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Abstract

The goal of this paper is to develop formal tests to evaluate the relative in-sample per-

formance of two competing, misspeci�ed, non-nested models in the presence of possible data

instability. Compared to previous approaches to model selection, which are based on measures

of global performance, we focus on the local relative performance of the models. We propose

three tests that are based on di¤erent measures of local performance and that correspond to

di¤erent null and alternative hypotheses. The empirical application provides insights into the

time variation in the performance of a representative DSGE model of the European economy

relative to that of VARs.
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1 Introduction

The problem of detecting time-variation in the parameters of econometric models has been widely

investigated for several decades, and empirical applications have documented that structural insta-

bility is widespread.

In this paper, we depart from the literature by focusing on investigating instability in the

performance of models, rather than focusing solely on instability in their parameters. The idea

is simple: in the presence of structural change, it is plausible that the performance of a model

may itself be changing over time, even if the model�s parameters remain constant. In particular,

when the problem is that of comparing the performance of competing models, it would be useful

to understand which model performed better at which point in time.

The goal of this paper is therefore to develop formal techniques for conducting inference about

the relative performance of two models over time, and to propose tests that can detect time variation

in relative performance even when the parameters are constant. Existing model selection tests such

as Rivers and Vuong (2002) are inadequate for answering this question, since they work under the

assumption that there exists a globally best model. The central idea of our method is instead

to propose a measure of the models� local relative performance: the "local relative Kullback-

Leibler Information Criterion" (local relative KLIC), which represents the relative distance of the

two (misspeci�ed) likelihoods from the true likelihood at a particular point in time. We then

investigate ways to conduct inference about the local relative KLIC and construct tests of the joint

null hypothesis that the relative performance and the parameters of the models are constant over

time.

We propose three tests, which correspond to di¤erent assumptions about the parameters and

the relative performance under the null and alternative hypotheses: 1) a "one-time reversal" test

against a one-time change in models�performance and parameters; 2) a "nonparametric test" and

3) a "�uctuation test" against smooth changes in both performance and parameters. The �rst

test is based on estimating the parameters and the relative performance before and after potential

change dates, whereas the latter two are based on nonparametric estimates of local performance

and local parameters. While the second and third tests consider the same test statistic, they di¤er

in the asymptotic approximation that we use to derive its distribution under the null hypothesis

(which also has a di¤erent formulation). The nonparametric test adopts the standard shrinking-

bandwidth approximation of Wu and Zhao (2007), whereas the �uctuation test is based on a novel

�xed-bandwidth approximation which we show delivers a better �nite-sample performance.

For all three tests, we show that the dependence of the local performance on unobserved para-

meters does not a¤ect the asymptotic distribution of the test statistic, as long as the parameters

are also estimated locally.

2



Our research is related to several papers in the literature, in particular Rossi (2005) and, more

distantly, to Muller and Petalas (2009), Elliott and Muller (2005), Andrews and Ploberger (1994)

and Andrews (1993). Rossi (2005) proposes a test that is similar to our one-time reversal test but

focuses on the case of nested and correctly speci�ed models. Here we consider the more general case

of non-nested and misspeci�ed models and propose two additional tests. In a companion paper,

Giacomini and Rossi (2010) investigate the problem of testing the time variation in the relative

performance of models in an out-of-sample forecasting context. Even though some of the techniques

are similar, the additional complication in the in-sample context considered in this paper is that

the measure of relative performance depends on estimated parameters, which needs to be taken

into account when performing inference. The dependence on parameter estimates can instead be

ignored in an out-of-sample context, provided one adopts the asymptotic approximation with �nite

estimation window considered by Giacomini and Rossi (2010).

Our approach in this paper is also related to the literature on parameter instability testing

(e.g., Brown, Durbin and Evans, 1975; Ploberger and Kramer, 1992; Andrews, 1993; Andrews and

Ploberger, 1994; Elliott and Muller, 2005; Muller and Petalas, 2009) in that we adapt the tools

developed in that literature to our di¤erent context where the null hypothesis of interest is a joint

hypothesis that the relative performance of the models is equal at each point in time and that the

parameters are constant.

