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Chapter 1

Completions and Complete
Representations

Robin Hirsch and Ian Hodkinson

1.1 Introduction

The title of this chapter indicates a rather technical topic, but it can also be
thought of as a foundational issue in logic. The question to be considered
is this: to what extent can we use an abstract mathematical language to
express and reason about relations? Going back at least as far as Augustus
de Morgan [dM60], a relation can be defined explicitly, as a set of tuples
of some fixed length. This allows us to focus on the mathematical aspects
of relations and ignore other more problematic features that might arise
from other approaches, such as a linguistic analysis of the use of relations in
natural language. In order to treat relations algebraically, we consider them
abstractly, identify certain relational operations (e.g., the operation of taking
the converse of a binary relation) and write down some equational axioms
which are sound for the chosen kind of relations (e.g., a binary relation is
equal to the converse of its converse). Ideally, our set Γ of equations will be
equationally complete, so that any equation valid over fields of relations of a
certain rank equipped with the chosen set-theoretically definable operators
will be entailed by Γ.

The finite set of equational axioms for boolean algebra is very successful
in this respect, for handling unary relations. The chosen operators are union
and complementation together with constants 0 denoting the empty set and
1 for the unit of the boolean algebra. Other operators, like intersection, can
be defined within this signature. The finite set of axioms defining a boolean
algebra is complete and every boolean algebra is isomorphic to a genuine
field of sets.
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Similarly, for binary relations, we treat the boolean operators plus some
additional operators and try to write down some equational axioms that are
equationally complete for binary relations. Different choices are possible for
a set of operators for binary relations — for relation algebras we use the
boolean operators together with the unary operator of taking the converse,
the binary operator of composition and a constant for the identity. Axioma-
tising binary relations with the relation algebra operators turns out to be
more difficult than was the case for unary relations, and we know that any
complete set of axioms is necessarily infinite [Mon64], but recursively enu-
merable, complete, equational axiomatisations are known [Lyn56, HH02a].
For relations of higher finite rank, different choices of algebras can be con-
sidered — cylindric algebra, polyadic algebra, diagonal-free algebra — but
for ranks at least three, the situation is largely similar to the relation algebra
case. All of the operators of these algebras are additive in each argument,
and normal, meaning that their value is 0 whenever any argument is 0. All
algebras mentioned above are boolean algebras with operators (BAOs).

Let ℱ be one of the following: (i) the class of fields of sets equipped
with the boolean operators, (ii) the class of fields of binary relations with
the relation algebra operators, (iii) the class of fields of n-ary relations (for
some n) with the cylindric algebra operators, (iv) the class of fields of n-
ary relations with the polyadic operators, (v) the class of fields of n-ary
relations with the diagonal free operators. Let Γ be a set of equations of the
appropriate signature equationally complete over ℱ . Since the closure of ℱ
under isomorphism is known to be a variety, every model of Γ is isomorphic
to a member of ℱ . A representation is an isomorphism from an algebra to
a field of relations, and its base is the underlying set of objects that the
relations relate.

But the correspondence between algebras and fields of relations may
not be quite as close as we had hoped. By completeness, any equation
valid in ℱ is entailed by Γ, and since ℱ is a variety, Γ entails all first-
order sentences valid over ℱ . But there might be other true properties of
ℱ , not expressible by equations or even first-order sentences, that do not
follow from Γ. At least some second-order properties do follow from Γ in
these cases. Since each k-ary operator f of each algebra in ℱ is conjugated,
it follows that f is completely additive in each argument [JT51], meaning
that if an arbitrary non-empty set S of elements of some A ∈ ℱ has a
supremum sup(S), and if i < k and a0, . . . , ai−1, ai+1, . . . ak−1 ∈ A, then
b = sup{f(a0, . . . , ai−1, s, ai+1, . . . , ak−1) : s ∈ S} exists and

f(a0, a1, . . . , ai−1, sup(S), ai+1, . . . , ak−1) = b.

But there are other second-order properties of ℱ that might not be properly
captured in our algebraic framework. The first problem is that a model A
of Γ might be incomplete — there could be a set S of elements of A that has
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no supremum in A. With a field of concrete relations, we can always extend
the field to include a supremum of any set of relations, simply by taking the
set-theoretic union of each set of relations, and generating a field of relations.
A construction of Monk [Mon70] gives us, for any completely additive BAO
A, a complete extension Com(A) in which A is dense, and which respects
all existing suprema in A. Such an extension is unique up to isomorphism,
and is called the completion of A. However, a potential problem is that A
could be a model of Γ, so A is isomorphic to a field of relations, but Com(A)
could fail some of the axioms in Γ and have no representation. For binary
and higher order relations, this problem is real, as we will see.

The second problem is that even if ℎ is a representation of A, so that ℎ
is an isomorphism from the algebra to a field of relations, there are certain
operators definable in second order logic that might not be preserved by ℎ.
We say that ℎ is a complete representation of A if

ℎ(sup(S)) =
∪
s∈S

ℎ(s)

for any subset S of A where the supremum sup(S) exists in A. By the
De Morgan Laws, a complete representation also preserves arbitrary in-
fima wherever they are defined. Every representation of a finite algebra is
of course complete. A saturation argument shows that all infinite algebras,
even boolean ones, have incomplete representations. So the main question is
when an algebra has some complete representation. Complete representabil-
ity is connected to the omitting types theorem for the corresponding logic:
see chapter ??∙ for more on this. We will devise an infinite game to charac- editor please insert

crossref to Sayed
Ahmed’s chapter

terise when an algebra has a complete representation, and we will use this
game to analyse the class of completely representable algebras.

1.2 Boolean Algebra

We start with the easiest case: algebras of unary relations. We can define
an ordering in a boolean algebra by x ≤ y ⇐⇒ x + y = y. An atom of a
boolean algebra is a ≤-minimal non-zero element and the algebra is atomic
if every non-zero element of the algebra is above some atom. For a boolean
algebra ℬ write At(ℬ) for the set of all atoms of ℬ. All non-trivial finite
boolean algebras are atomic but there are boolean algebras with no atoms
at all. (For example, let X be an infinite set and define the equivalence
relation over the subsets of X by S ∼ T iff the symmetric difference of S
and T is finite. The boolean operators have a well-defined action on the
equivalence classes yielding a boolean algebra with no atoms.)

A representation ℎ of a boolean algebra ℬ is called atomic if for all
x ∈ ℎ(1) there is an atom b ∈ At(ℬ) with x ∈ ℎ(b).
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THEOREM 1.2.1 [HH97] Let ℎ be a representation of the boolean algebra
ℬ. The following are equivalent.

1. ℎ is a complete representation.

2. ℎ is an atomic representation.

Proof. If ℎ is an atomic representation then for all b ∈ ℬ, ℎ(b) =
∪
{ℎ(a) :

a ∈ At(ℬ), a ≤ b}. Let S be a set of elements of ℬ with a supremum
sup(S) ∈ ℬ. An atom a is below sup(S) iff there is s ∈ S with a ≤ s. So

x ∈ ℎ(sup(S)) ⇐⇒ x ∈
∪
{ℎ(a) : a ∈ At(ℬ),∃s ∈ S, a ≤ s}

⇐⇒ ∃s ∈ S ∃a ∈ At(ℬ), (a ≤ s, x ∈ ℎ(a))

⇐⇒ ∃s ∈ S (x ∈ ℎ(s))

⇐⇒ x ∈
∪
{ℎ(s) : s ∈ S}

so ℎ is a complete representation.
Conversely, suppose ℎ is complete. Let x ∈ ℎ(1). The set  = {b ∈ ℬ :

x ∈ ℎ(b)} is an ultrafilter of ℬ. 0 is a lower bound of . 0 cannot be the
greatest lower bound of , else

x ∈
∩
{ℎ(b) : b ∈ } ∖ ℎ(inf())

contradicting the assumed completeness of ℎ. So there must be a non-zero
lower bound of , say a. Since a ∕≤ −a, −a ∕∈ , so a ∈ . Since if b+ c ∈ 
then b ∈  or c ∈ , it follows that a is an atom. Hence x ∈ ℎ(a) for some
atom a, and ℎ is an atomic representation. □

COROLLARY 1.2.2 [HH97] The class of completely representable boolean
algebras is the same as the class of atomic boolean algebras.

Other potential problems that we mentioned earlier do not arise for boolean
algebras. Since every boolean algebra is representable it follows trivially
that the completion of a boolean algebra is always representable.

