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Pyridoxal 5’-phosphate (PLP) is the active form of vitamin B6 in man where it 

functions as a cofactor for more than 140 enzyme catalysed reactions. Several 

inherited diseases characterised by seizures have been described which result in an 

intracellular deficiency of PLP; laboratory measurement of B6 forms an important 

element in the diagnosis and monitoring of these disorders. 

A review of PLP measured by HPLC in CSF from patients with neurological 

disorders showed that variance is greater than indicated by previous studies and the 

age-related reference limit was revised. This thesis also describes the metabolic 

disorders that may lead to PLP depletion and examines the relationship of CSF PLP 

to sulphite accumulation, medications and seizures in patient groups. 

B6 exists as six different vitamers and is catabolised to 4-pyridoxic acid for urinary 

excretion. An LC-MS/MS method was developed which could measure all vitameric 

forms in plasma. Its application to children with B6 responsive seizure disorders 

showed that patients with inborn errors of metabolism have characteristic B6 profiles 

which allow them to be differentiated from each other and control populations.  

PLP is the cofactor for aromatic L-amino acid decarboxylase (AADC) which 

catalyses the final step in serotonin biosynthesis. This thesis tested the hypothesis 

that hyperserotonaemia observed in some patients with autism is related to an 

abnormality in this pathway by investigating the relationship between plasma B6 

vitamers, AADC activity and whole blood serotonin in a group of patients and 

controls. Plasma AADC activity was significantly reduced in autistic subjects; this is 

considered in the context of current biochemical and molecular understanding and its 

possible relevance to disease mechanisms is discussed. 
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3Di   Developmental, Dimensional and Diagnostic Interview 

3-MT   3-methoxytryrosine 

5-HIAA  5-hydroxyindolacetic acid 

5-HT   5-hydroxytryptamine, serotonin 

5-HTP   5-hydroxytryptophan 

5-MTHF  5-methyltetrahydrofolate 

α-AASA  α-aminoadipic semialdehyde 

AADC   Aromatic L-amino acid decarboxylase 

ADOS   Autism Diagnostic Observation Schedule 

AED   Antiepileptic drug 

Ala   Alanine 

ALDH   Aldehyde dehydrogenase 

ALP   Alkaline phosphatase 

ALT   Alanine transaminase 

AOX   Aldehyde oxidase 

API   Atmospheric pressure ionisation 

Arg   Arginine 

ASD   Autism spectrum disorder 

Asn   Asparagine 

Asp   Aspartate 

AST   Aspartate transaminase 
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ATP   Adenine triphosphate 

BH4   Tetrahydrobiopterin 

CNS   Central nervous system 

CNV   Copy number variation 

CP   Choroid plexus 

CSF   Cerebrospinal fluid 

CV   Coefficient of variation 

d   deuterated 

DDC   Dopa decarboxylase 

DNA   Deoxyribonucleic acid 

DSM   Diagnostic and statistical manual of Mental Disorders 

DTE   Dithioerythritol 

EDTA   Ethylenediaminetetraacetic acid 

EEG   Electroencephalogram 

ESI   Electrospray ionisation 

ESE   Exon splicing enhancer  

ESS   Exon splicing silencer 

FMN   Flavin mononucleotide 

GABA   ϒ-amino butyric acid 

GAD   Glutamic acid decarboxylase 

Gln   Glutamine 

Gly   Glycine 
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GPI   Glycosylphosphatidylinositol 

GTPCH  Guanosine triphosphate cyclohydrolase 

GWAS   Genome wide association study 

HFBA   Heptafluorobutyric acid 

HIE   Hypoxic ischaemic encephalopathy 

His   Histidine 

HPLC   High performance liquid chromatography 

HVA   Homovanillic acid 

ICD   International classification of diseases 

IDO   Indolamine 2,3-dioxygenase  

Ile   Isoleucine 

IQ   Intelligence quotient 

IUB   International Union of Biochemistry 

IUPAC  International Union of Pure and Applied Chemistry 

LC-MS/MS  Liquid chromatography-tandem mass spectrometry 

L-dopa   L-3,4-dihydroxyphenylalanine 

LNAA   Large neutral amino acids 

Leu   Leucine 

Lys   Lysine 

MAO   Monoamine oxidase 

Met   Methionine 

MoCoF  Molybdenum cofactor 
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MRI   Magnetic Resonance Imaging 

NAD   Nicotinamide adenine dinucleotide 

NADP   Nicotinamide adenine dinucleotide phosphate 

NEFA   Non-esterified fatty acids 

NMDA  N-methyl-D-aspartate 

Orn   Ornithine 

OMIM   Online Mendelian Inheritance in Man 

P5C   Pyrroline 5-carboxylate 

P6C   L-∆-piperideine-6-carboxylate 

PA   4-pyridoxic acid 

PCR   Polymerase Chain Reaction 

PDE   Pyridoxine dependent epilepsy 

PEA   Phosphoethanolamine 

PET   Positron Emission Tomography 

PNPO   Pyridoxamine 5’-phosphate oxidase 

Phe   Phenylalanine 

PK   Pyridoxal kinase 

PL   Pyridoxal 

PLP   Pyridoxal 5’-phosphate 

PN   Pyridoxine 

PNP   Pyridoxine 5’-phosphate 

PM   Pyridoxamine 
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PMP   Pyridoxamine phosphate 

PPi   Pyrophosphate 

Pro   Proline 

PTPS   6-pyruvyltetrahydrobiopterin synthase 

qBH4   Quinonoid dihydrobiopterin 

RNA   Ribonucleic acid 

RNI   Reference Nutrient Intake 

Ser   Serine 

SERT   Serotonin reuptake transporter 

SNP   Single Nucleotide Polymorphism 

SSRI   Selective serotonin reuptake inhibitors 

Tau   Taurine 

TCA   Trichloroacetic acid 

TDO   Tryptophan 2,3-dioxygenase 

Thr   Threonine 

TPH   Tryptophan hydroxylase 

TNSALP  Tissue non-specific alkaline phosphatase 

Trp   Tryptophan 

Tyr   Tyrosine 

Val   Valine 

VMAT   Vesicular Monoamine Transporter 
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1.1 THE METABOLISM, HOMEOSTASIS AND INBORN 

ERRORS OF VITAMIN B6  

1.1.1 Chemical structure of B6 vitamers 

Vitamin B6 is a water soluble vitamin first described by György in 1934. The term 

vitamin B6 is now used as a generic descriptor for all 3-hydroxy-2-methylpyridine 

derivatives that exhibit (in rats) the biological activity of pyridoxine (IUPAC-IUB). 

In man six B6 vitamers exist differing only in the nature of the C4 and C5 substituent. 

The C4 carbon bears a hydroxymethyl group (-CH2OH) in pyridoxine, an aldehyde 

group (-CHO) in pyridoxal, and an aminomethyl group (-CH2NH2) in pyridoxamine 

(Figure 1). All of these C4 variants can exist with the C5 substituent as a 

hydroxymethyl group or with this group esterified to phosphate (e.g. pyridoxal 5’-

phosphate). In man pyridoxal 5’-phosphate is the active form, being a cofactor for 

more than 140 enzyme catalysed reactions. 
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Figure 1. Chemical structure of the B6 vitamers and 4-pyridoxic acid 

 

 

 

Pyridoxine Pyridoxine 5’-phosphate 

Pyridoxal Pyridoxal 5’-phosphate 

Pyridoxamine Pyridoxamine 5’-phosphate 

4-Pyridoxic acid 

HCHC
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1.1.2 Reactivity of pyridoxal 5 -phosphate 

Pyridoxal 5’-phosphate (PLP) has excellent electron sink properties making it a 

highly reactive and very versatile organic catalyst. The reactive aldehyde group of 

PLP can participate in a typical aldehyde reaction with many nucleophiles of both 

endogenous and exogenous origin. PLP undergoes a condensation reaction with 

amino groups to form a covalent Schiff base and it is this that initiates many of the 

reactions catalysed by PLP-dependent enzymes. PLP can also undergo a 

condensation reaction with hydrazines and sulphydryl compounds. The activated C3 

carbon of ∆
1
-pyrroline 5-carboxylate and ∆

1
-piperideine 6-carboxylate can undergo a 

Knoevenagel condensation with the aldehyde group of PLP and this reaction is 

responsible for the increased B6 requirement of patients with hyperprolinaemia type 

II and pyridoxine-dependent epilepsy due to antiquitin deficiency, respectively (1).  

Much remains unknown about the physiological relevance of small molecule, non-

enzymic interactions of PLP however the example of pyridoxine-dependent epilepsy 

due to antiquitin deficiency is a reminder that these non-enzymatic reactions of PLP 

can be extremely important. 

1.1.2.1 Reactions of pyridoxal 5’phosphatte with lysine residues and N-terminal 

amino acids of proteins 

Enzymes   

PLP-dependent enzymes exist with PLP covalently bound via an imine bond to the -

amino group of a lysine residue in the active site, forming an ‘internal aldimine’ or 

Schiff base (2). Disruption of this bond is the first step in the PLP dependent 

enzyme-catalysed reaction.  

Albumin 

At physiological concentrations the majority of PLP is bound to plasma proteins. 

Approximately 15% of this is bound via Schiff base formation to amino acids and 

peptides and the remaining 85% of PLP is bound via a Schiff base to serum albumin 

(3). Albumin appears to act as a reservoir, mediating PLP transport to tissues and 

protecting it from hydrolysis by phosphatases (4).  
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Haemoglobin  

Both PLP and PL bind to haemoglobin and modify its oxygen-binding 

characteristics. PLP preferentially binds to the N-terminal amino acid of the -chain 

of deoxy-haemoglobin and decreases oxygen-binding affinity, whilst PL is thought to 

bind to the N-terminus of the -chain and produce an increase in oxygen affinity (5).  

1.1.2.2 Reactions of B6 vitamers with free radicals 

There is evidence that, in some situations, B6 vitamers can function as antioxidants, 

quenching singlet oxygen at a rate comparable to that of vitamins C and E (6;7). 

Details of these antioxidant mechanisms remain unclear (8) but pyridoxine has been 

found to be the most reactive of the vitamin B6 species as an antioxidant and is twice 

as effective as PLP (6). 

1.1.2.3 Reactions catalysed by pyridoxal 5’-phosphate-enzymes 

PLP is the cofactor for a large number of essential enzymes and there are now more 

than 140 EC numbers assigned to distinct enzymatic reactions. The B6-dependent 

enzymes acting on amino acid substrates belong to five of the total six enzyme 

classes as defined by the Enzyme Nomenclature Committee of the International 

Union of Biochemistry and Molecular Biology (9).  

Reactions involving amino acids  

PLP enzymes acting on amino acids have several common mechanistic and 

stereochemical features. All known PLP enzymes exist in their resting state with PLP 

bound covalently via an imine bond to the -amino group of a conserved active site 

lysine residue of the enzyme, forming the so-called ‘internal aldimine’ (Schiff base). 

The incoming, -amino group of the substrate displaces the lysine -amino group 

from the internal aldimine, forming a new aldimine between the substrate and PLP 

(external aldimine / external Schiff base). The external aldimine is the common 

central intermediate for all PLP-catalysed reactions. During catalysis this external 

aldimine loses a proton to form a high-energy carbanion intermediate. The negative 

charge on the α-carbon is delocalised by resonance in the pi system of the cofactor 

which assumes a quinonoid form. In this way PLP stabilises anions generated at Cα 
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(10). Thereafter, the reactions diverge. Reactions at the -carbon atom of an amino 

acid substrate include transamination, decarboxylation, racemisation and elimination 

and replacement of an electrophilic group. Those occurring at the - or - carbon 

atoms of amino acids include elimination or replacement (11). In all reactions PLP 

acts as an electron sink, temporarily storing electrons that are later used for the 

formation of new bonds (9) Figure 2. 

 

 

 

Figure 2. Catalysis by pyridoxal 5’-phosphate enzymes. Formation of the quinonoid 

form of the external aldimine and carbanion at the Cα carbon of the amino acid 

substrate 

 

Reactions involving PLP- dependent enzymes are central to the synthesis and/or 

catabolism of many of the amino acids. Some of these amino acids  and some of the 

products derived from them (e.g. dopamine, serotonin, histamine, D-serine, -

aminobutyric acid and glutamate) function as neurotransmitters in the brain so it is 

not surprising that disturbed PLP homeostasis can lead to major neurological 
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manifestations such as intractable epilepsy. Other amino acid reactions catalysed by 

PLP provide markers for deficiency of the cofactor e.g. raised plasma homocysteine, 

increased urinary xanthurenic acid. 

The majority of reactions catalysed by PLP-dependent enzymes result in 

regeneration of the cofactor. Thus the first step in a transamination reaction may 

generate pyridoxamine phosphate which is then converted back to PLP in the 

reaction with the oxo-acid that constitutes the second step of the two-step reaction. A 

number of decarboxylases and other B6 dependent enzymes do, however, 

occasionally catalyse a half transamination reaction to produce an oxo-acid, 

pyridoxamine phosphate and the apoenzyme (12). Unless there is a moderately high 

concentration of PLP available to reconstitute the holoenzyme, this leads to 

inactivation. It is likely that pyridoxamine 5’-phosphate oxidase (PNPO) plays a 

salvage role in this instance, reconstituting the holoenzyme by converting 

pyridoxamine phosphate to pyridoxal phosphate. The extent to which pyridoxamine 

phosphate is generated by PLP dependent reactions in vivo is uncertain. 

1.1.2.4 Other pyridoxal 5’phosphate-catalysed reactions 

Glycogen phosphorylase catalyses the breakdown of the storage polysaccharide, 

glycogen to yield glucose 1-phosphate. Unlike the majority of PLP dependent 

reactions where the aldehyde group is involved in catalysis, it is the phosphate group 

of PLP that participates in the catalytic role of glycogen phosphorylase (30,31). 

1.1.3 Dietary sources of vitamin B6 

Vitamin B6 is widely distributed throughout the plant and animal kingdom. Plants 

and most unicellular microorganisms can synthesise this vitamin, whereas humans 

and other animals must obtain it from external sources via intestinal absorption.  

Dietary sources rich in vitamin B6 include vegetables, whole grain cereals, nuts and 

meat. The digestibility of vitamin B6 from most plant products is on average 10% 

lower compared to animal products (13;14). 

Isolated dietary deficiency of vitamin B6 is rare. The vitamin is widely distributed in 

foods, although much of the vitamin B6 in plant sources may be present as 

unavailable glycosides. Intestinal flora also synthesise large amounts, at least some 
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of which is absorbed. Absorption of B6 vitamers may be impaired in coeliac disease 

(15), Chron’s disease and ulcerative colitis (16). In coeliac disease low levels of 

plasma PLP may persist despite treatment with gluten-free diet for many years (17). 

1.1.4 Normal Physiology and Metabolic Pathways 

Phosporylated B6 vitamers ingested in the diet must be hydrolysed to pyridoxal, 

pyridoxamine and pyridoxine by intestinal phosphatases prior to absorption at the 

enterocyte (18-21).  Pyridoxine-glucoside from plant sources is hydrolysed to 

pyridoxine by pyridoxine-5’- -D-glucoside hydrolase, and also the brush border 

membrane lactase, phlorizin hydrolase (22).  

Initially absorption of these vitamers was thought to occur by simple diffusion across 

the brush-border of the jejunum and at high vitamin concentrations (possible in 

supplementation tests), passive transport does appears to dominate. Recent 

demonstration of a specialised carrier mediated system for pyridoxine in the small 

intestine suggests, however, that other mechanisms may also be important, although 

the molecular identity of this intestinal vitamin B6 uptake system and its gene have 

yet to be elucidated (23). Free vitamin B6 may also be synthesised in large amounts 

by the normal bacterial microflora of the human large intestine. This is thought to be 

taken up by colonocytes via a recently identified specific carrier-mediated 

mechanism (24). 

Once absorbed pyridoxal, pyridoxamine and pyridoxine are re-phosphorylated and 

‘trapped’ in the enterocyte. They must be dephosphorylated by plasma membrane 

phosphatases before being released into the portal vein and transported to the liver. 

Here the unphosphorylated B6 vitamers are taken up rapidly by the hepatocytes and 

are phosphorylated by pyridoxal kinase (25). Pyridoxine phosphate and 

pyridoxamine phosphate are then converted to pyridoxal phosphate by cytosolic 

pyridox (am)ine-5’-phosphate oxidase (PNPO) (Figure 3). 
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Figure 3. The interconversions of vitamin B6 in man 
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Figure 4. Catabolic pathways of pyridoxal 5’-phosphate to 4-pyridoxic acid 

 

Approximately 10% of total body PLP is in the liver (25) and when formed, some 

PLP is transferred to PLP-dependent apoenzymes. The remaining PLP is released 

from the liver into the circulation bound primarily to the lysine-190 residue of 

albumin and forms approximately two thirds of total plasma vitamin B6 with lesser 

amounts of pyridoxal, pyridoxine and pyridoxamine. Any unbound pyridoxal in the 

hepatocyte is oxidised by aldehyde oxidase to form 4-pyridoxic acid, the metabolic 

end product of PLP (26) (Figure 4). An NAD-dependent aldehyde dehydrogenase 

has also been reported to catalyse this reaction (27). 4-Pyridoxic acid is then released 

into the plasma and is excreted in the urine. About half of the normal dietary intake 
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of vitamin B6 is excreted as 4-pridoxic acid with urinary excretion largely reflecting 

recent intake of the vitamin, rather than overall nutritional status (28).  

PLP is unable to cross cell membranes and delivery of the active cofactor to tissues, 

therefore requires hydrolysis of circulating PLP to pyridoxal by the ecto-enzyme, 

tissue non-specific alkaline phosphatase. The major factor that determines plasma 

PLP levels appears to be the balance that is struck between liver formation and its 

breakdown by the alkaline phosphatase enzyme (28). Pyridoxal that is released close 

to the surfaces of cells is then used as needed by tissues and any excess pyridoxal 

enters the general circulation and is taken up by the liver where is it degraded to 

pyridoxic acid (28).  

Only the unphosphorylated forms of vitamin B6 are able to cross the blood-brain 

barrier probably by facilitated diffusion, mostly at the choroid plexi (CP). The CP 

then ‘traps’ PLP via pyridoxal kinase and, like the liver, can readily release it (29). 

Once within the CSF and extracellular space of the brain, the B6 vitamers must be 

dephosphorylated so that they can enter brain cells. They are then metabolically 

trapped being re-phosphorylated by pyridoxal kinase. Pyridoxine and pyridoxamine 

phosphate are then oxidised by PNPO to form the active cofactor, PLP(30). 

Excessive concentrations of the phosphorylated B6 vitamers are dephosphorylated 

and transported out of brain cells (31). PNPO is inhibited by PLP, suggesting that 

this enzyme may be under control by feedback inhibition (32;33) but the regulation 

of PLP concentration in the brain is likely to be complex. Evidence suggests that 

raising the plasma concentration of the non-phosphorylated forms of vitamin B6 

decreases the relative amount entering brain cells due to proportionately less carrier-

mediated flux through the blood brain barrier and more importantly, saturation of 

pyridoxal kinase in the brain, thereby decreasing the amount phosphorylated and 

retained. At low plasma concentrations, relatively more is accumulated by brain, thus 

tending to maintain brain B6 cofactor levels (29). 

1.1.4.1 Salvage Pathway 

Besides the formation of PLP from the vitamins pyridoxine, pyridoxamine and 

pyridoxal supplied from ingested nutrients, PLP in mammalian cells can also be 

formed by recycling the cofactor from degraded enzymes in a ‘salvage pathway’. 
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This pathway for the synthesis of PLP is known to exist in many organisms and is 

responsible for the interconversion of the six different forms of vitamin B6 and 

maintaining PLP homeostasis. A kinase converts pyridoxine, pyridoxamine and 

pyridoxal to their corresponding phosphorylated forms PNP, PMP and PLP, 

respectively. PNP and PMP can then be oxidised by PNPO to also form PLP. The 

phosphorylated forms can then be hydrolysed by phosphatases thereby restoring the 

free vitamers (34).  

1.1.5 Homeostasis 

Considering the large number and variety of reactions in which PLP is involved, 

homeostatic mechanisms within the cell as well as in plasma and cerebrospinal fluid 

(CSF) are of critical importance. The concentration of plasma B6 vitamers is 

controlled by dietary supply and metabolic interconversion, amongst other factors. 

However, whilst the major pathways of vitamin B6 metabolism are well established, 

the mechanisms by which PLP homeostasis is achieved are not yet fully understood.  

Studies of dietary pyridoxine depletion (1.75 μmol/day for 6 weeks) and 

supplementation (0.98 mmol/day for 6 weeks) provide an insight into B6 homeostasis 

in man, suggesting that the conversion of PLP to pyridoxic acid is subject to 

homeostatic regulation. Coburn et al. (35) demonstrated that urinary excretion of 

pyridoxic acid rapidly adjusts to approximate pyridoxine intake and although plasma 

and erythrocyte PLP also vary to reflect intake, muscle concentrations of PLP were 

not significantly altered. Similar results are reported in rats fed excess pyridoxine 

where dietary intake did not affect PLP concentrations in muscle, liver or brain 

however plasma levels of pyridoxal (PL) and 4-pyridoxic acid (4-PA) were 

significantly increased (36). 

Concentration of B6 vitamers and pyridoxic acid in plasma are in the order 

PLP>PA>PL>PN with much lower levels for PNP, PMP or PM (37). The fact that 

plasma PM and PMP levels are much lower than the other B6 vitamers is in keeping 

with the observation that PM and PMP are not released from liver cells. In contrast, 

PMP and PLP are the major B6 forms found in erythrocytes, the body tissues and in 

their mitochondria (25).  
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It appears that no single mechanism tightly regulates the cellular concentration of 

PLP; instead multiple different processes are likely to exist. During periods of 

vitamin B6 sufficiency, factors that regulate PLP include the degree of binding to 

cellular proteins, transport of precursors and phosphatase activity. PNPO also plays a 

role in regulating PLP formation by negative feedback inhibition whereas pyridoxal 

kinase plays an intracellular compartmentalisation (‘trapping’) role because 

pyridoxal (but not PLP) is diffusible across the cell membrane (30;38;39). The 

intracellular content of hepatocytes is closely regulated preventing excess PLP 

accumulation with build-up of precursors. In plasma, however, the major B6 vitamers 

are PLP and pyridoxal (37). Studies have shown that the liver is the sole organ 

responsible for the formation of plasma PLP whilst pyridoxal in plasma may derive 

from multiple organs. Human erythrocytes can convert pyridoxine into pyridoxal and 

release this B6 vitamer and it is also known that the hepatocytes can release pyridoxal 

(as well as PLP and pyridoxic acid) into the circulation (37).  

Various physiological and pathological conditions including pregnancy, fasting, 

myocardial infarction and certain drugs are known to lead to alter the normal 

equilibrium between the various B6 vitamers (40). It should be borne in mind that a 

decrease in the concentration of plasma PLP may be accompanied by an equivalent 

increase in the level of PL, as a result of which the total amount of vitamin B6 

remains unchanged.  

1.1.6 Circadian rhythm of pyridoxal kinase and pyridoxal 5’-phosphate   

The homeostatic regulation of plasma PLP is achieved by various mechanisms as 

described above (Section 1.1.5)  and animal studies suggest that in part, PLP levels 

are maintained by circadian clock controlled transcription factors. The PAR bZip 

(proline and acidic amino acid-rich basic leucine zipper) transcription factors DBP 

(albumin D-site-binding protein), HLF (hepatic leukaemia factor) and TEF 

(thyrotroph embryonic factor) show very high sequence conservation in mammalian 

evolution reflecting their important physiological functions. The striking feature of 

these three transcription factors is their robust circadian rhythm which is more 

pronounced in the periphery than in the central nervous system. All three factors are 

also expressed in a cyclic fashion in the suprachiasmatic nucleus; the major circadian 

pacemaker in mammals. 
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Recent work has shown that mice deficient in all three PAR bZip proteins are highly 

susceptible to spontaneous generalised and audiogenic seizures that may be lethal 

(41). Transcriptome profiling has revealed pyridoxal kinase (the enzyme responsible 

for conversion of B6 vitamers into the active cofactor PLP) as the primary target gene 

for these transcription factors. In support of this, decreased levels of PLP and the 

neurotransmitters serotonin and dopamine (likely to be causally related to seizure 

activity) are also observed in the triple knock-out mice. 

Therefore, in mice, pyridoxal kinase is a clock-controlled gene and by controlling 

pyridoxal kinase, PAR bZIP transcription factors appear to play a vital role in the 

fine-tuning of PLP production and neurotransmitter homeostasis in the brain.  At a 

physiological level the main function of circadian rhythm is to optimise metabolism 

and energy utilisation for sustaining life processes and it is probable that the 

oscillation of hepatic pyridoxal kinase expression contributes to the cyclic activity of 

enzymes involved in amino acid and glycogen metabolism. In contrast the almost 

invariable pyridoxal kinase expression in the brain is probably essential for the 

delicate regulation of neurotransmitter metabolism via PLP where only subtle 

changes may result in epileptic seizures (41). 

Although studies of PLP circadian rhythm in man have not yet been undertaken, it 

will be interesting to explore the role of PLP as an enzyme regulator and translation 

into clinical practice will be important. Knowledge of PLP homeostatic mechanisms 

will not only broaden understanding of vitamin B6 metabolism but will allow 

tailoring of medical treatments where long term PLP therapy may be optimised by 

emulating normal physiological patterns. 

1.1.7 Enzymes involved in interconversions of B6 vitamers 

The enzymes involved in B6 vitamer interconversion play an important role in 

regulating the intracellular and body fluid concentrations of PLP. A dietary excess of 

vitamin B6 does not accumulate as PLP but is converted via phosphatase(s) and 

aldehyde oxidase(s) / dehydrogenase(s) to pyridoxic acid. Alongside these, pyridoxal 

kinase and PNPO also play important roles in homeostasis. 
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1.1.7.1 Phosphatases 

Several phosphatase enzymes have been proposed to be involved in PLP regulation. 

The alkaline phosphatase enzymes (EC 3.1.3.1) can hydrolyse both PLP and PMP 

however they are not specific for vitamin B6, most of them demonstrating broad 

substrate specificity for phosphomonoesters (42). Located on the outer surface of cell 

membranes, this group of ectoenzymes influence extracellular concentrations of PLP 

compared to the soluble phosphatases (with acid or neutral pH optima) which are 

thought to be involved in the regulation of intracellular PLP concentrations (43). 

These cellular phosphatases play an important role in the regulation of tissue PLP 

levels by rapidly hydrolysing free PLP when the amount exceeds the binding 

capacity of apoproteins. The pyridoxal formed can then readily pass out of the cell, 

across the cell membrane (44).  

Some phosphatases do appear to be more specific for phosphorylated B6 compounds. 

An acid phosphatase that may be specific for phosphorylated B6 compounds has been 

partially purified from mouse liver (45) and a PLP phosphatase (EC 3.1.3.74) has 

been purified from human erythrocytes that appears to only hydrolyse 

phosphorylated B6 compounds at high catalytic efficiency (46). More recently 

another phosphatase enzyme (the PHOSPHO2 gene product) has also been identified 

which shows a high specificity towards PLP (47). 

Alkaline phosphatases 

The alkaline phosphatases (EC 3.1.3.1) are a large family of enzymes that are found 

in many organisms (48;49). They catalyse the hydrolysis of phosphomonoesters with 

release of inorganic phosphate and an alcohol (49). These enzymes are glycoproteins 

which function as ectoenzymes and are anchored to cell membrane lipid bilayers via 

a glycosyl-phosphatidylinositol (GPI) anchor (49;50). In human tissues all forms of 

alkaline phosphatase (ALP) are primarily bound to the external surface of cells but 

ALP is also present in the circulation as an anchorless homodimer where the ALP 

isoenzymes are thought to reflect their source in specific organs.  
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Tissue non-specific alkaline phosphatase  

TNSALP or liver/kidney/bone alkaline phosphatase is on chromosome 1p36.12. 

Much has been learned about the role of this enzyme in man through studies of 

hypophosphatasia which is an inherited deficiency of tissue non-specific alkaline 

phosphatase (TNSALP). This disorder of bone mineralisation is characterised by 

bony changes resembling rickets or osteomalacia and by the deficient activity of 

TNSALP in all tissues. In the absence of TNSALP, phosphorylated metabolites such 

as phophoethanolamine (PEA) and pyrophosphate (PPi) are characteristically 

elevated and similarly there is a significant increase in levels of circulating PLP(51). 

This observation suggests that TNSALP is essential in vitamin B6 metabolism and 

that PLP serves, alongside other endogenous phosphorylated compounds, as one of 

the physiological substrates for TNSALP.  

TNSALP appears to act as an ectoenzyme to regulate extracellular but not 

intracellular levels of PLP (51) and it has been proposed that TNSALP is needed to 

dephosphorylate PLP to membrane-permeable forms of vitamin B6 that can freely 

diffuse across cell membranes to then be rephosphorylated and used as a cofactor by 

various cellular enzymes.  

Consistent with this, in TNSALP homozygous mutant mice, a greatly reduced 

concentration of PLP is found in the brain which may explain the lethal seizure 

disorder seen in these animals (52). Two neonates with perinatal hypophosphatasia 

have recently been described (53) who suffered from severe epileptic encephalopathy 

and had cerebrospinal fluid neurotransmitter changes indicating a functional 

deficiency of aromatic aminoacid decarboxylase (AADC) secondary to PLP 

depletion. 

TNSALP is ubiquitous, being expressed in a variety of tissues during embryonic 

development and through postnatal and adult life (54;55). TNSALP has also been 

shown to be highly expressed in the placenta during the first trimester of pregnancy 

(56). In the postnatal brain, TNSALP is expressed in several cell types, including 

those found in capillaries, dura and choroid plexus (57).  
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Pyridoxal 5’-phosphate phosphatase 

Human erythrocytes have at least two forms of PLP (PNP) phosphatase activity; an 

alkaline PLP (PNP) phosphatase activity that is associated with the stromal fraction, 

and is probably tissue-non-specific alkaline phosphatase (EC 3.1.3.1) (which is 

present in the plasma membranes of virtually all tissues) and a PLP phosphatase (EC 

3.1.3.74) which is present in the soluble fraction of the erythrocyte (46). This 

phosphatase probably plays an important role in the hydrolysis of PLP to pyridoxal 

in erythrocytes and is located on chromosome 22q12.3. Erythrocytes rapidly take up 

pyridoxine and convert it to PLP. Free PLP that is not bound to protein, can then be 

hydrolysed by the PLP phosphatase to pyridoxal. Pyridoxal can then re-enter the 

plasma and be taken up by other tissues. This is an important source of PLP for those 

tissues that have very low PNPO activity and probably plays an important role in the 

regulation of vitamin B6 metabolism (42;58).  

PHOSPHO2 

PHOSPHO2 is a putative human phosphatase which shares approximately 40% 

sequence identity with human PHOSPHO1, a phosphoethanolamine / 

phosphocholine phosphatase thought to be involved in the generation of inorganic 

phosphate for bone mineralisation (47). PHOSPHO2 has high specific activity 

towards PLP, in contrast to its activity towards phosphaethanolamine and 

phosphocholine which is poor and is believed to be a cytosolic protein and has a 

wide tissue expression. PHOSPHO2 is located on chromosome 2q31.1 and its 

importance in human physiology and potential role in the regulation of vitamin B6 

metabolism has yet to be determined. 

1.1.7.2 Pyridoxal kinase 

Evidence suggests that most eukaryote organisms contain a single pyridoxal kinase, 

coded by a pdxK gene (59)  the sequence of which is highly conserved across 

different species (60). In humans pdxK has been localised to chromosome 21q22.3 

and encodes a protein that has 312 amino acid residues. Individuals with Trisomy 21 

(Down’s syndrome) are known to have altered B6 metabolism (61) and have been 

reported to have elevated pyridoxal kinase activity (62). Pyridoxal kinase is 
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ubiquitously expressed in humans; the main site of enzyme activity is in the liver but 

it is also present in the testes (63;64). 

Pyridoxal kinase belongs to the ribokinase superfamily and it is a dimeric enzyme 

with one active site per monomer (65). Whilst it is generally accepted that pyridoxal 

kinase phosphorylates all of the non-phosphorylated B6 vitamins the human 

pyridoxal kinase favours pyridoxal as the substrate, whilst the usage of PN and PM 

as substrates decreases its activity by up to 70% (66).  

The erythrocyte pyridoxal kinase activity of African-Americans is approximately 

50% lower than that of persons with European ancestry. This racial difference is 

tissue-specific, with leucocyte and skin fibroblast pyridoxal kinase activities being 

identical in both ethnic groups (67). It has been suggested that the selective pressure 

of malaria has caused the reduced erythrocyte pyridoxal kinase activity (68). 

Recently an 8bp PdxK promoter insertion with  erythroid-specific properties has been 

reported (64). This insertion is less common in persons of African origin than in 

those of European or Asian ancestry and is thought to be the basis of a novel 

mechanism controlling the cell-specific activity of pyridoxal kinase (64). 

The activity of pyridoxal kinase in rats responds rapidly and markedly to a dietary 

deficiency of B6 becoming significantly lower than in those that are not B6 deficient. 

The decrease in brain pyridoxal kinase activity however was not as marked as that 

seen in liver, muscle and plasma (38;69)  indicating that pyridoxal kinase may play a 

role in the regulation of tissue levels of phosphorylated forms of vitamin B6, 

protecting the PLP content of the brain during periods of B6-deprivation (39).  

1.1.7.3 Pyridox(am)ine 5’-phosphate oxidase (PNPO) 

PNPO (E.C. 1.4.3.5) is a flavoprotein oxidase and catalyses the final step in the 

synthesis of PLP from pyridoxine and pyridoxamine i.e. the conversion of pyridoxine 

5’-phosphate (PNP) and pyridoxamine 5’-phosphate (PMP) to PLP. This reaction 

also serves an important role in the salvage pathway whereby PLP is recycled in both 

E.coli and higher organisms. Flavin mononucleotide (FMN) acts as a coenzyme for 

PNPO and is essential for catalytic activity (70;71).  
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The human form of PNPO has recently been cloned, expressed and the crystal 

structure investigated (70;72). The purified enzyme is a dimer composed of two 

identical subunits, each approximately 30 kDa with the two monomers interacting 

extensively along three regions of each subunit to constitute the functional dimer 

(70). The cofactor FMN is located in a deep cleft formed by the two subunits with 

extensive hydrogen-bond interactions to the protein (73). 

The human PNPO gene maps to chromosome 17q21.32 and is composed of seven 

exons and six introns spanning over 7743 bp. The open reading frame encodes a 

protein of 261 amino acids (30;70). Analysis of the 5’-flanking region of the human 

PNPO gene sequence reveals that PNPO has several characteristics of a house-

keeping gene including absence of a TATA-box, presence of Sp1-binding sites and 

the presence of CpG islands in the regulatory region (74). 

In humans the tissue distribution of PNPO is widespread, consistent with its essential 

role in vitamin B6 homeostasis. The specific activity of the enzyme varies depending 

on the tissue investigated however. The mRNA level of PNPO is highest in the liver; 

whilst skeletal muscle and kidney also contain considerable amounts of the transcript 

(34% and 86% relative to liver, respectively) lower levels are detected in the lungs 

(5%) (30). The level of mRNA in whole brain is surprisingly low (approximately 

24%) compared to levels of expression seen in human adult liver.  

1.1.8 Enzymes involved in catabolism of B6 vitamers 

1.1.8.1 Aldehyde oxidase 

Aldehyde oxidases are a small group of proteins belonging to the molybdo-

flavoenzyme family (MFEs) which require FAD and molybdenum cofactor for their 

catalytic activity (75). All mammalian MFEs are homodimers consisting of two 

identical subunits which have a tripartite structure. Aldehyde oxidase is a member of 

the xanthine oxidase family and, unlike other molybdoprotein members, this family 

of enzymes requires the addition of a terminal sulphide ligand to the molybdenum 

centre to be catalytically active (76). This is catalysed by MoCo sulfurase (77).  

The literature on aldehyde oxidases is limited. The human genome is characterised 

by a single functionally active aldehyde oxidase gene, Aox1, which maps to 
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chromosome 2q32.3-33.1. The most abundant source of AOX1 in man is in the liver 

(77;78) although individual levels of this enzyme in liver are known to be variable in 

the human population (77). Only one study has looked at the expression of AOX1 in 

the human central nervous system (78) where the presence of the Aox1 transcript was 

demonstrated in glial cells of the spinal cord. To date, no monogenic defects of 

mammalian aldehyde oxidase have been reported.  

Little is known about the physiological role of aldehyde oxidases in mammals, 

although they are recognised to play an important role in the hepatic metabolism of 

drugs and potentially toxic compounds. Aldehyde oxidase(s) can act upon a variety 

of substrates which typically contain an aromatic heterocycle or an aromatic 

aldehyde. It is likely that aldehyde oxidase may play a role in the intermediary 

metabolism of many compounds and evidence suggests that pyridoxal may be one of 

its many physiological substrates (79;80).  

1.1.8.2 NAD
+
-dependent aldehyde dehydrogenase 

Studies involving rat mutants with a genetically determined absence of aldehyde 

oxidase suggest that an alternative pathway exists for the conversion of pyridoxal to 

4-pyridoxic acid, via a NAD
+
-dependent aldehyde dehydrogenase (27). Animals 

lacking aldehyde oxidase activity excreted similar amounts of pyridoxic acid to those 

with high levels of aldehyde oxidase activity when challenged with a single dose of 

pyridoxal. Aldehyde dehydrogenase has been shown to be active in all tissues 

investigated, including brain, liver and red blood cells.  

1.1.9 Vitamin B6 deficiency states 

The clinical effects of vitamin B6 deficiency in infants were first described by 

Snyderman et al. (81;82). In the original study (hopefully never to be repeated) two 

infants were subjected to a diet containing 15% protein and completely devoid of 

vitamin B6. Both infants showed a failure to gain weight; one developed convulsive 

seizures after 76 days and the second remained seizure free but showed a progressive 

hypochromic, microcytic anaemia. These clinical parameters were accompanied by 

biochemical changes consistent with vitamin B6 deficiency and were corrected by the 

administration of pyridoxine.  
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Further knowledge of the clinical picture of vitamin B6 deficiency emerged when 

300 infants, were inadvertently fed a diet deficient in vitamin B6 (following the 

manufacture of a heat treated infant formula containing only 60 µg/L of vitamin B6). 

The infants developed symptoms of central nervous system dysfunction described as 

a triad of hyperacousis, irritability and convulsive seizures. The symptoms developed 

between 6 weeks and 4 months of intake; they were aggravated by increased protein 

intake and diminished when infants were commenced on a carbohydrate diet (83). 

The clinical picture rapidly improved with an increased intake of dietary vitamin B6.  

Subsequent studies in healthy adult subjects on deficient diets have confirmed the 

following clinical signs and symptoms are associated with vitamin B6 deficiency; 

eczema, seborrheic dermatitis, cheilosis, glossitis, angular stomatitis, microcytic and 

hypochromic anaemia, confusion, irritability, seizures and abnormal 

electroencephalograms (84;85)  

1.1.10 Biochemical assessment of vitamin B6 status 

1.1.10.1 Indirect Methods 

In the past several indirect measures to investigate vitamin B6 status have been used. 

Alanine and aspartate transaminase (AST and ALT) both require PLP as a cofactor 

and activity of these enzymes in red cells (both with and without a saturating 

concentration of PLP) has been utilised as a measure of long term vitamin B6 

nutriture (86). Because this measure is functional rather than direct it is affected by 

factors other than PLP deficiency. Its use has also been limited by difficulties with 

defining normal reference ranges (87) and it is no longer useful as a tool of 

assessment.  

Historically the tryptophan load has been the most widely used index of vitamin B6 

status. This test utilises the fact that the enzymes kynureninase and kynurenine 

aminotransferase in the metabolism of tryptophan require PLP as a cofactor. In 

vitamin B6 deficiency the activity of these enzymes is reduced leading to increased 

formation and excretion of xanthurenic and kynurenine acids which can be measured 

in urine, particularly following an oral dose of tryptophan. Although this test remains 

a valid indicator of vitamin B6 status, it is relatively invasive and time consuming 

and has been replaced by more sophisticated direct methods. 
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1.1.10.2 Direct Methods  

PLP is the primary form of circulating vitamin B6 in plasma and direct measurement 

of plasma PLP concentration is now considered one of the best indicators of vitamin 

B6 status (88). It has been shown to correlate well with tissue (muscle) PLP in animal 

studies (69) and more recently simultaneous measurement of plasma and erythrocyte 

PLP using reverse phase HPLC methods demonstrated a strong positive correlation 

in healthy subjects. This did not hold true in a population of patients with a systemic 

inflammatory response however where PLP concentrations were reduced in plasma 

and elevated in red cells compared to controls (89).  

Plasma PLP concentrations do respond to changes in vitamin B6 intake although, 

unlike urinary 4-pyridoxic acid measurements, the change is not observed 

immediately. Studies have shown that plasma PLP levels plateau within 7-10 days of 

a change in vitamin B6 intake and may take several weeks to return to pre-

supplement levels on stopping increased intake (86;90). In contrast, urinary 4-

pyridoxic acid excretion changes rapidly with a change in vitamin B6 intake (86). 

Urinary 4-pyridoxic acid measurement may therefore be considered a good indicator 

of recent B6 intake whereas plasma PLP is a good intake of the body store of vitamin 

B6 (90). 

1.1.11 Vitamin B6 requirements  

Estimates for vitamin B6 requirements and Reference Nutrient Intakes (RNI) are 

based on depletion-repletion studies where either direct (plasma PLP concentration) 

or indirect (tryptophan load) measures have been used as a marker of vitamin 

adequacy (91-93).  

As vitamin B6 is central to overall protein metabolism it is likely that requirements 

are related to the amount of amino acid to be metabolised. In support of this Canham 

et al. (85) showed that vitamin B6 depletion developed more rapidly in subjects on a 

high protein intake compared to those on low intakes.  

Reference Nutrient Intake (RNI) for vitamin B6 in adults in the UK is 15 µg/g dietary 

protein and for infants up to 6 months 8 µg/g dietary protein. The values are lower 

than for adults in part because some of the protein is required for tissue growth rather 
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than metabolised for energy (Dietary Reference Values for Food Energy and 

Nutrients for the UK, DOH 1991). 

1.1.12 Variation of vitamin B6 metabolism with age 

PLP concentrations vary with age and research suggests that plasma and CSF PLP 

decreases from early childhood through to adulthood (94;95). Animal studies 

indicate that PLP is important in the developing foetus and during neonatal and 

infancy periods (96;97), however, our knowledge of B6 metabolism and maturation 

of enzyme systems in this age group, particularly those of catabolism is incomplete. 

Improved understanding of these pathways is important for establishing normal 

reference ranges, when considering the nutritional requirements of neonates 

(including preterm infants), in the treatment of B6 dependent disorders in neonates 

and management of inborn errors of B6 metabolism during pregnancy. 

A large-scale US population based study of >6000 participants aged over 1 year 

demonstrated that plasma PLP decreases with age after adolescence in men (94). 

Limited information is available from this study regarding concentrations in 

childhood and none about infancy. Gender differences in plasma PLP related to age 

are also described; the onset of reduced PLP at menarche with gradual increase 

following the menopause and a link to oral contraceptive pill use strongly suggests 

that oestrogen plays a role in determining plasma PLP (94). Bates et al. (98) studied 

vitamin B6 status in the UK population and documented significantly lower plasma 

PLP in those >65years compared to the age group 4–18years. In addition 4-pyridoxic 

acid was significantly higher in the elderly group where it was strongly correlated to 

plasma creatinine as a marker of renal function. PLP concentration in CSF also 

shows an age related decrease (95;99) this is likely to be a reflection of plasma PLP 

however good studies measuring both simultaneously have not been conducted. 

The possible causes of age related changes and low vitamin B6 status in the elderly 

are multiple, however, a study in men of various ages suggested that B6 absorption, 

phosphorylation (alkaline phosphatase levels) and excretion were not affected by age 

(100).  Animal studies have provided a more detailed assessment of changes in B6 

metabolism with age. Rats show a decrease in plasma PLP with increasing age, the 

greatest decrease being in the first year of life (101). Functional tests of B6 
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sufficiency (e.g. tryptophan load) are within normal limits however, indicating that 

despite lower concentrations, B6 status is adequate in older animals. Alterations in 

vitamin B6 tissue distribution are also observed; increasing concentrations of PLP 

and pyridoxamine phosphate in the brain and heart are described paralleled by a 

reduction in muscle PLP concentration with increasing age. The vitamin B6-

catabolising enzymes aldehyde oxidase and dehydrogenase show a significant 

increase in activity in the liver with a concomitant increase in urinary 4-pyridoxic 

acid excretion. Although significant differences between male and female rats are 

seen with respect to B6 metabolism, trends with age are the same in both genders. 

Evidence from human and animal studies suggests that vitamin B6 sufficiency is very 

important during early development. B6 adequacy is essential for normal 

development of the cerebellum, neocortex and caudate/putamen in rat pups (96;97) 

and in man structural brain abnormalities are seen in antiquitin deficiency. These 

observations may be secondary to the reduced activity of PLP dependent enzymes 

required for central nervous system development and neural migration for example, 

serine racemase (102). In addition, reports of families with pyridoxamine 5’-

phosphate oxidase (PNPO) deficiency indicate a high rate of conception difficulties 

and early miscarriage further indicating a vital role for synthesis of PLP in early 

human development.  

Studies of neonatal and infant vitamin B6 metabolism indicate differences dependent 

on method of feeding which may relate to the form of vitamin B6 present in milk. 

Human breast milk contains pyridoxal as the predominant form whereas artificial 

feeds contain only the heat stable form, pyridoxine (103). In healthy breast fed term 

infants, plasma PLP decreases strikingly over the first week of life and is 

significantly lower than plasma PLP in infants ingesting comparable volumes of 

formula milk (104;105). Significantly elevated plasma PLP concentrations (majority 

greater than 95th percentile) are consistently seen up to 9 months of age in formula 

fed compared to breast fed infants whose mothers take a pyridoxine supplement 

(106). Although no toxicity has been documented, various authors have questioned 

whether vitamin B6 (pyridoxine) concentrations in formula preparations are too high, 

particularly in relation to protein content when compared to human breast milk 

[standard formula milk 40 μg PN/g protein compared to human milk 0.6 – 29 μg B6/g 
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protein] (106).  Similar concerns have also been raised regarding the B6 (pyridoxine) 

content of parenteral feed preparations (107;108). 

1.1.13 Inherited disorders of B6 metabolism 

Several inherited disorders of childhood have been described which result in an 

intracellular deficiency of the active cofactor via different mechanisms. Given the 

central importance of PLP in amino acid and neurotransmitter metabolism it is not 

surprising that these disorders present with a neurological phenotype frequently 

involving seizures. Affected infants may have characteristic amino acid and 

neurotransmitter amine metabolite profiles. Pathophysiological mechanisms in these 

conditions vary and are summarised in Tables 1 & 2 and are discussed in detail in the 

following sections 1.1.13.1 – 1.1.13.6. 