The fact that parameters are constant under our null hypothesis means that we are not consid-

ering the potentially relevant case in which the performance of two models is equal in spite of their

parameters changing over time. The reason for excluding this case is a pragmatic one. In principle,

one could have developed versions of our tests that allow for some time variation in parameters

under the null hypothesis. Doing so would however be costly in terms of general applicability of our

techniques, as it would require us to impose additional restrictions on the type of time variation

under the nyll hypothesis, the properties of the data and the models that are compatible with the

assumptions on which the tests are based. We illustrate this point more concretely when discussing

the assumptions of each test in the body of the paper.

One important limitation of our approach is that our methods are not applicable when the

competing models are nested, which is common in the literature on model selection testing based

on Kullback-Leibler-type of measures. See Rivers and Vuong (2002) for an in-depth discussion of

this issue.

The paper is structured as follows. The next section discusses a motivating example that

illustrates the procedures proposed in this paper. Section 3 de�nes the null hypotheses and Section

4 describes the tests. Section 5 evaluates the small sample properties of our proposed procedures

in a Monte Carlo experiment, and Section 6 presents the empirical results. Section 7 concludes.

The proofs are collected in the appendix.

3



2 Motivating Example

Let yt = �0txt + 
0t zt + ut; with ut � i:i:d:N(0; 1); xt; zt independent N(0; �2x;t) and N(0; �
2
z;t),

respectively, independent of each other and of ut for t = 1; :::; T , so that the true conditional

density of yt is ht : N(�0txt+ 

0
t zt; 1). Suppose the researcher�s goal is to compare two misspeci�ed

models: model 1, which speci�es a density ft : N(�txt; 1) and model 2, with density gt : N(
tzt; 1).

Here �t and 
t denote the pseudo-true parameters, de�ned as the parameters that maximize the

expected log-density at time t; �t = argmax� E [ln ft(�)] and 
t = argmax
 E [ln gt(
)] : Even

though under the assumptions considered in this example the pseudo-true parameters coincide

with the true parameters; in general cases �t and �
0
t will be di¤erent. For instance, introducing

correlation between xt and zt will yield �t = �0t + 

0
tE [xtzt] =E

�
x2t
�
:

To measure the relative distance of ft and gt from ht at time t we propose using the Kullback-

Leibler Information Criterion at time t, �KLICt, (henceforth the �local relative KLIC�), de�ned

as:

Local relative KLIC : �KLICt(�t) = E [ln (ht=gt)]� E [ln (ht=ft)] = E [ln ft (�t)� ln gt (
t)] ;
(1)

where �t = (�0t; 

0
t)
0 and the expectation is taken with respect to the true density ht. If�KLICt(�t) >

0; model 1 performs better than model 2 at time t: In our example, it can be shown that �t = �0t

and 
t = 
0t and
1

�KLICt(�t) =
1

2

�
�2t�

2
x;t � 
2t�2z;t

�
: (2)

Intuitively, �KLICt(�t) measures the relative degree of mis-speci�cation of the two models at time

t. For model 2, the contribution of its mis-speci�cation is re�ected in the contribution of the omitted

variable xt to the variance of the error term, which equals �2t�
2
x;t. Similarly, the mis-speci�cation

of model 1 is measured by 
2t�
2
z;t. Thus, model 2 performs better than model 1 if the contribution

of its mis-speci�cation to the variance of the error is smaller than for model 1.

Importantly, equation (2) shows that the time variation in the relative KLIC re�ects the time

variation in the relative mis-speci�cation of the two models. In particular, the time variation in

relative performance might be due to the fact that the parameters change in ways that a¤ect

�KLICt di¤erently over time, but it might also be caused by the variances of the regressors �2x;t
and �2z;t changing in di¤erent ways over time while the parameters remain constant. Moreover,

time-variation in pseudo-true parameters does not correspond exactly to time-variation in true

parameters, as can be seen from the expression �t = �0t +

0
tE [xtzt] =E

�
x2t
�
obtained in the case of

correlated regressors; as �t could display di¤erent patterns of time variation depending on whether

and how the di¤erent components change over time.

1We have �KLICt = 1
2
E
�
(ut + �txt)

2 � (ut + 
tzt)
2� = 1

2
E
�
�2tx

2
t � 
2t z2t

�
= 1

2
(�2t�

2
x;t � 
2t�2z;t)
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3 Null and Alternative Hypotheses

In this paper we construct tests of equal performance of two models over time that take into account

the dependence of the relative performance on estimated parameters, and that allow for di¤erent

types of time variation in both relative performance and in parameters over time. In the rest of the

paper, we no longer make the distinction between true parameters and pseudo-true parameters, as

all of our tests will be expressed in terms of pseudo-true parameters. For this reason, we adopt the

convention of referring to pseudo-true parameters simply as parameters.

