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Abstract  

Incorporating spatial econometric tools in Hedonic Pricing (HP) models for environmental 

valuation has become the standard approach in the literature. The effect of house prices on 

other house prices is taken into account and usually measured by distance or contiguity in 

spatial weight matrices. Disaggregate house sale datasets are composed from observations 

each at a specific location and time. Nevertheless, the symmetric spatial weight matrices 

commonly employed in HP studies ignore the temporal dimension in disaggregate house sale 

data. Thus not only are previous house sales taken to affect subsequent house prices, but so 

do future house sales. However, information does not travel backwards in time; hence there is 

a clear theoretical impossibility of actual future prices affecting current/past prices. Estimates 

derived from HP models where spatial dependence is incorrectly specified or ignored will 

exhibit inaccuracies. This paper proposes an alternative specification of spatial weights in HP 

that includes spatial effects on each sale price only from preceding house sales. The temporal 

aspect of spatial effects is then developed further by specifying a time decay rate to capture 

the diminishing effect over time of preceding sale prices to succeeding house prices. This 

novel specification of spatial weight matrices is shown to have a significant effect on 

estimates of house price depreciation from aircraft noise. Monetary values of aircraft noise 

externality are successfully derived from the HP models for Athens Airport.  
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1. Introduction  

 

Noise disturbance is a serious environmental issue and a key externality of the aviation 

sector, raising health, economic and social concerns (Berglund et al., 1999; Miedema, 2007). 

Around 6.9 million people in Europe are exposed to aviation noise levels exceeding 55dBA 

and the numbers are expected to grow in the absence of further policy intervention (European 

Environment Agency, 2010). Valuation of the costs of aircraft noise annoyance can inform 

policy and appraisal. Hedonic Pricing (HP) techniques are traditionally relied upon to identify 

the impact of aviation noise on house prices (Nelson, 2008).  

 

HP posits that the price of a composite commodity, such as housing, is a function of its 

characteristics, including the level of quietness (absence of noise). The quantity of hedonic 

studies on aircraft noise is such that a number of meta-analyses have been carried out. The 

most recent by Wadud (2010) included 53 estimates of house price depreciation from aircraft 

noise and concluded that a 1 dBA change in aircraft noise levels leads to house price 

depreciation between 0.45% and 0.64%. This estimate is broadly consistent with earlier 

analysis by Nelson (2004) and the early review by Nelson (1980) though somewhat lower 

than the estimates of Schipper et al. (1998) of 0.9% to 1.3%.  Whilst aircraft noise exposure 

is a negative externality, distance to the airport is often found to positively affect house prices 

(Tomkins et al., 1998), underlining the importance of the spatial dimension in such analysis. 

 

The notion of spatial dependence stems from the first law of geography stating that 

“everything is related to everything else, but near things are more related than distant things” 

(Tobler 1970, pp. 236). During the past decade spatial econometrics has moved to the 

mainstream of applied econometrics and social science methodology (Anselin, 2010). 

Consequently, the scope of spatial econometrics has been further developed and broadened 

from the cross-sectional to the space-time domain (Anselin, 2006). Spatial econometrics is 

defined as “a subset of econometric methods that is concerned with spatial aspects present in 

cross-sectional and space-time observations. Variables related to location, distance and 

topology are treated explicitly in model specification; estimation; diagnostic checking and 

prediction” (Anselin, 2006, pp. 902). We are interested here in the case of spatial dependence 

that typically takes the form of weighted averages of observations for the ‘neighbours’ of a 
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given location (Anselin, 2010). Spatially lagged variables are included to capture these 

effects, specified by a spatial weights matrix. 

 

A number of studies have now combined spatial econometrics and HP models to value 

environmental attributes and transportation noise; examples include Conway et al. (2010), 

Andersson et al. (2010), Day et al. (2007), Hui et al. (2007) and Kim et al. (2003). A few 

studies have also combined spatial econometrics and HP models to produce aircraft noise 

valuation estimates (Bateman et al., 2004; Salvi, 2008; Cohen and Coughlin, 2008; Dekkers 

and Van der Straaten, 2009; Chalermpong, 2010), whilst Theebe (2004) combined rail, road 

and aircraft noise into a single noise index. Not all of these studies produce statistically 

significant HP estimates for aircraft noise and there are also some shortcomings in the 

treatment of aircraft noise in the HP modelling regarding the quality of the noise data and the 

treatment of background noise that are examined in detail in section 5. 

 

Anselin (2002, pp. 259) stresses that “there is very little formal guidance in the choice of the 

‘correct’ spatial weights in any given application”. This does not mean that there are no cases 

where the spatial weight specification is plainly incorrect. Most HP models are based on 

analysis of disaggregate house sale data, composed from observations each at a specific 

location and time. Spatial distance or contiguity is normally the only factor taken into account 

when specifying spatial weights for such data. However, there is an element of temporal 

ordering in disaggregate house sales datasets that ought to be taken into account. Ignoring the 

arrow of time produces paradoxical assumptions, such as a house sale price being affected by 

house sales that have not taken place yet. Henceforth, this is termed the “temporal ordering 

inconsistency”, where interdependence of house prices is assumed instead of the correct uni-

directional effect from earlier to subsequent house sales only. Even though expectations and 

speculation for future prices or forecasting may well affect current prices, all these strictly 

depend on information from the past and the present. Information does not travel backwards 

in time; hence there is a clear theoretical impossibility of actual future prices affecting current 

prices.  

 

Temporal ordering has been recognised and accounted for in the real estate literature, as part 

of modelling the spatiotemporal patterns of house prices to produce robust house price 

indices. To that effect spatiotemporal models on panel data have been employed, often using 

HP model results as inputs (Pace et al., 1998; Gelfand et al., 2004). Can and Megbolugbe 
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(1997), accounting for spatial dependence in house price index construction, allow only prior 

sales to influence house prices in their HP models, directly addressing the temporal ordering 

inconsistency. In section 4 we discuss their approach and its shortcomings, improving the 

methodology and applying it to environmental externality valuation. 

 

The HP literature valuing environmental commodities does not appear to recognise the 

temporal ordering issue. Judging from the information provided about the nature of the data 

and the specification of spatial weights in the published papers, some of the aircraft noise HP 

studies (Chalermpong, 2010; Dekkers and Van der Straaten, 2009; Salvi, 2008; Theebe, 

2004) and some looking at other environmental characteristics (Conway et al., 2010; 

Andersson et al., 2010; Hui et al., 2007) suffer from temporal ordering inconsistencies. 

Others, for example, Cohen and Coughlin (2008) and Bateman et al. (2004) attempt to avoid 

this issue by assuming that the house sale observations cover a single time period (i.e. a year) 

so no temporal ordering is imposed in their data. Kim et al. (2003) avoid the temporal 

ordering inconsistency, as their models are not based on house sales, but on survey data and 

respondents’ estimates of their current house value. The spatial interaction is between 

geographical areas, where interrelationship is a reasonable assumption (Franzese, and Hays 

2008). 

