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Effect of a Photonic Band Gap on the Threshold and Output Power of Solid-State Lasers
and Light-Emitting Diodes
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(Received 20 November 1998)

We present results for the operation of a three-level solid-state laser both with normal and with
completely suppressed spontaneous emission between the lasing levels. The output power difference
in these two cases drops as the pump rate is increased above threshold and is not greatly different at
higher powers. The threshold pump power, although typically reduced by an order of magnitude, is
not zero and our results thus throw further light on the concept of “thresholdless” lasing. The theory is
also applicable to light-emitting diodes and amplifiers which function on the same principles as a laser.

PACS numbers: 42.70.Qs
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There is currently considerable interest in materials wi
a photonic band gap (PBG), i.e., materials in which certa
frequencies of light cannot propagate. The first use
the idea of a photon band structure was probably ma
by Ohtaka in 1979 [1]. It was, however, Yablonovitch’
work of 1987 [2] that really aroused a widespread intere
in this area. PBG materials have already been fabricated
three dimensions for the microwave and infrared region
and more recently opal crystals have been used for
visible region [3]. Current research is being undertak
to fabricate PBG optical materials [4]. Two-dimensiona
structures at nanometer wavelengths have already b
realized [5]. When an excited atom is placed in suc
a structure it will be prevented from emitting light if its
transition frequency lies within the forbidden range. It i
however, possible to introduce a defect in such a struct
so that only one particular mode can be supported. Hen
PBG materials can be used to control spontaneous emis
and as this is a fundamental process of the laser th
materials could be used to produce new types of lase
By introducing a defect which allows the propagatio
of only one mode within the forbidden region we coul
suppress the spontaneous emission to modes other than
particular single laser mode. In principle, we could mak
atoms emit only into one cavity mode which would ver
much reduce losses from the system and, therefore, ach
an idealb factor of 1 [6]. Theb factor is defined as

b �
rate of spontaneous emission into lasing mode

total rate of spontaneous emission
(1)

and its modification has led to a discussion of thresholdle
lasing [7]. Recent work concentrates on modifying spo
taneous emission, and hence theb factor, with the use of
photonic wells and wires. It is expected that such a kind
laser would have a lower threshold and be more efficie
than a conventional one.

The aim of this work was to obtain a theoretical lowe
bound on the lasing threshold of the PBG laser in order
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compare its properties, such as laser threshold and ou
power, with the conventional laser case. To do this w
assume that the lasing mode is sufficiently far from t
band edges to render spontaneous emission from it to
negligible. Vats and John [8] have discussed spontane
emission when non-Markovian band-edge influences occ

The solid-state laser falls into the so-called classB cat-
egory wheng� ¿ gk � 2k, wherek is a cavity loss rate
andg�, gk are the polarization and inversion decay rate
respectively. There have been ever more sophistica
laser theories since the mid sixties but, unfortunately,
seems that none of them can yet satisfactorily describe
properties of class-B lasers with all the spontaneous emis
sion rates built into the model. Thus, surprisingly, non
of them could be used to calculate the difference in thre
old and output power for lasers with and without a ph
tonic band gap. The well-known four-level Scully-Lam
theory of laser photon statistics [9,10] does not take t
spontaneous emission between the lasing levels into
count at all and is essentially for class-A lasers. It is the
only one, however, to go to all orders in the coupling co
stant between the cavity modes and the lasing atoms.
quantum-mechanical Langevin equations do have spon
neous emission between the lasing levels built into t
model and it is possible to obtain the threshold conditio
which, in principle, then could be analyzed in the pre
ence of a photonic band gap. However, at and close
the laser threshold no way of solving these equations
known which treats fully the fluctuations. In particular
is also not possible to calculate the photon statistics and
theory is for two-level atoms only. Lugiato’s master equ
tion method for the density operator [11,12] also has spo
taneous emission built into the model and all pump a
decay rates are represented by explicit interactions betw
the lasing system and reservoirs with positive and negat
absolute temperatures, respectively, but again the theor
for two-level atoms only and only valid below threshold
These equations were solved by Lugiato using the Glau
diagonalP representation [12]. Other authors have solv
this model by transforming into a Fokker-Planck equatio
© 1999 The American Physical Society 69
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[13–15]. However, all these results have a very compli-
cated form which allows fluctuations to be calculated only
numerically, and it is still not possible to obtain the photon
statistics pn.

We have improved these theories sufficiently for our
purpose by starting from Lugiato’ s two-level-atom model
but by avoiding his use of a “smoothing” approximation
(see also the derivation of the Scully-Lamb theory from the
Lugiato model described in Pike and Sarkar [15]) and then
explicitly solving the resulting equations in the photon-
number representation. We have also been able to solve
the three-level model and to take the theory to all orders
in the coupling constant between the cavity modes and the
lasing atoms in both the two- and three-level cases.

