meaning that repeated high doses are required

to produce the desired effect. The problems with the half-life have been overcome with the
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use of monoclonal antibodies which bind with high specificity to their respective death

receptors. The main concerns with this however is that there are five receptors of which

the individual contribution to triggering apoptosis is unknown, making cell specificity a

significant issue. For example it has been shown that some breast and colon cancer cell

lines only trigger apoptosis with DR5 binding [101] whilst cells from chronic lymphocytic

leukaemia require signalling through DR4 receptors despite the presence of both receptors

[102]. The majority of monoclonal antibodies being developed currently are DR5 agonists

although this is likely to reflect increased DR5 expression on tumour cells rather than any

functional studies [103].

In order to improve tumour treatment, an ideal system would allow direct targeting of both

primary tumours and distant metastases by long term controllable TRAIL expression. This

has been achieved in both a lung metastasis [104] and glioma [105] model by the use of

human adult mesenchymal stem cells.

1.4 Mesenchymal Stem Cells

A stem cell is an undifferentiated cell that has the capacity for both unlimited self-renewal

and asymmetric division such that they are able not only to renew themselves but

differentiate into more specialised daughter cells. There are classically two types of stem

cells: embryonic and adult. Embryonic stem cells are derived from the blastocyst of the

developing embryo and are pluripotent, meaning they can produce cells of any lineage

(ectoderm, mesoderm and endoderm). Because of their pluripotency embryonic stem cells

are attractive candidates for future therapies as given the right conditions they could

differentiate into any tissue type. However the use of human embryos for scientific

research has created both ethical, political and moral objections and their use is severely

restricted. In addition to this their defining characteristics of unlimited cell growth and

differentiation means they have high tumourigenicity and are likely to trigger immune

responses within a foreign host [106].
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In contrast adult stem cells are traditionally thought to be lineage restricted with daughter

cells being able to differentiate into a limited number of cell types. The best characterised

adult stem cells are bone marrow derived stem cells (BMSCs) which consist of

haematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). HSCs produce

progenitors for mature blood cells whilst MSCs differentiate into tissue stromal cells

including bone, fat and cartilage [107]. MSCs are characterised by their adherence to

plastic, and their expression of the stem cell markers CD105, CD73 and CD90 and lack of

expression of CD45, CD34, CD14, CD11b, CD79α, CD19 or HLA [108]. Because of their 

inherent properties of unlimited self-renewal and multipotency, stem cell research has been

an area of intense focus both for tissue repair and regeneration and as the basis for cell

therapy. Initial studies suggested that BMSCs were able to engraft as epithelial cells within

the lung [109] and that the level of engraftment was increased in the presence of injury

resulting in a reduction in the severity of damage [110, 111]. Whilst these findings are now

thought to be due largely to artefact there remains strong evidence that BMSCs contribute

to the deposition of the extracellular matrix including tissue stroma, wound healing and

organ fibrosis. Data from transplantation studies have shown that over 30% of fibroblasts in

a skin wound healing model were bone marrow derived [112] and in a bleomycin model of

lung fibrosis 80% of type I collagen-expressing fibroblasts at the site of lung fibrosis were

bone marrow in origin [113, 114].

1.4.1 Tumour stroma

Tumours consist of two main compartments, the parenchyma and the stroma. The

parenchyma is made up largely of tumour cells whilst the stroma consists of a combination

of cells including connective tissue, fibroblasts and inflammatory cells. The stroma also

contains a specialised extracellular matrix (ECM) which contains fibroblasts and

myofibroblasts and a basement membrane which is composed of molecules such as

collagens, fibronectin, fibrin, proteoglycans, and hyaluronan [115]. The basement

membrane regulates many processes including cell survival, proliferation, differentiation

and migration, as well as providing structural support. There is significant cross talk

between the parenchyma and stroma allowing intrinsic and extrinsic growth factors to
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influence each other. In normal cells there is a tightly controlled equilibrium between cell

renewal and cell death regulated through crosstalk between parenchyma and stroma that

ensures tissue remodelling or appropriate response to injury. However, in cancer cells there

is a breakdown in this communication allowing cancer cells to continuously send signals to

stimulate remodelling and reorganise the stroma into a form that permits tumour

development [116].

The tumour stroma consists of several mediators including cytokines and growth factors,

proteolytic enzymes such as matrix metalloproteinases, extracellular matrix proteins,

immune cells, endothelial cells and fibroblasts. These growth factors and proteolytic

enzymes can influence the ability of tumours to invade and affect their progression [117].

Increased stroma and myofibroblast numbers have been associated with a poorer prognosis

in a number of cancers [118, 119] and the proliferative capacity of stromal fibroblasts has

been shown to correlate with breast cancer metastases [120]. If the myofibroblasts and

fibroblasts are further activated with irradiation then the invasiveness of pancreatic cancer

cells appears to increase [121].

Evidence from tracking labelled bone marrow derived cells following bone marrow

transplantation has clearly demonstrated that the bone marrow contributes to the

extracellular matrix in a wide range of tumour types [122-124]. The extent of this

contribution is dependent both on tumour type and the site of implantation [124] and

encouragingly these cells appear to be functional with the demonstration of collagen

production [125].

What is less certain is the role of BMSCs in tumour neovasculogenesis – another hallmark of

malignant tumour growth. There is conflicting evidence regarding this with some studies

showing that intravenous delivery of Sca1+ bone marrow cells results in these cells being

incorporated into the periphery of a glioma model causing a reduction in tumour size and

increased apoptosis [126, 127]. Other studies however have shown only a minimal

contribution of BMSCs to the newly formed tumour endothelium [128].
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Most excitingly there is increasing in vitro and in vivo evidence that MSCs have the ability to

specifically target tumour tissue. In vitro migration studies have demonstrated MSC

migration towards both tumour cells and conditioned media from tumour cells [129-131]

whilst in vivo MSCs have been shown to incorporate into and persist in tumours following

systemic administration in a wide variety of tumour models including Kaposi’s sarcoma

[132], breast metastases [133] and glioma [105]. This MSC incorporation has been shown to

occur when they are delivered both concurrently with tumour cells [132] and to established

tumours although it is widely thought that established tumours are needed.

1.4.2 Mediators of MSC homing

One of the key features of MSCs that make them attractive as vehicles for delivery of

therapeutic proteins is their ability to home to and incorporate into tumours. MSCs

transduced with green fluorescent protein (eGFP) were delivered systemically into non-

human primates and cells were localised within multiple tissues including lung, bone skin

and thymus [134] and MSCs delivered systemically into a rat model were shown to home to

non-haematopoietic tissues and proliferate within the tissue [135]. Despite consistent

evidence that MSCs are able to home to injured tissue and tumours, the precise biological

mechanism by which this occurs is not clearly defined. During homing the injured tissue or

tumour stroma releases soluble factors from the ECM and inflammatory cells, in particular

hyaluronic acid which triggers the diffusion of chemokines and growth factors that in turn

stimulate the migration of cells [136] in a process reminiscent of leukocyte recruitment to

areas of inflammation.  HSCs are known to be reliant on the chemokine CXCL12 (SDF-1α) 

and its receptor CXCR4 [137] and there is some suggestion that it is important in the

recruitment of BMSCs to both fibrotic lung [138, 139] and tumours [117]. In addition to

SDF-1α there has been interest in the monocyte chemotactic protein-1 (MCP-1) which has 

been shown to be secreted from primary cultures and explants of breast tumours [140]. In

ovarian cancer the toll-like receptor LL-37 has been shown to stimulate MSC homing in a

dose-dependent manner [141] and LL-37 is known to be overexpressed in other tumour

types.
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There are in the region of 50 human chemokines which function via interaction with G-

protein coupled receptors and despite numerous attempts to definitively identify the

chemokines and growth factors that are essential for MSC migration, along with which

receptors are present, there is as yet no consensus [142-144]. The discrepancies in results

may be largely due to the heterogeneity of cell types used although most agree that MSCs

express a number of chemokine receptors that are likely to be involved in their homing

abilities [145] along with a combination of chemokines and growth factors that enable a

maximum effect [146].

1.4.3 MSCs as vectors for cellular based therapy

MSCs have multiple characteristics that make them attractive for delivering oncological

therapies such as TRAIL. They are known to home to and incorporate into a wide variety of

tumours meaning they would be able deliver a therapy locally to the tumour. They can be

relatively easily harvested from patients by aspirating bone marrow under a local

anaesthetic in a short, minimally invasive procedure; they are readily transduced with viral

vectors allowing them to be modified to carry therapeutic genes and they can be expanded

in culture for many passages without altering their original properties. A key benefit to

MSCs is that whilst they express major histocompatibility complex (MHC) 1 they lack both

MHC2 and co-stimulatory molecules CD80, CD86 and CD40 [147] making them

immunoprivileged and unable to generate an immune rejection response when injected into

patients. This allows the delivery of donor unmatched allogeneic MSCs without

immunomodulation making them more accessible for use in clinical practice.

This approach has already been successful with other therapies such as interferon beta (IFN-

β).  Human MSCs engineered to express IFN-β have been delivered to gliomas [129], 

metastatic breast and melanoma models resulting in reduced tumour burden and increased

survival [133, 148].  IFN-ɣ and IL-12 have been used in similar ways with IL-12 producing 

MSCs preventing tumour development when injected prior to tumour inoculation [149] or

preventing metastases from developing when injected after tumour establishment [150].

MSC-IFNɣ stimulates apoptosis and inhibits proliferation of leukaemic cells in vitro [151].
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MSC Therapy Disease Model Reference

MSC-IFNβ Glioma

Lung metastases

Murine

Murine

Nakamizo et al [129]

Studeny et al [133]

MSC-IL12 Lung cancer

Melanoma

Hepatoma

Murine

Murine

Murine

Chen et al [149]

Chen et al [150]

MSC-IFNϒ Chronic myelogenous leukaemia In vitro Li et al [151]

MSC-Ang1 Acute lung injury Murine Mei et al [152]

MSC-eNOS Pulmonary hypertension Rodent

Human

Kanki-Horimoto et al [153]

PHACeT Trial (NCT00469027)

MSC-VEGF Acute myocardial infarction Rodent Matsumoto et al [154]

Table 1.1. Table of modified MSCs used as therapeutic delivery vectors

As well as homing to sites of tumour, MSCs also home to areas of damage and repair. This

property has been exploited in diseases such as pulmonary arterial hypertension, acute lung

injury and cardiovascular disease. MSCs expressing angiopoietin-1 have been shown to

reduce endotoxin-mediated lung injury [152], and those with endothelial nitric oxide

synthase (eNOS) reduce monocrotaline induced pulmonary arterial hypertension in rats

[153]. Vascular endothelial growth factor (VEGF) expressing MSCs improve cardiac function

in a murine model of myocardial infarction [154]. A phase 1 clinical trial (PHACeT) is

currently underway looking at the safety of endothelial progenitor cells as vectors for the

delivery of eNOS to patients with pulmonary arterial hypertension.

In addition to their use as vectors it is important to remember that MSCs are active cells

that may influence other physiological and pathological processes. It has been well

described that MSCs have direct immunosuppressive effects on other cells in particular T-

cells, B-cells and dendritic cells resulting in a reduction in plasma cell maturation, antibody
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production and antigen presentation [155-157]. MSCs also induce CD4+CD25+FoxP3+

regulatory T-cells (Treg), which in turn limit the activation of CD4 and CD8 lymphocyte

subsets, B-cells and NK cells [158]. The precise mechanism by which MSCs exert this effect

is not clear but thought to involve direct cell contact and the release of soluble factors [159].

These immunosuppressive effects have been exploited in the treatment of graft versus host

disease (GvHD) following bone marrow transplantation. In a phase 2 clinical trial using

MSCs to treat severe, steroid-resistant GvHD 71% of patients treated exhibited either a

complete or partial response. Interestingly there was no difference in outcomes or adverse

events between patients receiving MSCs from either matched or unmatched donors [160].

A phase 2 trial looking at the use of MSCs to treat Crohn’s disease is currently underway

[161] and recruitment to a phase 2 clinical trial is ongoing for use in the treatment of

chronic obstructive pulmonary disease (COPD) [162].

In addition to their immunosuppressive effects MSCs are thought to reduce damage at sites

of injury, aid in repair and wound healing and exert anti-inflammatory effects. This has

been exploited in clinical trials in a number of vascular diseases – most notably

cardiovascular. There have been multiple clinical trials looking at the injection of MSCs,

BMSCs and HSCs into the coronary arteries following acute myocardial infarction with the

weight of evidence showing an improvement in cardiac function, reduction in infarct size

and improved tissue remodelling [163, 164]. This improvement in cardiac function is also

seen following intra-arterial injection of MSCs to patients with chronic heart disease and in

claudication distance in patients with peripheral vascular disease [163, 165]. In terms of

their anti-inflammatory effects MSC administration to mice with bleomycin induced lung

injury led to reduced inflammation, fibrosis and collagen deposition, an effect attributed to

expression of the IL-1 receptor antagonist by the MSCs resulting in downregulation of the

pro-inflammatory cytokines IL-1 and TNFα [110, 111].  These paracrine effects of MSCs are 

thought to be responsible for improvements in other models of organ damage including

hepatic failure [166], stroke [167] and acute renal injury [168].
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One of the defining properties of MSCs is their ability to undergo unlimited self- renewal

and asymmetric expansion. Because of these inherent cellular properties there is some

concern that MSCs themselves have either the potential to undergo malignant change or to

enhance the proliferation of malignant cells. MSCs co-cultured with breast cancer cells and

peripheral blood mononuclear cells have been shown to shift the Th1/Th2 cytokine balance

towards Th2 thereby allowing breast cancer cells to evade the immune system [169] whilst

subcutaneously delivered allogeneic melanoma cells produced tumours in mice only when

co-injected with MSCs – an observation that was attributed to the immunosuppressive

effects of the stem cells [170]. In addition to altering the balance of the immune system

they are also thought to act within the tumour microenvironment by the release of

paracrine growth factors or by transforming into tumour associated fibroblasts which can

enhance metastasis formation and tumour growth [171-173]. In Burkett’s lymphoma cells

they enhanced in vivo cell growth by a VEGF dependent pathway and in breast cancer

models they were shown to produce the chemokine CCL5 which augmented the motility,

invasion and metastatic potential of the tumours along with IL-6 [174, 175].

In contrast other groups have shown that MSCs have anti-tumorigenic properties. They

arrest hepatoma, lymphoma and insulinoma cells at G0/G1 and increase cancer cell

apoptosis and reduce malignant ascites in intraperitoneal hepatoma models [176].

Inhibition of tumour growth and increased survival has been seen following intratumoural

MSC injection in a glioma model [177] along with reduced tumour growth and metastases in

a breast tumour model [178]. MSCs release soluble factors that reduce tumour growth and

progression in glioma, melanoma and lung carcinoma models [177, 179]. It is likely that the

differences in results can be in part explained by the different tumour types studied,

different sources of stem cells and whether the cells are used in vitro or in vivo.

To ensure that MSCs have an anti-tumorigenic effect MSCs can be modified to deliver anti-

cancer therapies directly to the site of the tumour. Such strategies include delivery of anti-

angiogenic proteins, immunostimulatory proteins, pro-drug converting proteins or pro-

apoptotic molecules. Pro-apoptotic proteins studied include MSCs engineered to express

TRAIL which have been shown to be effective in eliminating lung metastases and breast
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tumours both in vitro and in vivo [104, 180] and reducing tumour burden in an animal model

of glioma [105].

As for the risk of stem cells themselves undergoing malignant change, studies have shown

that in vitro passaging of human MSCs has demonstrated the potential for the development

of karyotype abnormalities [181] and murine MSCs delivery systemically have produced

sarcomas [182] and osteosarcomas [183]. In another murine model Helicobacter felis was

used to produce chronic gastric injury within which a carcinoma developed from bone

marrow-derived cells [184]. In contrast a study performed to determine the potential

susceptibility of human bone-marrow derived MSCs to malignant transformation showed no

features to suggest this, with stable karyotypes and shortening telomeres over the 44 week

culture period [185]. In addition to this in vitro finding MSCs have been used in multiple

clinical trials over the last 10 years for treatment of a wide range of diseases including GvHD

[160], cardiovascular disease, Crohn’s disease, peripheral vascular disease, osteogenesis

imperfecta [186] and COPD [187] with no acute or long term adverse effects reported.

1.4.4 Combining MSCs and TRAIL

The combination of MSCs and TRAIL is an exciting prospect. TRAIL has the advantage over

other anti-cancer therapies as it appears to selectively affect only malignant cells. The

problems with recombinant TRAIL and monoclonal antibodies to TRAIL receptors described

earlier are overcome by targeting TRAIL delivery to the tumour site with MSCs, allowing low

dose targeted delivery. This combination of MSCs and TRAIL has already been studied in a

murine model of lung metastases where intravenous delivery of MSCTRAIL resulted in a 40%

elimination of metastases [104] and in a glioma model where intratumoural MSCTRAIL

injection showed a significant reduction in tumour growth [105].

1.5 Gene and Cellular therapy

Gene therapy is the use of DNA as a therapeutic agent to treat disease. Its use was first

conceived in the early 1970’s and the first approved clinical trial was performed 20 years
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later [188] with mixed results. Since then many technical, ethical and safety issues have

been addressed to allow the occurrence of a large number of clinical trials although most of

these have been phase I and II with very few phase III trials [189].

Mammalian organs are evolved to protect themselves from foreign substances and a

significant barrier to the success of gene therapy has been the development of delivery

vectors that are able to avoid the host immune system, to achieve targeted delivery to

specific cell populations and to allow sustained transgene expression. The lung has been

particularly challenging in these respects [190].

1.5.1 Benefits of combined cellular and gene therapy

Cellular therapy describes the process of introducing cells into a tissue as a therapeutic

agent to treat disease. Cell therapies can be used either with or without gene therapy and is

an approach classically used in the field of regenerative medicine. The use of combined cell

and gene therapy is not suitable for all applications but it does have a number of advantages

over direct in vivo gene delivery. The initial optimisation of vector transfer into cells and

determination of the cell responses is carried out in vitro so any concerns can be addressed

prior to use in humans. In addition, performing gene transfer into specific cells ex vivo

eliminates the problems of achieving cell-specific gene expression. By using autologous or

non-immunogenic cells the potential problems of immune rejection can be overcome.

Despite these benefits there are some challenges to performing successful gene transfer

into cells in vitro. The majority of cells have a good defence mechanism that is designed to

exclude and destroy foreign materials and the DNA and vector being used may themselves

be cytotoxic. Once delivered in vivo cells containing foreign material may be recognised as

non-self and be destroyed. In addition the viral vectors used for most gene insertions have

specific safety issues that need to be overcome.

1.5.2 Pitfalls of gene transfer

Initial experiments designed to incorporate foreign DNA into a human cell line depended on

the uptake of isolated extracellular DNA. This mechanism was shown to be very inefficient

and did not result in stable transformation [191]. It was later discovered that some viruses

were capable of integrating their genetic material into a target cell genome leading to the
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idea that viruses could be used as vectors to introduce new DNA into the host cell genome

[192].

Over the last 50 years our understanding of the genetic component of human disease has

improved dramatically along with the ability to clone specific genes, making the potential

for gene therapy in humans into a reality. In addition growing knowledge of virus biology

and the ability to clone genetic sequences has enabled the development of both

recombinant viral vectors and non-viral methods of gene transfer.

Non-viral methods of gene transfer use cationic lipids or polymers which form complexes

with negatively charged nucleic acids and are then taken up actively by cells by endocytosis.

Methods such as electroporation and microinjection can be used to improve the uptake of

the nucleic acids into the cells but these methods are more useful to the in vitro setting and

have limited use in vivo [193, 194].

Viral vectors use the innate ability of the virus to gain entry into and survive within the host

cell nucleus to ensure continued expression of the viral genome making them popular

choices as gene delivery vectors [195]. To make their use as delivery vectors feasible they

have been modified significantly to produce replication-incompetent viruses with

attenuated cytopathic effects and immunogenicity [195]. One of the enduring concerns

over the use of viral vectors is their safety, with different safety concerns depending on the

type of viral vector used. Many of these concerns have now been overcome thanks to

advances in vector design. Different types of viral vectors are summarised in Table 1.2



49

Viral Vector Structure Advantages Disadvantages

Adenovirus Double
stranded
DNA

DNA incorporated into host
cell nucleus

Infect both dividing and
quiescent cells

Transient gene expression

Reduced risk of
genotoxicity

Can carry large DNA inserts

Transient gene expression
(weeks)

Potentially immunogenic

Early vectors associated with
adverse events in patients
[192]

Adeno-
associated
virus (AAV)

Single
stranded
DNA

Infect both dividing and
quiescent cells

Long term gene expression

Non-cytotoxic

Non-immunogenic

Only carry small DNA inserts

Retrovirus Single
stranded
RNA

DNA incorporated into host
cell genome

Long term stable gene
expression

Tendency to insert into
oncogene promoters triggering
oncogenic mutations [196]

Lentivirus Single
stranded
RNA

DNA incorporated into host
cell genome

Long term stable gene
expression

Infect both dividing and
quiescent cells

Good safety record as virus
is replication incompetent

No insertion into oncogene
promoters

Table 1.2 Summary of Viral Vectors used in Gene Therapy
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1.5.2.1 The use of lentiviral vectors in clinical practice

The first phase I clinical trial to use lentiviral vectors was started in 2003. In this study CD4+

T lymphocytes from patients with wildtype HIV-1 infection were harvested and transduced

ex vivo using a lentiviral vector expressing an anti-sense gene against the HIV-1 envelope.

There was no evidence of the development of replication competent vector-derived HIV-1

and no evidence of insertional mutagenesis up to 3 years after administration [197]. Since

then, lentiviral vectors have been used in a number of clinical trials with no adverse events

recorded and some success in the treatment of x-linked adrenoleukodystrophy and β-

thalassaemia [198, 199].

1.5.3 Vector choice

With the wide choice of viral vectors available for gene delivery the first step was to decide which

viral vector to use for this project. As my aim was to develop a combined cell and gene therapy for

malignant mesothelioma it was important to consider both the cell delivery vehicle and the vector

used for genetic modification. One of the key benefits to using MSCs as delivery vehicles is that they

can be expanded in vitro following transduction with a therapeutic vector. This meant that I needed

vector which would allow long term stable gene expression rather than transient expression, limiting

the choices to a lentivirus or AAV. Our laboratory already had significant experience in working with

lentiviral vectors and our collaborator providing the viral vector worked predominantly with

lentiviruses. For this reason a lentiviral vector was chosen for gene delivery.