1.3 Completely Representable Relation Algebras

The main focus of this article is about completions and complete represen-
tations of n-dimensional cylindric algebras for finite n ≥ 3. Historically the
main results were all established first for relation algebra, and we outline
these results here, without including any proofs. In the following sections
we will go through the corresponding material for cylindric algebras in more
detail.

In 1950 Roger Lyndon published a set LC of axioms (now called the
Lyndon conditions) and proved that a finite relation algebra satisfies the
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conditions iff it is representable [Lyn50]. His proof can be extended to work
for arbitrary relation algebras. He also claimed to prove that his conditions
were valid over complete, representable atomic relation algebras, but in fact
his proof only works for finite relation algebras. His main result was to
construct a finite relation algebra which failed some of his conditions and
was therefore not representable. This showed that Tarski’s set of equations
for relation algebra [CT51] was not complete. He then defined two infinite
atomic relation algebras ℳ,ℳ′, and showed that (i) ℳ was representable,
(ii) ℳ′ failed one of the first Lyndon conditions, and (iii) every finitely
generated subalgebra of either relation algebra was isomorphic to a finitely
generated subalgebra of the other. He concluded from (ii) that ℳ′ was not
representable and from (iii) that there could be no equational axiomatisa-
tion of the class of representable relation algebras (RRA). But in 1955
Tarski proved that RRA was closed under homomorphic image, subalgebra
and direct product and was therefore an equational variety [Tar55]. The
situation appeared contradictory.

In fact, by Tarski’s result, both algebras were representable, but the fact
thatℳ′ failed a Lyndon condition did not prove it to be unrepresentable, but
only that it had no complete representation. The mistake in Lyndon’s paper
turned out to be a very fruitful one, mainly because it led him to publish
a second paper with the first correct axiomatisation of RRA [Lyn56], but
also because it led to a thorough investigation of the relationship between
representability, the Lyndon conditions, complete representability etc. It
was shown in [Hir95] that the class of completely representable relation
algebras is non-elementary. In [HH97] this was extended to RCAn for all
n ≥ 3. [Hod97] showed that RRA (and RCAn for finite n ≥ 3) is not
closed under completions.

1.4 Complete representations of Cylindric Alge-
bras and Games

We now consider complete representations of n-dimensional cylindric alge-
bras, for 3 ≤ n < !. It is clear that determining whether a cylindric algebra
has a complete representation or not can be tricky. (Indeed we will see
that the class of completely representable cylindric algebras of dimension
n is not even elementary.) We saw in theorem 1.2.1 that a representation
of a boolean algebra is complete if and only if it is atomic. This theorem
generalises to algebras of higher order relations, since their representations
are, inter alia, boolean representations. It follows that only atomic algebras
can have complete representations, although Lyndon’s relation algebra ℳ′
shows that not every representable atomic algebra need have a complete rep-
resentation, and similarly (as it turns out), not every atomic representable
cylindric algebra need have a complete representation.

5



We will introduce a two-player game that tests complete representability
of an atomic cylindric algebra, but we have some preliminaries concerning
networks first.

The dimension n (where 3 ≤ n < !) remains fixed until section 1.9.
RCAn denotes the class of representable n-dimensional cylindric algebras
and CCAn denotes the class of completely representable n-dimensional
cylindric algebras. In the following, we often suppress references to n, so it
is implicit that all cylindric algebras are n-dimensional. To avoid unneces-
sary checking, it will often be convenient to consider a slightly wider class
of algebras: by a cylindric-type algebra we will mean a completely additive
BAO of the signature of n-dimensional cylindric algebras. Note that every
n-dimensional cylindric algebra is such an algebra (because it is conjugated:
see §1.1), and every representable cylindric-type algebra is a cylindric alge-
bra. A cylindric-type algebra A is said to be atomic if its boolean reduct is
atomic, and in that case we let At(A) denote the set of atoms of its boolean
reduct.

We consider functions from n to A, where A is a set. (The set of all
functions from a set X to a set Y is as usual denoted by XY .) We identify
the function x ∈ nA with the sequence (x(0), x(1), . . . , x(n − 1)), and we
sometimes write x as x̄ = (x0, . . . , xn−1). Given x, y ∈ nA and i < n, we
write x ≡i y if for all j < n, if j ∕= i then x(j) = y(j). For i < n and a ∈ A,
we write x[i/a] for the function that is identical to x except x[i/a] maps i
to a.

Definitions 1.4.1 and 1.4.2 below appeared first as [HH97, Definition 27].

DEFINITION 1.4.1 (Network) Let A be an atomic cylindric-type al-
gebra. An A-pre-network N = (N1, N2) consists of a set of nodes N1 and
a ‘labelling’ function N2 : nN1 → At(A). N is said to be a network if it
satisfies, for all x, y ∈ nN1 and i, j < n,

∙ N2(x) ≤ dij ⇐⇒ x(i) = x(j),

∙ if x ≡i y then N2(x) ≤ ciN2(y).

Write (M1,M2) ⊆ (N1, N2) if (M1,M2), (N1, N2) are networks, M1 ⊆ N1

and M2 = N2↾M1 . For a limit ordinal � and a sequence of networks
(N0

1 , N
0
2 ) ⊆ (N1

1 , N
1
2 ) ⊆ ⋅ ⋅ ⋅ ⊆ (N�

1 , N
�
2 ) ⊆ ⋅ ⋅ ⋅ (� < �), define the limit

of the sequence to be the network (N1, N2) =
∪
�<�(N�

1 , N
�
2 ) with nodes

N1 =
∪
�<�N

�
1 and labelling N2 =

∪
�<�N

�
2 : that is, N2(m,n) = N�

2 (m,n)
for any � < � such that m,n ∈ N�

1 .

The elements of nN1 are called n-dimensional hyperedges (or simply hy-
peredges) of the network. We will frequently drop the suffices and let N
denote the network (N1, N2), the set of nodes N1 and the labelling function
N2, distinguishing cases by context.
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A complete representation of an atomic cylindric-type algebra A can be
identified with a set {Na : a ∈ At(A)} of A-networks such that

for each a ∈ At(A) there is x ∈ nNa with Na(x) = a, and
whenever x ∈ nNa, b ∈ At(A), i < n, and Na(x) ≤ cib,
there is y ∈ nNa with x ≡i y and Na(y) = b.

(1.1)

By dint of theorem 1.2.1, such a set of networks can easily be constructed
from a complete representation. Conversely, by renaming the nodes of the
networks, we can arrange that the nodes of Na and Nb are disjoint, when a
and b are distinct atoms. An atomic (hence complete) representation ℎ of
A whose base is the union of the sets of nodes of the Na, for a ∈ At(A), is
defined by

ℎ(b) = {x : ∃a ∈ At(A), x ∈ nNa, Na(x) ≤ b},

for each element b of A.

DEFINITION 1.4.2 (Atomic Game) LetA be an atomic cylindric-type
algebra and let � > 0 be a cardinal. The two player game G�(A) is defined
as follows. A play of the game is a sequence N0 ⊆ N1 ⊆ ⋅ ⋅ ⋅ ⊆ Nt ⊆ ⋅ ⋅ ⋅
of A-networks (t < �). In round 0, ∀ picks an atom a ∈ A and ∃ plays a
network N0. If there is no x ∈ n(N0) such that N0(x) = a then ∀ wins the
play.

For a limit ordinal � < � let N� =
∪
t<�Nt. ∀ does not win in the round

of a limit ordinal.

For successor ordinals, suppose the play has proceeded N0 ⊆ ⋅ ⋅ ⋅ ⊆ Nt

for some t with t + 1 < �. In the (t + 1)th round, ∀ picks i < n, x ∈ nNt,
and an atom a ∈ At(A) such that Nt(x) ≤ cia. Such a move by ∀ is denoted
(i, x, a). ∃ responds with a network Nt+1 ⊇ Nt. If there is no node l ∈ Nt+1

such that Nt+1(x[i/l]) = a then ∀ wins.

The limit of the play is defined to be
∪
t<�Nt. If ∀ does not win in any

round then ∃ wins the play.

The next theorem generalises [HH97, Theorem 28] to the uncountable case.

THEOREM 1.4.3 Let A be an atomic cylindric-type algebra with � atoms.
The following are equivalent.

∙ A is completely representable.

∙ ∃ has a winning strategy in G�+!(A).