Vitamin B6, usually in the form of pyridoxine, may be used therapeutically in some 

heritable disorders where the primary defect is of a PLP-dependent enzyme. In this 

instance the principle of treatment is to augment any residual enzyme activity, such 

disorders are listed in Table 3. 
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Table 1. Disorders in which vitamin B6 preparations (pyridoxine or pyridoxal 5’-phosphate) may be used therapeutically where metabolites 

accumulate that inactivate pyridoxal 5’-phosphate 

EC – Enzyme Commission number 

Disorder 

(OMIM reference) 

Enzyme 
Chromosome, 

gene and  location 

Vitamin B6 

preparation  and 

dose 

Clinical aim 

or biochemical effect 

Pyridoxine dependent epilepsy 

(266100 / 107323) 

 

α-Aminoadipic semialdehyde 

dehydrogenase (Antiquitin) 

EC 1.2.1.31 

 

ALDH7A1 / ATQ1 

5q31 

Pyridoxine 

50-100 mg IV single 

dose(s) 

5-15 mg/kg/d  oral 

maintenance 

 

Cessation and prevention of 

seizures and improvement of IQ 

 

Hyperprolinaemia type II 

(239510 / 606811) 

 

L-Δ
1
-Pyrroline-5-carboxylic 

acid (P5C) dehydrogenase 

EC 1.5.1.12 

ALDH4A1 / P5CDH 

1p36 

Pyridoxine 50 mg/d, 

subsequent 

reduction to 10 mg/d 

Cessation and prevention of 

seizures (particularly during 

intercurrent infection) 
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Table 2. Disorders in which vitamin B6 preparations (pyridoxine or pyridoxal 5’-phosphate) may be used therapeutically where there is inadequate 

production of the active cofactor (in the correct location) due to an inborn error affecting B6 interconversion 

 

Disorder 

(OMIM reference) 
Enzyme 

Chromosome, 

gene and location 

Vitamin B6 

preparation  and 

dose 

Clinical aim 

or biochemical effect 

Pyridoxal phosphate dependent epilepsy 

(603287 / 610090) 

Pyridox(am)ine 5’-

phosphate oxidase 

(PNPO) 

EC 1.4.3.5 

PNPO; 17q21.32 

Pyridoxal phosphate 

30-50 mg/kg/d orally 

Cessation and prevention of 

seizures 

Hypophosphatasia (infantile) 

(241500 /  171760) 

 

Tissue nonspecific alkaline 

phosphatase (TNSALP) 

EC 3.1.3.1 

ALPL /  TNSALP / TNAP 

1p36.1-34 

 

Pyridoxine 100mg 

IV 

Pyridoxal phosphate         

30 mg/kg/d 

Cessation and prevention of 

seizures 

 

Hyperphosphatasia 

(239300 / 610274) 

Phosphatidylinositol 

glycan class V (PIGV) 
PIGV; 1p36.11 

Pyridoxine 100 

mg/day 

Cessation of seizures, 

paradoxical change in 

electroencephalogram 

EC – Enzyme Commission number 
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Table 3. Disorders in which vitamin B6 preparations (pyridoxine or pyridoxal 5’-phosphate) may be used therapeutically to augment residual 

enzyme activity in inborn errors affecting a PLP-dependent enzyme 

 

Disorder 

(OMIM reference) 

Enzyme 

Chromosome, gene and 

location (and mutations 

conferring B6 

responsiveness) 

Vitamin B6 

preparation  and 

dose 

Clinical aim 

or biochemical effect 

Homocystinuria 

(236200) 

(B6 responsive subgroup) 

Cystathionine β-synthase 

EC 4.2.1.22 

CBS; 21q22.3 

I278T, A114V, R266K, 

R336H, K384E, L539S 

*Pyridoxine 

100 mg/day 

Normalisation of 

biochemical parameters. 

Prevention of 

thromboembolic events 

Gyrate atrophy of the choroid and retina 

(258870) 

 

Ornithine δ-aminotransferase 

EC 2.6.1.13 

OAT; 10q26 

V332M, A226V, E318K 

Pyridoxine 

500-1000 mg/day 

Reduction of plasma 

ornithine. Unknown effect 

on chorioretinal 

degeneration 

Aromatic amino acid decarboxylase 

deficiency 

(608643/107930) 

Aromatic L-amino acid 

decarboxylase 

EC 4.1.1.28 

AADC; 7p11 

**Pyridoxine 400-

800 mg/day 

***Pyridoxal 

phosphate 200 

mg/day 

Improvement of 

Parkinsonian movement 

disorder 
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Pyridoxine responsive anaemia 

(X-linked sideroblastic anaemia) 

(300751/301300) 

Δ-aminolevulinate δ-ALA 

synthase 

EC 2.3.1.37 

ALAS2; Xp11.21 
Pyridoxine           

50-400 mg/day 
Resolution of anaemia 

Primary hyperoxaluria Type I 

(259900/604285) 

 

Liver-specific 

alanine/glyoxylate 

aminotransferase 

EC 2.6.1.44 

AGXT; 2p37.3 

c.508G>A 

 

Pyridoxine            

5-10 mg/kg/day 

Reduction or normalisation 

of hyperoxaluria. Reduction 

in urinary tract stone 

formation and subsequent 

renal failure 

Cystathioninuria 

(219500/607657) 

γ-cystathionase 

EC 4.4.1.1 
CTH; 1p31.1 

Pyridoxine 

100mg/day 

Reduction of 

cystathioninaemia/uria 

Phosphoserine aminotransferase 

deficiency 

(610936/610992) 

Phosphoserine 

aminotransferase 

EC 2.6.1.52 

PSAT1; 9q21.31 
Pyridoxine 

120mg/day 

No effect observed in single 

case reported  

McArdles’s disease; Glycogen Storage 

Disease Type V 

(232600/608455) 

Muscle glycogen 

phosphorylase 

EC 2.4.1.1 

PYGM; 11q13 
Pyridoxine          

50-100mg/day 

Reduce exercise intolerance 

and cramp  

*Ensure patient is folate replete **Effective to augment L-dopa treatment (not as single therapeutic agent). Some cases report no improvement ***In twin 

patients being treated with tranylcypromine, pergolide and pyridoxine, substitution of pyridoxine with pyridoxal phosphate led to improved symptom control 

 EC – Enzyme Commission number
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1.1.13.1 Antiquitin deficiency (pyridoxine dependent epilepsy, PDE) 

Pyridoxine dependent seizures were first described by Hunt et al. in 1954 (109). In 

this first case report an infant with therapy-resistant seizures was found to respond 

dramatically to pyridoxine (in a multivitamin preparation) and remained seizure free 

on this treatment. A trial without pyridoxine resulted in seizure recurrence, hence the 

term ‘pyridoxine dependence’. For many years the underlying disease mechanism 

was not understood and many postulated that the PLP dependent enzyme, glutamic 

acid decarboxylase (GAD), was defective resulting in an imbalance between 

excitatory glutamate and inhibitory gamma aminobutyric acid (GABA). Following 

the observation that pipecolic acid is elevated in children with PDE (110), the 

underlying metabolic defect was finally shown to be a deficiency of α-aminoadipic 

semialdehyde (α-AASA) dehydrogenase, an enzyme lying on the catabolic pathway 

of lysine (111) (Figure 5). The accumulating upstream metabolite, L-∆-piperideine-

6-carboxylate (P6C) forms an adduct with PLP thus rendering it inactive as a 

cofactor. P6C is in equilibrium with α-AASA and it is measurement of these 

compounds in urine, CSF or plasma that now forms the biochemical basis for 

diagnosis, alongside molecular genetic analysis. Until recently elevated α-AASA 

was thought to be unique to individuals with PDE, however it is now also described 

in disorders of sulphite accumulation such as molybdenum cofactor and sulphite 

oxidase deficiency (112). 
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Figure 5. The catabolic pathway of lysine illustrating the defect of pyridoxine 

dependent epilepsy 

 

Following the availability of a diagnostic test for children with pyridoxine 

dependent epilepsy, our understanding of the phenotype and genotype of this 

condition has grown. In contrast to the initial, ‘classic’ description of this disorder of 

a neonatal epileptic encephalopathy which showed an ‘immediate and extraordinary’ 

response to treatment with pyridoxine (109), it is now recognised that not all 

children with PDE will show such a response in the early stages. This may be partly 

explained by the fact that many of these children suffer multi-system pathology for 

example, electrolyte disturbance, abdominal distension, feed intolerance and 

respiratory distress (113) which may contribute to seizure generation. Newborn 

infants with PDE are often in poor condition at delivery with evidence of fetal 

distress and poor Apgar scores and they may therefore be misdiagnosed as suffering 

hypoxic ischaemia encephalopathy (HIE). Conversely in some cases HIE may be 

considered a direct complication of PDE.  A further interesting clinical feature noted 

in this population is the presence of structural brain abnormalities; this may also 

result in misdiagnosis of the seizure disorder and a missed treatment opportunity. 
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Additional clues to the diagnosis of a B6 dependent seizure disorder may lie in the 

biochemical phenotype of plasma, urine or cerebrospinal fluid and is discussed 

below (Section 1.1.13.2). 

PDE is an autosomal recessive disorder; to date more than 60 disease causing 

mutations have been published in the Antiquitin gene with a common mutation in 

Exon 14 (E399Q) being found in approximately one third of patients. There is, as 

yet, no consensus as to whether a genotype-phenotype relationship exists in this 

disorder; Mills et al. (113) found no apparent relationship. However Scharer et al. 

(114) suggested that patients can be divided into three clinical phenotypes according 

to the degree of seizure response and developmental outcome and this phenotype 

can be related to the causative mutation, where milder phenotypes have some 

residual enzyme activity. 

In the vast majority of patients, treatment with intravenous pyridoxine (100 mg 

single dose) followed by a maintenance oral dosing regimen of 5-10 mg/kg/day 

(maximum 200 mg per day) results in seizure resolution without the need for 

additional anticonvulsant medication. Seizure breakthrough during periods of 

intercurrent infection and fever is not uncommon (113;115). 

The long term outcome in this condition is variable, although most children have a 

degree of developmental delay involving cognitive impairment and problems of 

speech and language. A few have normal cognitive development (115;116). 

Prospective treatment of an at-risk foetus by administration of pyridoxine to 

pregnant mothers or to newborn infants from birth has shown variable results where 

seizures are controlled but developmental problems remain (117;118). This suggests 

that there may be other pathogenic mechanisms at play in addition to the 

documented PLP deficiency. As the defect in PDE affects lysine catabolism, it has 

recently been proposed that the condition be considered as a cerebral organic 

aciduria. Within this paradigm accumulating toxic upstream metabolites may be 

amenable to additional treatment approaches such as dietary lysine restriction (115). 
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1.1.13.2 Pyridoxamine 5’-phosphate oxidase (PNPO) deficiency 

PNPO deficiency is a recently described autosomal recessive disorder of vitamin B6 

metabolism. PLP-responsive, pyridoxine-resistant seizures were first reported in 

2002 (119). A premature female infant with severe neonatal epileptic 

encephalopathy was described whose seizures, electro-encephalogram (EEG) and 

psychomotor development improved on PLP therapy where pyridoxine and 

conventional anticonvulsants had been unsuccessful. Further similar cases of 

pyridoxine resistant neonatal epileptic encephalopathy were reported subsequently 

(120;121) where biochemical investigations indicated deficiency of PLP dependent 

enzymes. PLP therapy was trialled to good effect in one case (122).  

Mills et al. (123) first defined the molecular basis of PNPO deficiency in this group 

of patients (123) and to date 16 children from 8 families have been genetically 

confirmed or diagnosed by characteristic clinical phenotype in a union/family 

known to harbour mutations. In addition prenatal diagnosis has identified an affected 

foetus in two cases. These pregnancies were terminated. 

Premature delivery (<37/40 weeks) is reported in the majority of genetically 

confirmed PNPO deficient cases reported in the literature. Patients are often in poor 

condition at delivery, many requiring intubation and PNPO deficiency should 

therefore enter the differential diagnosis of hypoxic-ischaemic encephalopathy in a 

prematurely born infant.  

In the vast majority, seizures commence within the first hours of life and are 

frequently associated with a burst suppression pattern on electroencephalogram. 

Various seizure types have been described and in two cases seizure activity was of 

antenatal onset. Lactic acidosis has been described in several affected infants, the 

significance of which is unknown as it may simply be reflective of poorly controlled 

seizures in a sick neonate.  
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A difficult obstetric history should alert the clinician to a possible diagnosis of 

PNPO deficiency as heterozygous couples appear to have reduced rates of 

conception; many have undergone several attempts at in-vitro fertilisation treatment 

and suffered early pregnancy losses.  

A clinical suspicion of antiquitin or PNPO deficiency is supported by biochemical 

analysis of plasma, urine and cerebrospinal fluid which may show evidence of 

impaired activity of the following PLP dependent enzymes; aromatic amino acid 

decarboxylase (reduced CSF HVA and 5-HIAA , elevated L-Dopa, 5-

hydroxytryptohan and 3-methoxytyrosine; increased urinary vanillactic acid), 

threonine dehydratase (elevated CSF threonine), glycine cleavage enzyme (elevated 

CSF glycine) and ornithine δ-aminotransferase (reduced CSF arginine).  

Measurement of CSF PLP and pyridoxal has shown reduced levels in a few reported 

cases of both PNPO deficient patients (95) and may prove to be important in other 

B6 related seizure disorders. As increasing numbers of genetically determined PNPO 

patients are reported it is apparent that some show non-characteristic metabolic 

profiles and in some instances the most characteristic findings may be present only 

transiently or absent altogether (124). 

The long term outcome of PNPO deficient patients is unclear at present. Review of 

all cases published to date suggests that untreated, PNPO deficiency frequently leads 

to death from uncontrolled seizure activity. In the cases where treatment with PLP 

was initiated, the majority survive with varying degrees of neuro-developmental 

disability. It remains to be seen how prophylactic or early therapy with PLP may 

impact upon clinical outcome and, as with many rare diseases, more mild 

phenotypes may be identified over time. 

The seizure disorder in PNPO deficient patients usually shows a good response to 

administration of PLP; burst suppression evident on EEG and biochemical 

parameters also resolve on treatment. Caution is required when PLP therapy is 

initiated however as two publications report complete EEG suppression (123;124) 

and in one case extreme hypotonia, apnoea and lack of responsiveness (persisting 

for 4 days) before clinical improvement was seen (122;123).  
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Initial doses of 40-50 mg PLP have been administered via intravenous route (119) or 

by enteral route (123). Maintenance oral dosing regimes sufficient to suppress 

seizure activity are between 30 – 50 mg/kg/day with the majority of patients 

responding to 30 mg/kg/day 4-6 hourly (119;123-126). 

Flavin mononucleotide (FMN) is known to be an essential cofactor for the PNPO 

enzyme and recent work using site-directed mutagenesis, enzyme kinetics and X-ray 

crystallography of the human protein suggests that patients with  the particular 

mutation R229W  may benefit from treatment with FMN (in the form of riboflavin, 

vitamin B2) in addition to pyridoxal phosphate (127). 

1.1.13.3 Other pyridoxal 5’-phosphate responsive patients 

Although PNPO deficiency is considered a rare disorder, larger numbers of infants 

have been described in whom severe epilepsy is better controlled with the use of 

PLP than the use of pyridoxine (125). It is not yet known whether any of these 

infants have mutations or polymorphisms in the PNPO gene. PLP has also been used 

to successfully treat an adult patient with intractable status epilepticus (128).  

In clinical practice, particularly in the Far East, pyridoxine and pyridoxal phosphate 

are commonly used as antiepileptic drugs in infantile spasms (129). In a case series 

of infantile spasms of various aetiologies, over 10% with known prenatal pathology 

of antenatal origin aetiology and over 20% with idiopathic spasms responded to 

pyridoxal phosphate (130). Another study by Wang et al. showed that PLP was 

effective in controlling up to 46% of patients with intractable infantile spasms. 

Patients with focal epilepsy and generalized epilepsy (excluding infantile spasms) 

had a PLP response rate of 8% and 5%, respectively. A single case of paradoxical 

increase of seizure activity after PLP treatment is also reported highlighting that 

caution is required in PLP therapy (131). 

Maintenance of optimal PLP levels in the brain is likely to be important in many 

neurological disorders where neurotransmitter metabolism is disturbed either as a 

primary or as a secondary phenomenon. 
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1.1.13.4 Hypophosphatasia 

This inherited disorder is due to deficient activity of tissue-nonspecific alkaline 

phosphatase, the biochemical basis of which is discussed in detail above (Section 

1.1.7.1). Clinically it is divided into six classes; only the lethal perinatal and 

infantile forms show an autosomal recessive pattern of inheritance (132). All 

affected individuals have defective skeletal mineralisation, however, disease 

expression is remarkably variable. Infants affected by the perinatal form may be 

affected in utero and are stillborn, whereas at the other extreme some individuals 

present in adulthood with hypophosphatasia characterised by osteomalacia and 

recurrent metatarsal stress fractures. All forms show extracellular accumulation of 

the endogenous products, phosphoethanolamine (PEA), inorganic pyrophosphate 

(PPi) and PLP. The level of PLP accumulation is the most sensitive and specific 

substrate marker for hypophosphatasia and appears to be proportional to disease 

severity (132). Although elevated PLP levels per se are not thought to be disease 

causing, the elevation in extracellular PLP is not reflected within the cell where low 

levels of PLP are likely implicated in the generation of seizures seen in some 

patients with infantile hypophosphatasia (see above). Several cases of successful 

seizure treatment with vitamin B6 have been reported (52;133;134). 

1.1.13.5 Hyperphosphatasia  

Hyperphosphatasia mental retardation or Mabry syndrome was initially described in 

a single family and characterised by severe developmental delay, seizures and 

greatly elevated serum levels of tissue non-specific alkaline phosphatase (135). A 

subsequent case report also documents a significantly reduced plasma PLP (6 

nmol/L) in one affected patient in whom seizure activity and alertness showed 

improvement with pyridoxine treatment (136).  

The molecular basis of a group of patients with this clinical phenotype ‘Mabry 

syndrome’ has recently been defined by ‘identity-by-descent’ filtering of exome 

sequence data (137). Mutations were identified in the PIGV (phosphatidylinositol 

glycan anchor biosynthesis class V) gene of four families with the characteristic 

clinical phenotype. PIGV is the second mannosyltransferase in the 

glycosylphosphatidylinositol (GPI) anchor biosynthesis pathway which is required 
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to anchor tissue nonspecific alkaline phosphatase to the cell membrane where it is 

functional. The seizures observed in this condition may therefore theoretically relate 

to a reduced concentration of intracellular PLP. Many patients who have the same 

clinical picture do not harbour mutations in this gene thus it is likely that other genes 

critical to GPI anchor biosynthesis are likely to be disrupted in some patients (138). 

1.1.13.6 Hyperprolinaemia type II 

This rare inborn error of metabolism illustrates a mechanism of vitamin B6 

deficiency similar to that seen in Antiquitin deficiency. The disorder results from a 

deficiency of ∆1-pyroline 5-carboxylate dehydrogenase and is characterised by 

elevated plasma proline and increased urinary excretion of proline, hydroxyproline 

and glycine. It is the accumulation of pyrroline 5-carboxylate (P5C) which adducts 

with PLP that is thought to lead to vitamin B6 deficiency (139) (Figure 6). Clinically 

the condition is characterised by seizures which, in at least one reported case, show 

response to pyridoxine (140). 
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Figure 6. Pathway of proline metabolism (A) and P5C reaction with pyridoxal 5’-

phosphate (PLP) to form an adduct rendering PLP inactive (B) 

 

1.1.14 Drugs and Vitamin B6  

It is long known that vitamin B6 may interact with several therapeutic drugs leading 

to hypovitaminosis and associated clinical symptoms. This may occur by one of two 

mechanisms, or a combination of both. Firstly via the interaction of the reactive 

aldehyde group of PLP with amine or hydrazine groups forming a Schiff base and 

rendering PLP inactive as a cofactor or secondly via inhibition of enzymes involved 

in B6 vitamer metabolism, for example pyridoxal kinase (1;141). 
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1.1.14.1 Isoniazid (Isonicotinic acid hydrazide)  

Isoniazid reacts non-enzymatically with PLP forming an inactive hydrazone 

complex (142) which may lead to a functional deficiency of PLP (Figure 7). 

Evidence of deranged vitamin B6 metabolism is observed in patients receiving 

antituberculous therapy with isoniazid. Increased urinary excretion of xanthurenic 

acid following a tryptophan load which normalises with pyridoxine (143;144) and 

secondary pellagra due to impaired activity of PLP dependent kynureninase are both 

described (144). 

The ability of isoniazid to cause severe clinical vitamin B6 deficiency is also evident 

in isoniazid overdose. Multiple case reports and short series have illustrated 

pyridoxine as a successful antidote in acute overdose and in long term chronic over-

ingestion (144-146). 

 

 

Figure 7. Isoniazid interaction with pyridoxal 5’-phosphate (PLP) 

 

1.1.14.2 L-Dopa  

PLP forms a Schiff base complex (tetrahydroisoquinoline compound) with L-dopa 

rendering both L-dopa and PLP functionally inactive (147). When pyridoxine was 

given to Parkinsonian patients to control nausea associated with L-dopa therapy a 

considerable reduction in its efficacy was noted (148). Following these observations, 

historically vitamin B6 supplementation was contraindicated during treatment with 

L-dopa however current practice of including a peripheral decarboxylase inhibitor 

prevents this complication. 

Isoniazid PLP 
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More recently Miller at al. (149) showed that elevated plasma homocysteine in 

Parkinson disease subjects on treatment with L-dopa correlated inversely with serum 

folate, B12 and PLP concentrations compared to normal controls and drug naïve 

Parkinsonian patients. Plasma PLP concentrations in the L-dopa treated group were 

significantly lower than in the control group. 

B6 supplementation during L-dopa treatment (with a decarboxylase inhibitor) in 

Parkinson’s disease may be beneficial in reducing plasma homocysteine levels thus 

limiting its potential adverse effects on the cardiovascular system. There may be 

other benefits of concurrent administration of pyridoxine in Parkinsonism. The 

effect of loss of dopaminergic neurons may be further compounded by a secondary 

AADC deficiency resulting from depletion of its cofactor PLP. Pyridoxine 

administration could correct this and thereby boost both endogenous dopamine 

synthesis and dopamine synthesis from the medicinal L-Dopa.  

1.1.14.3 Methylxanthines including theophylline 

Theophyllines used in the treatment of respiratory disorders are potent competitive 

inhibitors of pyridoxal kinase (150;151). In keeping with this, asthmatic patients 

have been shown to have significantly lower plasma and erythrocyte PLP compared 

to normal controls although no relationship to medication was made during this 

study (152). Theophylline-induced seizures which may be encountered during 

overdose have significant morbidity and mortality and, although pyridoxine 

treatment is shown to be beneficial in animals, in practice these seizures remain very 

difficult to treat (153;154). 

1.1.14.4 Anticonvulsants 

Abnormalities of vitamin B6 metabolism in children taking antiepileptic medications 

were first observed by Reinken (155). He postulated that the ‘depression’  in 

erythrocyte glutamic oxaloacetic transaminase (EGOT, a PLP-dependent enzyme) 

and PLP observed on treatment with antiepileptic drugs (AED) was secondary to 

inhibition of pyridoxal kinase and that administration of vitamin B6 should be 

considered in conjunction with AED. Subsequently several studies have 

demonstrated a reduction in plasma PLP following the use of various 

anticonvulsants. Much of this work has been stimulated by the concurrent and likely 
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related observation of hyperhomocystinaemia which may be associated with long 

term cardiovascular risk. The importance of plasma PLP levels in these children is 

not only limited to homocysteine metabolism; experimental evidence and clinical 

experience indicates that a steady state concentration of PLP is essential for 

electrochemical activity of the brain, thus treatment of low PLP levels in epileptic 

children on AED may warrant consideration  in cases of poor seizure control.  

The mechanism of PLP reduction observed with AED treatment in the majority of 

studies is not fully understood. Several AED (phenytoin, phenobarbitone, 

carbamazepine and primidone) are potent hepatic inducers of cytochrome P450 and 

other enzyme systems. For these medications, it is possible that induction of 

enzymes involved in the catabolism of PLP lead to reduced plasma PLP values. 

Phenobarbitone for example is known to induce aldehyde dehydrogenase (ALDH2) 

in the mouse (156) and ALDH2 is important for the detoxification of highly reactive 

aldehyde molecules such as pyridoxal. The finding of low urinary pyridoxic acid in 

epileptic patients on AED (157;158), however, is not consistent with increased PLP 

catabolism and is more suggestive of pyridoxal kinase or PNPO inhibition as 

originally hypothesised by Reinken (155). Many new AED are not hepatic enzyme 

inducers and little evidence exists regarding their effect upon PLP in long term 

treatment. 

1.1.15 Pyridoxine and PLP toxicity 

1.1.15.1 Acute toxicity of pyridoxine 

In animal studies very high doses of pyridoxine (2-6 gram/kg) induce ataxia, 

seizures and may be lethal (159). Administration of such high doses is not reported 

in human studies, however pyridoxine appears to have low acute toxicity in man 

with doses of up to 357 mg/kg used for a short time period in isoniazid overdose 

without any adverse events (160).  

1.1.15.2 Chronic toxicity of pyridoxine 

Studies of chronic, long-term pyridoxine administration in animals have shown the 

potential neurotoxicity of vitamin B6 with doses of 200 mg/kg causing ataxia, 

peripheral neuropathy and muscle weakness. Histological examination demonstrates 
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widespread neuronal damage with loss of myelin and degeneration of sensory fibres 

in peripheral nerves, dorsal columns of the spinal cord and descending tract of the 

trigeminal nerve (161).  Neurotoxicity of injected pyridoxine may be enhanced by a 

protein deficient diet. This is perhaps due to decreased protein binding in serum and 

decreased urinary excretion of the toxin secondary to oliguria which is evident in 

these animals because of reduced water consumption (162). 

Clinical and electrophysiological evidence of sensory neuropathy is observed in 

healthy volunteers and patients taking pyridoxine for a variety of indications. A 

single case reports evidence of sensory and motor neuropathy following a prolonged 

course of relatively high intake (1 gram/day for 10 years) (163). In the majority of 

cases, symptoms are reversible on stopping pyridoxine intake (although residual 

nerve damage remains in some patients) (164) and show a clear relationship to 

pyridoxine dose and in some instances to length of administration (93;165). 

Vitamin B6 (pyridoxine and pyridoxal phosphate) may paradoxically be pro-

convulsant; in young rats epileptiform EEG changes and frank seizures were 

induced by intraperitoneal pyridoxine (166) and Hammen et al. (131) report a 

newborn with intractable epilepsy who showed an increase in seizure frequency and 

EEG alterations after administration of vitamin B6. Wang et al. (167) also describe a 

paradoxical seizure increase during treatment with PLP. Recently a case of 

presumed pyridoxine toxicity resulting in status epilepticus was reported in a 

newborn at-risk of PDE who was treated with pyridoxine pending α-AASA results. 

Antiquitin deficiency was excluded and seizures resolved with pyridoxine 

withdrawal (168). 

The mechanism of nerve damage observed in vitamin B6 supplementation is 

unknown. Pyridoxal and 4-pyridoxic acid rise a disproportional amount compared to 

PLP (which may show little elevation) following supplementation and these 

vitamers may be responsible for toxicity. Supporting this, pyridoxal is known to be 

cytotoxic to cells including Schwann cells in culture (93). 
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1.1.15.3 Toxicity of pyridoxal 5’-phosphate 

Less is known about PLP toxicity as clinical experience is comparatively limited.  

Hammen et al. (131) report a newborn with intractable epilepsy who showed an 

increase in seizure frequency and EEG alterations after administration of vitamin B6. 

PLP may also cause tonic-clonic convulsions in immature mice possibly secondary 

to impaired GABA-ergic neurotransmission (169). PLP at a dose of 1800 mg/day 

induced hepatotoxicty in a child with homocystinuria (170) and liver cirrhosis has 

developed in one chid with PNPO deficiency while on treatment with oral PLP 

(unpublished observation). The mechanism of toxicity is unknown, however, 

preparation of PLP immediately prior to administration may prevent deterioration of 

the vitamin in UV light on standing. 

1.2 SEROTONIN METABOLISM AND FUNCTION 

Serotonin is an indolealkylamine compound that is distributed widely throughout the 

animal and plant kingdom. It was first identified in 1948 (171) by a group 

researching vasoconstrictors that cause hypertension and was named for its presence 

in serum (sero) and its vasoactive abilities (tonin). Since this time a huge amount of 

research has focussed upon this important compound which is now known to play 

many diverse roles in human physiology and thus impact upon many disease 

processes, including several neuropsychiatric diseases. 

1.2.1 Biosynthetic pathway of serotonin 

Serotonin is synthesised by a two-step pathway from the essential amino acid 

tryptophan which is ingested in the diet (Figure 8). Access of tryptophan to 

serotonin-producing cells is a critical step in the regulation of serotonin biosynthesis 

and is discussed in later a chapter (Section 6.5.1). In the first rate-limiting step, L-

tryptophan is hydroxylated to 5-hydroxytryptophan by the enzyme tryptophan 

hydroxylase (TPH). Unlike serotonin, 5-hydroxytryptophan is able to cross the 

blood brain barrier (172), although the precise mechanism by which it does so is 

unknown. In the second step, which is catalysed by PLP dependent L-aromatic 
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aminoacid decarboxylase (AADC), 5-hydroxytryptophan is decarboxylated to 

serotonin.  

 

 

Figure 8. Synthetic pathway of serotonin and breakdown to 5-hydroxyindolacetic acid 

(5-HIAA) 

(i) tryptophan hydroxylase (ii) aromatic amino acid decarboxylase 

 

1.2.1.1 Tryptophan hydroxylase 1 and 2 (TPH1 and TPH2) 

Until recently it was assumed that TPH found in the periphery and central nervous 

system was derived from the same, single gene located on chromosome 11 (173). A 

second TPH isoform (TPH2) was described in 2003, however, that derived from a 

different gene lying on the long arm of chromosome 12 and was highly expressed in 

brain (174;175). The discovery of this second isoform was particularly interesting 

because this region of chromosome 12 had been reported in several studies to 

contain susceptibility genes for depression and bipolar disorder (176;177). 

TPH1 contains 444 amino acids corresponding to a molecular weight of 51kDa and 

TPH2 contains 490 amino acids with a molecular weight of 56 kDa. Both isoforms 

catalyse the hydroxylation of tryptophan to 5-hydroxytryptohan and utilise 

molecular oxygen and tetrahydrobiopterin as a cofactor. They are tetrameric 

holoenzymes and are not fully saturated in normal physiological situations so it 

follows that increased substrate in the form of tryptophan is able to increase 

serotonin production. 

TPH has a relatively limited pattern of expression; TPH2 is detected exclusively in 

the brain (174) raphe nuclei and pineal gland (178), while TPH1 is found in 

enterochromaffin cells of the gut (duodenum) (179), mast cells and lung (173).  
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The catalytic activity of TPH can be altered by several factors. It is regulated by 

Ca
2+

 and action-potential dependent phosphorylation and also by a specific 

activating protein (named 14-3-3) which can bind to the enzyme in its 

phosphorylated form to prevent deactivation by dephosphorylation (180). The 

activity of TPH is also modified by stress which is shown to increase activity and 

hence production of serotonin in the forebrain and midbrain raphe nuclei (181). 

Much of this work was completed before the second TPH isoform was identified 

therefore it is not known whether these features apply to both or only one specific 

isoform. 

1.2.1.2 Aromatic L-amino acid decarboxylase (AADC) 

AADC was first identified in 1938 from mammalian kidney extracts (182). AADC 

protein is a homodimer consisting of two monomers, each of 480 amino acids (183). 

Each homodimer binds two molecules of pyridoxal phosphate at lysine residue 303 

within the active site, forming an internal aldimine through a Schiff base linkage, as 

is the case for many PLP dependent enzymes (184). 

Despite conjecture over many years, it is now accepted that AADC is a single 

enzyme that can catalyse the decarboxylation of several different substrates (185). 

The most important of these are 5-HTP to form serotonin and L-DOPA to form 

dopamine, however it is also considered that AADC is the sole enzyme responsible 

for the formation of the trace amines 2- phenylethylamine, p- tyramine and 

tryptamine, which may play a role in the modulation of central neurotransmission. 

The anatomical distribution of AADC is wide; it is expressed in the central and 

sympathetic nervous systems, as well as in adrenal chromaffin cells.  AADC is also 

present in D-neurons (non-monoaminergic cells) and throughout a number of non-

neuronal tissues, many of which belong to the amine precursor uptake and 

decarboxylation (APUD) system. These tissues include kidney, liver, pancreas, 

gastrointestinal tract and lungs (186).  

In man the AADC protein is encoded by a single gene on chromosome 7p21.1 – 

p12.3. It is over 85 kb in length and comprises 15 exons. Several splice variants 

have been identified in human and animal tissues which show differences in the 

coding and non-coding regions which likely direct tissue specific expression. 
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1.2.2 Synthesis of melatonin from serotonin 

Serotonin not only has many important biological effects of its own, but it is also the 

precursor of melatonin. This hormone is essential in human biology for regulation of 

the normal sleep-wake cycle and also plays a role in many processes including 

sexual maturation and reproductive behaviour, thermoregulation, immune responses 

and reduction of oxidative stress (173;187). 

Melatonin is synthesised from serotonin in the pineal gland which contains all the 

enzymes necessary to produce it from the precursor tryptophan. A unique feature of 

pineal physiology is that melatonin synthesis is significantly influenced by the dark-

light cycle. The rate-limiting enzyme, serotonin N-acetyl transferase, converts 

serotonin to N-acetylserotonin and this enzyme displays significant circadian 

rhythm, with peak activity during darkness. The product is then methylated to form 

melatonin by the enzyme 5-hydroxyindole-O-methyltransferase which uses S-

adenosyl methionine as the methyl donor (188) and does not show circadian 

variation. Thus serotonin N-acetyl transferase activity regulates the circadian rhythm 

of melatonin synthesis. 

1.2.3 Metabolism, storage and mechanisms of action of serotonin  

Serotonin is a hydrophilic molecule that does not readily pass the blood brain barrier 

thus serotonin present in the central nervous system must be synthesised within the 

brain. Serotonin-containing neuronal cell bodies are restricted to discrete groups 

which are located in the midline of the brainstem, primarily within the ‘raphe nuclei’ 

(189). The axons of this small group of neuronal cell bodies project widely to 

innervate nearly every region of the central nervous system and contain both TPH 

and AADC which are necessary for serotonin synthesis (188;190). 

Serotonin is stored in vesicles within the serotonergic neurone and this requires its 

active transport from the cytoplasm. The vesicular monoamine transporter (VMAT) 

utilises the electrochemical gradient generated by an H
+
-ATPase to drive transport, 

where efflux of H
+
 is coupled to uptake of serotonin. Serotonin containing vesicles 

differ from those storing catecholamines as they contain virtually no ATP. They also 

show differences to the serotonin vesicles in enterochromaffin cells because they 
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contain a specific protein (serotonin-binding protein, SBP) that binds serotonin with 

high affinity in the presence of Fe
2+

 (191). 

Evidence derived primarily from cultured serotonergic synapses of the leech, 

suggests that serotonin is released from neurones through the process of exocytosis 

(192). Serotonin is released in response to depolarisation and is dependent on the 

presence of external calcium, the presynaptic resting potential and the magnitude of 

the depolarisation (192). 

Serotonin has its effect in the central nervous system through interaction with 

numerous post-synaptic receptors. As with many other neurotransmitters, its actions 

are terminated within the synaptic cleft by binding to a specific transporter, the 

serotonin reuptake transporter (SERT). Via this mechanism serotonin is taken back 

up into serotonergic neurones where it may be repackaged into a vesicle or 

catabolised to 5-HIAA as detailed below (Section 1.2.4). The activity of SERT plays 

an important physiological role as it regulates the amount of serotonin within the 

synapse, thereby influencing the rate of synaptic transmission. This explains why 

drugs which block this transporter, such as selective serotonin reuptake inhibitors 

(SSRI’s), are effective in treating depression and obsessive compulsive disorder 

(193). 

In man SERT is encoded by SLC6A4 which maps to chromosome 17q11.2. It is 

composed of 15 exons spanning 40kb and the predicted protein of 630 amino acids 

has 12 transmembrane domains (194). SLC6A4 is known to have alternative 

promoters and to contain many single base variations that are likely to regulate gene 

expression. Amongst others, the well-studied 5HTTLPR (serotonin-transporter-

linked polymorphic region) promoter region variant and two single nucleotide 

polymorphisms (SNPs) [rs25531 and rs25532] located upstream of the transcription 

start site are known to effect the transcriptional rate of this gene.  Several different 

SNPs are known to be associated with neuropsychiatric disorders including 

obsessive-compulsive disorder and autism (194). 

Serotonin has three different modes of action; as a neurotransmitter it acts locally at 

synaptic boutons; it can act in a paracrine fashion upon diffusion at a site distance 

from its release and by circulating in the blood it produces effects as a hormone 
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(192). At the majority of sites the function of serotonin is mediated through its 

interaction with the serotonin receptor. There are seven classes of serotonin receptor, 

six of which are G-protein linked and one which is a ligand gated ion channel (195). 

The G-protein linked receptors are further subdivided into 13 subtypes. These 

receptors are present both within the central and peripheral nervous system and 

although all can be activated by serotonin, differences in signal transduction 

mechanisms, anatomical distribution and differential response to pharmaceutical 

agents allow them to be distinguished (196). Understanding of this important group 

of receptors has increased greatly over the past decade with advances in cell, 

molecular and structural biology and serotonin receptors are the target for a large 

number of pharmaceutical drugs, many of which are used worldwide to treat 

common psychiatric disorders such as depression, anxiety and schizophrenia (195). 

Despite its important role as a neurotransmitter in the central nervous system, the 

vast majority (approximately 95%) of serotonin is produced and stored in the 

enterochromaffin cells of the gut. These cells are a subtype of enteroendocrine cells 

and are found among the enterocytes of the intestinal epithelium (197). 

Enterochromaffin cells are able to synthesise serotonin from dietary tryptophan as 

they contain both tryptophan hydroxylase (TPH1) and aromatic aminoacid 

decarboxylase enzymes. Newly produced serotonin is then packaged into vesicles by 

a specific isoform of the vesicular monoamine transporter 1 (VMAT1) which is 

unique to enterochromaffin and adrenal chromaffin cells (198;199). Release of 

serotonin from vesicles on the basal border of the enterochromaffin cell is triggered 

by mechanical stimuli, pH and various nutrients including fatty acids, peptides and 

glucose (197). On release it appears to act in concert with other mediators 

(cholecystokinin and ATP) to modulate a large number of complex gastrointestinal 

reflexes which are specific to the content and region of the intestine (200;201). 

Serotonin may interact with immune cells and nerve terminals to exert its effects in 

the gastrointestinal system or it may be taken up into platelets (see below).  

As described previously, the actions of serotonin are terminated by its reuptake via 

the serotonin reuptake transporter (SERT) which is expressed in the gut on the 

apical and basal membranes of the epithelial cell. Here it is degraded to 5-
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hydroxyindolacetic acid (5-HIAA) by the action of monoamine oxidase A and 

excreted. 

Serotonin that is not metabolised in this manner may enter the portal circulation 

where it is taken up into the platelets via the same transporter, SERT. Serotonin in 

the platelets is protected from breakdown in the liver and enters the general 

circulation. Any remaining free serotonin in the portal circulation is rapidly 

catabolised by liver enzymes to 5-HIAA for excretion (197). 

1.2.4 Catabolism of serotonin 

As serotonin is a biologically potent molecule, tight regulation is important and this 

is achieved, at least in part, through catabolic processes. The main catabolic pathway 

of serotonin is oxidative deamination by the enzyme monoamine oxidase (MAO). 

MAO (which exists as type A and type B; see below) converts serotonin to 5-

hydroxy-indoleactetaldehyde which is subsequently oxidised by NAD
+
 dependent 

aldehyde oxidase to form 5-hydroxyindolacetic acid (5-HIAA) (Figure 9) (188). 5-

HIAA can pass the blood-brain-barrier and is secreted from the liver into the 

circulation for excretion in the urine. An alternative, minor pathway of serotonin 

catabolism of unknown significance involves reduction of 5-hydroxy-

indoleacetaldehyde by aldehyde reductase to 5-hydroxytryptophol. 

MAO exists in at least two forms; MAO type A and MAO type B, and both are 

integral flavo-proteins of the outer mitochondrial membrane. Evidence suggests that 

serotonergic neurones contain predominantly MAO type B, the form that does not 

preferentially degrade serotonin which has led researchers to suggest that MAO in 

the serotonergic neurone primarily acts to prevent accumulation of other substrates 

such as dopamine that could affect serotonin storage and function (188).  

Recently a new serotonin metabolite (4R)-2-[(5’-hydroxy-1’H-indol-3’-yl) methyl] 

thiazolidine-4-carboxylic acid (5’-HITCA) has been identified which is thought to 

be formed as a result of cyclization between 5-hydroxy-indoleacetaldehyde and L-

cysteine (202). The biological relevance of this is, at present unknown. 
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Figure 9. Metabolic pathways of serotonin in mammals. 

A – serotonin; B – 5-hydroxyindole acetaldehyde; C- N-acetyl serotonin; D- 5-

hydroxyindolacetic aldehyde; E- 5-hydroxytryptophol; F – melatonin (5-methoxy-N-

acetylserotonin.                                                                                                                                   

1 – monoamine oxidase A and B; 2 – N-acetyltransferase; 3-aldehyde dehydrogenase; 4- 

aldehyde reductase; 5- hydroxyindole-O-methyltransferase .                                           

Taken from Squires et al. 2006 (202). 

1.2.5 Physiological functions of serotonin  

In man serotonin has a wide range of diverse physiological functions; its receptors 

being almost ubiquitously expressed (203). In the periphery, serotonin plays an 

important role in regulation of the smooth muscle both in the gastrointestinal and 

cardiovascular systems and it is also intimately involved in platelet aggregation. In 

the central nervous system, the actions of serotonin as a neurotransmitter impact 

upon behaviour, cognition and learning. The most important functions are 

summarised in the following sections 1.2.5.1 – 1.2.5.5. 
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1.2.5.1 Neurological and behavioural 

All regions of the brain express serotonin receptors in a regional subtype-specific 

fashion (204) hence serotonin modulates virtually all human behaviours to some 

extent. Perhaps surprisingly, serotonergic neurones are present in only a limited area 

of the central nervous system, in the brainstem raphe nuclei, however they project 

widely to cortical, limbic, midbrain and hindbrain structures.  

Over many decades, serotonin has been implicated in a large and diverse number of 

neuropsychological and behavioural processes. These include the modulation of 

mood, perception, anger, aggression, sexuality, reward and appetite (193). 

Consequently it has been proposed that serotonin plays a role in many and varied 

neuropsychiatric conditions in man including depression, anxiety and eating 

disorders. Definitive evidence of the mechanism by which serotonin is involved in 

such conditions is lacking, nevertheless treatment with drugs acting upon serotonin 

metabolism, receptors and transporters is effective in many cases. 

There is no simple relationship between the brain region in which a specific receptor 

is expressed and the effect of serotonin upon a particular subtype of receptor as it 

appears that each human behaviour may be regulated by multiple serotonin receptors 

and in addition each subtype of receptor may be expressed in multiple brain regions 

(204). This observation, which is drawn primarily from behavioural studies in 

animals, explains why drugs targeted to a specific serotonin receptor have effects on 

several elements of behaviour (205) and reflects the complexity of human 

psychology. 

1.2.5.2 Gastro-intestinal tract 

Over 90% of serotonin in the periphery is contained within enterochromaffin cells of 

the gut (206). Within the gastro-intestinal tract serotonin is released in response to 

various stimuli including acetylcholine, raised intraluminal pressure and low pH 

(207) and it acts in a paracrine fashion as a signalling molecule to activate neural 

reflexes. It is thought to play an important role in intestinal secretion, peristalsis and 

the sensation of discomfort, nausea and in the gastro-intestinal tract. This area of 

physiology is at present incompletely understood and the relationship of serotonin to 
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gastrointestinal pathologies such as inflammatory bowel disease and irritable bowel 

syndrome is an area of intense research activity (203). 

1.2.5.3 Cardiovascular system 

Animal studies suggest that serotonin is important for normal cardiac development; 

tryptophan hydroxylase I knockout mice may develop fatal dilated cardiomyopathy 

(208) and the serotonin receptor subtype 2B (5-HT2B) receptor knockout mice have 

morphological cardiac abnormalities which lead to fetal and neonatal death (209). It 

is also thought that serotonin may play a pathological role in development of the 

cardiac valvulopathy associated with the weight loss medication fenfluramine 

(which has now been withdrawn)  and the fibrosis of valves seen in carcinoid 

syndrome (see Section 1.2.7) (204;210). 

Via its central neurotransmitter effects serotonin can influence cardiovascular status 

by its actions on the neurones of the raphe nuclei. Serotonin may affect both 

sympathetic and parasympathetic pathways thus having both chrono- and inotropic 

effects on the cardiovascular system mediated by the 5-HT1, 5-HT2 and 5-HT3 

serotonin receptors (208;211). 

Serotonin is also involved in various elements of vascular biology including the 

modulation of vascular resistance and blood pressure, and the control of haemostasis 

(204). Serotonin is versatile in its effect on blood vessels, having differing effects 

according to the vascular bed, and thereby type of receptor, present (212). 

Platelets contain a large amount of serotonin within ‘platelet dense granules’ in the 

cytoplasm (213). They do not synthesise serotonin directly but take it up from the 

plasma via the serotonin reuptake transporter (SERT). During activation following 

endothelium damage or ischaemia for example, serotonin is released from the 

platelet.  It then plays a role in haemostasis by promoting aggregation of platelets 

via the serotonin receptor (5-HT2A) and causes vasoconstriction of surrounding 

blood vessels by a direct effect (203). This is borne out by the observation that 

tryptophan hydroxylase I knockout mice (which exhibit markedly decreased 

peripheral serotonin) have a decreased thrombotic and thromboembolic risk and 

impaired haemostasis (175). 
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1.2.5.4 Genito-urinary 

Serotonin acts both centrally and in the periphery to modulate micturition and 

ejaculatory function. Through its action on 5-HT2C and 5-HT1B receptors, 

serotonin increases ejaculatory latency and delays orgasm (214) which has important 

implications for treatment of sexual dysfunction. It has opposing actions upon 

micturition according to the receptors upon which it acts; 5-HT2C receptors prevent 

urination whereas 5-HT1A receptors promote urination (215). 

1.2.5.5 Glucose homeostasis 

Serotonin is known to have an effect upon glucose metabolism however research to 

date is inconclusive as to its precise role. While some studies suggest that serotonin 

may increase blood glucose (216) more evidence suggests that it can lead to 

hypoglycaemia. This observation may be mediated by the 5-HT2A receptor which is 

expressed in skeletal muscle as serotonin action at this receptor causes rapid glucose 

uptake (217;218). Insulin does not appear to be involved in the serotonin mechanism 

of hypoglycaemia as tryptophan administration to rats does not result in increased 

insulin levels (219;220). 

