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Startle disease is an inherited neurological disorder that causes affected individuals to suffer noise- or touch-
induced non-epileptic seizures, excessive muscle stiffness and neonatal apnea episodes. Mutations known to
cause startle disease have been identified in glycine receptor subunit (GLRA1 and GLRB) and glycine transporter
(SLC6A5) genes, which serve essential functions at glycinergic synapses. Despite the significant successes in iden-
tifying startle disease mutations, many idiopathic cases remain unresolved. Exome sequencing in these individ-
uals will identify new candidate genes. To validate these candidate disease genes, zebrafish is an ideal choice
due to rapid knockdown strategies, accessible embryonic stages, and stereotyped behaviors. The only existing
zebrafish model of startle disease, bandoneon (beo), harbors point mutations in glrbb (one of two zebrafish
orthologs of human GLRB) that cause compromised glycinergic transmission and touch-induced bilateral muscle
contractions. In order to further develop zebrafish as a model for startle disease, we sought to identify common
phenotypic outcomes of knocking down zebrafish orthologs of two known startle disease genes,GLRA1 andGLRB,
using splice site-targeted morpholinos. Although bothmorphants were expected to result in phenotypes similar
to the zebrafish beo mutant, our direct comparison demonstrated that while both glra1 and glrbb morphants
exhibited embryonic spasticity, only glrbb morphants exhibited bilateral contractions characteristic of beo
mutants. Likewise, zebrafish over-expressing a dominant startle disease mutation (GlyR α1R271Q) exhibited
spasticity but not bilateral contractions. Since GlyR βb can interact with GlyR α subunits 2–4 in addition to
GlyR α1, loss of the GlyR βb subunit may produce more severe phenotypes by affecting multiple GlyR subtypes.
Indeed, immunohistochemistry of glra1 morphants suggests that in zebrafish, alternate GlyR α subunits can
compensate for the loss of the GlyR α1 subunit. To address the potential for interplay among GlyR subunits
during development, we quantified the expression time-course for genes known to be critical to glycinergic
synapse function. We found that GlyR α2, α3 and α4a are expressed in the correct temporal pattern and could
compensate for the loss of the GlyRα1 subunit. Based on our findings, future studies that aim tomodel candidate
startle disease genes in zebrafish should include measures of spasticity and synaptic development.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Introduction

Rhythmicmotor behaviors require a balance between nervous system
excitation and inhibition (E/I balance). The importance of E/I balance is il-
lustrated by geneticmutations that selectively disrupt either excitation or
inhibition and result in nervous systemdysfunction (Ganser andDallman,
2009; Gatto and Broadie, 2010). For example, in humans, startle disease/
hyperekplexia results from excessive excitation due to damaging
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mutations in genes encoding key components of the inhibitory
glycinergic synapse (Harvey et al., 2008). As the major inhibitory neuro-
transmitter in vertebrate hindbrain and spinal cord, glycine plays a critical
role in the control of motor behaviors and reflexes. When glycinergic sig-
naling is disrupted in newborn children, the result is exaggerated startle
reflexes and hypertonia in response to unexpected auditory, tactile or vi-
sual stimuli. This abnormal startle response may also be accompanied by
apnea episodes, i.e. the suspension of breathing (Thomas et al., 2010).

Themajority of human startle disease cases are caused by dominant
and recessive mutations in GLRA1, encoding the α1 subunit of the gly-
cine receptor, GlyR α1 (Chung et al., 2010; Shiang et al., 1993;
Fig. 1A). Mutations in this gene cause similar disorders in mice
(Buckwalter et al., 1994; Holland et al., 2006; Ryan et al., 1994; Traka
et al., 2006) and Poll Hereford cattle (Pierce et al., 2001). Dominant
and recessive mutations in SLC6A5, encoding the presynaptic glycine
transporter GlyT2, are now emerging as a second major cause of startle
ved.
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Fig. 1. Pathogenic mutations in the postsynaptic GlyR α1 and β subunits in startle disease. The predicted four-membrane spanning domain (M1–M4) topology of GlyR α1 and GlyR β
subunits is depicted. Numbered columns indicate four predicted membrane-spanning domains 1–4 in each subunit. Red (dominantly inherited) and blue circles (recessively inherited)
indicate the relative positions of amino acid alterations known to cause human startle disease. Purple circles indicate the relative positions of amino acid alterations found inmouse, cattle
and zebrafish glycinergic disorders. For primary references to previously reported specific mutations, see Harvey et al. (2008), Chung et al. (2010, 2013) and James et al. (2013).
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disease (Carta et al., 2012; Giménez et al., 2012; Rees et al., 2006), and
also occur in Belgian Blue cattle (Charlier et al., 2008) and Irish wolf-
hounds (Gill et al., 2011). Mutations in GLRB, encoding the GlyR β
subunit were thought to be a rare cause of human startle disease
(Rees et al., 2002), although mutations in this gene were also reported
in the mouse mutant spastic (Kingsmore et al., 1994; Mülhardt et al.,
1994) and the zebrafish mutant bandoneon (beo; Granato et al., 1996;
Hirata et al., 2005). However, several recent reports have identified
novel dominant and recessive mutations in GLRB (Al-Owain et al.,
2012; Chung et al., 2013; James et al., 2013; Lee et al., 2013; Fig. 1B),
often associated with additional phenotypic consequences, including
gaze disorders, apnea episodes, learning difficulties and developmental
delay. Since GlyR α1 and β subunits occur in the same pentameric GlyR
complex, it is currently unclearwhymutations in GLRB can give rise to a
more severe clinical phenotype than mutations in GLRA1.

To model human startle disease, zebrafish are an attractive model
because genes can be ‘inactivated’ using antisense morpholino knock-
down (Eisen and Smith, 2008). Moreover, the resulting swimming phe-
notypes are readily quantified (Burgess and Granato, 2007). In contrast
to mammalian genomes with five known GlyR subunit genes (GLRA1,
GLRA2, GLRA3, GLRA4 and GLRB), the zebrafish genome encodes seven
GlyR subunit genes (glra1, glra2, glra3, glra4a, glra4b, glrba, and glrbb;
Hirata et al., 2010). The two duplicate genes, glra4b and glrbb resulted
from whole genome duplication early in the evolution of teleosts
(Hurley et al., 2007a). This phenomenon can be advantageous, since in-
dividual paired genes often differ in terms of expression patterns and
functional roles (Hurley et al., 2007b; Ogino et al., 2011). For example,
the zebrafish mutant bandoneon (beo) harbors mutations in one of the
pairedGlyR β subunit genes (glrbb), resulting in touch-induced simulta-
neous bilateral contractions of the axial muscles due to the loss of recip-
rocal glycinergic inhibition of motor circuits (Hirata et al., 2005, 2010).
Despite the duplication of the GlyR β subunit genes in zebrafish, glrba
is unable to compensate for the loss of glrbb function due to a different
expression pattern, suggesting that it forms part of a distinct GlyRwith a
unique function (Hirata et al., 2005). Since mutations in human GLRA1,
GLRB and SLC6A5 all result in startle disease (Harvey et al., 2008), it is
unusual that to date no mutations in glra1 or slc6a5 have been
discovered that produce bilateral contractions in larval zebrafish. We
therefore sequenced the remaining beo alleles and have confirmed
that they all harbor damaging mutations affecting glrbb.