Proof. If A has a complete representation then by theorem 1.2.1 it has an
atomic representation and ∃’s winning strategy is to maintain an embedding
of the current network in a play of the game into the base of the atomic
representation. Conversely, if ∃ has a winning strategy in G�+!(A), then
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for each a ∈ At(A) consider a play of the game in which ∃ plays networks
with fewer than �+ ! nodes, and ∀ picks the atom a initially and picks all
possible i < n, all hyperedges and all legitimate atoms eventually. Let the
limit of the play be Na. Then {Na : a ∈ At(A)} satisfies (1.1). □

For finite m, we can define a first-order sentence �m such that for any
atomic cylindric-type algebra A, ∃ has a winning strategy in Gm(A) iff A ∣=
�m. These formulas �m correspond, roughly, to the Lyndon conditions that
we mentioned in the section on Relation Algebra. By König’s lemma, a finite
n-dimensional cylindric algebra A satisfies {�m : m < !} iff ∃ has a winning
strategy in G!(A), iff A is representable. This can fail for infinite algebras,
but still there is a generalisation to arbitrary algebras (corollary 1.4.5 below).

THEOREM 1.4.4 If A is an atomic cylindric-type algebra and ∃ has a
winning strategy in Gm(A) (all m < !), then ∃ has a winning strategy in the
game G!(

∏
U A) on the ultrapower

∏
U A, for any non-principal ultrafilter

U over !.

Proof. (See [HH97, Theorem 28(2)] for details.) Let X be a finite set and
suppose N i is an A-pre-network with nodes X, for all i < !. The ultraprod-
uct of (N i : i < !) is defined to be the

∏
U A-pre-network N with nodes X

and labelling defined by N(x̄) = [(N i(x̄) : i < !)] ∈
∏
U A. L̷oś’s theorem

can be used to prove that this is a network iff {i < ! : N i is a network} ∈ U .
Consider a play N0 ⊆ N1 ⊆ . . . ⊆ Nm ⊆ . . . of G!(

∏
U A). For each

m < !, ∃ maintains a sequence of A-pre-networks (N j
m : j < !), each with

the same nodes as Nm, such that Nm is the ultraproduct of the N j
m’s. Induc-

tively, she also arranges that there is a set Xm ∈ U such that for all j ∈ Xm,
j ≥ m and the sequence N j

0 ⊆ N
j
1 ⊆ . . . ⊆ N

j
m is the initial segment of a play

ofGj(A) in which ∃ uses her winning strategy. LetX0 = !. In roundm, sup-
pose ∀ plays i < n, x̄ and an atom [(aj : j < !)] of

∏
U A. By L̷oś’s theorem,

L = {j < ! : j > m, (i, x̄, aj) is a legal ∀-move} ∈ U , so Xm∩L ∈ U . Fix a
new node xm. For each j ∈ Xm∩L, ∃ uses her winning strategy to determine
a network M j

m+1 ⊇ N
j
m. We can assume that M j

m+1 extends N j
m by at most

the single node xm. If {j ∈ Xm ∩ L : M j
m+1 has same nodes as N j

m} ∈ U
then ∃ plays Nm+1 = Nm in the main game. Otherwise, Y = {j ∈ Xm ∩L :
M j
m+1 extends N j

m by a single node xm} ∈ U , and she lets Nm+1 extend

Nm by the single new node xm. For all j ∈ Y she lets N j
m+1 = M j

m+1 and

for j ∕∈ Y she lets N j
m+1 be an arbitrary pre-network with the same nodes as

Nm+1. By L̷oś’s theorem again, this maintains the induction hypothesis and
defines a valid move for ∃ in round m. Since she can do this in all rounds
she will win the play. □

COROLLARY 1.4.5 Let A be an atomic cylindric-type algebra. Then
∃ has a winning strategy in Gm(A) for all finite m, iff A is elementarily
equivalent to a completely representable cylindric algebra.
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Proof. If ℬ is a completely representable cylindric algebra, then by theo-
rem 1.4.3, ∃ has a winning strategy in Gm(ℬ) for all finite m, and hence
ℬ ∣= {�m : m < !}. If A is elementarily equivalent to ℬ then A ∣= {�m :
m < !} as well, so ∃ has a winning strategy in Gm(A) for all finite m.

Conversely, if ∃ has a winning strategy in Gm(A) for all finite m, then by
theorem 1.4.4, ∃ has a winning strategy in G!(

∏
U A) where

∏
U A is a non-

principal ultrapower of A. It can be checked using elementary chains that∏
U A has a countable elementary subalgebra ℬ where ∃ still has a winning

strategy in G!(ℬ). By theorem 1.4.3, ℬ is completely representable, and
plainly, A and ℬ are elementarily equivalent. □

1.5 Atom structures

Duality has been important in the theory of BAOs since [JT51], and much
earlier for boolean and other algebras. In the rest of the chapter we will
consider representations from the dual perspective of atom structures.

The action of the non-boolean operators in a completely additive atomic
BAO is determined by their behaviour over the atoms, and this in turn is
encoded by the atom structure of the algebra.

DEFINITION 1.5.1 (Atom Structure) Let A = (A, 0, 1,+,−,Ωi : i ∈
I) be an atomic boolean algebra with operators Ωi : i ∈ I. Let the rank of Ωi

be �(i). The atom structure At(A) of A is a relational structure

(At(A), RΩi : i ∈ I)

where At(A) is the set of atoms of A as before, and RΩi is a (�(i) + 1)-ary
relation over At(A) defined by

RΩi(a0, . . . , a�(i)) ⇐⇒ Ωi(a1, . . . , a�(i)) ≥ a0.

Similar ‘dual’ structures arise in other ways, too. For any not necessarily
atomic BAO A as above, its ultrafilter frame is the structure

A+ = (Uf(A), RΩi : i ∈ I),

where Uf(A) is the set of all ultrafilters of (the boolean reduct of) A, and for
�0, . . . , ��(i) ∈ Uf(A), we put RΩi(�0, . . . , ��(i)) iff {Ωi(a1, . . . , a�(i)) : aj ∈
�j for 0 < j ≤ �(i)} ⊆ �0.

DEFINITION 1.5.2 (Complex algebra) Conversely, if we are given an
arbitrary structure S = (S, ri : i ∈ I) where ri is a (�(i) + 1)-ary relation
over S, we can define its complex algebra

ℭm(S) = (℘(S), ∅, S,∪, ∖,Ωi : i ∈ I),
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where ℘(S) is the power set of S, and Ωi is the �(i)-ary operator defined by

Ωi(X1, . . . , X�(i))

= {s ∈ S : ∃s1 ∈ X1 . . . ∃s�(i) ∈ X�(i), ri(s, s1, . . . , s�(i))},

for each X1, . . . , X�(i) ∈ ℘(S).

It is easy to check that, up to isomorphism, At(ℭm(S)) ∼= S always (we iden-
tify the two), and A ⊆ ℭm(At(A)) ∼= Com(A) for any completely additive
atomic BAO A. If A is finite then of course A ∼= ℭm(At(A)).

Atom structures of cylindric-type algebras have the form (S,Rci , Rdij :
i, j < n), where the Rci and Rdij are binary and unary relations on S,
respectively. We call such objects cylindric-type atom structures. One can
construct from the standard axiomatisation of cylindric algebras [HMT71,
definition 1.1.1] a Sahlqvist correspondent: a first-order sentence true in all
atom structures of atomic cylindric algebras, and such that the complex
algebra of any atom structure in which it is true is a cylindric algebra. We
call any model of this sentence a cylindric algebra atom structure.

It turns out that if A is any cylindric algebra, A+ is a cylindric algebra
atom structure. Its complex algebra ℭm(A+) is often written A�, and is
called the canonical extension of A [JT51]. A is isomorphic to a subalgebra
of A� and the isomorphism is a 7→ {f ∈ A+ : a ∈ f}. This A� is a different
kind of complete extension of A to the Monk completion Com(A) that we
mentioned in the introduction. Whereas suprema and infima are preserved
from A to Com(A), this is not the case for A� if A is infinite. On the other
hand, A� is always complete and atomic, while Com(A) will be atomic iff
A is. Monk proved that RCAn is canonical (closed under taking canonical
extensions): see [HMT71, Theorem 2.7.23]. In fact,

THEOREM 1.5.3 An n-dimensional cylindric algebra A is representable
iff A� has a complete representation.

(See [HH02a, theorem 3.36] for the analogous result for relation algebras.)