Lentiviruses are most commonly based on the human immunodeficiency virus (HIV-1) as they are

very effective in incorporating their DNA into the host genome. However, one of the main concerns

regarding their use is that once incorporation into the host cell they may be able to produce

replication competent lentiviruses, enabling uncontrolled replication of the HIV-1 virus and

subsequent HIV infection of the host. In order to bypass the issue of host infection non-human

lentiviruses can be used. Examples of these are feline immunodeficiency virus (FIV) and equine

infection anaemia virus (EIAV) both of which are effective at infecting cats and horses respectively

but not human cells. As MSCs have a slow population doubling time we needed a highly efficient

viral vector to ensure good cell transduction with TRAIL and subsequent therapeutic effect and for

this reason an HIV-1 lentivirus was used. In contrast the lentivirus used to transduce the cancer

cells with luciferase was an FIV based virus as this was readily available from our collaborators.

Although it has lower transduction efficiency in human cells it was suitable for cancer cell
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transduction as they have a rapid population doubling time meaning that even a small number of

transduced cells can develop into a pure population resulting in high levels of gene expression.

The TRAIL lentiviral vector used to transduce the MSCs had two important components; a

tetracycline inducible promoter and a green fluorescent protein (GFP) reporter gene linked to the

therapeutic TRAIL gene via an internal ribosome entry site (IRES), TRAIL-IRES-GFP. The benefit of

using a tetracycline inducible promoter to control the expression of TRAIL was that the therapy

could be activated and deactivated simply by the addition of a tetracycline antibiotic, in this case

doxycycline. This means that transduced cells could be assessed for the effect of viral transduction

using the same vector rather than an empty vector and that transgene expression could be activated

only when needed. The presence of GFP within the viral vector was a useful tool as it allows rapid

assessment of transgene production by simple methods such as fluorescent microscopy and flow

cytometry. The linking of the TRAIL and GFP with IRES meant that the expression of both TRAIL and

GFP were dependent on the same promoter so GFP would only be expressed if TRAIL was being

produced. The expression of the protein after the IRES is often lower than expression of the protein

before the IRES meaning that whilst GFP expression is a good indicator of TRAIL production it is likely

to be an underestimate.
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1.6 Hypothesis

Mesenchymal stem cells modified to express TRAIL can reduce tumour growth in malignant

pleural mesothelioma alone and in combination with chemotherapy.

1.7 Aims

This project aims to determine whether MSCTRAIL can be used to cause death of malignant

pleural mesothelioma both in vitro and in vivo and whether pre-treatment of mesothelioma

cells with existing chemo and radiotherapies can sensitise previously resistant cells to the

effects of MSCTRAIL. My aims were:

1. Generate MSCs expressing TRAIL using a lentiviral vector

2. Determine the in vitro sensitivity of multiple human malignant pleural mesothelioma cell

lines to MSCTRAIL alone and in combination with existing chemotherapy agents

3. Develop a suitable in vivo tumour model and confirm that MSCs home to sites of tumour

4. Determine whether MSCTRAIL therapy can reduce mesothelioma growth in vivo
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Chapter Two

Materials and Methods
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2 MATERIALS AND METHODS

2.1 Chemicals, solvents and plastic ware

All chemicals used were of analytical grade or above and obtained from Sigma Aldrich

(Poole, UK) unless otherwise stated. Water used for preparation of buffers was distilled and

deionised (ddH2O) using a Millipore water purification system (Millipore R010 followed by

Millipore Q plus; Millipore Ltd., MA, US). Polypropylene centrifuge tubes and pipettes were

obtained from Becton Dickenson (Oxford, UK).

2.2 Cell Culture

All sterile culture media, sterile tissue culture grade trypsin/EDTA, tissue culture antibiotics

and fetal bovine serum (FBS) were purchased from Invitrogen (Paisley, UK) unless otherwise

stated. Sterile tissue culture flasks and plates were purchased from Nunc (Roskilde,

Denmark) unless otherwise stated.

Human mesothelioma cells were cultured in Dulbeccos’ modified Eagle’s medium (DMEM)

with 4mM L-Glutamine, 50U/ml penicillin and 50µg/ml streptomycin and 10% (v/v) FBS and

incubated at 37oC in a humidified 5% CO2 atmosphere. Cell lines JU77, ONE58, LO68, MSTO-

211H, H28, H2052 and Met5A were kind gifts from Professor Bruce Robinson (Lung Institute

of Western Australia, University of Western Australia). Hela and 293T cells were obtained

from Cancer Research UK, London Research Institute (CRUK, London, UK) and kept as above.

Human adult mesenchymal stem cells were provided through the Tulane Centre for Gene

Therapy, MSC cell distribution centre (LA, US) and cultured in αMEM with 4mM L-

Glutamine, 50U/ml penicillin and 50µg/ml streptomycin and 16% (v/v) FBS. All cell lines

were incubated at 37oC in a humidified 5% CO2 atmosphere. Cells transduced with a Tet-on

plasmid had FBS replaced with Tet-system approved FBS (Clontech, Paris, France).

Media was changed every 3 days. Cells were grown until approximately 80% confluent and

mobilised by washing with sterile phosphate-buffered saline (PBS) followed by 0.05% trypsin

in EDTA. After detachment cells were pelleted by centrifugation at 300g for 5 minutes and

plated into 75 or 175 cm2 tissue culture flasks at ratios of 1:3 to 1:10 every 5-10 days

depending on rate of proliferation. Human adult MSCs were plated at 150-200 cells/cm2

every 10-14 days depending on rate of proliferation. For long term storage of cells, harvest
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and centrifugation was performed as described and the cell pellet was resuspended in 1ml

of freezing medium; 50% (v/v) medium, 40% (V/V) FBS and 10% (v/v) dimethyl sulfoxide

(DMSO), except MSCs which were stored in 65% medium, 30% FBS and 5% DMSO. The cell

suspension was transferred to a cryovial, placed in an isopropanol freezing container and

left at -800C for 24 hours to allow slow freezing. Cells were then transferred to liquid

nitrogen for long term storage. For subsequent use, cryovials were removed from the liquid

nitrogen and thawed rapidly in a water bath at 370C. The cell suspension was added to

standard cell culture media and plated in flasks overnight to allow cells to adhere. Once

cells were adherent medium was exchanged for fresh medium.

2.2.1 Stock solutions of drugs and additives

All drugs and solutions used in tissue culture were sterile filtered through a 0.22µm filter

unless otherwise stated. All solvents were tissue-culture grade.

Table 2.1: Stock solutions of drugs and additives used in tissue culture

Drug/Additive Solvent Stock Concentration Supplier

Polybrene Water 4 mg/ml Sigma Aldrich

Doxycycline Hyclate Water 10 mg/ml Sigma Aldrich

Hygromycin Media 50 mg/ml Invitrogen

D-Luciferin PBS 10 mg/ml Regis Technologies

Inc. USA

Human recombinant

TRAIL

PBS 10 µg/ml Peprotech

Cisplatin DMSO 1 mg/ml Calbiochem

Pemetrexed NaCl 25 mg/ml Eli Lilly

SAHA DMSO 5mM Cayman Chemicals
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2.3 Human Malignant Pleural Mesothelioma Cell Lines

Human malignant pleural mesothelioma (MPM) cell lines were a kind gift from Professor

Bruce Robinson (Lung Institute of Western Australia, University of Western Australia, Perth).

Six MPM cell lines; MSTO-211H, H28, H2052, JU77, ONE58, LO68 and one benign

mesothelial cell line, Met 5A, were tested. All cell lines were derived from patients

diagnosed with malignant pleural mesothelioma. Although all cell lines had previously been

characterised some key markers were confirmed prior to use.

2.3.1 Characterisation of MPM cell lines

Clinically MPM is often difficult to diagnose even when good histological specimens are

obtained. Not only does malignant disease need to be differentiated from benign disease

but it also needs to be separated from other malignancies that may present in a similar

clinical location. The immunohistochemical markers used for diagnosis vary depending on

the histologic type of mesothelioma (epithelioid versus sarcomatoid), the location of the

tumour (pleural versus peritoneal), and the type of tumour being considered in the

differential diagnosis. Guidelines produced by the International Mesothelioma Interest

Group suggest a panel of positive and negative immunohistochemical markers are used and

they should have either a sensitivity or specificity of >80% and the location of the staining is

important for diagnosis [8].

2.3.1.1 Immunocytochemistry for calretinin and WT-1

Calretinin, a positive marker is one of the most commonly tested for markers in

mesothelioma and should be demonstrated in almost all epithelioid mesotheliomas.

Staining should be strong and diffuse and both nuclear and cytoplasmic for a diagnosis of

mesothelioma. Wilms tumour 1 (WT-1) is also a useful immunohistochemical marker for

mesothelioma and 70-95% of samples show nuclear positivity. These 2 markers were used

to confirm that all cell lines used were MPM. Calretinin and WT-1 antibodies were used at a

1:100 dilution. All secondary antibodies were used at a 1:300 dilution (Table 2.2).

MPM cells were plated on chamber slides (Millipore, UK) at a density of 1x105 and left to

adhere overnight. The following day cells were washed once with PBS and fixed with 300µl
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of 4% paraformaldehyde (PFA) for 20 minutes at room temperature. 4% PFA was made by

mixing 4g paraformaldehyde with 100 ml PBS and leaving to dissolve at 70-750C. Once all

PFA was dissolved the solution was left to cool before using. The PFA was removed and

slides were washed twice with 500 µl PBS. For antibody staining slides were blocked in

blocking solution (PBS, 0.1% azide, 0.2% fish skin gelatin and 10% FBS) for 1 hour at room

temperature with gentle agitation. After blocking, slides were incubated with the primary

antibody in blocking solution overnight at 40C. The following day slides were washed with

PBS for 5 minutes, repeated three times and then incubated with alexa fluor-conjugated

secondary antibodies for 3 hours at room temperature protected from light. Slides were

again washed for 5 minutes with PBS, repeated 3 times followed by incubation with DAPI for

10 minutes at room temperature again protected from light. Finally slides were washed for

5 minutes with PBS and a coverslip was mounted using 50 µl moviol.

Table 2.2: Antibodies used for immunofluorescence in characterisation of MPM cell lines

and determination of TRAIL receptor status. All secondary antibodies were from Invitrogen

and used at a dilution of 1:300.

Antigen Primary Antibody Secondary Antibody

Calretinin
Rabbit polyclonal to calretinin, Abcam,

ab702, dilution 1:100

Alexa fluor 488 donkey anti-

rabbit, Invitrogen, A21206

WT-1

Mouse monoclonal (6F-H2 clone, IgG1)

to WT-1, Upstate, Millipore, 05-753,

dilution 1:100

Alexa fluor 555 goat anti-

mouse IgG1, Invitrogen,

A21127

DR5
Goat polyclonal to TRAIL-R2, Enzo Life

Sciences, ALX-210-743, dilution 1:100

Alexa fluor 488 donkey anti-

goat, Invitrogen, A11055

DcR1
Rabbit polyclonal to TRAIL-R3, ProSci,

PS2170, dilution 1:100

Alexa fluor 555 donkey anti-

rabbit, Invitrogen, A31572
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DcR2
Rabbit polyclonal to TRAIL-R4, ProSci,

PS2021, dilution 1:100

Alexa fluor 555 donkey anti-

rabbit, Invitrogen, A31572

2.3.1.2 Determination of TRAIL receptor status of MPM cell lines

The pro-apoptotic function of TRAIL relies on TRAIL receptor induced signalling. In order to

determine whether or not MPM cells were likely to be sensitive to TRAIL induced apoptosis

the first step was to determine the presence or absence of active TRAIL receptor DR5 and its

decoy receptors DcR1 and DcR2. All TRAIL receptor antibodies were used at a dilution of

1:100 (Table 2.2).

Cells were plated on chamber slides and immunocytochemical staining was carried out as

described above.

2.4 Production of MSCTRAIL and Firefly Luciferase Lentiviral

Vectors

2.4.1 Lentiviral vector plasmids

2.4.1.1 pLenti-TRAIL-IRES-eGFP

The lentiviral vector plasmid pLenti-TRAIL-IRES-eGFP (courtesy of Dr Michael Loebinger,

UCL) was used as the doxycycline-inducible lentiviral vector that would co-express TRAIL and

GFP (Figure 2.1). Key components of the plasmid are the internal ribosome entry site (IRES)

located between the TRAIL sequence and the eGFP which allows co-ordinated expression of

both genes and enables the eGFP to be used as a surrogate marker of TRAIL expression, a

human CMV promoter which is constitutively active in all mammalian cells and the

woodchuck hepatitis virus post-transcriptional regulatory element which has been shown to

increase transgene expression in target cells [200].
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Figure 2.1: pLenti-TRAIL-IRES-eGFP lentiviral vector. Plasmid map for TRAIL-IRES-eGFP

plasmid. The genome includes HIV-1 based genes, the tetracycline responsive element

(TRE) and tetracycline transactivator under the control of the human phosphoglycerate

kinase promoter (Hum PGK1), a human CMV promoter, human full length TRAIL, an internal

ribosome entry site (IRES), enhanced green fluorescent protein (eGFP) and the woodchuck

hepatitis post-transcriptional regulatory element (WPRE). The plasmid also includes a colE1

origin region and an ampicillin resistance gene to aid propagation in bacteria.
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2.4.1.2 pLIONII-Hyg-Luc2YFP

The FIV based virus vector pLIONII-Hyg-Luc2YFP (courtesy of Dr Stephen Goldie, CRI, CRUK)

was used to generate the lentiviral vector expressing firefly luciferase and yellow

fluorescent protein (YFP). In contrast to the HIV-1 based human lentiviral vector, the

pLIONII-Hyg-Luc2YFP vector is derived from the Feline Immunodeficiency Virus (FIV). The

FIV virus is a compact genome that makes multiple structural and regulatory proteins

essential for its replication. This plasmid constitutively expresses firefly luciferase and YFP

under a CAGGS promoter and it has a hygromycin resistance gene to allow for selection of

transfected cells.



61

Figure 2.2 pLIONII-HYG-Luc2YFP lentiviral vector. Plasmid map for Luciferase-YFP plasmid.

The genome includes FIV-1 based genes, a human CAGGS promoter, firefly luciferase and

the fluorescent reporter gene YFP. The plasmid also includes the woodchuck hepatitis post-

transcriptional regulatory element (WPRE), an ampicillin resistance gene to aid propagation

in bacteria and a hygromycin resistance gene to allow selection of infected target cells to

enable the production of a pure population.
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2.4.2 Propagation of lentiviral vector plasmids using Escherichia Coli

Large scale production of lentiviral vectors requires significant quantities of plasmid DNA.

Each plasmid contains a replication sequence and an ampicillin resistance gene to allow

replication of plasmids in Escherichia Coli (E. coli).

2.4.2.1 Bacterial transformation of E. Coli with plasmid DNA

Plasmids were expanded using OneShot TOP10 chemically competent E. coli (Invitrogen,

Paisley, UK). 1µl plasmid was added to a OneShot and left on ice for 30 minutes before

being heat shocked at 42oC for 30 secs and returned to ice for a further 2 minutes. 250µl of

SOC medium was added to the bacteria and incubated at 370C for 1 hour on a shaking

incubator at 220rpm.

2.4.2.2 Production of single plasmid-transformed bacterial colonies and generation of

starter cultures

LB (Luria Bertani) agar plates were made by dissolving 35g LB agar in 1L of ddH20,

autoclaving at 1210C for 15 minutes and cooling to approximately 500C prior to the addition

of 50µg/ml carbenicillin. The LB agar was then poured into 90mm sterile petri dishes

(Fisher) and cooled at 40C until the agar was set. Prior to use LB agar plates were pre-

warmed at 370C.

Different volumes of transformed bacteria (from 10-100µl) were spread onto the agar plates

and incubated overnight at 37oC. The following day single bacterial colonies were selected

using a sterile loop and used to inoculate 5ml LB broth (Fisher Scientific, Loughborough, UK)

containing 50µg/ml carbenicillin in a 15ml falcon tube. LB broth was prepared by dissolving

LB broth powder in ddH20 at 20g/L, autoclaving at 1210C for 15 minutes and allowing to cool

to approximately 500C prior to adding 50µg/ml carbenicillin. Falcon tubes containing the

single bacterial colonies were incubated overnight in an orbital incubator at 37oC and

220rpm.

2.4.2.3 Miniprep – Extraction of plasmid from starter cultures

To confirm that the bacteria had been successfully transformed with the plasmid DNA,

extraction was performed using the FastPlasmid© Mini Kit (Eppendorf, Cambridge, UK).

Individual bacterial colonies were tested as follows. 3ml of the starter culture was
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centrifuged at 2000rpm for 15 minutes after which the bacterial pellet was re-suspended in

400µl lysis buffer and left for 3 minutes at room temperature. The mixture was transferred

to the spin column provided and centrifuged at 13,000rpm for 1 minute, then washed with

400µl of wash buffer and re-centrifuged at the same settings. Finally 50µl of elution buffer

was added to the column, incubated at room temperature for 1 minute and centrifuged at

13,000rpm for 1 minute.

2.4.2.4 Restriction digests

All restriction digests were performed using enzymes and buffers from New England Biolabs

((NEB), Hitchin, UK). Purified DNA from both pLenti-TRAIL-IRES-eGFP and pLIONII-Hyg-

Luc2YFP were digested in a single enzymatic reaction using ECOR1 restriction site for the

pLIONII-Hyg-Luc2YFP plasmid and ECORV and Mlu1 restriction sites for the pLenti-TRAIL-

IRES-eGFP plasmid. Both enzymatic reactions were incubated at 370C for 1 hour and heat

inactivated at 650C for 5 minutes. DNA was purified using the QIAquick PCR Purification Kit

(Clontech, 740609.10) according to the manufacturer’s protocol. The purified product was

run on a 1% (w/v) agarose gel using a HyperLadder I molecular weight marker (Bioline). An

ultraviolet lamp was used to demonstrate the DNA fragments.

2.4.2.5 Maxiprep - Large scale production and extraction of plasmid DNA

To multiply the plasmid the remaining 2ml of the starter culture was added to 200ml of LB

broth containing 50µg/ml carbenicillin and incubated overnight in an orbital incubator at

220rpm and 37oC. DNA was purified using the Purelink HiPure Plasmid DNA Maxiprep Kit

(Invitrogen, Paisley, UK) as follows. The bacteria were harvested by centrifugation of the LB

broth at 4000g for 10 minutes, the pellet was resuspended in 10ml of resuspension buffer

(50mM Tris-HCl pH8, 10mM EDTA) with 20mg/ml RNase A, mixed with 10ml lysis buffer

(0.2M NaOH, 1% (w/v) SDS) and left to incubate for 5 minutes to release the plasmid from

the bacteria. 10ml precipitation buffer (3.1M potassium acetate pH5.5) was added to

precipitate the cell debris and DNA out of solution and centrifuged at 12,000g for 10

minutes at room temperature.

Equilibration filter columns are anion exchange columns which bind negatively charged

phosphate molecules on the DNA backbone. These were prepared by adding 30ml

equilibration buffer and allowing the buffer to drop through under gravity. Once the
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columns were prepared the supernatant containing the plasmid DNA was loaded into an

equilibration column. The column was washed using 60ml wash buffer (0.1M sodium

acetate pH5, 825mM NaCl) to remove RNA, proteins, carbohydrates and other impurities,

and finally the plasmid DNA was eluted from the column with 15ml elution buffer (100mM

Tris-HCl pH 8.5, 1.25M NaCl). DNA was precipitated by adding 10.5ml isopropanol and

centrifuging for 30 minutes at 4500rpm at 4oC. The plasmid DNA was then washed by re-

suspending in 70% ethanol and was centrifuged for 15 minutes at 4500rpm at 4oC. The DNA

pellet was allowed to air dry before being resuspended in 500µl TE buffer (10mM Tris-HCl

pH8, 0.1mM EDTA).

2.4.2.6 DNA Quantification

The DNA was quantified and purity checked using an Ultrospec 3000 spectrophotometer (GE

Healthcare, Amersham, UK). Nucleic acids absorb ultraviolet light in a distinct pattern and

the amount of light absorbed at different wavelengths is an indication of their purity. The

ratio of absorbance at 260nm and 280nm (A260/A280 ratio) gives a measure of purity and a

ratio of >1.8 is expected for pure DNA. DNA yield was expressed in µg/ml. For the pLIONII-

Hyg-Luc2YFP plasmid the A260/A280 ratio was 1.93 with a concentration of 2.923 µg/µl and

for the pLenti-TRAIL-IRES-eGFP plasmid the A260/A280 ratio was 1.90 with a concentration

of 1.765 µg/µl.

2.4.3 Transient transfection of 293T cells with plasmid DNA

293T cells are a human embryonic kidney cell line and are commonly used as a packing cell

for the production of lentivirus. They are ideal for this role as they are highly permissible to

transfection, they contain the SV40 large T-antigen which supports the replication of

plasmids containing the SV40 origin of replication and they are able to produce high levels

of protein. Transient transfection of 293T cells is used to assess the function of the plasmid

using a simple and rapid technique. It involves the introduction of nucleic acids into cells by

non-viral methods and occurs by opening of transient pores in the cell membrane to allow

uptake of the plasmid. Usually DNA is not readily taken up by cells as both DNA and the cell

surface membranes are negatively charged. To overcome this, chemical transfection

reagents can be used. The cationic polymer polyethylenimine (PEI) was used to perform
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transient transfection with the pLenti-TRAIL-IRES-eGFP plasmid and calcium phosphate was

used as the transfection reagent for the pLIONII-Hyg-Luc2YFP plasmid. Initially PEI was used

as the transfection reagent for the pLIONII-Hyg-Luc2YFP plasmid however this gave low

transfection rates of <30% (Figure 5.2). For this reason an alternative transfection reagent,

calcium phosphate, was used when working with the pLIONII-Hyg-Luc2YFP plasmid and this

produced much higher transfection rates of >85%.

2.4.3.1 Transfection using JetPEITM for pLenti-TRAIL-IRES-eGFP plasmid

PEI is a cationic polymer which condenses DNA into positively charged particles which bind

to the negatively charged particles on the surface of the cell membrane and are

endocytosed. JetPEITM is a commercially available PEI derivative which has been reported to

enable very high transduction rates [201].