To directly compare zebrafish glra1 and glrbb startle disease models,
we designed splice-site morpholinos to knockdown the expression of
these genes (Draper et al., 2001). As expected, injecting glrbb
morpholinos produced a phenotype similar to beo mutants, character-
ized by simultaneous bilateral contractions strong enough to shorten
the body. In addition, both glrbb and glra1morphants produced spastic
and erratic behaviors at early stages, but in contrast to glrbbmorphants,
glra1 morphants only rarely produced bilateral contractions and by
48 hpf glra1 morphants produced normal behaviors. Immunohisto-
chemistry of glrbb and glra1 morphants also demonstrated distinct
GlyR immunostaining patterns on early-differentiating spinal neurons.
While glra1 morphants exhibited reduced but still synaptic GlyR stain-
ing, glrbbmorphants exhibited GlyRα subunit trapping in intracellular,
non-synaptic compartments, suggesting that the more severe beo phe-
notype results from a loss of multiple GlyR subtypes. Our quantitative
analysis ofmRNA expression for glycinergic genes in early development
identified glra2 and glra3 as having high expression levels early in de-
velopment that could ameliorate the glra1 morphant phenotype. In
summary, we identify a phenotypic range in zebrafish startle disease
models that should be taken into account when using zebrafish to
study novel candidate startle disease genes.
Materials and methods

Fish care and embryo rearing

Experiments were carried out usingDanio reriowild type strains AB,
Tubingen, and BWT (a fish store strain from Long Island). Adults were
kept on a 14 hour light/10 hour dark circadian cycle at 28.5 °C. Embryos
were collected fromnatural crossings shortly after removing a divider at
first light. Embryos were then reared in glass Petri dishes containing
system water (water that houses the adult fish) in a 28.5 °C incubator
with the same 14 hour light/10 hour dark cycle. All experiments were
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conducted in accordance with the University of Miami Institutional
Animal Care and Use Committee guidelines.

Detection of beo mutations

DNA was extracted from fin clips of beo mutation carriers using a
QIAamp DNA mini kit (Qiagen, Manchester, UK). The nine coding
exons and flanking sequences of glrbbwere amplified from purified ge-
nomic DNA. Forward and reverse primers each of 20–30 bp in length
were designed to cover the start and end of the regions to be amplified
and ordered from Eurofins MWG Operon (Ebersberg, Germany). DNA
polymerase was ordered from Clontech, Saint-Germain-en-Laye,
France. PCR products were gel purified and cloned into pCR4-TOPO
(Invitrogen, Paisley, UK). Sanger sequencing was performed by the
DNA Sequencing Service (University of Dundee, UK). DNA sequences
were analyzed using Sequencher 5.1 software (GeneCodes Corporation,
Ann Arbor, USA) by alignment with reference sequences downloaded
from NCBI or UCSC databases. For mutation identification, single nucle-
otide variants (SNVs) were noted and the effect of these changes on the
encoded protein were examined using bioinformatics software includ-
ing SIFT (Kumar et al., 2009) and Polyphen-2 (Adzhubei et al., 2010).

Morpholino design and injection

Splice site-targetedmorpholinos (MOs)were designed against glra1
and glrbb. Intron/exon junctions were selected for MO design based
both upon the appropriateness of the sequence for effective MO knock-
down (i.e. 50% GC content and multiple mismatches to related genes).
Two distinct MOs against glra1 were tested to control for possible off-
target effects: glra1MOex4 5′-GAATTGTCCTCTCACCTTATACTGT-3′ and
glra1MOex7 5′-CTTCCCTGAAACACAGAGAGTATGT-3′. Off-target ef-
fects were not a concern in the case of the glrbb splice morpholino
glrbbMOex5 5′-GAGAGCATTAAAGTTCACCTCATGC-3′ because of the
previously described beo mutant phenotype (Hirata et al., 2005).
For control-injected embryos, we used the standard control MO pro-
vided by Gene Tools (Gene Tools, LLC; Philomath OR). Lyophilized
MOs were resuspended in water as 1 mM stocks and stored at
room temperature. Prior to use, the MO stock solution was heated
for 5 min to 65 °C. For injection, stock solutions were diluted in a
filtered solution of 1% (w/v) fast-green dye. MOs were injected using
filament-lined Kwik-Fil borosilicate capillary glass (World Precision
Instruments, Sarasota FL) pulled on a P-97 micropipette puller (Sutter
Instruments, Novato CA) to a long taper with a fine tip that was broken
back to ~1 μm using forceps. A stage micrometer was used to calibrate
the injection rig to produce a 100 μm diameter bolus. MOs were
injected into wild type embryos at the 1–2 cell stage. Embryos
were sorted 6–8 h after injection so that only morphants in which
the MO bolus had evenly dissipated were later analyzed for behav-
ioral phenotypes.

RT-PCR

Unless otherwise stated, all reagents were from Life Technologies,
Grand Island NY. Once behavioral analyses were completed, embryos
were ground in TRIzol for RNA extraction. RNA preparations were then
DNase-treated using DNA-free. The reverse transcriptase SuperScript
III with either an anchored oligo(dT) primer or a gene specific primer
was used to synthesize cDNA for subsequent PCR analysis. Diagnostic
PCR primers were designed to detect mis-splicing events induced by
MO masking of intron/exon junctions for glra1 (Fex3 5′-TTGGATCC
ATTGCTGAAACA-3′; Rex8 5′-ATACTCCAGCAGGGCAGAGA-3′) and glrbb
(Fex5 5′-CTGAGACAACGCTGGAATGA-3′; Rex8 5′-CTCCACGCACGTG
TAGTAGC-3′) (All primers were synthesized by Integrated DNA
Technologies, Coralville, IA). Primers targeting slc6a5 (F: 5′-AG
GAGTCACTCTGCCTGGAG-3′; R: 5′-CAAATGCAATTCCTGGACCT-3′)
were utilized as internal controls. Shifted RT-PCR products caused
by MO-induced alterations in pre-mRNA splicing were gel purified
using Wizard Gel and PCR Clean-up System (Promega, Madison, WI).
Purified bands were then re-amplified and sequenced using Sanger
DNA sequencing to determine the predicted impact on targeted
proteins.

Behavioral analyses

A high-speed camera (1024 Photron FASTCAM, San Diego, CA)
was used to record spontaneous and touch-evoked behaviors of 17
to 50 hpf control, glra1, and glrbb morphants. Embryos were manually
dechorionated. Spastic behaviors were characteristic of all groups just
after dechorionation. Therefore, behavioral assays were conducted at
least 1 h after dechorionation. Videos were scored by hand to generate
ethograms that highlight rhythmic and spastic aspects of behaviors.

Immunohistochemistry

Cryosectioning and antibody staining were performed as previously
described (Ogino et al., 2011). Briefly, anesthetized fish embryos were
embedded in O.C.T. compound (Tissue-Tek, Torrance, CA) and gradually
frozen in liquid nitrogen. Samples were then sectioned on a cryostat
(CM-1850, Leica) andmounted onpoly-L-lysine coated slides (Newcomer
Supply, Middleton, WI) prior to a 10 min fixation in 4% (w/v) form-
aldehyde (diluted from 16%, Pierce Biotechnology, Rockford, IL). Anti-
gephyrin (clone mAb7a, mouse IgG1, 1:500, Synaptic Systems,
Göttingen, Germany), and a pan anti-GlyR α subunit (clone mAb4a,
mouse IgG1, 1:100, Synaptic Systems)were used as primary antibodies.
Alexa 488- and Alexa 568-conjugated donkey anti-mouse IgGs were
used as secondary antibodies (1:2000, Life Technologies, Carlsbad, CA).
Double staining with anti-gephyrin and anti-GlyR α subunit anti-
bodies was performed sequentially. Stained sections were mounted
in Vectashield/DAPI (Vector Laboratories, Burlingame, CA) and images
were captured on a confocal microscope using a 1.4 NA 63× oil objec-
tive (SP5, Leica Wetzlar Germany).

Quantification of synaptic staining

Images were processed using ImageJ (NIH). The brightness and con-
trast were adjusted tomaximize dynamic range and reduce background
noise before analyzing the density of GlyR α subunit and gephyrin
puncta. For puncta density analysis, to avoid the impact of variation
along the anterior–posterior axis, three images were picked in each
stack: one each near top, middle, and the bottom of the stack. The
area with puncta expression in each image was calculated in ImageJ.
GlyR α subunit and gephyrin puncta in each image were identified
and counted by custom MatLab (MathWorks, Natick, MA) programs
(Morgan et al., 2008; Soto et al., 2011). For GlyRα subunit and gephyrin
puncta co-localization analysis, puncta in the three-dimensional stack
were first found by custom MatLab programs (Morgan et al., 2008;
Soto et al., 2011). Then the three-dimensional location of each voxel in
all GlyR α subunit puncta and gephyrin puncta were compared in
MatLab to identify the colocalized puncta.