We will present the solution for the three-level lasing
model to all orders in the coupling constant. The three-
level model is a more realistic scenario and we want to
compare our work to that which has discussed the concept
of thresholdless lasing [7]. It also appears that the two-
level model has unrealistic behavior far above threshold
and this problem is removed using three levels. The
atomic-level structure and the various transitions used in
our calculations are shown in Fig. 1.

In the three-level laser model all elements connected
with the laser operation are divided into two parts, a small
system S and a large heat bath B. S will be described
by a Hamiltonian HS , the bath by HB, and the interaction
between B and S by HSB. The system contains N three-
level transitions, a single electromagnetic field mode and
the lasing transition-field interaction. Both the three-level
transitions and field are treated quantum mechanically, and
the interaction is taken in the rotating wave approximation.
The bath can be divided into three parts: a field bath
which represent losses of the laser mode from the cavity
through the partially transmitting output mirror, a bath
which represents the interactions of the excited levels with
the vacuum modes, i.e., spontaneous emission to modes
other than the lasing mode, and a bath which represents
pumping from the lowest level to the highest one.

For a semiconductor laser we have an analogy with the
three-level model. The gap in a semiconductor material
between the conduction and valence bands is where the
70
lasing action occurs. A flow of holes in the valence band
corresponds to the depletion of the lower lasing levels
[16]. Precise Hamiltonians for the baths are not known
but this is not very important since we are only interested
in the system behavior. It is then enough to know the
Hamiltonian of the bath-system interaction. We model
the baths as sets of harmonic oscillators at temperature
T . The spontaneous emission bath is modeled as a set
of oscillators at temperature T � 0 K and the pump-
ing bath as a set of oscillators at negative temperature
T � 20 K. The field bath is modeled as a set of harmonic
oscillators at temperature T . When we are not interested
in thermal photons coming back into the laser we may
set this temperature to 0 K (this is like saying that the
environment of the laser has zero temperature). The rates
of exchange of energy between these baths and the system
are expressed by the separate coupling constants of the
interactions. The three types of baths have different
influences on the system, but equilibrium between them
will be reached and the system will then have a tempera-
ture (i.e., inversion) depending on the coupling constants
of the two system baths and the lasing transition-
lasing mode interaction. The system Hamiltonian is
given by

HS � HT 1 HF 1 HTF , (2)

where

HT �
1
2

X

j

h̄voS3
j

HF � h̄vka
y
kak

HTF � i
NX

j�1

h̄g�e2ik.xj a
y
kS2

j23 2 eik.xj akS1
j23� .

(3)

S1
j23, S2

j23 are creation and annihilation operators, respec-
tively, between lasing levels (levels 2 and 3 in Fig. 1).
The bath-system interaction Hamiltonian, HSB, includes
the decay of excited levels to off-resonant modes Gj12#,
Gj13#, Gj23#, the pumping of the atoms to the excited state,
Gj", and the decay of the resonant mode. The Hamilton-
ian is
HSB � h̄�akG
y
F 1 a

y
kGF� 1

NX

j�1

h̄�S2
j12G

y
j12# 1 S2

j13G
y
j13# 1 S2

j23G
y
j23# 1 S1

j13Gj"�

1

NX

j�1

h̄�S2
j13G

y
j" 1 S1

j12Gj12# 1 S1
j13Gj13# 1 S1

j23Gj23#� . (4)

Thus the quantum-optical master equation takes the form

≠rS

≠t
� 2i�HS , rS� 1

NX

j�1

g23#

2
��S2

j23, rSS1
j23� 1 �S2

j23rS , S1
j23�� 1

NX

j�1

g13#

2
��S2

j13, rSS1
j13� 1 �S2

j13rS , S1
j13��

1

NX

j�1

g12#

2
��S2

j12, rSS1
j12� 1 �S2

j12rS , S1
j12�� 1

NX

j�1

g"

2
��S1

j13, rSS2
j13� 1 �S1

j13rS , S2
j13��

1 k�2akrSa
y
k 2 a

y
kakrS 2 rSa

y
kak� � LrS�t� . (5)
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FIG. 1. Atomic-level structure and various transitions in the
three-level-atom model.

Taking the trace over the transition levels, using the
dilute-atom approximation and employing the Markov
approximation gives us an equation for pn, the probability
of finding n photons in the cavity mode, when we work in
the photon-number representation. Multiplying the above
expression by S2

23S1
23 and S2

13S1
13, respectively, we obtain

two more coupled equations. When we consider these
three equations in the steady state and perform detailed
balancing we find

2kpn�t� � 2
A

1 1 nB�A
�pn2�t� 2 pn21,3�t�� , (6)

2g2n
g

1 1 nB�A
�pn21,3 2 pn,2� 2 g12#pn,2 1 g23#pn,3 � 0 ,

(7)

g13#pn,3 1 g12#pn,2 2 g"pn,1 � 0 , (8)

where

g �
1
2

�g23# 1 g13# 1 g12#� . (9)

We also know that

pn � pn1 1 pn2 1 pn3 , (10)

where

pn�t� � �njrI
F�t�jn� ,

pn,1�t� � �njS2
13S

1
13�t�rI

S�t�jn� � �1, njrI
S�t�jn, 1� ,

pn,2�t� � �njS2
23S

1
23�t�rI

S�t�jn� � �2, njrI
S�t�jn, 2� ,

pn,3�t� � �njS1
23S

2
23�t�rI

S�t�jn� � �3, njrI
S�t�jn, 3� .