1x106 293T cells were seeded in a 6-well plate and left to adhere overnight. For each well

6µl JetPEITM was diluted in 100µl 150mM sodium chloride (NaCl) and vortexed. At the same

time 3µg DNA was added to 100µl 150mM NaCl and vortexed to ensure thorough mixing.

The JetPEITM solution was then added to the DNA solution, mixed thoroughly and incubated

at room temperature for 15-30 minutes. Cells had a media exchange for 1ml of fresh

medium and 200µl of DNA/PEI mix was added dropwise to each well. The plates were

returned to the incubator for 4 hours and media was exchanged for fresh media containing

10µg/ml doxycycline to activate TRAIL transgene expression. Cells were left with

doxycycline containing medium for 48 hours and the success of transfection was assessed

using GFP expression as determined by flow cytometry.

2.4.3.2 Transfection using calcium phosphate for pLIONII-Hyg-Luc2YFP

Calcium phosphate transfection was first described as a technique for transient transfection

and permanent transduction in the 1960’s and was modified to its current form in the early

1970’s since when it has remained largely unchanged. The plasmid DNA is combined with

calcium ions to form DNA precipitates which are then taken up into cells by endocytosis.

2x106 293T cells were attached to a 6cm plate and 2µl of 50mM chloroquine was added

prior to transfection. In a 15ml falcon tube 5µg structural vector (ENV), 3µg of plasmid and
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2µg envelope vector (VSVG) were added to 61µl of 2M calcium chloride and 430µl sterile

ddH2O at room temperature and mixed well. 500µl of 2XHBS (Sigma, Dorset, UK) was added

to the DNA mixture and bubbled over 15 seconds. The mixture was added drop wise to cells

and incubated at 37oC for 8 hours before exchanging for fresh media and incubating for a

further 24 hours. Cells were assessed for YFP under fluorescent microscopy and by flow

cytometry.

2.4.3.3 Assessment of transgene expression

Both plasmids contain fluorescent reporter proteins to allow easy detection of transgene

expression by flow cytometry. For pLenti-TRAIL-IRES-eGFP flow cytometry was performed

after incubating cells in media containing 10µg/ml doxycycline to activate the tetracycline

dependent promoter. Flow cytometry was performed for GFP. With pLIONII-Hyg-Luc2YFP

no transgene activation was required as the protein was constitutively expressed and flow

cytometry was performed for YFP.

2.4.4 Production of Lentivirus

In order to manufacture functioning lentivirus additional plasmids containing envelope and

structural proteins are required. Without these additional proteins the lentivirus will be

unable to incorporate into the host cell genome and replicate along with its host cells. As

pLenti-TRAIL-IRES-eGFP is a 3rd generation HIV-1 based lentivirus and pLIONII-Hyg-Luc2YFP is

a feline based lentivirus both plasmids require different structural and packaging plasmids.

2.4.4.1 Production of lentiviral vector for pLenti-TRAIL-IRES-eGFP

In addition to the plasmid of interest, the envelope vector pMD.G2 plasmid expressing

vesicular stomatitis G protein (VSV-G) and packaging vector pCMV-dR8.74 (kind gifts from

Prof A Thrasher, UCL) were used for production of pLenti-TRAIL-IRES-eGFP and were

produced as follows. 293T cells were seeded in a T175 flask and kept at a confluence of

above 50% for the week prior to transfection and passaged on alternate days at ratios of 1:2

or 1:3 according to growth rates. 24 hours prior to transfection cells were split at a ratio of

1:2 to 1:2.5 to enable them to reach 80-90% confluence on the day of transfection. To

ensure significant quantities of virus were produced 18 T175 cm2 flasks were used.
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For each T175 cm2 flask, 50µg TRAIL plasmid, 12.5µg pMD.G2 and 37.5µg pCMV-dR8.74

were added to 1ml 150mM NaCl, vortexed and sterile filtered using a 0.22µ filter. 80µl

JetPEITM was added to the same volume of 150mM NaCl and vortexed. The PEI/NaCl mix

was added to the DNA/NaCl mix and incubated at room temperature for 20 minutes. The

media was removed from each flask and replaced with 13ml fresh media and 2ml

DNA/PEI/NaCl mix. The cells were incubated for 4 hours at 37oC and then exchanged for

20ml fresh cellular medium and left overnight. The following day media was exchanged for

12ml normal media into which the lentivirus was secreted.

2.4.4.2 Production of lentiviral vector for PLIONII-Hyg-Luc2YFP

As this plasmid is an FIV-1 based plasmid the packaging and envelope plasmids used were

pCI-VSVG and pCPRDEnv (gift from Dr Stephen Goldie, CRI, CRUK). 293T cells were seeded

and prepared as described above. Calcium phosphate transduction was performed as

described for transient transfection except the DNA/HBS mixture was incubated overnight

rather than for 4 hours. The following day the media was exchanged for 12ml normal media

into which the lentivirus was secreted.

2.4.4.3 Harvest of lentiviral vector

The following day, 48 hours after 293T transfection with the plasmid DNA, the cell

supernatant containing the virus was collected and exchanged for 12ml fresh medium. The

media containing the lentiviral vectors was purified by centrifugation at 300g for 10 minutes

at 4oC (Allegra X-15R, Beckman, High Wycombe, UK) and filtered at 0.45µm. The filtered

supernatant was transferred to UltraclearTM centrifuge tubes (Beckman, High Wycombe, UK)

and concentrated by ultracentrifugation at 17,000rpm for 2 hours at 4oC (SW28 rotor,

Optima LE80K Ultracentrifuge, Beckman). The supernatant was removed, 100µl cooled

optimem was added to the viral pellet and incubated on ice for 1 hour. After incubation the

viral pellet was resuspended and stored in 20µl aliquots at -80oC before use. This procedure

was repeated the following day resulting in two batches of lentiviral vectors.
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2.4.5 Titration of lentivirus

Usually titration of lentiviral vectors is performed using HeLa cells (cervical carcinoma cell

line) as they are known to be permissive to transduction. However as TRAIL is known to kill

cancer cells and not healthy cells 293T cells were used for lentiviral titration in this case.

50,000 293T cells were plated into each well of a 12-well plate and left overnight to adhere.

The following day the media was exchanged for 1.5ml media containing polybrene (Sigma

Aldrich, Poole, UK) at a concentration of 4mg/ml and incubated for 5 minutes. This media

was then exchanged for 1.5ml media containing polybrene as above and viral

concentrations of 15µl, 3.75µl, 0.937µl and 0.234µl and incubated for 24 hours at 37oC.

After 24hrs, the media was removed and replaced with normal media and 10µg/ml

doxycycline for the pLenti-TRAIL-IRES-eGFP lentiviral vector and without doxycycline for the

pLIONII-Hyg-Luc2YFP lentiviral vector as appropriate. After 48 hours cells were detached

using trypsin/EDTA and the percentage of GFP positive cells were determined using flow

cytometry (FACSCalibur, Beckton Dickenson, Oxford, UK). Samples were gated according to

forward and side scatter characteristics to exclude cell debris and doublets and a minimum

of 10000 gated events were collected for each sample analysed. GFP and YFP fluorescence

was detected using a blue excitation laser (488nm) and 530nm band pass filter. Sample

analysis was performed using FlowJo Software (Tree Star Inc., Oregon, USA). The viral titre

was calculated in infectious units/ml as below:

Viral titre = number of cells plated x proportion of GFP positive cells

Volume of virus in ml

2.4.6 Permanent transduction of MSCs and MPM cell lines

Whilst many cell types are easy to transduce with lentiviral vectors it is essential to ensure

that the optimal amount of virus is used to obtain maximum transduction efficiency. If too

few viral particles are used then low levels of transduction will occur but if too many are

used then multiple copies will be incorporated into the target cell DNA and the lentiviral

vectors may cause toxicity resulting in poor growth and altered morphology post
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transduction. The multiplicity of infection (MOI) is the ratio of infectious viral particles to

target cells and prior to permanent target cell transduction a range of MOI’s should be

tested to determine optimal number. For MSCs an MOI of 10 was used in accordance with

previous reports [104, 183].

As both viral particles and cell surface membranes carry negative charges a cationic

polymer, polybrene, was used to neutralise the charge repulsion and thereby enhance

transduction efficiency.

2.4.6.1 Transduction of MSCs with pLenti-TRAIL-IRES-eGFP

Human MSCs were plated at a density of 35,000 cells per T175. 3 days after seeding

(approximate confluency 20-30%) normal media was exchanged for a mix of 12ml αMEM 

media with 12µl polybrene (4µg/ml) and incubated for 5 minutes. This media was then

removed and replaced with 12ml αMEM media with 12µl polybrene and an appropriate 

volume of virus to give a MOI of 10. The virus/polybrene/media mix was incubated at 37oC

for 24 hours after which the media was changed for 20ml media and doxycycline 10µg/ml.

Cells were left to reach 80% confluence and were harvested using trypsin/EDTA and the

success of MSC transduction was determined by flow cytometry (as previously described)

and fluorescence microscopy using a Carl Zeiss Axiovert S100 fluorescent microscope.

2.4.6.2 Transduction of MPM cell lines with pLIONII-Hyg-Luc2YFP

Permanent transduction of mesothelioma cell lines was performed as described for MSCs.

However for the luciferase transduction the lentivirus was left on for 48 hours rather than

24 hours before exchanging for normal media and then assessed for the presence of YFP

under fluorescent microscopy. The luciferase lentivirus also had a hygromycin resistant

gene present allowing selection of only transduced cells. 72 hours after removing the

lentivirus 200µg/ml hygromycin was added to the culture media and left for 48 hours before

exchanging for normal media. This was repeated until all cells were fluorescent.
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2.5 Enzyme-linked immunosorbent assay (ELISA)

All absorbance was measured using a Titertec Multiscan MCC/340 plate reader (Labsystems,

Turku, Finland) and an automated plate washer was used for all assays. Assays performed

on cell culture samples were performed in triplicate and on those performed on murine

serum were carried out in duplicate. ELISAs were performed using the human

TRAIL/TNFSF10 Quantikine ELISA kit (R&D Systems, Abingdon, UK).

2.5.1 Sample collection and preparation

Cell supernatants were prepared by removing debris by centrifugation at 300g for 5

minutes. Cell lysates were prepared by washing the cells three times in cold PBS, adding the

cell lysis buffer provided at 1 x 106 and incubating at 37oC for 30 minutes with gentle

shaking. Cells were then centrifuged at 500g for 15 minutes and the supernatant was

retained and stored at -20oC until required.

Murine serum was collected in Microvette® CB300 blood collection tubes (Sarstedt) at

sacrifice. Samples were placed on ice for 30 minutes and then centrifuged at 1000g for 15

minutes. Serum was transferred to 500µl eppendorf tubes and placed at -800C until ELISA

was performed.

2.5.2 BCA protein assay

To ensure equivalent amounts of protein were loaded for different samples the protein

concentration of cell lysates, supernatants and serum were assessed using the bicinchoninic

acid (BCA) protein assay (Thermo Fisher Scientific, IL, US). The BCA assay relies on two

reactions; firstly the peptide bonds in the protein reduces Cu2+ to Cu+, a reaction that is

dependent on the amount of protein present and secondly the bicinchoninic acid is chelated

with the Cu+ ions to produce a purple coloured solution. This colour strongly absorbs light in

a linear fashion at 562nm. Standards were made by dissolving BSA in PBS at concentrations

from 20µg/ml to 2000µg/ml.
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20µl of each sample along with 20µl standard were added to a 96-well plate, 180µl of BCA

working solution was added to each well and agitated on a plate shaker for 30 seconds. The

plate was then incubated at 37oC for 30 minutes before reading the absorbance at 550nm.

The absorbance of the samples was compared to those of known protein concentrations to

determine the protein concentration.

2.5.3 TRAIL ELISA procedure

The human TRAIL ELISA kit (R&D, Abingdon, UK) was used according to the manufacturer’s

instructions. 100µl of assay diluent RD1S was added to each well of a 96-well plate. 50µl of

samples containing equal amounts of protein were then added and incubated for 2 hours at

room temperature on a horizontal orbital plate shaker at 500rpm. The plate was washed

four times with wash buffer before adding 200µl TRAIL conjugate to each well and

incubating for a further 2 hours on the orbital plate shaker. The plate was washed a

further four times, 200µl of a colour substrate solution was added to each well and

incubated for 30 minutes at room temperature in the dark. Finally 50µl stop solution was

added to each well and the absorbance was measured at 450nm using the plate reader.

Readings were compared to known concentrations of human recombinant TRAIL (R&D

Systems) which were used to plot a standard curve to determine the concentrations of

TRAIL protein in each sample. Readings were also taken at 540nm and were subtracted

from those taken at 450nm to correct for optical imperfections in the plate.

2.6 Determination of dose-response curves for chemotherapeutic

agents

The half maximal inhibitory concentration (IC50) of a drug is an indication of how effective

that drug is at inhibiting a biological or biochemical function and allows determination of

the amount of the specified drug that is required to inhibit the measured biological effect by

half. The IC50 is determined by constructing a dose-response curve and identifying the

concentration at which the measured biological function is reduced by a half. Dose-

response curves were determined by measuring the effect of different concentrations of

drugs on cell proliferation using a colorimetric XTT assay (AppliChem) that detects cellular
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metabolic activity. During the assay the yellow tetrazolium salt XTT is reduced to a coloured

formazan dye by the dehydrogenase enzymes in metabolically active cells. As this

conversion only occurs in viable cells the amount of formazan produced is directly

proportional to the number of viable cells. The formazan dye is soluble in aqueous solution

and can be quantified by measuring absorbance at 450nm wavelength. All doses were

tested in triplicate and all absorbances were measured using a Titertec Multiscan MCC/340

plate reader (Labsystems, Turku, Finland).

2.6.1 Dose response curves

Chemotherapy agents and doses tested were as follows: cisplatin 0-32µM, pemetrexed 0-

200µM, SAHA 0-5µM.

10,000 MPM cells were plated in each well of a 96-well plate and left to adhere overnight.

The following day media was exchanged for fresh media containing different concentrations

of chemotherapy agents and incubated for 48 hours. To perform the XTT assay 0.1ml

activation reagent was added to 5ml XTT reagent and 50µl of the solution was added to

each well of the 96-well plate. Plates were incubated at 370C for 4 hours and on removal

were shaken gently to ensure an even distribution of dye within the wells. Absorbance was

measured at 450nm and 650nm to allow subtraction of reference absorbance.

2.7 In vitro co-culture experiments

Both MSCs and MPM cells have similar forward and side scatter properties on flow

cytometry making identification of the different cell populations difficult. Vibrant®CM-DiI

cell labelling solution (Invitrogen) is a lipophilic fluorescent stain than stains the lipid

constituents of the cell membrane. It is photostable and considered suitable for long-term

cell tracking [104]. In all co-culture experiments MPM cells were stained with DiI to

distinguish them from MSCs on flow cytometry.

As the TRAIL lentiviral vector contains a tetracycline dependent promoter all co-culture

experiments were performed using tetracycline free serum (Clontech, Paris, France) to ensure

there was no TRAIL activation in the control cells.
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2.7.1 Co-culture experiments

50,000 human MSCs transduced with TRAIL (MSCTRAIL) were plated in each well of a 6 well

plate. MPM cells were detached, counted and resuspended in serum free media at a

concentration of 1 million cells/ml. 5µl/ml of DiI was added to the MPM cell suspensions

and incubated for 20 minutes at room temperature after which cells were washed twice in

sterile PBS. MPM cells were then plated with the MSCTRAIL at a density of 50,000 cells per

well. Cells were left to adhere overnight and then media was exchanged for either media

alone, media containing doxycycline 10µg/ml or media containing 200ng/ml recombinant

TRAIL (rTRAIL) with or without chemotherapy according to experimental design. Cells were

incubated for 48 hours to allow maximal activation of TRAIL.

2.7.2 Apoptosis assessment

Annexin V is a 35-36kDa calcium-dependent phospholipid binding protein with a high

affinity for phosphatidylserine which is located on the cytoplasmic side of the cell

membrane. In living cells this is inaccessible to cell surface binding proteins but in apoptotic

cells it is translocated to the outer surface of the cell membrane enabling the binding of

annexin V. In addition to this annexin V can travel through the porous cell membrane of

dead cells and bind to phosphatidylserine on the cytoplasmic cell surface although these

cells will also stain with DAPI, a cell impermeant dead cell stain. With this system Annexin V-

/DAPI- cells were considered alive, annexin V+/DAPI- cells were apoptotic and annexin

V+/DAPI+ were considered dead having completed apoptosis.

Media including floating cells were collected and placed into a FACS tube. Adherent cells

were washed twice with PBS, detached with trypsin as previously described and added to

the FACS tube. Samples were centrifuged at 300g for 5 minutes. The supernatant was

discarded, and the cell pellet was resuspended in 100µl Annexin binding buffer (1X) with 3µl

Annexin V-AlexaFluor 647 (Invitrogen, Paisley, UK) and incubated for 40 minutes on ice.

After incubation a further 400µl of annexin binding buffer was added and samples were

filtered through a 100µm cell strainer. 2µg/ml DAPI was added to each sample immediately

prior to flow cytometry analysis.
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Samples were analysed on an LSR2 machine (Beckton Dickenson, Oxford, UK) and electronic

compensation was performed to minimise overlap of emission spectra. Samples were gated

according to forward and side scatter to exclude cell doublets and debris and a minimum of

10,000 gated events were collected and analysed. Sample analysis and quantification was

performed using FlowJo software. GFP fluorescence was detected using a blue excitation

laser (488nm) and 530/30 band pass filter. The secondary antibody AlexaFluor 647 was

detected using a red excitation laser (635nm) and 660/20 band pass filter, DiI labelling was

detected using a blue excitation laser and 575/25 band pass filter whilst DAPI detection was

achieved with an ultraviolet excitation laser (355nm) and a band pass filter at 440/40.

2.8 In vivo models

2.8.1 Animals

Human tumour xenograft models are a well-established mode of determining the efficacy of

anti-cancer therapies. In order to successfully establish human tumours in a murine model

the animals need to be immunosuppressed to prevent rejection of cancer cells. NOD/SCID

mice (NOD.CB17-Prkdcscid) have the severe combined immunodeficiency mutation on a non-

obese non-diabetic background resulting in a lack of functioning B and T-lymphocytes,

lymphopaenia and hypogammaglobulinaemia.

Eight to ten week old NOD/SCID mice (Charles Rivers) were kept in individually ventilated

cages at the Central Biological Services Unit at University College London. Animals were

kept on a 12 hours light/dark cycle at 20-25oC and were provided with autoclaved food and

water ad libitum. When mice needed doxycycline this was given in their autoclaved drinking

water at a concentration of 2g/L with 3% (w/v) sucrose and administered via black water

bottles to protect from light. All animal studies were approved by the University College

London Biological Services Ethical Review Committee and licensed under the UK Home

Office regulations and the Evidence for the Operation of Animals (Scientific Procedures) Act

1986 (Home Office, London, UK).
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2.8.2 In vivo tumour xenograft models

Luciferase transduced MSTO-211H (MSTO-211HLuc) cells were used to generate all tumour

xenografts. All cells were detached from flasks using trypsin/EDTA, neutralised with serum

containing medium and the cell suspension was counted. Cells were centrifuged at 300g for

5 minutes and the cell pellet was resuspended to the required cell concentration in 100µl

sterile PBS. Cells were kept on ice prior to injection. All animals were weighed prior to

tumour cell inoculation and twice weekly thereafter. Animals were sacrificed when they

reached >20% weight loss or if they showed other signs of distress such as piloerection,

hunching or being cold to touch.

2.8.2.1 Intrapleural tumour xenograft model

Intrapleural tumours were obtained by injecting cell concentrations from 8x104 to 2x105

into the pleural cavity. Animals were stilled using isofluorane anaesthesia (3% in 2l/min

oxygen); the right thoracic wall was shaved and cleaned with 2% chlorhexidine. A 5mm

incision was made through the skin and subcutaneous tissue on the right chest wall

exposing the intercostal space underneath. Cells were injected using an insulin needle

through the intercostal space into the pleural cavity.

2.8.3 Demonstration of MSCs homing to MPM tumours

In order to track MSCs homing to tumours in vivo dual modality fluorescent and

bioluminescent imaging were used. Fluorescence can be difficult to use in vivo as

fluorophores with wavelengths <600nm will be absorbed by the animal tissue thereby

reducing the fluorescent signal detected. In order to be useful, both the excitation and

emission spectra of any fluorophore would need to be >600nm. Firefly luciferase has a peak

emission wavelength of approximately 560nm with a spectra from 450-650nm. To ensure

no overlap of signal between the bioluminescence and fluorescence an ideal fluorophore

would have excitation and emission wavelengths >650nm. DiR is a member of the long

chain dialkylcarbocyanine family along with Vibrant®CM-DiI cell labelling solution and has an

emission spectra of 710-800nm making it suitable for in vivo use. Whilst DiR is a suitable

choice for in vivo imaging it would not be easy to identify on tissue sections as both the

confocal and fluorescent microscopes available for use were unable to detect fluorophores
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with this emission spectra. To enable cells to be imaged both in vivo and in vitro cells were

dual stained with DiR and DiI.

Intrapleural tumours were established using 2x105 MSTO-211HLuc cells as described above

(2.8.2.1) and allowed to establish for 6 days. MSCs were harvested and after counting were

resuspended in serum free medium to a concentration of 1x106 cells/ml. 1 µl of a 100mM

stock solution of DiR was added to the MSC cell pellet along with 5 µl of DiI and incubated at

room temperature in the dark for 20 minutes. The cell pellet was then washed twice with

PBS, centrifuged at 300g for 5 minutes and resuspended in a final volume of 100 µl sterile

PBS for intrapleural delivery or 200 µl for intravenous delivery into the lateral tail vein.

Following in vivo delivery cells were tracked for 24 hours to determine the location of the

MSCs.

2.8.4 Therapeutic use of MSCTRAIL

Intrapleural tumours were established using 8x104 cells as described in section 2.8.2.1 and

allowed to establish for 5 days. Both MSCTRAIL and MSC were harvested and stained with

DiI. For intrapleural MSC delivery cells were resuspended to a final concentration of 1x106

cells in 100 µl sterile PBS and for intravenous delivery cells were resuspended to a final

concentration of 1x106 cells in 200 µl sterile PBS. MSCTRAIL and MSC were delivered on

days 5, 9, 12, 15 and 18 during tumour development and bioluminescent imaging was

performed twice weekly. To enable an accurate determination of tumour cell proliferation

200 µl 5-bromo-2’-deoxyuridine (BrdU; Invitrogen 00-0103; 10mg/ml) was administered 1

hour prior to sacrifice

MSCTRAIL cells were cultured in doxycycline prior to in vivo delivery to ensure maximal

TRAIL expression and all animals were given doxycycline in their drinking water throughout

the duration of the experiment.