Quantitative PCR

Primers were designed against genes associatedwith the glycinergic
synapse (Table 1). Primers were designed using Primer3 (Rozen and
Skaletsky, 2000) to span introns with the goal of excluding the possibil-
ity that residual genomic DNA contributed to estimates of transcript
abundance. To generate a developmental time series, RNA from 24, 32,
48 and 72 hpf wild type embryos was harvested. RNA extraction meth-
od followed the manufacturer's protocol (TRIzol, Life Technologies,
Carlsbad, CA). Extracted RNAs were then DNase-treated (DNA-Free,
Life Technologies), quantified on a NanoDrop 2000 (ThermoScientific,



Table 1
Oligonucleotide primers used for RT-PCR analysis. Key for selected gene names: slc6a5 en-
codes GlyT2, slc6a9 encodes GlyT1, slc32a1 encodes VGAT/VIAAT, and eef1a1l1 encodes the
housekeeping protein EF1.

Gene Oligonucleotides Tm Size
(bp)

Ensembl protein ID

glra1 F: GGATCTCGAGCCTCTCTTCC 57 67 ENSDARP00000136733
R: CACACTGCCATCCAAATGTC 54

glra2 F: CGTGGTCAAAAACACACAGG 55 115 ENSDART00000066192
R: GCGTGATATGGTGTCGATTC 54

glra3 F: CCTGATCTTTGAGTGGCAAG 54 116 ENSDARP00000009777
R: TGTTGTAGTGCTTGGTGCAG 56

glra4a F: GCAGCACAAGGAGTTCATCA 56 90 ENSDARP00000146445
R: TCCGTACCCTCGGAAGTAAA 55

glrba F: CCGGAAAACCACAGAACAAG 54 112 ENSDARP00000074685
R: AACGTGAAAGGGAACAGAGC 55

glrbb F: TGCTCATCATCTGTCTGTGG 55 73 ENSDARP00000127692
R: CCTTTCTTCTTTCCCTTTTTAGC 52

gphna F: GCCCACCATCATCAAAGC 54 65 ENSDARP0000087952
R: GATGGTACTCTGGACGTGGA 56

gphnb F: TCAGCAGCAGACTGATGAGC 57 85 ENSDARP00000005053
R: TTGTGCAGCTCCACGTATTG 56

slc6a5 F: GGATTCCCATCATGTTTGCT 53 87 ENSDARP00000071929
R: CGGGTTGAGGAGAACATACC 55

slc6a9 F: AAGATTGCCATGTCTGAAGGA 54 65 ENSDARP00000088755
R: GGTCGGGTTTCACAGAGTTC 55

slc32a1 F: ACAAGCCCAGAATCACTGCT 57 95 ENSDARP00000083453
R: GTGGAGAATGGCGTAGGGTA 56

eef1a1l1 F: CTGGAGGCCAGCTCAAACAT 58 82 ENSDARG00000020850
R: ATCAAGAAGAGTAGTACCGCTAGCA 58
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West Palm Beach, FL) and electrophoresed on a 1% (w/v) agarose gel to
assess quality.

The SuperScript III First-Strand Synthesis System (Life Technologies,
Carlsbad CA) was used for cDNA synthesis. However, gene specific
primers (GSPs) were used in place of oligo(dT) to better detect rare
transcripts encoding synaptic proteins. Each synthesis reaction contained
1 μg of RNA template. To generate standard curves, serial dilutions of gel-
purified PCR products were used as template. Products were purified
using the Wizard SV Gel and PCR purification kit (Promega, Madison
WI). Stocks were made from a 1:1000 dilution of purified PCR product
in DNase/RNase free H2O. Serial dilutions were adjusted to encompass
the range of expression levels for each gene. qPCR reactions contained
2 μL of RNase/DNase free H2O, 14.5 μL Master mix, 2.5 μL of 10 mM
primer and 1 μL of cDNA template at a final volume of 20 μL. The PCR
protocol was as follows: 1 step of 95 °C for 5 min; 30 cycles of 95 °C
for 30 s, 55 °C for 30 s, 72 °C for 30 s; and 1 step of 72 °C for 1 min.
For qPCR, we used an Eppendorf Mastercycler ep realplex4 with the
Table 2
Mutations identified in beomutant alleles. SNVs that result in nonsensemutations (p.Y79X, p.Q8
phenotype.While ta86d, tp221, and tm115mutationswill truncate theprotein close to theN-te
allele (p.K343X)will truncate theGlyRβb subunitwithin the long intracellular loop between tra
which clusters theGlyRs at synapses. Since the gephyrin-binding site on theGlyRβb subunit is p
βb subunit at residue 343 would result in a truncated protein lacking the gephyrin binding site
domain andM1–M3would be intact. This perhaps explains why ta92 is the only viable beo allel
p.R275H substitutionswere analyzed using the bioinformatics packages SIFT and Polyphen-2, w
spectively.

beo allele cDNA Substitutiond Consequence S

tu230a Allele lost – – –

tp221c c.T303A p.Y79X Truncation –

tm115 c.C325T p.Q87X Truncation –

tf242 c.T301G p.Y79D Missense D
ta92b c.A1093T p.K343X Truncation –

tw38f c.T830G p.L255R Missense D
ta86d c.T303A p.Y79X Truncation –

mi106a c.G990A p.R275H Missense D

a Mutant lost.
b Viable allele.
c Strongest allele.
d Amino acid co-ordinates correspond to the mature GlyR βb subunit polypeptide after sign
realplex 1.5 software using a Twin Tec Semi-Skirted 96 well plate.
Each well contained 5 μL of PerfeCTa SYBR Green FastMix (Quanta
BioSciences, Gaithersberg MD), 1.5 μL 10 mM combined forward
and reverse primer, 2.5 μL of H2O and 1 μL of cDNA template to a
final volume of 10 μL. The PCR protocol was as follows: 1 step of
95 °C for 1 min; 40 cycles of 95 °C for 15 s, 55 °C for 20 s, 68 °C for
30 s; and a melting curve and a final step of 95 °C. Three samples of
each time point were run in duplicate on the same plate with a stan-
dard curve consisting of four 1:10 serial dilutions of purified PCR
product as template. Relative mRNA copy numbers were calculated
based on the expression levels of the housekeeping gene encoding
EF1 (Tang et al., 2007).

Results

Sequencing of additional beo mutants confirms that mutations are found
exclusively in glrbb

Mutations in glrbbwere previously identified as the basis for the beo
mutant phenotype (Hirata et al., 2005). In the original study, the under-
lying mutations for some, but not all beo alleles were identified (Hirata
et al., 2005; Table 2). These resulted in either missense (tw38f, p.L255R
in TM1, mi106a, p.L275H in TM2) or nonsense (tp221, p.Y79X) muta-
tions. Since glra1 and glrbb genes are both located on zebrafish chromo-
some 14 and participate in the same GlyR complex, we speculated that
some of the remaining beo alleles might actually be mutations in glra1
that could fail to complement mutations in glrbb due to linkage. To de-
termine the types of mutations in remaining beo alleles ta86d, ta92,
tm115 and tf242, we obtained these lines from the zebrafish Stock
Center in Tübingen, Germany. We first amplified the nine coding
exons of glrbb, which revealed unique missense mutations (tf242,
c.T301G, p.Y79D) or nonsense mutations resulting in premature ter-
mination of the GlyR βb polypeptide (ta86d, c.T303A, p.Y79X; tm115,
c.C325T, p.Q87X and ta92, c.A1093T, p.K343X respectively; Fig. 1,
Table 2). It is also noteworthy that both tp221 and ta86d alleles har-
bor the same mutation — p.Y79X. Since the remaining beo allele,
tu230, was lost (Granato et al., 1996), we conclude that all available
beo alleles harbor mutations in glrbb.