1.6 Representability and atom structures

Given an atomic cylindric-type algebra A, the games G�(A) are effectively
played on the atom structure At(A), so by theorem 1.4.3, whether A has a
complete representation or not depends only on its atom structure. It follows
that if a cylindric algebra A has a complete representation then any cylindric
algebra with the same atom structure as A is completely representable, and
in particular the completion Com(A) of A is also completely representable.
At any rate, the atom structures of completely representable cylindric alge-
bras form an important class, which we would like to characterise, perhaps
by first-order sentences.
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But whether the plain representability of A is determined by At(A) is
not so clear. On the one hand, A is determined by its boolean structure
and by At(A), and since boolean algebras are easy to represent, one might
surmise that impediments to representing A reside in its atom structure. On
the other hand, the boolean and atom structure of A may interact, perhaps
allowing two atomic cylindric algebras with the same atom structure, one
being representable, the other not. This happens iff there is a representable
atomic cylindric algebra whose completion is not representable. It would
lead to two different kinds of ‘representability’ for a cylindric algebra atom
structure, depending on whether some or all atomic cylindric algebras with
that atom structure are representable. This turns out to be the case: it
is possible to construct a weakly but not strongly representable cylindric
algebra atom structure [Hod97], as we will see below.

In this section, we examine these issues (see [HH02b] for the correspond-
ing definitions and results for relation algebra).

DEFINITION 1.6.1 Let S be an n-dimensional cylindric algebra atom
structure.

1. S is completely representable if some (equivalently, every) atomic n-
dimensional cylindric algebra A with At(A) = S has a complete repre-
sentation. CRASn denotes the class of completely representable (n-
dimensional) cylindric algebra atom structures.

2. S ∈ LCASn if ∃ has a winning strategy in Gm(ℭmS) for all m < !
— i.e., A ∣= {�n : n < !}, for some (equivalently, all) A where
At(A) = S.

3. S is strongly representable if every atomic cylindric algebra A with
At(A) = S is representable. We write SRASn for the class of strongly
representable (n-dimensional) cylindric algebra atom structures.

4. S is weakly representable if there is a representable, atomic cylindric
algebra A with At(A) = S. We let WRASn denote the class of weakly
representable (n-dimensional) cylindric algebra atom structures.

Note that for any n-dimensional cylindric algebra A and atom structure S, if
At(A) = S then A embeds into ℭmS, and hence S is strongly representable
iff ℭmS is representable.

We want to investigate these classes, and the relationships between them.
It is easily seen that

CRASn ⊆ LCASn ⊆ SRASn ⊆WRASn. (1.2)

The last inclusion is trivial, and the first is immediate from the proof of
theorem 1.4.3: ∃ may use a complete representation of a cylindric algebra

11



to guide her to victory in any atomic game played on the algebra. For
the middle inclusion, let S be an atom structure in LCASn. To show
S ∈ SRASn we must show that an arbitrary atomic cylindric algebra A
with At(A) = S is representable. By corollary 1.4.5, A is elementarily
equivalent to some (completely) representable algebra, and since RCAn is
an elementary class, A is representable too. This shows that LCASn ⊆
SRASn. (Also, by corollary 1.4.5, LCASn is the elementary closure of
CRASn.)

We now ask which of the inclusions in (1.2) are strict, and which of the
classes are elementary. LCASn is elementary and it is defined by {�m :
m < !}. The fact that WRASn is elementary is a special case of a more
general result: given any variety V of completely additive BAOs, Venema
showed in [Ven97a] that the class AtV of atom structures of atomic algebras
in V is elementary. The idea of the proof is as follows. Any atom structure
S of a completely additive atomic BAO is also the atom structure of the
subalgebra, say A, generated by the atoms. Then S ∈ AtV iff A ∈ V, and
this holds iff each equation " defining V is valid in A. But each element of A
is the value (in A) of some term t(x̄) of the signature of A, whose variables x̄
are instantiated by atoms. So the statement that " is valid in A is equivalent
to the truth in � of an infinite set T" of first-order sentences in the signature
of �, obtained by replacing the x̄ by arbitrary terms, rewriting all function
symbols into first-order formulas over � (using complete additivity), and
then taking the universal (∀) closure. The union of the T", taken over all
equations " defining V, is then a set of first-order axioms defining AtV.

This leaves the classes CRASn and SRASn. It turns out that they are
not elementary [HH97, HH09]. (Hence, all inclusions in (1.2) are strict.)

1.7 Monk and rainbow algebras

How are these non-elementary results proved? The games introduced earlier
are potentially powerful tools for problems like this, since they can be used
to determine when an atom structure lies in one of the classes. But to take
advantage of them, we need a source of examples of atom structures whose
game-theoretic properties we can control.

We will give two types of example, both obtained from graphs. Aspects
of our constructions can be traced back to [Mon69, Hir95, Hod97, HH02b,
HH09]. A graph is a structure Γ = (V,E) where V is a non-empty set of
‘nodes’ or ‘vertices’, and E ⊆ V × V is a symmetric binary ‘edge’ relation
on V . Note that our graphs can have ‘loops’: a reflexive node is a node
x ∈ V such that (x, x) ∈ E. A set X ⊆ V is a clique if (x, y) ∈ E for all
distinct x, y ∈ X, and independent if (X × X) ∩ E = ∅. The chromatic
number �(Γ) of Γ is the least natural number k such that V is the union of
k independent sets, and∞ if no such k exists. For economy’s sake, we often
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identify (notationally) Γ with V . In the same way, we identify (notationally)
a model-theoretic structure M with its domain, the cardinality of which we
write as ∣M ∣. We will write M ⊆ N to mean that M is a substructure of N .

Proofs in this section are only sketched, owing to lack of space. More
details can be found in the references. Recall that n is fixed (3 ≤ n < !).

1.7.1 Strong homomorphisms

Before we proceed, a little more duality will be helpful.

DEFINITION 1.7.1 Let S = (S,Rci , Rdij : i, j < n) and S ′ = (S′, R′ci ,
R′dij : i, j < n) be cylindric-type atom structures. A map � : S → S′ is said

to be a strong homomorphism from S to S ′ if for each x, y ∈ S and i, j < n
we have

1. (x, y) ∈ Rci ⇐⇒ (�(x), �(y)) ∈ R′ci ,

2. x ∈ Rdij ⇐⇒ �(x) ∈ R′dij .

LEMMA 1.7.2 Let S,S ′ be cylindric-type atom structures and let � : S →
S ′ be a strong homomorphism.

1. Let N1 be a set and let N2 : nN1 → S. Then N = (N1, N2) is a
ℭmS-network iff �(N) = (N1, � ∘N2) is a ℭmS ′-network.

2. If � is surjective and the cylindric-type algebra ℭmS is a completely
representable cylindric algebra then ℭmS ′ is a completely representable
cylindric algebra.1

Proof. The first part is a consequence of definitions 1.4.1 and 1.7.1. For
the second part, � induces a map �−1 : ℭmS ′ → ℭmS by �−1(X) = {s ∈ S :
�(s) ∈ X}, for X ⊆ S′. This can be checked to be an algebra embedding that
preserves all meets and joins. Hence, ℭmS ′ is a cylindric algebra, and if ℎ is
a complete representation of ℭmS then ℎ ∘ �−1 is a complete representation
of ℭmS ′. □

1.7.2 Algebras from classes of structures

Both of our examples will be based on an underlying class of structures.

DEFINITION 1.7.3 Let L be a first-order signature consisting of relation
symbols of arity < n, and let K be a non-empty class of L-structures with
the property that an L-structure M is in K iff every substructure of M with
at most n elements is in K.

1A slightly weaker property suffices for this than � being a strong homomorphism,
namely, being a ‘bounded morphism’, but we will need the stronger version in lemma 1.7.4.
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1. Let X be a set, M,N ∈ K, f ∈ XM , and g ∈ XN . We write f ∼ g if
{(f(x), g(x)) : x ∈ X} is a well defined partial isomorphism from M
to N .

2. Let ℱ = ℱ(K) =
∪
{nM : M ∈ K}. For each f ∈ ℱ , we fix some

Mf ∈ K with f ∈ n(Mf ). The class relation ∼ induces an equivalence
relation on ℱ , and we write the equivalence class of f ∈ ℱ as [f ].
For f ∈ ℱ , if we write ker f = {(x, y) ∈ n × n : f(x) = f(y)}, we
may identify [f ] with the L-structure induced on the set n/ ker f of
(ker f)-equivalence classes by pulling back from Mf in the obvious way.
Therefore, we may treat each equivalence class [f ], and ℱ itself, as a
set. Then, ℱ/∼ denotes the set of ∼-equivalence classes.