2.8.5 Extended MSC homing

Intrapleural tumours were established using 2x105 MSTO-211HLuc cells and allowed to

develop for 10 days. MSCs were stained with DiR and DiI as described in section 2.8.3 and

resuspended in sterile PBS as previously described. Cells were delivered both intrapleurally



and intravenously into the lateral tail vein. Following MSC delivery cells were tracked and

imaged daily for 6 days.

2.9 Bioluminescent and fluorescent imaging

Bioluminescence is the production and emission of light by living organisms and is naturally

occurring in fireflies, anglerfish and some species of squid. Luciferase belongs to a family of

oxidative enzymes which in the presence of the substrate D-luciferin catalyse its conversion

to oxyluciferin and light.
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constant between subjects throughout individual experiments. The tumour volume for each

group was expressed as the total photon count within the dedicated region of interest.

2.9.1 In vitro bioluminescent and fluorescent imaging

In order to confirm successful luciferase transduction of MPM cells and that expression

directly correlates to photon count cells were plated at increasing cell densities in a 12-well

plate. Cells were allowed to adhere overnight and the following day medium was

exchanged for medium containing D-luciferin at a concentration of 150 µg/ml immediately

prior to imaging. Cells were placed in the imaging chamber and images were acquired using

automatic exposure settings, medium sensitivity binning and F-stop 1.

To confirm successful MSC staining with DiR and to determine the correct filter settings

required for imaging cells were stained as described in section 2.8.3 with either DiI or DiR

alone or in combination and plated at a density of 1x105 cells in each well of a 6-well plate.

Cells were left to adhere overnight and imaged the following day using multiple filter sets.

2.9.2 In vivo bioluminescent and fluorescent imaging

D-luciferin is a small molecule that freely diffuses across cell membranes. When injected

intraperitoneally D-luciferin is not excreted but slowly absorbed into the circulation,

perfuses the tissues and is ultimately excreted by the kidneys. This means the luciferin

concentration within the body is related to the pharmacokinetics of substrate inflow vs

substrate outflow. As the substrate is being injected the inflow is greater that the outflow

resulting in a slowly increasing bioluminescent signal. Once the substrate reaches

equilibrium in the body (inflow and outflow are equal) there is a plateau in the

bioluminescent signal and the counts can be used as a reliable measure of cell number.

Finally the excretion of substrate is greater that the inflow resulting in a gradual reduction of

bioluminescent signal. In order for bioluminescent counts to be reliable and comparable

images must be taken during the plateau phase which is cell line dependent.

Animals injected with MPM-Luc were imaged 2 hours after initial cell injection and twice

weekly thereafter. Prior to imaging animals were given an intraperitoneal injection of 200

µl D-Luciferin (10mg/ml) and stilled using isofluorane anaesthesia throughout image
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acquisition and placed on a heated stage to ensure they maintained an appropriate body

temperature throughout anaesthesia. An initial experiment was performed to determine

the luciferase kinetics of the MSTO-211HLuc tumours and identify the optimal time between

D-luciferin delivery and imaging. Images were acquired every 5 minutes after D-luciferin

injection and photon count was determined at each time point. For all subsequent imaging

experiments D-luciferin was administered intraperitoneally 15 minutes prior to imaging. At

the end of the study organs were imaged for bioluminescence and examined for

macroscopic evidence of tumours.

2.10 Histological preparation of tissue

Mice were sacrificed using intraperitoneal injection of pentobarbital followed by laparotomy

and exsanguination. Visible tumours were identified and removed along with

bioluminescent regions detected on imaging. If lung insufflation was required, the thoracic

cavity was opened, trachea exposed and cannulated with a 22G cannula. The lungs were

insufflated with 10% neutral buffered formalin (Sigma, Dorset, UK) at a pressure of 25cm

H2O and the trachea was ligated. The heart and lungs were removed en bloc and placed in

10% neutral buffered formalin overnight at 4oC. If insufflation was not required heart and

lungs were removed en bloc, weighed and placed in 10% neutral buffered formalin

overnight. The following day formalin was exchanged for 70% ethanol and kept at 4oC until

processed. Specimens were placed in processing cassettes, dehydrated using a Leica TP

1050 tissue processor which exposes samples to a serial alcohol gradient. The tissue was

then embedded in paraffin wax and 3µm sections were cut from the paraffin embedded

sections using a microtome. Sections were mounted on polylysine slides (VWR,

Leicestershire, UK) for staining. Prior to all staining sections were de-waxed in xylene and

rehydrated through decreasing concentrations of ethanol through to water before being

washed twice in PBS.
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2.10.1 Immunofluorescence

2.10.1.1 Calretinin

The primary antibody used was a rabbit polyclonal antibody to calretinin (ab702, Abcam,

Cambridge, UK) at a dilution of 1:100. The secondary antibody used was AlexaFluor 555

donkey anti-rabbit (Invitrogen, Paisley, UK) at a dilution of 1:300.

Firstly the antigen was unmasked by immersing sections in 1xEDTA (pH9.0 (12g TRIS base,

1g EDTA, 3.5ml HCl, 500ml H2O)) and microwaving at high power for two periods of 10

minutes. The sections were then cooled for 15 minutes, washed twice in PBS and blocked

for 1 hour with blocking solution (PBS, 10% FBS, and 0.2% fish skin gelatin) to prevent non-

specific antibody binding. The blocking solution was removed and the primary antibody

diluted in blocking solution to the appropriate dilution was added and incubated overnight

at 4oC. The following day slides were washed three times in PBS for 5 minutes each and

then incubated with secondary antibody diluted in blocking solution (1 in 300 dilutions) for 3

hours at room temperature. The slides were then drained and stained with DAPI (1µl DAPI

in 10ml PBS) for 5 minutes. Finally the slides were washed in PBS for 5 minutes and

coverslips were applied using moviol.

2.10.1.2 Luciferase

Primary antibody used was a rabbit polyclonal antibody to firefly luciferase (ab21176,

Abcam, UK) at a dilution of 1:2000. Secondary antibody was an Alexa fluor 555 or 488-

conjugated donkey anti rabbit (Invitrogen) at a dilution of 1:300. The choice of secondary

antibody was determined by whether single or dual staining was being performed.

Sections were dewaxed as before but no antigen retrieval step was required. Sections were

washed twice in PBS then left to block in PBS with 10% FBS and 0.2% fish skin gelatin for 1

hour at room temperature. Slides were incubated overnight at 40C with the primary

antibody diluted in blocking solution and then washed three times with PBS. Sections were

then incubated with the secondary antibody for 3 hours at room temperature protected

from light. Finally slides were washed three times with PBS, incubated for DAPI for 5

minutes as described above and coverslips were mounted using moviol.
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2.10.1.3 Visualisation of DiI-labelled cells

DiI-labelled cells could be visualised directly using microscopy as long as they were in an

aqueous phase. Sections were dewaxed, stained with DAPI as already described and

coverslips were mounted using moviol.

2.10.1.4 TUNEL staining

Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) is a histological

technique for detecting fragmented DNA due to apoptosis by labelling nicks in the DNA that

are recognised the enzyme terminal deoxynucleotidyl transferase (TdT). TUNEL is one of the

main methods for determining programmed cell death due to apoptosis and if used

correctly will only label cells undergoing apoptosis and not necrosis.

In order to quantify the amount of apoptosis within tumour samples dual staining was

performed with TUNEL and luciferase. TUNEL positive cells are visualised in the 488nm

channel so for luciferase staining the primary antibody used was a rabbit polyclonal

antibody to firefly luciferase (Abcam, UK) at a dilution of 1:2000 and the secondary antibody

was Alexa fluor 555-conjugated donkey anti-rabbit (A31572, Invitrogen) at a dilution of

1:300. TUNEL assay was performed in accordance with the manufacturer’s protocol (G3250,

Promega, UK)

Slides were dewaxed, washed once in 0.85% NaCl for 5 minutes and once in PBS. Sections

were then fixed in 4% PFA for 15 minutes at room temperature and washed three times

with PBS for 5 minutes each. 100 µl proteinase K (20 µg/ml concentration) was added drop

wise to each section to permeabilise the tissue and incubated for 8 minutes at room

temperature. Slides were washed again with PBS twice followed by a further 5 minute

fixation in 4% PFA and a final wash in PBS. Slides were drained and the tissue was covered

with 100 µl equilibration buffer and left to incubate for 10 minutes. During this incubation a

nucleotide master mix was made up on ice and kept protected from light. For each slide the

nucleotide mix contained 45 µl equilibration buffer, 5 µl nucleotide mix and 1 µl TdT

enzyme. For the negative control the TdT enzyme was replaced with 1 µl ddH2O. The

equilibration buffer was removed and 50 µl rTDT incubation buffer was added to the

section, covered with a plastic coverslip to ensure even distribution of the mixture and
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incubated for 1 hour at room temperature in the dark. Incubation was stopped by

immersing the slides in a 2x saline-sodium citrate (SSC) solution for 15 minutes at room

temperature and sections were washed three times in PBS. Blocking was then performed by

incubating slides in blocking solution (described above in section 2.10.1.1) for 1 hour at

room temperature and then incubated overnight with the primary antibody diluted in

blocking solution. Slides were washed three times in PBS and incubated with the secondary

antibody diluted in blocking solution for 3 hours at room temperature. Slides were drained,

washed once with PBS and stained with DAPI for 5 minutes. Slides were washed again with

PBS and coverslips were mounted using moviol.

2.10.1.5 BrdU staining

5-bromo 2-deoxyuridine (BrdU) is a thymidine analogue commonly used for cell

proliferation assays. It is incorporated into DNA during the synthesis phase of the cell-cycle

as a substitute for thymidine and thereby serves as a marker for proliferation. BrdU

(Invitrogen, 00-0103) was delivered by intraperitoneal injection to each mouse 1 hour prior

to sacrifice. The primary antibody used was a rat monoclonal antibody to BrdU (MCA2060,

AbD Serotec, Oxford, UK) at a dilution of 1:100. The secondary antibody used was

AlexaFluor 555 goat anti-rat (A21434, Invitrogen, Paisley, UK) at a dilution of 1:300. Slides

were dewaxed and antigen retrieval was performed by incubating in 2M HCl for 30 mins at

370C. Slides were washed twice in PBS and blocking and staining was carried out as

described in section 2.10.1.2.

2.11 Tumour digestion for flow cytometry

In order to determine the proportion of MSCs that home to and incorporate within the

tumour, enzymatic digestion of tumour tissue was performed for flow cytometry. Firstly,

bioluminescent tumours were identified on open cavity imaging at sacrifice and removed

with as little lung tissue as possible. Tumour fragments were placed into a falcon tube

containing 2 ml of digest medium consisting of 2 ml RPMI-1640 (Invitrogen) with 1mg/ml

collagenase (Sigma) and DNase I (Roche; 10 µg/ml) for 1 hour at 37 0C. Samples were then

passed through a 70 µm filter and tissue was homogenised to ensure no large fragments



83

remained. Samples were centrifuged at 300g for 5 minutes and the supernatant was

discarded. Cell pellets were resuspended in 1 ml red blood cell lysis buffer (Sigma) for 1

minute and then neutralized with 30 ml RPMI. Samples were centrifuged again at 300g for 5

minutes and the cell pellet was resuspended in 500 µl RPMI-1640 for analysis by flow

cytometry. Flow cytometry (LSR Fortessa, Beckton Dickinson) was performed for YFP using

a 488nm laser and 525/50 wavelength filter set to detect tumour cells and DiR using a

633nm laser and 780/60 wavelength filter set to detect MSCs.

2.12 Microscopy and Images

Light microscopy was performed using an Olympus BX 40 light microscope and fluorescent

microscopy of slides was carried out using a Carl Zeiss Axioskop 2 fluorescent microscope

and an Axioscope Lumar V12 Stereo microscope. Microscopy of cells was performed using a

Zeiss Axiovert S100 inverted microscope. Images were acquired using a QImaging camera

linked to QCapture Pro 6.0 software or Axiovision 4.8 and merging of fluorescent images

was performed using Adobe Photoshop CS4. BrdU and TUNEL positive cells were quantified

using Volocity software.

2.13 Statistical analysis

Statistical analysis was performed using GraphPad Prism (GraphPad Software, CA, USA) and

Microsoft Excel. Students t-test was used to analyse differences between two groups whilst

the analysis of variance (ANOVA) test with a Tukey post-hoc analysis was used to analyse

differences between three groups. For multiple groups measured over multiple time points

repeated measures ANOVA was used. Results were considered statistically significant for

p≤0.05.  All in vitro tests were performed in triplicate and repeated 3 times and all data are

represented as mean values ± standard error of mean unless otherwise stated.
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Chapter Three

Generation of MSCs expressing TNF-related apoptosis

inducing ligand and characterisation of malignant

pleural mesothelioma cell lines



85

3 Generation of MSCs expressing TRAIL and characterisation of

malignant pleural mesothelioma cell lines

The first aim of this project was to successfully transduce MSCs with TRAIL and to

characterise malignant pleural mesothelioma cell lines to ensure they expressed

characteristic mesothelioma markers and to determine their TRAIL receptor status. Initially

a protocol for the production of HIV-1 lentiviral vectors producing TRAIL-IRES-eGFP under

doxycycline control was optimised. Human bone marrow-derived MSCs were transduced

using this vector and TRAIL expression was confirmed. Simultaneously, six human malignant

pleural mesothelioma cell lines were examined for expression of calretinin and WT-1 and

their TRAIL receptor status was determined. In addition, dose response curves were

performed for multiple chemotherapeutic agents to determine the dosage to be used for

subsequent in vitro co-culture experiments.
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3.1 Production and titration of TRAIL-IRES-eGFP lentiviral vector

The TRAIL-IRES-eGFP plasmid was first propagated by transformation of chemically

competent E.coli bacteria, growth of infected bacteria and subsequent extraction of the

DNA plasmid. The production of the correct DNA plasmid was confirmed by the presence of

appropriate sized bands on the restriction digest gels. Lentivirus was produced by co-

transfecting 293T cells with pLenti-TRAIL-IRES-eGFP plasmid and with envelope and

packaging vectors and the virus was harvested and concentrated by ultracentrifugation.

Viral titration was performed using 293T transductions and finally MSCs were stably

transduced with the lentiviral vector.

3.1.1 Lentiviral titration of 293T cells with pLenti-TRAIL-IRES-eGFP

Usually after concentration of lentiviral vectors the titre of the virus is determined using

transduction of HeLa cells. This both confirms that the process of lentivirus production has

been successful and allows the calculation of multiplicities of infection for target cell

transduction. HeLa cells are usually used for this as they are highly permissible to lentivirus

transduction and with the pLenti-TRAIL-IRES-eGFP virus the proportion of cells expressing

GFP can be easily determined by flow cytometry and used to estimate the viral titre.

However, HeLa cells are a cervical cancer cell line and are known to undergo apoptosis in

the presence of TRAIL. 293T cells are also readily permissible to lentivirus transduction and

as a non-malignant cell line are known to be resistant to the apoptotic effects of TRAIL. For

this reason lentiviral titration was performed using 293T cells. As the production of

lentivirus is variable over time, a separate viral titration was performed for both the day 1

and day 2 viral harvests. 5x104 293T cells were transduced with a dilution series of viral

vectors, cells were exposed to doxycycline for 48 hours to induce transgene expression and

flow cytometry for GFP was performed to determine the proportion of GFP transduced cells

(Figure 3.1).
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By using the proportion of 293T cells expressing GFP and the number of cells exposed to the

lentiviral vector the number of cells successfully transduced by a known volume of virus can

be determined. The different concentrations of virus on different collection days achieved

ratios of 81.8 to 2.36% GFP positive cells. Higher ratios of GFP positive and therefore virally

infected cells are likely to represent multiple copies of plasmids per cell and calculations

using these numbers would result in an underestimate of viral titres. For this reason the

viral titre was calculated using the concentration of virus that resulted in transduction rates

of 10-20% where there would be fewer cells transduced with multiple copies. Using the

equation:

Viral titre = number of cells plated x proportion of GFP positive cells

Volume of virus in ml

and the examples from figure 3.1 there were 1.2x107 infectious units/ml in the day 1 virus

and 2x106 viral particles in the day 2 virus.

3.2 MSCs transduced to stably express TRAIL under doxycycline control

Once the concentration of the pLenti-TRAIL-IRES-eGFP lentiviral vector had been

determined the next step was to stably transduce the MSCs with TRAIL. Work done

previously within our group had determined that a multiplicity of infection (MOI) of 10 was

optimal for transducing MSCs [104]. MSCs were transduced in a T175 cm2 flask and once

the virus had been removed cells were allowed to become confluent prior to performing

flow cytometry. This is because MSCs can only be expanded for a limited number of

passages and their homing capabilities are thought to reduce with increasing passage. Once

cells were transduced it was essential for them to be expanded prior to harvesting and using

for further experiments. Using an MOI of 10, 96% of cells were successfully transduced with

GFP as determined by flow cytometry (Figure 3.2).
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3.2.1 Confirmation of doxycycline inducible expression of GFP and simultaneous TRAIL

production

In order to confirm doxycycline inducible GFP expression in TRAIL transduced MSCs,

transduced cells were activated by exposure to doxycycline for 48 hours and GFP expression

was determined by flow cytometry. To ensure the GFP expression was not leaky, the

percentage of GFP expressing cells were compared to TRAIL transduced MSCs that were

cultured in the absence of doxycycline and to the untransduced parental MSC cells. As the

TRAIL lentiviral vector contains an IRES element the expression of TRAIL and GFP are linked.

In order to confirm that TRAIL protein production occurred along with GFP expression a

TRAIL ELISA was performed on cell lysates from untransduced cells, transduced cells

cultured in standard culture media and transduced cells cultured in doxycycline for 48 hours

(Figure 3.2C).

Flow cytometry showed a significant increase in GFP positive MSCs in transduced cells

cultured in doxycycline containing media compared to untransduced cells. The ELISA could

not detect TRAIL in untransduced cells. Cell lysates from transduced cells not exposed to

doxycycline showed very low levels of TRAIL expression (6 pg TRAIL/µg total protein) whilst

lysate from transduced cells exposed to doxycycline showed a significant increase in the

TRAIL protein production (232 pg TRAIL/µg total protein; p=<0.0001; Figure 3.2E). There

was also a significant increase in TRAIL production in the cell supernatant from transduced

cells treated with doxycycline compared to those not treated with doxycycline. This

confirms that doxycycline treatment of transduced cells results in TRAIL production. It was

expected that low levels of TRAIL would be found in the cell supernatant as it is known that

whilst the majority of TRAIL is membrane bound low levels are excreted into the

supernatant which would explain why TRAIL acts both by cell-cell contact and by paracrine

mechanisms.

Previous time course experiments had established that the TRAIL transgene was turned on

within 24 hours of doxycycline exposure in vitro and reached near maximal production after

48 hours but took up to 7 days for TRAIL production to cease after doxycycline removal.

This showed that the transgene could be successfully regulated by doxycycline

administration and that 48 hours of drug administration was required for maximal TRAIL

production [104].
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gure 3.2 MSC Transduction. A, Bright field and B, fluorescence microscopy to confirm

P expression following transduction of MSC with TRAIL-IRES-eGFP lentivirus and

tivation with doxycycline (10 μg/ml) (magnification x5; scale bar 20 μm).  C, Flow 

tometry plots confirming efficiency of MSC transduction following TRAIL activation with

xycycline and D, TRAIL ELISA of MSC cell supernatant (sup) and lysate (lys) demonstrating

e production of TRAIL protein following MSCTRAIL activation with doxycycline (***

0.0001). There is minimal TRAIL production following MSC transduction in the absence of

xycycline and low levels in cell supernatant from activated MSCTRAIL.

0

50

100

150

200

250

MSC MSCTRAIL
sup no dox

MSCTRAIL
sup + dox

MSCTRAIL
lys no dox

MSCTRAIL
lys + dox

TR
A

IL
P

ro
te

in
(p

g/
μ

g)

***

***
D



91

3.3 Characterisation of malignant pleural mesothelioma cell lines

Six malignant pleural mesothelioma cell lines (MSTO-211H, H28, H2052, JU77, ONE58 and

LO68) and one control benign mesothelial cell line (Met5A) were assessed for the presence

of characteristic markers of malignant mesothelioma. Cells were plated on chamber slides

and immunofluorescence was performed for calretinin and WT-1 antigen. All MPM cell lines

showed characteristic nuclear and cytoplasmic staining for calretinin and nuclear staining

for WT-1 antigen and images from representative cell lines are shown in Figure 3.3. In

addition cell lines were positive for the active TRAIL receptor DR5 suggesting that they

would be sensitive to treatment with TRAIL (Figure 3.4).
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Figure 3.3. Mesothelioma Cell Line Characterisation. A-C, immunofluorescence confirms

the presence of calretinin and D-F, WT1 antigen in human MPM cell lines H28 and MSTO-

211H and human benign mesothelial cell line Met5A. G-J, both MPM and the benign

mesothelial cell lines show the presence of the active TRAIL death receptor DR5

(magnification x20, bar 40 µm).
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Figure 3.4: MPM cell lines show the presence of the active TRAIL receptor DR5. Flow

cytometry histograms of H28, JU77, MSTO-211H and ONE58 MPM cell lines showing the

presence of the active TRAIL death receptor DR5. MPM cells were harvested and

resuspended at a concentration of 1x106 cells/ml, then incubated with antibodies against

the four TRAIL receptors or an isotype control, followed by biotinylated secondary goat anti-

mouse IgG1 and streptavidin-PE. Flow cytometry was performed to detect PE. There are

low levels of DR4 and the decoy receptors, DcR1 and DcR2 which suggests that in the case of

these MPM cell lines, TRAIL signals predominantly by the DR5 receptor.
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3.4 Determination of dose-response curves for chemotherapeutic agents

The idea behind combining chemotherapeutic agents with MSCTRAIL is that by targeting

both the intrinsic and extrinsic apoptotic pathways there would be a synergistic effect on

apoptosis. For any drug to be clinically acceptable it is preferable to use the lowest possible

dose required to produce a therapeutic effect, thereby limiting potential side effects. For

this reason we first performed dose-response curves for each agent by testing the effects of

chemotherapy on cell proliferation and from this data selected the drug dosage that

inhibited growth by 30%. Dose ranges assessed were in accordance with data already

published and were as follows: cisplatin 0-32 µM, pemetrexed 0-200 µM, and SAHA 0-10 µM

[202] [203]. Treatment of four MPM cell lines with cisplatin, pemetrexed and SAHA showed

dose-dependent cytotoxicity (Figure 3.5).
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Figure 3.5: Dose response curves for chemotherapy agents for malignant mesothelioma.