 

The key contribution of this paper is to propose an elegant solution to the temporal ordering 

inconsistency and to demonstrate that the treatment of this inconsistency affects the 

estimation of aircraft noise depreciation. We also go a step further forward to specify a time 

decay rate capturing the over time diminishing effect of preceding sale prices to succeeding 

house prices. Additionally, the specification of aircraft noise in our models employs 

continuous noise data, explicitly including an allowance for background noise and avoiding 

the imposition of artificial thresholds (Thanos et al., 2011; Andersson et al., 2010), which we 

believe is an advance on previous practice in HP studies valuing aircraft noise. 

 

The structure of this paper is as follows. Section 2 briefly discusses the theoretical 

background of the HP method. Section 3 describes the housing data and the derived 

geographical information. Section 4 explains spatial dependence, the approaches in the 

literature and our approach. Section 5 illustrates the shortcomings of aircraft noise treatment 

in the recent spatial HP literature and discusses our approach to aircraft noise modelling. 
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Section 6 presents the HP modelling methodology and discusses the HP results. The 

conclusions follow in Section 7.    

 

2. Hedonic Pricing 

 

Rosen’s (1974) two stage hedonic pricing approach was an important theoretical contribution 

that has become the cornerstone of most empirical work on housing markets. In the first 

stage, using data on house prices and characteristics, the hedonic price schedule is estimated, 

from which implicit marginal prices for housing characteristics are calculated (Nelson, 2008). 

However, implicit prices are market specific, reflecting only the particular situation of supply 

and demand that exist in a given property market and offering little indication of the 

conditions and marginal prices in other housing markets (Day et al., 2007). The second stage 

involves the marginal prices of a characteristic, combined with data on occupants’ income 

and other socioeconomic variables, to estimate an inverse demand function (Nelson, 2008). 

This is a theoretically and analytically challenging task whilst the problem is in essence quite 

simple. Information is required on at least two points along the length of a household’s 

demand curve, whereas data from a single housing market provide just one such point (Day et 

al., 2007). 

 

Only Day et al. (2007) have applied the second stage HP approach in noise valuation and 

estimated an inverse demand function for road traffic and rail noise. All other noise valuation 

studies, including our approach, are estimating the first stage hedonic pricing schedule, 

reporting marginal prices of housing characteristics. The first stage hedonic price function (P) 

of a composite commodity, housing in this case, may be written as: 

 

P = P (γ, Z)           (1)
   

where Z = [z1, . . . , zm] is a vector of utility bearing characteristics and γ is aircraft noise 

exposure. The slope of the HP price function can be used to determine the consumer’s 

marginal willingness to pay for a given commodity (characteristic), since in optimum it 

equals her marginal rate of substitution between the price of the commodity and any of the 

other housing characteristics (Rosen, 1974; Andersson et al., 2010). This marginal WTP for 

aircraft noise is: 
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ܹܲܶܯ ൌ డሺఊ,
డఊ

ሻ          (2) 

 

Eq. 2 only shows the marginal WTP in optimum, obtained by the information of individuals’ 

behaviour at a point in time; it does not reveal the underlying preference structure (Andersson 

et al., 2010). Moreover, welfare measurements are not possible using only marginal prices, 

unless the environmental change affects a small number of houses relative to the size of the 

market (Palmquist, 1992). This special case of a localised externality is applicable to our 

research context as we only examine a small part of the housing market of metropolitan 

Athens. 

 

3. Housing Data   

 

This study employs data on 1613 house sales from 1995 to the beginning of 2001, acquired 

by local real estate consultants1  around Athens International Airport (AIA). Aircraft noise 

had been a very important issue in this densely populated area (Charalampakis, 1980), which 

had more than 350,000 residents in 2001 (National Statistical Service of Greece, 2003). 

 

The data include information about the basic structural characteristics of each house, such as 

the square meters of the floor for the living space2, construction year, sale date, number of 

rooms3, presence of a garage and floor number. The house type is categorised as detached, 

semidetached/terraced and flat. The sale price of each house is given in €s converted from 

drachmas. A quarterly consumer price index for the housing sector in Greece (OECD, 2006) 

was used to adjust the prices to 2001 levels.   

 

The full address of each house sale was available, allowing the assignment of geographical 

coordinates to each house (with 20 meters accuracy or better) and the derivation of further 

geographical information through GIS modelling. Certain local amenities have been shown to 

affect house prices (Frankel, 1988; Bateman et al., 2001). We located 445 such amenities in 

the area and used the specific coordinates to estimate the crow fly distance between each 

house and the nearest church, public service facility, sport facility, hospital or health centre, 
                                                 
1 “Property AE”, was an established real estate consulting firm at the time, specialised in housing market studies 
and connected with local real estate agents and the National Bank of Greece, published the “real estate news” 
magazine. 
2 Excluding balconies, gardens and sheds 
3  Excluding bathrooms, kitchens and storage rooms 
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plaza, super market and school. The premium of a seaside location is controlled for by 

introducing a dummy for houses within 300 meters of the coastline4. 

 

Digital maps5 and local road network data were acquired. The road distance from each house 

igure 1 illustrates all the available geographical information for the study area, including the 

able 1 provides the details of all available data. Most of the data refer to newly constructed 

ooking at the spatial distribution in figure 1 the data provide good coverage for all the areas 

                                                

to the Airport entrance was then estimated, since access to the airport is usually by car or 

public transport rather than on foot, as would be the case for many other local amenities in 

close proximity. These data also allowed the estimation of the distance to the closest point of 

a main road for each house. This is expected to account for better accessibility, but also for 

additional road noise, for which we do not have any other available information. 

 

F

location of each house sale, the road network, the main roads, the airport entrance, the coast 

line and the amenities in the area.   

 

T

properties; 73% were built within 5 years of the sale and 83% are flats. This is due to the high 

development rate of the local housing market during the study period. The market was in the 

process of replacing older, lower quality and low rise houses (detached/semidetached) with 

high rise flat complexes. We are confident that our data sample reflects the situation in the 

local housing market during the study period. This was also supported by the interviews 

conducted with local real estate agents and housing market professionals in 2004. We were 

unable to confirm this from official data sources in Greece, since appropriate data were 

simply not available for the area and study period.   

 

L

(the road network indicates the inhabited part of the map), with coastal areas having the 

highest observation density. The estimation of aircraft noise exposure data is discussed in 

section 5.   