Splice site-targeted morpholino knockdown of glra1 and glrbb genes

Given that all available beo alleles can be explained by muta-
tions in glrbb, we investigated the phenotype resulting from glra1
inactivation in zebrafish. Two independent, splice site-targeted
morpholinos (MOs), glra1MOex4 and glra1MOex7, were designed
7X and p.K343X)will lead to a truncated and incomplete proteins, leading to a deleterious
rminus (p.Y79X or p.Q79X) creating a small non-functional GlyRβb subunit, the viable ta92
nsmembrane helicesM3 andM4. Notably, theM3–M4 loop is critical for binding gephyrin,
redicted to residebetween amino acids 396 and 413 (Hirata et al., 2005), truncation of GlyR
and the fourth membrane-spanning domain (M4). However, the N-terminal extracellular
e. Missensemutations in alleles tf242, tw38f andmi106a, resulting in p.Y79D, p.L255R and
hich predicted these amino acid substitutions to be deleterious or probably damaging, re-

IFT Polyphen-2 Reference

– Hirata et al. (2010)
– Hirata et al. (2005)
– This study

eleterious (b0.05) Probably damaging (1.00) This study
– This study

eleterious (b0.05) Probably damaging (1.00) Hirata et al. (2005)
– This study

eleterious (b0.05) Probably damaging (1.00) Hirata et al. (2005)

al peptide cleavage.



Fig. 2. Efficacy and target specificity of splice-site-blocking glra1ex4 and glra1ex7morpholinos. A. Schematic representation of the zebrafish GlyRα1 subunit gene (glra1). Exons, shown as
black boxes, are connected by introns, shown as lines. Two of the exons, 2a and 2b, are alternatively spliced as indicated by multiple possible intron lines. Exons that encode membrane-
spanning domainsM1–M4are indicated. Twodistinct splice-site-blockingMOs (thick black bars)were designed to knockdown glra1 expression bymaskingexon/intron junctions. Exon4/
intron4 is masked by glra1MOex4, and intron6/exon7 by glra1MOex7. Diagnostic primers were designed to amplify exons 3 to 8 to detect MO-induced mis-splicing events. B. RT-PCR
results demonstrate specificity of altered glra1 pre-mRNA splicing caused by MO injection. The leftmost lane contains two size standards that replace the ladder and are based on direct
Sanger sequencing of the bands. The following two lanes contain RT-PCRof RNA samples from28 hpf embryos injectedwith 2 nL0.5 mMcontrolMO, 2 nL0.25 mM glra1MOex4, and 2 nL
0.5 mM glra1MOex7 respectively. In theupper gel, glra1diagnostic primers are used for PCR fromcDNA synthesizedusing a gene-specific primer for glra1. In contrast to controlmorphants
that show a single strong PCR product at 759 bp, glra1MOex4morphants exhibit reduced levels of the wild type PCR product and a new product of 698 bp, indicating exon skipping. Like-
wise, glra1MOex7morphants exhibit reduced levels of thewild type PCR product and two PCR products of 621 and 544 bp in size. In the lower gel, PCR for a GlyT2 cDNA (slc6a5) is used as
a loading control, and is amplified from cDNA synthesizedusing anchored oligo-dT primers. C. Percentages of glra1MOex4 and glra1MOex7morphants exhibitingwild type (wt), spastic or
accordion phenotypes, plotted at 24–28 hpf and 29–36 hpf. The number of embryos analyzed is indicated at the center of each plot.
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against intron/exon boundaries shared among all glra1 transcripts
(Fig. 2A). The glra1MOex4 targets the 3′ acceptor site of exon 4, an
exon that encodes determinants of glycine binding (Lynch, 2004;
as well as the epitope recognized by the anti-GlyR antibody mAb4a)
while glra1MOex7 targets the 5′ donor site of exon 7 that encodes the
first two membrane-spanning domains (M1 and M2) of the GlyR α1
subunit. BothMOs would be expected to disrupt GlyR function by caus-
ing exon-skipping or intron-retention, introducing a frameshift, and
truncating translated proteins. RT-PCR analysis of RNA harvested from
28 hpf glra1 morphants revealed the nature of mis-splicing events
induced by MO injections. Diagnostic primers were designed to
detect both exon-skipping and intron-retention events and morphant-
specific bands were subsequently gel purified and sequenced to deter-
mine the exact nature of the MO-induced disruption (Eisen and
Smith, 2008). For glra1MOex4, we identified a single morphant band
caused by a 61 bp deletion due to a cryptic-splice-donor site towards
the 3′ end of exon 4 (Fig. 2B; middle lane). For glra1MOex7, we identi-
fied two morphant-specific PCR products, both smaller than the wild
type product (Fig. 2B; right-most lane). Sequencing of glra1MOex7
morphant-specific bands demonstrated that the lower of the PCR prod-
ucts is a result of skipping exon 7 entirely, while the middle band is the
result of a cryptic splice-site in the middle of exon 7. The cryptic splice-
site results in an in-frame transcript. Nonetheless, the resulting protein
would still be expected to lack function because of deletion of the trans-
membrane domain M1.

Although a translation-blocking MO had previously been designed
to knock down glrbb (Hirata et al., 2005), this MO did not work in our
hands, possibly due to sequence variability surrounding the startmethi-
onine in different wild-type strains. In addition, we cannot monitor the
efficacy of this translation-blockingMO, due to the lack of a specific GlyR
βb antibody. Therefore, we designed a new splice-site morpholino
against 3′ acceptor site of glrbb exon 5, one of the largest exons up-
stream of the transmembrane domains (Fig. 3A). Using glrbbMOex5,
wewere able to faithfully recapitulate the beomutant accordion pheno-
type resulting from tonic bilateralmuscle contractions (Fig. 3D). RT-PCR
analysis of RNA harvested from glrbbMOex5-injected embryos at
28 hpf demonstrates that glrbbMOex5 caused a 156 bp deletion and
sequencing this PCR product demonstrated that a cryptic splice-
donor site in exon 5 accounted for morpholino-induced mis-splicing
(Fig. 3B; right lane).

Quantification of the onset of swimming behavior

From 24 to 36 hpf, zebrafish larvae transition from coiling behaviors
(not propulsive) to rhythmic alternating motor behaviors that can pro-
pel the larva away from a threat (Saint-Amant and Drapeau, 1998).
Therefore analysis of morphant behaviors at these stages occurs against
a rapidly changing but highly stereotyped control baseline. To quantify
behaviors, we determined the duration of discrete components of two,
sequential touch-induced behaviors in each larva (Fig. 4). For example,
in response to touch, a control morphant coils in one direction (light
blue bar) until tail touches head (black column), coils in the opposite
direction (dark blue bar) until tail touches head (black column) and
slowly returns to rest (tan bar). While the exact timing of the two inde-
pendent behaviors varies, the sequence of components is the same. To
capture the developmental progression of control morphant behaviors
from 24 to 36 hpf, we plotted single behaviors for 50 individual larva
that span thebehavioral transition from coiling to propulsive swimming
(Fig. 5; left column). We split the 24–36 hpf time period into two qual-
itatively distinct early, 24–28 hpf, and late, 29–36 hpf bins. Staging is
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Fig. 3. Efficacy and target specificity of splice-site-blocking glrbb exon 5 morpholinos. A. Schematic representation of the zebrafish GlyR βb subunit gene (glrbb). Exons, shown as black
boxes, are connected by introns, shown as lines. Exons that encode membrane-spanning domains M1–M4 are indicated. The glrbbMOex5 splice-site-blocking MO (thick black bar) was
designed to knockdown glrbb expression by masking exon/intron junction intron4/exon5. Diagnostic primers designed to amplify exons 5 to 8 were used to detect MO-induced mis-
splicing events. B. RT-PCR results demonstrate specificity of altered glrbb pre-mRNA splicing caused by MO injection. The leftmost lane contains a size standard ladder followed by
two lanes of RT-PCR from RNA samples of 28 hpf embryos injected with 2 nL 0.5 mM control MO and 2 nL 0.5 mM glrbbMOex5 respectively. In the upper gel, glrbb diagnostic primers
are used for PCR from cDNA synthesized using a gene-specific primer for glrbb. In contrast to control morphants, where a single strong PCR product of 430 bp is detected, glrbbMOex5
morphants exhibit reduced levels of the wild type PCR product and a new product of 274 bp, indicating exon skipping. In the lower gel, PCR for a GlyT2 cDNA (slc6a5), amplified from
cDNA synthesized using anchored oligo-dT primers, is used as a loading control. C. Percentages of glrbbMOex5 morphants exhibiting wild type (wt), spastic or accordion phenotypes
are plotted at 24–28 hpf and 29–36 hpf. The number of embryos analyzed is indicated at the center of each plot. D. Pictures of 5 representative 48 hpf larvae demonstrate shortening
of the body axis produced by tonic bilateral contraction in glrbb but not glra1 morphants. Length and width (yolk to back) measurements (average n = 5, error bars indicate standard
deviation). A Student's t-test indicates that glrbbmorphants are significantly shorter (p b 0.05) and wider (p b 0.005) than their control and glra1morphant counterparts.