MPM cell lines were treated with varying doses of cisplatin (0-32 µM), pemetrexed (0-200

µM) and SAHA (0-5 µM) and cell proliferation was determined by XTT assay after 48 hrs.

Absorbance values obtained with untreated cells were taken as 100%. The dose required to

reduce cell growth by 30% (shown by a dotted line) was determined and used for future co-

culture experiments.
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The IC70 for SAHA ranged from 2.5-4.5 µM but that range was much larger for both cisplatin

and pemetrexed with doses ranging from 4-16 µM for cisplatin and from 60-160 µM for

pemetrexed. This reflects the heterogeneous nature of MPM that is seen clinically and can

explain why patients have such a varied response to treatment with chemotherapy. SAHA

was chosen to take forward for in vitro and in vivo testing for a two main reasons; firstly for

its inhibitory effect on c-FLIP which would potentially increase the effect of TRAIL on cancer

cell apoptosis and secondly, as the cell lines tested had a similar response to a narrow range

of drug concentrations it may be more likely to have therapeutic efficacy in a larger patient

population.
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3.5 Discussion

3.5.1 Titration of lentiviral vectors

Transduction of 293T cells with a dilution series of viral concentrations was used to estimate

the titres of the lentiviral vectors. Usually HeLa cells are used for this purpose as they are

highly permissible to transduction but as this is a cervical cancer cell line it was likely that

these cells would die when exposed to TRAIL and thereby reduce the accuracy of the

titration results. Estimation of lentiviral vector titres are based on the number of cells

transduced following exposure to a known amount of virus, but does not discriminate

between single and multiple copies of vector incorporating within the host cell. This could

lead to an underestimate of the viral titre. There are other methods that can be used to

determined lentiviral vector titres such as measurement of the amount of p24 viral capsid

protein by ELISA, or viral RNA by qRT-PCR. However these techniques may overestimate

viral titres by detecting protein or RNA from defective particles [204].

3.5.2 MSC transduction using pLenti-TRAIL-IRES-eGFP

Human MSCs were successfully transduced using the pLenti-TRAIL-IRES-eGFP lentiviral

vector. Using an MOI of 10 over 90% of MSCs were transduced as determined by flow

cytometry for GFP. Previous studies have used lentiviral vectors to transduce MSCs with

either fluorescent markers or other gene therapies and an MOI of 10 is used consistently to

achieve transduction rates of >70% [104, 205] . To confirm that expression of GFP was

associated with production of TRAIL an ELISA was performed on cell lysates of untransduced

cells, transduced cells not exposed to doxycycline and transduced cells following exposure

to doxycycline. The ELISA confirmed that transduced cells activated with doxycycline

produced both GFP and high levels of TRAIL protein.

3.5.3 Characterisation of MPM cell lines

Malignant mesothelioma is a very heterogeneous disease and in some circumstances can be

challenging to diagnose in patients. The mainstay of diagnosis clinically is

immunohistochemical staining with a panel of negative and positive markers that aim to

both identify the cells as mesothelial in origin along with their malignant nature, and to

differentiate them from other types of cells that may undergo malignant transformation
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within the same body cavity. In the case of malignant pleural mesothelioma it is important

to differentiate between malignant mesothelioma and adenocarcinomas and squamous cell

carcinomas of both primary lung and metastatic origin. Within a clinical setting, the most

common differential diagnosis when considering a malignant pleural mesothelioma is a lung

carcinoma. The consensus statement from the International Mesothelioma Interest Group

(IMIG) suggests that in addition to pancytokeratin tumours should be tested for 2

mesothelioma markers and 2 carcinoma markers and if the results are concordant then a

diagnosis can be confirmed [8].

There are a number of issues relating to the use of cell lines rather than primary cells for in

vitro studies. One concern is that as cells divide in culture they can develop genetic and

epigenetic alterations with the natural selection of altered cells potentially resulting in

overgrowth of abnormal, culture-generated cells which may have different characteristics to

the original parent population [206]. In addition, another significant concern is that cell

lines can become cross-contaminated resulting in a mixed cell population with some groups

suggesting that 15-20% of studies using cell lines are done so with cross-contaminated cells

[207, 208]. To try and combat this we authenticated the MPM cells prior to use in all in vitro

experiments. Using some of the immunohistochemical markers recommended by the IMIG

we successfully demonstrated that all our MPM cell lines were positive for calretinin, WT-1

and pancytokeratin (data not shown), providing us with reassurance that our lines were

representative of MPM.

3.5.4 TRAIL receptor status of MPM cell lines

In addition to confirming the presence of mesothelioma markers it was important to assess

whether or not our cell lines expressed TRAIL death receptors and therefore whether or not

they were likely to be sensitive to our MSCTRAIL therapy. TRAIL is able to interact with five

different death receptors; two active receptors DR4 and DR5 and three decoy receptors

DcR1, DcR2 and osteoprotegerin. The two active receptors are type I transmembrane

proteins containing a cytoplasmic domain that contains a death domain that binds to pro-

caspases resulting in the formation of a death-inducing signalling complex (DISC). On

formation of the DISC there is downstream activation of a caspase cascade that ultimately

results in cellular apoptosis. The decoy receptors share the same extracellular construction
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as the active receptors but DcR1 has no intracellular domain whilst DcR2 has a truncated

intracellular domain preventing either receptor from forming a DISC and the subsequent

activation of the caspase cascade. Whilst it would seem logical that cell sensitivity to TRAIL

may be directly regulated by the presence or absence of the death receptors this is not the

case and post-translational modification by means of glycosylation and palmitoylation of the

receptors is a more likely mechanism. Studies have shown a correlation between the

expression of the enzyme initiating GALNT14 glycosylation and TRAIL sensitivity in

pancreatic carcinoma, lung cancer and malignant melanoma cell lines which seems to effect

the receptor oligomerisation in response to TRAIL binding rather than its expression [209].

The MPM cell lines studied expressed very low levels of DR4, DcR1 and DcR2 on

immunohistochemical staining (data not shown) but good levels of DR5 and flow cytometry

confirmed the presence of DR5 receptors suggesting that TRAIL induced apoptosis was a

feasible mechanism for inducing MPM cell death.

3.5.5 Chemotherapy dose-response curves

Dose response curves were determined for three different chemotherapeutic agents:

cisplatin, pemetrexed and SAHA. These agents were chosen as the current first line

treatment for MPM is cisplatin in combination with pemetrexed and SAHA has shown

promising pre-clinical activity in killing MPM and is currently in phase III clinical trials as a

second line single agent therapy. Our results show that there is large variability in the

response of MPM to chemotherapy agents – particularly cisplatin and pemetrexed, but that

the response to SAHA may be more uniform. For this reason we selected SAHA as the

combination agent to test both in vitro and in vivo and the dose selected was 2.5 µM. This

dose showed some therapeutic efficacy as shown by a reduction in cell proliferation but is a

low enough dose that toxicity would be potentially limited.
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3.6 Summary

 HIV-1 based lentiviral vectors expressing TRAIL and GFP under the control of doxycycline

can be generated by co-transfection of 293T cells with the lentiviral vector plasmid along

with envelope and packaging plasmids

 Human MSCs can be successfully transduced with these lentiviral vectors achieving

excellent transduction rates of >90%

 Expression of GFP is regulated by exposure to doxycycline and that expression of GFP is

associated with TRAIL protein production

 All MPM cell lines express characteristic markers of mesothelioma and the active TRAIL

death receptors required for TRAIL binding

 Different MPM cell lines have a differing response to chemotherapeutic agents as shown

by dose response curves

 The dosages of different chemotherapeutic agents required to reduce cell growth by

30% varies greatly for cisplatin and pemetrexed but is much narrower for SAHA
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4 Determination of the in vitro effects of MSCTRAIL on MPM cells

both alone and in combination

This chapter describes the results of experiments performed to address aim 2 (section 1.7)

‘to determine the in vitro sensitivity of multiple human malignant pleural mesothelioma cell

lines to MSCTRAIL alone and in combination with existing chemotherapy agents’. Whilst

many cancer cell lines are known to undergo apoptosis when treated with rTRAIL and

MSCTRAIL there are also some cancer cell lines that are known to be resistant. Clinically the

recommended first line treatment for malignant mesothelioma is pemetrexed and cisplatin,

however new drugs such as SAHA are in phase 3 clinical trials. Experiments were therefore

carried out to determine the sensitivity of all MPM cell lines to rTRAIL and MSCTRAIL and

selected cell lines were tested for their response to combinations of pemetrexed, cisplatin

and SAHA with MSCTRAIL and rTRAIL.
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4.1 Demonstrating the biological activity of MSCTRAIL and rTRAIL as single

agents in MPM

Once the MSCs had been successfully transduced with TRAIL the next step was to determine

their biological activity against malignant mesothelioma cells in vitro. In order to

demonstrate this co-culture experiments were performed. Mesothelioma cells were plated

in equal ratios with MSCTRAIL or with 200ng/ml rTRAIL and cell death and apoptosis was

assessed using Annexin V/DAPI flow cytometry. A schematic of the experimental set up is

shown in figure 4.1.

Figure 4.1: Schematic to show co-culture experiments to assess the biological activity of

MSCTRAIL and rTRAIL on MPM cell lines. MPM cells were labelled with DiI and plated at a

density of 50,000 cells per well along with 50,000 MSCTRAIL cells according to experimental

design. After 24 hours medium was exchanged for either normal culture medium, medium

containing 10 µg/ml doxycycline or 200 ng/ml rTRAIL. After 48 hours cells and supernatant

were collected, stained for annexin V and DAPI and flow cytometry was performed.

MSC±TRAIL

rTRAIL
MPM cells

stained with
DiI

MSC

MSCTRAIL

rTRAIL
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Six different mesothelioma cell lines were tested for their sensitivity to MSCTRAIL and whilst

both apoptosis and death increased with the addition of doxycycline and activation of TRAIL

in all cell lines, the percentage of cells dying varied greatly. During analysis gating was used

to include only DiI positive MPM cells and exclude all DiI negative MSCs from further

analysis. DiI positive cells were then gated according to annexin V and DAPI staining with

alive cells being annexin V-/DAPI-, apoptotic cells being annexin V+/DAPI- and dead cells

being annexin V+/DAPI+. Representative flow cytometry plots of MSTO-211H, H28 and

Met5A are shown in Figure 4.2.
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Figure 4.2: Representative flow cytometry plots showing death and apoptosis of MPM cell

lines. Flow cytometry plots showing increased apoptosis and cell death following treatment

with rTRAIL and MSCTRAIL + dox in A, H28 and B, MSTO-211H cell lines. Control benign

mesothelial cells Met 5A, C, shows no significant increase in death or apoptosis when

treated with rTRAIL or MSCTRAIL + dox.
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MSTO-211H and ONE58 both showed significant sensitivity to treatment with MSCTRAIL

with an increase in combined apoptosis and cell death from 12.86 ± 0.8% to 58.15 ± 1.2%

(p<0.0001) with and without doxycycline respectively in MSTO-211H and from 3.84 ±0.6% to

22.32 ± 0.7% (p<0.0001) in ONE58. MSTO-211H was significantly more sensitive to

MSCTRAIL than rTRAIL with apoptosis and death in rTRAIL being 42.57 ± 4.2% (p<0.01),

whilst ONE58 was more sensitive to rTRAIL than MSCTRAIL (38.58 ± 1.2% vs 22.32 ± 0.7%;

p<0.0001). H28 showed a smaller but still significant increase in cell death when comparing

inactivated MSCTRAIL to activated MSCTRAIL from 3.37 ± 0.1% to 11.33 ± 0.7%; p<0.0001)

and in this cell line there was no significant difference between inactivated MSCTRAIL and

rTRAIL (3.37 ± 0.1% vs 3.59 ± 0.1%; ns). The cell line JU77 was also less sensitive to TRAIL

with an increase in death and apoptosis from 3.58 ± 0.6% with inactivated MSCTRAIL to 7.99

± 1.4% with activated MSCTRAIL (p<0.001). Treatment with rTRAIL resulted in 4.89 ± 0.2%

cell death which is significantly less than with MSCTRAIL (p<0.05). A similar result was seen

with LO68 which showed an increase from 3.04 ± 0.2% to 9.08 ± 0.9% (p<0.0001) with

rTRAIL showing similar results to MSCTRAIL no doxycycline (3.44 ± 0.1%). H2052 showed a

significant increase in cell death with rTRAIL compared to inactivated MSCTRAIL (from 3.6 ±

0.4% to 5.92 ± 0.9%; p<0.05) and a larger increase when compared to treatment with

activated MSCTRAIL (3.6 ± 0.4% to 7.31 ± 0.6%; p<0.001). Figure 4.3 shows percentages of

apoptosis/death in all cell lines.

The control cell line, Met5A, which is a benign mesothelial cell line showed no significant

increase in cell death or apoptosis following treatment with either MSCTRAIL or rTRAIL (0.79

± 0.05% vs 1.87 ± 1.1% and 1.5 ± 0.2% respectively; ns). Our results would be consistent

with previous data showing that only malignant cells are sensitive to TRAIL induced

apoptosis whilst normal cells are resistant [42].
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Figure 4.3: Human MPM exhibit variable sensitivity to MSCTRAIL and rTRAIL in vitro.
Histograms showing flow cytometry data from co-culture experiments showing an increase
in cell death and apoptosis in cell lines A, H28 and MSTO-211H whilst there is no significant
increase in death and apoptosis in the benign control cell line Met 5A. B, Histograms
showing flow cytometry data from co-culture experiments in cell lines ONE58, JU77, H2052
and LO68 that demonstrates a variable response to both rTRAIL and MSCTRAIL. (* p<0.05;
** p<0.001; *** p<0.0001)
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Doxycycline has previously been reported to have cytostatic effects on multiple tumour cell

lines including malignant mesothelioma [210]. To assess the effect of doxycycline on the

MPM cell lines we plated cells in a 6 well plate and left them to adhere overnight. Medium

was changed the following day for medium containing 10 µg/ml doxycycline and left for 48

hours. Cells were trypsinised and collected along with the supernatant, stained for annexin

V and DAPI as before and flow cytometry was performed. The results are shown in Figure

4.4.
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Figure 4.4: Doxycycline has no effect on cell death and apopto

annexin V and DAPI was carried out on MPM cells exposed to 10

hours. There was no significant difference between the percen

cells in MSTO-211H and Met5A cell lines.
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4.2 MSCTRAIL in combination with chemotherapy agents

From the results of the co-culture experiments assessing the response of MPM cell lines to

treatment with single agent MSCTRAIL or rTRAIL it was clear that whilst all cell lines showed

a significant increase in cell death and apoptosis on treatment with MSCTRAIL there was

huge variability in the percentage apoptosis seen between cell lines. This is not entirely

surprising and would be consistent with the clinical course of this disease. It is well known

that mesothelioma is a heterogeneous disease and there is variability in patients’ response

to treatment. To determine whether combining MSCTRAIL therapy with existing

chemotherapy agents would result in a synergistic increase in apoptosis and cell death, co-

culture experiments were repeated as before but using chemotherapeutics in combination

with MSCTRAIL as the experimental design dictated. To make the study as clinically relevant

as possible, three chemotherapy agents were chosen for co-culture experiments;

pemetrexed and cisplatin as these are the current gold standard treatment for malignant

mesothelioma and SAHA the HDAC inhibitor that is being assessed in phase 3 clinical trials

for second line treatment. Because of the great variability in results from initial co-culture

experiments one cell line with ‘high TRAIL sensitivity’ and one with ‘low TRAIL sensitivity’

were selected for further work. MSTO-211H was selected from the high TRAIL sensitivity

group and H28 was selected from the low TRAIL sensitivity group. Met5A was kept as the

benign control cell line.

4.2.1 The effect of SAHA on MSCs

Prior to starting combination treatment with SAHA and MSCTRAIL the effects of SAHA on

MSCs alone were tested. This was done to ensure that MSCs were not killed by SAHA which

would make further use of this combination impractical. MSCs were plated at a density of

50,000 cells per well in a 6-well plate and left to adhere for 24 hours. Medium was

exchanged for medium containing 2.5 μM SAHA and cells were left for 48 hours.  Cells were 

assessed for apoptosis and death as before (section 4.1) and flow cytometry analysis

showed there was no significant difference in cell death and apoptosis between untreated

MSCs and those treated with SAHA (Figure 4.5).
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4.2.2 Determining the biological effect of MSCTRAIL in combination with SAHA on MPM

Once it had been established that SAHA did not result in MSC death the next step in the in

vitro assessment of MSCTRAIL was to combine SAHA and MSCTRAIL therapy. The

experimental design was as before (section 4.1 and Figure 4.1) with the alteration that 24

hours after cell plating, medium was exchanged for culture medium containing; doxycycline

alone, SAHA alone, rTRAIL alone, rTRAIL and SAHA or doxycycline and SAHA. The SAHA dose

used was 2.5 µM. Plates were left for 48 hours as before and apoptosis and death were

measured as previously described.

Both MPM cell lines showed a significant increase in death and apoptosis when treated with

MSCTRAIL in combination with SAHA compared to either treatment alone. In the MSTO-

211H cell line which has ‘high TRAIL sensitivity’ the levels of apoptosis and cell death when

treated with single agents rTRAIL and MSCTRAIL were similar to the levels seen in previous

experiments, 40.57 ± 3.3% and 55.97 ± 0.5% respectively (Figure 4.6). Treatment with SAHA

alone showed significantly higher levels of apoptosis and death than either with rTRAIL

alone or MSCTRAIL alone, 87.41 ± 3.4% for SAHA vs 40.57 ± 3.3% and 55.97 ± 0.5%

respectively (p<0.001). When the effect of combination treatment was assessed there was

no significant increase in cell death when comparing SAHA alone (87.41 ± 3.4%) to SAHA

with rTRAIL (88.2 ± 2.2%) but there was a significant increase when compared to rTRAIL

alone (87.41 ± 3.4% vs 40.57 ± 3.3%; p<0.001). Combining MSCTRAIL with SAHA again

showed a significant increase in apoptosis and cell death compared with MSCTRAIL alone

(75.97 ± 1.5 vs 55.97 ± 0.5%; p<0.001) but there was no significant difference between

treatment with SAHA+rTRAIL and SAHA+MSCTRAIL. Whilst this would suggest that our

combination of SAHA and MSCTRAIL provided no additional therapeutic benefit over SAHA

and rTRAIL there would still be the added benefit of having targeted delivery of MSCTRAIL

directly to the site of the tumour and would avoid the problems with the short half-life of

rTRAIL.
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Figure 4.6: Percentage apoptosis and cell death of MPM

with SAHA and MSCTRAIL. The percentage of cells unde

following treatment with SAHA and either rTRAIL or MSC

and H28 using flow cytometry for Annexin V and DAPI. S
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H28 is an MPM cell line with ‘low TRAIL sensitivity’ and therefore it is possible that there will

be a greater benefit in combining chemotherapy and TRAIL compared to single agent

treatment. For this cell line treatment with SAHA alone resulted in higher levels of

apoptosis and cell death than treatment with either MSCTRAIL alone or rTRAIL alone (28.97

± 2.7% for SAHA alone vs 11.33 ± 0.7% or 3.59 ± 0.1% respectively; p<0.001) (Figure 4.6).

When rTRAIL treatment was combined with SAHA there was a significant increase in death

and apoptosis when compared to SAHA alone (3.59 ± 0.1% to 51.1 ± 2.9%; p<0.001) and the

same was seen when MSCTRAIL was combined with SAHA vs SAHA alone (11.33 ± 0.7% to

59 ± 9.1%; p<0.001). For this cell line treatment with MSCTRAIL and SAHA also resulted in

significantly higher levels of death and apoptosis than treatment with rTRAIL and SAHA (59 ±

9.1% vs 51.1 ± 2.9%; p<0.05). This means that treatment with MSCTRAIL and SAHA is the

most effective combination therapy for this cell line.

4.2.3 Determining the biological effect of MSCTRAIL in combination with SAHA on non-

malignant mesothelial cells

Combination treatments are not a novel concept in the treatment of cancer and whilst the

benefits of treatment with dual agents may be significantly greater than with either single

agent alone there is also the risk of increased adverse events as there are side effects from

two drugs to be aware of. One of the proposed benefits of MSCTRAIL therapy is that it

targets only cancer cells whilst leaving healthy cells unaffected, a finding confirmed in

previous experiments (section 4.1 and Figure 4.2). The next step was to confirm whether

treatment with SAHA and MSCTRAIL in combination resulted in an increase in apoptosis and

cell death of the benign mesothelial cells, Met5A.

Experimental design was the same as in section 4.2.2 and as for all previous co-culture

experiments and results are shown in Figure 4.7
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Figure 4.7: Percentage apoptosis and cell death of M
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As shown previously there is no significant difference in apoptosis and cell death in Met5A

when treated with rTRAIL or MSCTRAIL alone. There was also no significant difference

between treatment with rTRAIL alone or MSCTRAIL alone when compared to treatment

with rTRAIL and SAHA (3.51 ± 0.4% or 4.88 ± 0.9% respectively vs 2.8 ±0.2%; ns). Treatment

with MSCTRAIL and SAHA in combination showed no significant difference in cell death and

apoptosis when compared with MSCTRAIL alone (6.81 ± 0.2% vs 4.88 ± 0.9%; ns) or SAHA

alone (6.81 ± 0.2% vs 7.73 ± 0.7%; ns). This would suggest that whilst there are low levels of

apoptosis and cell death in benign mesothelial cells with all treatments there is no

significant effect of either single or dual agent treatment confirming the selective apoptosis

of cancer cells whilst having no such effect on healthy cells.
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4.3 Discussion

4.3.1 Biological activity of rTRAIL and MSCTRAIL on MPM cell lines

The biological activity of MSCTRAIL was demonstrated by in vitro co-culture experiments

where cancer cells were plated in a 1:1 ratio with MSCTRAIL cells and TRAIL expression was

activated by the addition of doxycycline for 48 hours. The death induced by MSCTRAIL was

compared to that induced by MSC and rTRAIL and six different cancer cell lines were tested.