 

 

 
 

4 We did not use a continuous distance to the coast variable, because it did not capture the amenity of residing 
near the sea for observations further inland. Instead the inclusion of this variable introduced collinearity in the 
models. We tested a range of dummy variables and the 300 meter dummy provided best statistical fit.   
5 The company Eratosthenes S.A. provided digital maps of the road network in the study area 
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Figure 1: The geographical features of the study area and the location of each house sale 
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Table 1: Data description  
Variable name Description  Mean S.D. Min Max 
price Mean house sale price in € in 2001 levels  176605 111798 26412 1027146 
Ln_price Natural Logarthim of the house price  12.09 0.61 9.9 14 
room_no Number of rooms  4.31 1.48 1 9 
built_per Time elapsed in years since construction of 

building  
3.86 3.63 0 20 

floor_no floor number  2.42 1.58 0 8
Air_noise The aircraft noise  in decibels, 90 day Lden 61.96 7.06 38 82
Lden_tot Algebraic sum of aircraft and background noise 63.59 5.26 55 82
sq meters Square  meters of the house floor 118.1 72.2 22 500
room1_2 Dummy equals 1 when 1 or 2 rooms 0.09 0.29 0 1
room3 Dummy equals 1 when 3 rooms 0.17 0.37 0 1
room4 Dummy equals 1 when 4 rooms 0.41 0.49 0 1
room5 Dummy equals 1 when 5 rooms 0.10 0.30 0 1
room6 Dummy equals 1 when 6 rooms 0.07 0.25 0 1
room7 Dummy equals 1 when 7 rooms or over 0.14 0.35 0 1
House>10yr Dummy equals 1 when house built over 10years 0.11 0.31 0 1
House 6-9yr Dummy equals 1 when house built between 6 

and 9 years ago  
0.15 0.36 0 1 

H_Age_B Dummy equals 1 when the house age is below 5 
years or unknown 

0.74 0.44 0 1 

floors_7-8 Dummy equals 1 when floor number 7 to 8  0.01 0.11 0 1 
floors_4-6 Dummy equals 1 when floor number 4 to 6  0.19 0.39 0 1 
floors<4 Dummy equals 1 when floor number is below 4 

or unknown 
0.80 0.40 0 1 

detached Dummy equals 1 when detached house type  0.09 0.28 0 1 
semidetached Dummy equals 1 when semidetached house  0.08 0.28 0 1 
flat Dummy equals 1 when flat  0.83 0.35 0 1 
garage Dummy equals 1 when private garage available 0.41 0.49 0 1 
non_coastal Dummy equals 1 when house located in the 

non-coastal area  
0.10 0.30 0 1 

Coastal_area Dummy equals 1 when house located in the 
coastal area 

0.90 0.37 0 1 

d_sports Distance in meters to the nearest outdoor 
sporting facility  

557 333 18 1899 

d_public_serv Distance in meters to the nearest public service 
building

571 366 18 1999 

d_plaza Distance in meters to the nearest plaza 354 206 9 1363 
d_school Distance in meters to the nearest school 401 294 14 1977 
d_supermarket Distance in meters to the nearest supermarket 757 459 9 2863 
d_church Distance in meters to the nearest church 429 232 11 1632 
d_health Distance in meters to the nearest hospital or  

health centre 
969 529 24 2637 

d_main_rd Distance in meters to the closest point of a main 
road 

221 211 0 1478 

d_air_rd Drive distance in meters to the airport entrance 
through the road network 

5351 2378 201 11233 

d_air_4km As above, truncated to 4000 meters 3526 938 201 4000 
Akto_300m Dummy equals 1 when the house is located 

within 300m from the coastline 
0.13  0.34 0 1 

y95q1-y00q4 Dummies for each quarter from the 1st quarter of 1995 to 4th quarter of 2000^ 
^ Includes a few observations from the beginning of 2001 
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4. Spatial dependence in HP and temporal ordering 
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The presence of a lagged price variable in SLM denotes that the total increase in value due to 

l multiplier effect 

halermpong, 2010) or assume the issue away (Andersson et al., 2010). Cohen and 

tion, where everything is correlated with 

verything else (Conway et al., 2010) but does not address temporal ordering.  

Imposing contiguity

g market and urban space. One needs to specify units, within which 

the observations behave in the sam

limited. Submarket effects are not always distributed spatially and spatial sub-markets do not 

ften coincide with administrative areas (Watkins, 2001, Bateman et al., 2004). Rather than 

he similarity of property characteristics or geographical 

contiguity, 

conomic characteristics of the 

local population (Bateman et al., 2004).  

 

a change in an attribute can be decomposed into a direct and an indirect effect. The latter 

occurs when the increased value of the property in question raises the value of neighbouring 

properties that in turn raise the value of the property in question further (Andersson et al., 

2010). Eq. 4 demonstrates that the marginal implicit price in SLM for attribute ω is not given 

by bω, but by bω ሾܫ െ ܫሿିଵ (Kim et al., 2003), where ሾܹߞ െ  ሿିଵ is termed spatialܹߞ

multiplier. Some HP studies that use SLM disregard the spatia

(C

Coughlin (2008) estimate spatial multiplier effects for noise and discuss the indirect spatial 

effects. This is not an issue in SEM.   

 

4.1. Spatial weight specification  

 

Spatial weights are usually based on distance or contiguity. In defining contiguity weights, 

areas (polygons) adjacent with the targeted area (polygon) of the house sale are assigned a 

weight of 1 in the weighting matrix, and all other areas a weight of 0. This approach reduces 

the probability overestimation of spatial correla

e

 

 weights introduces unverifiable assumptions about the structure and the 

interactions of the housin

e way and adjacent units to which the interactions are 

o

being based exclusively on t

the dimensions of housing submarkets are determined by both spatial and 

structural factors simultaneously (Watkins, 2001) and socioe

Therefore, we prefer distance based spatial weights for HP models. We specify the weights as 

the inverse distance between house sale observations following Can and Megbolugbe (1997). 

This accounts for the diminishing effect of house sales prices that are further from each other. 
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The spatial weights are in the form of a square n×n matrix W. We specify three distance 

based spatial weight matrices Wα, Wβ and Wγ. Each element wij in matrix Wα is given by: 

 

ݓ ൌ ൝
ଵ
ௗೕ
 ݂݅  i ് j 

0 ݂݅ i ൌ j 
          (7)  

 

Where dij is simply the inverse Euclidean distance between house i and house j. Wα is a 

symmetric square matrix with the main diagonal being zero (the effect of each sale price to 

itself). This is simil mmon approach in the literatu istance weights are 

employed and contains the temporal ordering inconsistency.   

 

One important consideration in specifying spatial weight matrices is to avoid overestimation 

of spatial dependence, where each

ar to the co re, when d

 observation is spatially connected to every other 

bservation and vice versa and other factors are underestimated. Most studies that employ 

y cut-off point, after which house prices are not 

ssumed to affect each other within an urban structure. For example, Andersson et al. (2010) 

ctively a case 

f overestimating spatial dependence, mistaking a uni-directional relationship for two way 

ver, a year is too long a period to be considered as a 

multaneous sale for all the data (Pryce and Gibb, 2006; Zuelke, 1987; White and Watkins, 

2004). Even if they do not have the information to address temporal ordering, it is still in the 

o

distance based weights introduce an arbitrar

a

present two models with cut off points at 4km and 10km. Kim et al. (2003) consider as 

neighbours all housing units in the same sub-district as well as all units in districts that have 

their centroid within 4 km. Bateman et al. (2004) introduce much lower cut-off points of 

about 0.25 km for various sub-market HP models. Similarly Chalermpong (2010) and Salvi 

(2008) use a 0.3 km cut-off point. The temporal ordering inconsistency is effe

o

interdependence. In addressing the temporal ordering inconsistency, we account for part at 

least of any spatial dependence overestimation, as is discussed below.  