3. We now define a structure �(K) = (ℱ/∼, Rci , Rdij : i, j < n), which
will be the atom structure of the cylindric-type algebra ℭm �(K), as
follows:

∙ Rci =
{

([f ], [g]) : f, g ∈ ℱ , f ↾ (n ∖ {i}) ∼ g ↾ (n ∖ {i})
}

,

∙ Rdij = {[f ] : f ∈ ℱ , f(i) = f(j)},

where i, j < n.

4. As usual, we will identify any [f ] ∈ ℱ/∼ with the singleton {[f ]} ∈
ℭm �(K).

Fix L,K as in definition 1.7.3, and write A for ℭm �(K). Notions to do
with A-networks and complete representations of A have analogues in terms
of structures in K. This can be seen as follows. We leave the reader to check
the (quite standard) details.

There is a one-one correspondence between A-networks and structures
in K. In one direction, we may view any M ∈ K as an A-network NetM
via NetM(ā) = [ā], for each ā ∈ nM . Conversely, let N be an A-network.
We define an L-structure StrN on the same domain as N . For each k-ary
R ∈ L and a0, . . . , ak−1 ∈ N , we define StrN ∣= R(a0, . . . , ak−1) iff

N(a0, . . . , ak−1, a0, . . . , a0︸ ︷︷ ︸
n−k times

) = [f ] and Mf ∣= R(f(0), . . . , f(k − 1)). (1.3)

This is independent of the choice of f in (1.3). Using the networkhood of N ,
it can be checked that for every ā = (a0, . . . , an−1) ∈ nN , if N(ā) = [f ] then
the partial map {(ai, f(i)) : i < n} : StrN → Mf is a partial isomorphism.
This is a useful property to bear in mind. Among other things, it implies
that (i) every substructure of StrN with at most n elements is in K, and
hence StrN ∈ K too, and (ii) ā : n → StrN and ā ∼ f , so Net(StrN)(ā) =
[ā] = [f ] = N(ā), and hence Net(StrN) = N . Similarly, for M ∈ K we have
Str(NetM) = M .
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Taking account of (1.1), this correspondence allows us to view a complete
representation of A as a set2 {N[f ] : [f ] ∈ �(K)} ⊆ K of structures such that
f : n→ N[f ] for each [f ], and:

whenever F ⊆ N[f ], F ⊆ A ∈ K, and ∣A∣ ≤ n,

the inclusion map � : F → N[f ]

extends to an embedding �′ : A→ N[f ].
(1.4)

The correspondence also allows us to construe the game G�(A) of Defini-
tion 1.4.2 as a game played to build a chain of structures Mt ∈ K (t < �) as
follows. In the initial round, ∀ picks a structure M0 ∈ K with ∣M0∣ ≤ n. In
successor rounds t + 1 < �, supposing that Mt ∈ K is the structure at the
start of the round, ∀ picks a substructure F ⊆Mt and A ∈ K with ∣A∣ ≤ n
and F ⊆ A. ∃ must respond by finding Mt+1 ∈ K with Mt ⊆ Mt+1 and ∀
wins unless the identity map on F extends to an embedding of A into Mt+1.
At limit rounds � < � we take unions and define M� =

∪
t<�Mt.

1.7.3 Algebras over graphs

We now present our first specific example of this construction. The algebras
we construct are related to ones in [HH09] and have some affinity to algebras
devised by Monk [Mon69]. We will use them to study SRASn. Let Γ be a
graph. We write Γ× n for the graph consisting of n pairwise disjoint copies
of Γ, and with an edge added between every two nodes lying in different
copies. Formally, if Γ = (V,E),

Γ× n =
(
V × n, {((x, i), (y, j)) : i, j < n, (x, y) ∈ E ∨ i ∕= j}

)
.

We regard Γ×n as a signature by regarding each node of it as an (n−1)-ary
relation symbol. Let ℐ(Γ) be the class of (Γ× n)-structures M satisfying:

M1. all relations in M are irreflexive and symmetric: whenever p ∈ Γ× n,
a0, . . . , an−2 ∈ M , and M ∣= p(a0, . . . , an−2), then a0, . . . , an−2 are
pairwise distinct and M ∣= p(a�(0), . . . , a�(n−2)) for each permutation
� of (n− 1),

M2. whenever a0, . . . , an−2 ∈M are pairwise distinct, M ∣= p(a0, . . . , an−2)
for some unique p ∈ Γ× n,

M3. whenever a0, . . . , an−1 ∈M , p0, . . . , pn−1 ∈ Γ×n, andM ∣=
⋀
i<n pi(a0,

. . . , ai−1, ai+1, . . . , an−1), there are i < j < n such that (pi, pj) is an
edge of Γ× n.3

2In the case where A is simple, this set may be taken to be a singleton. Cf. [HMT85,
corollary 3.1.81].

3The conclusion is a stronger condition than ‘{p0, . . . , pn−1} is not independent’ in the
case where Γ has reflexive nodes.
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Note that ℐ(Γ) satisfies the conditions in definition 1.7.3. We will write
ℳ(Γ) for the algebra ℭm �(ℐ(Γ)). Our aim is to prove (proposition 1.7.8)
that if Γ is infinite then ℳ(Γ) ∈ RCAn iff �(Γ) =∞.

LEMMA 1.7.4 Let Γ be a graph that contains a reflexive node.. Let S =
(S,Rci , Rdij : i, j < n) be a cylindric-type atom structure, and suppose that
� : S → �(ℐ(Γ)) is a surjective strong homomorphism. Then ℭmS is a
completely representable cylindric algebra.

Proof. By theorem 1.4.3, it is enough to show that ∃ has a winning strategy
in the game G∣S∣+!(ℭmS). Let N be a ℭmS-network. By lemma 1.7.2(1),
�(N) is anℳ(Γ)-network. By the equivalence between networks and struc-
tures in ℐ(Γ), �(N) can be identified in a well defined way with a struc-
ture N↓ ∈ ℐ(Γ) with the same domain as N and with the following prop-
erty: for each x0, . . . , xn−1 ∈ N with �(N(x0, . . . , xn−1)) = [f ], say, each
i < n, and each p ∈ Γ× n, we have N↓ ∣= p(x0, . . . , xi−1, xi+1, . . . , xn−1) iff
Mf ∣= p(f(0), . . . , f(i − 1), f(i + 1), . . . , f(n − 1)). This identification will
provide ∃ with a winning strategy in the game.

The initial round and rounds indexed by limit ordinals pose no problems
for her. In some successor round, suppose that the current ℭmS-network
is N , say. Let ∀ choose x ∈ nN , i < n, and a ∈ S with a ≤ ciN(x). If
N(x[i/xj ]) = a for some j < n then ∃ simply responds to ∀’s move with the
current network N .

Assume from now on that no such j exists. It follows that a ≤ −dij for
each j ∈ n ∖ {i}. Let �(a) = [f ], say. So f(i) ∕= f(j) for all j ∕= i. Let z /∈ N
be a new node, and write

y = x[i/z] ∈ n(N ∪ {z}),
Y = {y0, . . . , yn−1}.

(1.5)

Then f(j) = f(k) iff yj = yk for each j, k < n.
We now extend N↓ to a structure M ∈ ℐ(Γ) defined as follows. Its

domain is the domain of N↓ together with z. We specify that

S1. N↓ ⊆M , and f ∼ y.

To complete the specification, we first define elements qj ∈ Γ × n (j ∈
n ∖ {i}) as follows. If y0, . . . , yj−1, yj+1, . . . , yn−1 (as in (1.5)) are pairwise
distinct, we let qj ∈ Γ× n be the unique element satisfying M ∣= qj(y0, . . . ,
yj−1, yj+1, . . . , yn−1) according to S1. If they are not all distinct, we choose
qj ∈ Γ × n arbitrarily. Next, recalling that Γ × n consists of n pairwise
disjoint copies of Γ, choose one of these copies that does not contain any of
q0, . . . , qi−1, qi+1, . . . , qn−1. Let d be a reflexive node in this copy. We now
specify that

S2. M ∣= d(t0, . . . , tn−2) whenever t0, . . . , tn−2 ∈ M are distinct and z ∈
{t0, . . . , tn−2} ∕⊆ Y ,
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where Y is as in (1.5). It can be checked that this specifies a well defined
(Γ × n)-structure M . We check that M ∈ ℐ(Γ). Properties M1 and M2
are easy to verify. We pass to M3. Let t0, . . . , tn−1 ∈ M be distinct, let
p0, . . . , pn−1 ∈ Γ × n, and suppose that M ∣= pj(t0, . . . , tj−1, tj+1, . . . , tn−1)
for each j < n. We need to show that (pj , pk) is an edge of Γ× n, for some
j < k < n. Using S1, it can be seen that this holds if t0, . . . , tn−1 ∈ N↓,
since N↓ ∈ ℐ(Γ), and it holds if {t0, . . . , tn−1} = Y , because Mf ∈ ℐ(Γ). So
assume that z ∈ {t0, . . . , tn−1} ∕⊆ Y . Clearly, there are at least n− 2 indices
j < n with

z ∈ {t0, . . . , tj−1, tj+1, . . . , tn−1} ∕⊆ Y.