Recall that the measure of local performance is the local relative KLIC, de�ned as

�KLICt(�t) = E [ln ft (�t)� ln gt (
t)] ; (3)

where

�t = (�0t; 

0
t)
0; (4)

�t = argmax
b
E [ln ft(b)] ; 
t = argmaxc

E [ln gt(c)] :

We assume throughout that �t 2 �; with � compact:
We propose three di¤erent tests, which correspond to di¤erent null and alternative hypotheses.

The �rst test (�one-time reversal test�) assumes that under the null hypothesis the models

perform equally well and the parameters are constant, whereas under the alternative hypothesis

there is a one-time change in relative performance as well as (at most) a one-time change in

parameters at the same time.

This corresponds to the following null and alternative hypotheses:

HOT
0 : f�KLICt (�t) = 0g \ f�t = �g for t = 1; :::; T and some � 2 �; (5)

and

HOT
1 : [�2� f�KLICt (�t) = �1 (�) 1 (t � [T�]) + �2 (�) 1 (t > [T�])g (6)

\ f�t = �1 (�) 1 (t � [T�]) + �2 (�) 1 (t > [T�])g, t = 1; :::; T;

for some (�1 (�) ; �2 (�)) 6= (0; 0); some � 2 � � (0; 1); and some �1 (�) 6= �2 (�) ; �i (�) =

(�i (�)
0 ; 
i (�)

0)0; i = 1; 2: Thus, �i (�) ; i = 1; 2 are the measures of local performance and �i (�) and


i (�) ; i = 1; 2 are the local parameters for the sub-samples before and after the reversal, which

occurs at the unknown fraction of the total sample �: The one-time reversal test thus focuses on

the models�local relative performance by measuring it separately before and after the reversal. In

case the null hypothesis is rejected, the time of the change T� can be estimated and the path of

relative performance equals �1 (�) before the change and �2 (�) after the change.
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The second and third tests (�nonparametric test� and ��uctuation test�) are based on non-

parametric estimators of relative performance. Even though the two tests are based on the same

estimator of local relative performance, they use two alternative asymptotic approximations and, as

a result, correspond to di¤erent null and alternative hypotheses. The nonparametric test is based

on the standard shrinking-bandwidth approximation adopted in the literature, and it corresponds

to the following null and alternative hypotheses:

HSB
0 : f�KLICt(�t) = 0g \ f�t = �g for t = 1; :::; T and some � 2 � (7)

and

HSB
1 : �KLICt(�t) = �(t=T; � (t=T )) 6= 0 at some 1 � t � T (8)

for some smooth functions � (�; � (�)) and � (�) :
A possible concern with the standard shrinking-bandwidth approximation is that it might per-

form poorly in small samples, such as those typically available to macroeconomists. We thus derive

a third test, the �uctuation test, using a novel asymptotic approximation which assumes that the

bandwidth is �xed. In this approximation, consistent estimation of the local relative performance

�KLICt(�t) is not possible, but what can be consistently estimated is a di¤erent measure of relative

performance, which is a smoothed version of the local relative KLIC, computed at the smoothed

local parameter:

Smoothed local relative KLIC : �KLIC�t (�
�
t ) = E

24 1

Th

TX
j=1

K

�
t� j
Th

�
(ln fj(�

�
t )� ln gj (
�t ))

35 ;
(9)

where ��t = (�
�
t ; 


�
t )
0 is de�ned as

��t = argmax
b
E

24 1

Th

TX
j=1

K

�
t� j
Th

�
ln fj(b)

35 : (10)

(and similarly for 
�t ), with K (�) a kernel function and h the bandwidth.
The �uctuation test corresponds to di¤erent null and alternative hypotheses:

HFB
0 : f�KLIC�t (��t ) = 0g \ f��t = ��g for t = 1; :::; T and some �� 2 �; (11)

and

HFB
1 : �KLIC�t (�

�
t ) 6= 0 at some 1 � t � T: (12a)