1.2.6 Inherited disorders associated with an abnormality of serotonin 

metabolism 

Several rare inherited diseases lead to a central serotonin deficiency, usually in 

association with reduced amounts of the other monoamine neurotransmitters, 

dopamine and norepinephrine (221). A monogenic disorder resulting in isolated 

deficiency of tryptophan hydroxylase I or II has yet to be described however, this 

enzyme requires tetrahydrobiopterin (BH4) as an essential cofactor, and a secondary 

deficiency is encountered in clinical cases of sepiapterin reductase, 6-

pyruvyltetrahydrobiopterin synthase (PTPS) and GTP cyclohydrolase (GTPCH) 

deficiency which affect BH4 synthesis and in dihydropteridine reductase (DHPR) 

deficiency which affects BH4 recycling. None of these disorders produce isolated 

serotonin deficiency however because tyrosine hydroxylase utilises the same 

cofactor hence production of dopamine is also severely affected. Clinically these 

conditions are characterised by a hypokinetic-rigid syndrome often accompanied by 
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oculogyric crises, ptosis and autonomic dysfunction and it is very difficult to dissect 

out what symptoms are attributable to serotonin deficiency alone. One detailed case 

study of an adult with sepiapterin reductase deficiency demonstrated restoration of a 

severely disturbed circadian sleep-wake cycle accompanied by normalisation of CSF 

5-HIAA and melatonin profile, in response to treatment with 5-HTP but not 

levodopa (222). This study is indicative of the central role that melatonin plays in 

maintenance of circadian rhythm and the authors highlighted that non-motor aspects 

of these disorders are often poorly recognised.  

In addition to the disorders discussed above, deficiency of aromatic amino acid 

decarboxylase (AADC) or its cofactor PLP (for example in PNPO or Antiquitin 

deficiency) may result in a combined deficiency of both serotonin and dopamine 

which is evidenced by reduced HVA and 5-HIAA in the cerebrospinal fluid. 

Although classically patients with AADC deficiency present with a similar clinical 

picture to that described above, disorders of vitamin B6 metabolism tend to be 

dominated by a seizure disorder with few reported cases of movement disorder or of 

symptoms obviously attributable to serotonin deficiency. In keeping, not all patients 

have a demonstrable abnormality in the neurotransmitter profiles and pathology in 

these cases is likely related to one of the many diverse cofactor roles of vitamin B6.  

Several clinical cases without a definitive diagnosis have been reported in the 

literature where there is evidence of reduced serotonin or its metabolites, 

accompanied by a variety of clinical symptoms. In one such child a syndrome of 

hypotonia, developmental delay, ataxia and atypical autism with isolated low CSF 5-

HIAA was described (223). A heterozygous gain-of-function change was found in 

the SLC6A4 gene encoding SERT in addition to a homozygous 5-HTTLPR L/L 

promoter variant and the authors postulate that impaired serotonergic 

neurotransmission may be due to increased SERT activity (223). Treatment with 5-

hydroxytryptophan was reported to normalise the biochemical findings and improve 

clinical symptoms. 

A further group of five patients have been reported who also show amelioration of 

clinical symptoms (hypotonic-ataxia and poor attention) and biochemical serotonin 

deficiency with 5-hydroxytryptophan and carbidopa combination therapy (224). In 

this report the authors postulate a regulatory abnormality in the tryptophan 
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hydroxylase gene to be disease causing as no deleterious changes were demonstrated 

in the coding regions. 

A clinically different case is reported by Lin et al. (225) that shares some of the 

biochemical features of serotonin deficiency discussed above. This child presented 

in the neonatal period with seizures and transient non-ketotic hyperglycinaemia 

evident in the CSF. He initially responded to anticonvulsant medication (but not 

intravenous pyridoxine) but represented with status epilepticus at 2 months of age. 

At this time CSF glycine had normalised however a severely reduced, isolated CSF 

5-HIAA level and platelet serotonin level was observed. Multiple treatment 

approaches were trialled with variable success, including 5-hydroxytryophan and 

carbidopa however he progressed to have a cognitive and motor developmental 

delay as well as abnormalities of social behaviour and communication. No definitive 

diagnosis was reached; however, it is not clear that PNPO deficiency (which may 

present with similar clinical features) was excluded in this case. 

Assmann et al. (226) describe an interesting series of patients with L-dopa non 

responsive dystonia (DND) in whom reduced CSF 5-HIAA was observed; 

suggestive of reduced central serotonin turnover. In this group of patients central 

dopamine metabolism was unaffected and potential treatment options are proposed. 

The underlying molecular mechanism remains to be defined. 

1.2.7 Carcinoid syndrome 

This clinical entity describes the flushing, diarrhoea and heart disease that occurs 

when tumours of the enterochromaffin cells in the gastrointestinal tract produce 

active substances that reach the systemic circulation (227). This usually occurs when 

hepatic metastases are present. The secretion of large amounts of serotonin is 

responsible for many of the symptoms including increase in gut motility, 

bronchoconstriction and fibrotic reactions in the heart and elsewhere. As tryptophan 

is diverted away from nicotinamide synthesis and towards serotonin production, 

symptoms of pellagra may develop in some instances. 
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1.2.8 Serotonin abnormalities in autism 

Evidence for altered serotonin metabolism in autism comes from the observation 

first made some 50 years ago, that whole blood serotonin is elevated in up to one 

third of patients with autism (228). Since this time, hyperserotonaemia has been 

documented in many studies of autistic individuals and serotonin has been shown to 

be elevated independent of intellectual disability and phenotypic variability (229). 

The possibility that disrupted serotonin metabolism is implicated in autism is both 

biologically plausible and appealing given the well described functions of this 

neurotransmitter. 

Functional neuroimaging studies have further advanced knowledge in this field. 

Serotonin synthesis capacity of the brain has been measured in vivo in two studies 

using Positron Emission Tomography (PET) with an alpha [
11

C] methyl-L-

tryptophan tracer (230;231). In normally developing children aged 2-5 years there is 

a period of markedly increased serotonin synthesis (200% of adult values) which is 

then followed by a decline towards adult values after 5 years of age. In contrast, up 

until 5 years of age, autistic patients show a reduced capacity for serotonin synthesis 

which then increases to exceed adult values by the age of 15 years (230-232). PET 

studies have also revealed focal abnormalities of serotonin synthesis with evidence 

of cortical asymmetry in autistic patients. Although not surprising it is perhaps 

disappointing that no consistent abnormality of the serotonin metabolite (5-HIAA) 

in the cerebrospinal fluid of autism patients has been detected (233). 

Animal models of autism also support the hypothesis that serotonin is involved in 

the disease process. As the immature blood brain barrier in utero allows passage of 

serotonin, exposure to high levels (via any mechanism) during this period could lead 

to loss of central serotonergic terminals by negative feedback and hence to 

development of autistic spectrum disorder (ASD). This is illustrated in an animal 

model which was developed to mimic the hyperserotonaemia of autism (234). In this 

model pregnant rats are administered a serotonin agonist on day 12 of gestation 

which is continued postnatally in the pups for a varying amount of time. The 

resulting effect (which mimics the 50% rise in serotonin seen in some autistic 

patients) eventually leads to loss of central serotonergic terminals in the offspring 

who have abnormal autistic-like behaviour (altered social behaviour, seizures and 
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hyper-responsiveness to sound and touch) (234;235). Following on from this, recent 

work suggests that prenatal exposure to SSRI’s during the first trimester of 

pregnancy in humans poses a modest increase in risk for the development of autistic 

spectrum disorder (236). 

The mechanism of elevated whole blood serotonin in autism and an understanding 

of its implications for the metabolism of serotonin within the central nervous system 

remains an intriguing and as yet unsolved part of the disorder. The finding needs to 

be considered against the background of other knowledge of the disorder and its 

pathogenesis. 

1.3 AUTISM 

More than 60 years ago the first descriptions of an autistic child were published by 

Leo Kanner in the United States (237)  and Hans Asperger (238) in Austria. The 

term ‘autistic’, used by both physicians was in fact originally proposed by Bleuler to 

describe characteristics observed in schizophrenia. He wrote:  

“The [...] schizophrenics who have no more contact with the outside 

world live in a world of their own. They have encased themselves with 

their desires and wishes [...]; they have cut themselves off as much as 

possible from any contact with the external world. This detachment from 

reality with the relative and absolute predominance of the inner life, we 

term autism”. 

1.3.1 Diagnosis of autism 

Despite significant advances in scientific and clinical research, autism remains a 

behaviourally defined disorder. The diagnosis is based largely on clinical history, 

observation and developmental assessments, with parental, teacher and 

multidisciplinary medical teams all having an important input. Although recognised 

as a very heterogeneous condition, all individuals affected with autism share a triad 

of common features; atypical social interaction, delayed and disordered language 

and a markedly restricted repertoire of activities and interests (239). The range of 

clinical symptoms demonstrated within these broad descriptive areas is vast, for 
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example social behaviours can range from an apparent total lack of awareness of 

others to lack of appropriate eye contact; language problems may vary from a 

complete lack of verbal speech to the production of speech that is associated with 

atypical syntax, prosody or intonation. At the ‘high-functioning’ end of the autistic 

spectrum individuals may be diagnosed with Asperger’s syndrome which 

specifically requires that the cognitive ability of the child lies within the normal 

range and that language development is not delayed. Some individuals with autism 

excel in certain areas having for example exceptional islands of rote memory or 

isolated talents (239).  

The diagnostic criteria in common use come from two main classification systems; 

the ‘Diagnostic and Statistical Manual of Mental Disorders, DSM-IV’ and the 

‘International Classification of Diseases, ICD-10’. In common both state that 

symptoms in at least some areas should have onset prior to three years of age. 

Validated instruments used in clinical practice and scientific research to assess or 

diagnose autism include the Autism Diagnostic Observation Schedule – Generic 

(ADOS-G), the Autism Diagnostic Interview – Revised (ADI-R) and the 

Developmental, Dimensional and Diagnostic Interview (240). 

1.3.2 Epidemiology of autism 

For a long time autism was considered to be a rare disorder but over the last decade 

this has changed considerably and autism is now reported to have a prevalence of 

approximately 1% in school aged children (241). This prevalence rate is 

approximately 20 – 100 times higher than studies performed 40 years earlier and the 

reason for this demands explanation. Some attribute the apparent increased 

prevalence to improved ascertainment; a broadening of the diagnostic criteria and 

improved professional and public awareness. Other schools of thought however 

consider the observation to reflect the contribution of an environmental factor or 

factors, and many have been proposed (242).  

It is interesting to note that recent studies have described an increased incidence of 

autistic spectrum disorders in babies born extremely premature compared to the 

general population (243;244). The distribution of ASD symptoms in this cohort 

suggests that an increased liability to ASD symptoms impacts many extreme 
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preterm children rather than a distinct subgroup and that those reaching the threshold 

for a diagnosis of ASD represent the extreme end of a distribution. Of the factors 

identified as being independently associated with developing ASD symptoms, 

potential links with nutrition were highlighted, as not receiving breast milk was 

found to be associated with the development of ASD symptoms. This is likely to be 

a complex association and needs further research. 

One striking feature of autism which has remained stable over time is the male 

predominance of the disorder; a male to female sex ratio of 3-4:1 is reported for 

autism and 8-9:1 for Asperger’s syndrome. This intriguing and robust finding has 

led some to suggest that autism is an ‘extreme form of male brain’ (245;246) and 

many hypotheses have sought to understand autism through its gender bias. To date 

none has been able to fully explain the observation in this very complex disorder.   

1.3.3 Associated medical problems 

Autism is often accompanied by additional medical problems which may go 

unrecognised due to the difficulty in clinical assessment and examination of this 

group of children. These co-morbidities represent a neglected area of research which 

may provide an interesting and alternative avenue towards understanding the 

underlying pathology of autism.  

Epilepsy occurs in a significant minority of individuals with autism with the 

prevalence of seizure disorders being estimated at up to 35% in adults (239). A 

recent study found that epilepsy developed in 22% of autistic individuals followed 

up to 21 years of age, the majority of which began after 10 years of age (247) and 

were associated with intellectual disability and female gender. Seizures may be of 

any type with complex partial being most commonly described and they can usually 

be controlled with conventional anticonvulsant medication.  

Sleep disorders are common and problematic amongst the autistic population with 

prevalence rates estimated to be between 44 and 83% (248). Poor ‘sleep hygiene’ is 

likely to exacerbate behavioural problems during the day thus recognition and 

treatment is important. Difficulty initiating and maintaining sleep are the most 

commonly reported sleep problems described by parents; other difficulties include 
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snoring, apnoeas, and nocturnal arousals associated with screaming and sleep 

walking (239). 

Children with autism frequently have problems related to gastrointestinal (GI) 

dysfunction with a variety of problems being reported including constipation, 

diarrhoea, food intolerance, abdominal pain and gastro-oesophageal reflux. All of 

these disorders are common in the normally developing child, therefore, it is 

difficult to be certain that they are seen with increased frequency in autism. A recent 

study however found that parents reported significantly more GI problems in their 

autistic offspring compared to their normally developing siblings (42% compared to 

12%). In this study autism severity was associated with a greater likelihood of 

developing GI problems (249). 

It has recently been recognised that many individuals with autism have subtle gross 

and fine motor dysfunction compared to normally developing children (239). 

Hypotonia was found to be the most common motor symptom in a cohort of over 

150 children examined by Ming et al. (250) and ‘toe walking’ and gross motor delay 

were also reported. All motor problems investigated appeared to be more prevalent 

in the younger age groups suggesting an improvement with age; however the 

aetiology of such observations remains uncertain. 

1.3.4 Treatment 

Autism is a lifelong neurodevelopmental disorder. Unfortunately the core symptoms 

of this disabling condition have largely proved to be refractory to pharmacological 

intervention and therapeutic strategies mainly centre upon educational and 

behavioural measures which are still at an early stage of development (251). Despite 

this, many children with autism will receive some form of medication during their 

development and as the neurochemical basis of autism is largely unknown, treatment 

with pharmacological agents is essentially empirical (252). Antidepressants, 

particularly selective serotonin reuptake inhibitors (SSRIs), are the most widely 

prescribed drug for children with autism (253). Similar to their beneficial role in 

obsessive compulsive disorder, SSRIs are prescribed to alleviate the repetitive and 

perseverative behaviours seen in many patients with autism. From a neurochemistry 

perspective, SSRIs are considered to work by normalising central serotonin 



89 

 

metabolism (254). Convincing benefit of SSRI medication is not forthcoming in the 

medical literature. While some studies have shown a therapeutic response in terms 

of repetitive and maladaptive behaviours compared to placebo (255;256) a recent 

large, multi-centre trial failed to show any improvement with respect to compulsive 

and repetitive behaviours compared to placebo (257). 

Other classes of drug commonly used in the treatment of autism include stimulants 

(e.g. methylphenidate) and antipsychotics (e.g. risperidone). Both classes have 

shown improvement in difficult behaviours to some extent in the autistic population 

but they are often poorly tolerated and none appear to impact upon the central core 

symptoms of impaired social communication (252). 

Encouraging work in animal models has recently demonstrated that some paediatric 

disorders which are associated with autism such as Rett syndrome, tuberose sclerosis 

and fragile X can be largely reversed in adulthood by reversal of the underlying 

genetic defect and thus production of a normal protein (258-260). This is perhaps 

not wholly unexpected considering that the autistic behaviours observed in children 

exposed to extreme social deprivation (for example in Romanian orphanages) are 

reversible upon transfer to a nurturing environment (261). These observations and 

those in animal studies not only suggest that many of the deranged processes in ASD 

are not permanent and thus may have a biochemical (hence reversible) rather than 

structural basis but also, should the findings be generalisable to humans, then an 

exciting area of future research is opened up. 

1.3.5 Genetic risk for autism 

There exists compelling evidence that autism has a genetic basis which first became 

apparent on publication of a study that showed a higher concordance in monozygotic 

twins than in dizygotic twins (262;263). Prior to this autism had been considered to 

be a consequence of, amongst other things, bad parenting and poor maternal 

bonding.  

Although decades of research support a significant genetic contribution to the 

aetiology of autism, high heritability does not imply a simple model of genetic 

transmission or an easily identifiable major causative gene(s) (264). In fact the 

findings of recent research have done as much to challenge current paradigms of 
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neuropsychiatric disease, as to answer questions concerning their aetiology. Some 

authors now propose that autistic spectrum disorder is best considered as ‘the 

autisms’ reflecting the fact that ASD is not one condition but many aetiologically 

distinct forms (264) as current research strongly suggests a significant genetic 

heterogeneity where the effects of many genes interact with one of many various 

environmental factors (239). 

One of the major problems encountered in unravelling the genetic basis of autism is 

the fact that diagnosis of the disorder remains a clinical one reflecting the fact that 

little is known about pathology, hence there is no ‘biomarker’. Similar difficulties 

are frequently encountered in other neuropsychiatric disorders, such as 

schizophrenia. Contributing to this, the phenotype of autism is vast and patients’ 

social disability lies on a continuous spectrum. Attempts to overcome this difficulty 

by specifically investigating endophenotypes within the broad spectrum may in part 

help to improve future research. 

Adding to this complication, autism is a neurodevelopmental disorder and the 

disease is very likely to have its onset early in fetal development and early 

childhood. Research over the past decades suggests that ‘higher-order’ functions that 

are disrupted in psychiatric disorders emerge from complex neurodevelopmental 

processes that are guided by thousands of genes (265). A complete understanding of 

this remains one of the major unmet challenges of scientific research.  

The study of Mendelian single-gene disorders has in the past offered useful insights 

into the molecular mechanisms of autistic behaviours, for example Rett syndrome 

and Tuberose Sclerosis (266). Some, however, have concerns regarding this 

approach, arguing there are subtle differences in the social phenotype of syndromic 

autism compared to idiopathic autism and also that the intellectual disability 

associated with many genetic syndromes simply increases the risk that autistic 

behaviours will be revealed (267). 

 In the pre-genome wide association study (GWAS) era, genetic linkage studies had 

limited success, with many at first promising results, failing to be replicated in 

subsequent studies. Genetic regions 7q, 15q, 22q and 2q were the areas most 

frequently reported as showing an association with autism in more than one study 
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(268;269). Two findings in particular from linkage studies continue to generate 

interest, including regulatory SNPs in the receptor tyrosine kinase MET gene (270) 

(271) and SNPs corresponding to the Contactin-associated protein 2 (CNTNAP2) 

gene (272;273). 

The genome wide association approach, facilitated by the development of advanced 

microarray technology, has been in vogue over recent years and consequently 

applied to ASD. Progress in this area was initially hindered by the enormous under-

powering of early studies. Allelic effect sizes were overestimated and overall, when 

viewed cumulatively, the common risk alleles reproducibly identified by GWAS 

have only accounted for a tiny fraction of the anticipated risk for ASD. Similar 

conclusions have been reached for other common conditions (e.g. diabetes). 

Despite these initial difficulties, three disorder-related alleles that meet accepted 

criteria and which survive internal replication have been identified [a region on 5p 

between Cadherin 9 and Cadherin 10 (274), Semaphorin 5A (275) and MACROD2 

gene (276). Significant uncertainty remains however as to the relevance of these loci 

because each of these studies has failed to replicate findings of the others. Perhaps 

more importantly, translating the results into meaningful biological mechanisms 

which are relevant to the disease is at present lacking (265). 

A recent and exciting advance in our knowledge of the genetic causes of autism has 

come from whole genome DNA microarrays which suggest an important role for 

structural chromosomal abnormalities. A seminal study by Sebat et al. (277) 

identified de novo copy number variations (CNV) in 3% of autistic children from 

multiplex families (with two or more affected members) and in 10% of autistic 

children from simplex families. The CNVs were composed of deletions in 70% of 

cases and duplications in 30%; DNA fragment sizes ranged from 160 kb to several 

megabases, thus containing segments from the size of a single gene to chromosomal 

regions harbouring many genes. Such variations were found in only 1% of control 

subjects. Subsequent studies of increasingly large numbers have confirmed initial 

findings and although the resolution of detection of new technologies has increased 

the number of de novo CNV has remained fairly constant at 5-10% (265). Some 

studies have also identified recurrent structural variations that are strongly 
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associated with ASD (for example, deletions and duplications at 16p11.2, 

duplications at 15q11-13) all of which reach genome wide significance. 

Further work is required to understand how both deletion and duplication of a 

chromosomal region may result in an identical phenotype and how identical 

variations may be associated with divergent phenotypes [deletions at 16p11.2 are 

strongly associated with ASD, intellectual disability and obesity (278); duplications 

are associated with schizophrenia and ASD (279). 

Ultimately ASD and other neuropsychiatric disorders represent conditions whereby 

genetic mutations in potentially hundreds of different genes converge onto a small 

number of molecular and anatomical pathways which play a critical role in the 

development and function of the central nervous system (265). The recent discovery 

that the FOXP2 protein is a ‘transcriptional regulatory hub’ which has downstream 

influence on three genes implicated in autism [CNTNAP2 (280), MET  (281)  and 

PLAUR (282)] supports this. 

Our understanding of autism has come a long way since its first description in 1943 

and research into the genetic basis in particular has made remarkable progress over 

the last 10 years. Many fundamental questions remain unanswered however. In the 

future, it seems likely that an integrative approach combining top-down and 

reductionist (bottom-up) genetic processes complemented by multi-disciplinary and 

computational approaches will allow further advances in the field. Alongside this, a 

shift in current thinking is required in order to reconceptualise the relationship of 

genotype and phenotype in ASD (265). 

1.3.6 Neuropathology and neuroanatomy 

A universal neuropathology or neuroimaging phenotype has not yet emerged in 

autism.   This may reflect the small sample sizes of studies to date or given the 

heterogeneous nature of ASD, it may be argued that consistency would not be 

expected (283). 

Some features that are repeatedly observed in autistic patients include evidence of 

early brain overgrowth (manifest as macrocephaly) followed by normalisation or 

‘growth arrest’ in later childhood. Brain overgrowth does not appear to be evident in 
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all brain regions but is most prominent in the frontal lobes and anterior temporal 

regions (284) and affects both grey and white matter. Various hypotheses have been 

proposed suggesting that abnormalities in brain growth form part of a developmental 

disconnection syndrome encompassing brain regions involved in language, social 

cognition and emotional reciprocity (285). Against this, some groups have found 

that macrocephaly is actually a familial trait that is seen at a similar rate in 

macrocephalic ASD probands and their unaffected siblings and parents. 

Pathology studies of the autistic brain have revealed cerebellar and brainstem 

abnormalities with several studies showing a decreased number of cerebellar 

Purkinje fibres in particular. Subsequent detailed work has also highlighted 

disruptions in frontal cortical mini-columnar organisation (286). Mini-columns are 

vital for cortical information processing and abnormalities in their architecture could 

feasibly result in complex information processing defects seen in autistic 

individuals. How these observations relate to previously described macrocephaly 

remains to be resolved. 

1.4 SUMMARY AND AIMS 

In summary, vitamin B6 is a critical component of human metabolism whose role as 

an enzyme cofactor (in the form of PLP) is particularly important for normal 

neurological function. This is exemplified by several heritable seizure disorders of 

childhood where various disease mechanisms result in reduced availability of PLP. 

Such examples include PDE, PNPO deficiency and Hyperprolinaemia type II. 

PLP is the enzyme cofactor for aromatic aminoacid decarboxylase (AADC), which 

catalyses the final reaction in the synthesis of the neurotransmitters serotonin and 

dopamine. It is feasible that any abnormality on the pathway for production of PLP 

or in the activity of AADC could result in neurotransmitter disturbance. Indeed this 

is the case in a primary genetic deficiency of AADC where a severe reduction of 

both dopamine and serotonin metabolites are observed.  

A clear understanding of the pathological basis of autism has long evaded 

researchers yet biochemical evidence points to an abnormality at some level in the 
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metabolism of serotonin as up to one third of autistic patients have 

hyperserotonaemia. The metabolic pathways of vitamin B6 and serotonin are closely 

linked via the AADC enzyme and further work in this area may advance 

understanding of the autistic spectrum disorders. Equally further biochemical and 

genetic investigation of children with undiagnosed seizure disorders responsive to 

vitamin B6 may identify new monogenic disorders. Both avenues of research will 

benefit from the development of new laboratory techniques to assess vitamin B6 

status in patients and this forms the basis of my thesis. 
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2.1 MATERIALS 

The following were purchased from VWR International Ltd (Lutterworth, UK): 

Disodium hydrogen orthophosphate; sodium dihydrogen orthophosphate; 

ethylenediaminetetraacetic acid (EDTA); hydrochloric acid (12.2M); methanol 

HiPerSolv for HPLC; and sodium hydroxide. 

The following were purchased from Sigma Aldrich (Poole, UK): 1,4-

Dithioerythritol; pyridoxal 5’-phosphate, L-3,4-dihydroxyphenylalanine; perchloric 

acid; sodium-L-ascorbate; dopamine hydrochloride; 1-octanesulphonic acid; 

serotonin; trichloroacetic acid; pyridoxal; pyridoxamine dihydrochloride, pyridoxal 

hydrochloride, pyridoxine hydrochloride, pyridoxamine 5’-phosphate, pyridoxal 5’-

phosphate mono-hydrate and 4-pyridoxic acid; acetic acid, heptafluorobutyric acid 

(HFBA) and trichloroacetic acid (TCA). 

The following were purchased from Fisher Scientific UK Ltd (Loughborough, UK): 

HPLC grade methanol and 850ml/L (85%) orthophosphoric acid HPLC 

(electrochemical grade). 

HPLC vials and caps were purchased from Chromacol (Welwyn Garden City, UK). 

Four deuterated vitamers were used as internal standards: Pyridoxal methyl D3 

hydrochloride [>98% atom %D] was purchased from Isotec, pyridoxine D2 

hydrochloride (5-hydroxymethyl-D2) [>98% atom %D] from CDN Isotopes, 4-

pyridoxic acid D2 (5,5’-D2) [>98%] was purchased from Buchem BV and D2 

Pyridoxal 5’-Phosphate was kindly supplied as a gift by Professor Coburn, 

Department of Chemistry, Indiana University, Purdue University, Forte Wayne. 
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2.2 BIOCHEMISTRY METHODS 

2.2.1 Measurement of PLP in plasma and CSF by reverse phase HPLC 

PLP was measured by Viruna Neergheen and Marcus Oppenhein in the 

Neurometabolic Unit, National Hospital using a commercial kit (Chromsystems, 

Munich, Germany).  

200 μL of plasma or CSF was mixed with 300uL of precipitation reagent 

(Chromsystems) and incubated at 4°C for 10 minutes. Samples were then 

centrifuged at 12000 x g for 5 minutes at room temperature. 200 μL of supernatant 

was diluted with 200 μL of neutralisation agent (Chromsystems) and 80 μL of 

derivatisation reagent (Chromsystems) was subsequently added. Samples were then 

incubated at 60°C for 20 minutes and subsequently incubated for 4°C for 10 

minutes. Samples were then centrifuged for 2 minutes at 12000 x g for 5 minutes at 

room temperature. 200 μL of supernatant was transferred to the autosampler vials 

prior to injection onto the HPLC. 

The HPLC equipment used was as follows: PU-980 pump (Jasco); AS-950 

autosampler (Jasco); and FP-920 fluorescence detector (Jasco). The fluorescence 

detector was coupled to a computer and data was recorded using AZUR version 4.6 

data capture and analysis software (Datalys, Saint Martin D’Heres, France).  

The mobile phase (Chromsystems) was run isocratically at a flow rate of 1.3 

ml/minute. 50 μL of each sample was injected onto the column (Chromsystems) 

which was maintained at 20°C. PLP was detected by fluorescence detection with an 

excitation wavelength of 415 nm. PLP concentration of the sample was quantified 

against an external plasma calibration standard (Chromsystems) which ranged 

between; 40 and 60 nM. AZUR software version 4.6 was used for data analysis 

(95;287). 
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2.2.2 Measurement of B6 vitamers and 4-pyridoxic acid by HPLC linked 

tandem mass spectrometry (LC-MS/MS) 

2.2.2.1 Sample collection and preparation 

Venous blood samples were taken into EDTA containing tubes and were centrifuged 

at 7000 x g for 10 minutes at 4 °C within 60 minutes of collection and the plasma 

was removed immediately. Plasma samples were then stored at -80 °C until analysis.   

On the day of sample analysis proteins were precipitated by mixing 60 μL of plasma 

with an equal volume of 0.3 N TCA (containing deuterated internal standards) to a 

final TCA concentration of 0.15 N. The sample was vortexed thoroughly for 30 

seconds, left on ice in the dark for 60 minutes and finally centrifuged at 7,000 x g 

for 10 minutes at 4 °C. The resulting supernatant was transferred to a HPLC vial and 

placed in an autosampler where the samples were kept at 4 °C and protected from 

light.  

2.2.2.2 Determination of B6 vitamers and 4- pyridoxic acid 

LC-MS/MS was performed using a Waters Alliance 2795 LC system linked to a 

triple quadrupole Micro Quattro instrument (MicroMass, Waters, UK). A HS F5 

column (Supelco; 10cm x 2.1 mm; 3 μm) fitted with a HS F5 guard column was 

used with a mobile phase consisting of 100% methanol, 3.7% acetic acid and 3.7% 

acetic acid containing 100 mM HFBA at a flow rate of 0.2 ml/minute. The mobile 

phase gradient table was as shown in Table 4. A 25μL volume of deproteinised 

plasma was injected every 25 minutes. 
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Table 4. Gradient profile of the mobile phase for separation of B6 vitamers in plasma 

using a HSF5 column with HSF5 guard column 

Time 

(minutes) 

100% methanol 

(%) 

3.7% acetic acid 

(%) 

3.7% acetic acid 

& 100 mM HFBA (%) 

Flow rate 

(ml/min) 

0.00 2.5 95.0 2.5 0.2 

2.00 2.5 95.0 2.5 0.2 

10.00 49.5 48.0 2.5 0.2 

15.00 97.5 0.0 2.5 0.2 

17.00 49.5 48.0 2.5 0.2 

20.00 2.5 95.0 2.5 0.2 

25.00 2.5 95.0 2.5 0.2 

 

 B6 vitamers and PA were detected using multiple reaction monitoring mode (MRM) 

with the mass spectrometer operated in positive ion mode for all compounds (Table 

5). All B6 vitamers and PA could be differentiated on the basis of m/z ratio and 

retention time. PLP, PMP and PNP had very similar retention times and parent ions 

that differed by only 1 Da. There was, however, no cross talk between ion pairs 

originating from these two different analytes. 
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Table 5. The mass spectral specification for detection of B6 vitamers in plasma and 

their deuterated internal standards 

 

[All analytes were detected in positive ion mode] 

The linearity, reproducibility and accuracy of this method were fully validated and 

compared to the HPLC method for measurement of PLP described in Section 4.3. 

The full details of LC-MS/MS method development and validation are contained in 

Chapter 4. MassLynx software was used for data acquisition and analysis. 

Analyte 

Retention 

time 

(minutes) 

Precursor 

ion (m/z) 

Product ion 

(m/z) 

Cone 

voltage (V) 

Collision 

energy (V) 

Pyridoxal 9.30 168.2 150.0 12 14 

Pyridoxamine 16.10 169.2 133.9 16 21 

Pyridoxine 11.10 170.2 134.0 19 22 

Pyridoxic 

Acid 
7.60 184.2 148.0 20 23 

Pyridoxal 

phosphate 
3.94 248.1 150.0 27 19 

Pyridoxamine 

phosphate 
3.89 249.1 134.0 19 23 

Pyridoxine 

phosphate 
3.86 250.1 134.0 27 19 

d3 pyridoxal 9.30 171.2 153.0 12 14 

d2 pyridoxine 11.10 172.2 136.0 19 22 

d2 pyridoxic 

acid 
7.60 186.2 150.0 20 23 

d2 pyridoxal 

phosphate 
3.90 250.1 152.0 27 19 
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2.2.2.3 Quantification of B6 vitamers and 4-pyridoxic acid 

Stock solutions of B6 vitamers, 4-pyridoxic acid (PA) and the deuterated internal 

standards were made with purified deionised water and stored at -80°C. They were 

placed on ice and protected from the light during laboratory handling.  

B6 vitamers and PA were quantified in plasma by the addition of a known 

concentration (100 nM) of deuterated internal standard. The same concentration of 

internal standard was used to construct calibration curves with reference vitamers 

(except PNP which was not available) and PA. The amount of PLP and PMP present 

was calculated from the ratio of the signal area for the vitamer to the signal area for 

d2 PLP. Similarly d3 PL was used to calculate the amount of PL and PM present, d2 

PN for PN and d2 PA for PA. PNP was quantitated by determining the ratio of the 

signal from PNP to the signal from deuterated PLP. This was converted to a 

concentration in plasma by using the calibration curve for PLP. If the calibration for 

PNP was identical to that for PLP  this would be the plasma concentration of PNP  

in nmol/L, however we cannot make that assumption and so PNP concentrations are 

expressed in the results as “concentration units”. 

2.2.3 Aromatic L-amino acid decarboxylase (AADC) activity assay in 

plasma 

2.2.3.1 Principle 

AADC activity was measured in plasma by Dr George Allen and Dr Emma Footitt. 

The assay measures the conversion of L-dopa to dopamine by the plasma sample 

and is thus measuring plasma dopa decarboxylase activity. It is based upon the 

method described by Hyland and Clayton (288). The sample is initially incubated 

with the AADC cofactor PLP which is present in excess and the reaction is then 

initiated by addition of the substrate. It is terminated after a defined incubation time 

by protein precipitation. HPLC linked to electrochemical detection (HPLC-ECD) is 

used to quantify the amount of dopamine present which is assumed proportional to 

the amount of dopa decarboxylase activity. 
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2.2.3.2 Method for L-dopa decarboxylation 

50 μL of lithium heparin plasma was incubated with 25 μL 0.7 mM PLP in assay 

buffer (500 mM sodium phosphate pH 7.0, 0.167 mM EDTA and 39 mM 

dithioerythrietol) for 120 minutes at 37°C in a shaking water bath.  

25 μL 20 mM L-dopa in 6 mM HCl was added to the reaction mixture. After gentle 

mixing it was incubated for a further 90 minutes at 37°C in a shaking water bath. 

The reaction was terminated with 250 μL 0.8 M perchloric acid. Samples were 

incubated at room temperature for 10 minutes before centrifugation at 12000 x g for 

5 minutes at 4°C. 

For each plasma sample a ‘substrate blank’ was also prepared and analysed which 

was treated in an identical manner to the patient sample except that L-dopa was not 

added during the incubation. Assay buffer was used instead to ensure the final 

volume was consistent. For each batch a ‘sample blank’ was also prepared and 

analysed in the same manner except that the plasma sample was omitted from the 

reaction and assay buffer was instead used to keep the final volume consistent. 

2.2.3.3 HPLC-ECD for detection of dopamine 

The mobile phase consisted of 50 mM sodium phosphate (pH 3.6), 5 mM 

octanesulphonic acid, 67 μM EDTA, 43 mM orthophosphoric acid, 230 ml/L 

methanol in HPLC grade water. 

HPLC equipment: PU-2080 Plus pump (Jasco (UK) Ltd., Great Dunmow, UK); AS-

2057 Plus autosampler (Jasco); Coulochem III electrochemical detector and 5010 

analytical cell (ESA Analytical Ltd., Aylesbury, UK). The electrochemical detector 

was connected to a computer and data recorded using AZUR Version 4.6 

chromatography data capture and analysis software (Datalys). 

200 μL of each sample was transferred to a vial, loaded onto the autosampler and 

maintained at 4°C. The mobile phase flow rate was 1.2 ml/minute and the column 

temperature was maintained at 25°C. 

50 μL of each sample was injected and then separated on a 250 x 4.6 mm x 5 μm 

HiQSil C18-W column (Kromatekh. Corp. Tokyo, Japan). Dopamine was detected 
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by coulometric detection. The screening electrode (E1) was set to 20 mV to oxidise 

analytes with a low oxidation potential. The optimum voltage of the detector 

electrode (E2) was determined by voltamogram by measuring the peak area of 1000 

nM dopamine at various E2 potentials from 50 mV to 400 mV. A potential of 350 

mV was selected for detection of dopamine. 

Samples were quantified using an external standard of 1000 nM dopamine in 60 mM 

HCl. Calibration curves have been previously constructed which demonstrate 

linearity between current amplitude and dopamine concentration across all 

concentrations from 5 nM to 40000 nM of dopamine (Allen G. Postdoctoral thesis 

UCL; 2011). A quality control (QC) sample was run with each batch of samples to 

ensure method reproducibility. 

2.2.3.4 Data analysis and calculation of enzyme activity 

Dopamine was identified and quantified by the AZUR Version 4.6 software package 

(Datalys) using the following equation: 

Concentration (nM) =  

(sample peak area / external standard peak area) x calibration standard concentration (nM) 

The concentration of dopamine in the substrate and sample blank was subtracted 

from the sample concentration to give the final concentration produced during 

incubation using this equation: 

AADC activity = (final sample concentration (nM) x dilution factor)/ incubation time (min) 

  = (dopamine concentration (nM) x 10) / 90 

The results were expressed as pmol/min/ml plasma. 
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2.2.4 Whole blood serotonin 

2.2.4.1 Principle 

Measurement of whole blood serotonin was undertaken by Dr Iain Hargreaves in the 

Neurometabolic Laboratory, National Hospital for Neurology and Neurosurgery. 

The vast majority of serotonin in whole blood is contained in platelets. Following 

the removal of protein whole blood serotonin was separated using reverse phase 

HPLC with fluorescence detection and quantified by comparison with an internal 

standard. The method is based upon that of Joseph and Lofthouse (289). 

2.4.4.2 Specimen collection, handling and storage 

As serotonin degrades quickly, correct methods of collection, handling and storage 

are critical to achieve valid results.  

For each subject, 2 ml of blood was collected by myself into an EDTA tube which 

contained 5 mg of ascorbic acid (Sigma Alrich, UK) to limit degradation. Following 

collection the tube was gently inverted, snap frozen at the bedside and transported to 

the laboratory in liquid nitrogen. Here it was stored at -70°C until analysis. 

2.4.4.3 HPLC conditions and instrumentation 

The mobile phase was prepared using sodium dihydrogen orthophosphate (0.12M) 

in ultrapure water and methanol. A flow rate of 0.7 ml/minute was employed for 

sample analysis. 

The HPLC equipment used was as follows: Jasco AS-950 intelligent autosampler; 

Jasco PU-950 intelligent pump; HPLC Technology ODS 5μ, 250 x 4.6 mm column; 

Jasco Model FP-920, intelligent fluorescence detector and AZUR data capture 

system or TSP Chromjet SP4400 series integrator. 

Serotonin was detected by fluorescence detection at an excitation wavelength of 294 

nm and emission wavelength 335 nm. 

2.4.4.4 Preparation of working standard  

The working standard was made to a final concentration of 500 nM by dissolving 

10.6 mg of serotonin (Sigma Aldrich, UK) in ultrapure water containing 10 mg of 
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ascorbate. It was kept on ice during laboratory handling and is known to be stable 

under these conditions for 24 hours. For analysis, 200 uL of standard was placed 

into a vial and 50 uL injected on to the HPLC column. 

2.4.4.5 Preparation and analysis of subject samples and quality control (QC) 

As no external quality assurance (QA) scheme exists for this method, an aliquot of 

blood from the previous run was used as a QC sample and was run with each batch 

of subject samples to assess reproducibility of the method. 

To each subject sample and QC, 2.5 ml of ice cold ultrapure water was added to 1 

ml of whole blood and was allowed to stand on ice for 10 minutes. Proteins were 

precipitated by the addition of 1 ml of 10% (w/v) zinc sulphate (Sigma Aldrich, UK) 

and leaving the sample on ice for a further 10 minutes. Following this 0.5 ml 1M 

sodium hydroxide (Sigma Aldrich, UK) was added and the sample allowed to stand 

on ice for a final 10 minutes before centrifugation at 13000 x g for 2 minutes. 

200 μL of the sample supernatant was transferred to a vial and 50 μL injected on to 

the HPLC column. 

2.4.4.6 Quantification of whole blood serotonin in subject samples and QC 

The concentration of serotonin was calculated by relating the peak height in the 

subject sample chromatogram to the peak height in the standard chromatogram 

using the following equation: 

Serotonin concentration = (peak height in sample / peak height in standard) x 

concentration of standard (nmol/L) 

2.2.5 Measurement of 5’-hydroxyindolacetic acid (5-HIAA), homovanillic 

acid (HVA), 5-methyltetrahydrofolate (5-MTHF) and pterins in 

cerebrospinal fluid (CSF) by HPLC 

These metabolites were analysed in the Neurometabolic Laboratory, National 

Hospital for Neurology and Neurosurgery by Marcus Oppenheim. The techniques 

are based on previous published methods. 
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2.2.5.1 Specimen collection 

CSF was frozen at the bedside in liquid nitrogen and stored at -70°C until analysis. 

The first 0.5 ml was collected into a plain tube for measurement of HVA and 5-

HIAA. 5-MTHF and PLP were measured in the second 0.5ml. The final 1 ml was 

collected into a tube containing dithioerthyritol and diethylenetriamine for pterin 

analysis.  

2.2.5.2 Summary of HPLC methodology 

HVA and 5-HIAA were separated and quantified using reverse phase HPLC with 

electrochemical detection. The analytes are oxidised on the second electrode and the 

current generated is used to determine their concentrations. The first electrode is 

used to oxidise other readily oxidisable species in the CSF to minimise the 

background interference from the biological matrix (290;291). 

Pterins were analysed by reverse phase HPLC with fluorescence detection following 

a previously reported procedure (292). Excitation was 350 nm and emission 450 nm 

(293). 

5-Methyltetrahydrofolate was separated and analysed using reverse phase HPLC 

with fluorescence detection; excitation 295 nm and emission 355 nm (294). 

For each metabolite quantification was based upon comparison to a working 

standard or calibrator of known concentration. 

 

 

 

 

 

 

 



107 

 

2.3 MOLECULAR BIOLOGY METHODS 

2.3.1 Extraction of genomic DNA from whole blood and fibroblasts 

2.3.1.1 Principle 

Purification of DNA from whole blood first involves lysing the red blood cells 

(which do not contain DNA) to facilitate their separation from nucleated white blood 

cells. 

DNA is purified from white blood cells contained in the EDTA whole blood sample 

by lysing the cells with an anionic detergent in the presence of a DNA stabiliser. The 

DNA stabiliser works by limiting the activity of DNases that are contained in the 

cell. Contaminating RNA is next removed by treatment with an RNA digesting 

enzyme. Other potential contaminants such as proteins are removed by salt 

precipitation. Finally the genomic DNA is recovered by precipitation with alcohol 

and dissolved in a buffered solution containing a DNA stabiliser. 

2.3.1.2 Method for whole blood and fibroblasts 

300 μL of whole blood that had been collected into EDTA-containing tubes was 

mixed with 900 μL RBC Lysis Solution (Puregene Genomic DNA Purification Kit, 

Minnesota, USA) and incubated for 1 minute at room temperature. During the 

incubation the tube was gently inverted. The sample was then centrifuged for 20 

seconds at 13000 x g and the majority of clear supernatant removed to leave a white 

cell pellet in 20 μL of fluid. The sample was then vortexed for 10 seconds to 

resuspend the cells and 300 μL of Cell Lysis Solution (Puregene) added. 

For cultured fibroblasts the initial stage of red blood cell lysis was omitted and 300 

μL of Cell Lysis solution was first added to the cultured cells which were suspended 

in 20 μL of residual fluid. The following procedure was then applied to both whole 

blood and fibroblast samples. 

1.5 μL of RNase A solution (Puregene) was next added to the lysed cells and 

following gentle inversion the mixture was then incubated in a water bath at 37°C 

for 15 minutes. The sample was then placed on ice to cool quickly and 100 μL 
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Protein Precipitation Solution (Puregene) added. Following this the sample was 

vortexed for 20 seconds and centrifuged at 13000 x g for 1 minute. 

The supernatant containing the DNA was then poured into a clean Eppendorf tube 

which contained 300 μL 100% molecular biology grade isopropanol. The sample 

was inverted gently 50 times before centrifugation at 13000xg for 1 minute. 

The supernatant was poured off leaving the DNA as a white pellet in the tube. It was 

then washed with 300 μL 70% molecular biology grade ethanol and further 

centrifuged at 13000 x g for 1 minute. 

Finally the supernatant was poured off and the DNA resulting from whole blood or 

fibroblast extraction was resuspended in 100 μL and 50 uL DNA Hydration Solution 

(Puregene), respectively. This was incubated at room temperature for 24 hours to 

ensure the DNA sample was completely re-suspended before being stored at -20°C. 

This gave a predicted DNA concentration of 100 μg/ml (whole blood) and 200 

μg/ml (fibroblasts).  

2.3.2 Amplification of genomic DNA of targeted genes by the Polymerase 

Chain Reaction (PCR) 

2.3.2.1 PCR conditions 

All of the reagents and reactions were prepared and carried out under sterile 

conditions in the laboratory. 

A typical PCR reaction was carried out in a total volume of 50 μL in 0.5 ml 

microcentrifuge tubes according to the method described by Saiki et al. (295).  

Each reaction contained 100 ng of genomic DNA, 25 pmol of each sense and 

antisense primer, 5 μL of 10 x NH4 reaction buffer (Bioline Ltd, London, UK), 5 μL 

(0.2 mmol/L) dNTP’s [ dATP, dCTP, dGTP and dTTP] (Bioline Ltd.), variable 

concentration of MgCl2 (1 – 1.5 mmol/L; see later Chapters for detail) and 0.5 μl 

(2.5 units) BioTaq DNA Polymerase (Bioline). For each reaction a negative control 

was prepared containing water instead of template DNA to check for possible 

contamination. All samples were prepared and kept on ice until transferred to the 

PCR machine for amplification. 
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Amplification was carried out on a Veriti 96 Well Therma Cycler (Life 

Technologies, Applied Biosystems, California, USA).  

Typical cycling conditions were 96°C for 5 minutes, followed by 35 cycles of 

amplification in three stages (1) denaturation of the double-stranded DNA for 30 

seconds at 96°C, (2) annealing of primers to the complementary DNA strands at a 

variable temperature for 30 seconds (see later Chapters for detail of individual 

genes) (3) extension of the DNA template copy by the 5’ to 3’ activity of Taq DNA 

polymerase for 30 seconds at 72°C and a final extension at 72°C for 10 minutes to 

ensure that elongation was complete. 

2.3.2.2 Analysis of PCR products by agarose gel electrophoresis 

Materials 

1 X Tris Borate EDTA (TBE) buffer: 45 mM Tris-HCl, 45 mM boric acid and 10 

mM Na2-EDTA, pH 8.0 

Orange loading dye: 2.5 ml dH2O, 2.5 ml glycerol and 0.1 M EDTA, orange dye 

(BDH Prolabo chemicals, UK) 

The PCR products were analysed by agarose gel electrophoresis to determine the 

specificity of amplification and size of the product. A 1% (w/v) agarose gel was 

prepared using 1 gram of agarose (Sigma Aldrich, UK) in 100 ml of 1 x TBE 

containing 1 mg/ml ethidium bromide (Invitrogen, Life Technologies, USA).  The 

gel was poured into a tray containing a comb to create wells and allowed to set at 

room temperature for 20 minutes. It was then placed into an electrophoresis tank 

containing 1x TBE buffer. 