Fig. 4. Repeated stimulation evokes erratic, sometimes spastic behaviors in glra1 and glrbb morphants. Two sequential, touch-evoked behaviors are plotted for four, representative
morphant larvae: control, A; glra1MOex4, B; glra1MOex7, C; and glrbbMOex5, D. Behaviors were recorded using a high-speed camera and plotted as lines with the different behavioral
components indicated by line color and each component's duration indicated by line length (scale bar = 60 ms; light blue = initial bend; dark blue = counter-bend; black
column = top of coil, when the tail comes closest to touching the head; tan = return to rest; red = stuck or bend to same side; boxed diagonal lines = bilateral contraction).
Still frames are included above the first of two plots with the number of pictures/length reflecting relative rates of change in the movement. A. The control morphant exhibited
behavioral stereotypy with repeat stimulation: both behaviors consist of two coils in alternating directions followed by relaxation. B. The glra1MOex4 morphant exhibited
erratic, spastic behaviors. In the first behavior, the glra1MOex4 morphant produced spastic behavior, getting stuck in the first coil and producing a second coil to the same
side as the first. The second behavior was different from the first-the glra1MOex4 larva produced only one coil, and still spastic-the larva got stuck in the coil. C. The glra1MOex7
morphant also exhibited erratic, spastic behaviors. In the first behavior, the glra1MOex7 larva produced three coils, all to the same side. The second behavior was different from
the first—this behavior was not spastic, consisting of two smooth alternating coils that return to rest. D. The glrbbMOex5 morphant larvae exhibited erratic, bilateral contraction
and spastic behaviors. In the first behavior, the glrbbMOex5 morphant produced bilateral contraction that actually shortened the body axis–the classic accordion phenotype.
The second behavior was different from the first—this time the glrbbMOex5 morphant produced two coils, getting stuck in each of these coils.

144 L.R. Ganser et al. / Neurobiology of Disease 60 (2013) 139–151

image of Fig.�3
image of Fig.�4


Fig. 5. Spasticity is characteristic of both glra1 and glrbb morphants but bilateral contraction mainly occurs in glrbb morphants. A. One behavior per larva is plotted for representative
populations of 50 control (left column), 48 glra1 (middle column), and 47 glrbb (right column) morphants that span the 24–36 hpf time period. All larvae were stimulated twice but
only one of each pair of behaviors was plotted here. (Scale bar = 200 ms; light blue = initial bend direction; dark blue = counterbend; black column = top of coil, when the tail
comes closest to touching the head; tan = return to rest; red = stuck or bend to same side; boxed diagonal lines = bilateral contraction). Larval staging was based on using the angle
of the head to the long tail axis as diagnostic of stage (Kimmel et al., 1995). B. Time from rest to first coil is plotted for all recorded control (n = 83), glra1ex4 (n = 92), glra1ex7
(n = 92), and glrbbex5 (n = 68) morpholino-injected larvae. ANOVA indicated a significant effect of morpholino injected on time to first coil [F(3,334) = 15.8225, p = 0.0001]. Post
hoc Bonferroni-corrected Student's t-tests compared allmeans and showed significant differences at p b 0.05 (*) that both glra1morphants and glrbbmorphants are significantly different
from control morphants. In addition, glra1ex7 morphant times to first coil were significantly longer (p b 0.05, black triangle) than glra1ex4 and glrbbex5 morphants. C. Hitch
durations in milliseconds are plotted for any of the control, glra1, or glrbb larva that exhibited this behavior. ANOVA indicated no significant effect of morpholino injected on
hitch time [F(3,155) = 2.41, p = 0.07], thus there is no subsequent post hoc analysis. D. ‘Accordion’ durations in milliseconds are plotted for any of the control, glra1, or
glrbb larva that exhibited this behavior. The ‘accordion’ behavior is clearly more frequent in glrbbex5 morphants, occurring 27 times compared to never in controls and 5
times in all glra1 morphant larvae.
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based on a two criteria: time in hpf and morphology (Kimmel et al.,
1995). Single coils first transitioned to alternating coils, 24–28 hpf,
and then, 29–36 hpf, to swimming characterized by shallower and
more rapid alternating bends (Fig. 5; left column).

glra1 and glrbb morphants exhibit spasticity

Both glra1 and glrbbmorphants exhibit spastic and erratic behaviors
during 24–36 hpf (Figs. 2C & 3C). Spastic behaviors (indicated by red
bars) were characterized by hitches. We defined hitches as pauses
that disrupted the smooth progression of a movement and/or repeated
bends to one side (Figs. 4B, C & D; Fig. 5, middle & right columns).
Behaviors were also erratic, lacking stereotypy when elicited multi-
ple times (Supplemental movies; Figs. 4B, C & D). In addition, the
duration of the time to first coil was significantly longer in glra1
morphants (glra1MOex4: 296 ± 18 ms, n = 93; glra1MOex7: 444 ±
56 ms, n = 93) and glrbb morphants (glrbbMOex5: 241 ± 33 ms,
n = 69) compared to control morphants (Control MO: 109 ± 11 ms,
n = 83, means ± standard deviation for all treatments; Fig. 5B).
Spasticity in both glra1 and glrbbmorphants (Fig. 5C) was associated
with a delay in the onset of rhythmic behaviors seen in control
morphants at 30–36 hpf. In addition to spasticity, glrbb morphants
exhibited simultaneous bilateral contractions strong enough to shorten
the body axis–the diagnostic accordion phenotype (Granato et al., 1996;
Figs. 3D, 4D & 5D; Supplementalmovies). Moreover, in contrast to glra1
morphants in which behavioral disruptions were transient, glrbb
morphant phenotypes persisted, resulting in larvae with a shortened
axis by 48 hpf (Fig. 3D). Spastic phenotypes were recapitulated by
injectingmRNAencoding a dominant-negative GlyRα1 subunitmutant
R270Q (Figs. 6B & C). Curiously, by contrast to the dominant-negative
glra1 R270Q RNA that lacked a morphological phenotype, over-
expressing the wild type GlyR α1 subunit mRNA produced shortened-
axis and Cyclops phenotypes (Figs. 6A & C). Cyclopic phenotypes are
commonly associated with disrupted sonic hedgehog (shh) signaling in
early embryos and likely reflect the disruptive effect of mis-expressing
functional glycine receptors.