An increase in death and apoptosis was seen in all malignant cell lines when treated with

MSCTRAIL when compared to MSCs alone and in 4 of the 6 cell lines treatment with

MSCTRAIL resulted in greater killing than with rTRAIL. Ideally it would be useful to compare

the dose of rTRAIL with the amount of TRAIL delivered via the MSCs. However, this is

technically difficult and unlikely to be accurate as the levels of TRAIL delivered by the MSCs

will be dependent on the transduction efficiency of the cells with the viral vector and on the

protocol used to extract the TRAIL protein from the cell lysate. Only 1 cell line was more

sensitive to treatment with rTRAIL and the other showed similar death with MSCTRAIL and

rTRAIL. Despite all cell lines being sensitive to MSCTRAIL it was noted that there was a large

degree of variation between the different cell lines with two being highly sensitive to

MSCTRAIL therapy and the remaining showing low sensitivity. This is not entirely surprising

and would be consistent with what is seen in the clinical setting. Mesothelioma is an

extremely heterogeneous disease with patients having different responses to chemotherapy

and different disease courses.

Whilst all of the cancer cell lines were sensitive to treatment with MSCTRAIL the benign

control cell line Met5A showed no significant increase in death and apoptosis on treatment

with either MSCTRAIL or rTRAIL. This is reassuring as one of the key reasons for assessing

MSCTRAIL as a therapeutic option for cancer is its selectivity for malignant cells whilst

leaving healthy cells unaffected.

The in vitro co-culture studies performed were using a 1:1 ratio of cancer cells to MSCs and

it is unlikely that within an in vivo or clinical setting this treatment ratio would be achieved.

However, under tissue culture conditions MPM cells proliferate at a much faster rate than

MSCs with a doubling time of 20 hours for MSTO-211H compared to 60 hours for MSCs.
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This would mean over the 72 hours duration of the co-culture experiment the ratio of MSCs

to cancer cells would increase to 1:3.6. In addition to this previous experiments performed

within our lab have shown that cancer cell treatment with MSCTRAIL results in a significant

increase in death and apoptosis at starting ratios of 1:16 [104]. Within early phase clinical

trials most studies have looked at the safety of MSC delivery with doses ranging from 0.5-10

x 106 cells/kg and if MSCTRAIL was to be assessed as a treatment for patients with stage IV

lung cancer then the phase I clinical trial would use increasing doses within this range to

assess safety and efficacy.

4.3.2 The effect of doxycycline on MPM cell death in vitro

Doxycycline is a member of the tetracycline family of antibiotics that inhibits bacterial

protein synthesis and is used routinely in clinical practice to treat multiple infections

including those of the respiratory tract, genito-urinary tract and Lyme disease. At doses

lower than those used for an anti-microbial effect, doxycycline inhibits matrix

metalloproteases (MMPs) and has been shown to reduce the in vitro growth of human

breast and prostate cancer cell lines possibly by arresting the cells in the G1 phase of the cell

cycle [211, 212]. In addition to reducing cell growth, there are some reports of cell death

following exposure to doxycycline, predominantly in macrophages and monocytes but also

in some cancer cell lines, however this is thought to be cell line specific as cells from

mesenchymal lineage appear to be unaffected [213-215]. In our cell lines tested, treatment

with doxycycline did not result in an increase in cell death and apoptosis of MPM cells and

so for all our in vitro experiments 10 µg/ml doxycycline was used to induce transgene

expression. As each cage housed animals from all treatment groups all mice will have

received doxycycline in the drinking water to ensure continual TRAIL transgene expression

throughout the duration of the experiment.

4.3.3 Combining chemotherapy with MSCTRAIL

The first step in the activation of the extrinsic TRAIL pathway by death ligand binding is the

recruitment of the FAS associated death domain (FADD) along with pro-caspases 8 and 10

by the receptor homotrimer. This first critical step in apoptosis is tightly regulated by cFLIP

which works as a negative regulator of the pathway. Many cancers are known to

overexpress cFLIP including malignant mesothelioma [92, 93] and targeting this molecule to
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induce mesothelioma cell death is an attractive option. Pre-clinical studies looking at the

effect of SAHA in vitro have shown that treatment with SAHA results in increased apoptosis

in multiple mesothelioma cell lines and a phase 3 clinical trial has recently completed using

SAHA (vorinostat) as a second line treatment for patients with malignant mesothelioma

(NCT00128102). Whilst the results of using SAHA as a single agent have been promising the

combination of MSCTRAIL with SAHA on MPM has not been tested.

Prior to combining SAHA and MSCTRAIL as a therapy it was important to determine whether

SAHA had any effect on the viability of MSC cells and their ability to produce TRAIL. Our co-

culture results show that there is no significant difference in the levels of background MSC

cell death when treated with SAHA compared to no treatment.

Once it had been established that treatment with SAHA had no significant effect on MSC

viability co-culture experiments were performed to determine the biological effect of

combination therapy. In TRAIL sensitive cells (MSTO-211H) treatment with SAHA in

combination with either rTRAIL or MSCTRAIL produced greater cell death that either rTRAIL

or MSCTRAIL alone. The combination of rTRAIL with SAHA was slightly more effective in

inducing apoptosis and death compared to SAHA and MSCTRAIL together but this was not

statistically significant. When assessing the effect of combination therapy on cells with ‘low

sensitivity’ to TRAIL (H28) the results were more promising suggesting that combining SAHA

with MSCTRAIL has a synergistic effect on tumour cell death. In this cell line, treatment with

MSCTRAIL and SAHA was most effective. The benefit of using MSCs to deliver TRAIL therapy

is that MSCs deliver therapy directly to the site of the tumour and it is encouraging from a

therapeutic perspective that this treatment would deliver high enough doses of TRAIL to

induce levels of tumour cell death that are as good or better than those delivered

systemically. It was reassuring that combination treatment with either rTRAIL or MSCTRAIL

in addition to SAHA showed no significant toxic effects on the benign mesothelial cell lines –

suggesting that toxicity to non-cancerous cells would remain low and help to reduce any

adverse effects. When considering translation to the clinic, one of the main problems with

chemotherapy is its toxicity. This is largely due to death of healthy cells, particularly those

with a rapid turnover such as GI tract, skin and hair cells which accounts for symptoms of

nausea and alopecia. If healthy cells remain unaffected by MSCTRAIL both alone and in
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combination with chemotherapy this would likely result in a significantly improved side

effect profile in the clinical setting.
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4.4 Summary

 All MPM cell lines tested showed increased apoptosis and death when treated with

MSCTRAIL but the percentage of cells dying varied between cell lines with two showing

‘high TRAIL sensitivity’ and two showing ‘low TRAIL sensitivity’

 Doxycycline itself does not induce MPM cell death

 Combination treatment with MSCTRAIL and SAHA of the cell line with low TRAIL

sensitivity is more effective than either agent alone whilst the cell line with high TRAIL

sensitivity does not show increased death with the combination therapy

 Neither MSCTRAIL alone nor MSCTRAIL and SAHA in combination cause significant cell

death in benign mesothelial cells suggesting that the effects on healthy cells are likely to

be limited
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Chapter 5

Develop a suitable in vivo tumour model and confirm

that MSCs home to tumours
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5 Development of an appropriate tumour model and tracking of

MSC homing to tumours

This chapter describes the results of experiments carried out to address aim 3 (section 1.9)

‘to develop a suitable in vivo tumour model and confirm that MSCs home to sites of

tumour’. One of the key properties of an MSC that make it an attractive vehicle for cellular

therapies is that it homes to and incorporates into tumours regardless of the route of

delivery. In the clinical setting patients with malignant mesothelioma invariably require the

insertion of an intercostal chest drain which provides direct and easy access to the pleural

space where mesothelioma is located. To determine whether cells would be able to home

to pleurally based mesothelioma, experiments were performed to track the fate of both

systemically and topically delivered MSCs. The first step in this process was to develop a

reliable tumour model and once this was established, cell labelling and tracking techniques

were used to assess MSC homing.
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5.1 In vivo mesothelioma model

Human tumour xenograft models are a well-established mode of determining the efficacy of

anti-cancer therapies. In order to successfully establish human tumours in a murine model

the animals need to be immunosuppressed to prevent rejection of cancer cells. NOD/SCID

mice (NOD.CB17-Prkdcscid) have the severe combined immunodeficiency mutation on a non-

obese non-diabetic background resulting in a lack of functioning B and T-lymphocytes,

lymphopaenia and hypogammaglobulinaemia [193].

One of the main problems with xenograft models of malignant mesothelioma is the setting

of suitable end points and accurate measurement of disease burden. Previous studies

looking at mesothelioma growth in vivo have used both subcutaneous, intraperitoneal and

intrapleural methods of delivery, all with their individual problems. Whilst subcutaneous

delivery is straightforward, the developing tumours can be easily measured with callipers

and tumour weight and volume can be used as reliable end points, this model doesn’t mimic

human disease. For this reason intrapleural and intraperitoneal models are favoured. Both

models reflect the human disease in terms of distribution of tumour deposits and

development of ascites and pleural fluid, intraperitoneal cell delivery is straightforward and

easily repeatable and whilst intrapleural delivery is more intricate it is well tolerated. The

main concern with both of these models is that it is difficult to accurately monitor tumour

burden and determine end points. Tumour deposits are often multiple and widespread and

often adherent to nearby tissue including the pleura, heart, mediastinum and mesenteric

tissues. Previous studies have used body weight as a surrogate marker for disease

progression and tumour weight and volume as end points.

5.1.1 Intrapleural delivery of MSTO211H and H28 mesothelioma cells

The first step was to determine whether intrapleural delivery of different mesothelioma

cells was feasible, the time course of tumour development without treatment and to define

clear end points to use in measuring disease burden. The current widely accepted measures

are body weight as a surrogate marker of disease development with 20% loss of body

weight considered the point of sacrifice and also tumour weight and volume for end point

quantification of disease burden. I chose MSTO-211H as a cell line with high TRAIL
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sensitivity and H28 as a cell line with low TRAIL sensitivity. Initially 1.5 million MSTO-211H

cells and 7.5 million H28 cells were resuspended in 100µl sterile PBS and injected

intrapleurally. More H28 cells were delivered as this cell line has not previously been

reported as tumorigenic using lower cell numbers. Body weight was measured twice weekly

and animals were sacrificed when they reached 20% weight loss or after 60 days.

All animals were successfully injected with mesothelioma cells intrapleurally and recovered

well from anaesthesia with no complications. Animals given MSTO-211H cells developed

significant weight loss after 15 days and were sacrificed on day 20 whilst those given H28

did not lose weight and were culled after 60 days (Figure 5.1). This is in contrast to previous

studies using NOD/SCID and nude mice which have needed up to 40 days for MSTO-211H

cells to cause significant tumour development whilst H28 has not been previously reported

to be tumorigenic in vivo [216-218]. In this experiment both cell lines produced

macroscopically visible tumours despite only one group having documented weight loss.

Tumours in animals with MSTO-211H cells had multiple small tumour deposits throughout

the pleural cavity often adherent to the lung and cardiac tissue making it extremely difficult

to dissect and quantify each individual tumour deposit and accurately determine a tumour

weight or volume. Tumours caused by H28 cells were fewer in number but still adherent to

organs. Microscopically, all tumours had some level of invasion with adjacent tissue and

tumours were confirmed to be malignant mesothelioma using calretinin staining. These

results show that weight loss is an unreliable marker of tumour development/burden and

that tumour weight and volume is inaccurate as an end point measurement. In view of

these results, we decided to use bioluminescence in the form of firefly luciferase to track

tumour growth in vivo.
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Figure 5.1: Intrapleural mesothelioma delivery. Mice were injected with either MSTO-211H

or H28 cells in 100 μl PBS via intrapleural injection and body weight was measured twice 

weekly. A, Weight loss shows a significant reduction in weight by day 20 in animals

receiving MSTO-211H cells whilst those injected with H28 cells showed no weight loss over

60 days. Macroscopic appearance of tumours in animals receiving B, MSTO-211H and C,

H28 cells with black arrows showing macroscopically visible tumours. D, H&E examination

of tissues confirmed mesothelioma in all animals with black arrow pointing to tumour

histologically consistent with malignant pleural mesothelioma (representative H&E section

shown, magnification 10x, scale bar 100 μm).
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5.1.1.1 Transient transfection of 293T cells with pLIONII-Hyg-Luc2YFP

Human embryonic 293T kidney cells were transiently transfected with the luciferase-YFP

plasmid and efficiency was assessed by flow cytometry. Using this method I achieved very

low transfection rates of up to 35%. Because the luciferase plasmid was based on a feline

virus I used the calcium phosphate method of transfection and achieved transfection rates

of 87.6% using a DNA: calcium phosphate ratio of 1:3 and 85.6% using a 1:1 ratio (Figure 5.2

A & B).
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5.1.1.2 Permanent transduction of mesothelioma cells

As the transfection rates were much higher with the calcium phosphate method when

compared to using PEI, calcium phosphate was used as the transfection reagent to produce

the luciferase lentivirus. Once the lentivirus had been produced the number of infectious

units per ml was determined and mesothelioma cells were transduced as previously

described. The success of transduction was confirmed initially on fluorescent microscopy

and then cells were selected on the basis of their resistance to hygromycin using 200 µg/ml

hygromycin. I successfully transduced all 6 mesothelioma cell lines (Figure 5.2 C & D) and all

cell lines were selected with hygromycin until a pure population was achieved, as confirmed

by fluorescence.

5.1.2 Confirmation of luciferase expression in MSTO-211H luciferase transduced cells in

vitro

Confirmation of successful transduction of MSTO-211H and other MPM cell lines was

performed using flow cytometry and fluorescent microscopy for YFP. Prior to using these

cells in vivo bioluminescence emission was confirmed using IVIS® imaging. Luciferase

transduced MSTO-211H (MSTO-211HLuc) cells were plated at increasing cell densities from

5 x 103 to 5 x 104 in a 12- well plate and left to adhere. Once cells were adherent, medium

was exchanged for standard cell culture media containing D-luciferin at a concentration of

150 µg/ml. The plate was transferred to the IVIS® and imaged using an automatic exposure

time. Cells emitted a good bioluminescent signal and there was a strong correlation

between increasing cell density and increasing bioluminescent emission (R2 0.9999; Figure

5.3). This result suggests that bioluminescence is a reliable marker of cell number.
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5.1.3 Kinetics of bioluminescence emission after exposure of MSTO-211HLuc cells to

luciferin in vivo

Before starting the main in vivo imaging experiments, it was essential to determine the

pharmacokinetics of intraperitoneal administration of D-luciferin. 24 hours after tumour

cell delivery animals were given an intraperitoneal injection of 200 µl D-luciferin (10 mg/ml).

Imaging was performed every 5 minutes for 25 minutes until the bioluminescent signal

started to reduce. Bioluminescence was clearly detectable after 5 minutes and the counts

increased to reach a plateau between 10 and 20 minutes (Figure 5.4). After 25 minutes the

signal started to reduce. From this experiment, 15 minutes was chosen as the optimal

imaging time after D-luciferin injection although anywhere between 10 and 20 minutes was

acceptable as the variation in counts was very small. This allowed for any errors or

problems with the running of the machine and for any problems occurring on anaesthetizing

the animals.
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5.1.4 Bioluminescent tracking of intrapleural and intraperitoneal mesothelioma using

MSTO-211HLuc cells

In order to determine whether I could monitor bioluminescence in vivo and determine

whether photon emission correlated to tumour growth I injected mice with either 1,000 or

10,000 MSTO-211HLuc cells intraperitoneally or 10,000 or 100,000 cells intrapleurally and

imaged them twice weekly. All animals had bioluminescent signal detected immediately

following mesothelioma cell injection and the bioluminescent signal increased over time

(Figure 5.5 A, B). All four models had similar growth curves but the peritoneal models were

most reliable with lowest intra-experimental variability and the 10,000 cell number being

the most reproducible (Figure 5.5 C). When bioluminescence was correlated with weight

loss it was shown that there was no loss until the bioluminescent signal was reaching a

plateau (Figure 5.5 D). This suggests the period of most rapid tumour growth cannot be

detected by weight loss and that weight loss is not a reliable measure of tumour burden.

In order to ensure that the areas of highest photon emission correlated with tumour

deposits, bioluminescence was measured prior to sacrificing the animals and again during

dissection (Figure 5.6 A-C). Images taken during dissection show that photon emission is

closely correlated to tumour growth with the highest counts being at sites of visible

tumours. Bioluminescent areas were also seen at sites where there were no

macroscopically visible tumours so these areas were also removed and processed along with

other samples. H&E staining was consistent with mesothelioma and immunohistochemistry

for calretinin showed positive cytoplasmic staining in areas of tumour (Figure 5.6 D, E) with

no staining in normal lung tissue or other normal tissues.

As all models tested showed low intra-experimental variability and good reproducibility an

intrapleural model of cell delivery was chosen for future experiments to have a clear

relevance to the human disease process and 10,000 cells were delivered. Having

established that the most rapid period of tumour growth is within the first 10 days following

mesothelioma cell injection it was decided that the MSCTRAIL therapy should be started on

day 5 after tumour cell inoculation and delivered every 4 days during treatment to target

the rapidly dividing tumour cells aggressively.
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Figure 5.6: Bioluminescent imaging is a more sensitive method of tracking tumour growth

than weight loss. A, Bioluminescent emission is a sensitive marker of tumour growth and

can be used to detect both B&C, macroscopic and microscopic tumour deposits that would

otherwise be missed under direct vision. D, H&E section of dissected tumour consistent

with mesothelioma and confirmed with E, immunofluorescence staining showing positivity

for calretinin whilst neighbouring non-tumour areas are negative (magnification 10x, scale

bar 100 μm). 
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5.2 Homing of MSCs to tumours in vivo

Once a suitable tumour model had been established the next step was to determine

whether MSCs were able to home to tumours in vivo. Previous in vivo studies have shown

that systemically delivered MSCs are found within lung metastases [104] and that MSCs

delivered directly into the brain can be detected in tumours located in the contralateral

cerebral hemisphere [105]. This has been shown using immunofluorescence on fixed post-

mortem tissue but our aim was to demonstrate for the first time using live imaging that

MSCs can home to and incorporate within tumours and to assess whether homing is

dependent on the route of delivery.

5.2.1 MSC detection in vitro using fluorescence imaging

Before assessing the ability of MSCs to home to tumours in vivo it was important to ensure

that MSCs could be successfully stained with both DiR and DiI together and to identify the

optimum fluorescent filter settings on the IVIS® imager. Both stains were used as DiR has a

higher wavelength making in vivo tracking by IVIS feasible and DiI has a lower wavelength

that can be detected on the fluorescent filters on the microscope to allow for identification

of MSCs in tissue sections. MSCs were first stained with both DiR and DiI (section 2.8.3),

then 1x105 cells were plated in each well of a 6-well plate and left to adhere overnight. The

following day plates were transported to the IVIS® and images were taken using 2 different

filter sets; 710/ICG and 745/ICG as determined by the emission spectra of DiR. Imaging

showed that DiR can be detected well by both 710/ICG and 745/ICG filter sets but there is a

higher radiant efficiency count when cells are imaged using the 745/ICG filter set (Figure

5.7). It is also important to note that dual staining with DiR and DiI does not affect the

fluorescent signal detected.
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Figure 5.7: Fluorescence imaging of DiI and DiR labelled MSCs. MSCs were stained with DiI

alone, DiR alone or both DiI and DiR and plated in a 6-well plate. Once adherent, cells were

transferred to IVIS® for fluorescent imaging using two filter sets 710/ICG and 745/ICG to

determine the optimal fluorescent settings for MSC imaging. Cells stained with DiR but not

DiI were detected using both filter sets but the total fluorescent count was higher using the

754/ICG filter set. Co-staining with DiI and DiR did not affect the fluorescence counts.
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5.2.2 Assessment of topical delivery of MSCs ability to home to tumours in vivo

To assess whether topically delivered MSCs are able to home to tumours in vivo, intrapleural

tumours were set up as described in section 2.8.3. On day 6, 1x106 DiR and DiI stained MSCs

were injected intrapleurally at the same site as the tumour cells were delivered. Animals

were imaged using dual bioluminescence to detect the luciferase signal and fluorescence to

detect the DiR signal from the MSCs and images were compared to determine the location

of the MSCs in comparison to the tumours. Animals were left for 24 hours and the imaging

was repeated to establish whether the MSCs persisted. Animals were then sacrificed and

dissected, open cavity imaging was performed to determine the precise location of both the

tumours and MSCs and tumour samples were taken for digestion and flow cytometry and

tumours and lungs were taken for fixing and histological processing.

Pleural tumours were clearly visible on bioluminescent imaging (Figure 5.8 A&B) and

fluorescence clearly demonstrated MSC localisation to the site of the tumours (Figure 5.8 E).

No animals developed pleural effusions so all fluorescent and bioluminescent images were

representative of solid tumours. Control animals that received no MSCs showed no

fluorescent signal confirming that any signal detected by the ICG filter was representative of

MSCs with no bleed through of the luciferase-YFP (Figure 5.8 D). In pathological specimens

tumours were detected using an anti-luciferase antibody and MSCs identified by DiI.

Immunofluorescence confirmed that DiI labelled MSCs were located within the tumour

stroma when delivered topically (Figure 5.8 G&H).

5.2.3 Systemic delivery of MSCs to assess the ability of MSCs to home to tumours

To determine whether MSCs were able to home to tumours when delivered systemically

intrapleural tumours were established as described in section 5.2.1 and MSCs were

delivered intravenously rather than intrapleurally. Imaging was performed at the same time

points and tissue samples were processed using the same techniques.

Again tumours were confirmed using bioluminescent imaging (figure 5.8 C) and

intravenously delivered fluorescent MSCs were identified co-localising with tumour deposits

(Figure 5.8 F). Immunofluorescence confirmed that DiI labelled MSCs are identified within

the tumour deposit (Figure 5.8 J).
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These experiments suggest that MSCs are able to home to and incorporate within tumours

when delivered either topically or systemically. From the fluorescent imaging it is possible

that MSCs not only home to the tumours themselves but are also present within the lung

tissue. It is possible that in addition to homing to tumours, MSCs also remain within healthy

lung tissue following intravenous administration as they are trapped within lung capillaries.

If this were the case then MSCs could exert a dual therapeutic effect by delivering TRAIL

directly to the tumour to induce apoptosis but also to produce a bystander effect from

locally secreted TRAIL.
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Figure 5.8: Human MSCs home to an in vivo model of MPM when delivered both ip and iv.