(11)

Solving the above equations we obtain the following
recursion relation:
pn�t� �
A�Ng"g12# 2 2k�n 2 1� �g12# 1 g"��pn21

�2kN�1 1 nB�A� �g13#g12# 1 g"g12# 1 g12#g23# 1 g23#g"� 1 A�Ng23#g" 1 2kng13# 1 2kng"�� ,
(12)
where

A �
2Ng2

g
,

B�A � 4g2�g2.
(13)

Thus it is possible to express pn as a product of n
elements and to calculate the average and the most prob-
able number of photons in the cavity. The photon statis-
tics determines the coherence of the output. In the region
above laser threshold the most probable number of pho-
tons is greater than zero and in the region below and at
the laser threshold is equal to zero. Thus a physical in-
sight into our results for b � 1 is given by the realiza-
tion that, although always increasing linearly with input
power, the cavity output is incoherent until the former
condition on the photon statistics is achieved. In order
to find the laser threshold we therefore need to calculate
the most probable number of photons in the lasing mode.
This becomes equal to the average far above threshold,
where the photon statistics are symmetrical and approach
the Poisson distribution. It can be shown that the most
probable number of photons in the cavity is equal to
np �

2g2

g Ng"�g12# 2 g23#� 2
2g2

g 2k�g13# 1 g"�
2g22k

g �g#12 1 2g" 1 g#13� 1
2kB

A �g#13g#12 1 g"g#12 1 g#12g#23 1 g#23g"�

2
2k�1 1 B�A� �g13#g12# 1 g"g12# 1 g12#g23# 1 g23#g"�

2g22k

g �g12# 1 2g" 1 g13#� 1
2kB

A �g13#g12# 1 g"g12# 1 g12#g23# 1 g23#g"�
. (14)
We can now calculate the threshold pump rate from the
condition that the most probable number of photons in the
lasing mode must be greater than zero.

g" �
2g2kg13# 1 kg12#g�g13# 1 g23#�

Ng2�g12# 2 g23#� 2 2kg2 2 gk�g12# 1 g23#�
.

(15)

When spontaneous emission between the lasing levels can
be suppressed then g23# � 0. Recall that in the devel-
opment of the theory we employed a Markov approxi-
mation. This approximation is still valid even though
we use a PBG material as we are positioning our tran-
sition levels and defect mode at the center of the gap,
therefore excluding any gap-edge influences. We com-
pare characteristics for lasers with and without a pho-
tonic band gap (g23# � 0) for a laser with parameters
[17] N � 107�2, g � 105, 2k � 107, g13# � 106, g23# �
107�2, and g12# � 1010, in Fig. 2.
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FIG. 2. The most probable number of photons as a function of pumping rate for a three-level-lasing model for lasers with (higher
curve) and without PBG. The curves are indistinguishable in the second diagram.
For the case of such a PBG laser the threshold takes
place at a pump rate one order of magnitude smaller than
that for the case without a PBG. However, the maximum
output far above threshold of both types of laser is similar.
The PBG laser has a threshold pump rate given by the
expression

g",PBG �
2g2kg13# 1 kg12#gg13#

Ng2g12# 2 2kg2 2 gkg12#
. (16)

The important point to note for the value of this pump
rate is that the threshold is not zero when b � 1. As for
a conventional laser, the output is at first incoherent. This
differs from the results of Rice et al. [7] where they find
a thresholdless laser in this case. We can, in fact, directly
compare our work to that of Rice et al. Their model is
two-level but the lower level rapidly depletes to a lower
lying unspecified state. In our model this corresponds to
g13# being very small and g12# very large. With these
conditions we see from Eq. (8) that pn,2 is then very
small, which implies such a rapidly depleting lower level.
The threshold of the PBG laser will then approach zero.

Our new laser theory thus allows the differences
between an ideal PBG laser and a conventional laser to
be calculated when the numerical values of the relevant
parameters are known. A real PBG laser will not have
all the spontaneous emission suppressed but our results
give an upper bound on the possible improvements in
performance. As would be expected, the threshold pump
rate is lower. In the region of saturation the stimulated
emission dominates the spontaneous emission therefore
rendering it negligible. Therefore, when the b factor
is 1, there is little increase in the output power far
above threshold and the advantages are marginal at these
higher powers. However, when considering LED’s we
are concerned with lower output powers and in this region
72
we conclude that the output power will indeed be greatly
increased due to the use of a PBG material. We are
considering an extension of the theory to describe laser
amplifiers, where PBG materials are also expected to
improve performance significantly.
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