glrbb is epistatic to glra1 at the level of behavior

To formally test for epistatic relationships between glra1 and glrbb,
we co-injected glrbbMOex5 with wither glra1MOex4, glra1MOex7, or
control morpholinos and analyzed the resulting phenotypes (Table 3).
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Fig. 6. Injection of dominant-negative GlyR α1 subunit R270Q mutant RNA recapitulates
glra1 morphant spasticity. A, B. Populations of 30 hpf larvae were injected as zygotes
with ~2 ng of either wild type, A, or R270Q dominant-negative glra1 RNA, B. While
R270Q glra1 RNA-injected larvae were morphologically normal, surprisingly, 60% of wild
type glra1 RNA-injected larvae exhibited shortened axis and cyclopic phenotypes. These
phenotypes are more commonly associated with defects in early signaling through the
sonic hedgehog pathway and are likely a consequence of expressing functional glycine
receptors at a time when they are not normally expressed. In A, boxed inset, it is possible
to see the medially fused eyes characteristic of the Cyclops phenotype. C. Percentages of
larvae from different treatment groups that exhibited spastic or Cyclops phenotypes or
mortality are plotted. RNAs encoding wild type and GlyR α1 subunit R270Q mutant
were each injected at two concentrations indicated by the wedge (wt high ~2 ng,
n = 25; low ~400 pg, n = 23; R270Q high ~2 ng, n = 42; low ~400 pg, n = 17).
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Embryos co-injected with glrbb and glra1 morpholinos exhibited the
classic accordion phenotype of bilateral muscle contractions similar to
glrbb morphants co-injected with control morpholino showing that at
the level of behavior glrbb is epistatic to glra1.

In addition, we also observed a novel morphological disruption
in embryos co-injected with glrbbMOex5 and either glra1MOex4,
or glra1MOex7 morpholinos but not in embryos co-injected with
glrbbMOex5 and control morpholinos suggesting synergistic roles
for glra1 and glrbb in development, perhaps relating to their func-
tional roles in spinal cord stem cells.
Table 3
Epistasis analysis between glra1 and glrbb phenotypes. Batches of embryos were co-
injected with either 0.5 mM glrbbMOex5 and 0.5 mM control morpholino, 0.5 mM
glrbbMOex5 and 0.25 mM glra1MOex4, or 0.5 mM glrbbMOex5 and 0.5 mM glra1MOex7
and assayed for morphological and behavioral phenotypes between 28 and 36 hpf.
Percentages of embryos, with numbers in each treatment in parentheses below, are indi-
cated for each treatment and morphology. For behavior, larvae were tested for whether
they ever produced accordion. The ‘yes’ for each treatment indicates that ‘accordion’
was the typical behavioral response.

0.5 mM
glrbbex5 + 0.5 mM
ConMO

0.5 mM
glrbbex5 +
0.25 mM
glra1ex4

0.5 mM
glrbbex5 +
0.5 mM
glra1ex7

Normal morphology 87% (n = 118) 9% (n = 5) 42% (n = 26)
Disrupted morphology 13% (n = 18) 91% (n = 52) 58% (n = 35)
Accordion? Yes Yes Yes
Glycinergic synaptogenesis in control, glra1, and glrbb morphant zebrafish

To compare the impact of knocking down GlyR α1 and βb subunits
on glycinergic synaptogenesis, we carried out immunohistochemistry,
double-labeling 24 and 48 hpf fresh-frozen sections with antibodies
recognizing GlyR α subunits and the GlyR clustering protein gephyrin
(Fig. 7). At 24 and 48 hpf, progenitor cells are still actively dividing in
the middle of the spinal cord; surrounding these progenitors are the
first neurons to exit the cell cycle and differentiate. Differentiated neu-
rons include primary motor neurons (PMNs) some interneurons, and
Rohon Beard sensory neurons. For immunohistochemistry, we focus
on the largest neurons, likely PMNs, in the motor neuron/interneuron
domain (Fig. 7; white boxes). GlyR α and gephyrin immunohistochem-
istry were both characterized by bright puncta that likely reflect enrich-
ment of these proteins at postsynaptic densities. Surprisingly, in 24 hpf
control morphants, GlyR α subunit and gephyrin puncta did not co-
localize (Figs. 7A & 8A). While gephyrin puncta were enriched exclu-
sively in the domain occupied by differentiated neurons, the GlyR α
subunit puncta also decorated progenitor cells in the medial cord
(Fig. 7A; red arrowheads). Even within single neurons exhibiting
both GlyR and gephyrin puncta, there was little overlap (Fig. 7A;
red & green arrows).

In contrast to wild type embryos, when the GlyR α1 subunit was
knocked down either using glra1MOex4 or glra1MOex7, GlyR puncta
in the medial spinal cord were dramatically reduced (Figs. 7B & C).
Remaining GlyR puncta were enriched in the lateral spinal cord
where, in contrast to control morphants, more of the GlyR puncta
co-localized with gephyrin (Figs. 7B, C & 8A glra1MOex4). As with
GlyR α1 morphants, knocking down the GlyR βb subunit using
glrbbMOex5 also reduces GlyR staining in the medial spinal cord. In
addition, however, glrbb morphants also exhibited reduced GlyR α
puncta in the lateral spinal cord with fewer puncta that co-localize
with gephyrin (Fig. 7D). By 48 hpf in control morphants, GlyR and
gephyrin puncta colocalized in the lateral spinal cord (Fig. 7A′).
Knocking down the GlyR α1 subunit reduced the density of GlyR
puncta (Figs. 7B′, C′ & 8B). Knocking down the GlyR βb subunit, as
would be expected, also disrupted GlyR and gephyrin co-localization
(Figs. 7D′ & 8B–C).

In summary, punctate GlyR immuno-staining was reduced in both
glra1 and glrbbmorphants at both 24 and 48 hpf. At 24 hpf, GlyR puncta
in glra1 morphants were dramatically reduced in the medial spinal
cord, although some remaining puncta – presumably containing
other GlyR α subunits – co-localizing with gephyrin could be detect-
ed in the lateral spinal cord. This staining pattern contrasts with
glrbb morphants, in which loss of both GlyR clusters and co-
localization with gephyrin was evident.

Quantification of gene expression for components of the glycinergic synapse
in developing zebrafish

To quantify the relative mRNA expression levels of genes known to
be critical to glycinergic synapse function, we generated a developmen-
tal time-course for eleven zebrafish genes implicated in the function of
glycinergic synapses using quantitative PCR (Fig. 9). While quantitative
PCR yields no spatial information, it does reveal two distinct groupings
of genes that share developmental expression trajectories. Expression
of the majority of genes including glra1, glra2, glra4a, glrba, glrbb,
slc6a5 (GlyT2), and gphnb exhibited a steady increasewith development.
By contrast, expression of glra3, slc6a9 (GlyT1) and slc32a1 (VIAAT)
increased until 48 hpf and then either leveled off (GlyT1/VIAAT) or
decreased (glra3, gphna). These shared developmental expression
trajectories could reflect shared transcriptional regulation. In the
context of multiple duplicated subunits, qPCR also provides informa-
tion about the dominant subunits expressed at different develop-
mental time periods at the mRNA level. For example, in the case of
the GlyR β subunits, the βb subunit mRNA is ~5 fold more abundant
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Fig. 7. GlyR α puncta are reduced in glra1 morphants and absent in glrbb morphants. Transverse sections through fast-frozen 24 hpf (left; A–D) and 48 hpf (right; A′–D′) larvae were
stained for GlyR α subunits (red), gephyrin (green), and nuclei (blue). Diagrams above the micrographs show the tight packing of spinal cord cells. In these diagrams, cells with purple
cytoplasm represent the differentiated neurons: primary motor neurons (PMNs) that exit the spinal cord to innervate muscle, early differentiating interneurons, and dorsal sensory
Rohon Beard neurons. These differentiated neurons form in a rind that surrounds the medial stem cells, outlined in gray. By 48 hpf more neurons have differentiated and become
incorporated into the circuit as reflected by an increased synaptic staining on lateral neurons. Representative images for each stage andmorpholino treatment are displayed as groupings
of four images with the leftmost image giving a low magnification view of the entire spinal cord with the motor/inter-neuron region boxed in white magnified in the subsequent three
images. A. In 24 hpf control morphants, GlyR α and gephyrin staining are non-overlapping. GlyR puncta decorate precursor cells near the spinal cord midline (red arrowheads) as well
as lateral neurons (red arrows). Gephyrin puncta (green arrows) are solely associated with lateral neurons, but do not co-localize with GlyRs at this developmental time point. B, C.
In both glra1 morphants, GlyR α subunit staining is absent in precursors near the midline. Curiously, in glra1 morphants, residual GlyR α subunits did co-localize with gephyrin
(yellow arrows) in lateral neurons. D. In 24 hpf glrbbMOex5 morphants, gephyrin puncta (green arrows) occur in the absence of GlyR α subunit puncta. A′. In 48 hpf control morphants,
GlyR α subunit and gephyrin puncta commonly co-localized. B′, C′. In 48 hpf glra1morphants, a subset of GlyR α subunit and gephyrin puncta commonly co-localized but these
co-localized puncta are positioned more laterally than in control morphants. D′. 48 hpf glrbbMOex5 morphants lacked clear GlyR α subunit puncta, but exhibited smaller
gephyrin puncta that tended towards the lateral neuropil rather than circum-nuclear as in control morphants. Scale bars: 10 μm.
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at both 48 and 72 hpf than βa. Likewise, the expression of gphna
mRNA dominates at 48 hpf being 35 times more abundant than
gphnbwhile at 72 hpf, it is only four times more abundant. The levels
of GlyR α subunit transcripts differ with the most abundant being
glra2 and glra3. Expression of glra1, glra4a and glrbb, is barely detect-
able at 24 and 32 hpf, but increases onwards from 48 hpf.