In the example in Section 2, using a rectangular kernel with bandwidth h = m=T (and assuming

for simplicity that m is an even number) we can see that �KLIC�t (�
�
t ) di¤ers from �KLIC(�t) in
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(2); since, �rst of all, ��t =
�
1
m

Pt+m=2
j=t�m=2+1 �

2
x;j�

0
j

�
=
�
1
m

Pt+m=2
j=t�m=2+1 �

2
x;j

�
6= �0t , whereas �t = �0t ,

and

�KLIC�t (�
�
t ) =

1

2

24 1
m

t+m=2X
j=t�m=2+1

h
2�0t�

�
t � (��t )

2
i
�2x;j �

1

m

t+m=2X
j=t�m=2+1

h
2
0t


�
t � (
�t )

2
i
�2z;j

35 :
(13)

An important point to emphasize is that for all three tests the null hypothesis is a joint hypoth-

esis of equal performance and constant parameters. This in practice rules out situations in which

two models have equal performance but their parameters are changing over time. The assumption

of constant parameters under the null hypothesis is in principle stronger than necessary, but it

facilitates the statement and the veri�cation of the assumptions on which the tests rely. For exam-

ple, allowing for time-varying parameters under the null hypothesis would be di¢ cult to reconcile

with the assumption of constant variance of the loss di¤erences that we make for all tests, since

in general the variance of the loss di¤erences will depend on the models�parameters. Both as-

sumptions of constant parameters and constant variance could be relaxed in the context of speci�c

models and/or for a speci�c test. For example, one could allow for time variation in parameters

that disappears asymptotically, or make local stationarity assumptions such as those considered in

the nonparametric estimation literature (e.g., Kristensen, 2013). One could also relax the constant

variance assumption and rely on bootstrap methods to derive the tests, along the lines of Cavaliere

and Taylor (2005).

The di¤erence between the various alternative hypotheses as well as the di¤erence between

�KLICt(�t) and �KLIC�t (�
�
t ) is clari�ed by Figure 1, which shows an example of two di¤erent

types of time variation in relative performance that could arise in the context of the simple example

considered in this section. In the �rst scenario (left panels of Figure 1) the time variation in relative

performance is due to �t varying smoothly as a random walk whereas 
t; �
2
x;t; �

2
z;t are constant,

t = 1; :::; 100. In the second scenario (right panels of Figure 1), �t; 
t; �
2
z;t are constant but the

relative performance is time-varying because �2x;t has a break at T=2.

INSERT FIGURE 1 HERE

Figures 1(a) and 1(b) report the local relative KLICt in equation (1) in the two scenarios,

which is the object of interest in the shrinking-bandwidth approximation. Figures 1(c) and 1(d)

show �KLICt as well as �KLIC�t in equation (9) computed using a bandwidth m=T = 1=5. Note

that Figures 1(a-d) report population quantities (that is, they assume that the parameters and

variances are known). Finally, Figures 1(e) and 1(f) show the measure of relative performance that

arises as a result of testing (11) and (5). One can see that all three measures of relative performance

that we propose capture the time variation in the relative performance of the models over time.
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In contrast, the large dot reported in panels (a-d) of Figure 1 shows the global relative KLIC

(T�1
PT

t=1�KLICt), which compares the average performance of the models over the whole sample

and which is the object of interest of existing tests in the literature (e.g., Rivers and Vuong (2002)).

One can see that the global relative KLIC is very close to zero, which means that the Rivers and

Vuong�s (2002) test would not reject the null hypothesis that the models perform equally well. This

occurs because in our example there are reversals in the relative performance of the models during

the time period considered. Since model 1 is better than model 2 in the �rst part of the sample,

but model 2 is better than model 1 in the second part of the sample by a similar magnitude, on

average over the full sample the two models have similar performance. However, the �gure shows

that the relative performance did change over time, and that the existing approaches would miss

this important feature of the data, whereas our approach would be able to reveal which model

performed best at di¤erent points in time.