5 μL of the PCR product was mixed with 3 μL of the loading dye and loaded into the 

agarose gel wells. 5 μL of 100 base pair ladder (1 μg/μL) (Invitrogen) was loaded 

into the first lane to use as a marker of product size.  

Electrophoresis was carried out at 80 V for 30 – 45 minutes depending on the size of 

the PCR product. After electrophoresis, the bands on the gel were visualised on an 

ultra-violet (UV) trans-illuminator (Chemi Doc, Bio-Rad, Hemel Hempstead, UK) 

coupled to Quantity One software.  
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The bands from each PCR product were analysed and if a distinct band for each 

DNA template was not produced then the reaction conditions were altered to 

optimise the PCR reaction. The following conditions were changed to optimise the 

reaction: (1) increasing the annealing temperature of the reaction (2) varying the 

MgCl2 concentration.  

2.3.3 Sequencing 

2.3.3.1 Purification of PCR products 

Principle 

DNA generated from the PCR reaction was purified to remove any excess enzyme, 

dNTPs and primers. In particular, Shrimp Alkaline Phosphatase was used to 

hydrolyse excess dNTPs and Exonuclease was used to degrade residual 

oligonucleotide primers. 

Method 

Each 20 μL of PCR product was added to 5 μL of a reaction mix containing 1.5 μL 

dH2O, 1 μL Exonuclease I (New England BioLabs), 2μL Shrimp Alkaline 

Phosphatase and 0.5 μL Shrimp Alkaline Phosphatase dilution buffer (USB 

Products, Affymetrix, Ohio, USA). The mixture was briefly centrifuged then 

incubated on the Veriti 96 Well Therma Cycler at 37°C for 15 minutes, followed by 

80°C for 15 minutes and held at 4°C until it was stored at -20°C. 

2.3.3.2 Sequencing of PCR products using the Sanger method 

Principle 

DNA sequencing of the purified PCR samples was carried out using a method first 

described by Sanger in 1977 for which he was later awarded the Nobel Prize. It is 

also known as the ‘chain termination’ or ‘dideoxy’ method. 

In summary, firstly the DNA is denatured and the two complementary strands are 

separated. The oligonucleotide primer then binds to its complementary template 

sequence and via the action of DNA polymerase, free nucleotides are incorporated 

to form a new DNA strand. The enzyme continues to extend until it randomly 
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incorporates a fluorescently labelled dideoxynucleotide. Each of the four 

fluorescently labelled dideoxynucleotides is tagged with a different fluorescent dye. 

As these are chemically altered, the chain elongation is terminated and the DNA 

polymerase enzyme is removed from the DNA strand. This process is repeated many 

times over resulting in DNA strands of differing lengths each of which finish with a 

labelled base.  

In order to sort the DNA fragments by size and read the labelled bases, the reaction 

plate is loaded into a sequencing machine where each sample is transferred into a 

glass capillary and run in a gel based system. Negatively charged DNA of differing 

fragment lengths move at different speeds through the gel and can, thus can be 

sorted by size. Finally the fluorescent tag is excited by a laser and identified as one 

of four bases which is then represented by a coloured peak. By alignment of the 

fragments from shortest to longest the DNA sequence can be determined.   

The peaks corresponding to the bases in the sequence of the patient samples can then 

be compared to the normal sequence data for each exon to detect base alterations.  

Method 

3 μL of each cleaned PCR product was mixed with 0.5 μL Big Dye version 1.1 

(Applied Biosystems, UK) which was kept on ice during laboratory handling; 1.5 μL 

sequencing buffer (Applied Biosystems); and 1 μL (5 pmol/μL) of sense or antisense 

primer, made up to 10 μL with 4 μL of ultrapure water.  

The samples then underwent a PCR reaction on the Veriti 96 Well Therma Cycler 

under the following conditions: 95°C for 2 minutes (1 cycle); followed by 35 cycles 

of 95°C for 20 seconds; 50°C for 10 seconds and 60°C for 3 minutes. The samples 

were then stored at -20°C until further processing. 

2.3.3.3 DNA precipitation of sequencing reaction 

Principle 

Ethanol precipitation effectively removes DNA from an aqueous solution in the 

presence of positive ions such as Na
+
. 
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Method 

2 μL 3M molecular biology grade sodium acetate and 50 μL of 100% molecular 

biology grade ethanol were added to each PCR product and left to stand at room 

temperature for 20 minutes after vortexing. Following this the samples were 

centrifuged at 12000 x g for 40 minutes. The supernatant was discarded and 50 μL 

of 70% molecular biology grade ethanol added to each sample to wash. The samples 

were centrifuged at 12000 x g for 10 minutes and the supernatant again removed. 

Finally the samples were centrifuged at a low speed (1000 x g) upside down on 

tissue paper to remove any residual sample before each DNA sample was re-

suspended in 10 μL of a one in ten dilution of Tris EDTA (TE) Buffer (Promega, 

Madison, USA).  

Samples were then sequenced at York House, Great Ormond Street Hospital, UK on 

an ABI Sequencer. 
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3.1 INTRODUCTION 

Analysis of metabolites in CSF has become an essential part of the investigation of 

children with neurometabolic disease. In infants with symptoms suggestive of 

deficient central dopaminergic neurotransmission (severe trunkal hypotonia, 

choreiform movements of the limbs, occulogyric crises) the analysis of 

neurotransmitter amine metabolites [homovanillic acid (HVA) and 5-hydroxyindole-

acetic acid (5-HIAA)] is important in the diagnostic work up. Measurement of HVA, 

5-HIAA, 3-methoxytyrosine (3-MT), neopterin, tetrahydrobiopterin (BH4) and 

dihydrobiopterin can indicate a diagnosis of BH4 synthesis or recycling, tyrosine 

hydroxylase deficiency or aromatic amino acid decarboxylase (AADC) deficiency. 

CSF amine metabolite analysis may also be helpful in pointing to a diagnosis of 

PNPO deficiency or antiquitin deficiency in infants with epileptic encephalopathy. 

The additional measurement of CSF 5-methyltetrahydrofolate (5-MTHF) can lead to 

the identification of patients with primary central folate deficiency due to mutations 

in the gene encoding the folate receptor alpha (296) and to secondary folate 

deficiency in some patients with mitochondrial disorders (297) and Rett syndrome 

(298). 

It is now a logical extension of the investigation of children with a seizure disorder 

to include measurement of CSF PLP. It was recently shown that pyridox(am)ine 5- 

phosphate oxidase (PNPO) deficiency can lead to low levels of PLP in the CSF as 

well as changes in the CSF suggesting the following effects on neurotransmitter 

metabolism: reduced synthesis of dopamine (low CSF homovanillic acid [HVA], 

increased CSF 3-methoxytyrosine), reduced synthesis of serotonin (low CSF 5-

hydroxyindole-acetic acid [5HIAA]) and reduced metabolism of glycine and 

threonine (raised CSF glycine and threonine) (123;124). The principal clinical 

consequence of PNPO deficiency is a severe epileptic encephalopathy in infancy 

and a low CSF PLP concentration may prove to be the most consistent marker of 

this disorder for which specific treatment (administration of PLP) can be extremely 

effective (123). 

PNPO deficiency is not the only cause of a low CSF PLP concentration; it has also 

been documented in pyridoxine dependent epilepsy (99), including cases due to 
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mutations in the ALDH7A1 gene encoding antiquitin (113).  PLP deficiency can also 

occur as a result of attack by other endogenous nucleophiles such as ∆
1
-pyrroline-5-

carboxylate in hyperprolinaemia type II, and exogenous nucleophiles such as 

isoniazid and penicillamine. Other potential mechanisms leading to the reduction of 

PLP levels in plasma and CSF include drugs that modify PLP metabolism and 

dietary B6 deficiency (1). In experimental animals, knockout of genes involved in 

the regulation of pyridoxal kinase have been shown to result in low brain PLP and 

defective synthesis of dopamine (41).  

Current understanding of factors affecting CSF PLP is limited and several important 

questions remain unanswered. Specifically, do any of the following affect PLP 

concentration in CSF: seizures per se, anticonvulsants, and cessation of normal 

feeding in an infant with a severe seizure disorder?  Furthermore, in view of the fact 

that L-Dopa containing preparations are widely used in children with 

neurotransmitter disorders, the influence of this drug on CSF PLP status needs to be 

considered.  Finally, it is known that CSF PLP concentrations are age-dependent 

(95) so analysis must also bear this in mind. This retrospective review of CSF 

investigation results addresses these considerations. 
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3.2 METHODS 

3.2.1 Patients and sample collection 

This study included 256 CSF samples from 248 patients sent over a 1 year period to 

the Neurometabolic Unit Laboratory, National Hospital for Neurology & 

Neurosurgery, Queen Square, London from various UK hospitals.  

CSF samples were frozen in liquid nitrogen at the bedside according to standard 

written instructions and a proforma for clinical information and drug history was 

completed by the local physician at the time of sampling and returned with the CSF 

sample. The request form for CSF collection is shown in Figure 10. 
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CSF Monoamine Metabolites, 5-Methyltetrahydrofolate, Pterins & PLP 

To be filled in by requesting clinician/laboratory  

NEVER MIX SAMPLES FROM DIFFERENT PATIENTS IN THE SAME LIQUID NITROGEN 

FLASK  

STORE UNUSED SAMPLE TUBES AT 4 °C  

 

Surname:      Hospital:  

Forename:      Hospital No:  

Sex: M / F      Specimen date & Time:  

DOB:       Consultant:  

ClinicalDetails: ......................................................................................................................  

Drugtherapy: .........................................................................................................................  

 

PLEASE NOTE the above details are essential to allow for the accurate interpretation of results.  

Collection Instructions  

�

details such as surname, first name, date of birth, hospital number, and specimen date.  

� Tube 1 for HVA and 5HIAA 

measurements.  

� Tube 2 for 5MTHF and PLP 

determination.  

�The next 1ml of lumbar CSF should be collected into Tube 3 which contains 1mg of each 

preservative (DTE & DETAPAC), for pterin (neopterin, dihydrobiopterin and tetrahydro-biopterin) 

analysis.  

� t (ESSENTIAL)………………..  

 

ALL CSF samples must be frozen at the bedside on dry ice or liquid nitrogen and transported to the 

laboratory frozen 

 

Figure 10. Neurometabolic Unit, National Hospital for Neurology and Neurosurgery 

request form for collection of CSF neurotransmitters 
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3.2.2 Biochemical Analysis  

Neurotransmitter amine metabolites, pterins and 5-MTHF were analysed as 

described in Section 2.2.5 (Materials and Methods) (291;293). CSF samples 

underwent only one freeze-thaw episode and blood-stained samples were excluded.  

CSF PLP concentration was analysed in the second 0.5ml CSF sample by a 

commercially available kit for PLP determination (Chromsystems, Munich, 

Germany) using  HPLC with fluorescence detection  as described in Section 2.2.5.  

3.2.3 Molecular Genetic Analysis - Sequencing of the sulphite oxidase 

gene (SUOX, ENSG00000139531) 

Three patients with a seizure disorder associated with positive urinary sulphite 

(measured on urinary dipstick) / sulphocysteine (measured by ion exchange 

analysis) and CSF analysis suggestive of pyridoxal phosphate deficiency were 

investigated for possible sulphite oxidase deficiency.  DNA extracted from whole 

blood was available for two patients and DNA was extracted from skin fibroblasts 

for one patient (Puregene Genomic DNA Purification Kit) as described in Section 

2.3.1. 

Polymerase chain reaction (PCR) primers were designed using the Primer3 design 

website (http://frodo.wi.mit.edu/) based on SUOX transcript ENST00000394109. 

The 3 coding exons and exon/intron boundaries of the SUOX gene were amplified 

using the intronic primers detailed in Table 6. Four pairs of overlapping primers 

were used to cover Exon 3. 

A typical PCR reaction is as described in Section 2.3.2. 

 

 

 

 

 

http://frodo.wi.mit.edu/
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Table 6. Primers and PCR conditions required for the amplification of the human 

sulphite oxidase gene (SUOX) 

 

 

Primers 

Product 

size 

(bp) 

MgCl2 

conc 

(mmol/l) 

Annealing 

temperature 

(°C) 

Exon 1 

 

S:5’-TTCACAAACCCAAGGCATTT-3’ 

A/S: 5’-CTGTCCTCCCTGGACACACT-3’ 

676 1.5 55 

Exon 2 

 

S:5’ AGATCCCACTTTTCCCACCT 3’ 

A/S:5’ TGGCTCACTGCAGACTTAGC 3’ 

581 1.5 55 

Exon 3* 

(i) 

S:5’ GACAGGGCTTCTCCATGTTG 3’ 

A/S:5’ TTCCGGGTGAAGAAGATAGG 3’ 

596 1.5 61 

Exon 3* 

(ii) 

S:5’ ACCGTGGAGACCTCTGACC 3’ 

A/S:5’ GGTCTGAGTCCAGTCCCTCA 3’ 

469 1.5 59 

Exon 3* 

(iii) 

 

S:5’AGTGGAGAACAGGAGCCATC 3’ 

A/S:5’ TGTTCCTCTCCATCCAGCTT 3’ 

595 1.5 59 

Exon 3* 

(iv) 

 

S:5’CCATCTGTGGACTGGGAGAC 3’ 

A/S:5’GTCCTTGGGTGAAATGTGCT 3’ 

575 1.5 59 

S – sense primer, A/S – antisense primer; conc. – concentration * Exon 3 was covered by 

four overlapping primer pairs 

 

3.2.4 Statistical Analysis  

Graphical representation and Kolmogorov-Smirnov tests were used to determine if 

data were normally distributed. Appropriate parametric (Student’s t-test) and non-

parametric (Spearman’s coefficient; Mann-Whitney U; multivariate analysis) tests 

were then used to compare groups (seizures versus seizure free; anti-epileptic drug 
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(AED) versus no AED; L-dopa versus no L-dopa) and to investigate correlations 

(CSF PLP and age; CSF PLP and 5-MTHF; CSF PLP and BH4). Results were 

compared to the previously established age reference ranges (299) and a modified 

age-dependent normal range was established. 

3.2.5 Survey of Patients with Low CSF PLP 

The modified age-dependent reference range was used to identify patients 

investigated outside the one year period of retrospective review, who had a low CSF 

PLP concentration. The clinical and biochemical details of these patients were then 

reviewed to identify the cause of low PLP. 

3.3 RESULTS 

CSF PLP and neurotransmitter metabolites (HVA, 5-HIAA, neopterin, BH4 and 5-

MTHF) were analysed in 256 samples from 248 patients; age range 2 days – 51 

years (mean 4 years 11 months, median 1 year 10 months) (Table 7).  

Patients underwent lumbar puncture for a variety of clinical presentations with 

seizures and movement disorders being the most common indications. Overall CSF 

PLP was reduced below the previously established UK reference range in 125 (49%) 

of samples (Table 7) suggesting that the reference ranges may need revision. 
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Table 7. Characteristics of the cohort in which CSF PLP was measured and of the sub 

group in which CSF PLP is reduced below current UK age related reference ranges 

 

CSF PLP 

measurement 

CSF PLP reduced below 

current UK age related 

reference range 

NUMBER SAMPLES 

Total 

 

256 

 

125 

<3 months 

(44-89 nmol/L)* 

 

45 

 

25 

4 months – 2 years 

(23-87 nmol/L)* 

 

79 

 

17 

>2 years 

(25 –40 nmol/L)* 

 

132 

 

83 

Number of patients 248 120 

Gender 
152 M 

96 F 

85 M 

35 F 

Mean age (range) 4y 11m (2d -51y) 6y 9m (2d – 51y) 

Clinical history available 246 116 

Drug history available 162 75 

SEIZURES 

Total 
116 55 

MOVEMENT DISORDER 

Total 
72 41 

*Age dependent reference range shown in italics in parentheses; M – male; F – female; y – 

years; m – months; d-days 
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3.3.1 Effect of Age 

In keeping with previous reports (95), a negative correlation of CSF PLP with age is 

observed (r= - 0.51; p< 0.0001) (Figure 11) and based on this previous UK reference 

ranges have been established according to age (95). 
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Figure 11. Correlation of CSF PLP with age for all cases <16 years of age where a drug 

history was available 

Patients on B6 supplementation and where an inborn error of B6 metabolism had been 

diagnosed were excluded (r= -0.51, p<0.0001) 
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Our data were compared to current UK and Spanish reference ranges that had been 

previously published (95). The following were excluded from the analysis; i) cases 

on supplemental vitamin B6, ii) cases where no drug history was available, iii) cases 

with an inborn error in metabolism known to affect CSF PLP, and iv) three patients 

described below (iv, v and vi), one whose seizures responded to PLP 

supplementation and two who had abnormal amine metabolites (Table 9).  

When analysed in four age groups [< 30 days (A), 1 – 12 months (B), 1 – 3 years 

(C), >3years (D)] the data from this study were very similar to the Spanish data 

across three age groups (Groups B, C & D) (Table 8 and Figure 12). However with 

the larger numbers in Groups B, C and D in this study, a slightly greater standard 

deviation was seen. A statistically significant difference was seen between Group B 

& C (p=0.004) and Group C & D (p=0.04). In the youngest age group (Group A) the 

group mean, median and lower limit observed in this study were lower than the 

Spanish data. 

Table 8. Statistics by age group of CSF PLP concentration for all cases. 

 

CSF PLP 

(nmol/L) 

Group A 

0-30 days 

Group B 

1 – 12 

months 

Group C 

1 – 2 years 

Group D 

>3 years 

 

Data from 

current study 

n = 7 

Range 

26 - 69 

Mean (sd) 

42.3 (14.3) 

n = 37 

Range 

10 - 136 

Mean (sd) 

42.8 (24.7) 

n = 28 

Range 

8 - 86 

Mean (sd) 

28.8 (15.9) 

n = 49 

Range 

8 - 41 

Mean (sd) 

22.0     (8.0) 

 

Data taken 

from 

Ormazabal et 

al. 2008 

n = 7 

Range 

32 – 78 

Mean (sd) 

51.5 (16.6) 

n = 16 

Range 

24 – 87 

Mean (sd) 

43.1 (19.3) 

n = 18 

Range 

14 – 59 

Mean (sd) 

30.5 (11.1) 

n = 39 

Range 

11 – 40 

Mean (sd) 

20.7   (6.9) 

Comparison is made with Barcelona data from Ormazabal et al. (95) 
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Table 9. Cases < 30 days of age with low CSF PLP who were excluded from analysis 

for calculation of reference range 

Case 

number 

CSF 

PLP 

(nmol/L) 

Age 

(days) 
Clinical details 

Monoamine 

neurotransmitter 

and other 

diagnostic 

information 

Medications; 

nutrition (where 

known) 

i 4 14 
Antiquitin 

deficiency 

Grossly elevated 

3-MT and 

urinary α-AASA 

Phenobarbitone. 

Expressed breast 

milk & formula 

fed. 

ii 5 12 
MoCoF 

deficiency 

Reduced HVA & 

5HIAA. 

Phenobarbitone, 

phenytoin, PLP, 

calcium folinate, 

biotin. 

Expressed breast 

milk 

iii 9 2 
Antiquitin 

deficiency 

Grossly elevated 

3-MT and 

urinary α-AASA 

Phenobarbitone. 

iv 9 21 
PLP responsive 

seizures 

Normal 

monoamines. 

Urinary α-AASA 

negative. PNPO 

no mutations. 

Phenobarbitone. 

Breast fed; 

feeding 

difficulties 

v 9 21 

Hypertonia, 

hyper-reflexia. 

Subsequent 

good 

developmental 

progress 

Increased HVA 

& 5HIAA. 

Normal ratio. 

Domperidone, 

ranitidine. 

Regular feeds 

Formula fed. 

vi 10 20 

Hypertonia, 

abnormal 

movements 

Increased HVA 

& 5HIAA. 

Normal ratio. 

Clobazam 
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Following analysis of these larger numbers from our centre, a revision of the age 

dependent reference ranges was instituted for the four age groups:-  

 

      AGE GROUP       CSF PLP (nmol/L) 

A. Under 30 days   26 - 69 

B. 30 days  – 12 months   14 – 92 

C. 1 – 3 years    11- 64 

D.  > 3years    10 – 37 

 

For Groups B, C and D the lower and upper reference limit represent the 2.5
th

 and 

97.5
th

 percentile respectively.  For Group A an observed reference range is used due 

to smaller sample size (Table 8 & Figure 12).  
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Figure 12. Distribution of CSF PLP by age group  

There is no statistical difference between Groups A & B. A significant difference is seen 

between Groups B & C (p=0.004) and Groups C & D (p=0.04); ns = not significant. 

 

In Group A six patients were excluded from the reference group analysis, details are 

listed in Table 9. Patients i) and iii) had antiquitin deficiency. Patient ii) had 

molybdenum cofactor deficiency with persistently elevated levels of sulphite in the 

urine; sulphite is one of the nucleophiles known to be able to react with PLP (300) 

(Figure 13). The remaining cases, (iv) – (vi), were not typical of previously 

described inborn errors of vitamin B6 metabolism, however, case (iv) had a seizure 

disorder responsive to PLP and cases (v) & (vi) have very similar clinical and 

biochemical phenotypes which could be related to abnormal vitamin B6 and 

neurotransmitter amine metabolism.  

Of note, the three cases shown to have inborn errors of metabolism [(i), (ii) and (iii)] 

had the lowest values of CSF PLP in this age group as shown in Table 9. 

 

A. B. C. D. 



127 

 

 

 

H3C

HO

HC

CH2OPO3  2-

SO3 
-HO

HSO3 
-

H+H3C

HO

HC

O

CH2OPO3  2-

H3C

HO

HC

CH2OPO3  2-

SO3 
-HO

HSO3 
-

H+H3C

HO

HC

O

CH2OPO3  2-

 

 

Figure 13. Formation of addition compound between PLP and sulphite rendering PLP 

inactive as a cofactor 

 

3.3.2 Effect of seizures, anti-epileptic drugs (AED) and L-Dopa 

All cases (excluding those receiving B6 supplementation, those with confirmed 

inborn errors of B6 metabolism and those in whom a drug history was not available) 

were statistically compared by age group for various factors which may theoretically 

affect CSF PLP concentration using Student t-test or Mann Whitney U (depending 

upon data distribution).  

No statistical difference was observed for any age group between cases with and 

without seizures and cases receiving and not receiving anti-epileptic medication 

(Figure 14). Although statistical significance is not achieved (in part due to small 

numbers) a trend towards a reduced CSF PLP concentration is seen in patients 

prescribed L-Dopa in this series. 2 out of 12 patients referred over the 1 year period 

on L-dopa therapy who had CSF PLP levels which fell below the revised reference 

range compared to 6 out of 201 not receiving L-dopa. 

 

 

 

Pyridoxal 5’-phosphate Pyridoxal 5’-phosphate                

addition compound 
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Figure 14. Comparison of CSF PLP by age group in children with and without seizures 

(Graph A) and in those receiving and not receiving antiepileptic drugs (AED) (Graph 

B). No significant difference is observed for any age group 

A 

B 
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3.3.3 Relationship between PLP and 5-MTHF in CSF 

Figure 15 illustrates a positive correlation between CSF PLP concentration and 5-

methyltetrahydrofolate (5-MTHF). This correlation remained significant (r
2
= 0.167, 

p=0.002) even after adjusting for the effect of age.  
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Figure 15. Positive correlation of CSF PLP and 5-MTHF in all cases where a drug 

history was available, excluding cases taking vitamin B6 supplementation 
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3.3.4 Relationship between PLP and BH4 in CSF 

Figure 16 illustrates a positive correlation between CSF PLP concentration and 

tetrahydrobiopterin (BH4). This correlation remained significant (r
2
=0.193, p=0.023) 

even after adjusting for the effect of age.  
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Figure 16. Correlation of CSF PLP and tetrahydrobiopterin (BH4) in all cases where a 

drug history was available, excluding cases taking vitamin B6 supplementation  
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3.3.5 Survey of patients with CSF PLP below the revised lower reference 

limit  

The survey identified a further patient with molybdenum cofactor deficiency who 

had a low CSF PLP concentration. In addition three patients with an undiagnosed 

seizure disorder presented with positive urinary sulphite or sulphocysteine with 

normal plasma urate and urine purine analysis, initially suggestive of isolated 

sulphite oxidase deficiency (Table 10). Of particular note in these patients was the 

fluctuation over time of sulphite and sulphocysteine excretion. These patients had 

normal urinary α-amino-adipic semialdehyde (α-AASA) excluding ALDH7A1 

deficiency; PNPO gene mutation analysis excluded PNPO deficiency in all patients. 
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Table 10. Clinical and biochemical details of two patients with genetically confirmed 

molybdenum cofactor deficiency (P1 & P2) and three patients with an undiagnosed 

seizure disorder who have a similar biochemical picture (P3, P4 & P5)  

 

MoCoF Deficiency  
Undiagnosed 

patients 
 

P1 P2 P3 P4 P5 

AGE 

ETHNICITY 

CLINICAL 

1 mo 

# 

Neonatal 

onset 

severe 

seizure 

disorder 

3 mo 

# 

Neonatal 

onset 

severe 

seizure 

disorder 

7 mo 

Arab 

Severe 

seizure 

disorder; 

infantile 

onset with 

dystonia and 

development 

arrest 

10y 6mo 

Jewish Israeli 

Severe epileptic 

encephalopathy 

onset at 10y 

5mo; resistant to 

multiple 

anticonvulsant 

medications, 

requiring 

Thiopentone 

infusion 

3 weeks 

Caucasian 

Neonatal onset 

seizure disorder; 

partially 

responsive to 

phenobarbitone, 

good response 

to pyridoxal 

phosphate 

 

CSF PLP 

(age dependent) 

 

5 

 

9 

 

# 

 

122 

(on supplement) 

 

9 

CSF HVA 

(324-1098) 
120 69 104 26 974 

CSF 5-HIAA 

(199-608) 
20 219 315 78 429 

CSF BH4 

(27 – 105) 
# 20 22 7 33 

Urine 

sulphite/sulphocysteine 
+ + + + + 

Plasma urate ↓ ↓ N N N 

Taurine ↑ ↑ ↑ ↑ ↑ 

Medications received 

potentially containing 

sulphites 

 

# 

 

# 

 

Amikacin 

Morphine 

Dexamethasone 

 

Phenobarbitone 

mo – months; y- years; MoCoF – molybdenum cofactor; reference range shown in italics in 

parentheses +; metabolite present; # not measured/not known; ↑ increased above upper 

reference limit; ↓ - below reference limit; N - within normal range. Numbers outside the 

normal range are shown in bold. [Note P1 and P5 are previously reported as (ii) and (iv) 

respectively in Table 9] 
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Although atypical in clinical presentation, a primary disorder of sulphite oxidase 

deficiency was an important differential diagnosis in these patients (P3, P4 & P5). 

Sequence analysis of the SUOX gene revealed two single nucleotide changes present 

in all three patients and these were compared to genetic databases. The first is a 

heterozygous base change C/T within Exon 3 of the SUOX gene (Figure 17), i.e. 

c.801C>T; p.Asn266Asn. It has not been reported previously and leads to 

synonymous change [AAC → AAT; Asparagine (N) → Asparagine (N)] and 

therefore is not expected to affect enzyme activity. This change was not predicted to 

create an alternative splice site according to a splice site predictor tool 

(www.fruitfly.org). 

 

 

 

Figure 17. A novel heterozygous single nucleotide change (C/T) in Exon 3 of the SOUX 

gene in patients P3, P4 & P5 and not in control DNA 
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The second sequence variation detected was a homozygous change which has been 

reported previously to be a single nucleotide polymorphism (SNP) [rs773115] in the 

Ensembl database (www.ensembl.org), c.801C>T; p.Asn266Asn. It is present as 

cytosine (C) in all patients and results in a synonymous change [TCG → TCC; 

Serine (S) → Serine (S)] (Figure 18). Information from the ‘1000 genomes’ project 

suggests that this is the most common variant seen in European (CEU) and Chinese 

and Japanese (CHB JPT) populations where it is present in >90% of individuals. In 

the Nigerian population (YRI) it is evident in only 26%. No information is available 

for Middle Eastern and Jewish Israeli populations. 

 

 

 

Figure 18. A homozygous single nucleotide polymorphism rs773115 (G/C/T) in Exon 3 

of the SOUX gene in patients P3, P4 & P5 and not in control DNA 
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3.3.6 Plasma: CSF PLP ratio 

Two neonates with CSF PLP reduced below the lower reference limit had normal or 

elevated plasma PLP resulting in an elevated plasma: CSF ratio (8.2 and 55). These 

cases share a similar phenotype of a neonatal seizure disorder responsive to 

treatment with B6 (pyridoxine or PLP). Neonatal hypophosphatasia, antiquitin and 

PNPO deficiency were excluded. Over the 1 year period of study, CSF and plasma 

samples were taken simultaneously in 14 patients to measure PLP in our laboratory. 

Five cases were excluded as they were taking B6 medication or because a 

medication history was not available (Table 11). The plasma: CSF PLP ratio ranges 

from 0.77 – 4.35; age range 21 days to 18.7 years (Table 11). 

Table 11.  Plasma: CSF pyridoxal 5’-phosphate ratios measured over the 1 year study 

period in patients who are not taking B6 medication 

Clinical features 

Plasma pyridoxal 

phosphate (nmol/l) 

[Reference range         

15 – 73] 

CSF pyridoxal 

phosphate (nmol/l)    

 

Ratio 

Truncus arteriosus, seizures 

and dystonia 
49 64 0.77 

Refractory epilepsy. 

Developmental delay 
20 20 1.00 

Seizures 12 9 1.30 

Seizure disorder 72 26 2.70 

Epilepsy, developmental 

delay 
46 16 2.80 

Tics, learning disability, 

progressive myelopathy 
54 18 3.00 

Neonatal seizure disorder 94 26 3.60 

Developmental regression, 

irritable 
291 71 4.09 

Developmental delay, 

progressive dystonia and short 

stature 

87 20 4.35 
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3.4 DISCUSSION 

Measurement of PLP concentration in CSF increasingly forms part of the work up 

for children with complex neurological disease. However there remains much to be 

learned about the concentration of CSF PLP in healthy children and adults and how 

this is influenced by disease processes and medications. Practical factors which may 

affect CSF PLP concentration should also be considered. For example, vitamin B6 is 

a photosensitive compound which will degrade with light exposure therefore 

samples for PLP measurement should be protected from UV light. In addition PLP is 

stable when stored at -80°C but may degrade at higher temperatures and on repeat 

freeze-thawing (301).  

In this survey we have reviewed CSF PLP concentration in a large number of cases 

and examined the effect of age, seizures and various medications. Given the 

retrospective nature of this review, some shortfalls exist due to incomplete clinical 

and medication history. This places limitations upon the conclusions which may be 

drawn, however this is a relatively large series for which methods of analysis were 

standardised and samples processed within a single laboratory. 

The first observation in this series is the large number of cases in whom CSF PLP 

concentration fell below the previously proposed UK age related reference range. 

New reference intervals have therefore been calculated based on current data (which 

represents a larger patient cohort than those reported previously), supported by 

clinical information. To the best of current knowledge, children in whom reduced 

CSF PLP suggests a specific diagnosis such as PNPO deficiency or antiquitin 

deficiency, present with seizures in the early neonatal period (under 30 days). New 

lower reference limits of CSF PLP concentration for Group A (26 nmol/L) are 

considered sensitive enough to detect such diagnoses, as evidenced by the cases in 

this series and those reported previously in the literature (95;113). In addition these 

particular inborn errors of metabolism are often associated with characteristic CSF 

neurotransmitter and amino acid profiles which aid diagnosis.  

A wide range for CSF PLP concentration is seen in infants aged 1 - 12 months 

(Group B). It is likely that this accurately reflects infants in this age group who 

require lumbar puncture for the investigation of neurological problems. The group is 
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likely to include some infants receiving breast milk only, some receiving formula 

only and some milk plus solids, therefore B6 intake may vary considerably which 

could explain the variation. Additionally, some infants could not be fed at all at the 

time of the lumbar puncture because of intractable seizures for example. 

3.4.1 Epilepsy/seizure disorders  

Although CSF PLP concentrations in idiopathic epilepsy have not been reported 

previously, CSF neurotransmitter profiles have been studied with inconsistent 

conclusions. Duarte et al. (302) prospectively studied CSF pterins and 

neurotransmitters alongside clinical, EEG and MRI data in 23 infants with severe 

epileptic encephalopathies. No consistent pattern of abnormality was observed, 

however elevated neopterin (implying an inflammatory process) in four patients was 

found to correlate with a poor prognosis. Echenne et al. (303) did not demonstrate 

any dysfunction in the main neurotransmitter pathways in an older cohort of 37 

children on a variety of AED.  

When inborn errors causing seizure disorders known to affect PLP concentrations 

were excluded, statistical analysis of our data suggested that the presence of a 

seizure disorder does not influence CSF PLP concentration. By the nature of this 

review however it was not possible to look at idiopathic epilepsies individually, 

although this may be interesting to pursue.  

3.4.2 Medications 

3.4.2.1 Antiepileptic drugs (AED) 

Most children with a seizure disorder are prescribed AED and it is known that 

several AED can cause low plasma PLP [(158;304;305) and Section 1.1.14.4]. 

Hence theoretically AED may also reduce CSF PLP. In this series however, a 

comparison of children taking AED to those who are not, revealed no significant 

difference in CSF PLP concentrations (Figure 14). This review is limited in that it 

was not possible to examine the potential effect of individual AED (too few patients 

are on single agents) and this may be relevant as mechanisms of PLP reduction are 

only proposed for certain agents.  
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Several AED (phenytoin, phenobarbitone, carbamazepine and primidone) are potent 

hepatic inducers of cytochrome P450 and other enzyme systems. For these 

medications it is possible that induction of enzymes involved in the catabolism of 

PLP leads to reduced plasma PLP concentrations. Many new AED are not hepatic 

enzyme inducers however and little evidence exists regarding their effect upon PLP 

in long term treatment. 

3.4.2.2 L-DOPA  

PLP forms a Schiff base complex (tetrahydroisoquinoline compound) with L-dopa 

rendering both L-dopa and PLP functionally inactive (Figure 20) [(147;306) and 

Section 1.1.14.2]. Reduced plasma PLP has been reported in patients with 

Parkinson’s disease (149) and it may be considered that vitamin B6 supplementation 

during L-dopa treatment is necessary in a variety of patient groups (Parkinson’s 

disease, disorders of pterin synthesis and regeneration and tyrosine hydroxylase 

deficiency) to prevent secondary AADC deficiency resulting from depletion of its 

cofactor PLP (307). 

Although no statistical difference in CSF PLP is demonstrated, cases on L-Dopa in 

this series do show a trend to lower CSF PLP concentrations and clinicians should 

be aware of the potential for B6 deficiency in patients treated with L-dopa. 
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                                     Figure 19. Sulphite reactivity with Quinonoid Dihydrobiopterin                  

                    

  

Figure 20. Formation of an addition compound between pyridoxal phosphate (PLP) and L-dopa rendering both compounds functionally inactive 
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3.4.3 Correlation between CSF concentrations of PLP and 5-MTHF 

Statistical analysis showed a correlation between the CSF concentration of PLP and 

that of 5-MTHF across the whole patient series, after adjusting for the effect of age. 

There are a number of possible causes for this correlation. It could reflect nutritional 

intake; a diet low in folate is likely to also be lacking in B6. Many children with 

neurological disorders have feeding difficulties and therefore their intake of both 

vitamins may be suboptimal. However, it is also possible that the link is caused by 

nucleophile and/or free radical stress. It is the reaction between PLP and nucleophiles 

that leads to the low CSF PLP in antiquitin deficiency, hyperprolinaemia type II and, 

probably, in molybdenum cofactor deficiency. Folate species can also be attacked by 

nucleophiles including sulphite (308). PLP and 5-MTHF can also both be attacked by 

oxygen-derived free radicals (7;309). As the concentrations of alternative free radical 

scavengers in CSF are relatively low this raises the question of whether nucleophile 

and / or free radical stress could be implicated in a wide range of neurological 

disorders of childhood. 

3.4.4 Correlation between CSF concentrations of PLP and 

tetrahydrobiopterin (BH4) 

Similar to the correlation described above, a correlation between CSF PLP and BH4 

concentration was observed across the whole series. These parallel changes may 

reflect the property of both molecules to act as antioxidants and free radical 

scavengers as observed in inflammatory disease such as rheumatoid arthritis (310-

313). 

Some cases in this series have CSF PLP reduced below the revised age related 

reference range in the absence of a clear contributing diagnosis. In the following 

section several hypotheses are considered. 

3.4.5 CSF PLP in disorders of sulphite accumulation  

Alternative mechanisms of PLP reduction in the CSF may involve inactivation of the 

cofactor by interaction with other molecules, analogous to that described in antiquitin 

deficiency (1). CSF analysis in two genetically diagnosed patients with molybdenum 

cofactor (MoCoF) deficiency showed reduced PLP, tetrahydrobiopterin (BH4) and 
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monoamine metabolites (Table 10) suggestive of a mechanism of sulphite toxicity 

which may lead to CSF PLP inactivation and explain some aspects of the 

neurological phenotype. 

Molybdenum is an essential cofactor for 3 enzymes in man; xanthine dehydrogenase 

(E.C.1.2.1.37), sulphite oxidase (E.C.1.8.2.1) and aldehyde oxidase (E.C.1.2.3.1). 

Patients with MoCoF deficiency are deficient in the activity of all three enzymes. 

The clinical phenotype is characterised by a severe seizure disorder with neonatal 

onset, dystonia and developmental delay often resulting in death in early childhood.  

Sulphite oxidase deficiency produces an identical clinical phenotype and this enzyme 

catalyses the final step in the catabolism of sulphur containing amino acids by 

oxidising sulphite to sulphate (Figure 21).  

 

 

 

 

 

 

 

Figure 21. Catabolic pathway of cysteine to sulphate illustrating the action of sulphite 

oxidase 

A genetic deficiency of sulphite oxidase results in multiple biochemical 

abnormalities including elevated sulphite, S-sulphocysteine, thiosulphate and taurine 

and reduced production of sulphate. MoCoF deficiency shares identical biochemical 

abnormalities but, in addition, due to dysfunction of xanthine oxidase, plasma urate 

is reduced and there is an increased excretion of xanthine and hypoxanthine (314). 

 The underlying disease process is poorly understood, however, toxic accumulation 

of endogenous sulphite is the most likely pathological mechanism in both disorders. 

How sulphite may affect neuronal function is unknown; recent work in cell culture 

suggests that sulphite can inhibit glutamate dehydrogenase, this results in an energy 
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(ATP) deficiency due to reduced NADH flux through the mitochondrial respiratory 

chain and thus neurological damage (315). 

Sulphite is known to react with numerous biomolecules, essentially acting as a 

nucleophile attracted to electrophilic centres (316). As sulphite reacts readily with 

aldehyde groups to produce sulphonates it may be hypothesised that low CSF PLP 

observed in MoCoF deficiency patients is due to the formation of a sulphite addition 

compound with the aldehyde group of PLP, rendering it inactive as a cofactor (300) 

(Figure 13). Sulphite also reacts with quinonoid dihydrobiopterin (qBH2) leading to 

reduced levels of BH4 (317) (Figure 19). Reduced levels of PLP and BH4 in the brain 

may lead to a seizure and movement disorder. 

Of interest, it has recently been observed that α-AASA is elevated in MoCoF and 

sulphite oxidase deficient patients and this may, in part, be due to sulphite directly 

interacting with the aldehyde moiety of α-AASA. However sulphite also inhibits the 

enzyme required for the metabolism of α-AASA, α-aminoadipic semialdehyde 

dehydrogenase (112). 

Mutational analysis of the SUOX gene in three patients with unexplained 

accumulation of sulphite revealed two single nucleotide changes present in all three 

patients, both of which result in synonymous coding. Although one is reported as a 

single nucleotide polymorphism the other is novel and as it lies within the coding 

region of SUOX requires further consideration. Recently it has been suggested in the 

literature that exonic changes, independent of their effect on the encoded amino acid, 

may be disease causing by disrupting the regulatory elements involved in directing 

splicing machinery to the correct sites (318;319). Exonic splicing enhancers (ESE) 

and exonic splicing silencers (ESS) are cis-acting elements present within the coding 

regions of genes. ESE initiate splicing and serve as a binding site for various splicing 

factors such as the serine/arginine-rich (SR) proteins. Less is known about ESS, but 

they are thought to supress splicing by binding proteins from the heterogenous 

nuclear ribonucleo-protein family (hnRNP). Such elements also exist within intronic 

sequences. A careful balance exists between splicing enhancers and splicing silencers 

which, alongside the strength of the splice site, determine the creation of exon 

boundaries and formation of mRNA. A change in the nucleotide code may disrupt or 

create either an ESE or ESS and thus affect pre-mRNA splicing; it has been 
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predicted that up to 50% of variations within the coding region may have an effect on 

the protein in this way (320). Although many examples exist [including 

phenylalanine hydroxylase (318); spinal muscular atrophy 2, SMN2 (319)] it is 

thought that often such ‘silent’ changes are under-recognised or ignored by 

researchers who tend to focus only upon variations within the genomic DNA 

sequence that change the protein sequence (320).  

Given the vulnerability of exon splicing to sequence changes, and where no 

alternative explanation is evident, future work to explore the sequence change found 

in the patients described above could include use of further splice site or ESS 

predictor software tools. Other family members and controls of matched ethnic 

background should also be screened for the change. For thorough assessment, 

laboratory work to follow up could include synthesis of cDNA from patient mRNA 

using reverse transcriptase and sequence analysis of the cDNA. This would also 

enable us to ascertain whether there were any deep intronic changes in these patients 

that would not have been identified using the methodology described. 

In the patients reported here, if it is considered that an underlying genetic 

abnormality does not account for endogenous sulphite accumulation, an alternative 

mechanism of sulphite accumulation needs to be considered such as an exogenous 

source. Common exogenous sources of sulphite include its use as a food preservative 

(e.g. in dried fruits or wine) and as a stabiliser in some drugs. More than 100 

medication preparations contain sulphite (321;322). The majority of these are drugs 

for parenteral administration such as inotropic agents and antibiotics but several are 

oral preparations. The safe upper level for plasma concentration of sulphite is not 

known but many adverse effects have been reported after exposure to exogenous 

sulphites. Although the majority are allergy-related (322;323), development of 

seizures has been related to administration of morphine containing sodium bisulphite 

(324) and in vitro evidence for the neurotoxicity of dexamethasone preserved with 

sulphites has been demonstrated in neural cell culture (325). Cambonie et al. (326) 

found elevated urinary cysteine excretion in neonates with septic shock compared to 

well neonates which correlated with severity of the illness (although not to 

neurological outcome). They showed that cysteine excretion was indirectly related 

(via non enzymatic sulphitolysis) to the amount of sulphite administered by drug 
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infusions. Some of these children also had positive urine sulphite test strips and 

mildly elevated sulphocysteine excretion. 

Taurine elevation was present in all patients presented here (Table 10) and this may 

provide an alternative explanation for elevated sulphite; if there was increased flux 

through catabolic pathways of sulphur-containing amino acids, elevated sulphite may 

be seen in association with elevated taurine (which is often increased secondary to 

tissue breakdown). 

Patients P3 - 5 detailed in Table 10 were receiving medication(s) that may have 

contained sulphite preservatives and this may explain their increased urine sulphite 

and sulphocysteine excretion and its intermittent nature. In P5 seizure control 

improved with pyridoxal phosphate treatment which was successfully weaned by 1 

year of age.  He is now seizure free off medication and developing normally. This 

child had low plasma PLP status (probably associated with inadequate nutrition) 

which in combination with sulphite containing medication may have resulted in a B6 

deficiency state. P3 showed some improvement in her movement disorder on L-dopa 

therapy but succumbed to a severe seizure disorder at 18 months of age. Vitamin B6 

treatment was not trialled. Positive voltage gated potassium channel antibodies 

(associated with a diagnosis of autoimmune limbic encephalitis) have subsequently 

been detected in P4 which may explain his seizure disorder but not the abnormal 

biochemistry (sulphite and monoamine metabolites). 

By inactivation of PLP, use of sulphite containing drug preparations may increase the 

risk of seizures in vulnerable patient groups such as those who have a reduced 

seizure threshold due to their primary pathology or those who have other risk factors 

for reduced PLP e.g. poor nutrition. This highlights the importance of measuring 

plasma and CSF PLP in children with seizure and movement disorders and 

particularly in those with genetic disorders resulting in sulphite accumulation. Where 

possible, alternative drug preparations should be used and a treatment trial with 

vitamin B6 may be appropriate. Clinicians should also be aware that patients 

receiving sulphite containing medications may have positive urinary sulphite tests 

leading to a spurious diagnosis of sulphite oxidase deficiency. 
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3.4.6 Neonatal seizure disorder with increased plasma: CSF PLP ratio 

Shin et al. (99) reported that the plasma PLP: CSF ratio is 2.7 or less in normal 

individuals of all ages.  Data presented here from paediatric patients with 

neurological disease suggest a higher upper limit of 4.4 (Table 11).  Two patients 

with a seizure disorder of unknown aetiology with a ratio above 4.4 are described 

(see Section 3.3.6) in whom CSF PLP is reduced below the reference range. This 

finding could indicate another mechanism whereby central PLP deficiency develops.  

Only the free vitamin bases can cross the blood-brain barrier, mainly at the choroid 

plexus; PLP is cleaved by tissue non-specific alkaline phosphatase to pyridoxal 

which is then actively transported first into the CSF and then by a similar mechanism 

into the brain cells. Once inside the brain cell, pyridoxal is rephosphorylated back 

into its active form by pyridoxal kinase and so is ‘trapped’ within the cell (29).  

When hypophosphatasia, PNPO and antiquitin deficiency have been excluded, it is 

feasible that a genetic disorder affecting transport mechanisms into the CNS could 

produce an elevated plasma: CSF PLP ratio with resulting epilepsy, however, at 

present, no such disorder has been described. Reduced activity of brain pyridoxal 

kinase offers an alternative explanation. The phenotype of pyridoxal kinase 

deficiency secondary to clock gene knockout has been demonstrated in animal 

models (41) where analysis of brain tissue demonstrates PLP, dopamine and 

serotonin deficiency and these mice die early due to a severe seizure disorder. 

3.4.7 Nutrition  

When metabolic pathways and transport systems are intact, plasma concentrations of 

PLP and thus nutritional status will impact upon CSF PLP concentration. Vitamin B6 

is ingested in the diet and as the vitamin is widespread in various food groups, 

isolated dietary deficiency in the general population is rare in developed countries 

(1).  In children with seizure or movement disorders, however, nutrition may be 

inadequate for a variety of reasons including cessation of enteral feeding (with only 

provision of intravenous fluids), vomiting or poor gastrointestinal absorption.  