  

Looking the aircraft noise spatial HP literature, Dekkers and Van der Straaten, (2009), 

Theebe (2004), Salvi (2008) and Chalermpong (2010) specify their spatial weight matrices in 

a way that includes the temporal ordering inconsistency. Cohen and Coughlin (2008) and 

Bateman et al. (2004) assume that the house sale observations cover a single period, a year. If 

no more specific information about sale dates is available, they would not be able to impose 

any temporal ordering in their data. Howe

si
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data, since they employ symmetric spatial weight matrices that assume interdependence 

between the sale prices. Hence, there is still overestimation of spatial dependence due to 

temporal ordering, even if some overestimation is dampened through arbitrary cut-off points. 

 

As our case study area is a relatively small geographical part of Athens where everything 

ffects everything else, albeit to a small degree, we do not specify any distance cut-off point. 

There is no theoretical reason but only methodological necessity/convenience. However, the 

inverse distance specification em

sales prices that are further from each other. To address the temporal ordering inconsistency 

a

ployed here accounts for any diminishing effect of house 

that is present in Wα, we specify matrix Wβ with each element wij given by: 

 

ݓ ൌ ൝
ଵ
ௗೕ
ݐ ݂݅    ܽ݊݀ iݐ ് j 

ݐ ݂݅ 0  i ݎ/݀݊ܽ ݐ ൌ j 
         (8) 

 

Where ti and tj is the number of days elapsed since the first observation in the dataset and the 

sale of houses i and j respectively. When the data are ordered from the “furthest in the past” 

to the latest house sale, Wβ becomes a lower triangle square matrix, with all the values of the 

upper triangle being zero. Only sales in the past affect subsequent sales and not vice versa. 

Thus Wα contains double the information of Wβ, even though this information is the product 

of the paradoxical assumption of sales prices being affected by sales that have not yet taken 

place. We expect that due to this extra information Wα will produce better fitting models than 

Wβ, overestimating spatial dependence. Hence, overall goodness of fit measures cannot 

provide guidance to choosing the preferred model in this context; only theoretical 

considerations can help.    

 

One of these theoretical considerations is the assumption in Wβ that sale prices further in the 

past should affect a current sale price to the same extent as more recent sale prices. An 

lowance for temporal distance, maybe in the form of a time decay factor, may therefore be al

an appropriate addition to the distance weights that specify the connection in space between 

the observations. In the current model form it is not computationally feasible to estimate a 

time decay function on the top of the estimated spatial parameters. The time decay factor 

must be specified a priori. Hence, we look at the housing economics literature for clues as to 

what time frame may be appropriate when considering a decay factor for the spatial weights.  
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Pryce and Gibb (2006) show that about 80% of the properties on sale in Strathclyde are sold 

within 1 quarter and about 90% of the properties are sold within 2 quarters. Zuelke (1987) 

find the average market duration of a house on sale in Florida being about 4 months and less 

than 6 months for the 82% of their sample. White and Watkins (2004) determine that the vast 

majority of the properties on sale in Aberdeen were sold within 95 days. We assume that 

rice setting behaviour of the seller is mostly affected by the price levels at the time and the 

ales is reducing 

onlinearly with passing time. Sales far in the past can be seen as providing a background in 

the market. We combine these insights to specify a new weight matrix. Each matrix element 

of inverse Euclidean distance be

between the two sales. Thus our approach diverges from Can and Megbolugbe (1997), who 

referred spatial weight specification all prior sales that occurred within a 

p

same goes for the buyer, when he is doing market research.  

 

The time-on-the-market studies above indicate that the time scale, in which house market 

participants are most exposed to effects from past house sales, is within a quarter of the sale. 

Hence, this may be the most appropriate time frame in which to analyse these effects. We 

further assume that the effect on subsequent house prices from past s

n

tween two observations is divided by the number of quarters 

include in their p

3km of a current transaction and only within the prior two quarters. This way they are setting 

cut off points in both space and time. As discussed above, we do not see any reason to set 

distance cut off points in this context and the effects of past sales to subsequent house prices 

is dampened after two quarters instead of being assumed zero.   

 

More formally, to take account of time decay we specify the weight matrix Wγ, by 

multiplying each element wij in Wβ by the time decay rate rij: 

 

ݎ ൌ ൝
ଵ

ିೕ
 ݂݅  i ് j 

  
1      ݂݅ i ൌ j 

           (9) 

 

Where qi and qj are the quarters during which houses i and j were sold respectively, with q 

taking values 1, 2, ... m, where m is the latest quarter in the dataset.  
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This implies that the bigger difference between the quarters of any two house sales, the less 

the spatial weight in the modelling. For example if house j was sold 2 years before house i it 

loses 87.5% of the weight it would have if the sales took place in the same quarter. Houses 

sold in the same quarter or within a quarter of each other are weighted by the inverse distance 

ure 

on and thresholds.  

ft noise depreciation on house 

rices for 1 dBA increase, which is rather on the high side of the HP literature. A reasonable 

                                                

without any effect from rij. The feature of Wβ, where sale prices cannot affect the prices of 

preceding house sales is kept in Wγ. Hence, negative values of rij are unimportant, since they 

multiply zeros in upper triangle part of the matrix Wβ. 

 

5. Aircraft Noise   

 

5.1. The treatment of noise in the spatial HP literat

 

Here we consider the treatment of aircraft noise in the published studies that apply spatial HP 

models to aircraft noise valuation. Issues include the use of continuous or banded data, the 

use of cut-off or threshold values and the treatment of background noise. 

 

Theebe (2004), Cohen and Coughlin (2008) and Chalermpong (2010) use a dummy variable 

specification for noise, producing statistically significant estimates only above 65dBA, 

70dBA and 70-75dBA6 respectively, all of which are very high levels of noise exposure. 

Chalermpong (2010) also has a serious data constraint7 , which might affect the aircraft noise 

estimates. Theebe (2004) transformed continuous noise data to 5 dBA noise bands. We 

consider dummy specifications (constructed from noise contours/bands or continuous data) as 

an inferior approach to continuous aircraft noise exposure data. Dummy specifications make 

no distinction between properties within a contour. The noise banding also imposes 

untestable assumptions about functional form of noise depreciati

 

Regarding the studies that employed a continuous aircraft noise variable, Salvi (2008) 

produced a statistically significant estimate of 0.97% aircra

p

 
es 30-35 and 35-40 Noise Exposure Forecast (NEF) contours that closely correspond to 6 Chalermpong (2010) us

65-70 and 70-75 dBA of Ldn metric respectively. Ldn is the equivalent continuous sound pressure level over a 
fixed time period (Leq) where the night values (22:00 – 06:00) are weighted by the addition of 10 dBA. 

t is stated that most of the 37,591 observation had identical characteristics and were sold at the same price. 
Therefore, the dataset was restricted to only 384 observations for the HP modelling. It is not made clear how 
these 384 observations were selected, since 554 observations of the extended dataset were in the 35-40 NEF 
contour and 1784 in the 30-35 NEF contour. 