In the following section, we develop the theory for the three statistical tests. The one-time

reversal test of hypothesis (5) can be intuitively viewed as performing a Rivers and Vuong�s (2002)

test of equal performance allowing for one structural break under the alternative. The nonpara-

metric test of hypothesis (7) relies on constructing simultaneous con�dence bands for �KLICt in

(1) under the null hypothesis by adapting the shrinking-bandwidth approximation of Wu and Zhao

(2007) to our di¤erent context. Finally, the �uctuation test of hypothesis (11) relies on constructing

simultaneous con�dence bands for the di¤erent object �KLIC�t in (9) under the null hypothesis

by using an alternative �xed-bandwidth approximation. We refer to this test as the �uctuation test

in analogy with the literature on parameter stability testing (Brown et al. 1975 and Ploberger and

Kramer 1992). Even though one can see that our tests draw on the existing literature on parameter

instability testing, we face additional challenges in particular due to the fact that we are testing

joint hypotheses of equal performance and stability and that the measure of performance depends

on unknown parameters.

The three tests involve trade-o¤s, some of which are highlighted by Figure 1. The �rst con-

sideration is what type of alternative hypothesis seems more appropriate in a given situation. If

the type of variation under the alternative hypothesis is a one-time change, the nonparametric test

based on the local relative KLIC of Figure 1(b) and the one-time reversal test (Figure 1(f)) will in

principle capture it (depending on the choice of the bandwidth in the case of the nonparametric

test); conversely, the �uctuation test (Figure 1(d)), which relies on the smoothed relative KLIC,

will smooth out the time variation: the time variation will thus be more di¢ cult to detect, lowering

the power of the test (again, depending on the choice of bandwidth). This is also the case when

one postulates a smooth change under the alternative hypothesis, in which case the �uctuation test

(Figure 1(c)) should have lower power than the other tests because of its smoothing out of the time

variation. The one-time reversal test would also be suboptimal in this context because it is based on
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an approximate measure of time variation, as can be seen in Figure 1(c). The previous discussion

may lead one to think that the nonparametric test dominates the other two. All these considera-

tions are however based on the asymptotic power of the test. In �nite samples, instead, there is a

concern that the asymptotic approximation which underlies the nonparametric test may perform

poorly in �nite samples. We investigate this possibility in the Monte Carlo section below and con-

clude that this concern is indeed a real one and thus end up not recommending the nonparametric

test, at least for samples of the sizes typically available in macroeconomic applications.

How would the tests that we propose be implemented in practice? We provide an example in

Figures 1(e-h). For the �uctuation test we provide boundary lines that would contain the time

path of the models� smoothed local relative KLIC with a pre-speci�ed probability level under

the null hypothesis that the relative performance is equal. Figures 1(e,f) depict such boundary

lines. Clearly, the test rejects the hypothesis that the relative performance is the same. When this

happens, researchers can rely on visual inspection of the local average �KLIC to ascertain which

model performed best at any point in time.

Figures 1(g,h) illustrate the one-time reversal test2 for the two cases. The procedure estimates

the time of the largest change in the relative performance, and then �ts measures of average perfor-

mance separately before and after the reversal. Figure 1(h) shows that when the true underlying

relative performance has a sharp reversal, such as in the second scenario, then the procedure will

accurately estimate its time path. However, when the true underlying relative performance evolves

smoothly over time, then the procedure will approximate it with a sharp reversal, as depicted in

Figure 1(g). In both cases, the one-time reversal test strongly rejects the null hypothesis of equal

performance.

4 Tests of Stability in the Relative Performance of Models

In this section, we derive the three classes of tests assessing the stability in the relative performance

of two models over time.

Each test assumes that the user has available two possibly misspeci�ed parametric models for

the variable of interest yt: The models can be multivariate, dynamic and nonlinear. In line with the

literature (e.g., Vuong (1989) and Rivers and Vuong (2002)), an important restriction is that the

models must be non-nested, which, loosely speaking, means that the models�likelihoods cannot be

obtained from each other by imposing parameter restrictions.

2The One-time Reversal test is implemented as a Sup-type test. See Section 4.1 for more details.
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4.1 The One-time Reversal Test

The �rst test is a test of the null hypothesis (5) against (6), which draws from the literature on

testing the stability of the mean of a time series (e.g. Andrews, 1993). These tests are designed

for a speci�c form of time variation in the relative performance of the models under the alternative

hypothesis, namely a one-time reversal in the relative performance and in the parameters, which

occur at the same time.