Simultaneous measurement of plasma PLP is vital to aid interpretation of CSF results 

however in our series this measurement was infrequently performed. Equally, 

information regarding nutritional intake was not available in many patients.  
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3.5 SUMMARY 

In summary, this review has shown that previous, preliminary age related reference 

ranges for CSF PLP concentration are unsatisfactory for the patient groups in whom 

we are increasingly measuring it. A revised reference range with reduced lower 

reference limits is proposed, based upon four age groups.  

It has been demonstrated that CSF PLP measurement is a useful part in the 

investigation of children with seizure and movement disorders and is best assessed in 

conjunction with other biochemical parameters particularly CSF monoamine 

metabolites. CSF PLP analysis is important for the diagnosis of PDE and PNPO 

deficiency and may aid diagnosis in MoCoF and sulphite oxidase deficiency and 

other disorders yet to be described. It can also play a useful role in monitoring 

treatment for example with L-dopa. It may also be informative to compare the 

concentration of PLP in CSF to the plasma PLP concentration; however 

measurement of plasma PLP alone is not diagnostic for vitamin B6 related seizure 

disorders. Depletion of CSF PLP in parallel with 5-MTHF and BH4 may be reflective 

of an inflammatory process in which these molecules can act as free radical 

scavengers. Other disorders that result in an increased production of reactive oxygen 

species (such as mitochondrial disorders) may produce a similar biochemical picture, 

with depletion of PLP and 5-MTHF. 

By inactivation of PLP, use of sulphite containing drug preparations may increase the 

risk of seizures in vulnerable patient groups such as those who have a reduced 

seizure threshold due to their primary pathology or those who have other risk factors 

for reduced PLP. Seizures do not in themselves appear to influence CSF PLP levels 

and although this series did not demonstrate an association, it should be considered 

that some individual AED may theoretically reduce CSF PLP concentration.  

Measurement of PLP as the sole B6 vitamer in clinical practice is very useful but 

does have limitations. In order to further investigate those patients with reduced CSF 

PLP in whom a diagnosis has not been reached, use of advanced laboratory 

techniques to assess all B6 vitameric forms will offer great advantages. 
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4.1 INTRODUCTION 

Several inborn errors that affect the metabolic pathways of vitamin B6 and cause 

epilepsy have been described as discussed in Section 1.1.13. They may be diagnosed 

by detecting elevated urinary α- aminoadipic semialdehyde (α-AASA) in antiquitin 

deficiency (OMIM #266100) or by mutation analysis in pyridox(am)ine 5’ phosphate 

oxidase (PNPO) deficiency (OMIM #610090) and hypophosphatasia (OMIM 

241500). Diagnosis may be supported by non-specific biochemical changes in 

cerebrospinal fluid PLP, neurotransmitter and amino acid profiles (113;327). 

However, whilst these are considered rare disorders, childhood seizures responsive to 

B6 are not uncommon (125) and clinicians are increasingly aware of patients with 

seizures that respond empirically to pyridoxine or pyridoxal 5’- phosphate but do not 

fall into these recognised diagnostic groups. In order to explore the hypothesis that 

previously undescribed diseases may be caused by impaired interconversion of B6 

vitamers, laboratory methods are required to simultaneously measure the individual 

vitamers, pyridoxamine (PM), pyridoxal (PL), pyridoxine (PN), pyridoxal 5’-

phosphate (PLP), pyridoxine 5’-phosphate (PNP) and pyridoxamine 5’-phosphate 

(PMP), and their breakdown product, 4-pyridoxic acid (PA).  

Many children and adults are treated with large doses of vitamin B6 for a variety of 

genetic (e.g. antiquitin deficiency and B6 responsive homocystinuria) and non-

genetic conditions (e.g. pyridoxine as an adjunct to isoniazid in tuberculosis 

treatment). Neurotoxicity associated with these mega doses of pyridoxine is well 

reported (93) but the underlying mechanisms are not well understood. Laboratory 

measurement of the various B6 vitamers should allow for optimisation of treatment 

regimes, improve monitoring and may ultimately further understanding of B6 

toxicity. 

4.1.1 Laboratory measurement of the B6 vitamers 

Historically indirect methods such as the tryptophan load have been used to assess 

vitamin B6 status but these have obvious drawbacks, not least the burden upon the 

patient. Other examples include the use of the protozoan Tetrahymena pyriformis 

which utilises its dependence on B6 for growth to provide an estimate of B6 in body 

fluids (328).  
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Such techniques have now been largely replaced by direct methods and one of the 

most commonly used direct laboratory techniques to measure the vitamers in plasma 

is high-pressure liquid chromatography (HPLC). Several variations of this 

methodology have been described in the literature however there are limitations with 

all; the majority do not measure all vitameric forms (329), some require columns that 

are no longer available (330;331) and some use cyanide derivatisation which, for 

safety reasons, is not ideal (332). In addition, as a general principle, HPLC 

technology may not offer sufficient sensitivity or specificity when measuring 

multiple analytes that are present in low concentrations in biological fluids (333). 

Coupled to HPLC, use of mass spectrometry as the chromatographic detector (LC-

MS) has clear advantages over HPLC technology alone and can overcome many of 

these problems; hence its use in routine diagnostic laboratories has increased in 

recent years.  In particular LC-MS shows high specificity and is superior in its ability 

to analyse complex mixtures. 

In principle, mass spectrometry is an analytical technique that measures the 

molecular mass of individual compounds and atoms very precisely by converting 

them into ions. It allows unsurpassed molecular specificity and provides ultrahigh 

detection sensitivity (334). Conversion of analyte molecules into gas –phase ionic 

species is the essential first step of the process allowing easy manipulation of the 

ion’s motion and direction. Various modes of ionisation are applied according to the 

nature of the sample and what information is required. Following this the molecular 

ions are separated and analysed on the basis of their mass-to-charge (m/z) ratio. In 

the final stage, the ion current generated by the separated ions is measured and 

displayed as a mass spectrum or an ion chromatogram by sophisticated software. 

4.1.2 Liquid chromatography mass spectrometry  

Many instruments are available that combine the various modes of sample provision, 

ionisation and ion analysis. Liquid chromatography-mass spectrometry, using 

electrospray ionisation and triple quadrupole mass analysers (LC-MS/MS) is a 

versatile technique used in clinical biochemistry laboratories and is the focus of this 

chapter. 
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4.1.3 High pressure liquid chromatography (HPLC) 

This chromatography technique is used to separate compounds on the basis of time 

of elution from a stationary solid phase column and uses a liquid mobile phase forced 

onto the column at high pressures. Various aspects of the HPLC methodology 

ultimately influence its ability to separate compounds of a certain chemical nature, 

thus, method development involves optimisation of flow rates, column choice as well 

as the composition of the mobile phase component. Typical solvents used in HPLC 

such as methanol and acetonitrile are compatible with electrospray ionisation, 

however buffers containing phosphate or sodium acetate should be avoided as they 

will contaminate the source and create MS adducts. 

4.1.4 Electrospray ionisation 

Electrospray ionisation (ESI) is an ‘atmospheric pressure ionisation’ (API) technique 

that is particularly suitable for samples in liquid form. It is also very successfully 

coupled with a HPLC inlet method. It works well with polar molecules and thus is 

suited to the analysis of many metabolites and peptides. 

In this form of ionisation, the liquid sample for analysis is pumped through a metal 

capillary maintained at 3 to 5 kV. It is then nebulised to produce a very fine spray of 

highly charged droplets within an intense electric field where evaporation of the 

solvent converts charged droplets into gas-phase ions. Evaporation is assisted by the 

flow of heated dry nitrogen gas. ESI can be performed in both a positive and 

negative ionisation mode and is controlled by selecting the capillary voltage bias, and 

this allows optimisation of sensitivity and specificity for a particular ion of interest. 

The ionised analytes are then focussed into the high vacuum of the mass 

spectrometer for analysis. As ESI imparts very little energy to the metabolite, 

minimal fragmentation occurs in the source and it is considered a ‘soft’ ionisation 

process (335;336).  

This technique of ionisation is widely used for biological samples, however those 

molecules that are neutral or which have low polarity such as some lipids, are not 

efficiently ionised by ESI and alternatives such as atmospheric pressure chemical or 

photo-ionisation (APCI and APPI) are required. 
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4.1.5 Quadrupole analysers 

The quadrupole analyser consists of four parallel metal rods to which a combination 

of constant and varying voltage is applied. This allows the transmission of a very 

narrow band of m/z values along the rod axis and by varying the voltages with time, a 

wide range of m/z values can be scanned, producing a mass spectrum (335).  

Ions can be made to undergo fragmentation by collision with an inert gas such as 

argon in a process called ‘collision induced dissociation’ to produce a product or 

daughter ion. This may be achieved in a specifically designed quadrupole or collision 

cell and when placed between two quadrupole mass analysers, this is termed a triple 

quadrupole mass spectrometer (MS/MS). This two stage mass analysis has great 

advantages over single stage analysis due to its superior analysis specificity. For 

example, in a complex biological sample such as plasma it is likely that more than 

one component will produce an ion of a certain mass-to-charge ratio however, by 

adding a second stage of analysis there is only a low probability that they will both 

fragment in a similar manner to produce the same daughter or product ion. By using 

HPLC linked to MS/MS this specificity increases still further. 

4.1.6 Considerations for the measurement of B6 vitamers in plasma 

Measurement of B6 vitamers concentrations in plasma poses several potential 

problems, most of which can be overcome by LC-MS/MS analysis. For example, 

some of the vitamers are of a similar mass and chemical structure, they are all water 

soluble and highly polar molecules and in addition most are present at very low 

(nanomolar) concentrations in biological fluids.  

One major challenge to measuring B6 vitamers in plasma using LC-MS/MS is the 

effect of ion suppression. This term describes the reduction in signal observed when 

there is more than one component present in the ion source ‘competing’ in the 

ionisation process, as will be the case for human plasma. This can be improved to 

some extent in the sample preparation stage, for example by performing protein 

precipitation, but these procedures will not completely remove ion suppression 

effects. Because individual plasma samples will produce variable matrix effects (due 
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to differences in endogenous compounds) a stable isotope internal standard is 

required to prevent variable ion suppression affecting quantification (335). 

The challenge of identifying compounds present at low concentrations in a complex 

mixture has been greatly advanced by the use of tandem mass spectrometry linked to 

HPLC and in this chapter an LC-MS/MS based method is presented to 

simultaneously measure all B6 vitamers and pyridoxic acid in plasma. This method 

has been adapted from previous similar work (301), to enable its use on the 

instrumentation available in our laboratory. The method is applied to groups of 

children with inborn defects of B6 metabolism, B6 responsive seizures and other 

neurological disorders, focusing on the concentrations and interrelations of the B6 

forms in these disorders. 

4.2 MATERIALS AND METHOD DEVELOPMENT 

4.2.1 Chemical reagents 

Pyridoxamine dihydrochloride, pyridoxal hydrochloride, pyridoxine hydrochloride, 

pyridoxamine 5’-phosphate, pyridoxal 5’-phosphate mono-hydrate and 4-pyridoxic 

acid were purchased from Sigma Aldrich (Gillingham, Dorset, UK). 

Four deuterated vitamers were used as internal standards; Pyridoxal methyl d3 

hydrochloride [>98% atom %d] was purchased from Isotec, pyridoxine d2 

hydrochloride (5-hydroxymethyl-d2) [>98% atom %d] from CDN Isotopes, 4-

pyridoxic acid d2 (5,5’-d2) [>98%] was purchased from Buchem BV and d2 

pyridoxal 5’-phosphate was kindly supplied as a gift by Professor Coburn, 

Department of Chemistry, Indiana University, Purdue University, Forte Wayne. 

HPLC grade methanol was purchased from Fisher Scientific. Acetic acid, 

heptafluorobutyric acid (HFBA) and trichloroacetic acid (TCA) were purchased from 

Sigma Aldrich.  

Stock solutions of B6 vitamers, pyridoxic acid and the deuterated internal standards 

were made with purified deionised water and stored at -80°C. They were placed on 

ice and protected from the light during laboratory handling. 
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All vitamer calibrators were checked for the presence of other B6 vitamers and 

deuterated internal standards were analysed to check for the presence of the non-

deuterated species. No appreciable amounts were detected using the method 

described in this paper, making them suitable for use in method development. 

Examples of this for the deuterated compounds d2PLP and d3PL are shown in Figure 

22. 
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Figure 22. Chromatogram of deuterated pyridoxal (d3PL) in (A) and deuterated pyridoxal 5’-

phosphate (d2PLP) in (B) illustrating that neither compound is contaminated by the measured 

other B6 vitamers measured. Precursor and product ion are shown for each vitamer investigated 
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d2PLP  250>152.03 

PMP  249.12>134.02 

PLP  248.08>150.03 

d2PA 186.19>150 

PA 184.19>148 

d2PN  172.23>136.02 

d3PL  171.17>153.03 

PN  170.23>134.02 

PM  169.22>133.9 

PL  168.17>150.03 

d2PLP  250>152.03 

PMP  249.12>134.02 

PLP  248.08>150.03 

d2PA 186.19>150 

PA 184.19>148 

d2PN  172.23>136.02 

d3PL  171.17>153.03 

PN  170.23>134.02 

PM  169.22>133.9 

PL  168.17>150.03 

A. 

B. 
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4.2.2 Sample collection & preparation 

Pooled plasma for calibration, recovery and imprecision studies was collected from 

healthy adults not taking any medications or vitamin supplementation. Clinical 

plasma samples for the work presented here were obtained with consent under two 

ethically approved projects from patients attending Great Ormond Street Hospital for 

Children, London (REC numbers 09/H0706/85 and 04/Q0508/81). 

Venous blood samples were taken into EDTA tubes (Sarstedt Monovette®) and were 

centrifuged at 7,000 x g for 10 minutes at 4 °C (accuSpin; Micro R, Fisher Scientific) 

within 60 minutes of collection and the plasma removed immediately. Plasma 

samples were then stored at -80 °C until further use.  At the time of analysis, plasma 

samples were defrosted on ice and protected from light. Proteins were precipitated by 

mixing 60 μL of plasma with an equal volume of 0.3 N TCA (containing deuterated 

internal standards) to a final TCA concentration of 0.15 N. The sample was vortexed 

thoroughly for 30 seconds, left on ice in the dark for 60 minutes and finally 

centrifuged at 7, 000 x g for 10 minutes at 4 °C. The resulting supernatant was 

transferred to a HPLC vial and placed in an autosampler where the samples were 

kept at 4 °C and protected from light. Previous work has shown B6 vitamers to be 

stable under these conditions (301). 

4.2.3 High Pressure Liquid chromatography 

A Waters Alliance 2795 LC system was used for delivery of the mobile phase.  

4.2.3.1 HPLC column selection 

A HS F5 column (Supelco; 10 cm x 2.1 mm; 3 μm) fitted with a HS F5 guard 

column (2 cm x 2.1 mm; 5 μm) was used for analysis. This column consists of a 

pentafluorophenylpropyl bonded phase. The five fluorine groups of this stationary 

phase have  a strong electron drawing effect and it has both reversed phase and 

Hydrophilic Interaction Chromatography (HILIC) modes. It was chosen because of 

its properties to separate small, polar, water soluble molecules and because it is 

tolerant of a low pH.  
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Due to the instrument parameters, a maximum mobile phase flow rate of 0.2 ml per 

minute was used which was achieved with maximum column pressures of 2000 psi. 

The column and guard were kept at a constant temperature of 30 °C during the 

analysis.  

4.2.3.2 Optimisation of the mobile phase 

For successful analysis of B6 vitamers in plasma the mobile phase composition 

proved to be very important.  

During the initial experiments when aqueous B6 standards were used, it was only 

found necessary to use two components in the mobile phase; 100% methanol and 

3.7% acetic acid. In the subsequent work using human plasma however it proved 

very difficult to achieve adequate sensitivity to detect the phosphorylated compounds 

(PLP and PMP) using only these two solvents. It was considered that in order for 

PLP and PMP to be retained better on the column and thus improve sensitivity an ion 

pairing agent may be required.  

Heptafluorobutyric acid (HFBA) which is a volatile perfluorinated carboxylic acid 

was the selected ion pairing agent and experiments were designed to assess its effect 

at varying concentrations on the measurement of vitamers in plasma. The addition of 

HFBA at 100 mM concentration in 3.7% acetic acid present continuously (as 2.5% of 

the mobile phase composition) showed the most beneficial effect on the detection of 

PLP and PMP. As shown in Figures 23 & 24, sensitivity was increased for PMP and 

peak shapes were improved for both PLP and PMP. 

HFBA affected some of the other vitamers in a detrimental manner. Sensitivity for 

PN and PL was reduced however it remained more than adequate for analysis and 

was acceptable given the improvement in phosphorylated species.  

HFBA also affected the retention times of many vitamers. The retention times of the 

following vitamers were increased (by the amount of time shown in brackets) PMP 

(0.3 min); PL (3.0 min); PN (3.5 min); PM (9.0 min) and that of PA was decreased 

(0.6 min). This is also illustrated in Figure 24. 
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Figure 23. Chromatogram of B6 vitamers in control plasma spiked with 100 nmol/L calibrator vitamer standards [40 μL injection using mobile phase consisting of methanol 

and 3.7% acetic acid]   
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Figure 24. Chromatogram of B6 vitamers in control plasma spiked with 100 nmol/L calibrator vitamer standards showing improved sensitivity and peak shape for PLP and 

PMP with addition of HFBA to mobile phase [40 μL injection using a mobile phase consisting of methanol; 3.7% acetic and 100 mM HFBA in 3.7% acetic acid]
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The final mobile phase consisted of the following three components: (A) 100% 

methanol; (B) 3.7% acetic acid; (C) 3.7% acetic acid containing 100 mM HFBA. 

This acidic mobile phase with an ion pairing agent is suited to the detection of highly 

polarised compounds such as B6 vitamers.  The best chromatographic separation and 

peak shapes were achieved with the gradient profile shown in Table 12. Each 

gradient step was linear.  

 

Table 12. Optimised mobile phase gradient profile for the separation of B6 vitamers in 

plasma using a HSF5 column with a HSF5 guard column 

Time 

(minutes) 

100% methanol 

(%) 

3.7% acetic acid 

(%) 

3.7% acetic acid 

& 100 mM HFBA (%) 

Flow rate 

(ml/min) 

0.00 2.5 95.0 2.5 0.2 

2.00 2.5 95.0 2.5 0.2 

10.00 49.5 48.0 2.5 0.2 

15.00 97.5 0.0 2.5 0.2 

17.00 49.5 48.0 2.5 0.2 

20.00 2.5 95.0 2.5 0.2 

25.00 2.5 95.0 2.5 0.2 

 

4.2.4 Electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) 

Mass spectrometry of B6 vitamers and PA was carried out using a triple quadrupole 

Micro Quattro instrument (MicroMass, Waters, UK) fitted with an electrospray 

ionisation source. The source and desolvation gas temperature were held constant at 

150 °C and 350 °C respectively, with flow rates of 950 and 60 litres of nitrogen per 

hour.  

B6 vitamers and PA were detected using multiple reaction monitoring mode (MRM) 

and the settings optimised by infusion of each vitamer in proportions of mobile phase 

according to time of elution off the HPLC column. The mass spectrometer was   
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operated in the positive ion mode for analysis of all B6 vitamers and PA. A single 

scan segment of 25 minutes provided adequate sensitivity for detection and 

measurement of all species, giving a total sample run time of 25 minutes which  

included time for column re-equilibration.  The final chosen parameters for the 

parent and most abundant daughter ion are as detailed in Table 13.  

 Parent-daughter ion pairs suggested a loss of H2O (18) for PL; loss of ammonia (17) 

and H2O (18) for PM; loss of 2.H2O (36) for PN; loss of HPO3 and water (98) for 

PLP; loss of H2O (18) HPO3 (98) and ammonia (17) for PMP and loss of 2.H2O (36) 

for PA. As PNP was not available as a calibration vitamer, an additional transition 

was added to the MS file for this compound using  a theoretical fragmentation 

pattern due to loss of phosphate and water (116) (based on the fragmentation of PLP 

and PN). 

All compounds could be differentiated on the basis of both m/z ratio transitions and 

retention times. PLP and PMP had very similar retention times and parent ions that 

differed by only 1 Da. There was, however, no cross talk between ion pairs 

originating from these two different analytes (Figure 25). 
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Table 13. The mass spectral specifications for detection of B6 vitamers in plasma and 

their deuterated internal standards 

 

 

 

 

 

Analyte 

Retention 

time 

(minutes) 

Precursor ion 

(m/z) 

Product ion 

(m/z) 

Cone 

voltage (V) 

Collision 

energy (V) 

Pyridoxal 9.30 168.2 150.0 12 14 

Pyridoxamine 16.10 169.2 133.9 16 21 

Pyridoxine 11.10 170.2 134.0 19 22 

Pyridoxic 

Acid 
7.60 184.2 148.0 20 23 

Pyridoxal 

phosphate 
3.94 248.1 150.0 27 19 

Pyridoxamine 

phosphate 
3.89 249.1 134.0 19 23 

Pyridoxine 

phosphate 
3.86 250.1 134.0 27 19 

d3 pyridoxal 9.30 171.2 153.0 12 14 

d2 pyridoxine 11.10 172.2 136.0 19 22 

d2 pyridoxic 

acid 
7.60 186.2 150.0 20 23 

d2 pyridoxal 

phosphate 
3.90 250.1 152.0 27 19 
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Figure 25.  The chromatogram of aqueous PLP (A) and PMP (B) standards to illustrate 

that despite similar retention times and parent ion mass there is no cross talk between 

channels 

During the process of method development it was observed that the sensitivity for 

PLP was paradoxically improved with a smaller injection volume and a similar effect 

was seen for PL. As may be expected the other vitamers were better detected at 

larger injection volumes, although this improvement was only modest for PMP. As it 

was vital that the method provided good sensitivity for PLP, an injection volume of 

25 μL was chosen which allowed good detection of PLP with an acceptable sacrifice 

in sensitivity for the other vitamers (Table 14). 

A 

B 

 

248.21>150.06 

248.21>150.06 

249.26>134.07 

249.26>134.07 

[Channel for PLP] 

[Channel for PMP] 

[Channel for PMP] 

[Channel for PLP] 
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Table 14. Variation in signal intensity with injection volume for the B6 vitamers 

measured in control plasma spiked with 50 nmol/L of calibrator vitamers 

 
Injection volume  

20 μL 25 μL 30 μL 40 μL 

PLP 1100 1195 900 640 

PMP 279 456 483 605 

PA 1596 2769 3602 6236 

PN 8254 10085 11808 13750 

PL 1867 1627 1077 1101 

PM 4937 5479 5768 10013 

 [Mobile phase containing methanol, 3.7% acetic acid and 100 mM HFBA as per Table 12] 

In the final method a 25 μL volume of deproteinised plasma was injected every 25 

minutes; the column effluent was then delivered to the mass spectrometer with the 

first 1 minute and last 5 minutes being diverted to waste. MassLynx software was 

used for data acquisition and analysis. 

4.2.4.1 Quantification of B6 vitamers and pyridoxic acid 

B6 vitamers and PA were quantified in plasma by the addition of a known 

concentration (100 nM) of deuterated internal standard. The same concentration of 

internal standard was used to construct calibration curves with reference vitamers 

(except PNP which was not available) and PA. The amount of PLP and PMP present 

was calculated from the ratio of the signal area for the vitamer to the signal area for 

d2 PLP. Similarly d3 PL was used to calculate the amount of PL and PM present, d2 

PN for PN and d2 PA for PA. PNP was quantitated by determining the ratio of the 

signal from PNP to the signal from deuterated PLP. This was converted to a 

concentration in plasma by using the calibration curve for PLP. If the calibration for 

PNP was identical to that for PLP  this would be the plasma concentration of PNP  in 

nmol/L, however we cannot make that assumption and so PNP concentrations are 

expressed in the results as “concentration units”. 
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4.3 RESULTS 

4.3.1 Calibration curves and linearity 

To estimate the linear range of the method, calibration curves in the range 1 – 500 

nmol/L were constructed for each vitamer in water and plasma (Figures 26 & 27). 

This range was chosen because it covers the physiological range expected to be 

encountered in the analysis of human plasma samples. Values for r
2
 of equal to or 

greater than 0.98 were achieved for each vitamer by linear regression (Table 15 & 

16).  
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Figure 26. Calibration curves of B6 vitamers in water 

 

 

 



166 

 

0 100 200 300 400 500 600
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

PA concentration (nmol/L)

P
A

:d
2
P

A

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

PN concentration (nmol/L)

P
N

:d
2
P

N

0 100 200 300 400 500 600
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

PL concentration (nmol/L)

P
L

:d
3
P

L

0 100 200 300 400 500 600
0.0

2.5

5.0

7.5

PM concentration (nmol/L)

P
M

:d
3
P

L

0 100 200 300 400 500 600
0.0

2.5

5.0

7.5

10.0

12.5

PLP concentration (nmol/L)

P
L

P
:d

2
P

L
P

0 100 200 300 400 500 600
0

1

2

3

4

5

PMP concentration (nmol/L)

P
M

P
:d

2
P

L
P

 

 

Figure 27. Calibration curves of B6 vitamers in plasma 
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Table 15. Linearity of B6 vitamers in water over a physiological range (1 – 500 nmol/L) 

 

 

 

Regression parameters 

Slope X-intercept r
2 

PLP 0.019 -2.6 0.99 

PMP 0.008 -8.6 0.99 

PA 0.027 5.14 0.99 

PN 0.015 -1.5 0.98 

PM 0.012 3.0 0.99 

PL 0.025 5.9 0.99 

 

Table 16. Linearity of B6 vitamers in plasma over a physiological range (1 – 500 

nmol/L) 

 

 

 

Regression parameters 

Slope X-intercept r
2 

PLP 0.019 -145 0.99 

PMP 0.008 -16.8 0.99 

PA 0.025 -61.4 0.99 

PN 0.015 2.08 0.99 

PM 0.014 0.12 0.99 

PL 0.027 -48.4 0.99 
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4.3.2 Precision studies: Intra- and inter-batch coefficient of variance and 

recovery studies 

Assay precision was assessed by calculation of the intrabatch and interbatch 

coefficient of variance (CV) [CV% = (standard deviation/mean) x 100] in plasma for 

each vitamer and by recovery of each analyte [recovery % = [(measured 

concentration-endogenous concentration)/concentration added] x 100] 

Plasma was spiked with medium (50 nmol/L) and high (100 nmol/L) concentrations 

of each vitamer. One batch was left ‘unspiked’ with endogenous concentrations of B6 

vitamers.  

10 samples with each added concentration [50 nmol/L (medium) and 100 nmol/L 

(high)] were analysed for calculation of the intrabatch CV. The intrabatch CV for 

each vitamer was <10% (Table 17). 

 

Table 17. Intra- and interbatch co-efficient of variation (CV) and recovery for B6 

vitamers in plasma 

 

Intrabatch CV (%) 

(n=10) 

Interbatch CV (%) 

(n=5 ) 

Recovery (%) 

medium high medium high medium high 

PLP 2.6 5.3 5.1 6.3 94 101 

PMP 9.5 8.8 10.4 17.8 68 84 

PA 5.3 4.3 4.0 4.2 116 104 

PN 2.4 2.5 4.3 5.7 76 70 

PM 8.7 3.8 10.4 17.0 124 110 

PL 2.5 1.5 4.5 3.1 88 90 
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Interbatch CV’s were calculated using one sample run in triplicate  with the two 

different added  concentrations (50 nmol/L and 100 nmol/L) on five different days 

(not including the samples used to calculate intrabatch CV) over a period of 4 weeks. 

CV’s for PLP, PA, PN and PL were <10% but the CV for PM and PMP were higher 

at 17.0% and 17.8% respectively (Table 17). This was felt to be acceptable for use in 

clinical samples where PM and PMP are not expected to be present. 

The intrabatch CVs reported here are better than those reported by Midttun et al. 

(301) however the interbatch CVs are comparable. 

Recovery of B6 vitamers from plasma ranged from 68-124% (Table 17). For the 

three compounds always present and for which accurate measurement is most 

important (PLP, PL and PA) recoveries were 88 – 116%. Recoveries are similar to 

those reported by Midttun et al. (301). 

4.3.3 Indicators of accuracy 

PLP of a known concentration in plasma is available from Chromsystems® (Munich, 

Germany) for use as a quality control standard in their HPLC B6 analysis kit. This 

method is described in Section 2.2.1. Analysis of this standard in duplicate on three 

occasions using the LC-MS/MS method produced comparable results to those of the 

Chromsystems method (LC-MS/MS method 70; 72; 98 nmol/L; Chromsystems 

method 68; 67; 86 nmol/L). In addition 39 plasma samples were run in parallel on 

both systems to directly compare the two methods which showed good agreement; r
2 

= 0.95, p<0.0001 (Figure 28). 
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Figure 28. Comparison of plasma PLP measured by HPLC and LC-MS/MS method 

 

4.3.4 Study of matrix effects 

The possible matrix effects of plasma on detection of B6 vitamers were studied by 

measurement of the peak intensities for each vitamer in plasma spiked with differing 

concentrations of vitamers (13 concentrations, range 3 – 500 nmol/L). These 

intensities were compared to peak intensities for the vitamers in water where matrix 

effect % = [(peak area spiked – peak area endogenous)/peak area in water] x100. 

Effects of ion suppression were seen for all vitamers in plasma as follows; PL 33%; 

PM 69%; PN 71%; PA 79%; PMP 86% and PLP 96%. While these figures 

(particularly those for PL, PM and PN) are lower than for an ideal method, the 

recovery experiments indicated that the internal standards were adequate to 

compensate for the matrix effects. 

4.3.5 Stability of standards and plasma samples 

Vitamin B6 is light and temperature sensitive. The aqueous B6 standards and spiked 

pooled plasma samples were handled as detailed above and stored in aliquots at         
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80°C. These were demonstrated to be stable over a 6 month period by repeated 

measurement of the same samples.  

4.3.6 Application of the analytical method to paediatric populations 

including children with inborn errors of vitamin B6 metabolism 

The LC-MS/MS method was used to measure B6 vitamer and PA profiles in children 

with inborn errors of vitamin B6 metabolism and in children in whom a definitive 

diagnosis had not been made but who had a B6 responsive seizure disorder. It should 

be noted that many of these patients were on treatment doses of vitamin B6 

(pyridoxine hydrochloride 200 mg per day or pyridoxal 5’-phosphate 30 mg/kg/d) at 

the time of sampling (Table 18-21). In order to establish a reference range, control 

plasma samples were collected from paediatric outpatient clinics. No control patient 

was using vitamin supplementation or dietary manipulation of any form at the time 

of sampling. Some were taking medications but these were not considered to have an 

important effect on B6 metabolism.  

Each patient sample was analysed in duplicate and the mean of each is presented in 

Tables 18-21. B6 vitamers expressed as ratios; PLP:PL and PL:PA, are also presented 

in these tables. 

4.3.6.1 PNPO deficiency 

Table 18 shows the profile of B6 vitamers from three patients (1, 2 & 3) with 

genetically proven PNPO deficiency on treatment with PLP (30 mg/kg/d in Patient 1 

& 2) and PN (Patient 3). The chromatogram for Patient 1 is shown in Figure 29. This 

distinct pattern demonstrates significantly elevated PLP, PL and PA and agrees with 

published data for individuals on B6 supplementation (301;337). In addition, as may 

be expected in the case of severely reduced PNPO activity, the two individuals on 

PLP therapy (Patients 1 & 2) have significantly elevated PM, PMP, PN and PNP 

compared to age matched controls and to patients with other inborn errors of B6 

metabolism on B6 supplementation. The child on PN therapy (Patient 3) does not 

exhibit elevated PNP or PMP, however PN and PM are substantially elevated. 
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4.3.6.2 Antiquitin deficiency 

Plasma B6 levels were measured in four patients from two families with antiquitin 

deficiency, all were on PN therapy. Patients 4 and 5 (siblings) have levels of PLP in 

plasma that are below the reference range, with a markedly reduced PLP: PL ratio. 

PL and PA are strongly elevated in keeping with increased catabolism of PN and 

PLP through intact pathways. PM, PMP and PN are modestly elevated; PNP is not 

detectable. Patients 6 & 7 (twins) have a different profile to patients 4 & 5 showing a 

markedly elevated PLP with  PL and PA elevated but not to such high levels. None 

of the other vitamers are elevated in these two patients. 
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4.3.6.3 Molybdenum Cofactor (MoCoF) deficiency 

Patients 8 and 9 (Table 18) with genetically proven MoCoF deficiency have reduced 

or absent activity of the MoCoF dependent enzymes sulphite, xanthine and aldehyde 

oxidase (AOX). AOX catalyses the formation of PA from PL for excretion in urine 

and evidence of reduced activity of this enzyme seen in these patients is 

demonstrated by an elevated PL to PA ratio and a reduced absolute PA concentration 

(Table 18). 
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Table 18. Plasma B6 vitamer profiles in patients with an inborn error affecting vitamin B6 metabolism 

 

 

 

Diagnosis and 

clinical information 
Age 

Medication** 

(dose 

documented 

where known) 

PLP PL PA PN PNP PMP PM PLP:PL PL:PA 

Reference range  

n=24 

4.3y – 

16y 
 46-321 4.6-18.1 16.4-139 nd-0.62 nd nd-9.3 nd 5.2 – 18.6 0.1 – 0.7 

1 PNPO 2y 2m 
PLP [30 

mg/kg/d] 
580 426.8 792.8 575 43 18 192.7 1.4 0.5 

2 PNPO 10y 2m 
PLP [30 

mg/kg/d] 
632.6 5798 7926.3 598.8 77.17 101 2731 0.1 0.7 

3 PNPO 8y 1m PN 839.8 4974.4 4327.7 974.9 nd nd 135.4 0.2 1.1 

4* PDE 10y 5m 
PN [100 mg 

BD] 
23.9 6351.4 5903.7 60.4 nd 14.9 107.6 0.0038 1.1 

5* PDE 12y 2m 
PN [100 mg 

BD] 
11.4 6475.8 5068.8 7.2 nd 23.57 143.8 0.0018 1.3 

6 PDE 8y 7m 
PN [100 mg 

BD] 
587.9 198.4 238.8 0.35 nd nd nd 3.0 0.8 

7 

 

PDE 

 

8y 7m 

 

PN [100 mg 

BD] 

 

603.3 

 

202.6 

 

320.9 

 

0.37 

 

nd 

 

nd 

 

nd 

 

3.0 

 

0.6 
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All units nmol/L, except PNP which is expressed as ‘concentration units’. Values outside reference range are shown in bold. nd = not detected; 

BD = twice per day ; y = years; m = months; n = number of samples analysed 

*peripheral neuropathy on B6 supplementation; ** control patients were taking the following medication: simvastatin (n=3); carnitine (n=1); 

amlodipine (n=1); trimethoprim (n=1) 

 

 

 

 

 

 

 

8 MoCoF 7y 11m Nil 153.6 19 10.5 0.5 6.2 nd nd 8.1 1.8 

9 MoCoF 11m 

Phenobarbitone, 

baclofen, L-

Dopa 

235.3 140.3 7.7 0.4 nd 6.1 nd 1.6 18.2 
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Figure 29. Chromatogram of B6 vitamers in a patient with PNPO deficiency on PLP treatment 
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4.3.6.4 B6 responsive seizure disorders (not Antiquitin or PNPO deficiency) 

Patients 10 to 15 (Table 19 & 20) have a seizure disorder that is fully or partially 

responsive to PN or PLP, but do not have elevated urinary α-AASA (i.e. antiquitin 

deficiency) or mutations in PNPO. They had normal alkaline phosphatase levels for 

age (which excludes hyper- and hypophosphatasia) and did not exhibit the clinical 

features seen in hyperphosphatasia, or hypophosphatasia. In addition they were not 

taking medications known to affect vitamin B6 metabolism. 

Patient 11(a) (Table 19) and 14(a) (Table 20) have a profile similar to that of controls 

and, on B6 supplementation, all patients have elevated levels of PLP, PL and PA. 

Compared to the reference population, a modest elevation of both PN and PM is seen 

in patient 11(b) (Table 19). 
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Table 19. Plasma B6 vitamer profiles in paediatric patients with a seizure disorder fully responsive to vitamin B6 (PNPO and α-AASA negative) 

 

All units nmol/L, except PNP which is expressed as ‘concentration units’. Values outside reference range are shown in bold. nd = not detected; BD = twice per 

day;  AED = antiepileptic drug, unspecified; y = years; m = months; n = number of samples analysed ** control patients were taking the following 

medication: simvastatin (n=3); carnitine (n=1); amlodipine (n=1); trimethoprim (n=1) 

 

 

 

Diagnosis and 

clinical 

information 

Age Medication** PLP PL PA PN PNP PMP PM PLP:PL PL:PA 

Reference range  

n=24 
4.3y – 16y 

(dose 

documented 

where known) 

46-321 4.6-18.1 16.4-139 nd-0.62 nd nd-9.3 nd 5.2 – 18.6 0.1 – 0.7 

10 
 

PN responsive 
3y 7m 

PN            

[100 mg BD] 
877 7385.8 6510 5.1 5.9 5.7 2.2 0.1 1.1 

11 
PLP responsive 

 

(a)   5y 2m AED 75.2 6.8 20.6 nd 3.9 9.3 nd 11.1 0.3 

(b)   6y 5m 
AED and PLP       

[30 mg/kg/d] 
709.4 7893 7371 32 nd nd 28 0.09 1.1 

12 PLP responsive 4y 1m PLP 630.9 654.7 494.9 nd nd nd nd 1.0 1.3 

13 PLP responsive 1y 4m 
PLP             

[30 mg/kg/d] 
755.6 1102.7 3431.6 1.6 11.5 11.0 nd 0.7 0.3 
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Table 20. Plasma B6 vitamer profiles in paediatric patients with a seizure disorder partially responsive to vitamin B6 (PNPO and α-AASA negative) 

 

All units nmol/L, except PNP which is expressed as ‘concentration units’. Values outside reference range are shown in bold. nd = not detected; BD = twice per 

day ; AED = antiepileptic drug, unspecified; y = years; m = months; n = number of samples analysed ** control patients were taking the following 

medication: simvastatin (n=3); carnitine (n=1); amlodipine (n=1); trimethoprim (n=1)

 

 

 

Diagnosis and 

clinical 

information 

Age Medication** PLP PL PA PN PNP PMP PM PLP:PL PL:PA 

Reference range  

n=24 
4.3y – 16y 

(dose 

documented 

where known) 

46-321 4.6-18.1 16.4-139 nd-0.62 nd nd-9.3 nd 5.2 – 18.6 0.1 – 0.7 

 

Asperger 

syndrome and 

seizures. PN and 

PLP responsive 

 

(a) 11y11m 

 

AED 

 

54.5 

 

6.4 

 

38.6 

 

0.5 

 

nd 

 

5.13 

 

nd 

 

8.5 

 

0.2 

14 

(b)12y 8m 

PN                

[100 mg BD] 

PLP 

528.8 8532.2 5212.4 1.9 nd 4.6 3.1 0.1 1.6 

(c)13y 3m [30 mg/kg/d] 306.4 8452.5 5031.9 2.7 nd 4.1 5.1 0.04 1.7 

15 

Partially PLP 

responsive 

seizures 

2y 7m 
PLP                

[30 mg/kg/d] 
478.4 102.4 144.6 0.31 nd 6.8 nd 4.7 0.7 
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4.3.6.5 Other patients 

A pregnant adult female (Patient 16) (Table 21) had a reduced concentration of 

plasma PLP and PA and elevated PLP: PL ratio. Patient 17 (Table 21) on treatment 

with L-Dopa for an idiopathic dystonic movement disorder had a reduced plasma 

PLP and corresponding PL and PA. The plasma B6 vitamer profile was measured in 

Patient 18 (Table 21) at an age that falls outside of the reference range quoted. He 

had a disproportionately elevated plasma PL as evidenced by increased PL: PA ratio. 
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Table 21. Plasma B6 vitamer profiles in other patients 

 

All units nmol/L, except PNP which is expressed as ‘concentration units’. Values outside reference range are shown in bold. nd = not detected; BD = twice per 

day; AED = antiepileptic drug, unspecified ; y = years; m = months; n = number of samples analysed; ** control patients were taking the following 

medications: simvastatin (n=3); carnitine (n=1); amlodipine (n=1); trimethoprim

 

 

 

Diagnosis and 

clinical 

information 

Age Medication** PLP PL PA PN PNP PMP PM PLP:PL PL:PA 

Reference range 

n=24 
4.3y – 16y 

(dose 

documented 

where known) 

46-321 4.6-18.1 16.4-139 nd-0.62 nd nd-9.3 nd 5.2 – 18.6 0.1 – 0.7 

 

16 

 

Pregnancy       

(3
rd

 trimester) 

 

19y 5m 

 

Nil 

 

11.1 

 

4.6 

 

14.4 

 

0.3 

 

nd 

 

2.3 

 

nd 

 

2.4 

 

0.3 

17 

Idiopathic 

dystonia, speech 

and language 

disorder 

5y 5m Carbidopa 21.9 5 12.4 0.3 2.6 nd nd 4.4 0.4 

18 

Epileptic 

encephalopathy, 

mitochondrial 

respiratory chain 

phenotype 

4m AED 170.6 40.2 42.7 0.3 5.8 nd nd 4.2 0.9 
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4.4 DISCUSSION 

Vitamin B6 responsive seizures are an important cause of childhood epilepsy with up 

to 15% of idiopathic epilepsy responding to treatment with PN or PLP (125). Some 

of these children have a genetic diagnosis but many do not. New laboratory 

techniques are required to advance understanding in this field as the majority of 

established methods used for the determination of vitamin B6 in biological samples 

are not capable of measuring all of the individual B6 forms or do not have adequate 

sensitivity and specificity.  

This chapter describes an LC-MS/MS method to measure B6 vitamer profiles in 

human plasma and its application to (predominantly) paediatric patient populations. 

Performance of the method has been validated with regard to linearity over a 

physiological range, precision, and recovery and it is shown to be sufficiently 

sensitive to detect vitamer concentrations in the low nanomolar range. It has the 

advantage of using small sample volumes with a quick throughput time which can 

easily be applied for use in patient populations. 

4.4.1 Plasma B6 vitamer profiles in the reference population and those 

taking B6 supplementation  

The method was used to measure plasma B6 concentrations in children with 

genetically proven inborn errors of B6 metabolism, those without a diagnosis who 

have B6 responsive seizures and also in a reference paediatric population (Tables 18-

21). The reference population samples were drawn from outpatient clinics and 

covered an age range from early to late childhood. It did not include neonatal 

subjects or children in infancy, but provides a suitable range for most patients 

described in this study. Plasma B6 concentrations in this reference population were 

comparable to those reported previously (301;337). Few healthy children are on high 

dose B6 supplementation hence a reference range for this group of children is 

difficult to establish but should be pursued. At present comparisons to adult 

populations taking a B6 supplement from the literature are made.  
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Previous work has shown that individuals on modest pyridoxine supplementation (40 

mg/day) have elevated concentrations of PLP, PL and PA in plasma. PLP does not 

rise in a dose dependent manner, but increases to a threshold beyond which it does 

not increase. It is known that PLP is released from the liver into the circulation 

bound primarily to the lysine-190 residue of albumin and this protein-binding of PLP 

is believed to protect the coenzyme from hydrolysis and other reactions. The 

threshold seen for PLP in the case of supplementation possibly reflects the binding 

capacity of albumin. PL and PA however rise proportionally with dose as the flux 

through the catabolic pathway is increased (301;337). In these previous studies PN 

was detectable in the plasma of approximately half of the individuals taking PN 

supplementation but in the others it was ‘undetectable’ (301). PMP was not 

detectable in any samples and PM only in three individuals at low concentrations. 

PNP detected in the plasma samples of patients taking both placebo and PN 

supplementation by Midttun et al. was attributed by them to sample haemolysis in 

their series, although significant haemolysis is likely to result in elevated PMP in 

addition to PNP. 

In the current study, despite being on treatment doses of B6 (Table 18), the plasma 

vitamer profiles appear to show a characteristic pattern in some disease groups. This 

has not been reported previously and may be of use in clinical practice to aid 

diagnosis alongside existing methods. Measurement in much larger patient groups is 

necessary, however, before we can be confident of using a B6 profile alone for 

diagnosis. Future work should also examine profiles in untreated patient groups 

although in practice, where treatment with B6 is often urgent, these samples may be 

difficult to collect. 

4.4.2 PNPO deficiency and other PLP responsive patients 

In two children (Patient 1 & 2, Table 18) with PNPO deficiency on PLP treatment, 

reduced enzyme activity is evidenced by the accumulation of PM, PMP, PN and 

PNP. The presence of PMP and PM highlights the recycling role of this enzyme in 

normal human metabolism where PMP is recycled via a salvage pathway back to 

PLP (see Section 1.1.4.1). By contrast, the source of PN and PNP is likely to be 

attributable to the diet or multivitamin supplement as man is not capable of 

synthesising PN or PNP de novo. 
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Patient 3 has PNPO deficiency with epilepsy that responds to pyridoxine. He is part 

of a newly emerging PNPO phenotype that, in contrast to the originally described 

patients in whom PN treatment was ineffective, responds well to PN and does not 

require PLP treatment (unpublished observation). Given our current understanding of 

the enzymatic pathway for B6 vitamer interconversion, it seems likely that PN 

response in this group may represent a ‘leaky’ mutation whereby provision of excess 

substrate allows synthesis of the product, PLP. In all three patients (1, 2 and 3) 

highly elevated concentrations of PLP, PL and PA are also present, similar to that 

seen in control individuals on vitamin B6 supplementation. 

B6 vitamer profiles in normal individuals taking PLP supplementation have not been 

reported previously although from what is known of B6 metabolic pathways, we 

would expect similar elevations of PLP, PL and PA to those on PN supplementation. 

Patients 11(b), 12, 13, 14(c) and 15 on PLP treatment who do not have PNPO 

deficiency have such a profile (Table 19 & 20). Thus the presence of PM, PMP, PN 

and PNP in high concentrations in the plasma of PNPO patients appears to allow 

differentiation from normal individuals on supplementation and certainly from a 

reference population not taking B6. 

Considering those patients in whom a known inborn error of B6 metabolism has been 

excluded, but who show a response to PLP treatment (Patients 11(b), 12, 13, 14(c) 

and 15) different plasma profiles are evident (Tables 19 & 20). In particular the 

PLP:PL ratio is variable. This primarily reflects differing plasma PL concentrations, 

as PLP concentration is reasonably constant between patients. In patients 11(b) and 

14(c) PLP:PL is significantly reduced and in patient 15 it is elevated compared to the 

reference range. Patients 13 and 14 have a PLP: PL ratio which lies within or close to 

the reference range.  

As with all vitamers, plasma PL concentration is dependent on numerous factors. In 

patients on B6 supplementation the dosing frequency, timing of sample in relation to 

B6 dose (discussed in section 4.4.8 below) and length of treatment course may affect 

concentration. In the patients discussed here all had been on treatment for more than 

one month at the time of sampling, thus a steady state should have been reached. 

Plasma PL levels are also affected by the activity of tissue nonspecific alkaline 

phosphatase (TNSALP) and pyridoxal kinase (PK). TNSALP is known to be within 
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the normal range for all patients however PK has not been measured and deficiency 

of PK has yet to be described in patient groups. 