By S2, there are at least n− 2 indices j < n with pj = d. Since n ≥ 3, there
is at least one such j. There are now two cases.

1. If there are j < k < n with pj = pk = d, then as d is a reflexive node,
(pj , pk) is an edge of Γ× n as required.

2. If there is a unique j < n with pj = d, we plainly must have n = 3.
Let k, l ∈ 3∖{j} satisfy z = tk and tl /∈ Y . Then M ∣= pl(tj , tk) by the
above, and tj , tk ∈ Y . So pl ∈ {qj : j ∈ n ∖ {i}}. But d lies in a copy
of Γ that does not contain pl. As there are edges of Γ× n connecting
all nodes in distinct copies of Γ, (pj , pl) and (pl, pj) are edges of Γ× n
as required.

We now extend N to a network N ′ ⊇ N whose set of nodes is the domain
of M , with N ′(y) = a, and with N ′↓ = M , in any way at all; lemma 1.7.2(1)
guarantees that the result will be a ℭmS-network. ∃ responds to ∀ with this
network N ′, and thus has the capability to win the game. □

DEFINITION 1.7.5 Let Γ be a graph. We write UeΓ, the ultrafilter
extension of Γ, for the graph whose nodes are the ultrafilters on Γ (i.e.,
ultrafilters of the boolean algebra of subsets of Γ), and such that (�, �) is
an edge of UeΓ iff for every X ∈ �, Y ∈ �, there are p ∈ X, q ∈ Y such that
(p, q) is an edge of Γ.

LEMMA 1.7.6 Let Γ be any graph.

1. Ue(Γ× n) ∼= (UeΓ)× n (we will identify the two).

2. �(UeΓ) = �(Γ).

3. �(Γ) =∞ iff UeΓ has a reflexive node.

Proof. Write Δ for UeΓ in the proof. The first part is easy and we leave
it to the reader. Let k < !. If Γ =

∪
i<k Ii for independent Ii ⊆ Γ, then

for each i, IΔ
i = {� ∈ Δ : Ii ∈ �} is an independent subset of Δ, and∪

i<k I
Δ
i = Δ. Similarly, suppose Δ =

∪
j<k Jj for independent Jj ⊆ Δ. For
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p ∈ Γ let ⟨p⟩ ∈ Δ be the principal ultrafilter generated by {p}. Then for
each j, the set JΓ

j = {p ∈ Γ : ⟨p⟩ ∈ Jj} is an independent subset of Γ, and

Γ =
∪
j<k J

Γ
j .

For the last part, if there is finite k with Γ =
∪
i<k Ii for independent

Ii ⊆ Γ, then each ultrafilter on Γ contains some Ii and so cannot be reflexive.
Conversely, if �(Γ) =∞ then the set of independent subsets of Γ generates
a proper ideal of subsets of Γ. Any ultrafilter on Γ disjoint from this ideal
contains no independent sets and is therefore a reflexive node of Δ. □

Recall that A+ (for a BAO A) was defined in §1.5.

LEMMA 1.7.7 For any graph Γ, there is a surjective strong homomor-
phism � :ℳ(Γ)+ → �(ℐ(UeΓ)).

Proof. First, for any x0, . . . , xn−2 < n and X ⊆ Γ× n, define the following
element of ℳ(Γ):

X(x0,...,xn−2) =
{

[f ] ∈ �(ℐ(Γ)) : ∃p ∈ X
[
Mf ∣= p(f(x0), . . . , f(xn−2))

]}
.

Now let � be an ultrafilter of ℳ(Γ). Define an equivalence relation ∼ on n
by i ∼ j ⇐⇒ dij ∈ �. Let g : n → n/∼ be given by g(i) = i/∼. Define a
(UeΓ×n)-structure M� with domain n/∼ as follows. For each � ∈ UeΓ×n
and x0, . . . , xn−2 < n, we let

M� ∣= �(g(x0), . . . , g(xn−2)) ⇐⇒ X(x0,...,xn−2) ∈ � for each X ∈ �. (1.6)

It is straightforward (though lengthy) to check that this is well defined and
that M� ∈ ℐ(UeΓ). So g : n → M� and hence g ∈ ℱ(ℐ(UeΓ)) (see defini-
tion 1.7.3(2)). Then we define �(�) = [g] ∈ �(ℐ(UeΓ)).

Using M1 and M2, it can now be checked that � is a strong homo-
morphism. We show it is surjective. Let [g] ∈ �(ℐ(UeΓ)) be given, so
g : n→ Mg ∈ ℐ(UeΓ). Let Dg = {dij : i, j < n, g(i) = g(j)} ∪ {−dij : i, j <
n, g(i) ∕= g(j)} ⊆ ℳ(Γ). There are three cases.

Case 1: g is one-one. By M2, for each i < n there is a unique �i ∈ UeΓ
with Mg ∣= �i(g(0), . . . , g(i − 1), g(i + 1), . . . , g(n − 1)), and by M3,
there are i < j < n such that (�i, �j) is an edge of UeΓ. We show that

�0 = Dg ∪ {X(0,...,l−1,l+1,...,n−1) : l < n,X ∈ �l} ⊆ ℳ(Γ) (1.7)

has the finite intersection property. As the �l are ultrafilters, it suffices
to check that whenever Xl ∈ �l (l < n), we have

G = Dg ∩
∩
l<n

X
(0,...,l−1,l+1,...,n−1)
l ∕= ∅.
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We may choose pl ∈ Xl (each l) such that (pi, pj) is an edge of Γ× n.
Then we can define a (Γ × n)-structure M ∈ ℐ(Γ) with domain n by
specifying that M ∣= pl(0, . . . , l−1, l+1, . . . , n−1) for each l. Because
(pi, pj) is an edge, M3 is satisfied. If f : n → M is the identity map
on n, then [f ] ∈ G, which is therefore non-empty as required. So
�0 extends to an ultrafilter � of ℳ(Γ). By (1.6) and (1.7) we have
�(�) = [g].

Case 2: there are unique i < j < n with g(i) = g(j). Using M2, let � ∈
UeΓ be such that Mg ∣= �(g(0), . . . , g(i − 1), g(i + 1), . . . , g(n − 1)).
Using the irreflexivity condition in M1, it can be verified that

Dg ∪ {X(0,...,i−1,i+1,...,n−1) : X ∈ �}

has the finite intersection property and so extends to a (unique) ultra-
filter � of ℳ(Γ), and �(�) = [g].

Case 3: otherwise. By irreflexivity (M1), all structures in ℐ(Γ) with fewer
than n− 1 elements are isomorphic, so

⋀
Dg is an atom ofℳ(Γ). Let

� be the unique ultrafilter of ℳ(Γ) containing Dg. Then �(�) = [g].

□

Combining these lemmas and with a little more work, we reach our goal:

PROPOSITION 1.7.8 For any infinite graph Γ, we haveℳ(Γ) ∈ RCAn

iff �(Γ) =∞.

Proof. Suppose that ℳ(Γ) is representable. By theorem 1.5.3, ℳ(Γ)� is
completely representable. By lemmas 1.7.7 and 1.7.2(2), so isℳ(UeΓ), and
hence, choosing any [f ] ∈ �(ℐ(UeΓ)), there is M = M[f ] ∈ ℐ(UeΓ) satisfying
(1.4). Since Γ is infinite, it can be checked that M is also infinite.

Suppose for contradiction that �(Γ) <∞. By lemma 1.7.6, �(UeΓ) <∞,
and it is clear that �(UeΓ × n) = �(UeΓ) ⋅ n < ∞ as well. So there are
k < ! and independent sets I0, . . . , Ik−1 ⊆ UeΓ×n with UeΓ×n =

∪
i<k Ii.