7 I



16 
 

threshold of 50 dBA was employed for both aircraft and road traffic noise. Bateman et al. 

(2004) could not attribute any statistically significant effect to aircraft noise, using a common 

ut off point across modes of 55dBA below which it was assumed that transport noise was 

is problematic, especially the explicit assumption that below a 

reselected level aircraft noise does not impact on values. The inclusion of noise from other 

 (2009) do, is an attempt 

 allow for background noise. However, the use of different thresholds in Dekkers and Van 

dBA. 

n for the 

afety of Air Navigation (EUROCONTROL), who have complete data on flight paths and 

aircraft movements for Hellenikon Airport. Radar data were employed to derive more 

he 

 of 

c

indistinguishable from ambient noise. Dekkers and Van der Straaten (2009) report a model 

with thresholds that vary by the noise source, 45 dBA for air traffic, 55 dBA for road and 60 

dBA for rail, recovering a statistically significant effect for aircraft noise of 0.77% 

depreciation per dBA on house prices. The authors noted that threshold selection influenced 

their aircraft noise value estimates, with the coefficient becoming insignificant at threshold 

levels equal to or above 50dBA. They do not report the effects of changing the road and rail 

noise threshold levels.    

 

The use of thresholds 

p

transport modes, as Salvi (2008) and Dekkers and Van der Straaten

to

der Straaten (2009), whilst reflecting evidence in the annoyance literature is questionable in 

this context. They are effectively assuming that road traffic noise will not impact on welfare 

until it is 55dBA, whereas aircraft noise will do so at half the intensity, 45

 

Nonlinear econometric specifications of the noise variable may arbitrarily impose a 

predetermined functional form, as a concave function in Andersson et al. (2010). Such 

approaches also require estimation of additional parameter(s) in models that cannot 

simultaneously account for spatial dependence (Kim et al., 2003). Hence, such specifications 

are not employed in this paper. 

 

5.2. Treatment of aircraft and background noise in this study 

 

The physical aircraft noise estimates were supplied by the European Organisatio

S

accurate aircraft approaches to the airport and the Integrated Noise Model (Federal Aviation 

Administration, 2003) was employed for the aircraft noise modelling. The consistency of t

modelled data with actual noise measurements was confirmed by EUROCONTROL. A set
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coordinates for each house sale was provided to EUROCONTROL and they supplied an 

estimate of the aircraft noise exposure for the specific coordinates.  

 

The noise exposure data is in the Lden
8 noise metric, which is seen as appropriate for aircraft 

noise in the EU (EC, 2002) and is commonly used in HP studies valuing noise (Dekkers and 

Van der Straaten, 2010; Rich and Nielsen, 2004; Baranzini and Ramirez, 2005). Miedema et 

al. (2000) investigated which noise metrics best predict annoyance from aircraft noise and 

supported the use of weighted noise metrics, such as Lden, instead of Leq in this context. 

 

The decibel value provided represents the average value of the 90 day period preceding the 

house sale. This is to prevent the decibel value reflecting daily, weekly or monthly peaks that 

can be misleading for this kind of analysis. This averaged value is expected to better reflect 

the effect of aircraft noise exposure on housing market actors prior to house purchase.  

learly we wish to take account of background noise pollution from road traffic and other 

 

The basic descriptive statistics for aircraft noise exposure are found in Table 1 under the 

“Air_noise” variable. Figure 2 visually illustrates this exposure on our housing data using 5 

decibel contours. There is much variation in aircraft noise exposure across the study area 

reaching a maximum of 82 dBA. Residents in the municipality of Alimou (north-northwest of 

the airport) were exposed to by far the highest noise levels, as noted elsewhere in the 

literature (Yang and Kang, 2005; Charalampakis, 1980).  

 

C

sources. Unfortunately, no data were available on other sources of noise pollution such as 

road traffic. From previous studies of the noise situation in Athens (Nicol and Wilson, 2004; 

Yang and Kang, 2005), it can be deduced that a 55dBA value for background noise would be 

a reasonable approximation. In addition we used distance to a major road as a proxy for 

higher exposure to traffic noise. 

 

 

 

                                                 
8 Equivalent continuous sound pressure level over a fixed time period (Leq), where the evening values (18:00 – 
22:00) are weighted by the addition of 5 dBA (A-weighted decibel), and the night values (22:00 – 06:00) are 
weighted by the addition of 10 dBA 
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Figure 2: Aircraft noise contours 
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We attempt to capture the effect of aircraft noise on the housing market above the general 

noise level in the area, even if aircraft noise effects are very low when dominated by other 

noise sources. Following Andersson et al. (2010) and Thanos et al. (2011), the aircraft noise 

level (γa) and the assumed background noise level (γb) are combined in a total noise level (γt) 

that is given by:    

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 1010

10 101010),(
ba

LOGbat

γγ

γγγ
 

               (10) 

The γt is used in HP models. If γa is dominant, γb will have an almost negligible effect on the 

total noise level and vice versa (γa ْ γb ≈ γa if γa γb). This analysis can be considered a 

step forward from studies that simply examine variations in aircraft noise above a pre-

specified cut off point. Even low levels of aircraft noise are included in the analysis that 

would otherwise have been below a 55 dBA cut off point; for example 51 dBA aircraft noise 

and 55 dBA background produce a total noise level of 56.46 dBA. 

 

Variable “Lden_tot” in Table 1 provides the descriptive statistics for γt. The difference 

between the mean noise total (63.59 dBA) and the mean of only aircraft noise (61.96 dBA) is 

1.63 dBA, indicating that aircraft noise dominates the sound-scape of the case study area. 

Thus we have a continuous aircraft noise variable that explicitly includes an allowance, albeit 

crude, for background noise, avoiding any need for the imposition of artificial thresholds.   

 

6. The HP Modelling 

 

Bateman et al. (2004) attributed their failure to produce statistically significant estimates to 

aircraft noise being less localised than other sources and thus subsumed in their treatment of 

spatial effects. In section 4 it was shown that the temporal ordering inconsistency is a case of 

overestimating spatial dependence in HP models. In the literature spatial dependence 

overestimation is usually dampened through arbitrary cut-off points, specification of which 

may well be affected by the temporal ordering inconsistency. We posit that the temporal 

ordering inconsistency is at least partly responsible for subsuming aircraft noise estimates. 

This is explored further in this section. 
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6.1. Methodological Considerations  
 

The form of the hedonic price function is not strictly prescribed by economic theory. Given 

that the Box–Cox specification is not readily implemented in the presence of spatial 

dependence (Kim et al., 2003), a semi-log specification is selected. It is the most widely used 

in the literature, providing an excellent goodness-of-fit to our data. In the semi-log 

specification the regression coefficient for aircraft noise is the price depreciation for a 1 dBA 

increase, taking the form of NDI9 when multiplied by 100. 

 

We included in the HP models most of the information available to us, presented in Table 1. 