4.4.3 Antiquitin deficiency 

It is interesting to note that two siblings with pyridoxine dependent epilepsy due to 

antiquitin deficiency (Patients 4 & 5, Table 18) on PN therapy have reduced levels of 

PLP in plasma. Despite low PLP levels, PL and PA are significantly elevated leading 

to a considerably reduced PLP:PL ratio (Table 18). These two individuals also show 

elevation of PM, PMP and PN compared to the control population. In contrast 

patients 6 & 7 have a different profile with elevation in PLP, PL and PA and no other 

vitamers present. Clinically these children also differ in that Patients 4 & 5 suffered 

peripheral neuropathy secondary to PN therapy whereas Patients 6 & 7 have had no 

such complications. 

One possible explanation for this apparent discrepancy in results may lie in differing 

biochemical phenotypes between families. PLP forms an adduct with piperideine-6-

carboxylate, the equilibrium partner of α-AASA, which accumulates in antiquitin 

deficiency (Figure 5). The metabolic fate of this complex in vivo is not known 

however trichloroacetic acid used in the sample preparation (see Section 4.4.2) 

would be expected to liberate PLP from its complex with P6C. Patients 6 & 7 have 

more strongly elevated levels of α-AASA [28, 15 μmol/mmol creatinine] than 

patients 4& 5 [7.8, 7.4 μmol/mmol creatinine] which may be reflected in their 

differing plasma PLP concentrations. In vivo therefore, less plasma PLP may be 

available for catabolism to PA via PL in patients 6 & 7 as it is complexed with α-

AASA, thus PL and PA are less strongly elevated. Significant elevation of PN, PMP 

and PM in patients 3 & 4 is suggestive of reduced PNPO activity, the cause of which 

is unclear, but it may represent an unrelated single nucleotide polymorphism within 

the PNPO gene resulting in mildly reduced enzyme activity that is overwhelmed by 

the amount of PNP being generated from the PN supplement. 
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4.4.4 Molybdenum Cofactor (MoCoF) and reduced activity of Aldehyde 

Oxidase (AOX) 

Little is known about catabolic pathways of PLP in man and two patients (Patients 8 

and 9, Table 18) with genetically confirmed MoCoF deficiency provide evidence for 

the role of the MoCoF dependent aldehyde oxidase in the formation of PA from PL. 

The absolute value of PA in plasma is reduced compared to the reference population, 

although the increased PL:PA ratio is most striking and likely to be a more reliable 

indicator as it is unlikely to be affected by B6 intake from diet or medication (Table 

18). 

Patient 18 (Table 21) has a severe seizure disorder with neonatal onset which has 

clinical and biochemical features of a mitochondrial respiratory chain disorder (e.g. 

reduced complex IV activity in skin fibroblasts). Although it should be borne in mind 

that an age appropriate reference range is not available for this infant, the plasma 

vitamer profile showing increased plasma PL and an elevated PL: PA ratio is 

suggestive of aldehyde oxidase deficiency.  MoCoF deficiency was however 

excluded as a cause of the seizure disorder in this patient thus other causes of 

reduced AOX activity should be considered. In the case of this patient, liver 

dysfunction secondary to mitochondrial disease is a possible cause. 

4.4.5 Plasma B6 vitamers in pregnancy 

Human studies investigating the role of PLP in fetal development are understandably 

lacking. Based on our knowledge of the important functions of this vitamin in the 

central nervous system and the clinical effects evident in patients with inborn errors 

of metabolism resulting in B6 depletion (e.g. PNPO deficiency), we can however 

assume that adequate provision of PLP to the developing foetus is essential.  

The pregnant mother supplies B6 to the fetus as pyridoxal which readily crosses the 

placenta in both directions, probably by a passive mechanism which is not saturable. 

Not surprisingly the transfer is much greater in the direction of the foetus (338). In 

comparison there is much less transport of PLP from the placenta to the fetus. 

Plasma PLP concentrations are known to decrease in pregnant women early in 

gestation, from before the 16
th

 week and return to pre-conceptual levels in the post-
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partum period (339). Trumbo and Wang (340) showed that plasma concentrations of 

both PLP and PL fall during pregnancy and that their ratio is altered, with PLP 

decreasing to a larger degree than PL. This agrees with results from the pregnant 

subject (Patient 16; Table 21) reported here. In animal models, alkaline phosphatase 

levels are found to be reduced, thus it is surmised that placental PLP phosphatase 

activity may be responsible for the change (341). 

4.4.6 Plasma B6 vitamers and drug interactions 

As discussed in section 1.1.14, PLP readily interacts with many compounds non-

enzymatically. One well described example is the formation of an adduct between 

PLP and L-Dopa which results in inactivation of both compounds (147). Considering 

this, the B6 profile of Patient 17 (Table 21) on Carbidopa (L-Dopa and peripheral 

decarboxylase inhibitor) is interesting as it shows a reduced concentration of PLP 

and PA and a low-normal concentration of PL, the PLP:PL ratio is slightly reduced 

illustrating that PLP is reduced to a greater extent than PL. This patient may benefit 

from pyridoxine therapy with careful clinical and biochemical monitoring. 

4.4.7 Other applications of the LC-MS/MS method to patient populations 

In addition to the disorders of B6 metabolism discussed, this analytical method could 

be applied theoretically to other inborn errors on, or related to, this metabolic 

pathway. In hypophosphatasia absence of tissue non-specific alkaline phosphatase 

(TNSALP), results in an elevation of the phosphorylated B6 vitamers in plasma (most 

importantly PLP) which are unable to cross cell membranes including those at the 

blood brain barrier. A corresponding reduction in pyridoxal which can cross cell 

membranes has been reported. Although no patient samples were available for 

inclusion in this work, theoretically a characteristic plasma B6 profile would also be 

expected in this condition. 

Pyridoxal kinase is required for the phosphorylation of un-phosphorylated vitamers, 

most importantly PL to PLP. Pyridoxal kinase activity is known to be markedly 

reduced in erythrocytes of African Americans compared to those of European 

ancestry but this is not associated with a clinical phenotype (64). A genetic 

deficiency of pyridoxal kinase causing human disease has not been described 
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although the phenotype of brain pyridoxal kinase deficiency secondary to clock gene 

knockout has been demonstrated in animal models which suffer a lethal seizure 

disorder (41). A disturbed ratio of phosphorylated to non-phosphorylated plasma 

vitamers may aid identification of this theoretical disorder in targeted patient groups.  

The ability to measure B6 vitamers in plasma also provides important information 

about how normal concentrations and ratios are disturbed in individuals taking B6 

supplementation. The treatment doses used in the patients described here are large 

but are representative of normal clinical paediatric practice. A common feature to all 

cases is the massively elevated PL, PA and to a lesser extent PLP. This reflects the 

expected increased flux through intact catabolic pathways, however the effect of 

such supra-physiological concentrations in the long and short term is not known and 

warrants further study.  

4.4.8 Timing of dose and plasma B6 concentrations 

In subjects on supplementation, plasma concentrations of PLP and PA are dependent 

on timing of the last B6 dose. In healthy subjects given doses of up to 25 mg of PN, 

typically there is a rise in PL which peaks at 1-2 hours and then falls rapidly to 

baseline by 8 hours. In contrast PLP increases significantly by 1 hour and is well 

maintained for over 24 hours. Urinary PA appears more slowly and is cleared soon 

after, within 24 hours (342;343). Ubbink et al. (344) showed that a PN dose of      

100 mg leads to increased plasma PL and PLP concentrations which do not return to 

baseline within  48 hours, although the rate of reduction in PL is much greater than 

that seen for PLP. 

Unfortunately accurate information about the timing of doses is not known for the 

patients reported here, however, it seems unlikely that timing of the dose will 

significantly affect either plasma PLP or PA given the maximum 12 hourly interval 

dosing regimen. In patients on low dose PN, plasma PL normalises quickly (within 

hours) but limited evidence suggests that this is not the case for larger doses (344), 

which is more relevant for the patients reported here. 
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4.4.9 Mega doses of vitamin B6 and toxicity 

Ingestion of large pyridoxine doses in humans is known to cause a severe sensory 

neuropathy which is dependent on dose and duration and usually reversible on 

stopping (93). Animal studies suggest that pyridoxine neuropathy is characterised by 

necrosis of the dorsal root ganglion sensory neurons and degeneration of both 

peripheral and central sensory projections (345). Important work in rats also shows 

that both protein deficiency and dehydration/oliguria may enhance the toxicity of 

pyridoxine, independent of the route of administration (162). Effects on the central 

nervous system can also be seen as, paradoxically, both pyridoxine (168) and 

pyridoxal phosphate (131) may be pro-convulsant when used in neonates and young 

infants in clinical practice. 

The mechanisms of vitamin B6 toxicity have not been fully elucidated. Levine et al. 

(162) showed that PL and PLP are more lethal to rats than PN or PM, although the 

typical clinical and histological evidence of toxicity (severe damage to primary 

sensory neurones that mimic axonal reaction with central chromatolysis) usually 

associated with PN were not seen. In contrast equal toxicity of PN, PM and PL was 

seen in dorsal root ganglia cell culture (346). The question of which, if any, of the 

vitamers are more toxic and the resulting implications for patient treatment and 

monitoring remains unanswered. As all vitameric forms are ultimately metabolised to 

the cofactor PLP before catabolism to PA via PL, and most patients metabolise 

exogenous PN and PLP without any significant increase in plasma PN level, in man 

it seems unlikely that PN per se is responsible for toxicity. It is, however, possible 

theoretically that toxicity of mega B6 doses affects only a subgroup of the population 

in whom there is a relatively reduced PNPO activity where elevated plasma PN is 

observed on treatment. Further research is needed and measurement of all B6 

vitamers in plasma and other body fluids should form an important part of this. This 

work also indicates that clinicians should consider monitoring nerve conduction in 

patients on both PN and PLP therapy.  
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4.5 SUMMARY  

In summary, LC-MS/MS measurement of B6 vitamers in plasma is a valid, quick and 

practical method for use in various patient groups. It is a valuable tool in the battery 

of investigations for childhood and neonatal epilepsy and may aid diagnosis in B6 

dependent seizure disorders, including in patients already commenced on treatment. 

Further B6 vitamer data should be gathered in patient groups on B6 supplementation 

to advance understanding of possible toxic mechanisms of this therapy which is 

routinely used in large numbers of adult and paediatric populations. 
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5.1 INTRODUCTION 

Autism is a common neurodevelopmental disorder characterised by difficulties in 

social communication, reciprocal social interaction and imaginary thought 

accompanied by restrictive, stereotyped behaviours. Up to one third of patients have 

associated co-morbidities including seizures, cognitive impairment and sleep 

disorders (239). Individuals with Asperger’s syndrome share many of these features 

but have preserved language and cognitive function.  

At present the diagnosis is solely clinical and is made by a multi-disciplinary team 

using detailed neuropsychological assessments which should include the input of 

family, carers and teachers. Standardised criteria such as the DSM-IV (Diagnostic 

and Statistical Manual of Mental Disorders) are widely used and provide consensus 

for diagnosis around the world. Of note, the diagnostic features must have onset 

before 3 years of age recognising the developmental nature of this disorder.  

Numerous epidemiological studies provide compelling evidence for a genetic basis 

(347;348), but despite intense research activity the aetiology of autism remains 

elusive as do effective treatments. It is appealing to consider that regardless of 

genetic basis, a vast complexity of differing underlying molecular mechanisms may 

converge on a final common biochemical pathway which is likely to be of particular 

importance during early neurodevelopment.  

Thus an alternative approach to understanding the pathophysiology of autistic 

spectrum disorders is from a biochemical perspective. More than 50 years ago 

elevated whole blood serotonin or hyperserotonaemia was first described in infantile 

autism (228). Subsequently more than 25 studies have reproduced this observation, 

where typically the concentration of whole blood or platelet serotonin is found to be 

50% higher than normal, in one third of subjects (349).  

However, the underlying mechanism of hyperserotonaemia and how it may relate to 

the clinical phenotype remains unknown (348). Very few studies have investigated 

whole blood serotonin in patients with high functioning autism and Asperger’s 

syndrome and they represent an interesting group for further work. 
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In the central nervous system serotonin is a neurotransmitter whose role is implicated 

in many and varied aspects of behaviour including mood, sleep, and appetite. In 

addition, serotonergic neurones are thought to play a vital role in the developing 

nervous system, often playing a neuro-modulatory function. If serotonin is indeed 

implicated in the development of autism, its concentration in the central nervous 

system (CNS) is more likely to be of relevance than in the periphery, although the 

incomplete blood brain barrier during fetal development and resulting exposure of 

the developing brain to peripherally produced serotonin should be borne in mind.  

Work examining central serotonin metabolism in autistic subjects however is 

inconclusive with the metabolite of serotonin (5-HIAA) measured in CSF often 

showing no difference to control subjects (350). This may reflect small patient 

numbers, poorly defined phenotypes and the fact that measurement of CSF 5-HIAA 

concentration is a crude approach to examine what may be small regional variations 

in serotonin metabolism.  

Serotonin is synthesised from the essential amino acid tryptophan which competes 

with the other large neutral amino acids (Leucine, Leu; Isoleucine, Ile; Valine, Val; 

Tyrosine, Tyr; Phenylalanine, Phe) to cross the blood brain barrier via the L-type 

amino acid transporter (LAT1). The two step metabolic pathway is shown in Figure 

30 where the rate limiting step in synthesis is tryptophan hydroxylase (TPH). Under 

normal physiological conditions this enzyme is not fully saturated, thus an increase 

in tryptophan concentration may result in increased 5-hydroxytryptophan (5-HTP) 

and serotonin production (188). Aromatic amino acid decarboxylase (AADC) 

catalyses the second and final step which synthesises serotonin from 5-HTP and 

requires pyridoxal phosphate (PLP) as a cofactor. This stage can become rate-

limiting in B6 deficiency states or when AADC activity is very low, for example 

secondary to a genetic deficiency (351). 

Autistic spectrum disorders, serotonin and vitamin B6 metabolism have been 

discussed in depth in Sections 1.1, 1.2 and 1.3. 
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Figure 30.  Synthetic pathways of serotonin and dopamine  

(i) tryptophan hydroxylase (ii) aromatic amino acid decarboxylase (iii) tyrosine hydroxylase 

 

5.2 HYPOTHESIS 

A proportion of individuals with high-functioning autism and Asperger’s syndrome 

will, like a significant proportion of children at the more severe end of the spectrum, 

show hyperserotonaemia. Investigation of plasma levels of amino acids (particularly 

tryptophan), AADC activity and PLP status may provide clues to the biochemical 

derangement. 

5.3 AIM 

To explore the relationship of whole blood serotonin, plasma B6 vitamers (including 

pyridoxal phosphate), tryptophan and AADC activity in a well-defined autistic 

cohort and compare results to age, gender and ethnically matched controls. Any 

abnormality detected at a biochemical level will then direct targeted gene 

sequencing. 
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5.4 STUDY DESIGN 

The study is a case-control design. Whole blood serotonin may be affected by age, 

gender and ethnicity (229;349) thus control subjects were selected to match for these 

variables as far as possible. Some studies suggest that serotonin may be influenced 

by time of day (352) therefore all samples were collected within a six hour period, in 

the late morning to afternoon.  

Pyridoxal phosphate concentrations are known to be affected during periods of acute 

infection and inflammation (89) so the participants recruited were not systemically 

unwell at the time of sampling or in preceding days. As vitamin B6 concentrations in 

plasma reflect dietary intake, both autistic and control patients were asked to 

complete a 3-Day Food Diary to allow estimation of B6 intake and to post it back to 

the researcher in a stamped addressed envelope. 

Whole blood serotonin concentration is influenced by the concentration of its 

precursor tryptophan which in turn is related to other plasma amino acids. 

Additionally plasma tryptophan is extensively bound to albumin, thus the ‘free’, 

biologically active form is affected by serum albumin concentrations. A full plasma 

amino acid profile and albumin concentration was measured alongside whole blood 

serotonin in each autistic subject and in control subjects when sample was sufficient. 

5.5 METHODS 

5.5.1 Subject recruitment 

5.5.1.1 Autistic subjects 

Patients with autistic spectrum disorder were recruited from the Social and 

Communication Disorders Clinic at Great Ormond Street Hospital for Children, 

London. This clinic accepts referrals from Consultant Paediatricians and Child 

Psychiatrists for assessment of children and young adults in whom a diagnosis of 

‘high functioning’ autism is suspected and a second opinion is required. Where 

patients met inclusion criteria (Table 22) consent was taken from young adults and 
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their parents and assent taken from children too young to give full consent. Samples 

were collected following psychological assessment. 

A small number of families approached the research team as a result of publicity on 

the Great Ormond Street Hospital website; those who met inclusion criteria (Table 

22) were recruited into the study and samples were collected. 

All children were assessed using one or more standardised, validated diagnostic tools 

described in Section 5.5.1.2. Samples from those in whom a diagnosis of autistic 

spectrum disorder was not reached according to diagnostic criteria were not included 

in the subsequent analysis. Other relevant medical and neurodevelopmental 

information was collected from the clinical notes and parental interview. 

 

Table 22. Inclusion and exclusion criteria for autistic and control subjects 

 Inclusion Criteria Exclusion Criteria 

Autism 

Cases of all ages and both sexes from 

any ethnic background who fulfil 

DSM IV and ICD-10 criteria for the 

diagnosis of Autistic Spectrum 

Disorder based on standardised 

assessments, for example Autism 

Diagnostic Observation Schedule 

(ADOS) and The Developmental, 

Dimensional and Diagnostic 

Interview (3Di) 

Any child or family where an 

accurate diet and medication history 

is not available 

 

Any case with intercurrent illness, 

defined as systemically unwell or 

febrile within the previous 48 hours 

 

Controls Age and gender matched to cases 

Any case with intercurrent illness, 

defined as systemically unwell or 

febrile within the previous 48 hours 

 

Any case who has a medical 

diagnosis or chronic illness 

(diagnosed or under investigation) 

which may confound interpretation 

of results 

 

Any child or family where an 

accurate diet and medication history 

is not available 
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5.5.1.2 Measures 

The Developmental, Dimensional and Diagnostic Interview (3Di) 

The 3Di is a validated, parent-report computerized interview which emulates the 

Autism Diagnostic Interview – Revised (ADI-R) diagnostic algorithms and also 

measures the associated features of autism (240). Like the ADI-R, the 3Di uses ICD-

10 and DSM-IV-TR diagnostic guidelines for autistic spectrum disorders. The 3Di 

takes a developmental history and a selection of 122 questions concerning both 

current and past symptoms both of which contribute to diagnostic algorithms which 

give scores in the three domains of social interaction, communication, and repetitive 

and stereotyped behaviour (RSB).  

In addition to its ADI-R equivalent pervasive developmental disorders (PDD) 

algorithm, the 3Di also includes scales for assessing the following associated features 

of autism: Fine Motor Impairment, Visuo-Spatial Impairment, Gross Motor 

Impairment; Auditory Sensitivity; Feeding Difficulties and Sleep Problems. 

The Autism Diagnostic Observation Schedule (ADOS) 

The ADOS (353) is a semi- structured observational assessment, which measures 

social interaction, communication, repetitive behaviour and imagination for 

individuals with suspected PDD. It comprises four modules tailored to an 

individual’s language ability. The algorithm uses selective social communication and 

reciprocal social interaction scores to generate a total score for each domain. 

Elevated scores place an individual in the autism spectrum or autism diagnostic 

range, depending on the severity and frequency of the behaviours displayed. All 

ADOS were scored from video recordings. 

The Strengths and Difficulties Questionnaire (SDQ)  

The SDQ comprises 25 items in 5 subscales: conduct problems, emotional problems, 

hyperactivity, peer problems and prosocial behaviour (354). Rated by parents and by 

teachers, it has been shown to possess acceptable reliability and validity when 

assessing adaptation and psychopathology in children and adolescents both as a 

screening instrument (355) and as a dimensional measure (356). 
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Intelligence Quotient (IQ) 

IQ data were collected as part of clinical assessment over the time frame of the study, 

and as such a variety of measures were used. Instruments included the British Picture 

Vocabulary Scale, the Wechsler Abbreviated Scale of Intelligence and the Wechsler 

Intelligence Scale for Children – Third and Fourth Editions.  Summary variables 

were computed from these scores, for verbal and performance IQ, standardized to 

have a mean of 100 and a standard deviation of 15.  In the current study verbal IQ 

data were available for all participants, and performance IQ data were available for 

84% of the sample. This reflects changes in clinic practice over time rather than any 

tendency to conduct performance IQ testing depending upon a particular child’s 

presenting difficulties.  

Final consensual clinical diagnosis was based upon information from the 3Di, plus 

(where available) the Autism Diagnostic Observation Schedule (353), and structured 

reports from the child’s nursery or school. Due to the difficulties of using DSM 

criteria to distinguish Asperger’s syndrome from autistic disorder, Szatmari (2000) 

(357) guidelines were used to differentiate these according to whether or not there 

was a delay in the onset of spoken language. Thus, for a diagnosis of autism, scores 

above the standard 3Di cut-points in reciprocal social interaction, communication 

and repetitive, stereotyped behaviour (RSB) were required, as well as delayed 

development of onset of single word (>24 months) or phrase speech (>36 months). 

Asperger’s syndrome was diagnosed in the presence of above-threshold 3Di scores 

for reciprocal social interaction, communication and RSBs, without a delay in either 

single-word or phrase speech.  

5.5.1.3 Control subjects 

Age, gender and ethnically matched controls were recruited from outpatient clinics at 

Great Ormond Street Hospital for Children. Clinical notes were reviewed and parents 

interviewed to ensure that these subjects had no diagnosis or family history of a 

neurodevelopmental disorder (including autism) and consumed a healthy diet at the 

time of sampling. Where applicable, medication history was documented. Inclusion 

and exclusion criteria for autistic subjects and controls are shown in Table 22.  
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5.5.1.4 Sample size and power calculation 

For 90% power to detect a difference in whole blood serotonin, 22 matched pairs 

were required. 

5.5.1.5 Ethical approval 

Ethical approval for this study was granted by the Riverside Research Ethics 

Committee (09/H0706/85). 

5.5.2 Collection and handling of samples 

Subjects and controls provided a single blood sample for analysis of biochemical 

parameters as detailed in Table 23. The time of day and relation to food intake was 

documented. 

Table 23. Collection and handling of blood samples for analytes measured in autistic 

and control subjects 

Analyte Sample and handling Sample bottle 
Sample volume 

(ml) 

Pyridoxal 5’-

phosphate 

(HPLC analysis) 

Plasma protected from light, stored 

frozen -80°C 
EDTA 1-2 

B6 vitamers and 4-

pyridoxic acid 

(LC-MS/MS 

analysis) 

Plasma protected from light, stored 

frozen -80°C 
EDTA 1-2 

Whole blood 

serotonin 

Whole blood, frozen at -70°C at the 

bedside 

EDTA with 

ascorbic acid 
2 

Plasma amino acids 

and albumin 

Plasma frozen at -70°C or analysed 

immediately 
Lithium Heparin 1 

Aromatic aminoacid 

decarboxylase (dopa 

decarboxylase) 

activity 

Plasma frozen at -80°C 
Lithium Heparin or 

EDTA 
1 

*DNA 
Whole blood. DNA extracted and 

frozen at -20°C 
EDTA 2 

* Sample collected in autistic subjects only 
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5.5.3 Laboratory methods 

Whole blood serotonin was analysed by HPLC with fluorescence detection in the 

Neurometabolic Diagnostic Laboratory, National Hospital for Neurology and 

Neurosurgery, Queen Square, London (289) (Section 2.2.4). The whole blood 

serotonin samples were analysed in six batches over a period of 24 months; each 

sample was analysed within 4 months of collection, prior to which it was stored at     

-80°C.  

All B6 vitamers were measured in plasma using HPLC linked to tandem mass 

spectrometry as described in Section 2.2.2. Each sample was spun within 1 hour of 

collection and plasma frozen at -80°C. The samples were then analysed in 6 batches 

over a period of 6 months and prior to analysis were stored at -80°C for between 1 

and 16 months. 

Plasma PLP was also analysed by a HPLC method using a Chromsystems® kit in the 

Neurometabolic Diagnostic Laboratory, National Hospital for Neurology and 

Neurosurgery, Queen Square, London, as described in Section 2.2.1.  

Plasma aromatic aminoacid decarboxylase (AADC) activity was measured at the 

Institute of Neurology, Queen Square, London using an assay that measures the 

conversion of L-dopa into dopamine by AADC present in human plasma (288) 

(Section 2.2.3).  Since AADC activity is much higher with L-dopa as a substrate, this 

method is preferred over activity measurement using 5-HTP as a substrate for 

diagnostic purposes (358).  

Briefly, plasma is first incubated for 120 minutes with the cofactor pyridoxal 5’-

phosphate. In the second stage L-dopa is added to the reaction mixture and incubated 

for 90 minutes to allow AADC to convert L-dopa into dopamine.  The reaction is 

stopped with perchloric acid to precipitate the protein in the sample and the protein is 

removed by centrifugation.  The sample is then injected onto a C18 reverse-phase 

HPLC column and dopamine present in the sample is measured by electrochemical 

detection. 

Samples were analysed in four batches over a period of 22 months. Samples were 

collected and stored at -80 °C for a maximum of 8 months before analysis.  
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Plasma amino acids and albumin were measured on the day of sampling in the 

chemical pathology laboratories, Great Ormond Street Hospital, London by HPLC or 

frozen at -70
o
C pending this analysis. 

5.5.4 Statistical analysis 

Data was tested for normal distribution using graphical representation and the 

Kolmogorov-Smirnov test. 

Normally distributed data was subsequently analysed using parametric tests 

(Student’s t-test) and data that were not normally distributed were analysed using 

non-parametric (Mann-Whitney U) tests to evaluate differences between patient and 

control groups. Linear regression analysis and calculation of correlation coefficients 

(parametric data, Pearson r and non-parametric data, Spearman r) were used to 

investigate the relationship between variables. 

Some analytes were also compared to a laboratory reference range in addition to age 

matched controls. In particular the upper reference limit for whole blood serotonin in 

the National Hospital for Neurology and Neurosurgery Laboratory was used in a 

Fisher’s exact test to compare proportions. This reference range was historically 

devised using disease controls, (paediatric and adult patients without neurological 

disease) and healthy adult volunteers.  

5.5.6 Analysis of Food Diary 

This was not undertaken as insufficient numbers were returned. 

5.6 RESULTS 

5.6.1 Demographic and clinical characteristics of case and control 

populations  

Table 24 shows demographic information, clinical diagnosis and regular medications 

for case and control groups.   

20 cases were recruited from the Social and Communication Disorders clinic and 3 

from advertisement. Of the 20 children recruited via the Social and Communication 
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Disorders clinic, one was subsequently excluded as he did not fulfil diagnostic 

criteria for autistic spectrum disorder or Asperger’s syndrome. 

The control and autistic groups were matched for age and an unpaired t-test showed 

there was no statistically significant difference between them (p = 0.53) (Figure 31 

and Table 24). 21 of the 22 cases with autistic spectrum disorder were matched for 

gender; 19 of the 22 cases were matched for ethnicity. 

All blood and urine samples in the autistic and control subjects were collected 

between 11:00 and 17:00.  

The food diary was returned in only a small number of the control group (5 out of 22 

control subjects and 13 out of 22 autism subjects) therefore it was not meaningful to 

analyse dietary intake in the autistic or control group as a whole. 
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Table 24. Demographic, diagnostic and medication information for autistic and control 

groups 

 Autism Controls 

Number 22 22 

Gender 19M, 3F 18M, 4F 

Ethnicity 20 Caucasian; 2 Asian 19 Caucasian, 2 Asian, 1 Turkish 

Age range 

(months) 
54 – 222 52 - 216 

Mean (months) 144.1 152.5 

Median (months) 143.0 162.5 

Standard 

deviation 
41.5 45.1 

Standard error 8.8 9.6 

Regular 

medications and 

nutritional 

supplements 

Nil                                               17 

Multivitamin                                 1 

Cod liver oil                                  2 

Vitamin C                                      1 

Clonidine                                       1 

Sodium valproate                          1 

Nil                                                 16 

HMG CoA reductase inhibitor        4 

Amlodipine                                    1 

Trimethoprim                                 1 

Clinical diagnosis See Table 22 

Familial hypercholesterolaemia    11 

Mixed hyperlipidaemia                   1 

Urological or structural renal 

abnormalities                                   6 

Medium chain acyl-CoA 

dehydrogenase deficiency               2 

α1-Antitrypsin deficiency                1 

Galactosaemia                                 1 

 

M – male; F - female 
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Figure 31. Graph showing that there is no statistically significant difference in age 

distribution between the autistic and control group 
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5.6.2 Whole blood serotonin in autistic and control populations 

Results for autistic subjects and controls are shown in Table 25 and Figures 32 and 

33. Whole blood serotonin concentration is normally distributed in both groups and 

passed the Kolmogorov-Smirnov test for normality.  

 

Table 25. Whole blood serotonin concentration in the autistic and control group 

showing the range, mean, median, standard deviation and standard error 

 Autism Control 

Total number 22 22 

Range 

(nmol/L) 
539 - 3265 485 - 2792 

Mean 

(nmol/L) 
1646 1406 

Median 

(nmol/L) 
1560 1411 

Standard deviation 618.1 561.5 

Standard error 131.8 119.7 

 

 



206 

 

0-
50

0

50
0 

- 1
00

0

10
00

 - 
15

00

15
00

 - 
20

00

20
00

 - 
25

00

25
00

 - 
30

00

30
00

 - 
35

00

0

2

4

6

8

10

Whole blood serotonin (nmol/L)

F
re

q
u

en
cy

0-
50

0

50
0 

- 1
00

0

10
00

 - 
15

00

15
00

 - 
20

00

20
00

 - 
25

00

25
00

 - 
30

00

30
00

 - 
35

00

0

2

4

6

8

10

Whole blood serotonin (nmol/L)

F
re

q
u

en
cy

 

Figure 32. Normal distribution of whole blood serotonin concentration in autistic group 

(A) and control group (B) 

 

 

A. 

B. 
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The two groups were compared statistically using an unpaired t-test; there was no 

significant difference in whole blood serotonin concentration between the autistic 

and control group as shown in Figure 33 (p = 0.18). 
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Figure 33. Comparison of whole blood serotonin concentration in autistic group and 

control group 

 

The proportion of subjects with elevated serotonin within each population was also 

compared using a two-tailed Fisher’s exact test. Whole blood serotonin results were 

converted into categorical data by using the upper limit of the laboratory normal 

reference range as a cut-off; a value for whole blood serotonin of >1600 nmol/L was 

considered to be elevated and <1600 nmol/L as not elevated. Results of two-tailed 

Fisher’s exact test (Table 26) showed no difference between the autistic and control 

population (p=0.3475). This data is presented graphically in Figure 34. 
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Table 26. Data for two-tailed Fisher’s exact test of whole blood serotonin concentration 

in autistic and control groups 

Whole blood serotonin 

(nmol/L) 
Autism Control Total 

>1600 (elevated) 10 6 16 

<1600 (not elevated) 12 16 28 

Total 22 22 44 
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Figure 34. Distribution of whole blood serotonin concentration by age in both autistic 

and control subjects relative to the laboratory upper reference limit (1600 nmol/L) 

 

 

 



209 

 

The relationship between age and whole blood serotonin was examined in the autistic 

and control group by linear regression analysis and is represented graphically in 

Figures 35A and 35B, respectively. There is a trend to decreasing whole blood 

serotonin concentration with age in the autistic population, although this does not 

reach statistical significance (Pearson r = -0.38, r
2
 = 0.38, p=0.08). There is no 

apparent relationship between whole blood serotonin concentration and age in the 

control group (Pearson r = 0.002, r
2
 = 0.00, p=0.99). 
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Figure 35. Distribution of whole blood serotonin by age in autistic group (A) and 

control group (B) 

A trend to reducing concentration of whole blood serotonin with age is seen in the 

autistic group (Pearson r = -0.38, r2 = 0.38, p=0.08); no relationship is evident in the 

control group (Pearson r = 0.002, r2 = 0.00, p=0.99). 
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5.6.3 Plasma albumin and amino acids in autistic and control populations 

Plasma albumin and amino acids were measured in 21 of 22 autistic subjects; the 

sample was insufficient in one case. Due to limited sample availability, sufficient 

sample to measure albumin and amino acids was available in only 9 of 22 control 

subjects. Results are shown in Tables 27-29 and compared to the laboratory 

paediatric reference range. Due to the small numbers in the control group, non-

parametric statistical tests were applied. 

It was found that albumin concentration was normal in all subjects (data not shown). 

A significant difference between the autistic and control population was evident for 

plasma glycine and taurine; there was no statistically significant difference for the 

other amino acids. 
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Table 27.  Plasma amino acid concentrations in autistic and control populations (A) 

*indicates a significant difference, p<0.05 

 

 

 

Paediatric 

reference 

range 

Glycine Serine Threonine Proline Leucine Isoleucine Valine Alanine 

100-330 90-290 70-220 85-290 65-220 26-100 90-300 150-450 

 Autism Control Autism Control Autism Control Autism Control Autism Control Autism Control Autism Control Autism Control 

Range 

(nmol/L) 

151 – 

509 

136 – 

379 

80 – 

225 

76 – 

135 

66 – 

299 

81 – 

144 

123 – 

317 

151 – 

358 

80 – 

198 

96 – 

200 

47 – 

115 

51 – 

117 

152 – 

356 

187 – 

359 

244 – 

519 

293 – 

466 

Mean 

(nmol/L) 
253 209.7 130.5 107.2 131.5 110.7 207.6 235.6 126.6 126.1 69.6 71.2 231.6 245.3 375.4 396.7 

Median 

(nmol/L) 
227 194 122 111 116 112 189 216 118 118 66 68 216 245 360 401 

Standard 

deviation 
82.9 67.9 35.2 18.4 49.4 24.8 54.6 59.6 31.8 24.4 19.9 20.4 56.7 53.7 84.3 50.9 

Standard 

error 
18.1 22.6 7.7 6.1 10.8 8.3 11.9 19.9 6.9 11.5 4.3 6.8 12.4 17.9 18.4 16.9 

p value 0.04* 0.07 0.26 0.22 0.87 0.68 0.47 0.53 
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Table 28. Plasma amino acid concentrations in autistic and control populations (B) 

 

*indicates a significant difference, p<0.05 

 

Paediatric 

reference 

range 

Glutamine Arginine Ornithine Lysine Methionine Taurine Phenylalanine Tyrosine 

480-800 40-120 25-120 100-300 10-60 40-140 35-100 30-120 

 Autism Control Autism Control Autism Control Autism Control Autism Control Autism Control Autism Control Autism Control 

Range 

(nmol/L) 

408 – 

654 

466 – 

627 

25 – 

136 
58 – 99 

45 – 

166 

48 – 

105 

95 – 

273 

102 – 

250 
15 – 44 16 – 34 

39 – 

132 
41 – 64 42 – 91 45 – 86 37 - 102 49 - 99 

Mean 

(nmol/L) 
547.5 552 73.4 73.2 86.4 75.1 170 175.6 25.7 24.1 65.1 50.2 61.9 60.9 66.7 67.8 

Median 

(nmol/L) 
551 553 69 71 85 76 163 174 22 23 59 49 59 55 63 60 

Standard 

deviation 
66.5 60.3 23.6 12.8 27.9 19.5 40.9 46.5 8.3 5.4 20.8 8.9 12.6 14.3 17 16.6 

Standard 

error 
14.5 20.1 5.2 4.3 6.1 6.5 8.9 15.5 1.8 1.8 4.5 2.9 2.7 4.8 3.7 5.5 

p value 0.91 0.86 0.37 0.68 0.96 0.03* 0.65 1.0 
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Table 29. Plasma amino acid concentrations in autistic and control populations (C) 

 

Paediatric 

reference range 

Tryptophan Histidine Asparagine Aspartate Glutamic acid 

30-80 30-150 15 - 83 1 - 17 25-130 

 Autism Control Autism Control Autism Control Autism Control Autism Control 

Range 

(nmol/L) 
27 – 73 49 – 88 64 – 112 63 – 102 42 – 74 36 – 78 1 – 11 2 – 6 24 – 402 39 – 147 

Mean 

(nmol/L) 
52 60.7 89.1 81 56.4 50.7 4.4 3.1 88.4 70.9 

Median 

(nmol/L) 
61 56 87 76 51 50 4 3 71 70 

Standard 

deviation 
11.3 13.6 11.9 13.6 11.4 12.8 2.2 1.3 78.2 32.6 

Standard error 2.5 4.5 2.6 4.5 2.6 4.3 0.5 0.4 17.1 10.9 

p value 0.98 0.21 0.23 0.09 0.54 
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Tryptophan competes with other large neutral amino acids (LNAA) to enter the 

central nervous system via the LNAA transporter (LAT1), thus the concentration of 

tryptophan relative to other LNAA (Leu, Ile, Val, Tyr, Phe) is of importance for 

central serotonin synthesis. 

The tryptophan: large neutral amino acid ratio (Trp: LNAA) for the autistic and 

control groups are presented in Tables 30 and 31. There is no significant difference 

between autistic and control populations for total LNAA concentration (p = 0.94) or 

Trp: LNAA ratio (p = 0.80). 

Table 30. Range, mean, median, standard deviation and standard error of the plasma 

concentration of large neutral amino acids [Leu, Ile, Val, Tyr, Phe], tryptophan and the 

ratio of Trp: LNAA in autistic patients 

 
Total LNAA 

(nmol/L) 

Trp 

(nmol/L) 
Trp:LNAA 

Range 376 – 790 27 – 73 0.07 – 0.14 

Mean 556 52 0.12 

Median 556 61 0.11 

Standard 

deviation 
123.6 11.3 0.02 

Standard error 26.9 2.5 0.03 

LNAA = large neutral amino acids; Trp = tryptophan 

Table 31. Range, mean, median, standard deviation and standard error of the plasma 

concentration of large neutral amino acids [Leu, Ile, Val, Tyr, Phe], tryptophan and the 

ratio of Trp: LNAA in control patients 

 

 

Total LNAA 

(nmol/L) 

Trp 

(nmol/L) 
Trp:LNAA 

Range 455-861 49-88 0.08-0.13 

Mean 571.3 60.7 0.11 

Median 544.0 56.0 0.10 

Standard 

deviation 
131.9 13.6 0.01 

Standard error 43.9 4.5 0.004 

LNAA = large neutral amino acids; Trp = tryptophan 
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5.6.3.1 The relationship of whole blood serotonin with large neutral amino acids 

Figures 36 & 37 and Tables 32 & 33 show the results of correlation and linear 

regression analysis of whole blood serotonin and plasma large neutral amino acids in 

the autistic and control group.  

In the autism group a positive correlation is evident for all amino acids except valine 

and the relationship is statistically significant for tryptophan, tyrosine and 

phenylalanine. In the control group no statistically significant correlation is evident. 

Table 32. Pearson correlation coefficient (r), r
2
 and p value of linear regression of 

whole blood serotonin concentration and plasma large neutral amino acids in autistic 

population 

Graph Amino acid Pearson r r
2 

p value 

A Tryptophan 0.62 0.39 0.002 

B Tyrosine 0.51 0.264 0.017 

C Phenylalanine 0.55 0.30 0.01 

D Isoleucine 0.34 0.11 ns 

E Valine 0.06 0.003 ns 

F Leucine 0.40 0.16 ns 

ns = not significant, i.e. p >0.05 

 

Table 33. Spearman correlation coefficient (r), r
2
 and p value of linear regression of 

whole blood serotonin concentration and plasma large neutral amino acids in control 

population 

Graph Amino acid Spearman r r
2 

p value 

A Tryptophan -0.03 0.02 ns 

B Tyrosine 0.05 0.03 ns 

C Phenylalanine 0.30 0.09 ns 

D Isoleucine 0.25 0.05 ns 

E Valine 0.10 0.06 ns 

F Leucine 0.46 0.14 ns 

ns = not significant, i.e. p >0.05 
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Figure 36. Relationship of whole blood serotonin to large neutral amino acids in plasma 

of autistic population 

A = tryptophan; B= tyrosine; C = phenylalanine; D= isoleucine; E = valine; F = leucine 

 

A. B. 

C. 
D. 

E. 
F. 
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Figure 37. Relationship of whole blood serotonin to large neutral amino acids in plasma 

of the control population 

A = tryptophan; B= tyrosine; C = phenylalanine; D= isoleucine; E = valine; F = leucine.  
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5.6.4 Plasma B6 vitamers in the autistic and control population 

Results for plasma B6 vitamers in 21 autistic subjects and 21 control subjects are 

shown in Table 34 and Figure 38. There was insufficient sample available to analyse 

B6 vitamers in control subject 10 and plasma pyridoxic acid (PA) was not 

quantifiable in control subject 13. One subject in the autistic group was taking an 

over the counter multivitamin preparation containing pyridoxine, this sample was not 

included in the analysis. Each plasma sample was run in duplicate and the mean 

concentration is presented.  

Groups were compared statistically using the Mann Whitney U test for non-

parametric data as some data were not normally distributed according to the 

Kolmogorov-Smirnov (KS) test. No statistical difference was observed between 

groups for total B6 (sum of PLP, PMP, PNP, PL, PA, PN and PM), pyridoxal 

phosphate (PLP), pyridoxic acid (PA), pyridoxine (PN) or pyridoxamine phosphate 

(PMP). Plasma PL was significantly lower in the autistic group compared to controls. 

Pyridoxine phosphate (PNP) and pyridoxamine (PM) were not detectable in any 

subject. 
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Figure 38. Graph showing total plasma vitamin B6 concentration in autistic and control 

groups 
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Table 34. Plasma B6 vitamer concentrations in autistic and control populations showing range, mean, median, standard deviation, standard error, 

results of Kolmogorov-Smirnov (KS) normality test and p value of Mann Whitney U 

 
PLP PL PA PMP PN PNP PM Total B6 

Autism Control Autism Control Autism Control Autism Control Autism Control Autism Control Autism Control Autism Control 

Total 

number 
21 21 21 21 21 20 21 21 21 21 21 21 21 21 21 21 

Range 

(nmol/L) 

46.8 – 

206.2 

46.4 – 

350.1 

4.2 – 

18.6 

5.8 – 

30.1 

16.0 – 

119.0 

17.6 – 

123.2 
nd - 9.1 nd - 9.3 nd - 0.5 nd - 0.6 nd nd nd nd 

73.4 – 

281.8 

85.9 – 

415.7 

Mean 

(nmol/L) 
100.2 139.9 8.8 12.7 38.3 53.0 3.5 2.54 0.17 0.15 - - -  150.9 205.3 

Median 

(nmol/L) 
90.4 106.4 7.1 12.0 29.2 46.8 3.5 2.7 0.2 0.2 - - - - 134.3 164.4 

Standard 

deviation 
42.0 91.1 3.7 6.3 23.5 28.6 2.2 2.7 0.15 0.16 - - -  53.0 108.7 

Standard 

error 
9.2 19.9 0.8 1.4 5.1 6.4 0.5 2.4 0.03 0.03 - - - - 11.6 23.7 

Passed 

KS 

normality 

test? 

Y N N Y Y Y Y N N N - - - - Y N 

p value 0.30 0.04* 0.07 0.09 0.6 - - 0.21 

Y – yes; N – no; * indicates statistical significance, p<0.05 
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Figure 39. Graphs A, B and C showing the comparison of plasma PLP, PL and PA 

between autistic and control populations 

There is no significant difference for PLP (p = 0.30) or PA (p = 0.07). PL is significantly lower in the 

autistic population (p=0.04) ns = not significant. 

 

A. 

B. 

C. 
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Ratios of the three predominant vitamers found in plasma (PLP, PL and PA) were 

considered as a reflection of PLP flux through the main catabolic pathway. 

In Table 35 and Figure 40 B6 vitamer results are expressed as ratios of PLP: PL and 

PL: PA. Using unpaired t-tests there were no significant differences in B6 vitamer 

ratios between autistic and control populations. 

 

Table 35. B6 vitamer ratios in autistic and control population showing range, mean, 

median, standard deviation, standard error, results of Kolmogorov-Smirnov (KS) 

normality test and p value of unpaired t-test 

 
PLP: PL PL: PA 

Autism Control Autism Control 

Total number 21 21 21 20 

Range 6.8 – 23.9 5.2 – 19.2 0.05 – 0.41 0.09 – 0.7 

Mean 12.0 10.9 0.26 0.27 

Median 11.5 10.4 0.29 0.25 

Standard 

deviation 
4.2 4.1 0.10 0.14 

Standard error 0.9 0.9 0.02 0.03 

Passed KS 

normality test? 
Y Y Y Y 

p value 0.4 0.85 
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Figure 40. Comparison of B6 vitamer ratios (PLP: PL and PL: PA) between autistic 

and control populations 

No significant differences are observed between groups (PLP: PL p = 0.40; PL: PA p = 

0.85). 
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The relationship between plasma PLP and PL and between plasma PL and PA was 

further investigated using linear regression analysis and correlation co-efficients. 

Figures 41 and 42 show the positive correlations observed in both autistic and control 

groups. 
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Figure 41. Significant positive correlation between plasma PLP and PL in both autistic 

(A) and control (B) populations 

Autistic: Pearson r = 0.73, r
2
 = 0.53, p = 0.0002; Control: Pearson r = 0.74, r

2
 = 0.55 and p = 

0.0001 

B.  

A.  
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Figure 42. Significant positive correlation between plasma PL and PA in the control 

population (B).  

Control: Pearson r = 0.62, r
2
 = 0.39 and p = 0.004**; Autistic: Pearson r = 0.26, r

2
 = 0.07, p 

= 0.26 

 

 

 

 

A

B



226 

 

5.6.4.1 The relationship between plasma PLP and whole blood serotonin 

The relationship between plasma pyridoxal phosphate (PLP) concentration and 

whole blood serotonin was investigated using linear regression analysis and 

correlation (Figure 43). There is no relationship between plasma PLP and whole 

blood serotonin in the autistic or control group (autistic group: Pearson r = -0.2, r
2
 = 

0.04, p=0.38; control group: Pearson r = -0.19, r
2
 = 0.037, p=0.39). 
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Figure 43. Relationship of plasma pyridoxal phosphate (PLP) and whole blood 

serotonin in autistic group (A) and control group (B) 

Autism: Pearson r = -0.2, r
2 
= 0.04, p=0.38; Control group= Pearson r = -0.19, r

2
 = 0.037, 

p=0.39 

A. 

B. 
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The relationship between plasma B6 concentrations (PLP, PL and PA) and age was 

also investigated using correlation coefficients and linear regression analysis (Figures 

44-46). There is no correlation with age for either group for any of the vitamers. PLP 

in autism (Pearson r = -0.08, r
2
 = 0.006, p=0.7) and control populations (Spearman r 

= 0.03, r
2
 = 0.00, p=0.97); PL in autism (Spearman r = 0.07, r

2
 = 0.005, p=0.75) and 

control population (Pearson r = -0.19, r
2
 = 0.03, p=0.41); PA in autism (Spearman r = 

0.25, r
2
 = 0.06, p=0.28) and control subjects (Pearson r = 0.12, r

2
 = 0.015, p=0.6). 
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Figure 44. Relationship of plasma pyridoxal phosphate (PLP) with age in autism group 

(A) and control group (B) 

Autism: Pearson r = -0.08, r
2
 = 0.006, p=0.7; Control: Spearman r = 0.03, r

2
 = 0.00, p=0.97 
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Figure 45. The relationship of plasma pyridoxal (PL) with age in autism group (A) and 

control group (B)  

Autism: Spearman r = 0.07, r
2 
= 0.005, p=0.75; Control: Pearson r = -0.19, r

2
 = 0.03, p=0.41 

 

 

 

 

A. 