A-C, IVIS images of animals with intrapleural bioluminescent MSTO-211HLuc tumour cells D,

lack of fluorescent signal in control animal with no DiR labelled MSCs whilst animals

receiving E, pleural MSCs and F, intravenous MSCs show co-localisation of fluorescent MSCs

at the sites of tumour (scale bar 5mm). G, Immunofluorescence images confirm the

absence of DiI labelled MSCs (red) within luciferase positive tumour cells (green arrow

shows luciferase positive tumour and white arrow show luciferase negative smooth muscle

tissue) whilst DiI labelled MSCs are visible within the luciferase positive tumours following

both H, intrapleural and J, intravenous MSC delivery (magnification x20; bar 60µm).
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5.3 Discussion

5.3.1 In vivo mesothelioma tumour models

A robust in vivo experimental model for malignant mesothelioma is essential to assess the

efficacy of novel therapies. There are two broad categories of tumour models, syngeneic

and human xenograft. Syngeneic tumour models describe a murine tumour growing in mice

of the strain in which the tumour originated. They have a number of advantages in that

they are relatively low cost, allow the use of immunocompetent hosts so the contribution of

the immune system can be assessed and are usually non-immunogenic and very

reproducible. The main disadvantages however are that the tumour cells are murine and so

express the mouse homologues of the studied targets and the behaviour of the tumours

may not reflect that seen in human disease. As more targeted therapeutics are being

assessed the homology between murine and human targets can limit the utility of syngeneic

models.

An alternative model is the human xenograft model whereby human tumour cells are

delivered to an immunodeficient mouse. The benefits to this model are that the resulting

tumour is human, they are reliable reproducible models and a wide variety of tumour cell

lines are available for tumour induction. The main disadvantage to this model is that due to

the immunodeficient nature of the mouse any interactions with the immune system cannot

be studied. Initial xenograft models tended to use non-natural sites such as subcutaneous

as the resultant tumours were easy to visualise and measure longitudinally. However, most

groups prefer to use orthotopic sites i.e. those from where the cell line was derived as this

allows better simulation of human disease. The main disadvantages of orthotopic xenograft

models is that surgical techniques can often be complicated resulting in small numbers of

animals used and if tumours are internal then tumour growth and response to treatment

can be difficult to monitor longitudinally without using large numbers of animals to allow

time point assessments. This means that end points are usually death or weight loss making

accurate estimation of tumour volume difficult.
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5.3.1.1 Establishing a suitable in vivo tumour xenograft model

As my main aims were to determine the suitability of MSCTRAIL as a novel targeted therapy

for the treatment of human disease, all our in vitro assays had been performed using human

MSCs. To ensure continuity of results and maintain the potential for clinical translation we

used an orthotopic tumour xenograft model of malignant pleural mesothelioma. Initially

two cell lines were assessed, MSTO-211H and H28. These were chosen as they were

representative of high and low TRAIL sensitivity and were known to be tumourigenic in vivo

[217].

Both cell lines successfully produced pleural tumours consistent with malignant

mesothelioma as confirmed by H&E and immunostaining for calretinin. However, one of

the main concerns from preliminary experiments was that tumour growth longitudinally was

difficult to monitor and that the traditional measure of tumour burden, weight loss, was

unreliable. In addition, on dissection it was clear that the pattern of tumour growth

resulted in multiple small tumour deposits throughout the pleural cavity making an accurate

measure of tumour burden impossible.

5.3.2 In vivo cell tracking techniques

A key factor in developing effective gene and cellular therapies for cancer is to understand

the migration, biodistribution and lifespan of exogenously delivered cells and to accurately

determine the effect of their therapeutic gene on the targeted tumour. Traditionally, the

majority of cell tracking techniques have not allowed longitudinal tracking in live animals,

for example immunohistochemistry for marker proteins and flow cytometry for fluorescent

reporter proteins and fluorophores. These techniques are useful for providing information

about the location of labelled cells at a fixed time point but do not allow longitudinal cell

tracking in an individual animal. Because of these limitations there has been significant

development in novel imaging techniques involving both indirect and direct cell labelling

that allow non-invasive, longitudinal imaging in preclinical studies [219].

Direct labelling techniques use labels such as lipophilic dyes, radioactive molecules or

nanoparticles that can be directly taken up by the cells and do not require genetic

modification. As such they are usually easier to apply and are accomplished more rapidly
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but the disadvantage is that the label is not permanently located within the cell and is likely

to be slowly lost over time, diluted during cell division and taken up by other cells such as

phagocytes. Because of these limitations direct labelling techniques are less suitable for

long-term tracking studies. Indirect labelling techniques involve the introduction of a

reporter gene such as a fluorescent protein or enzyme through genetic modification of the

host cell. Because any labelling involves genetic modification the techniques tend to be

more time consuming but any label should by expressed by both parent and daughter cells

and only by live cells, making them more suitable for long term cell tracking and providing

information about cell number, location and viability. I use both indirect and direct labelling

techniques to allow us to track both tumour cells and MSCs.

5.3.2.1 Non-invasive bioluminescent imaging using luciferase transduced MPM

Bioluminescent imaging was chosen as a label to track MPM cells as it was important to

have an accurate measure of live cell number over a long period of time. Using lentiviral

transduction of MPM cells it was possible to accurately measure tumour burden throughout

the course of each experiment, thus reducing the number of animals needed. Once I had

successfully transduced MPM cells to express luciferase via a lentiviral vector I confirmed

that there was an excellent correlation between increasing cell number and increasing

bioluminescence as measured by photo count.

The first step was to determine which orthotopic model was most suitable for the in vivo

experimental work. In humans MPM is found predominantly in the pleura but is also well

known to develop in the peritoneal cavity. Whilst intrapleural MPM was felt to be more

clinically translatable pleural delivery of cells requires mice to be anaesthetised and undergo

minor surgery making repeated cell delivery by this route more risky. In addition there was

concern that animals could develop pneumothoraces resulting in death. Intraperitoneal cell

delivery has the benefit of being less invasive than intrapleural delivery and better tolerated

for multiple doses. Therefore both intrapleural and intraperitoneal delivery of MPM Luc

cells were assessed prior to performing a treatment experiment. Both delivery routes were

well tolerated with no adverse events seen and both tumour models showed efficient

tumour formation with similar patterns of increasing bioluminescence throughout the

experimental period. On dissection intrapleural MPM showed more discreet tumour
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deposits that were easier to dissect and often adherent to the lung tissue making lung

weights a valid additional measure of determining tumour burden. For this reason and

because the procedure was well tolerated intrapleural delivery of MPM was used for all

subsequent experiments.

5.3.3 Homing and engrafting of MSCs within MPM tumours

One of the key characteristics of MSCs that make them attractive candidates as vectors for

cellular therapy is their ability to home to multiple tumour types. MSC homing is defined as

the arrest of MSCs within the vasculature of a tissue followed by transmigration across the

endothelium. It is not known precisely what controls MSC homing and it is certainly not as

well characterised as the leukocyte homing mechanism but it is thought to involve multiple

chemokines and their receptors. Until recently the majority of studies looking at MSC

homing have used either in vitro cell migration assays or direct cell labelling techniques

within ex vivo samples to demonstrate localisation of MSCs at sites of interest. Real-time

imaging of MSCs is therefore of particular interest and intravital microscopy has been used

to demonstrate MSC rolling and diapedesis within specific tissues [220, 221].

Initial experiments were designed to demonstrate whether MSCs would home to MPM

tumours when delivered either topically or systemically. Using luciferase transduced MPM

cells and fluorescently labelled MSCs I showed that MSCs successfully homed to tumour

deposits following both routes of delivery and were incorporated within the tumour stroma

(Figure 5.8). Chemokine levels and receptor expression in the cells used in this study was

not assessed but it could be evaluated in future work. If there are differences in chemokine

or receptor expression this could be exploited in future experiments to improve the

efficiency of MSC homing to tumours. This difference could be important when translating

pre-clinical work into clinical trials as route of delivery could be critical for therapeutic

efficacy.
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5.4 Summary

 Both MSTO-211H and H28 cell lines are tumorigenic in vivo but weight loss is a poor

marker of tumour burden

 MPM cell lines can be successfully transduced with luciferase lentivirus and on IVIS®

imaging there is a good correlation between cell number and bioluminescent signal

 Intrapleural MSTO-211HLuc injection produces fewer more discreet tumour deposits

than intraperitoneal MSTO-211HLuc injection

 MSTO-211HLuc can be tracked longitudinally after intrapleural delivery in mice using

bioluminescent imaging

 DiI and DiR co-staining can be used to track MSCs using fluorescent imaging

 MSCs delivered both topically and systemically home to intrapleural tumours in vivo

and can be demonstrated using dual bioluminescent and fluorescent imaging
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Chapter 6

Assessment of therapeutic effect of MSCTRAIL

delivery in a murine model of MPM both alone and in

conjunction with chemotherapy
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6 Assessment of therapeutic effects of MSCTRAIL delivery in a

murine model of MPM both alone and in combination with

chemotherapy

This chapter describes the results of experiments carried out to address aim 4 ‘determine

whether MSCTRAIL therapy can reduce mesothelioma growth in vivo’. Intrapleural tumours

were established and mice were given TRAIL-transduced MSCs, untransduced parental MSCs

or PBS as controls. Both topical and intravenous routes were used as routes of therapeutic

delivery. Cells were delivered at regular intervals during the most rapid phase of tumour

growth and tumour burden was measured longitudinally using bioluminescent imaging.

End-points were total bioluminescent count and lung weights along with biomarkers of

response consistent with the mechanism by which TRAIL could affect tumour growth such

as apoptosis and cell proliferation.
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6.1 Malignant pleural mesothelioma – route of delivery for treatment

Clinically MPM often presents with a pleural effusion, fluid that builds up between the

visceral and parietal pleura that line the lung and chest wall respectively. The presence of

this fluid can cause significant symptoms of breathlessness and can significantly reduce a

patient’s quality of life. To treat a pleural effusion, thoracentesis is performed, in which a

needle is inserted through the intercostal space and the fluid is drained out of the pleural

space. Patients with MPM are likely to have recurrent pleural effusions and will require

either repeated drainage using a chest drain or the insertion of a longer term indwelling

catheter that can be accessed when fluid drainage is required.

In addition to providing symptomatic relief from the pleural effusion the presence of a chest

drain allows direct access to the site of the malignant tumour. The advantage of direct

tumour access has already been utilised in the case of MPM and other peritoneal tumours

with existing chemotherapy agents being delivered directly to the intraperitoneal cavity

[194]. A great advantage of direct access is that is allows targeted and topical delivery

without the need for systemic therapies with their associated side effects.

6.2 Effects of intrapleural delivery of MSCTRAIL to a murine model of

malignant pleural mesothelioma

I first assessed the intrapleural delivery of MSCs in a pleural model of MPM. Intrapleural

tumours were established as previously described (section 2.8.4) and 1x106 MSCTRAIL were

delivered intrapleurally on days 5, 9, 12, 15 and 18 (Figure 6.1 A). Control groups received

either PBS or 1x106 untransduced parental MSCs (n=8 per group) and bioluminescent

imaging was performed twice weekly. All groups received doxycycline in their drinking

water to ensure continuous expression of TRAIL. All animals developed tumours as

expected but there was no significant difference in bioluminescence between any of the

treatment groups (Figure 6.1 B&C). There was also no significant difference in lung weights

between any of the treatment groups (Figure 6.1 D).
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Figure 6.1: MSCTRAIL delivered intrapleurally shows no significant reduction in tumour

burden. A, 8x104 MSTO-211HLuc cells were delivered intrapleurally on day 0 to generate

MPM tumours and 1x106 MSCTRAIL cells were delivered by intrapleural injection on days 5,

9, 12, 15 and 18. Bioluminescent imaging was performed twice weekly to monitor tumour

growth and animals were sacrificed on day 21 (n=8). B) Representative longitudinal IVIS®

images from each treatment group showing no clear difference in bioluminescent signal

between any of the groups. C) Line graph of longitudinal bioluminescent counts shows no

significant difference between PBS, MSC alone or MSCTRAIL. D) Box and whiskers plot

shows no significant difference in lung weights between any of the treatment groups.
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6.3 Effects of intravenous delivery of MSCTRAIL to a murine model of MPM

MPM is increasingly being recognised as a metastatic disease with data showing that over

half of patients with this disease have extra-thoracic metastases [5]. Previous studies have

shown that intravenous delivery of MSCTRAIL can reduce tumour growth in a glioma model

[105] and in some cases eliminate lung metastases [104] making it an attractive option for

treating disseminated cancer. For this reason I set out to determine the effect of

intravenously delivered MSCTRAIL on MPM. Intrapleural tumours were again established as

described previously (section 2.8.4) and 1x106 MSCTRAIL were delivered intravenously on

days 5, 9, 12, 15 and 18 with control groups receiving either 1x106 untransduced parental

MSCs or PBS (n=8 per group, Figure 6.2 A). All mice received doxycycline administered in

the drinking water and animals were imaged using IVIS® twice weekly. On day 21 animals

were imaged, then sacrificed and dissected and open imaging was performed to identify

tumour deposits. Heart and lungs were removed and weighed and samples were fixed for

histological processing.

Bioluminescent imaging demonstrated a significant reduction in tumour growth in the group

treated with MSCTRAIL compared to the PBS and untransduced MSC groups (p<0.05,

repeated measures ANOVA; Figure 6.2 B and 6.2C). In addition to a reduction in

bioluminescence there was a significant reduction in lung weights in mice treated with iv

MSCTRAIL (p<0.05; Figure 6.2D).
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Figure 6.2: MSCTRAIL delivered intravenously causes a significant reduction in tumour

burden. A) 8x104 MSTO-211HLuc cells were delivered on day 0 to generate MPM tumours

and 1x106 MSCTRAIL were delivered via intravenous injection on days 5, 9, 12, 15 and 18.

Animals were sacrificed on day 21. B) Representative longitudinal IVIS® images from each

treatment group showing a clear reduction in bioluminescent signal in the MSCTRAIL

treated group. C) Line graph of longitudinal bioluminescent counts shows a significant

difference between treatment with MSCTRAIL compared to either PBS or MSC alone

(p<0.05, repeated measures ANOVA). Photon count was determined using dedicated

regions of interest around the whole body to include both pleural tumour burden and any

distant metastatic deposits. D) Box and whiskers plot shows a significant reduction in lung

weights in the MSCTRAIL treated group (p<0.05, ANOVA with Bonferroni’s multiple

comparison test).
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6.4 Mechanisms of reduction in tumour growth with intravenous MSCTRAIL

delivery

Given that intravenous delivery of MSCTRAIL to MPM resulted in a significant reduction in

tumour growth but intrapleural delivery did not it was important to determine why there

was a difference between these two delivery routes. Broadly speaking tumour growth

consists of two main mechanisms; cell growth and cell death and a reduction in tumour

growth could therefore be due to a reduction in cell growth or an increase in cell death.

TRAIL is known to exert its anti-cancer effect by inducing apoptosis so if the reduction in

tumour burden was to be attributed to our therapy an increase in apoptosis would need to

be demonstrated with no alteration in cell proliferation. This was addressed using

histopathological analysis of sections of tumours dissected at day 21 and performing TUNEL

staining to assess apoptosis and BrdU staining to assess cell proliferation.

BrdU analysis demonstrated no significant difference in tumour cell proliferation between

intravenously delivered or intrapleurally delivered MSCTRAIL when compared both to each

other and to PBS (Figure 6.3A-C and 6.3G). However when quantifying the number of

TUNEL positive cells there was a significant increase in the number of cells undergoing

apoptosis in the group treated with iv MSCTRAIL (p<0.01 ANOVA with Bonferroni multiple

comparisons test; Figures 6.3D-F and 6.3H). This confirms that iv MSCTRAIL delivery reduce

tumour size by inducing apoptosis which would be entirely consistent with the mechanism

of action of TRAIL.
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Figure 6.3: MSCTRAIL causes a reduction in tumour growth by inducing apoptosis in MPM

cells. MSTO-211HLuc cells were delivered intrapleurally to establish MPM. MSCTRAIL cells

were delivered by intravenous injection on days 5, 9, 12, 15 and 18 and lungs and tumours

were harvested on day 21. BrdU and TUNEL staining were performed to assess tumour

proliferation and apoptosis respectively. Immunofluorescence showing proliferating cells

(red) and luciferase positive tumour cells (green) in tumours treated with A) PBS B)

intrapleurally delivered MSCTRAIL and C) intravenously delivered MSCTRAIL. D-F)

Representative immunofluorescence showing TUNEL positive apoptotic cells (green) within

pleural tumours (red) in animals treated with PBS, pleural MSCTRAIL and increased

apoptosis in tumours treated with iv MSCTRAIL (magnification 4x, bar 60µm). G)

Proliferating cells per tumour area were quantified (Volocity Software) with no significant

difference in the number of BrdU positive cells between the treatment groups. H) TUNEL

positive cells per tumour area were quantified (Volocity Software) and MSCTRAIL treated

animals showed increased levels of apoptosis within tumours compared to all other groups

(p<0.01, ANOVA with Bonferroni’s multiple comparison test).
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6.5 Why do intravenously delivered MSCs have a therapeutic effect on

MPM tumour burden whilst intrapleurally delivered MSCs do not?

From the previous experiments I have shown that MSCs can home to tumours when

delivered both intrapleurally and intravenously but that only MSCTRAIL delivered

intravenously has a therapeutic effect on MPM. There could be a number of explanations

for this; firstly MSCs may have a different distribution within the tumour with intrapleurally

delivered MSCs merely being present around the tumour capsule whilst intravenously

delivered MSCs may be delivered within the tumour stroma itself enabling it to exert its

therapeutic effect directly within the tumour, secondly MSCs may home to the tumour in

greater numbers when delivered intravenously compared to intrapleurally due to cells being

delivered directly to the site of tumours rather than relying only on chemokine gradients to

move there and finally MSCs may survive longer when delivered intravenously compared to

intrapleurally as they are delivered within the systemic circulation where they are healthier

compared to their counterparts which need to survive within a pleural cavity. The first

possible explanation has been assessed using immunofluorescence from experiments to

look at MSC homing (Figure 5.8 H&J) as the DiI stained MSCs are clearly visible within the

tumour tissue following both routes of delivery. To address the other two possible

explanations further experiments were performed.

6.5.1 Determination of number of MSCs homing to intrapleural tumours and their

persistence once delivered

To assess whether similar numbers of MSCs were incorporating within tumours following

intrapleural and intravenous delivery 2x105 MSTO-211HLuc were injected intrapleurally and

left for 10 days to allow large tumours to develop. 1x106 MSCs stained with DiR were

injected either intravenously or intrapleurally. Serial bioluminescent and fluorescent

imaging was performed daily and lungs were harvested for histology or tumours were

dissected out and digested for flow cytometry. Tumours were successfully established and

MSCs were quantified using IVIS (Figure 6.4A). The intensity of the fluorescent signal was

determined and demonstrated a significant difference in signal 24 hours post MSC injection

(p=0.0125; Figure 6.4B). This difference was maintained during the 6 day imaging period.

This suggests that MSCs incorporate into tumours in greater numbers when delivered
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intravenously compared to intrapleurally. Tumours were digested and flow cytometry was

performed using YFP to identify tumour cells and DiI to identify MSCs, which confirmed a

greater percentage of MSCs in the tumours following intravenous delivery compared to

intrapleural delivery (Figure 6.4 C and 6.4 D).
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Figure 6.4: Intravenously delivered MSCs are incorporated into tumours in greater

numbers than when delivered intrapleurally. A) IVIS images to show established

bioluminescent MPM tumours and corresponding fluorescence from DiR labelled MSCs on

days 1 and 6 following MSC injection. Intravenously delivered MSCs show a higher

fluorescent signal on day 1 and day 6 following injection compared to intrapleurally

delivered MSCs. B) Fluorescent signal was quantified and MSCs delivered iv showed a

higher signal on day 1 compared to cells delivered ip which persisted until day 6 (p=0.0125).

C) Tumours were removed and digested for flow cytometry which revealed a higher

percentage of DiR stained MSCs in tumours given iv MSCs than in those given ip MSCs. D)

Bar chart to show a significant increase in DiR stained MSCs in tumour digests following iv

delivery compared to pleural delivery (p<0.05).
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6.6 Combining MSCTRAIL therapy with SAHA – is there a synergistic effect?

From our in vitro data I have shown that combining MSCTRAIL therapy with existing

chemotherapy agents, such as SAHA, results in a significant increase in cell death and

apoptosis when compared to either agent alone (Figure 4.5). Our final aim, therefore, was

to determine whether treating MPM with a combination of MSCTRAIL and SAHA resulted in

a reduction in tumour growth in vivo over and above that seen with MSCTRAIL or SAHA

alone. In order to test this hypothesis, intrapleural tumours were established as previously

described (section 2.8.4). Treatment started on day 5 and animals were assigned to one of

the following treatment groups:

Treatment Group MSC Therapy Chemotherapy

PBS Control Intravenous PBS Intraperitoneal normal saline

SAHA only Intravenous PBS Intraperitoneal SAHA

MSC only Intravenous MSC Intraperitoneal normal saline

MSCTRAIL only Intravenous MSCTRAIL Intraperitoneal normal saline

MSCTRAIL and SAHA Intravenous MSCTRAIL Intraperitoneal SAHA

Table 6.1: Table to show the different treatment groups for the combination

chemotherapy with MSCTRAIL in vivo experiment.
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Animals receiving MSC therapy were given 1x106 MSC or MSCTRAIL delivered intravenously

on days 5, 9, 12, 15 and 18 whilst control groups were given PBS. For chemotherapy

delivery, animals receiving SAHA were given 20mg/kg SAHA delivered via intraperitoneal

injection three times a week, with controls receiving 200 µl of vehicle solution (normal

saline/DMSO). All mice received doxycycline administered in the drinking water and

animals were imaged using IVIS® twice weekly. On day 21 animals were imaged, then

sacrificed and dissected and open imaging was performed to identify tumour deposits.