The standard characteristics were included such as floor size, year and quarter of the sale, 

house type and private garage. However, there were some minor issues that needed to be 

addressed. Floor number, room number and house age contain between about 150 missing or 

inapplicable observations, thus we constructed the dummy variables seen in Table 1 to 

address this issue. The inclusion of room number as continuous variable also introduced 

collinearity to the models, thus the 4 room category is used as the base with all other values 

are included in the model as dummies. Given the housing stock on sale is relatively new, we 

constructed two categories for house age that might have enough observations to produce 

statistically significant results, between 6 and 9 years and over 10 years, with the base being 

less than 5 years. Since flat is the dominant house type in Athens, higher floor numbers are 

considered advantageous due to better views, especially in areas near the sea, such as our 

study area. Hence, we specified two dummy variables that account for this effect, floor 

number being between 4 and 6 or between 7 and 8, with floor number below 3 being the base 

category. More detailed categorisation of the floor number did not produce statistically 

significant coefficients. As for the quarterly dummies, the last quarter in our data (4th quarter 

2000) is the base category. 

 

The wider area around the airport is also called the “south suburbs” of Athens and is a 

distinct housing submarket attracting a higher premium than more central locations and most 

other fringe areas. The structure and geography of Athens metropolitan area, especially of its 

housing market, does not conform to a concentric zone model (Allen et al., 2004; Fellmann et 

al. 2003), where distance to the centre an essential feature. In our models, distance to the

                                              

 

   
 ( ) ( ) 100100/1/ ×=××∂∂= βγ PPNDI where β is the coefficient of aircraft noise variable γ  9
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Athens centre is dropped as it introduces collinearity, affecting many of the other distance 

xpected to command significantly lower premiums. 

 

All the other geographical information was included in the HP models. The distance to the 

airport did not produce statistically significant coefficients when introduced in the models. 

ropriate tests are Moran’s 

for detecting spatial dependence and locally robust variations of the classical Lagrange 

re 

teresting, since the temporal ordering inconsistency seems to affect model selection. 

α) that includes temporal ordering inconsistencies shows 

oth spatial lag and error to be statistically significant, which would require arbitrarily 

rpretation of this result is that, in some cases at least, 

e temporal ordering inconsistency seems to introduce a spatial pattern that passes for the 

variables and aircraft noise. This is due to the geography of the local area that is a narrow 

strip of inhabited land pointing to the centre of Athens, especially south-southeast from the 

Airport (see Figure 1). Instead, we control for the high density area closer to the centre by 

introducing a dummy for the non-coastal area directly north from the airport (see Figure 1), 

where houses are e

The positive externalities of proximity to an airport may not affect houses that are further 

away, truncating the distance to the airport to 4km proved the most effective approach.  

 

An important methodological issue is the selection of either SLM or SEM. We adopt the 

approach of performing a battery of specification tests on the OLS residuals of the HP 

regression after using the appropriate spatial weight matrix. The app

I 

Multiplier test for selecting the model form (Anselin, 1988; Anselin et al., 1996; Florax et al., 

2003; Franzese and Hays, 2008).  

 

Table 2 presents these tests, where the null hypothesis in Moran’s I test of no spatial 

dependence is rejected in all models. However, the tests for selecting SLM or SEM are mo

in

Testing the full weight matrix (W

b

selecting one of the two. Interestingly this was also the finding of Chalermpong (2010) and 

Dekkers and Van der Straaten (2009) whose tests for both spatial lag and error are 

statistically significant in models that contain temporal ordering inconsistencies.  

 

When the temporal ordering inconsistency is removed in weight matrix Wβ, the robust spatial 

lag test becomes insignificant, whereas the test for spatial error is still highly significant. This 

pattern is even more prominent in the weight matrix Wγ that includes time decay. Hence, we 

select the spatial error model. One inte

th
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effects of a spatially lagged variable. In this context this would be house prices directly 

ffecting neighbouring prices, instead of the correct common exposure pattern.  a

 

Table 2: Spatial Dependence diagnostics  

Wα: Full Weight Wβ: Trill^ Weight  Wγ: Time Decay^ 
Statistic p-value Statistic p-value Statistic p-value

Moran's I 41.919 0 25.577 0 23.311 0
Lagrange multiplier SEM 780.366 0 260.855 0 234.812 0
Robust Lagrange multiplier 
SEM 690.08 0 254.717 0 228.561 0

Lagrange multiplier SLM 253.685 0 9.305 0.002 8.76 0.003
Robust Lagrange multiplier 
SLM 116.27 0 3.167 0.075 2.509 0.113
^Lower triangle matrix  

 

As to the selection of an estimator, Maximum Likelihood (ML) estimation requires the 

assumption of normality (Cohen and Coughlin, 2008; Kim et al., 2003). The Jarque-Bera test 

(Jarque and Bera, 1987) cannot reject at the 99% level the null hypothesis of normality10  in 

the OLS residuals. Therefore, we use the ML estimator of Barry and Pace (1999) adapted and 

discussed in Franzese and Hays (2008), pointing out that the strictly lower triangular nature 

of Wβ and Wγ avoids the need to compute the determinant of a general matrix. 

 

6.2. The HP Models Results 
 

The HP model results are presented in Appendix 1. Looking at the OLS model, the fit to the 

data is excellent, explaining almost 87% of the variation. All the coefficients across the four 

models are of the expected sign and most are statistically significant at the 95% level. In all 

models, higher floor flats command a premium, as do detached houses and private garages. 

Conversely, houses in the non-coastal area or with lower room number are penalised. As 

xpected, the square meters of the floor space has a very significant positive effect on house 

                                             

e

prices in our models. Being closer to schools, churches, the airport entrance and within 300 

meters of the coastline positively affects prices. The distance to main roads coefficient is 

positive, possibly capturing accessibility advantages rather than traffic noise exposure. The 

price is negatively affected by proximity to plazas, which could be due to increased noise 

from human traffic and nightlife, and proximity to sport facilities, since these are mostly 

    
 Jarque-Bera statistic: 2.7339 (critical value: 5.10 9550), p: 0.24. 
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outdoor basketball courts and football grounds and tend to be on the fringe of the urban area. 

House age, proximity to public service buildings and hospitals do not have a statistically 

significant effect.  

 

The aircraft noise coefficient in the OLS model produces a NDI of 0.646, which is in line 

with the HP literature (Nelson, 2004; Wadud, 2010). The most striking change between the 

LS and the ML1 model, which includes the temporal ordering inconsistency, is the fact that 

ically 

ignificant aircraft noise coefficient of higher magnitude compared to ML1. 

ation of distance effects. As expected, the structural 

ousing characteristics do not exhibit any substantial variation across models, being mostly 

price levels 

ver time, which are often used to derive house price indices. Can and Megbolugbe (1997), 

model, ML1, to fit the data better, albeit by overestimating spatial dependence due to the 

O

the aircraft noise coefficient is not statistically significant. This demonstrates that the 

temporal ordering inconsistency introduces overestimation of spatial dependence in a pattern 

that directly affects aircraft noise estimates. This is further supported by the results of ML2 

and ML3 that correct for the temporal ordering inconsistency and produce a statist

s

 

There is also a substantial reduction in the magnitudes of most of the distance effects in ML1 

compared to OLS. The coefficients of “within 300 meters of the coastline”, “distance to 

church and main roads” lose statistical significance at the 95% level. In ML2 and ML3 

distance effect estimates almost return to the OLS levels, implying that temporal ordering 

inconsistencies causes underestim

h

unaffected by spatial dependence and temporal ordering. 