Choose pairwise distinct x0, x1, . . . ∈ M . By M2, for each i0 < ⋅ ⋅ ⋅ <
in−2 < ! there is c(i0, . . . , in−2) < k such that M ∣= p(xi0 , . . . , xin−2) for
some p ∈ Ic(i0,...,in−2). By Ramsey’s theorem, we may assume that c has
constant value c0, say. Then for each i < n there is some pi ∈ Ic0 with M ∣=
pi(x0, . . . , xi−1, xi+1, . . . , xn−1). Since {pi : i < n} ⊆ Ic0 , an independent
set, this contradicts M3.

Conversely, suppose that �(Γ) =∞. By lemma 1.7.6, UeΓ contains a re-
flexive node. By lemmas 1.7.7 and 1.7.4,ℳ(Γ)� is completely representable.
By theorem 1.5.3, ℳ(Γ) is representable. □
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1.7.4 ‘Rainbow algebras’ over graphs

Our second specific instance of the construction of section 1.7.2 are so-called
‘rainbow algebras’. They are similar to algebras constructed in [HH97] and
will be used to study CRASn.

DEFINITION 1.7.9 Let Γ be a graph.

1. Let L = L(Γ) be the signature

Γ ∪ {gj0 : j < !} ∪ {gi : 1 ≤ i ≤ n− 2} ∪ {wi : i ≤ n− 2}
∪ {yS : S ⊆ !, ∣S∣ < !}.

Each yS is an (n− 1)-ary relation symbol, regarded as yellow. All the
others are binary relation symbols. We regard the gj0 and gi as green
and the wi as white. We define the following formulas:

∙ G(x, y) =
⋁
j<!

gj0(x, y) ∨
⋁

1≤i≤n−2

gi(x, y) (an L!1!-formula),

∙ �j(x0, . . . , xn−2, y) = gj0(x0, y) ∧
⋀

1≤i≤n−2

gi(xi, y), for j < !.

2. We let K = K(Γ) be the class of L-structures M such that:

R1. all relations in M are irreflexive: if R ∈ L is k-ary, a0, . . . , ak−1 ∈
M , and M ∣= R(a0, . . . , ak−1), then a0, . . . , ak−1 are pairwise dis-
tinct,

R2. all non-yellow binary relations are symmetric,

R3. exactly one non-yellow binary relation holds on each pair of dis-
tinct elements of M ,

R4. M has no green triangles: M ∣= ¬∃xyz(G(x, y)∧G(y, z)∧G(x, z)),

R5. M has no green-green-white triangles with equal lower indices:
M ∣= ¬∃xyz(gj0(x, y) ∧ gk0(y, z) ∧ w0(x, z)) for each j, k < !, and
M ∣= ¬∃xyz(gi(x, y) ∧ gi(y, z) ∧ wi(x, z)) for 1 ≤ i ≤ n− 2,

R6. M ∣= ¬∃xyz(p(x, y) ∧ q(y, z) ∧ r(x, z)) whenever p, q, r ∈ Γ and
{(p, q), (q, r), (p, r)} ∕⊆ E,

R7. M ∣= ¬∃x0 . . . xn−2(y(x0, . . . , xn−2)∧
⋁
i<j≤n−2G(xi, xj)) for each

yellow y ∈ L,

R8. if S ⊆ ! is finite and j ∈ ! ∖ S then
M ∣= ¬∃x0 . . . xn−2y(yS(x0, . . . , xn−2) ∧ �j(x0, . . . , xn−2, y)).

Note that K satisfies the conditions in definition 1.7.3.

3. We write ℛ(Γ) for the ‘rainbow’ algebra ℭm �(K(Γ)).
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1.7.5 Complete representability of the algebras ℛ(Γ)

PROPOSITION 1.7.10 Let Γ be any graph. If ℛ(Γ) is completely repre-
sentable then Γ has a reflexive node or an infinite clique.

Proof. Assume that ℛ(Γ) has a complete representation, viewed as a struc-
ture M ∈ K = K(Γ) satisfying (1.4) above. By (1.4), we can find elements
a0, . . . , an−2 ∈ M such that M ∣= ¬G(ai, aj) for each i, j < n − 1, and
M ∣= ¬y(a0, . . . , an−2) for each yellow y ∈ L. By (1.4) again, for each j < !
there is bj ∈M such that M ∣= �j(a0, . . . , an−2, bj). Since M ∈ K, M satis-
fies conditions R3–R5 of definition 1.7.9. It follows that for each j < k < !
there is pjk ∈ Γ with M ∣= pjk(bi, bj). Considering triangles (b0, bj , bk) and
using the definition of K(Γ), we see that (p0j , p0k) is an edge of Γ for all
0 < j < k < !. So {p0j : 1 ≤ j < !} is either an infinite clique in Γ or
contains a reflexive node. □

PROPOSITION 1.7.11 If Γ is a countable graph containing a reflexive
node or an infinite clique, then ℛ(Γ) is completely representable.

Proof. Assume that C ⊆ Γ is an infinite clique or a singleton consisting of
a reflexive node of Γ. By theorem 1.4.3, it suffices to show how ∃ can win
G!(ℛ(Γ)), construed as above as a game on structures in K = K(Γ). Let
M ∈ K be the structure at the start of some round t (1 ≤ t < !). Suppose
inductively that M is finite. In round t, suppose that ∀ chooses F ⊆ M
with ∣F ∣ < n, and an extension A ∈ K of F with ∣A∣ ≤ n. We can assume
without loss of generality that ∣A ∖F ∣ = 1 and that A ∖F = {d}, say, where
d /∈M . ∃ must extend M to some M ♯ ∈ K in such a way that the inclusion
map � : F →M extends to an embedding �♯ : A→M ♯.

If there is already such an �♯ : A→M , then ∃ lets M ♯ = M . So assume
not. ∃ defines an extension M ♯ of M with domain M ∪ {d} as follows. Let
M ♭ be the union of M and A over F .4

∙ For each a0, . . . , an−2 ∈ M ♭ such that d ∈ {a0, . . . , an−2} ∕⊆ A and
M ♭ ∣= ¬G(ai, aj) for each i < j ≤ n− 2, ∃ defines

M ♯ ∣= yS(a0, . . . , an−2),

where S = {j < ! : M ♭ ∣= ∃x�j(a0, . . . , an−2, x)}.

Then, for each b ∈M ∖F , ∃ chooses a binary relation symbol xb and lets
M ♯ ∣= xb(b, d) ∧ xb(d, b). In each case she chooses xb ∈ {wi : i ≤ n− 2} ∪C.
She chooses these elements in turn, as follows.

4That is, we assume that M ∩A = F ; for each k-ary R ∈ L and k-tuple ā of elements
of M ∪ A, we define M ♭ ∣= R(ā) iff the elements of ā lie in M and M ∣= R(ā) or the
elements of ā lie in A and A ∣= R(ā).
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∙ If there are no a0 ∈ F and j, j′ < ! such that M ♭ ∣= gj0(a0, d) ∧
gj
′

0 (a0, b), then ∃ defines M ♯ ∣= w0(b, d) ∧ w0(d, b).

∙ Otherwise, if there is 1 ≤ i ≤ n−2 such that for no ai ∈ F do we have
M ♭ ∣= gi(d, ai) ∧ gi(ai, b), then ∃ chooses the least such i and defines
M ♯ ∣= wi(b, d) ∧ wi(d, b).

∙ Otherwise, there must be ā ∈ n−1F and j, j′ < ! with M ♭ ∣= �j(ā, b)∧
�j
′
(ā, d). If C consists of a single reflexive node �, say, she lets M ♯ ∣=

�(b, d) ∧ �(d, b). If C is an infinite clique then she picks some x ∈ C
that has not been used as a label so far (either in a previous round or
for some other ‘b’ in the current round) and lets M ♯ ∣= x(b, d)∧x(d, b).

Note that ∃ never defines any green relations, so

M ♯ ∣= ¬G(d, b) for every b ∈M ∖ F. (1.8)

This strategy can be checked to be winning for ∃. We have no space for a
full proof, but the chief point to check is that M ♯ ∈ K, and in particular that
M ♯ satisfies condition R6 of definition 1.7.9. This boils down to checking
that whenever b, c ∈M ∖F , ∃ defines M ♯ ∣= p(b, d)∧q(c, d) for p, q ∈ C as per
her strategy, and also M ∣= r(b, c) for some r ∈ Γ, then (p, q), (p, r), (q, r) are
edges of Γ. Certainly (p, q) is an edge, since p, q ∈ C are chosen successively
by ∃ as already outlined. So it is sufficient to show that r ∈ C.