The test is implemented as follows. For a given � 2 � � (0; 1), let b� (�) � [b�1 (�) ; b�2 (�)],
where: b�1 (�) = 1

[T�]

[T�]P
t=1
�Lt

�b�1 (�)� ; b�2 (�) = 1

[T (1� �)]
TP

t=[T�]+1

�Lt

�b�2 (�)� (14)

and b�1 (�) = (b�1 (�)0 ; b
1 (�)0)0 ; b�2 (�) = (b�2 (�)0 ; b
2 (�)0)0 with
b�1 (�) = argmax

b

0@ 1

[T�]

[T�]X
t=1

ln ft (b)

1A
b�2 (�) = argmax

b

0@ 1

[T (1� �)]

TX
t=[T�]+1

ln ft (b)

1A ;

(and similarly for b
1 (�) ; b
2 (�)). Also, let b�T = argmaxb � 1T PT
t=1 ln ft (b)

�
(and similarly for b
T ),

and b�T � hb�0T ; b
0T i0 :
The test relies on the following assumptions:

Assumptions OT: Let � be the constant value of �t under the null hypothesis. The follow-

ing holds: (1)
n
T�1=2

P[�T ]
j=1 �Lj (�)

o
obeys a Functional Central Limit Theorem (FCLT) under

HOT
0;T for 0 � � � 1; such that: ��1T�1=2

P[�T ]
j=1 �Lj (�) =) B (1) and has bounded uniformly

continous sample paths (as functions of �) with probability one; (2) sup�2�jjb�1 (�) � �jj = op (1)

and sup�2�jjT 1=2
�b�1 (�)� �� jj = Op (1) under HOT

0;T as T ! 1 (and similarly for b
1 (�), b�2 (�),
b
2 (�) ; b�T , b
T ); (3) (a) the log-likelihoods of both models, fT (�; �) = T

�
t=1
ft ( �; �) and ln gT (
; �) =

T
�
t=1
ln gt ( 
; �), do not depend on � for all �; 
 in the null hypothesis; (b) � is an interior point

of the parameter space �; (c) fT
�e�; �� ; gT (e
; �) are twice continuously partially di¤erentiable ine�; e
 for all � 2 � and e�; e
 in some neighborhood of the null, �0; (d) �B�1T r2 ln fT

�e�; ��B�1T !
p

��

�e�; �� ;�B�1T r2 ln gT (e
; �)B�1T !
p
�
 (e
; �) uniformly over � 2 � and e�; e
 2 �0 under �; 
 for

some nonrandom matrix functions �� (�; �) ;�
 (
; �) and some sequence of nonrandom diagonal

matrices fBT : T � 1g whose elements diverge to in�nity as T !1;3 (e) ��
�e�; �� ;�
 (e
; �) are

uniformly continuous in
�e�; �� over �0 ��; (f) �� (�; �) ;�
 (
; �) are uniformly positive de�nite

3r2 denotes the second derivative with respect to the parameter.
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over � 2 �; (4) �2 = var
�
T�1=2

PT
t=1�Lt (�)

�
> 0 is constant and �nite, and b�2 is a consistent

estimator of �2:

Assumption OT(1) assumes a FCLT for partial sum processes. Assumptions OT(2,3) are stan-

dard assumptions that guarantee that the estimated parameters as well as the score functions obey

regularity conditions ensuring their convergence. In particular, Assumption OT(3) follow from as-

sumptions similar to Andrews and Ploberger (1994). Assumption OT(4) imposes that the variance

is constant under the null hypothesis, and a consistent estimator under the null hypothesis is for

example a standard HAC estimator

b�2 = q(T )�1X
i=�q(T )+1

(1� ji=q(T )j)T�1
T+1�q(T )X
j=q(T )

�Ldj

�b�T��Ldj�i �b�T� ; (15)

where q(T ) is a bandwidth that grows with T (e.g., Newey and West, 1987), and �Ldj (:) indicates

demeaned �Ldj (:).