 

Looking at the quarterly dummies, OLS and ML1 exhibit very similar coefficient 

magnitudes, which increase significantly in ML2. The magnitudes of these coefficients are 

subsequently reduced in ML3, being very close to OLS and ML1 after 1999. The estimates of 

ML3 are considered the most reliable, since it incorporates the time decay factor that directly 

addressed the temporal aspect of spatial effects. These results show that the temporal ordering 

inconsistency or ignoring spatial dependence in HP affects the estimates of house 

o

employing data from only a single quarter, did not examine such effects.  

 

We employ the Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC) to compare the models with respect to overall goodness of fit.  In the section 5.1 we 

mentioned that because Wα contains double the information of Wβ, we expect the equivalent 
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temporal ordering inconsistency. This is confirmed by both AIC and BIC, ML1 fits the data 

best compared to all other models.  

 

More importantly, ML3, the model that incorporates time decay into the spatial dependence 

pattern, provides a better fit to her e  

time decay captures additio tio e ith t to

, rat ing it. C pared to ML2, there is an increase in the 

se co t in ML  wh r prefer  e NDI 

nt wi  aircra noise ure that does not account for 

r tha .646 ND of our OLS model. However, we believe it 

imate for aircraft noise from a spatial HP model.  

7. Conclusions 

his paper has identified and defined the temporal ordering inconsistency found in cross-

                                                

 the data than eit ML2 or OLS. This d monstrates that the

nal varia n in th  data, w out con ributing  spatial 

dependence overestimation her negat om

magnitude of the aircraft noi

0.493

efficien 3, ich is ou red model. Th of 

 is broadly consiste th the HP ft  literat

spatial dependence and lowe

is the 

n the 0 I 

only robust est

 

In our data aircraft noise introduces on average 8.59 dBA above the 55dBA background 

noise. Given the 0.493 NDI from ML3, a complete removal of aircraft noise would also 

remove a depreciation of 8632.7€11  per house on average, if say the Airport was closed. It 

was actually closed on March 2001 and a new Athens International Airport started operations 

more than 20kms away in a more sparsely populated area.  

 

 

T

sectional HP literature for valuing environmental commodities. The temporal ordering 

inconsistency leads to overestimation of spatial dependence, underestimating the effects of 

proximity to (dis)amenities and possibly the house price development over time. The 

Lagrange multiplier tests, employed as guidance for model selection, were also affected by 

this inconsistency. Spatial weight matrices have been developed to overcome this by ordering 

the data from the “furthest in the past” to the latest house sale, setting to zero all the values of 

the upper triangle square matrix and using only the lower triangle. Our preferred specification 

also introduces a time decay factor to the distance weights that specify the connection in 

space between the observations, directly addressing the temporal aspect of spatial effects. 

 

 
11 This value refers to the base category (coastal area), for the non-coastal area the figures is 6705.1€.  All 
money values are in 2001 price levels. 
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We note that Bateman et al. (2004) attributed the failure to produce statistically significant 

aircraft noise estimates to aircraft noise being less localised than other sources. Hence, these 

estimates were subsumed in their treatment of spatial effects. We agree with this observation 

nd we have shown that the temporal ordering inconsistency is responsible for subsuming 

ur treatment of aircraft noise can also be considered a step forward, since it is not a crude 

lly there is scope for improving the 

eatment of background noise. Although a common 55dBA assumption is not unreasonable 

ith the GIS modelling and Robert Franzese and Jude Hays for their insight to spatial 

a

aircraft noise estimates in our data, leading to undervaluation of this externality. 

 

Our preferred model with the time decay factor produced the best fit to the data among the 

models free from temporal ordering inconsistency, obtaining our preferred NDI estimate of 

0.493. We consider this the first robust estimate of aircraft noise valuation from a spatial HP 

model. This is also the first HP study for Athens and Greece implying a potential benefit 

from the Airport closure of 8632.7€ per residential property in the study area at the time. 

  

O

cut-off point that does not capture any effects below it. Our specification captures the effect 

of aircraft noise on the housing market above the general noise level in the area, even if 

aircraft noise effects are very low when dominated from other noise sources. 

 

Clearly there are many areas for future investigation. We would like to test this approach on 

other data sets, developing further the specification of the time decay factor and combining it 

with different specifications of spatial weights. Additiona

tr

as an average for this data set it will clearly include under and over-estimations. 
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Appendix 1: The HP Models  

Model OLS 
ML1: 
Full Weight (Wα)

ML2: 
Trill Weight (Wβ) 

ML3: 
Time Decay (Wγ) 

Variable Name Coef. Coef.  Coef. Coef.  
Lden_tot -0.00646*** -0.00196 -0.00454*** -0.00493*** 
  (0.00135) (0.00137) (0.00136) (0.00135) 
sq meters 0.00421*** 0.00427*** 0.00425*** 0.00422*** 
  (0.00016) (0.00015) (0.00015) (0.00015) 
room1_2 -0.68726*** -0.68876*** -0.68642*** -0.68121*** 

(0.02247) 

Base Base 

(0.01999) 
0.25723*** 

(0.01884) (0.01921) (0.01920) 

Base 

4 Base Base Base Base 
d 0.12209*** 0.12566*** 0.12014*** 0.12238***  

ched 0.05518** 0.04408* 0.05755** 0.05690** 

.09136*** 0.08726*** 0.08608*** 

(0.02793) 

-8.2E-05*** 
(1.9E-05) 

(2.1E-05) 
d_plaza -1.3E-04*** -9.4E-05*** -1.2E-04*** -1.2E-04*** 

  (0.02303) (0.02202) (0.02246) 
room3 -0.29225*** -0.29934*** -0.29291*** -0.28759*** 
  (0.01791) (0.01714) (0.01746) (0.01747) 
room4 Base Base 
room5 0.18547*** 0.19445*** 0.18818*** 0.19133*** 
  (0.02048) (0.01961) (0.01998) 
room6 0.25689*** 0.26040*** 0.25773*** 
  (0.02409) (0.02304) (0.02349) (0.02348) 
room7 0.28137*** 0.28589*** 0.28617*** 0.28986*** 
  (0.02756) (0.02636) (0.02688) (0.02690) 
House>10yr -0.01933 -0.02075 -0.01945 -0.01897 
  (0.01970) 
House 6-9yr -0.01657 -0.01235 -0.01439 -0.01551 
  (0.01784) (0.01707) (0.01740) (0.01739) 
H_Age_B Base Base Base 
floors_7-8 0.05676 0.10853** 0.07231 0.06387 
  (0.05249) (0.05047) (0.05126) (0.05117) 
floors_4-6 0.09369*** 0.11069*** 0.10019*** 0.09867*** 
  (0.01450) (0.01398) (0.01419) (0.01416) 
floors<
detache
  (0.02392) (0.02287) (0.02332) (0.02331) 
semideta
  (0.02432) (0.02328) (0.02372) (0.02370) 
flat Base Base Base Base 
garage 0.08984*** 0
  (0.01231) (0.01178) (0.01201) (0.01202) 
non_coastal -0.24926*** -0.35083*** -0.30166*** -0.26541*** 
  (0.02852) (0.02915) (0.02931) 
Coastal_area Base Base Base Base 
d_ sports -9.1E-05*** -6.0E-05*** -8.4E-05*** 
  (1.9E-05) (1.8E-05) (1.9E-05) 
d_public_serv 1.2E-05 -5.3E-06 8.9E-06 6.9E-06 
  (2.2E-05) (2.1E-05) (2.1E-05) 
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Model OLS 
ML1: 
Full Weight (Wα)