B. 



230 

 

 

 

0 50 100 150 200 250
0

25

50

75

100

125

Age (months)

P
la

sm
a
 P

A
 (

n
m

o
l/

L
)

0 50 100 150 200 250
0

50

100

150

Age (months)

P
la

sm
a
 P

A
 (

n
m

o
l/

L
)

 

Figure 46. The relationship of plasma pyridoxic acid (PA) with age in autism group (A) 

and control group (B) 

Autism: Spearman r = 0.25, r
2
 = 0.06, p=0.28; Control: Pearson r = 0.12, r

2
 = 0.015, p=0.6 
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5.6.5 Plasma dopa decarboxylase (DDC) activity in autistic and control 

populations  

Results for plasma DDC activity in the autistic and control cohorts are shown in 

Table 36. Plasma DDC activity is normally distributed in both populations and 

passed the Kolmogorov-Smirnov test for normality.  

 

Table 36. Activity of dopa decarboxylase in plasma of autistic and control group 

showing range, mean, median, standard deviation and standard error 

 Autism Control 

Total number 22 21 

Range 

(pmol/min/ml) 
14.0 – 72.8 21.0 – 112.5 

Mean 

(pmol/min/ml) 
36.6 57.5 

Median 

(pmol/min/ml) 
32.0 55.6 

Standard deviation 18.3 24.2 

Standard error 3.9 5.3 

 

Statistical comparison of the patient and control groups using an unpaired t-test 

demonstrated that cases in the autistic population have significantly lower plasma 

DDC activity than those in the matched control population as shown in Figure 47    

(p = 0.003). 
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Figure 47. Comparison of dopa decarboxylase activity in plasma of autistic subjects 

compared to a control group 

Significantly reduced activity is seen in the autistic population (p = 0.003) 

 

Regression analysis was used to investigate the relationship between plasma DDC 

activity and whole blood serotonin. In the autistic group, whole blood serotonin 

shows a positive correlation with DDC activity but this does not reach statistical 

significance (Pearson r = 0.35, r
2 

= 0.12, p = 0.1). There is no apparent relationship 

between whole blood serotonin and plasma DDC activity in the control population 

(Pearson r = 0.05, r
2
 = 0.002, p = 0.85) (Figure 48). 
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Figure 48. Relationship of whole blood serotonin to dopa decarboxylase activity in 

plasma of autistic group (A) and control group (B) 

A positive correlation between whole blood serotonin and dopa decarboxylase activity is 

seen in the autistic group but this is not statistically significant (Pearson r = 0.35; r
2
 = 0.12; p 

= 0.1); no relationship is evident in the control group. 
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Linear regression analysis and correlation was used to investigate the relationship 

between plasma DDC activity and plasma pyridoxal phosphate (PLP) (Figure 49). In 

both groups PLP shows a positive correlation with plasma DDC activity which 

reaches statistical significance in the autistic group (autism group: Pearson r = 0.507; 

r
2 

= 0.26; p = 0.016; control group: Pearson r = 0.37; r
2 

= 0.14; p = 0.09).  
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Figure 49. The positive correlation of plasma dopa decarboxylase (DDC) activity with 

plasma pyridoxal phosphate (PLP) in the autistic (A) and control (B) population 

The relationship is statistically significant in the autistic group (Pearson r = 0.507; r
2
 = 0.26; 

p = 0.016) and not in the control group (Pearson r = 0.37; r
2
 = 0.14; p = 0.09). 
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Linear regression analysis and correlation was used to investigate the relationship 

between plasma DDC activity and age in the autistic and control groups (Figure 50). 

There is a negative correlation in both groups which is more pronounced in the 

autistic population but does not reach statistical significance in either group (autism: 

Pearson r = -0.35, r
2 

= 0.12, p = 0.11; controls: Pearson r = -0.20, r
2 

= 0.04, p = 0.39). 
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Figure 50. The relationship between plasma dopa decarboxylase activity and age in the 

autistic (A) and control (B) group  

Autism: Pearson r = -0.35, r
2
 = 0.12, p = 0.11, not significant; Controls: Pearson r = -0.20, r

2
 

= 0.04, p = 0.39, not significant. 
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5.6.5.1 The relationship of dopa decarboxylase activity and large neutral amino 

acids in plasma 

The concentration of plasma amino acids measured in the autistic and control group 

are presented in Section 5.6.3.  

Figures 51 & 52 and Tables 37 & 38 show the results of linear regression analysis of 

plasma DDC activity and plasma large neutral amino acids in the autistic and control 

groups. In the autistic group there is a positive correlation in all cases with highly 

significant results for tryptophan, tyrosine and phenylalanine. This pattern mirrors 

the relationship described in the preceding section for whole blood serotonin and 

large neutral amino acids in plasma. There is no relationship in the control group. 

Table 37. Pearson correlation coefficient (r), r
2
 and p values of linear regression of 

plasma dopa decarboxylase activity and plasma concentration of large neutral amino 

acids in autistic population 

Graph Amino acid Pearson r r
2 

p value 

A Tryptophan 0.53 0.28 0.01 

B Tyrosine 0.70 0.49 0.0004 

C Phenylalanine 0.55 0.30 0.01 

D Isoleucine 0.36 0.13 ns 

E Valine 0.36 0.13 ns 

F Leucine 0.34 0.12 ns 

ns = not significant, p>0.05 

Table 38. Spearman correlation coefficient (r), r
2
 and p values of linear regression of 

plasma dopa decarboxylase activity and plasma concentration of large neutral amino 

acids in control population 

Graph Amino acid Spearman r r
2 

p value 

A Tryptophan 0.11 0.01 ns 

B Tyrosine -0.25 0.01 ns 

C Phenylalanine 0.03 0.02 ns 

D Isoleucine 0.07 0.06 ns 

E Valine 0.22 0.08 ns 

F Leucine 0.29 0.03 ns 

ns = not significant, p>0.05 
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Figure 51. The relationship of plasma dopa decarboxylase (DDC) activity with large 

neutral amino acids in autistic population 

A = tryptophan; B = tyrosine; C = phenylalanine; D = isoleucine; E = valine; F = leucine 

A. 
B. 

C. D. 

E. F
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Figure 52. The relationship of plasma dopa decarboxylase (DDC) activity with large 

neutral amino acids in the control population 

A = tryptophan; B = tyrosine; C = phenylalanine; D = isoleucine; E = valine; F = leucine 

A. 
B. 

C. D. 

E. F
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The tryptophan: large neutral amino acid ratio (Trp: LNAA) for the autistic group 

and control groups are presented in Tables 30 & 31, Section 5.6.3. The Trp: LNAA 

ratio was compared to whole blood serotonin and plasma dopa decarboxylase activity 

using correlation co-efficients and linear regression for both populations (Figures 53 

& 54).  There is no statistically significant relationship evident in either group. 
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Figure 53. Relationship of whole blood serotonin (A) and plasma dopa decarboxylase 

(B) with Trp: LNAA 

A positive correlation exists between Trp: LNAA and whole blood serotonin (Pearson r = 

0.39, r
2
 = 0.15, p = 0.08); there is no relationship between Trp: LNAA and DDC activity 

(Pearson r = -0.01, r
2
 = 0.00, p = 0.96). 

A

B. 
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Figure 54. The relationship of whole blood serotonin (A) and plasma dopa 

decarboxylase (B) with Trp: LNAA in the control population 

A negative correlation exists between Trp: LNAA and whole blood serotonin (Spearman r = 

-0.26, r
2
=0.09 p =0.4, ns); there is no relationship between Trp: LNAA and DDC activity 

(Spearman r = -0.159, r
2
=0.02 =, p = 0.7, ns). 
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5.7 DISCUSSION 

Autism is a complex neurodevelopmental disorder for which the underlying 

pathophysiology remains elusive. The study presented in this chapter investigated 

children and young adults with autism and Asperger’s syndrome from a biochemical 

perspective, in particular the pathway of serotonin biosynthesis, with a view to 

gaining an improved understanding of potentially aberrant, disease-causing 

processes. This approach is complementary to genetic studies and may ultimately 

help to unravel this complex and disabling neuropsychiatric condition. 

Autistic subjects were drawn from a tertiary paediatric clinic and, through the use of 

detailed, validated psychological assessments, are a clinically well-defined group. 

They form a homogenous high-functioning/Asperger’s phenotype; the vast majority 

have no other medical or psychiatric co-morbidities and are thus medication free.  

Ideally a control group would consist of well-matched, healthy medication-free 

subjects, however in paediatric research this is ethically challenging and a well 

matched population in whom the underlying disease process is not known to 

influence the research outcomes is usually the best acceptable option. 

In this study the control group are well matched for age, ethnicity and gender and 

have a variety of medical diagnoses, making any single confounding factor less 

likely to affect results. Many of the control subjects with a disorder of cholesterol 

metabolism have been identified through cascade family screening and attend the 

clinic for surveillance and lifestyle advice only, thus represent healthy individuals. 

Those with medium chain acyl CoA dehydrogenase deficiency and α1-antitrypsin 

deficiency have no evidence of liver disease and have an unmodified dietary intake. 

The single control subject with galactosaemia receives a lactose-free diet which is 

not known to affect serotonin or vitamin B6 metabolism. 

None of the medications taken by a small number of autistic and control subjects are 

thought to influence B6 or serotonin metabolism. 
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5.7.1 Whole blood serotonin  

Results from this study show no significant difference in serotonin concentration 

between autistic and control groups. This is in contrast to much of the previously 

published literature which has demonstrated hyperserotonaemia in up to one third of 

subjects with autistic spectrum disorder. Reasons for this apparent discrepancy will 

be considered. 

The explanation for lack of difference between our control and autistic population 

appears to lie in the absolute values of serotonin for the autism group which has a 

lower mean serotonin concentration than in previously published work. In contrast, 

the group mean for our control population is comparable with previous published 

data (229). On initial inspection a large number of subjects in the autism group have 

serotonin concentrations which fall above the upper limit of our laboratory reference 

range (1600 nmol/L), however a comparison of proportions lying over this limit 

between the autism and control population (using Fisher’s exact test) demonstrate 

that this not does differ between the two groups. Overall these findings suggest that 

our laboratory upper limit of normal may be invalid for the paediatric population and 

emphasises the importance of collecting data in a well matched control population. 

Correct sample handling is important for accurate measurement of serotonin as the 

metabolite deteriorates quickly if left at room temperature. In this study all samples 

were frozen at the bedside by the researcher according to protocol and analysed in a 

single laboratory using a validated method therefore it is unlikely that sample 

handling or analysis is a source of error. Previous work has suggested that the time of 

sampling may affect serotonin concentration (352). All samples in this study were 

collected at a similar time of day; it was impractical to control for season of 

collection in this study. 

Various factors which may influence serotonin concentrations have been studied in 

relation to individuals with autism. Detailed work by McBride et al. (359) suggested 

that elevated serotonin was most pronounced in pre-pubertal autistic children and 

that ethnicity strongly influenced serotonin concentration with Black and Latino 

youngsters having higher levels than those seen in White subjects. Along with others 

(229) they were also able to show that non-autistic mental retardation was not 
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associated with hyperserotonaemia. In concluding, this group suggested that 

hyperserotonaemia in autism may have been previously overestimated due to poor 

matching of control groups. Subjects of the study reported here are well matched for 

age, gender and ethnicity. The average age of our autistic group (12 years 1 month) 

however, was higher than that of the pre-pubertal children reported by McBride et al. 

and may partly explain the lower mean serotonin that we observed. The observation 

that serotonin correlates negatively with age in the ASD population in this work 

(Figure 5A) adds support to the consideration that serotonin, which may show a 

pronounced elevation in early childhood, gradually reduces to normal levels with age 

in autistic subjects. Interestingly the youngest autistic patient in this study also had 

the highest serotonin concentration. 

A subsequent, larger study by Mulder et al. (229) later showed no effect of a range of 

clinical and demographic variables including age and pubertal status, upon serotonin 

concentration. However, possibly because of the large numbers, they were able to 

demonstrate a bimodal distribution of serotonin concentration in autism and 

Pervasive Developmental Disorder – Not Otherwise Specified (PDD-NOS), with 

over one third of individuals falling into the hyperserotonaemic subgroup. 

Surprisingly, this biochemically distinct group of subjects could not be distinguished 

from normoserotonaemic subjects by any clinical / psychological variable, including 

an extensive number of behavioural assessments. 

Only a few other studies have explored the relationship of serotonin to clinical 

phenotype, however those that have, also failed to find any relationship between 

elevated serotonin and clinical functioning (360;361).  The results presented here 

replicate these findings in that no relationship with serotonin was evident for any of 

the multiple clinical variables measured and suggest that hyperserotonaemia is not 

directly related to clinical disease expression (data analysed by Prof Skuse, 

Department of Neurosciences and Mental Health, Institute of Child Health; data not 

shown). Although superficially promising, it appears that serotonin is not a useful 

biomarker for the diagnosis of autism for all age groups and all degrees of clinical 

severity. 

A genome-wide screen in almost 600 members of a single large pedigree (not known 

to suffer with autism) has recently identified β3 integrin (ITGB3) as a quantitative 



244 

 

trait locus (QTL) determining whole blood serotonin (362). Subsequent studies have 

shown that a coding variant of ITGB3 is associated with autism susceptibility which 

appears to have a different effect in males compared to females. It is interesting to 

consider whether the presence of this coding variant would predict the elevated 

serotonin in our group where no other measured clinical or biochemical variable is 

able to. This protein is particularly interesting because the integrin class of cell 

adhesion molecules have recently been found to play a role in the regulation of 

synaptic plasticity and in some cases may be disrupted during development resulting 

in autism (363;364). 

As a group, patients with autistic spectrum disorders share common features of 

impaired reciprocal interaction, impaired communication and restricted patterns of 

behaviour however within this, the phenotype is diverse. Individuals with Asperger’s 

syndrome represent one end of the autistic spectrum and are often described as ‘high-

functioning’ autism. In contrast to others under the autistic umbrella, this group have 

no delay or retardation in language development (although use of language may be 

altered) and normal or high intelligence. Diagnostically these children and adults are 

more challenging and they often go undiagnosed. It is maybe not surprising, 

therefore, that only two groups have examined serotonin in a small number of 

Asperger’s syndrome patients (229;365). In both studies only five patients were 

included and similar to the results presented here, no mean elevation was seen 

compared to control populations. 

5.7.2 Plasma B6 vitamers 

An interest in the use of mega-dose vitamin therapy for psychiatric disorders began 

in the 1950’s with the treatment of schizophrenic patients and, subsequently, many 

studies have explored the therapeutic use of vitamin B6 in autism. In some patients 

high dose pyridoxine was noted to be associated with side effects such as irritability 

and hyperacusis; symptoms which could be ameliorated with magnesium, thus later 

work investigated combined vitamin B6 -magnesium treatment, some of which 

reported an improvement in the speech, language and social functioning of patients 

(366). 



245 

 

Using strict inclusion criteria, a Cochrane review (366) was only able to include 

three out of nineteen such studies investigating the efficacy of combined B6 and 

magnesium in the treatment of social, communication and behavioural responses of 

patients with autistic spectrum disorder. Due to small sample sizes the review was 

unable to reach any firm conclusions, thus additional better designed trials are 

required to answer this important question.  

Although not directly related, it is interesting to note the improvement in expressive 

language and autistic features observed in a small number of children with antiquitin 

deficiency following an increase in their pyridoxine treatment dose (113;367). This 

observation has led authors to consider that vitamin B6 may have a specific effect on 

speech and language development. 

Very few studies have examined plasma levels of vitamin B6 (in any form) in autistic 

subjects and those published show conflicting results. Sankar (368) used a yeast 

method to measure ‘pyridoxine’ in ‘severely disturbed children’ 19 of whom were 

described as autistic. He found no difference in the concentration of pyridoxine in 

autism compared to other mental health disorders or normal controls. More recently 

Adams et al. (369) found total plasma B6 (PL, PM, PN and their phosphorylated 

forms) to be elevated in 11 autistic subjects compared to matched control subjects. 

Despite elevated total B6, plasma pyridoxal phosphate levels were actually reduced 

in the autism group leading the authors to conclude that pyridoxal kinase activity 

may be defective. This study used a dated protozoological method (328) to measure 

B6 that has since been superseded by other more advanced techniques such as tandem 

mass spectrometry. Both of the studies discussed have flaws including poor clinical 

characterisation of subjects and small group numbers, alongside the problems with 

methodology. 

Given the important role of PLP as a cofactor for AADC in serotonin synthesis and 

the unresolved question of B6 treatment efficacy and its mechanism in children with 

autism, plasma B6 vitamers were measured in this study.  

In agreement with the work of Sankar (368) this study found no statistically 

significant difference in total plasma vitamin B6 concentration between autistic and 

control groups. The autistic group in fact had a lower mean concentration than 
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controls for each of the most predominant vitamers (PLP, PL and PA) although this 

difference was statistically significant for PL only. Considering the pathway for PLP 

catabolism (Figure 4), there is no obvious physiological explanation for a reduction 

in PL in the absence of any perturbation in PLP or PA. This is supported by the 

observation that the ratios of PLP: PL and PL: PA do not differ between groups.  

Of the six individuals with the highest total plasma B6 concentration in the control 

group, three were taking a statin medication for familial hypercholesterolaemia, one 

low dose amlodipine for hypertension and two were medication free. There is no 

obvious mechanism for statin treatment to cause an elevation of plasma B6 however 

the fact that several subjects in the control group as a whole have familial 

hypercholesterolaemia and part of their clinical management involves advice about 

healthy lifestyle, including diet, may be relevant. Recommendations for a healthy 

diet include advice to maximise intake of fruit, vegetables and lean meat which 

contain generous amounts of vitamin B6.  

Thus the best interpretation of these results as a whole is that the control group have 

a marginally higher total B6 concentration than the autism group due to their dietary 

intake. An accurate assessment of dietary intake would help to resolve this question; 

however the food diary was not completed or returned in a sufficient number of 

subjects in this study to make a comparison of B6 dietary intake possible. The finding 

that neither the mean plasma concentration of PLP in the autism group, nor the 

plasma concentration in any individual within the group, fell below the laboratory 

reference range is in keeping with this conclusion; it is not necessary to look for 

causes of sub-physiological values in autism.  

Individual plasma B6 vitamer concentrations in the paediatric population have not 

been published previously and only a few studies measure all the vitamers by mass 

spectrometry in older age groups. Results presented here [mean age 12 years 7 

months] are within a similar range to those for adult populations [mean age 57 years] 

(301) although it is notable that the mean concentrations for PLP and PA are higher 

in our paediatric group. Many metabolites, including the CSF and plasma 

concentration of PLP, reduce with age so this observation is not unexpected (95;98). 

In keeping with results from adult populations PN, PM and PNP were either not 

detectable or present in very small amounts. PMP was present in low amounts in 
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some subjects studied here, but not in any of the adult population studied by others 

previously (301). The finding that none of the three predominant vitamer 

concentrations (PLP, PL or PA) change with age in our autism and control group 

probably reflects the relatively narrow age range studied, as all of the subjects fall 

within the ‘childhood’ bracket. 

Although PLP acts as cofactor for AADC, this decarboxylation reaction is not 

usually the rate limiting step for serotonin synthesis, thus it is not surprising that no 

relationship is evident between PLP and serotonin concentration in either the autistic 

or control group. Similarly, within the physiological range, PLP concentration is not 

seen to effect levels of 5-HIAA in CSF (unpublished observation). In the severe PLP 

deficiency seen in PNPO deficient patients however, turnover of serotonin (and 

dopamine) in the CNS is significantly reduced as evidenced by reduced 5-HIAA (and 

HVA) concentration in CSF (123). 

Although no differences were observed between autistic and control groups overall, 

this work has answered important questions; if vitamin B6 is indeed of benefit in the 

treatment of autism, it is unlikely to be due to B6 deficiency per se. Whether 

increasing plasma PLP concentrations above the normal range by pharmacological 

means could improve autistic traits by increasing DDC activity (as evidenced by 

positive correlation between PLP and DDC, Figure 18A) is not known.  

 

5.7.3 Plasma dopa decarboxylase (DDC) activity 

Plasma DDC activity has not previously been reported in autistic spectrum disorder 

and in the group reported here it is significantly reduced compared to an age matched 

population. In this study, DDC activity appears to be a more reliable indicator of 

autistic spectrum disorder than serotonin and this may provide an important insight 

into underlying disease mechanisms. 

The mean and range of DDC activity measured in our control group is comparable to 

that previously reported in paediatric populations (288;307;358) and of note is higher 

than that seen in control adult populations. We found a weak negative correlation of 

DDC activity with age in the both the autistic and control paediatric populations; 
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similarly Verbeek et al. (358) showed that AADC activity decreased slightly with 

age. Not surprisingly, plasma PLP concentration correlates positively with AADC 

activity in both groups and reaches statistical significance in the autistic population. 

The laboratory method used in this study for measurement of DDC activity in plasma 

was first described by Boomsma and Schalekamp (370). Subsequently it has been 

adapted and used for diagnostic confirmation in the first description of genetic 

AADC deficiency (288). The method continues to be used for the diagnosis of such 

patients alongside mutational analysis of the gene.  

It is of note that the procedure differs from other enzyme assays in that prior to 

addition of the substrate L-dopa, a long incubation time of 2 hours with the cofactor 

PLP in the presence of dithioerythritol (DTE) is required. Boomsma and Schalekamp 

(370) explore possible reasons for this in their work and postulate that the 

requirement for additional exogenous PLP may be two-fold; partly to protect the 

enzyme-bound PLP against Schiff base formation with other amino acids e.g. 

tyrosine and partly to overcome the reversal of enzyme activity by side reactions 

with PMP. The fact that greatly increased enzyme activity was found after prolonged 

incubation of plasma with DTE in addition to PLP supports the hypothesis that DTE 

protects the free sulphydryl group of the enzyme thus allowing more cofactor 

binding. The group also suggested that DTE may prevent Pictet-Spengler adducts 

forming between PLP and dopamine, thus preventing conversion of formed 

dopamine to a tetrahydroiso-quinolone derivative (370). Assay of AADC in this 

study took account of these observations, thus maximising capacity of the enzyme to 

convert L-dopa to dopamine in both autistic and control groups.  

Secondary factors that may lead to reduced AADC activity measured using this assay 

also warrant consideration. In vitro work shows that the activity of plasma AADC 

measured as conversion of L-dopa into dopamine is moderately inhibited by 5-HIAA 

but not by serotonin, HVA or 3-methoxytyrosine (358). In our patient samples it is 

unlikely (although not impossible) that a high 5-HIAA concentration is contributing 

to reduced AADC activity. 5-HIAA is a stable metabolite, but it should not be 

present in greater concentrations in the autistic group compared to the control group 

because serotonin concentration did not differ between the two groups. Additionally, 

in support of this, a small number of published studies show no difference in urinary 
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or CSF 5-HIAA in autism compared to control groups (371;372). 5-HTP shows a 

strong inhibitory effect on the conversion of L-dopa to dopamine in vitro (358) 

which may be contributing to the low AADC activity in the autistic group and is 

discussed below. 

Although their physiological significance is unknown, other studies have suggested 

that AADC can undergo an irreversible inactivation through permanent incorporation 

of both serotonin and PLP into its structure (373). Given the observation of elevated 

serotonin in some children with autism, this reaction should be considered as a 

possible cause of reduced AADC activity, however in our study no correlation was 

seen between AADC and serotonin and importantly hyperserotonaemia was not 

present. 

Cofactor availability is crucial for AADC activity as exemplified by PNPO deficient 

patients where significant CSF monoamine depletion may be observed (95;307). In 

the enzyme assay described here PLP is present in excess, thus cofactor availability 

should not affect AADC activity; however other metabolites such as PMP may 

compete for the cofactor binding site. No difference in plasma PMP concentration 

was observed between autism and control groups and the concentration was not 

elevated in either group, thus it is unlikely to be contributing to reduced AADC 

activity in this study. It should also be considered that, given its reactivity, PLP may 

form an adduct with an unidentified metabolite in the plasma of ASD patients (as is 

observed in Antiquitin deficiency and Hyperprolinaemia II, Figures 5 and 6), thus 

making it unavailable for its role as a cofactor. However there is no evidence of such 

a process happening in vivo, as there is no evidence of PLP deficiency either 

clinically or on biochemical investigation. 

The AADC protein is known to contain several motifs which serve as recognition 

sites for phosphorylation enzymes (cAMP-dependent protein kinase, protein kinase-

C, calcium calmodulin dependent protein kinase II and proline directed protein 

kinase), the activity of which result in an increase in AADC activity (186). This 

mechanism of phosphorylation probably underlies the increase in AADC activity 

seen following alterations in dopamine receptor activation (186); further work would 

be necessary to exclude hypo or hyper-phosphorylation as a cause of altered AADC 

activity in our samples. 
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Further consideration of the cause of reduced AADC activity must include the 

possibility of a genetic deficit. Mutations in the gene encoding AADC result in a 

clinical phenotype very different to that of the children in the described disease 

group, that is characterised by severe hypotonia, occulogyric crises, delayed 

development and autonomic symptoms such as excessive sweating and temperature 

instability (374). This autosomal recessive disorder was first recognised in twins 

found to have a severe deficiency in the monoamine neurotransmitters dopamine and 

serotonin (375) and analysis of CSF concentrations of neurotransmitter amine 

metabolites remains important in the diagnosis of this condition alongside 

measurement of plasma AADC activity and mutational analysis of the AADC gene. 

Recently, Brun et al. (374) reviewed 24 different mutations that have been described 

in AADC deficient patients; a substitution mutation in intron 6 affecting splicing was 

found to be the most common with an allele frequency of 45% in patients and 

although the majority of mutations lie in the coding regions, one has been described 

in the non-coding 5’UTR. Unfortunately the prognosis for many children with this 

condition is poor, with treatment options such as dopamine agonists, pyridoxine and 

MAO inhibitors having limited effect (374).  

Disorders of language and social communication have not been described in AADC 

deficient patients, possibly because other difficulties predominate, however there is 

evidence of an increased burden of neuropsychiatric disease in the first degree 

relatives and extended family of AADC patients (376). Although ASD and 

Asperger’s syndrome per se do not feature in the pedigrees of AADC deficient 

patients (possibly due to under-diagnosis), bipolar disorder, anxiety, attention deficit-

hyperactivity disorder and depression have all been reported. Additionally, 

symptoms of anxiety and depression are not uncommon in ASD patients and mental 

health disorders such as schizophrenia, depression and obsessive-compulsive 

disorder are more common in parents of autistic children (377;378). As 

neuropsychiatric diseases are increasingly considered to lie on a continuum sharing 

underlying pathogenic processes, it is not inconceivable that reduced activity of DDC 

may be responsible for, or at least involved in, some of these common features and 

suggests that the findings of this study are of relevance to the clinical picture. 
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Although plasma activity of DDC in ASD (mean activity 36.6 pmol/min/ml) was 

reduced compared to the normal paediatric population (57.5 pmol/min/ml) in this 

study, it is not as low as that described in AADC deficient patients who have 

extremely low (<10 pmol/min/ml) or undetectable activity in plasma (351;358). The 

activity levels are however similar to those reported in heterozygote carriers of a 

mutation in the AADC gene which is of interest in the context of the mental health 

disorders described above. 

Given its central role in monoamine biosynthesis, the search for AADC mutations in 

relation to neuropsychiatric disease has been the focus of several studies. Anderson 

et al. (379) specifically examined the association of genes in the serotonin system to 

autism but found no evidence of linkage to any specific gene, including AADC. A 

subsequent study which examined a larger cohort of autistic individuals did however 

find a significant association between an intronic marker (rs6592961) in the AADC 

gene and autism. The group suggest this may be one of many common susceptibility 

alleles likely to have modest effect (380). 

Two frequent sequence variants in the non-coding region have been identified in 

patients with bipolar disorder; a 1 base pair deletion in the promoter and a 4 base pair 

deletion in the untranslated exon 1 (381;382). How these changes relate to the 

disease process or affect gene function is not known. 

In summary, it seems unlikely that a mutation in the coding region of the AADC gene 

is responsible for the findings of low enzyme activity described in this study. It is 

however theoretically possible, that factors controlling the expression of AADC 

specifically within serotonergic neurones, possibly during early development, may 

play a role and is discussed below. 

 

In man, the AADC gene is over 85 kb in length and comprises 15 exons. It resides on 

chromosome 7p21.1 – p12.3. Several splice variants have been identified in human 

and animal tissues which show differences in the coding and non-coding regions. 

Two of the AADC mRNA variants differ only in their 5’untranslated region (5’UTR) 

and code an identical amino acid sequence of 480 amino acids with a molecular mass 
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of 53.9kDa (382). The different 5’UTR regions are encoded by two distinct exons 

which undergo alternative splicing and direct tissue expression of AADC. They have 

been termed ‘neuronal type’, (N1) and ‘non-neuronal type’, (L1). Differential 

regulation of AADC expression in neuronal and non-neuronal tissues raises the 

possibility of differing functions in these tissues which is incompletely understood 

(383;384).  

Work by O’Malley et al. (384) and Chang et al. (385) showed that AADC can also 

undergo alternative splicing of exon 3 which generates two different protein 

isoforms; AADC480 and AADC442. Both transcripts are widely expressed with AADC 

442 predominating in neuronal and most non-neuronal tissues. The highest level of 

both transcripts is seen in the liver, where AADC480 is the most abundant of the two. 

The sequence of amino acids deleted in AADC442 (exon 3, amino acids 68 -105) lies 

in one of the most well conserved regions of the AADC protein, suggesting they are 

of particular importance in the enzyme structure or function. Given that, of the 2 

transcripts, only AADC480 shows activity towards L-dopa and 5HTP as a substrate, it 

is likely that exon 3 is involved in substrate recognition and binding. Little is known 

of the role of AADC442 however it may be involved in decarboxylation of other 

substrates, for example phenylalanine or L-tyrosine (384). 

Further evidence that the AADC gene undergoes complex processing resulting in 

multiple mRNA forms comes from work of Vassilacopoulou et al. (2004) (386) who 

report another splice variant of AADC. This alternative variant (alt-AADC) which 

lacks exons 10 – 15 and includes an alternative exon 10 was found to be highly 

expressed in human kidney. Little more is known about this form and further studies 

are required to understand the protein function and enzymatic activity of this variant. 

Using the method described previously, plasma AADC activity was found to be 

significantly reduced in two PNPO deficient patients, despite the addition of a 

saturating concentration of PLP. Work in neuroblastoma cell culture also showed 

AADC activity in B6 deficient media was reduced by 70% compared to controls 

(307). Here the authors highlighted that PLP has additional functions beyond its role 

as cofactor to AADC and suggest that PLP may act interact with transcription factors 

to affect AADC expression (307). Other factors known to affect AADC mRNA levels 

include dexamethasone, Interleukin 1β (Il1β), prostaglandin E2 (PGE2) which, 
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amongst others, increase AADC mRNA and vigabatrin and amphetamine all of which 

decrease AADC mRNA. Effects of these factors on specific tissues are unknown. 

A reduction in the expression of neuronal AADC resulting in reduced plasma AADC 

activity could feasibly be due to an inherited mutation in the AADC promoter regions 

or in the genes encoding the transcription factors which act upon these regulatory 

regions. Neurone-specific gene expression in vertebrates is controlled by a complex 

interplay of neurone-specific enhancer elements, and of silencers which suppress 

promoter activity in inappropriate non-neuronal cells (387). A neurone-specific 

AADC promoter region containing three positive regulatory elements and two 

negative regulatory elements was first described by Le Van Thai et al. (388). 

Subsequently two factors were identified which appear to inhibit expression of the 

neuronal form (leukaemia inhibitory factor, LIF and ciliary neurotrophic factor, 

CNTF) and a non-neuronal promoter was also identified (387). Further work 

unravelling the complexity of AADC gene expression via transcription factors acting 

at these promoter sites has shown an interplay of winged helix/forkhead (hepatocyte 

nuclear factor 3) and POU-domain (brn-2/N-oct-3) transcription factors (389).  

 

As a neurotransmitter, serotonin has many diverse functions in the central nervous 

system, both during early development and in adult life. It is considered likely that 

abnormalities in the serotonin system are involved to some degree in the 

development of social and communication disorders (234;390). In part this stems 

from the observation that some children with autism show an improvement with 

selective serotonin reuptake inhibitors (SSRI) and also that tryptophan depletion 

(resulting in reduced central production of serotonin) exacerbates autistic 

symptomatology. Perhaps most convincing is work by Chugani et al.  (230;231) who 

use positron emission tomography (PET) imaging of a tryptophan analogue to show 

developmental differences in brain serotonin synthesis in autistic children. 

To understand how serotonin, AADC and the development of autism may be linked 

it is helpful to consider the development of serotonergic neurones and work in animal 

models offers interesting insights into normal human development. Amongst many 

transcription factors, one ETS domain factor, Pet-1, is of particular interest as it 
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appears to be an essential element of the transcriptional program that specifically 

triggers central serotonin neuron differentiation early in rat embryonic life (391). Its 

specific developmental expression in the hindbrain region begins before the 

appearance of serotonin and continues into adult life, strongly suggesting a function 

to establish and maintain the serotonergic phenotype. It achieves specificity for 

serotonergic differentiation by binding to specific sites in the promoter regions of 

genes that define the serotonergic neuron i.e. tryptophan hydroxylase, serotonin 

transporter (SERT), vesicular monoamine transporter (VMAT) and AADC (391). A 

PEA-3 like binding domain for Pet-1 has been identified in intron 1 of the AADC 

gene (391;392) which, if mutated, could lead to an isolated deficiency of AADC and 

hence serotonin, within serotonergic neurones at a crucial developmental stage and 

perhaps with ongoing consequences into later life. Given the plasticity of the 

developing nervous system it is likely that compensatory mechanisms would 

modulate the phenotype to differing degrees in individuals. Mutations within the Pet-

1 gene itself or its specific binding sites on other serotonergic gene promoters may 

also produce a similar spectrum of clinical problems relating to serotonin deficiency. 

How this proposed mechanism may explain the findings of reduced plasma AADC 

activity is further discussed below. 

AADC protein is a homodimer consisting of two monomers, each of 480 amino 

acids. The crystal structure suggests that each monomer has three domains; a large 

central domain, a C-terminal small domain and an N-terminal domain (183). The 

enzyme active site lies close to the interface of the monomers at the large central 

domain. Each homodimer binds two molecules of pyridoxal phosphate at lysine 

residue 303 within the active site, forming an internal aldimine through a Schiff base 

linkage, as is the case for many PLP dependent enzyme reactions. The PLP – lysine 

interaction undergoes a transaldimination reaction with the substrate forming a Schiff 

base between PLP and the substrate. The external aldimine then leaves the amino 

group of lysine as a free base (184). 

Despite conjecture over many years, it is now accepted that AADC activity is the 

product of a single gene and can catalyse the decarboxylation of several different 

substrates (185). In vitro, substrate specificity of the enzyme appears to be affected 

by pH, temperature and relative substrate and cofactor concentration (393). The 
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differential response to depletion of the cofactor PLP (as a result of a pyridoxine-

deficient diet) is interesting, in that a very significant reduction in serotonin 

production was observed in the brain of PN deficient rats while no change was seen 

for brain catecholamines in the same experiment (394). In vivo, anatomical 

localisation within dopaminergic versus serotonergic neurones and the consequent 

availability of substrate is likely to play a major role in the relative production of 

monoamines by the enzyme. 

As its name suggests, in addition to L-dopa and 5-HTP, AADC can catalyse the 

decarboxylation of all L-aromatic amino acids including L-tryptophan, L-tyrosine 

and L-phenylalanine (395). Despite the high Km observed with these substrates, the 

reactions do appear to proceed in vivo as evidenced by the presence of the trace 

amines in various brain regions, albeit at low concentrations (396-398). The precise 

physiological role of these substances is not known, however they are thought to play 

a role in neuromodulation of monoamine metabolism (399). 

AADC is localised in various brain regions and peripheral tissues. Centrally it is 

present within serotonergic, dopaminergic and noradrenergic neurones which, 

cumulatively, project widely to a large number of brain structures (185). AADC is 

also expressed in D-cells which are a small group of non-monoaminergic cells 

located in hypothalamus, striatum, forebrain and cortex (400). It has been suggested 

that D-cells may be involved in trace amine production, hence the presence of 

AADC (401). 

AADC is also widely expressed in the periphery; predominantly in kidney, liver, 

enterochromaffin cells of the gut and the adrenal medulla. Its role in some of these 

locations is apparent, for example in the gut it is involved in serotonin biosynthesis 

and in the adrenal and kidney it catalyses dopamine formation. Its function in the 

liver however, where it is particularly abundant, is less clear as biosynthesis of 

monoamines does not occur here.  

Similarly the presence and function of AADC in plasma is not easily explained and 

indeed the origin of plasma AADC is not known. Boomsma and Schalekamp (402) 

describe significantly elevated plasma AADC activity in patients with neuroblastoma 

suggesting that plasma AADC may be of sympathetic nervous system origin.  
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Considering the findings described in this chapter, the origin of plasma AADC is of 

importance to understand how, if at all, it may be involved in the pathology of 

autistic spectrum disorder. If indeed it reflects ‘neuronal’ AADC and its expression is 

directed by the neuronal form of mRNA then activity of the enzyme observed in 

plasma may parallel activity within the central nervous system.  

Following this hypothesis, it may be expected that AADC activity is decreased in the 

central nervous system, resulting in a deficiency of serotonin possibly in regions of 

the brain which are particularly important for social development during in utero 

neurodevelopment. A possible mechanism involving disruption of the complex 

interplay of transcription factors which precisely drive the development of serotonin 

containing neurones has been discussed above. Within this framework, if it is 

considered that neuronal AADC expression and activity is affected in serotonergic 

neurones only, then the observation that central dopamine production is not 

significantly affected in autism can be understood. 

The apparent paradox of elevated whole blood serotonin in some autistics is not at 

first easy to explain. One possibility is that if AADC activity is reduced in central 

serotonergic neurones, then 5-HTP would accumulate proximal to the block. This 

compound is able to cross the blood brain barrier and would likely spill over into the 

circulation. As AADC is not saturated at physiological concentrations, increased 

substrate may result in increased serotonin production in the peripheral circulation 

via AADC present in another anatomical location for example. The vast majority of 

whole blood serotonin is contained within platelets which acquire serotonin produced 

in enterochromaffin cells in the gut which may be the non-neuronal source of 

elevated serotonin. The absence of a significant correlation of serotonin with plasma 

AADC activity in controls or autistic subjects in our study is in keeping with this. 

Elevated concentrations of 5-HTP in the central nervous system may have other 

manifestations including the production of metabolites lying on the kynurenine 

pathway (5-hydroxyformylkynurenine and 5-hydroxykynurenine) the physiological 

and pathological effects of which are unknown. 
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5.7.4 Amino acids 

Abnormalities in plasma amino acids have received little attention in autism research 

and existing studies often show differing results. There are no striking differences 

between the autistic and control populations reported here although the small number 

of samples available for control subjects does limit conclusions. When comparing 

groups, both plasma glycine and taurine were found to be elevated in autism relative 

to control patients, the biological significance of this however is unclear as the group 

mean for both is within the laboratory reference range. Investigation of individual 

patients may help delineate this further. 

Taurine is one the most abundant amino acids in man; in the brain it occupies by 

quantity the second place after glutamate (403;404). It is involved in several 

important physiological functions within the central nervous system; as a 

neuromodulator, a neurotransmitter and a neuroprotector against L-glutamate 

induced toxicity (404). Its potential role in autistic spectrum disorder is therefore of 

interest and previous studies have documented evidence of taurine elevation in the 

plasma and urine of autistic subjects compared to controls (405;406). This has not 

been a consistent finding however as other groups have described reduced taurine 

concentrations in plasma (407).  

Similarly, due to its CNS actions, glycine may be of importance in the 

pathophysiology of ASD. As the smallest of the amino acids in man it is widely 

recognised as a major inhibitory neurotransmitter through its actions upon the 

glycine receptor (408). Interestingly, it also acts as an activating ligand at the N-

methyl-D-aspartate (NMDA) ion channel receptor. To date no abnormalities have 

been described in the plasma glycine concentration of autistic individuals.  

Caution is required in the interpretation of plasma and urinary amino acid 

concentrations in disease compared to control groups as there are many potential 

confounding factors including subject age, time of sampling and dietary intake in 

addition to the well documented difficulties pertinent to autism research of clear 

phenotype definition.  
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Ideally plasma amino acid concentrations should be analysed in fasting samples. This 

was impractical for the current study, however overnight fasting samples were 

available for some and all other samples were pre-prandial. 

As the amino acid precursor of serotonin, consideration of plasma tryptophan 

concentration is of importance. Tryptophan hydroxylase is not fully saturated at 

physiological concentrations, thus tryptophan concentration can affect serotonin 

production (188). CNS availability of tryptophan for serotonin synthesis is dependent 

not only on tryptophan concentration in the plasma but also on the ratio of 

tryptophan to the other large neutral amino acids (LNAA) [tyrosine, phenylalanine, 

valine, leucine and isoleucine] with which it competes for transport into the brain via 

a transporter, LAT1(409;410). If some cases of autism are considered as a condition 

of central serotonin depletion (350) then reduced availability of tryptophan may play 

a role. 

Unlike other amino acids, circulating tryptophan is specifically bound to albumin. 

The small fraction of ‘free’ tryptophan is thought to be the biologically active form 

which is available in the circulation for use by tissues and organs, including the brain 

(411). Results for plasma tryptophan presented here represent total tryptophan 

concentration as the laboratory method employed breaks tryptophan protein bonds 

through the use of sulphosalicylic acid prior to measurement.  

In this study there is no difference in plasma tryptophan, total LNAA or the Trp: 

LNAA ratio between autistic and control subjects. Plasma tryptophan is within the 

laboratory reference range for all autistic subjects except one in whom tryptophan 

consistently fell well below the normal range. This patient is considered in detail in 

Chapter 6. One previous study describes significantly lower urinary tryptophan 

measured by gas chromatography/mass spectrometry in 33 autistic children 

compared to controls. Lack of information regarding detailed dietary intake and 

relation to plasma concentrations makes this work difficult to interpret (412). 

A study by D’Eufemia et al. (413) demonstrated a significantly lower serum 

tryptophan to large neutral amino acid ratio (Trp: LNAA) in 40 children with 

‘infantile autism’ compared to matched controls. The mean Trp: LNAA ratio for the 

autistic group in our study (0.12) is higher than that reported (0.087) by D’Eufemia 
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et al. (1995) (413) and is more comparable with their control range (0.110). 

Although the mean age of autistic subjects is similar in both studies, the group of 

children investigated by D’Eufemia et al. have a mean IQ of 68.1 which is 

considerably lower than the group presented here and may partly account for the 

differences. 

The relationship between serotonin and dopa decarboxylase activity with the large 

neutral amino acids was investigated in the autistic and control groups. A significant 

positive correlation was observed between tryptophan, tyrosine and phenylalanine 

concentration for both serotonin and DDC in the autistic patients but not the controls 

(Tables 32 & 33 and Figures 36 & 37; Tables 37 & 38 and Figures 51 & 52). 

 Discussing serotonin first, if we consider that autistic patients have an accumulation 

of 5-HTP in the brain as a result of reduced AADC activity (as discussed in Section 

5.7.3) then this will leave the central nervous system via the LAT1. This transporter 

is likely to exhibit a counter flux phenomenon so that the higher the level of plasma 

LNAA the greater the export of 5-HTP from the brain. The resultant increased 

concentration of plasma 5-HTP could explain the elevation in whole blood serotonin 

evident in some autistic children and in others, where the concentration of 5-HTP is 

not high enough to alter serotonin production, the only abnormality evident is the 

dependence of serotonin on plasma concentrations of LNAA. The correlation with 

plasma tryptophan and serotonin is particularly strong which is to be expected as 

tryptophan is the immediate precursor of 5HTP. Reduced activity of plasma DDC  in 

vitro would be unsurprising in this scenario as 5-HTP strongly inhibits  the 

decarboxylation of L-dopa to dopamine, even when the substrate is present at high 

concentrations as used in the assay presented here (358) . In keeping with this 

hypothesis where there is a net export of 5-HTP out of the brain in autism and a net 

import in normal subjects, it has been observed that 5-HTP given to autistic subjects 

leads to an increase in blood serotonin whereas in controls it does not (414).  

The correlation of Tyr, Phe and Trp with DDC activity may perhaps be understood 

on the basis that these three amino acids compete with 5-HTP for binding to plasma 

AADC; the greater the concentration of Phe, Tyr and Trp, the less inhibition of 

AADC by 5-HTP in vitro. 
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Two recent studies have shown different amino acid abnormalities measured in 

platelet-poor plasma (platelet depletion in the laboratory after sampling), in small 

numbers of children with autistic spectrum disorders compared to controls. 

Tirouvanziam et al. (415)demonstrated reduced levels of polar neutral amino acids 

and leucine with developmental profiles that were altered compared to controls. 

Shimmura et al. (416) examined 25 children with high-functioning autism and found 

higher levels of glutamate and lower levels of glutamine than a matched control 

group and postulate that these findings may indicate glutamatergic abnormalities in 

the brain. No such findings were evident in the results reported here, however amino 

acids were not measured in platelet-poor plasma. 

5.8 SUMMARY 

In summary, altered serotonin metabolism appears to play a role in the pathology of 

autism as evidenced by clinical, radiological and biochemical observations. Plasma 

DDC activity is reduced in some autistic subjects; if this is of neuronal origin it may 

reflect reduced central serotonin synthesis. One explanation for the decreased DDC 

activity observed is the selective loss of AADC expression in serotonergic neurones 

and this may result from reduced action of one or more AADC-targeted transcription 

factors (e.g. Pet-1) in the developing serotonergic neurones. 

Future work to investigate this hypothesis further could include: 

1 – Determination of the amount of AADC protein and any post-translational 

modifications in plasma of ASD subjects compared to controls using protein mass 

spectrometry 

2 – Sequencing of genes encoding transcription factors for serotonergic neurones and 

their specific binding sites in AADC promoter regions 

3 – Further investigation of the biochemistry in autistic subjects by measuring levels 

of 5-HTP in relation to whole blood serotonin and  both 5-HTP and L-dopa 

decarboxylase activity in the plasma of autistic subjects and measuring AADC 

activity, 5-HTP and 5-HIAA concentrations in CSF. 

 



261 

 

 
 

-

 

 

  



262 

 

6.1 INTRODUCTION 

Patient DN (not the patients’ real initials) presented with epilepsy, ataxia and 

Asperger’s syndrome and was referred to the neurometabolic clinic for further 

investigation of a reduced CSF concentration of pyridoxal phosphate (PLP). Her 

clinical phenotype was not typical of the previously described inborn errors of B6 

metabolism associated with reduced cerebrospinal fluid PLP and consistent with this, 

investigations excluded antiquitin and pyridoxamine 5’phosphate oxidase 

deficiencies. 