Heart and lungs were removed and weighed and samples were fixed for histological

processing.
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Figure 6.5. Longitudinal bioluminescent signal shows a reduction in tumour burden with iv

MSCTRAIL treatment alone but not in combination with chemotherapy. Line graph of

longitudinal bioluminescent signal shows a significant reduction in tumour burden in

animals treated with MSCTRAIL alone (** p<0.01, ***p<0.001, two-way RM ANOVA with

Bonferroni’s multiple comparison test; n=7 per group)
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Longitudinal bioluminescent imaging showed that treatment with MSCTRAIL resulted in a

significant reduction in tumour burden when compared to PBS, MSC and SAHA alone (Figure

6.5) (**p<0.01, ***p<0.001, two-way RM ANOVA with Bonferroni’s multiple comparison

test). Whilst there was a reduction in bioluminescence in animals treated with SAHA alone

compared to treatment with PBS or MSC this did not reach statistical significance. From the

in vitro results one might have predicted that treatment with MSCTRAIL and SAHA in

combination would be more effective than treatment with MSCTRAIL alone and similar in

efficacy to SAHA alone. However, our in vivo results showed that treatment with

MSCTRAIL/SAHA combination was less effective than either of these treatments alone

(p<0.001, two-way RM ANOVA with Bonferroni’s multiple comparison test). There were a

number of possible reasons why this might be:

1. SAHA causes MSC cell death and hence prevents TRAIL delivery

2. The dose of SAHA used was too low to have an effect in vivo

3. If SAHA doesn’t cause MSC cell death it may alter TRAIL transgene expression

From earlier in vitro work I demonstrated that SAHA does not cause a significant increase in

death and apoptosis of MSCs (Figure 4.4) so the next step was to determine whether the

dose of SAHA used was too low to have a significant effect on tumour burden in vivo.

6.6.1 In vivo SAHA dose determination

Intrapleural tumours were established as previously described (section 2.8.4) and treatment

was started on day 5. Animals were assigned to one of the following treatment groups:

Group Treatment

A PBS/DMSO vehicle

B 50 mg/kg

C 100 mg/kg

D 150 mg/kg

Table 6.2: Table to show the different treatment groups for SAHA dose finding

The doses used were chosen to cover a range of doses used in other publications that were

shown to be effective in other tumour models. Animals were weighed daily and the
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appropriate dose was calculated accordingly, they received 5 injections per week and were

imaged twice weekly using IVIS®. Mice were culled on day 21 or when >20% weight loss was

recorded.
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Figure 6.6. Longitudinal bioluminescence showing that treatmen

reduces MPM tumour burden. Line graph showing longitudinal b

days in animals treated with different doses of SAHA (n=5 per gro

mg/kg SAHA resulted in a significant reduction in tumour burden

ineffective (* p<0.05, ** p<0.001, two-way repeated measures AN

multiple comparison test).
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Treatment with 100 mg/kg resulted in a significant reduction in tumour burden compared to

either PBS/DMSO control (p<0.001) and to treatment with 50 mg/kg and 150 mg/kg

(p<0.05). It seems unusual that the higher dose of 150 mg/kg had no significant effect on

tumour growth but this was likely due to the insolubility of the drug at higher

concentrations. SAHA is soluble in organic solvents only such as ethanol or DMSO and

administration of 100% DMSO to animals is highly toxic. In order to enable safe drug

delivery the SAHA was solubilised in DMSO to make a stock solution and this was then

diluted in aqueous solution (PBS) to attain the correct concentration for in vivo dosing. In

the case of 150 mg/kg solution, when the drug was diluted in PBS it was noted to precipitate

out back into crystals and was very difficult to keep in a suspension suitable for injection. It

is likely that these animals therefore did not get a dose of 150 mg/kg and may have received

a much lower dose that was therapeutically ineffective. These results would suggest that

our initial experiment using 20 mg/kg SAHA three times a week was too low a dose to have

had a significant effect on tumour growth and future experiments should use a dose of 100

mg/kg delivered 5 times weekly for optimal therapeutic efficacy.
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6.7 Discussion

The experiments described in this chapter show that intravenous delivery of MSCTRAIL to a

murine model of MPM resulted in a reduction in tumour burden as demonstrated by both a

reduction in bioluminescent signal and lung weights. This therapeutic effect was not

repeated when MSCTRAIL was delivered intrapleurally despite the fact that MSCs home to

tumours when delivered by this route.

6.7.1 Delivery route as a determinant of successful therapy

One of the key components of any therapy is the route of delivery. This can be broadly

divided into systemic or topical and the route selected is largely dependent on the

distribution of the disease being treated and the mode of action of the therapy.

Systemically delivered therapy is largely used for diseases that are multi-site and located in

multiple organs enabling treatments to be aimed against all sites of the disease. However,

systemic therapeutic administration is dependent on intravenous access and often requires

high doses to be delivered in order to achieve therapeutic efficacy to the site of disease. It

also has the problem of increased risk of off-target effects as treatment will be delivered to

all organs. If disease is located to a single site then topical therapy is a more attractive

option as it allows local delivery of therapeutic treatment doses without the need for

systemic delivery and reduces the chances of off-target effects. In the case of MPM the

greatest burden of disease is within the pleural cavity. The vast majority of patients will

require at least one intercostal chest drain to be inserted during either their diagnosis or

treatment which allows access directly to the site of the tumour. This local access makes

topical treatment of MPM a very appealing option. For this reason our first experiment was

designed to assess the efficacy of topical delivery of MSCTRAIL on MPM tumour growth.

As I demonstrated in chapter 5, MSCs are able to home to tumours when delivered

intrapleurally, so it was surprising there was no therapeutic effect when MSCTRAIL was

delivered via this route. In subsequent experiments we showed that intravenously

delivered MSCTRAIL has a good therapeutic effect with a visible reduction in tumour burden
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as shown by a reduction in bioluminescent signal when compared with PBS or MSC

treatment. For other diseases it has been shown that intrapleurally delivered MSCs

localise within the pleural cavity [222] and can be used to reduce the severity of endotoxin-

induced acute lung injury [223] in a murine model. Other topical delivery routes have also

been assessed in multiple in vivo models including intraperitoneal delivery of interferon-β 

transduced MSCs in an ovarian cancer model [224], direct injection of TSP-1 expressing

MSCs to a murine glioma model [225] and intrathecal delivery in a rodent model of spinal

cord injury [226].

In addition to the many in vivo studies there are a number of clinical trials assessing the

therapeutic efficacy of native untransduced MSC delivery in a multitude of diseases. The

overwhelming majority of these studies are in patients with either acute or chronic

ischaemic heart disease and there are over 100 clinical trials registered looking at safety and

efficacy of intracoronary or trans-endocardial delivery of MSCs for both chronic and acute

cardiac diseases. There are over 70 early phase clinical trials assessing the use of MSCs in

patients suffering from strokes and these use either intravenous or cerebral artery MSC

injection as their route of delivery. Although all of these topical delivery routes are safe

according to phase I data very few of them show significant efficacy in their phase II arms

and the reasons for this are not clear. There are no clinical trials comparing the efficacy of

different delivery routes within the same disease and it may be that the clinical efficacy of

MSC therapy is affected by delivery route. As with the majority of therapies ensuring the

correct dose delivery is essential for treatment efficacy and when it comes to cellular

therapy it is likely that the number of cells delivered will directly determine the treatment

dose the patient receives. It is possible that intravenous delivery is more effective at

delivering cells to their required site of action and it is possible that by increasing the

number of cells delivered intrapleurally a therapeutic effect may be achieved. Further

experiments would be aimed at increasing the number of MSCTRAIL cells delivered

intrapleurally to determine whether the initial lack of therapeutic efficacy can be overcome

with an increased dose.
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6.7.2 MSC homing and incorporation into tumours

When considering clinical applications the first step for a successfully therapy is to deliver it

to the desired target. In the case of MSCTRAIL the initial challenge is to successfully deliver

MSCs to the tumour and the second is to ensure that the cells persist within the tumour to

allow long term therapeutic gene expression and delivery of an effective dose. In using

MSCs as delivery vectors for cellular based gene therapies, it is thought that treatment

efficacy is related to the level of MSC accumulation at tumour sites.

Whilst it is well described that MSCs home to tumours most of this evidence is from in vitro

migration studies and using immunohistochemical techniques to look at cell location in post

mortem in vivo studies. Our early experiments using dual bioluminescent and fluorescent

imaging to track cells demonstrated that MSCs home to tumours following both topical and

systemic delivery. The next step was to determine whether there was any effect of delivery

route on the number of cells within the tumour or the length of time the cells remained

there. Again using dual bioluminescent and fluorescent imaging with both direct and

indirect cell labelling techniques I demonstrated that whilst systemic MSC delivery results in

higher numbers of cells homing to the tumours, once incorporated within the tumour

stroma the MSCs remain there for a similar time regardless of delivery route (Figure 6.4).

Whilst there was a slow reduction in fluorescent signal over time it cannot be determined

whether this is due to cell death or cell proliferation. It is possible that over time the MSCs

die and are cleared from the tumours resulting in a decrease in fluorescent signal but as our

fluorescent labelling was performed using a direct staining with a lipophilic tracer it cannot

provide any information about cell viability. It is therefore equally possible that the

reduction in signal seen is a reflection of increasing cell number as this direct labelling

technique is known to be diluted during cell division. What is reassuring is that the route of

delivery did not affect the duration of persistence for the MSCs because the signal reduction

seen was the same for both groups.

Our study shows that whilst MSC homing occurs regardless of route of delivery the level of

MSC accumulation following iv delivery is significantly higher than when delivered ip. It is

possible that the increase in apoptosis seen in the iv delivery model is a direct effect of the

tumour receiving a greater number of cells and hence a higher dose of TRAIL. But why is it
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that MSCs accumulate better with this delivery route? The first step in MSC accumulation

within tumours is adhesion to vascular endothelial cells and multiple factors have been

suggested to be important for this process including TNFα and NF-κB [227], interleukin 1β 

and interferon-γ [228] all of which induce VCAM-1 expression on tumour cells.  It may be 

that cells delivered iv have higher accumulation as they are delivered directly to endothelial

cells making adhesion more likely. Alternatively ip delivered cells may have lower

accumulation as their delivery is not directly to areas of tumour that are well vascularized.

These areas are likely to be more hypoxic and MSCs are more likely to die when located

within a hypoxic microenvironment [229].

6.7.3 Combination chemotherapy

One of the problems encountered in the management of malignant diseases is the

phenomenon of treatment resistance. This can be primary resistance when a cancer type is

inherently resistant to a specific therapeutic agent or secondary resistance in which

exposure to chemotherapeutics can result in a sub-population of cells developing resistance

to the therapy it is exposed to. To try and combat resistance the majority of tumours are

treated with multiple agents; MPM being one of these where the recommended first line

treatment is cisplatin in combination with pemetrexed [230]. As demonstrated by our

results, although all cell lines show an increase in death and apoptosis when treated with

MSCTRAIL the levels of cell death are very variable between the cell lines and in the majority

of cases show overall low levels of apoptosis (Figure 4.2). This means that a significant

number of cells will be inherently resistant to treatment with MSCTRAIL making it unlikely to

be a curative therapy. However, it has been shown that by targeting both the extrinsic

apoptotic pathway with a compound such as TRAIL and the intrinsic apoptotic pathway

using chemotherapy or radiation a synergistic effect occurs resulting in significantly greater

apoptosis than by targeting either arm individually [231]. Agents such as etoposide,

rapamycin and anisomycin have been shown to act at the level of the mitochondria

increasing crosstalk between the two sides of the apoptotic pathway [232, 233] whilst

agents such as SAHA have been shown to increase MPM apoptosis by targeting FLIP and

caspase 8 [93].
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From our in vitro co-culture experiments assessing the combination of SAHA and MSCTRAIL I

demonstrated that in the most sensitive cell line MSTO-211H that the combination of

MSCTRAIL and SAHA was as effective but no more so than either SAHA or MSCTRAIL alone.

The in vivo results however demonstrated a significant reduction in tumour burden when

using MSCTRAIL alone compared to either SAHA alone or MSCTRAIL and SAHA in

combination which does not correlate with the in vitro data. I sought to determine why

there was a difference in results and evidence from the in vitro experiments suggests that

SAHA does not kill the MSCs and so MSCTRAIL delivery should be effective. I then performed

a dose finding experiment in an in vivo model and showed that the dosage used in the

combination experiment was probably too low to achieve a significant effect and for future

experiments the higher dose of 100 mg/kg SAHA 5 times a week would be the appropriate

dosing schedule.

One of the limitations of this study was the use of a ‘TRAIL sensitive’ cell line where you

might expect to gain only small advantages in combination therapy over single agent

therapy and what would be more significant is trying to overcome resistance in a ‘TRAIL

resistant’ cell line such as H28. One of the major problems with the use of the xenograft

model is that whilst it allows us to assess the effect of human MSCTRAIL on human MPM in

order to establish this disease model an immunodeficient mouse has to be used. One of the

problems with human MPM cell lines is that not all of them are tumorigenic in mice and H28

has previously shown to be a non-tumorigenic cell line [217]. This meant that I was not able

to expand the data on H28 and combination chemotherapy by performing in vivo studies

however it would be interesting to see if an alternative murine model could be established

to demonstrate this. Future work could include either trying to establish a xenograft model

of H28 in a more immunosuppressed mouse such as the NOD/SCID/GAMMA (NSG) or by

using a syngeneic model of mesothelioma. If this route were to be taken then to prevent

immune rejection of the human MSCs, murine MSCs would have to be used as the

therapeutic vectors and the in vitro data would have to be revalidated as it is known that

murine cells have only one TRAIL receptor rather than five and so the response to MSCTRAIL

may be different.
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6.8 Summary

 Systemically administered MSCTRAIL causes a reduction in tumour burden as

demonstrated by a reduction in bioluminescence and lung weights whilst topically

delivered therapy is not effective

 Systemically administered MSCTRAIL reduces tumour growth by increasing cancer cell

apoptosis but does not affect tumour proliferation

 Both systemically and topically delivered MSCs home to intrapleural tumours but when

delivered systemically they engraft in higher numbers than when delivered topically

 It is possible that the lack of therapeutic efficacy seen with topically delivered MSCTRAIL

could be due to lower levels of cell engraftment resulting in a sub-therapeutic dose of

TRAIL at the site of the tumour

 Combination therapy with MSCTRAIL and SAHA does not improve tumour cell death

when compared to either therapy alone although this could be due to a sub-therapeutic

dose of SAHA being used
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Chapter 7

Summary and Future Directions
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7 Summary

The hypothesis for this thesis was that human bone marrow-derived mesenchymal stem

cells could be used as therapeutic vectors to deliver TRAIL directly to the site of tumours and

cause tumour cell death in a murine model of malignant pleural mesothelioma and that

combining MSCTRAIL with chemotherapy agents would provide synergistic benefit in

reducing tumour growth. I have shown that MSCs can be successfully transduced with a

lentiviral vector carrying the TRAIL transgene whose expression is controlled by doxycycline

and that MSCTRAIL induces apoptosis and cell death in all MPM cell lines tested. I have

demonstrated using dual bioluminescent and fluorescent imaging that MSCs home to

tumours when delivered either systemically or topically but that only systemically delivered

MSCTRAIL results in a reduction in tumour burden in a murine model of MPM. Whilst the

precise mechanism by which this occurs is unknown it is possibly due to a higher number of

MSCs located within the tumours following systemic delivery. Combining MSCTRAIL with

chemotherapy results in increased apoptosis and cell death in vitro but this was not

demonstrated in vivo. The results of these experiments in combination with other work

performed within the laboratory have resulted in the initiation of the pathway to gain

regulatory approval and future funding applications with the aim of running a phase I/II

clinical trial.

7.1 MSCs as delivery vectors for combined gene and cellular therapy

Despite the clear potential of this therapy there are still many unanswered questions that

need to be addressed in further laboratory work. The optimal timing of delivery and

number of cells required to have a therapeutic effect need to be established. Early delivery

of a larger number of MSCs have shown a greater therapeutic effect in a cerebral ischaemia

model [234] [235] and there is also known to be a plateau at which increasing cell numbers

has no additional benefit [236]. However, these studies have used a model of cerebral

ischaemia which has an identifiable onset unlike tumour development which is largely

unnoticed until the tumour mass is large enough to produce symptoms by which time the

disease is often metastatic, and it uses untransduced MSCs as the therapy rather than using
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them as a vector to deliver a therapy. When taking a combined cellular and gene therapy

forward into a clinical trial not only does the timing of cell delivery in a well-established

disease need to be determined, the number of cells required to deliver a therapeutic dose

must also be addressed. The timing of cell delivery is likely to be dependent on the length

of time MSCs reside within the targeted tumour, whether they proliferate and the duration

of transgene expression. These questions have been difficult to answer in pre-clinical

studies as most evidence for MSC homing and engrafting have been dependent on

immunohistochemical analysis of post mortem murine tissues and are unable to provide

information on the longitudinal behaviour of the cells in vivo or on their proliferative

capacity [104]. The only work assessing the long term engraftment of MSCs in human

subjects has also been from post-mortem studies in patients who have had intravenously

delivered MSCs to treat graft vs host disease (GVHD). In these cases all organs were

assessed at post-mortem for the presence of MSC donor DNA and in the vast majority of

cases this was found only at low levels within 50 days of MSC delivery [237]. This thesis is

the first to describe the use of dual bioluminescent and fluorescent imaging to track MSCs

longitudinally and one of the main limitations in our study was the use of the lipophilic

fluorescent tracer to monitor MSCs. This family of tracers provide no information on cell

viability and the signal will deteriorate over time regardless of cell viability and activity.

Initial attempts were made to directly label the MSCs with a lentiviral vector containing the

fluorophore mCherry but this was toxic resulting in a significant impairment of cell

proliferation and profound changes in morphology. Future work should address the

duration of MSC engraftment and the maintenance of transgene expression within the

targeted tumours.

When delivering TRAIL using MSCs as cellular vectors, one of the aims is to deliver the

therapy directly to the site where its action is required whilst keeping systemic levels low.

Although this is beneficial when aiming to reduce off-target and systemic toxicity it also

means that determining the dose of treatment being delivered is extremely difficult as the

agent cannot be monitored systemically. This remains an important consideration to
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address when planning clinical trials and it is likely that both cell number and frequency of

delivery will need to be determined in early phase trials.

Our data also suggests that route of delivery is also of critical importance in therapeutic

efficacy and this may be related to the homing efficiency of the MSCs being dependent on

delivery route. Further work should be directed at determining the key mediators of MSC

homing and whether these can be exploited to improve homing and therefore therapeutic

efficacy. In the case of MPM it would also be useful to determine whether increasing the

number of cells delivered topically would result in a therapeutic effect, in which case the use

of topical treatment would again be feasible. Whilst mesothelioma is classically considered

a locally advanced disease there is increasing evidence that it is a metastatic disease with

post-mortem series revealing extra-pleural deposits in >80% of patients [238] suggesting

that there might be a role for using both routes of delivery to treat a single disease.

7.2 TRAIL resistance and combination chemotherapy

As demonstrated by the data within this thesis despite all MPM cell lines showing increased

cell death and apoptosis on treatment with MSCTRAIL the percentage of cell death was

highly variable between cell lines with the most sensitive line showing 58% cell death whilst

the least sensitive showed as little as ~7% cell death. This suggests that MSCTRAIL as a

single agent therapy is unlikely to be successful for all patients with MPM as such low levels

of cell death will probably not translate to any improvement in clinical outcome. There is

data from in vitro studies on mesothelioma looking at combining agents that target both the

extrinsic and intrinsic apoptotic pathways to improve levels of apoptosis [78, 233] but there

are no studies combing MSCTRAIL with chemotherapeutics. My in vitro data showed that

combining MSCTRAIL with SAHA resulted in increased cell death in the cell line with high

TRAIL sensitivity but more importantly I showed a significant increase in the line with low

TRAIL sensitivity. Initial in vivo studies were performed using the MSTO-211H cell line as this

is previously reported to be tumorigenic in vivo whilst H28 is not but there was no

significant reduction in tumour burden compared to controls. Whilst it is possible this was
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due to a sub-therapeutic dose of SAHA being used rather than simply repeating the initial

experiment with a higher dose of SAHA it would be more interesting therapeutically to show

successful treatment in a tumour with low TRAIL sensitivity. For this reason future work

should be directed at developing a tumour model using a cell line with low TRAIL sensitivity

and determining the effect of MSCTRAIL both alone and in combination with SAHA and

other chemotherapeutic agents such as cisplatin and pemetrexed. In pilot work carried out

as part of this project H28 cells have been successfully transduced with luciferase-YFP

lentivirus and delivered intrapleurally to NOD/SCID/GAMMA mice which are considered

more immunosuppressed than NOD/SCID animals. Early imaging shows that tumours can

be established with 2x106 cells and the kinetics of tumour growth will be determined over

30-60 days to determine the optimal delivery time for MSCTRAIL.

7.3 Clinical translation

The ultimate aim for the work presented in this thesis is to allow its translation into the

clinic. Combined cellular and gene therapy is a novel treatment approach that as yet is not

well established in clinical trials. Cell therapy using unmodified MSCs have been widely used

in early phase clinical trials in the treatment of a number of diseases, mostly cardiovascular

and haematological diseases or those with a significant inflammatory component such as

inflammatory bowel disease with a good safety profile. However therapeutic efficacy is

often limited. There is also increasing use of gene therapies particularly for the treatment of

rare metabolic conditions that require correction of a single gene and although there were

initial concerns over the safety of using lentiviral vectors in gene therapy the newer vectors

in clinical trials are safer. Although there is growth in each of these fields individually there

are very few clinical trials using combined gene and cell therapy and none using modified

MSCS to treat cancer.

Based on work from this thesis in combination with work previously performed in the

laboratory I am currently preparing to apply for regulatory approval for MSCTRAIL and grant

funding to allow a phase I/II clinical trial to be undertaken to determine the safety and

efficacy of MSCTRAIL in metastatic lung cancer. Whilst much of the data in the thesis will
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provide valuable information for these applications there are still many unanswered

questions that will need to be addressed either before or during any clinical trial.

7.4 Final conclusion

The data presented in this thesis has demonstrated that MSCs can be successfully used as

cellular vectors to deliver a gene therapy for malignant pleural mesothelioma and provide

promise for future pre-clinical studies, in particular to overcome some of the issues

regarding low TRAIL sensitivity and ultimately lead to translation into a clinical trial.
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Appendix 1: ECOG Performance Status

Grade ECOG

0 Fully active, able to carry on all pre-disease performance without restriction

1 Restricted in physically strenuous activity but ambulatory and able to carry out
work of a light or sedentary nature

2 Ambulatory and capable of all selfcare but unable to carry out any work
activities. Up and about more than 50% of waking hours

3 Capable of only limited selfcare, confined to bed or chair more than 50% of
waking hours

4 Totally confined to bed or chair. Completely disabled, unable to carry out any
selfcare
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