By ∃’s strategy, this will certainly be the case if ∃ defined M ∣= r(b, c)
herself in an earlier round of the game. We will show that she did. ∃ is
currently defining M ♯ ∣= p(b, d) ∧ q(c, d), so according to her strategy there
must be ā, ā′ ∈ n−1F and j, k, l, l′ < ! with M ♭ ∣= �j(ā, b) ∧ �l(ā, d) ∧
�k(ā′, c) ∧ �l′(ā′, d). As ∣F ∣ ≤ n− 1, by R3 we have ā = ā′ and l = l′. So

M ♭ ∣= �j(ā, b) ∧ �k(ā, c) ∧ �l(ā, d). (1.9)

Now M has been built by the game: its elements were added one at a time in
earlier rounds. Let ā = (a0, . . . , an−2). Clearly, a0, . . . , an−2, b, c are pairwise
distinct. Consider the round in which the final element among them, say d′,
was added. In his move in that round, suppose that ∀ chose F ′ ⊆ M with
∣F ′∣ < n.

Suppose for contradiction that d′ = ai for some i ≤ n − 2. By (1.9),
M ∣= G(ai, b) ∧ G(ai, c), and by (1.8) applied to the earlier round we must
have b, c ∈ F ′. As M ∈ K, by (1.9) and R4 we have M ♭ ∣= ¬G(ai, aj) for
i < j ≤ n − 2. As ∣F ′∣ < n, there is i′ ≤ n − 2 with i′ ∕= i and ai′ /∈ F ′.
Referring to the strategy showed that ∃ defined M ∣= yS(ā), where S was the
set of all m < ! such that ∃x�m(a0, . . . , an−2, x) was true in the structure
existing at the start of that round. This structure is a substructure of M , so
S ⊆ {m < ! : M ∣= ∃x�m(a0, . . . , an−2, x)}. Now we return our attention to
the current round. Since A ∈ K and A ∣= yS(ā) ∧ �l(ā, d) (see (1.9)), by R8
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we must have l ∈ S, so there must be some d′ ∈ M with M ∣= �l(ā, d′). It
follows by condition R7 of the definition of K that �♯ = � ∪ {(d, d′)} embeds
A into M , contradicting our assumption that there is no such embedding.

So d′ ∈ {b, c}. Suppose that d′ = b (the case where d′ = c is similar).
For each i ≤ n− 2, M ∣= G(b, ai), and by (1.8) applied to the earlier round,
ai ∈ F ′. Since ∣F ′∣ < n, we have c /∈ F ′, and by (1.9), ∃’s strategy would
have defined M ∣= r(b, c) for r ∈ C, as required. □

1.8 Consequences

It is now easy to derive several corollaries. We will use a few common graph
constructions. The disjoint union of graphs Γi = (Vi, Ei) (i ∈ I) is the
graph⊕
i∈I

Γi =
(∪{

Vi×{i} : i ∈ I
}
,
{(

(x, i), (y, i)
)

: i ∈ I, (x, y) ∈ Ei
})
. (1.10)

For a cardinal � > 0, we write K� for the complete graph (�, {(i, j) : i, j <
�, i ∕= j}). For finite n > 0, we have �(Kn) = n. Also, �(

⊕
i∈I Γi) =

max{�(Γi) : i ∈ I} if this exists, and ∞ otherwise.

COROLLARY 1.8.1 [HH97] CRASn is not an elementary class.

Proof. Write Γ =
⊕

1≤n<!Kn. We know from proposition 1.7.10 thatℛ(Γ)
is not completely representable. Therefore, its atom structure �(K(Γ)) is not
in CRASn.

However, since Γ has arbitrarily large finite cliques, there is a countable
graph Δ that is elementarily equivalent to Γ and has an infinite clique.
By proposition 1.7.11, ℛ(Δ) is completely representable, so �(K(Δ)) ∈
CRASn.

It can be checked that �(K(Γ)) is elementarily equivalent to �(K(Δ)).
This shows that CRASn is not closed under elementary equivalence and so
cannot be elementary. □

In fact, CRASn is pseudo-elementary, and so closed under ultraproducts
[CK90, exercise 4.1.17, corollary 6.1.16]. Hence [CK90, theorems 4.1.12 and
6.1.15], it is not closed under ultraroots.

In contrast, SRASn is closed under ultraroots [Gol89, 3.8.1(1)], but not
ultraproducts, and hence is not elementary:

COROLLARY 1.8.2 [HH09] SRASn is not an an elementary class.

Proof. We use a celebrated theorem of Erdős [Erd59] stating that for each
finite n, there exists a finite graph Γn with chromatic number at least n
and with no cycles of length at most n. (For our purposes, a cycle of
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length n in a graph is a sequence v1, . . . , vn of distinct nodes such that
(v1, v2), . . . , (vn−1, vn), and (vn, v1) are edges.) Let Δn =

⊕
n<m<! Γm.

Then �(Δn) =∞, and Δn is countably infinite and has no cycles of length
at most n. Therefore, by proposition 1.7.8, ℳ(Δn) is representable, and so
�(ℐ(Δn)) ∈ SRASn.

Now let Δ be a non-principal ultraproduct of the Δn. It follows from
L̷oś’s theorem that Δ has no cycles of any finite length. So by a well known
result from graph theory (cf. [Die97, proposition 1.6.1]), �(Δ) ≤ 2. By
proposition 1.7.8 again, ℳ(Δ) is not representable, so �(ℐ(Δ)) /∈ SRASn.

But it is easily seen that �(ℐ(Δ)) is isomorphic to an ultraproduct of the
�(ℐ(Δn)). As elementary classes are closed under ultraproducts, it follows
that SRASn is non-elementary. □

COROLLARY 1.8.3 [Hod97] RCAn is not closed under completions.

Proof. In the notation of the preceding proof, let A be a non-principal
ultraproduct of the ℳ(Δn). For each n we know ℳ(Δn) ∈ RCAn, so as
this class is elementary, by L̷oś’s theorem we have A ∈ RCAn as well. But
A is atomic with atom structure �(ℐ(Δ)), so its completion isℳ(Δ), which
is not representable. □

It follows that RCAn is not Sahlqvist-axiomatisable [Ven97b]. As At(A) ∈
WRASn ∖SRASn, or as only one of them is elementary, we see that these
classes are indeed distinct.

We conclude that:

THEOREM 1.8.4 For finite n ≥ 3, we have CRASn ⊂ LCASn ⊂
SRASn ⊂WRASn, the elementary classes being underlined.

Related results for relation algebras are proved in [Hir95, HH02b, HV05].

1.9 Cylindric Algebras of Low or High Dimension

We end by considering RCAn for n ≤ 2 and the infinite dimensional case.
For n ≤ 2 there are analogues of Corollary 1.2.2 for these classes:

PROPOSITION 1.9.1 For n ≤ 2, an n-dimensional cylindric algebra is
completely representable iff it is representable and atomic.

Proof. ‘⇒’ is immediate from Corollary 1.2.2, since a cylindric represen-
tation is inter alia a boolean representation. We sketch the proof of ‘⇐’.
The case n = 0 follows from Corollary 1.2.2, as 0-dimensional cylindric al-
gebras are just boolean algebras. Let A ∈ RCA1 be atomic. Consider the
equivalence relation on AtA defined by x ∼ y ⇐⇒ c0x = c0y. Let E
be the set of ∼-equivalence classes, and for e ∈ E write C(e) for the full
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1-dimensional cylindric set algebra with base e. Then f : A →
∏
e∈E C(e)

given by f(a) = ⟨a ∩ e : e ∈ E⟩ is an embedding preserving all meets and
joins that exist in A.

Let A ∈ RCA2 be atomic. As RCA2 is conjugated and defined by
(algebraic versions of) Sahlqvist equations given in [Ven95, Definition 2.2].
it is closed under completions [GV99]. So the equations are valid over the
frame (atom structure) AtA. By [Ven95, Theorem 2.4], AtA is a bounded
morphic image of a disjoint union of square frames ℱi (i ∈ I). Each ℭmℱi
is a full 2-dimensional cylindric set algebra. By duality, the inverse of the
bounded morphism is an embedding from A into

∏
i∈I ℭmℱi that can be

checked to preserve all meets and joins existing in A. □

By [GV99], for n ≤ 2, since RCAn is a conjugated variety defined by
Sahlqvist equations, it is closed under completions.

For n ≥ !, a simple cardinality argument will show that the class of
completely representable n-dimensional cylindric algebras is not elementary
[HH97, corollary 26]. Other results established in this chapter for the finite
dimensional case have not yet been considered for n ≥ !.

PROBLEM 1.9.2 Which parts of theorem 1.8.4 remain true when n is
infinite?
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