ML2: 
Trill Weight (Wβ) 

ML3: 
Time Decay (Wγ) 

Variable Name Coef. Coef.  Coef. Coef.  
  (3.0E-05) (2.9E-05) (2.9E-05) (2.9E-05) 
d_school 1.7E-04*** 1.1E-04*** 1.6E-04*** 1.5E-04*** 
  (2.4E-05) (2.3E-05) (2.3E-05) 
d_supermarket -4.1E-05*** -2.8E-05** -3.8E-05*** 

(2.3E-05) 
-3.6E-05*** 

E-05* 6.6E-05** 6.4E-05** 

(1.4E-05) 

(6.7E-06) (6.5E-06) (6.6E-06) (6.6E-06) 

0.38219*** -0.67981*** -0.53115*** 

-0.50644*** -0.51521*** -0.79166*** -0.61010*** 

(0.03714) (0.06121) (0.04060) 
-0.43064*** -0.68209*** -0.50894*** 

(0.03477) (0.03326) (0.05706) (0.03704) 
-0.45616*** -0.69755*** -0.52558*** 

(0.03602) (0.03445) (0.05613) (0.03747) 
-0.49430*** -0.73431*** -0.56531*** 

  (0.03476) (0.03325) (0.05346) (0.03569) 
-0.38464*** -0.60548*** -0.44081*** 

(0.03861) (0.03693) (0.05418) (0.03885) 
-0.28249*** -0.49446*** -0.34503*** 

  (0.03674) (0.03513) (0.05210) (0.03751) 
-0.33851*** -0.53784*** -0.39293*** 

(0.03533) (0.03379) (0.04984) (0.03591) 
-0.30098*** -0.48805*** -0.34601*** 

(0.03354) (0.03207) (0.04661) (0.03364) 
-0.37546*** -0.55582*** -0.42096*** 

(0.04270) (0.04084) (0.05181) (0.04218) 
y98q1 -0.24365*** -0.21938*** -0.40130*** -0.30476*** 
  (0.03734) (0.03579) (0.04583) (0.03789) 
y98q2 -0.23354*** -0.24206*** -0.39512*** -0.29039*** 
  (0.03131) (0.02995) (0.04179) (0.03205) 

  (1.4E-05) (1.3E-05) (1.4E-05) (1.4E-05) 
d_church 8.1E-05*** 4.8
  (2.7E-05) (2.6E-05) (2.6E-05) (2.6E-05) 
d_health -1.9E-05 -1.8E-05 -2.4E-05* -2.2E-05 

(1.4E-05) (1.4E-05) (1.4E-05) 
d_main_rd 9.3E-05*** 4.5E-05 6.6E-05** 7.1E-05** 
  (3.1E-05) (3.0E-05) (3.1E-05) (3.1E-05) 
d_air_4km 3.2E-05*** 2.8E-05*** 3.6E-05*** 3.1E-05*** 
  
Akto_300m 0.04203** 0.02831 0.03873** 0.03561** 

(0.01854) (0.01779) (0.01809) (0.01810) 
y95q1 -0.37105*** -
  (0.03636) (0.03479) (0.06503) (0.04491) 
y95q2 -0.47472*** -0.48113*** -0.77176*** -0.59768*** 
  (0.03594) (0.03437) (0.06308) (0.04094) 
y95q3 
  (0.03517) (0.03364) (0.06093) (0.03865) 
y95q4 -0.45703*** -0.46232*** -0.72939*** -0.54233*** 
  (0.03883) 
y96q1 -0.42217*** 
  
y96q2 -0.44960*** 
  
y96q3 -0.50018*** 

y96q4 -0.38484*** 
  
y97q1 -0.28022*** 

y97q2 -0.33387*** 
  
y97q3 -0.29993*** 
  
y97q4 -0.38116*** 
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ML1: 
Full Weight (Wα)

ML2: 
Trill Weight (Wβ) 

ML3: 
Time Decay (Wγ) Model OLS 

Variable Name Coef. Coef.  Coef. Coef.  
y98q3 -0.18221** -0.17426** -0.32412*** -0.22529*** 
  (0.07129) 

49*** 0*** 75*** 2*** 

9q1 * * * * 

9q2 * * * * 

9q3 * * * * 

9q4 * * * * 
24) 15) 96) 58) 

nstant  

mbda 

(0.06818) (0.07389) (0.06987) 
y98q4 -0.208 -0.2107 -0.345 -0.2549
  (0.03164) (0.03025) (0.03923) (0.03185) 
y9 -0.10104** -0.11242** -0.22458** -0.11354**
  (0.02739) (0.02621) (0.03448) (0.02678) 
y9 -0.16852** -0.16902** -0.26490** -0.15325**
  (0.02923) (0.02796) (0.03320) (0.02861) 
y9 -0.17800** -0.19939** -0.26714** -0.17786**
  (0.04334) (0.04150) (0.04509) (0.04223) 
y9 -0.21614** -0.23333** -0.29831** -0.24284**
  (0.071 (0.068 (0.070 (0.069
y00q1 -0.03739 -0.05575** -0.11391*** -0.07356*** 
  (0.02727) (0.02615) (0.02983) (0.02730) 
y00q2 -0.04355 -0.05826** -0.09467*** -0.03048 
  (0.02817) (0.02698) (0.02891) (0.02755) 
y00q3 -0.08003** -0.08448** -0.11089*** -0.06170* 
  (0.03595) (0.03438) (0.03547) (0.03518) 
y00q4 Base Base Base Base 
co 12.134*** 12.229*** 12.315*** 12.225*** 
  0.09447) 0.09085) 0.09752) (0.09339) 
la   0.0107*** 0.0095*** 0.0292*** 
    (0.00109) 69)  04) 

* * 
(0.001 (0.005

sigma 0.2052*** 0.2093** 0.2092**
Wald χ (48)

inal LL 

2  

ared 

11738*** 11158*** 11040*** 
F 265.22 233.93 234.70 
Adj R-squ 0.868 
AIC 

IC 
-338.11 -428.44 -365.86 -367.40 

B -74.12 -153.76 -91.18 -92.73 
*** significant at p < 0.01; ** sig p < 0.05; t at p < 0.1 Standard error in 
t
 

 

 

 

 

 

nificant at  * significan
he brackets 
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