Under Assumption OT, we provide Sup-type tests for the one-time reversal in the following

proposition:4

Proposition 1 (Sup-type Test) Suppose Assumption OT holds. Let QLR�T = sup�2��T (�) ;

�T (�) = LM1 + LM2 (�) ; where

LM1 = �̂�2

"
T�1=2

TX
t=1

�Lt

�b�T�#2

LM2 (�) = �̂�2
1

� (1� �)

24(1� �)T�1=2 [T�]X
t=1

�Lt

�b�1 (�)�� �T�1=2 TX
t=[T�]+1

�Lt

�b�2 (�)�
352 :

Under the null hypothesis HOT
0 ; we have: QLR�T =) sup

�2�

h
BB(�)2
�(1��) + B (1)

2
i
, and B (�) and BB (�) �

B (�)��B (�) are, respectively, a standard univariate Brownian motion and a Brownian bridge. The
null hypothesis is thus rejected when QLR�T > k�: The critical values (�; k�) are: (0:05; 9:8257) ;

(0:10; 8:1379) :

Among the advantages of the Sup-type approach, we have that: (i) when the null hypothesis

is rejected, it is possible to evaluate whether the rejection is due to instabilities in the relative

performance or to a model being constantly better than its competitor; (ii) if such instability is

found, it is possible to estimate the time of the switch in the relative performance; (iii) the test

is designed against one time breaks in the relative performance. Here below is a step by step

4Sup-type tests have been used in the parameter instability literature since Andrews (1993). Note that the sup-type

test could alternatively be implemented as sup�2�WT (�) ; where WT (�) is de�ned in eq. (16).
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procedure to implement the approach suggested in Proposition 1 with an overall signi�cance level

�:

(i) test the hypothesis of equal performance at each time by using the statistic QLR�T from

Proposition 1 at � signi�cance level;

(ii) if the null is rejected, compare LM1 and sup�2� LM2 (�) ; with the following critical values:

(3:84; 8:85) for � = 0:05; (2:71; 7:17) for � = 0:10, and (6:63; 12:35) for a = 0:01: If only LM1

rejects then there is evidence in favor of the hypothesis that one model is constantly better than

its competitor. If only sup�2� LM2 (�) rejects, then there is evidence that there are instabilities in

the relative performance of the two models but neither is constantly better over the full sample.

Note that the latter corresponds to Andrews�(1993) Sup-test for structural break. If both reject

then it is not possible to attribute the rejection to a unique source.5

(iii) estimate the time of the reversal by �� = arg sup�2f0:15;:::0:85g LM2 (�) and let t� � [��=T ].
(iv) to extract information on which model to choose, we suggest to plot the time path of the

underlying relative performance as:8<:
1
t�
Pt�

t=1

�
ln ft(b�1 (��))� ln gt (b
1 (��))� for t � t�;

1
(T�t�)

PT
t=t�+1

�
ln ft(b�2 (��))� ln gt (b
2 (��))� for t > t�:

We also provide tests similar in spirit to those proposed by Andrews and Ploberger (1994). The

tests rely on the Wald-type test statistic, rather than LM-type.6

Corollary 2 (AP test) Suppose Assumption OT holds. Consider the test statistics

WT (�) = Tb� (�)0 H 0
�
HI�1T;�H

0
��1

Hb� (�) (16)

ExpW �
1;T = ln

1

1� 2�0

Z 1��0

�0

exp

�
1

2
WT (�)

�
d�; (17)

MeanW �
T =

1

1� 2�0

Z 1��0

�0

WT (�) d�, (18)

where �0 = 0:15; H �
 
1 �1
� 1� �

!
; IT;� =

 
��1b�21 0

0 (1� �)�1 b�22
!
; b�21 is a HAC estimator of

the asymptotic variance of �Lt
�b�1 (�)� ; t = 1; :::; [T�] and b�22 is a HAC estimator of the variance

5This procedure is justi�ed by the fact that the two components LM1 and LM2 are asymptotically independent

� see Rossi (2005). Performing two separate tests does not result in an optimal test, but it is nevertheless useful

to heuristically disentangle the causes of rejection of equal performance. The critical values for LM1 are from a �21
distribution whereas those for LM2 are from Andrews (1993).