Discussion

Our study demonstrated that all available alleles of the GlyR mutant
bandoneon correspond to defects in glrbb, encoding theGlyRβb subunit.
Consistent with recent studies on human startle disease mutations in
the GlyR β subunit gene (Al-Owain et al., 2012; Chung et al., 2013;
James et al., 2013; Lee et al., 2013), mutations resulting in protein trun-
cation are the predominant mechanism disrupting GlyR βb subunit
function in the beo allele series (4/7 alleles), followed by missense mu-
tations affecting residues in the membrane spanning domains M1/M2
(2/7 alleles) or large extracellular domain (1/7 alleles). Y79D introduces
a negative charge and a hydrophilic residue into a packed area of hydro-
phobic side-chains, which is likely to disrupt the local β-sheet fold on
which it resides in the extracellular domain, possibly indirectly affecting
glycine binding. The substitution L255R may disrupt packing of hydro-
phobic and aromatic residues between TM helices due to the large,
positively charged side-chain of arginine, thus affecting the correct
fold of the subunit or insertion into the membrane. R275 is equivalent
to R252 in the human GlyRα1 subunit (James et al., 2013). A spontane-
ous mutation causing the same substitution in this residue (R252H) is
known to cause startle disease when inherited in compound heterozy-
gote manner (Vergouwe et al., 1999). Substitutions at R252 in the GlyR
α1 subunit have been shown to severely disrupt the correct function of
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the protein, specifically affecting GlyR membrane trafficking (Rea et al.,
2002). Thus, R275H in the zebrafish GlyR βb subunit is predicted to
operate by a similar pathogenic mechanism.

Sincemutations inGlyRα1,β subunit or GlyT2 genes all cause startle
disease in dogs, cattle, mice and humans, one mystery is why no muta-
tions in glra1 or slc6a5 have been discovered to date in phenotypic
screens of zebrafish mutants generated by ENU mutagenesis (Granato
et al., 1996). We now have a potential explanation for this finding,
since knocking down glra1 (encoding the GlyR α1 subunit) produced
a relativelymild phenotype compared to beo, characterized by spasticity
that delayed the onset of rhythmic motor behaviors. This phenotype is
likely to be genuine, since it was reproduced using two different MOs,
and using a dominant-negative zebrafish GlyR α1 subunit mutant,
R270Q— equivalent to themost common dominant startle disease mu-
tation found in humans (R271Q; Chung et al., 2010; Shiang et al., 1993).

Notably, this phenotype is distinct from the ‘accordion’ behavior
produced by inactivation of glrbb, encoding the GlyR βb subunit
(Hirata et al., 2005).While our study clearly implicates GlyRs containing
the α1 subunit in the smooth transition from spontaneous coiling be-
haviors to propulsive locomotion, the finding that glra1 loss-of-
function causes this transient phenotype in zebrafish was unexpected.
Several potential compensatorymechanisms have been observed in an-
imals with loss-of-function mutations in the GlyR α1 subunit gene, in-
cluding increased presynaptic glycine uptake, increased inhibitory
GABAergic transmission, or up-regulation of additional GlyR α subunit
genes (Graham et al., 2003; Gundlach et al., 1988; Kling et al., 1997;
Lummis et al., 1990;Wässle et al., 1998). However, a strong visible phe-
notype is always observed in these animal models and in recessive
human startle disease caused by GLRA1 mutations (Chung et al.,
2010). Sowhat could be different in the zebrafish? Since the beo pheno-
type can also be reproduced by applying the GlyR antagonist strychnine
Fig. 8.GlyR densities are significantly reduced in glra1morphants, while the percentage of
glycine receptors that co-localize with gephyrin is reduced in glrbb morphants. A. After
GlyR α and gephyrin (GEPH) puncta were found using a customized MatLab program,
co-localization was calculated in control (n= 7), glra1 (ex4 n = 6; ex7 n= 3), and
glrbb (n = 3) 24 hpf morphants in two ways: either as the fraction of GlyRs that
co-localized with GEPH (ANOVA indicated a significant effect of morpholino
injected on percent of GlyR α puncta that co-localizes with GEPH [F(3,15) = 6.55,
p= 0.005]), or as the fraction of GEPH that colocalized with GlyR (ANOVA indicated no
significant effect of morpholino injected [F(3,15) = 1.27, p= 0.32]). Bar graphs show
means with error bars indicating standard deviation for all groups. Post hoc Bonferroni-
corrected Student's t-tests compared all means and demonstrated that at p b 0.05
(* in graph), only glra1MOex4 had significantly more co-localization than control,
glra1MOex7, and glrbbMOex5 morpholino treatments. Surprisingly fewer GlyR α puncta
co-localize with GEPH at 24 hpf than at 48 hpf, C, while the proportion of GEPH
colocalizing with GlyR puncta remains fairly constant. The proportion of GlyR α puncta
that co-localize with GEPH is greatest in the glra1ex4 morphants that lack the GlyR α
epitope, supporting the conclusion that in glra1 morphants, residual co-localization re-
flects synaptic staining of GlyRα2,α3, orα4a. B. GlyR and GEPHdensities were calculated
in control (n = 6), glra1 (ex4 n= 3; ex7 n = 7), and glrbb (n= 5) morphants at 48 hpf.
Bar graphs show means with error bars indicating standard deviation. ANOVA indicates
a significant effect of the mopholino injected on GlyR puncta density [F(3, 16) = 4.39,
p= 0.02] but not on GEPH puncta [F(3,16)= 2.03, p= 0.15]. Post hoc Bonferroni-
corrected Student's t-tests compared all means and demonstrated that at p b 0.05
(* in graph), only glra1MOex4 and glra1MOex7 were significantly reduced control
morpholino treatments, although glrbbMOex5 treatments also trends in the same di-
rection. C. Co-localization between GlyR and GEPH was quantified in control (n = 5),
glra1(ex4 n = 3; ex7 n = 6), and glrbb (n = 4) 48 hpf larva in two ways: either as the
fraction of GlyRs that co-localized with GEPH (ANOVA indicated a significant effect of
morpholino injected on percent of GlyR α puncta that co-localizes with GEPH
[F(3,16) = 5.89, p = 0.007]), or as the fraction of GEPH that colocalized with GlyR
(ANOVA indicated no significant effect of morpholino injected [F(3,14) = 1.56,
p = 0.24]). Bar graphs show means with error bars indicating standard deviation
for all groups. Post hoc Bonferroni-corrected Student's t-tests compared all means and
demonstrated that at p b 0.05 (* in graph), only the glrbbMOex5 treatment had signifi-
cantly less co-localization than the glra1MOex4 treatment. In glra1MOex7 morphants,
many peri-nuclear GlyR puncta fail to co-localize with GEPH. These likely represent
GlyRs that are trapped intracellularly. Differences between glra1MOex4 and glra1MOex7
are likely explained by fewer intracellular GlyRs being recognized by mAb4a in
glra1MOex4, since this antibody targets amino acids 96–105 that are lacking in
glra1ex4 morphants. Therefore, residual staining in glra1MOex4 morphants is likely
to reflect other GlyR α subunits, e.g. 2, 3, or 4a.
(Granato et al., 1996; Hirata et al., 2005), our interpretation is that the
beo phenotype results from the loss-of-function of multiple GlyR sub-
types. This supported by epistasis experiments that demonstrate glrbb
is epistatic to glra1 at the level of behavior. Consistentwith epistasis, im-
munohistochemistry showed that glra1 morphants exhibited residual
GlyR α subunit puncta, while in glrbb morphants, GlyR α subunits
were trapped in intracellular aggregates. Moreover, qPCR results also
identified glra2, glra3, and glra4a in developing embryos, which could
participate in α2βb, α3βb or α4βb GlyRs. Certainly, compared with
mammals, the zebrafish has additional opportunities for compensating
for the loss of glra1, due to the duplication of the α4 subunit genes
(glra4a, glra4b; Hirata et al., 2010). In our view, the zebrafish GlyR
gene expansion (Hirata et al., 2010) reflects strong selective pressure
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Fig. 9. Developmental expression profile of glycinergic synapse components. A. A schematic diagram of a glycinergic synapse depicts important proteins found in presynaptic, glial, and
postsynaptic compartments. The functional classes of genes are color-coded with glycine transporters (GlyT1, GlyT2, VIAAT) in shades of purple, GlyR α1–4a and GlyR βa–b are red
and blue respectively, and gephyrinA andB in shades of orange. GlyT2 transports glycine into thepresynaptic terminal,where VIAAT loads glycine into vesicles for release into the synaptic
cleft. Glycine then binds to postsynaptic GlyRs. Glycinergic signaling is terminated when glial GlyT1 removes glycine from the synaptic cleft. Six of the seven zebrafish GlyR subunits,α1,
α3, α3, α4a, βa and βb, are shown assembled into pentameric, ligand-gated Cl− channels with a 2α:3β subunit stoichiometry. These GlyRs are shown clustered at the synapse
via interactions between GlyR β subunit and the scaffolding protein gephyrin. B–D. Average expression levels for all genes and time points (24, 32, 48, 72 hpf) are shown for an
average of three independent mRNA preparations ± standard deviation. Genes are grouped into graphs according to their levels of expression and all gene expression is
normalized to the housekeeping gene EF1. B. GlyT1 (slc6a9) and VIAAT (slc32a1) expression levels. C. GlyR α1, α4a, βa and βb subunit (glra1, glra4a, glrba, glrbb) and GlyT2
(slc6a9) expression levels. D. GlyR α2 subunit, α3 subunit, gephyrin-a and gephyrin-b (glra2, glra3, gphna, gphnb) expression levels.