In addition to a reduced CSF pyridoxal phosphate, her investigations also showed a 

significantly reduced plasma tryptophan (Trp) concentration. This finding is not 

commonly encountered in clinical practice and Hartnup disease is the only well 

described disorder associated with a reduced plasma tryptophan. Hartnup is an 

autosomal recessive disease which results in deficiency of a neutral amino acid 

transporter at the epithelial surface of intestinal and renal tubular cells (417). This 

was excluded in Patient DN as her urinary amino acid profile did not show the 

striking neutral hyperaminoaciduria characteristic of this condition; additionally her 

clinical symptoms were very different to those described in Hartnup disease. 

In the absence of any other unifying diagnosis, a hypothesis is proposed whereby the 

primary abnormality is increased activity of tryptophan 2, 3-dioxygenase (TDO) with 

increased production of metabolites on the kynurenine pathway. TDO is the main 

enzyme regulating plasma Trp concentration; increased activity lowers plasma 

tryptophan and diverts Trp away from indolamine synthesis into the kynurenine 

pathway (173) (Figure 55). The fact that DN had a low whole blood serotonin was in 

keeping with such a diversion of Trp metabolism caused by increased TDO activity. 

Increased activity of TDO can be expected to result in elevated kynurenine pathway 

metabolites and several of these compounds are neurologically active having 

deleterious consequences in animal models (418). They could therefore be 

contributing to the observed neurological dysfunction. In addition, kynurenine 

pathway metabolites have been shown to inhibit pyridoxal kinase (419;420), thus 

providing a possible explanation for the low CSF PLP and the improvement of some 

of DN’s neurological problems with B6 treatment. 
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The following chapter presents the clinical case history of patient DN, her extended 

laboratory investigations including sequencing of the TDO2 gene and a further 

discussion of the possible underlying disease mechanisms and how the proposed 

hypothesis could be tested. 
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Figure 55. The kynurenine pathway for degradation of tryptophan 

(i)Tryptophan 2,3-dioxygenase or indolamine 2,3-dioxygenase (ii) Kynurenine 3-

hydroxylase (iii) Kynureninase (iv) Kynureninase (v) Kynurenine aminotransferase (vi) 

Kynurenine aminotransferase (vii) 3-Hydroxyanthranilic acid oxidase (viii) Amino 

carboxymuconate semialdehyde decarboxylase 
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6.2 CLINICAL CASE HISTORY 

Patient DN is a 13 year old female and only child of unrelated Caucasian parents. 

There is a family history of epilepsy and autistic spectrum disorder on the maternal 

side (Figure 56). She was delivered at full term following an uneventful pregnancy; 

her neonatal period and early development were unremarkable.  

 

 

                                                                         

 

 

 

 

 

 

Figure 56.  Family pedigree of patient DN 

 

6.2.1 Seizures 

The first onset of generalised tonic clonic (GTC) seizures was at 17 months of age 

associated with fever. She subsequently developed febrile and afebrile GTC and 

absence seizures which were difficult to control with conventional anticonvulsant 

medications. Eventually by late childhood her seizures were controlled on sodium 

valproate and she had only 3-4 breakthrough absence seizures per month. Several 

electroencephalogram (EEG) recordings throughout this period were normal. A brain 

MRI initially undertaken at 2 years of age showed a relatively large cisterna magna 

but was otherwise normal. Repeat imaging at 10 and 12 years of age demonstrated a 

stable tectal plate glioma which was presumed to be an incidental finding. 

Case DN 

Autism Epilepsy 

Unaffected female 

Unaffected adult, gender unknown 

Unaffected male 
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Female with similar disease 
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Male with similar disease phenotype 
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6.2.2 Episodic ataxia 

Patient DN had an acute onset of ataxia at age 5 years in association with fever, 

upper respiratory tract symptoms and elevated inflammatory markers. She suffered 

subsequent exacerbations of ataxia with fever, illness and fatigue, often accompanied 

by withdrawn and obsessive behaviour. This picture was on the background of a 

chronic intention tremor and poor co-ordination. These symptoms were particularly 

severe in the morning and predominantly affected the upper limbs. They were not 

associated with anticonvulsant toxicity as evidenced by blood monitoring. 

6.2.3 Sleep disorder 

Severe disruption of circadian rhythm began in late childhood with the inability to 

sleep more than 3 hours at night and significant daytime somnolence. Unfortunately 

this was not responsive to behavioural intervention or melatonin. Telemetry and 

sleep latency tests undertaken at 13 years of age showed multiple arousals and no 

evidence of narcolepsy. 

6.2.3 Asperger’s Syndrome 

Asperger’s was diagnosed at 9.7 years of age by 3Di assessment which showed 

impairment in all 3 areas of the autistic triad; (i) reciprocal social interaction skills, 

(ii) use of language and other social skills and (iii) repetitive/stereotyped behaviour 

and routines in the presence of normal early language development and above 

average intelligence (WISC III verbal IQ 131).  

6.2.4 Response to vitamin B6 treatment 

Following the finding of a significantly reduced PLP level in cerebrospinal fluid 

(Table 41, Section 6.4) oral pyridoxine (100 mg twice daily; approximately 5 

mg/kg/day) was commenced at 11 years. This was subsequently changed to PLP (30 

mg/kg/day) due to the development of symptoms of peripheral neuropathy. Nerve 

conduction studies at this time were normal. On both forms of vitamin B6 the patient 

showed cessation of absence seizures, tremor and ataxia and an improvement in her 

social functioning and sleep pattern.  
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6.3 METHODS 

6.3.1 Biochemical analysis 

Whole blood serotonin was analysed by HPLC in the Neurometabolic Diagnostic 

Laboratory, National Hospital for Neurology and Neurosurgery, Queen Square, 

London as described in Section 2.2.4 (289). Each sample was frozen at the bedside 

and stored at -80°C for no more than 4 months prior to collection.  

All B6 vitamers were measured in plasma by the author using HPLC linked to 

tandem mass spectrometry as described in Section 2.2.2. Each sample was spun 

within 1 hour of collection and plasma frozen at -80°C for a maximum of 4 months 

prior to analysis. 

Plasma amino acids were measured on the day of sampling in the chemical pathology 

laboratories, Great Ormond Street Hospital, London by HPLC and serum albumin by 

a bromocresol green (BCG) dye binding method. 

Neurotransmitter amine metabolites, pterins and PLP were analysed as described in 

Section 2.2.5 (293). CSF PLP concentration was analysed in the second 0.5ml of 

CSF. 

Other biochemical and haematological parameters reported in Tables 40 and 41 were 

analysed in the routine diagnostic laboratories of Great Ormond Street Hospital, 

London. 

6.3.2 Molecular genetic analysis; sequencing of the tryptophan 2, 3-

dioxygenase (TDO2) gene (ENSG00000151790) 

DNA was extracted from whole blood using a Puregene Genomic DNA Purification 

Kit as described in Section 2.3.1. 

Polymerase chain reaction (PCR) primers were designed using the Primer3 design 

website (http://frodo.wi.mit.edu/); the coding exons and exon/intron boundaries, 5’ 

and 3’ untranslated regions and 850 bp of the upstream promoter region of the TDO2 

gene were amplified using the intronic primers detailed in Table 39. Transcript 

ENST00000536354 of TDO2-001 was used to generate primers. 
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A typical PCR reaction is described in Section 2.3.2; details of annealing 

temperatures and MgCl2 concentrations used for these primers are shown in Table 

39. PCR products were cleaned and sequenced by Sanger sequencing as described in 

Section 2.3.3. Any nucleotide changes that were found were compared to the 

Ensembl database (www.ensembl.org). 
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Table 39.  Primers and PCR conditions required for the amplification of human 

tryptophan 2, 3-dioxygenase (TDO2) 

  

 Primers 

Predicted 

product 

size (bp) 

MgCl2 

conc. 

(mmol/L) 

Annealing 

temperature 

(°C) 

Upstream 

promoter 

region* 

S:5’ CTGCCTCAGCCTCCCTAGTA 3’ 

A/S:5’ CCCAAGAAAACATTTGGCATA 3’ 
484 1.0 

55 

 

Upstream 

promoter 

region* 

S:5’ GAAGTGGGCTTTGAGCATGT 3’ 

A/S:5’ CATTTCCATTGGTACAGAACTGA 3’ 
370 1.5 57 

Upstream 

promoter 

region* 

S:5’ GATCACTCACTCTTAGCAAATGAA 3’ 

A/S:5’ CCCACTTAGAATAAAGGTAAATACTCA 3’ 
300 1.5 56 

Exon 1 

including 5’ 

untranslated 

region  

S:5’ TTTGCAATGAGAATTTTAATCACC 3’ 

A/S:5’ AACAAAAGTTGAAAACGTAAAAGTG 3’ 
361 1.5 54 

Exon 2 
S:5’ GATGCAGGGTAAGCAGGCTA 3’ 

A/S:5’ GGTGACAGTTTTCAATGCTCCT 3’ 
246 1.5 56 

Exon 3 
S:5’ TGATGAGATTCGTCCATTGTTT 3’ 

A/S:5’ TCCCCTTGGAGTTAAGAACAAA 3’ 
495 1.5 52 

Exon 4 
S:5’ TCTGGCACACAATGGGACTA 3’ 

A/S:5’ TGACTGAACTCCTCATTCATTCAT 3’ 
373 1.5 52 

Exon 5 
S:5’ GAAACTTGTTTTGAAATCAGTGG 3’ 

A/S:5’ TCAATGTGCTAAGTTGTCTAAAATTC 3’ 
691 1.5 52 

Exon 6 
S:5’ TGTCAGCTCTTCTCTTCTCTCC 3’ 

A/S:5’ TCTCAGCAGGGTTCTTGACA 3’ 
596 1.5 54 

Exon 7 
S:5’ TGTTTCTGGAAACCATGAAGA 3’ 

A/S:5’ TCAATCATGTCACATAGTCCAAGA 3’ 
366 1.0 54 

Exon 8 
S:5’ GGATAGAACCACTGAGTATGTGGA 3’ 

A/S:5’ AATAATCTGGGCATGGAAACC 3’ 
499 1.5 54 

Exon 9 
S:5’ AAAAATCAGGTTTTCCTAACATGC 3’ 

A/S:5’ GGGGGCATAAAACTTCATT 3’ 
486 1.5 56 

Exon 10 
S:5’ ATAAGCCAAAGCTGCCACAG 3’ 

A/S:5’ TTCATGAGCCCCCAAAAGTA 3’ 
450 1.5 54 

Exon 11 
S:5’ GCTCTCATGTATGAGCCTTCC 3’ 

A/S:5’ CCACCAAAAGTCTGAACTGGA 3’ 
398 1.5 55 

Exon 12 

including 3’ 

untranslated 

region 

S:5’ CCTTGCATAGCATCCTTCAGA 3’ 

A/S:5’ TCTTTGGTCATTAAGATTCCTAACA 3’ 
956 1.5 54 

[KEY: S-sense primer; A/S - antisense primer; PCR, polymerase chain reaction; *overlapping primer pairs]
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6.4 RESULTS 

Tables 40 and 41 show the biochemical and haematological investigations in patient DN. She 

had persistently low plasma tryptophan in the presence of normal serum albumin (Table 40) 

and no evidence of increased urinary tryptophan excretion. The rest of her plasma amino acid 

profile was within the normal reference range with the exception of a mildly elevated glycine 

which is likely secondary to valproate treatment. Whole blood serotonin measured on two 

occasions fell below the lower reference limit (Table 40). 

The concentration of pyridoxal phosphate (PLP) in cerebrospinal fluid (Table 41) was 

reduced below the age related reference range as described in Chapter 3. The concentration of 

PLP in plasma (Table 40) was in the low normal range, as were the concentrations of the 

other B6 vitamers. The alterations in the plasma B6 profile while on supplementation reflect 

those seen in the reference control population on supplementation (see Chapter 4).  
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Table 40. Sequential investigations in patient DN showing variation with change in medications 

 
AGE 

12y 0m 12y 7m 13y 5m 

Medication 
Sodium 

Valproate 

Sodium Valproate, 

Pyridoxine (100mg 

twice daily; 5 

mg/kg/day) 

Sodium Valproate, 

Pyridoxal Phosphate 

(30mg/kg/d) 

Plasma albumin 

[37 – 50] (g/L) 
40 47 45 

Plasma tryptophan  

[30-80] (μmol/L) 
17 14 17 

Whole blood serotonin  

[600 – 1600] (nmol/L) 
539 - 359 

Plasma B6 vitamers 

(nmol/L) 

 

PLP (46.4 - 350.1) 

PL (5.8 – 30.1) 

PA (17.6 – 123.2) 

PM (nd) 

PMP (nd – 9.6) 

PN (nd – 0.6) 

PNP (nd) 

54.5 

6.4 

38.6 

nd 

5.1 

0.5 

nd 

528.8 

8532.2 

5212.4 

3.1 

4.6 

1.9 

nd 

306.4 

8452.5 

5031.9 

5.1 

4.1 

2.7 

nd 

KEY: Values outside the reference range shown in bold typeface; reference ranges shown in italics; 

nd, not detectable; y – years; m - months 
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Table 41. Additional laboratory investigations in patient DN 

Cerebrospinal 

Fluid 

Pyridoxal phosphate 6 (10 – 37) nmol/L 

Glucose, lactate, 5HIAA, HVA, 5-MTHF, pterins and amino acids 

(including tryptophan) - normal 

Urine Amino acids – normal excretion, normal sulphite 

Organic acid profile – normal profile 

α-Aminoadipic semialdehyde – normal excretion 

Genetics Pyridox(am)ine 5’ phosphate oxidase (PNPO) – no mutations 

Spinocerebellar ataxia type 6 (SCA6) – no expansion 

Episodic ataxia type 2 – no mutations 

Other normal  

investigations 

Liver function tests 

Alkaline phosphatase, 

albumin 

C-reactive protein 

Thyroid function tests 

Full blood count 

Red cell folate 

Serum vitamin B12 and 

vitamin D 

Serum copper 

Anti-streptolysin O titre  

Anti-basal ganglia antibodies-low titres 

Parvovirus and varicella serology 

Herpes simplex CFT <10 

Anti-nuclear antibodies 

Rheumatoid factor 

Anti-thyroid peroxidase antibody 

IgA endomysial antibody 

Reference range in italics 

Sequencing of the coding and upstream promoter regions of the TDO2 gene revealed ten 

sequence variations which are shown in Table 42. Eight in the non-coding intronic region 

have been previously reported on the Ensembl database (www.ensembl.org). A splice site 

prediction tool (www.fruitfly.org) suggested that rs72681567 which is the only SNP lying 

close (16 bp) to an intron-exon boundary does not create a new cryptic splice site. 

Of the two unreported changes one lies deep within an intronic region at base position 

156838470 and is unlikely to affect protein expression (c.897G -142A>T). The second  lies 

within Exon 8 (Table 42) and results in an amino acid change from a serine to a cysteine in a 

well conserved area of the protein (c.740C>G p.Ser247Cys) (Figure 57). Its potential 

significance is discussed in later sections.

http://www.ensembl.org/
http://www.fruitfly.org/
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Table 42. Sequence variations and single nucleotide polymorphisms (SNP) in the TDO2 gene of 

patient DN 

 

Sequence 

variant with 

SNP identifier 

where known 

Position in gene Variation 

Sequence 

variation in 

patient DN 

Population 

frequency* 

rs3775086 Intronic T/A 
T/A 

heterozygote 
96% T: 4% A 

rs3755909 Intronic C/T 
C/T 

heterozygote 
95% C; 5%T 

rs2137778 Intronic C/G 
G/G 

homozygous 
98% G; 2% C 

rs72681567 Intronic A/G 
A/G 

heterozygote 
93% G; A 7%** 

rs34133854 Intronic T/C 
T/C 

heterozygote 
95% T; 5% C 

rs10517626 Intronic G/T 
G/T 

heterozygote 
94% G; 6% T 

rs12502494 Intronic C/T 
C/T 

heterozygote 
92% T; 8% C 

Unreported  

variant, base 

156835488 

Exonic C/G 
C/G 

heterozygote 
unknown 

Unreported 

variant, base 

156838405 

Intronic T/A 
T/A 

heterozygote 
unknown 

rs2292537 Intronic C/T T/T homozygote 90%T; 10% C 

*from 1000 Genomes project; reported for European ancestry (CEU) when information available 

**Japanese population 
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HUMAN             EFIRIQAKEESEEKEEQVAEFQKQKEVLLSLF 268 

 GIBBON            EFIRIQAKEESEEKEEQVAEFQKQKEVLLSLF 268 

 CHIMPANZEE        EFIRIQAKEESEEKEEQVAEFQKQKEVLLSLF 268 

 GORILLA           EFIRIQAKEESEEKEEQVAEFQKQKEVLLSLF 271 

 MACAQUE           EFISIQAKEESEEKEEQVAEFQKQKEVLLSLF 264 

 GUINEA            EFIKIQAKAESEEKEEQMAELQKRREVLLSLF 267 

 RABBIT            EFIKIQAMEESEEKDDQMAEFQKQKEVLLSLF 268 

 COW               EFTKIQAKEESEEKEEQMAEFQKQKEVLLSLF 268 

 MOUSE             EFLRIQAKTDSEEKEEQMAEFRKQKEVLLCLF 268 

 RAT               EFLKIQAKKDSEEKEEQMAEFRKQKEVLLCLF 268 

 PANDA             EFIKIQAKEESEEKEEQMAEFQKQKEVLLSLF 268 

 DOG               EFIRIQAKEESEEKEEQMAEFQKQKEVLLSLF 268 

 DOLPHIN           EFIRIQAKEESEEKEEQMAEFQKQKEVLLSLF 267 

 HEDGEHOG          ELIRIQAKEESEEKEEQMAEFQKQKEVLLSLF 266 

 CHICKEN           EFAIVQAKPESEEKEDLLSEFQKQKDTLLSLF 268 

 ANOLE_LIZARD      EFAMVQAKDDSEEKEDQLAELQKQKEVLISLF 268 

 BUSH BABY         DFIRIQAREESEEKEEQMAEFQKQKEVLLSLF 268 

 COD               EKEKIEGMADSEDKEEMMAEFVKQQEVFTSLF 269 

                    :   ::.  :**:*:: ::*: *:::.: .** 

 

Figure 57. Sequence alignment of tryptophan 2, 3 dioxygenase protein across species showing 

conservation of human serine 247 
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6.5 DISCUSSION 

Patient DN presents with a syndrome of tryptophan, serotonin and pyridoxal phosphate 

deficiency in association with epilepsy, ataxia and Asperger’s syndrome which may represent 

an abnormality at the level of the enzyme tryptophan 2, 3-dioxygenase. The results of her 

biochemical and molecular genetic investigations are discussed below in the context of 

tryptophan metabolism and in the light of previously reported clinical cases which 

demonstrate similar features. 

6.5.1 Tryptophan metabolism 

The essential amino acid Trp is present in relatively low concentrations in plasma compared 

to other amino acids and forms only a small proportion of tissue proteins (421). Dietary 

deficiency of Trp is extremely rare in the developed world as it is present in most protein 

containing food groups such as red meat, fish, egg and peanuts and is particularly abundant in 

chocolate. The clinical presentation seen in dietary tryptophan deficiency relates specifically 

to the resulting nicotinamide depletion and is characterised by the three D’s; ‘dermatitis, 

diarrhoea and dementia’. This deficiency state named ‘pellagra’ is classically described in 

areas where maize is the staple diet, as nicotinamide (niacin) is not biologically available in 

maize unless it is specifically prepared with an alkali treatment. 

Trp is an interesting amino acid because it is involved in diverse metabolic pathways and thus 

impacts upon various physiological processes. Given its low plasma concentration, yet the 

diversity and importance of its actions, Trp homeostasis is vulnerable to disruption and the 

contribution of the different pathways of metabolism will vary according to physiological and 

pathological state (421).  

Trp circulates bound to albumin and only 10 – 20 % is unbound or ‘free’ Trp (422). Several 

factors can affect Trp binding, displacing it from albumin; these include drugs such as 

benzodiazepines and high concentrations of non-esterified fatty acids (NEFA) which may 

follow activation of the sympathetic nervous system, for example (173). What effect Trp 

binding has on the biological availability of the amino acid remains controversial (423), 

however albumin bound Trp cannot cross the blood brain barrier. 

Many observations demonstrate that peripheral Trp metabolism can alter serotonin synthesis 

in the brain (424), thus there is great interest in the mechanisms available for Trp uptake into 
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the central nervous system and the factors that may affect it. Trp crosses plasma membranes, 

including those at the blood brain barrier, by a neutral amino acid transporter (LAT1) which 

is activated by the heavy chain of 4F2 antigen (409;410). Studies have shown that this 

sodium independent transport system can transport large amino acids with a branched or 

aromatic side chain and that it shows high stereoselectivity for Tyr, Trp, Val and Histidine. 

The various amino acid substrates compete for transport and experiments suggest that the 

transporter acts as an amino acid exchanger at the blood brain barrier allowing bi-directional 

transport of amino acids.  

6.5.2 Metabolic fates of tryptophan 

Aside from its role in protein formation, Trp has two non-protein metabolic fates; <5% is 

metabolised to serotonin via the methoxyindole pathway and the remaining majority enters 

the kynurenine pathway (418).  The metabolic pathway for serotonin synthesis is discussed in 

detail in Chapter 1, Section 1.2. In addition to its function as a neurotransmitter, in the pineal 

gland serotonin serves as the precursor for melatonin, a neuro-hormone responsible for sleep 

onset during darkness and hence regulation of circadian rhythm. 

Interest in metabolites lying on the kynurenine pathway has increased over recent years as 

they have been implicated in many and varied aspects of pathophysiology. The main pathway 

shown in Figure 55 illustrates that the principle branch of tryptophan oxidation can either 

generate fuel for energy production in the form of acetyl CoA or lead to the net new synthesis 

of nicotinamide nucleotides, NAD and NADP (425). This pathway also has side branches 

that form kynurenic acid and xanthenuric acid. Two of the enzymes (kynurenine 

aminotransferase and kynureninase) are pyridoxal phosphate dependent and, prior to 

advanced analytical methods discussed in Chapter 3, detection of xanthenuric acid in urine 

following a tryptophan load was widely used as an indicator of B6 deficiency. It is also 

interesting to note that quinolinic acid and picolinic acid, which have important effects in the 

brain, are formed non-enzymatically and thus are only produced when there is a large amount 

of flux through the pathway (425). 

The effect of three kynurenine pathway metabolites within the central nervous system are of 

particular interest; namely quinolinic acid, kynurenic acid and 3-hydroxykynurenine. 

Quinolinic acid has been shown to selectively activate NMDA receptors producing excitation 

and axon-sparing lesions in the brain (426;427). It is pro-convulsant in animal models 
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(428;429) and demonstrates several mechanisms of neurotoxicity in addition to NMDA 

receptor activation including production of mitochondrial dysfunction and free radical 

generation. Given the important role of NMDA receptors in guiding axonal connections and 

synaptogenesis in the developing brain, a change in the physiological concentration of this 

metabolite during development may feasibly cause disease. 3-Hydroxykynurenine also shows 

toxicity towards neurones but probably by differing mechanisms (430).                                   

3-Hydroxykynurenine appears to initiate apoptosis as a result of conversion to quinonimines 

(431) and possibly also following its conversion to 3-hydroxyanthranilic acid which is known 

to be destructive (418). Kynurenic acid has apparently opposing effects within the CNS as 

this metabolite can block glutamate receptors and is an antagonist at both the glutamate 

binding site and the allosteric glycine site of the NMDA receptor (432;433).  

Although all enzymes of the kynurenine pathway are expressed within the CNS, studies in 

rats have shown that peripheral production of some kynurenine metabolites also contributes 

significantly to the cerebral pool (434). Kynurenine is readily taken up by the large neutral 

amino acid transporter, competing with other amino acids to enter the brain as described 

above. In addition both 3-hydroxykynurenine and anthranilic acid can pass the blood brain 

barrier, possibly by the same mechanism, whereupon they can undergo further metabolism to 

their downstream potentially neurotoxic products. In contrast, the effect of peripheral 

quinolinic acid, kynurenic acid and 3-hydroxyanthranilic is very limited due to their restricted 

blood brain barrier transport (434). 

It is clear that any alteration in the concentration of these metabolites within the circulation or 

CNS could play a role in a variety of neurological diseases. An increased serum kynurenine: 

Trp ratio has recently been reported as evidence for ‘activation’ of the kynurenine pathway in 

adolescent anhedonia (inability to experience pleasure observed in many mental health 

disorders) (435) and idiopathic generalised epilepsy (436). Increased kynurenic acid has been 

described in cerebrospinal fluid of male schizophrenic patients (437), the vast majority of 

whom were drug naïve, and,  more recently, evidence of increased expression of tryptophan 

dioxygenase (mRNA) has been demonstrated in post-mortem brain of patients with 

schizophrenia and bipolar disorder (438). 
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6.5.3 Tryptophan 2, 3 dioxygenase enzyme 

Man has two distinct oxygenase enzymes involved in the degradation of Trp; tryptophan 2,3-

dioxygenase (TDO) which is primarily expressed in liver (and astrocytes) (438) and 

indolamine 2,3-dioxygenase (IDO) which is active in non-hepatic tissues. Plasma Trp 

concentrations are influenced by TDO activity (439) as it is the rate-limiting enzyme for Trp 

degradation via the kynurenine pathway (173;440;441). TDO is a homotetrameric enzyme 

containing two haem units per tetramer. It is iron and copper dependent and shows 

remarkable evolutionary conservation. TDO acts by inserting molecular oxygen into the 

pyrrole moiety of Trp yielding formylkynurenine as the reaction product (442) and, despite 

catalysing the same biochemical reaction, it shows surprisingly little (<10%) sequence 

similarity with IDO (440). TDO is highly specific for L-tryptophan as a substrate and 

extensive studies of TDO in Xanthomonas campestris have now demonstrated the 

mechanisms of substrate recognition and catalysis of this enzyme (440;443). How substrate 

and O2 binding is controlled however, is still largely unknown (444). 

The activity of TDO may be increased by Trp and α-methyl tryptophan via actions at an 

allosteric site which lies away from the enzyme’s active site (442). Trp appears to increase 

enzyme activity by stabilising the enzyme complex and preventing degradation. In addition, 

the administration of corticosteroids has been shown to result in a 10- to 15-fold increase in 

TDO mRNA (445). Increased activity of TDO (due to increased protein production) 

associated with a proportional increase in kynurenine excretion was demonstrated by enzyme 

assay in the liver biopsies of a group of hospitalised patients (446). Activation of the pathway 

was considered likely secondary to the ‘stress response’ in these patients who had a variety of 

different diagnoses. Conversely, TDO is competitively inhibited by 5-HTP, melatonin and the 

final end-product of the pathway nicotinaminde-adenine dinucleotide phosphate and its 

analogues.  

6.5.4 Tryptophan 2, 3 dioxygenase gene (TDO2) 

Given that several factors such as haem and copper are required for optimum enzyme activity 

and that others such as corticosteroids can upregulate enzyme activity, there are multiple 

regions of the TDO2 gene where mutations could result in altered enzyme activity. 

Sequencing of this gene in patient DN therefore included the upstream promoter and 

regulatory region in addition to the exonic protein coding regions. 
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The TDO2 gene in man is localised on chromosome 4q31 and is composed of twelve exons 

(447). In both the rat and human sequence there is a large regulatory component and in rat it 

contains two glucocorticoid response elements (GRE) and a globin promoter region.  In man 

at least one GRE is present and there is insertion of an additional region of non-homologous 

sequence containing a putative alternative second GRE element (447). Possible haem binding 

histidine residues have been identified in both the human and rat protein sequence. 

Comings et al. (448) have demonstrated a significant association with some TDO2 

polymorphisms in various neuropsychiatric conditions (Tourette syndrome, attention deficit 

hyperactivity disorder and drug dependence) suggesting a role for TDO in these likely 

polygenic disorders (448). Of particular interest to the patient reported here, is the work of 

Nabi et al. (449), who investigated five single nucleotide polymorphisms in the TDO2 gene 

for association with autism. Results of the study suggest the presence of a susceptibility 

mutation in the TDO2 gene in the 196 multiplex families tested and revealed linkage 

disequilibrium of a promoter variant (rs3755910, not present in patient DN) with autism. 

Clinical data for the cohort examined is not detailed, but the group included patients with a 

diagnosis of autism, Asperger syndrome and pervasive developmental disorder not otherwise 

specified (PDD-NOS). Information about co-morbid features is not provided. The hypothesis 

of reduced TDO activity is proposed by the group, citing it as a possible mechanism for the 

well documented hyperserotonaemia in autism. For Patient DN however, increased activity of 

the enzyme could account for the biochemical findings as discussed below. 

6.5.5 Clinical cases of abnormal tryptophan and kynurenine metabolism 

Trp deficiency is rarely encountered in clinical practice although it has been described in a 

group of children with Tourette syndrome, of uncertain significance (450). The only inborn 

error of metabolism that causes low plasma Trp and is well understood is Hartnup disorder. 

This is an autosomal recessive disease resulting in deficiency of a neutral amino acid 

transporter at the epithelial surface of intestinal and renal tubular cells. This defect results in a 

striking neutral hyperaminoaciduria (alanine, serine, threonine, valine, leucine, isoleucine, 

phenylalanine, tyrosine, histidine, citrulline, asparagine, glutamine and tryptophan) and 

corresponding decreased plasma amino acid concentrations (417). The clinical features of 

pellagra-like dermatitis and neurological deterioration are also characteristic and are 

attributed to nicotinamide deficiency secondary to tryptophan depletion. Patients with 
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Hartnup disorder may be successfully treated with oral nicotinamide and adequate protein 

supplementation. 

Perhaps surprisingly, there are few described inborn errors lying on the tryptophan or 

kynurenine metabolic pathways. Those reported seem to have an inconsistent disease 

phenotype; none have been proven by enzymology and only one case has diagnostic 

confirmation by genetic mutational analysis. They are summarised in Table 43. 

Based on biochemical findings of elevated urinary kynurenine, 3-hydroxykynurenine and 

xanthenuric acid and reduced anthranilic acid, Komrower et al. (451) described a patient with 

a likely disorder of tryptophan metabolism. Her symptoms of diarrhoea, stomatitis, poor 

growth and headaches responded to nicotinamide but not pyridoxine supplementation, 

suggesting a diagnosis of kynureninase deficiency. The resolution of her early childhood 

haemolytic anaemia is not so easily attributable to nicotinamide deficiency however, which 

due to technical difficulties, could not be demonstrated on biochemical analysis of urine. The 

authors postulate that accumulation or deficiency of one of the other kynurenine metabolites 

may explain this feature however it has not subsequently been reported in any other patient 

with a possible disorder of tryptophan oxidation. More recently a child with a different 

presentation of incidental asymptomatic xanthenuric aciduria was described and shown to 

have homozygous mutations in the kynureninase gene (452) perhaps suggesting dual 

pathologies in the first case.  

Clayton et al. (453) reported   biochemical evidence of kynurenine hydroxylase deficiency in 

a 9 year old girl who had a classical clinical picture of pellagra; dermatitis, diarrhoea and 

dementia. Her symptoms improved dramatically with nicotinamide (but not with nicotinic 

acid) and showed no response to the cofactor for kynurenine hydroxylase, FAD (in the form 

of riboflavin). 

Two families with mental retardation, volatile affect and speech abnormalities have been 

described in whom hypertryptophanaemia and elevated excretion of indoleic acids may 

represent a failure to convert tryptophan to kynurenine (454;455).  A diagnosis by mutational 

analysis was not pursued in either family. Wong et al. (456) also report biochemical evidence 

of reduced activity of tryptophan oxygenase in a patient with a different clinical phenotype of 

pellagra-like rash and cerebellar ataxia. 
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Salih et al. (457) report a severe familial condition which is lethal in early childhood and may 

result from abnormally high activity of picolinate carboxylase. This condition is characterised 

by a pellagra-like skin condition, neurological impairment including cerebellar signs, severe 

sleep disturbance and the development of cataracts.  
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Table 43. Summary of published clinical cases for possible inherited defects of tryptophan metabolism 

- not reported or not measured; ● clinical feature present; kyn – kynurenine; 3HK – 3-hydroxykynurenine; XA – xanthenuric acid

 Tada (1963) Komrower (1964) Wong (1976) Freundlich (1980) Fenton (1983) Salih (1985) Clayton (1991) Christensen (2007) 

Number of patients 1 child 1 child 1 child 1 child 2 siblings 
10 cases (single 

family) 
1 child 

1 child 

(asymptomatic) 

Photosensitive dermatitis ● No ● ● ● ● ● No 

Cerebellar ataxia ● No ● ● ● ● No No 

Short stature - ● ● Failure to thrive ● Failure to thrive No No 

Developmental delay ● ● Low IQ ● Low IQ Not reported ● Low IQ ● No No 

Neuropsychological 

dysfunction 
- - - - 

Depression. Family 

history schizophrenia 
Insomnia 

Anxiety, depression, 

paranoia 
No 

Colitis, diarrhoea - ● No ● No No ● No 

Haemolytic anaemia - ● No No No No No No 

Response to nicotinamide Not reported 
Growth and 

headaches improved 
Rash improved 

Rash and ataxia 

improved 
Not reported 

Exacerbation of rash 

with nicotinic acid 

Rapid improvement 

all symptoms 
- 

Plasma tryptophan Normal - Normal Normal 
Reduced               

(normal 5-HTP) 
Normal Normal Normal 

Whole blood serotonin - - Normal - - - Normal - 

Urinary amino acid 

excretion 
 Normal Normal Normal Normal Normal Normal - 

Urinary Kyn, 3HK, XA 
Reduced Kyn 

excretion 

Increased excretion 

Kyn, 3HK and XA. 

No excretion 

anthranilic acid 

Reduced 

excretion Kyn 

post Trp load 

KA and XA 

excretion reduced 

post Trp load 

Reduced N methyl 

nicotinamide and 3-

hydroxyanthranillic acid 

Elevated kynurenine; 

reduced KA, XA. No 

quinolinic acid present 

Increased excretion 

Kyn and KA; 

reduced excretion 

3HK 

Increased excretion 

Kyn, 3HK, XA 

Proposed defect 

Defect in Trp 

conversion to 

Kyn 

Kynureninase 

deficiency 

Reduced 

activity 

tryptophan 

oxygenase 

Block in tryptophan 

degradation 
- 

Increased activity 

picolinate carboxylase 

Kynurenine 

hydroxylase 

deficiency 

Homozygous 

mutation in 

kynureninase gene 
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6.5.6 Patient DN 

It is possible that patient DN described in this chapter has an inborn error of 

tryptophan metabolism given the persistent abnormal finding of reduced plasma 

tryptophan. Tryptophan binding to albumin may affect its biological actions as 

discussed above, however the laboratory method used here measures total tryptophan 

and therefore excludes factors which alter binding as causative.  

Patient DN does not fit the clinical or biochemical phenotype for Hartnup disorder, 

the only well described disorder involving tryptophan. Specifically in her case, the 

tryptophan deficiency is isolated, the urinary amino acid profile is normal and there 

are additional abnormalities evident in blood and cerebrospinal fluid (Tables 40 and 

41). She has no skin abnormalities therefore it is unlikely that the low plasma 

tryptophan is causing nicotinamide deficiency i.e. there is not a deficiency in a final 

product of this pathway. She does however share some of the other clinical features 

described in presumed cases of inborn errors of tryptophan metabolism including 

ataxia, sleep disturbance and neuropsychiatric symptoms. In particular the cases 

described by Fenton et al. (458) have a seemingly identical picture of tremor and 

ataxia which is worse in the morning and exacerbated during times of fever and 

infection. There are no cases reported with the same biochemical findings, however 

it is useful to consider her clinical problems in light of the laboratory findings. 

Plasma Trp concentrations are regulated by TDO which is known to be an inducible 

enzyme in some situations. Conceivably an increase in the activity of this enzyme, 

which is inappropriate to the physiological state, may lead to reduced plasma 

tryptophan and increased flux through the kynurenine pathway. The resulting 

increase in kynurenine metabolites, particularly kynurenine, 3-hydroxykynurenine 

and anthranilic acid may enter the central nervous system (CNS) with deleterious 

consequences such as seizure generation.  In keeping with this, the whole blood 

serotonin concentration in this patient was below the lower limit of the laboratory 

reference range and is very different to our paediatric control range (Chapter 4), 

implying a diversion of tryptophan away from indolamine synthesis. It is surprising 

that measurement of CSF tryptophan and 5-HIAA provided no evidence of 

tryptophan or serotonin deficiency in the CNS, as some of patient DN’s problems, 

such as sleep disorder, could be readily explained by reduced serotonin and hence 
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melatonin synthesis in the brain. This may be because tryptophan entry into the CNS 

fluctuates and the plasma and CSF samples documented here were not drawn 

simultaneously. It should also be borne in mind that it is the catabolic product of 

serotonin (5-HIAA) that is measured in CSF rather serotonin itself. An important 

abnormality in the biochemical profile of the CSF sample obtained from DN was the 

low concentration of PLP. This and the response to B6 supplementation strongly 

suggest a defect in the synthesis of PLP. Two studies have shown that the kynurenine 

metabolites (3HK, 3-hydroxyanthranilic acid, xanthenuric acid, picolinic acid and 

quinolinic acid) inhibit pyridoxal kinase which is the enzyme responsible for 

catalysing the formation of PLP from PL (419;420). This mechanism may account 

for the severe central PLP deficiency observed and the improvement on vitamin B6 

treatment.  Absence of the skin condition pellagra caused by nicotinamide deficiency 

in this patient is in keeping with increased, rather than reduced flux through the 

kynurenine pathway and it is interesting to note that a recent study found evidence of 

increased urinary excretion of N-methyl nicotinamide and N-methyl nicotinic acid in 

a group of autistic children by NMR spectroscopy (405). 

Theoretically, an inappropriate increase in the activity of TDO may arise by a 

number of different mechanisms. It may be due to an increase in one or more factors 

known to stimulate protein expression such as corticosteroid release or it may be due 

to an abnormality at a genetic level; a ‘gain-of-function’ mutation. Given the 

numerous factors that can affect TDO enzyme activity there are multiple regions of 

the TDO gene where a mutation could result in increased activity, particularly in the 

regulatory and substrate binding regions. 

Coding regions and upstream regulatory regions of the TDO2 gene were sequenced 

in patient DN. The nine single base changes lying in intronic regions are unlikely to 

affect expression of the protein. 

A single heterozygous base change, not previously reported was found in exon 8 

which results in non-synonymous coding, changing a serine to a cysteine (S247C). 

Serine 247 lies in a highly conserved region of the TDO2 protein (Figure 57) 

indicating that it is functionally important and although serine and cysteine differ by 

only one atom, they are chemically distinct as cysteine contains a sulphydryl group 

where serine has a hydroxyl group. Cysteine often forms disulphide bridges within a 
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protein and is important for the primary structure formation, whereas serine can form 

hydrogen bonds and forms the secondary structure of proteins.  

6.6 FUTURE CONSIDERATIONS 

This amino acid change is potentially interesting in the context of the biochemistry 

results in patient DN and warrants further investigation. Initially the heterozygous 

base change should be confirmed in the patient and her parents (unfortunately 

parental DNA is not currently available). In addition a cohort of 100 ethnically 

matched controls should be screened to ensure it is not a common polymorphism that 

has yet to be reported. Following this, functional studies of the mutant protein could 

be undertaken.  

Analysis of plasma and CSF kynurenine metabolites and their ratio to tryptophan in 

patient DN would further support the genetic investigations and could be measured 

by tandem mass spectrometry. It would also be interesting to look for evidence of 

kynurenine pathway disruption in other patients who share similar clinical features 

with Patient DN; although plasma Trp reduced below normal reference ranges has 

not been well described in autism or Asperger’s syndrome, the ratio of Trp to 

kynurenine rather than the absolute concentration may be altered with pathological 

consequences of kynurenine metabolites in the central nervous system. 

If the kynurenine pathway is proven to be implicated in the case described here then 

potential options for treatment should be considered. Possible pharmacological 

agents include the non-steroidal anti-inflammatory agents (tolmetin and sulindac) 

which are commonly used for treatment of pain in arthritis. Both were shown to 

inhibit liver tryptophan 2, 3-dioxygenase and increase brain serotonin and melatonin 

levels in rats (459). Other work in animals has identified several different compounds 

which prevent seizure induction by the inhibition of kynureninase and kynurenine 3-

hydroxylase. Their action diverts Trp away from quinolinic acid and towards 

kynurenic acid thus offering neuro-protection (460;461). 
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The complex metabolism and diverse functions of vitamin B6 make it an interesting 

and challenging area of paediatric medical research. One important synthetic 

pathway in which it plays a role is in the production of serotonin via the PLP-

dependent enzyme aromatic amino acid decarboxylase. Both vitamin B6 and 

serotonin metabolism have been addressed in the research presented within this 

thesis with respect to two common and disabling neurological disorders of 

childhood; epilepsy and autism. They share in common a heterogeneous clinical 

presentation and diverse aetiology. Although an understanding of the genetic basis 

for some epilepsy syndromes has advanced in recent years, much is yet to be learned 

about both conditions. Ultimately it is hoped that research in these patient groups 

will impact upon children and their families by improving diagnosis and treatment 

options and thereby quality of life. 

 

 

 

 

 

 

 

The work presented in Chapters 3 and 5 highlights the importance of accurate age 

dependent metabolite reference ranges for diagnosis. It is apparent that during a 

period of rapid growth and development in the first months of life vast alterations 

take place in the metabolic milieu, reflected in age-dependent metabolite 

concentrations. This has important implications for diagnosis and treatment. 

Extrapolating this further to consider the development of metabolic pathways in 

utero and how premature delivery may impact upon this is another, as yet unexplored 

area for research. 

Considering the metabolic pathways of vitamin B6 in particular, work in animal 

models suggests developmental changes of pyridoxamine 5’-phosphate oxidase 

Summary of the important findings of this work: 

o Revision of the normal range for pyridoxal 5’-phosphate in 

cerebrospinal fluid 

o Development and validation of an LC-MS/MS method for measurement 

of plasma B6 vitamers and demonstration of its use in patients with B6 

responsive epilepsy 

o Whole blood serotonin is not elevated in a group of high functioning 

autistic children and young adults (mean age 12 years 1 month) but 

aromatic L-amino acid decarboxylase activity in plasma is reduced. A 

hypothesis that this observation may be related to elevated 5-

hydroxytrypotophan has been proposed  
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during fetal life (30). In addition we know that B6 has important antenatal effects as 

illustrated by inborn errors of metabolism that lead to pyridoxal 5’-phosphate 

deficiency, for example structural neuroanatomical changes and intrauterine seizures  

seen in some patients with Antiquitin deficiency. Very little is known about the 

normal range for plasma B6 vitamers in the term newborn infant and even less about 

how this may differ in premature infants. A recent abstract documenting the 

measurement of B6 vitamers in CSF suggests that differences do exist (462) although 

the reasons for this are unclear. 

In this paediatric group nutrition is also of crucial importance. Artificial feeds 

(formula milk and parenteral nutrition), not uncommonly used in preterm infants, 

contain large amounts of pyridoxine as their predominant B6 vitamer source in 

contrast to human breast milk which contains pyridoxal and pyridoxal 5’-phosphate 

in lower concentrations. Previous work suggests that accumulation of some vitameric 

forms may occur in babies and infants on formula or parenteral nutrition and in the 

long term it will be important to determine if there are any detrimental effects of such 

deviations from normal physiology, considering in particular the documented direct 

toxicity of some B6 forms in excess and the possible secondary effects of the elevated 

cofactor (PLP) concentrations on downstream pathways, leading to alteration of 

critical neurotransmitters for example.  

Future work to establish reference ranges in the term and preterm newborn and to 

investigate the effect of feeding method has been given ethical approval and will 

form the basis of important work to further understanding in this area of B6 

metabolism. In order to make this project practically possible, work has begun to 

adapt the method to measure B6 vitamers in plasma by LC-MS/MS for use on dried 

blood spots. This will have enormous advantages not only in the small amount of 

sample that is required, but also in ease of sampling and resulting stability of the 

analytes.  

As presented and discussed in Chapters 3 & 4 many patients present to clinicians 

with B6 responsive seizures that do not fall into any of the known diagnostic 

categories; measurement of plasma/whole blood and CSF B6 vitamers is likely to be 

helpful in the identification and understanding of novel monogenic B6 responsive 

seizure disorders in these groups. The advent of next generation sequencing has in 
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recent years made rapid sequencing of the whole exome or even genome, a realistic 

possibility. While advances have been made and new single gene disorders described 

using this technology, problems do exist, not least the difficulty in interpretation of 

the enormous amount of data that is generated with little normative data with which 

to compare it. The power of this technology may be best realised if used in 

combination with biochemistry techniques in groups of patients who share a clearly 

delineated clinical phenotype. Undiagnosed patients with B6 responsive seizures are 

certainly amenable to this approach of whole genome sequencing coupled to 

measurement of B6 vitamer profiles. 

In Chapter 5 novel findings are presented in a group of autistic subjects which 

suggest disturbed tryptophan-serotonin metabolism.  These results pose interesting 

questions for further research which would be best addressed in large patient cohorts, 

as well as in their siblings and parents. It would be appealing to use a different 

approach to such research in individuals with mental health/behavioural difficulties; 

to categorise by a defined set of behaviours (endophenotypes) rather than diagnosis 

as many broad areas are shared and one condition may evolve over the lifetime of an 

individual. At present there is an unmet need for investigation of such disorders from 

a biochemical perspective, which if combined with radiological and genetic 

techniques could provide a better understanding of neuropsychiatric disease 

processes. In attempting to understand the novel findings in children with high-

functioning autism and Asperger’s syndrome documented in Chapter 5, hypotheses 

were formulated that suggest that further research into this group of patients could 

involve measurement of 5-hydroxytryptophan in plasma, further studies on the 

characteristics of AADC in plasma and investigation of molecular mechanisms 

controlling AADC expression in various cell types in the brain. 

Disorders of tryptophan metabolism via the kynurenine pathway have historically 

been a neglected area of clinical paediatric research. This in part may reflect the fact 

that many of these metabolites are rarely, if ever, measured in clinical practice and 

gross abnormalities of tryptophan concentration are unlikely to be present. It is 

possible that disruption of the kynurenine: tryptophan ratio is of more importance.  In 

view of the well described neurological effects of many of these compounds it is 

potentially very interesting to study their concentrations in targeted patient groups. 
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Development of a UPLC linked tandem mass spectrometry method is proposed to 

simultaneously measure 5-hydroxytrytohan, tryptophan and kynurenine in plasma 

and CSF. 

Given the recent advances in laboratory technologies within both biochemistry and 

molecular biology, the research community is well placed to further understanding of 

complex diseases over the coming years. In particular, large, well designed, 

collaborative studies offer much promise to unravel one of the biggest remaining 

challenges of human disease, the neuropsychiatric disorders. 
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