149L.R. Ganser et al. / Neurobiology of Disease 60 (2013) 139–151
for effective escape responses in this organism that develops externally
with minimal parental care. Taken together, our data suggest that
knocking down zebrafish orthologs of human hyperekplexia genes
will likely produce a phenotypic range from more mild spasticity
(glra1 and glrbb) to bilateral contractions (glrbb).

The behavioral transition from slow coiling to fast rhythmic flexions
(Saint-Amant and Drapeau, 1998; Warp et al., 2012), which is delayed
in glra1 morphants, reflects changes taking place in the connectivity
of neural circuits. While embryonic slow coiling behaviors rely upon
gap-junctional coupling among neurons (Brustein et al., 2003; Ganser
and Dallman, 2009; Saint-Amant and Drapeau, 2001), larval rhythmic
flexions rely upon synaptic inputs (Brustein et al., 2003; Kinkhabwala
et al., 2011; Koyama et al., 2011; McLean and Fetcho, 2009; McLean
et al., 2008). Our data show that zebrafish expressα1βb GlyRs through-
out this period of behavioral transition. These findings contrast with
rodent spinal cord (Agaki et al., 1991; Becker et al., 1988; Harvey
et al., 2004; Singer et al., 1998) and embryonic spinal cultures (Hoch
et al., 1989) in which the GlyR α2 subunit predominates at early stages
with the GlyRα1 andα3 subunits appearing postnatally. By contrast, in
zebrafish, we show that GlyR α subunit immunostaining on neuronal
precursors and differentiating neurons was disrupted by knocking
down either glra1 or glrbb, suggesting that the majority of early GlyR
puncta in 24 hpf zebrafish spinal cord are composed of α1 and βb
subunits.

In addition to glycine (Flint et al., 1998), non-synaptic release of both
glutamate and GABA are known to cause Ca2+ transients in neural
precursors that promote growth and maturation (Akerman and Cline,
2006; Ben-Ari and Spitzer, 2010; Haydar et al., 2000; Komuro and
Rakic, 1996; Owens and Kriegstein, 2002). Both immature neurons
and muscle express a variety of neurotransmitter receptors prior to in-
nervation (Borodinsky et al., 2004; Moody and Bosma, 2005) at which
point neurotransmitters influence a range of processes including prolif-
eration, migration, and differentiation (Ben-Ari et al., 2007; LoTurco
et al., 1995; Moody and Bosma, 2005; Owens and Kriegstein, 2002;
Spitzer, 2006). For both glycine andGABA, the developmental transition
from depolarizing to hyperpolarizing involves a shift in the chloride
concentration gradient that is brought about by the up-regulation of
the Cl− transporter KCC2 (Ben-Ari et al., 2007). In zebrafish, prema-
turely expressing KCC2 to block the depolarizing influence of glycine
and GABA reduces motor and interneuron differentiation (Reynolds
et al., 2008). KCC2 expression is actually triggered by GABA-induced
Ca2+ transients indicating a mechanism of developmental negative
feedback (Fiumelli et al., 2005; Ganguly et al., 2001). Such feedback is
likely a common feature of the developing nervous system (Dallman
et al., 1998; Moody and Bosma, 2005) creating sequential check-
points so that development only progresses when coordinate regula-
tion of channels, receptors, and transporters successfully produce sig-
nals that feedback to promote maturation and qualitatively change
excitability of the circuit (Ben-Ari and Spitzer, 2010). One possibility is
that by knocking down glra1 we delay the onset of rhythmic behaviors
by disrupting signaling associated with depolarizing glycine (Ben-Ari
and Spitzer, 2010).

Conclusions

Recent proteomic analyses of glutamatergic synapses suggest that
up to a thousand proteins participate in this neuronal specialization
(Grant, 2012). Even if glycinergic synapse function requires a fraction
of this number of specialized proteins, the door is certainly open to
complex forms of inheritance for startle disease. Despite the significant
successes in identifying genetic defects that cause startle disease, many
idiopathic cases remain in which the genetic cause is unresolved (Carta
et al., 2012; Chung et al., 2010, 2013; James et al., 2013). Exome se-
quencing in these idiopathic cases will identify new candidate startle
disease genes in the near future, necessitating animal models in which
to test the validity of new candidate genes (Chung et al., 2013; James
et al., 2013). Our study improves the utility of zebrafish as a startle
disease model by identifying early phenotypes produced by two
known startle disease genes in zebrafish that can be used to screen
newly identified candidate genes via morpholino knockdown and
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in overexpression models using proteins harboring potential disease-
causing mutations.
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