6The Wald-type test allows for a more general variance estimator. One could also implement the Sup-type test in

Proposition 1 as QLR�T = sup�2�WT (�) :
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of �Lt
�b�2 (�)� ; t = [T�] + 1; :::; T .7 Under the null hypothesis HOT

0 ,

ExpW �
1;T =) ln

"
1

1� 2�0

Z 1��0

�0

exp

 
1

2

BB (�)2

� (1� �) +
1

2
B (1)2

!
d�

#
; (19)

MeanW �
T =) 1

1� 2�0

Z 1��0

�0

 
BB (�)2

� (1� �) + B (1)
2

!
d�, (20)

where t = [�T ] and B (�) and BB (�) are, respectively, a standard univariate Brownian motion and a
Brownian bridge, where BB (�) � B (�)� �B (1). The null hypothesis is rejected when ExpW �

1;T >

�� and MeanW �
T > ��. Simulated values of (�;��; v�) are: (0:05; 3:13; 5:36) and (0:10; 2:44; 4:26).

The power properties of these tests will be evaluated in Section 5.

4.2 The Nonparametric Test

In this section, we derive a test of the hypothesis (7) against the alternative (8). The test relies on

constructing a nonparametric estimate of the local relative performance. Let � 2 [0; 1] and consider
the Priestley-Chao estimator (Priestley and Chao, 1972)

b�(� ;b� (�)) = 1

Th

TX
t=1

K

�
� � t=T

h

�
�Lt

�b� (�)� ; (21)

where b� (�) = hb� (�)0 ; b
 (�)0i0 are nonparametric estimates of the local parameters obtained as the
solution to (e.g., for the �rst model)

1

Th

TX
t=1

K

�
� � t=T

h

�
r ln ft

�b� (�)� = 0; (22)

with r ln ft (�) denoting the �rst derivative of the log-likelihood at time t. The fact that under the
null hypothesis the parameters are constant means that one could in principle obtain a valid test by

letting the measure of local performance (21) depend on any other estimator of the parameters, and

not necessarily a local estimator. The reason for considering a local estimator of the parameters is

to obtain a test that has power against smooth time variation in parameters under the alternative

hypothesis (although we do not formally derive the properties of the test under the alternative

hypothesis, but only those under the null hypothesis).

The test relies on obtaining simultaneous con�dence bands for �KLICt under the assumption

of constant parameters by building on the framework of Wu and Zhao (2007).

We make the following assumptions:

7The formula is similar to eq. (15) except that it applies to the relevant sub-sample.
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Assumption SB: Let � be the constant value of �t under the null hypothesis. Suppose that

(1) �Lt(�) = �(t=T; �) + et; �(:; �) 2 C3 [0; 1] ; t = 1; :::; T; with et a mean zero stationary

process such that et = G(:::; "t�1; "t) where G is a measurable function and "t are i.i.d. ran-

dom variables such that St =
Pt

i=1 ei satis�es max t�T jSt � �B (t) j = oAS
�
T 1=4 ln (T )

	
; where

�2 =
P1

t=�1E [e0et] > 0 and B (:) is a standard Brownian motion; (2) K (�) is a symmetric kernel
with support [�w;w] which belongs to the class H(�) in De�nition 1 of Wu and Zhao (2007); (3)
The bandwidth h satis�es the condition Th!1, h! 0; ln(T )

3

h
p
T
+ Th7 ln (T )! 0 and

p
Th

ln(T )3
!1;

(4) 1p
Th

PT
t=1K

�
��t=T
h

�
�st (�) = Oas (1) for every � , where �st (�) � @�Lt (�) =@�; (5) For

every � ;
p
Th
�b� (�)� �� = Oas (1).

Assumption SB is similar to the assumptions in Wu and Zhao (2007), adapted to our setting

in which the series under consideration is the relative performance of models, which depends on

unknown parameters. Assumption SB(1) is the same as in Wu and Zhao (2007) and it requires

stationarity of et; which is plausibly veri�ed under the assumption of constant parameters. The

assumption that the variance �2 is positive rules out the possibility that the models are nested

(which is a standard assumption in the literature; see, e.g., the related discussion in Rivers and

Vuong, 2002). Assumption SB(2) shows that the result allows for a large class of kernels. Assump-

tion SB(3) is the standard shrinking-bandwidth assumption made in the nonparametric literature.

Assumptions SB(4)-(5) are high level assumptions. SB(4) requires the (kernel-weighted) di¤erences

in the likelihood scores to satisfy a central limit theorem. Primitive conditions that guarantee its

validity can be obtained and are similar to the standard conditions for the existence of an asymp-

totic distribution for maximum likelihood estimators. Assumption SB(5) requires an asymptotic

distribution for the local estimator of the model�s parameters, under the null hypothesis that these

parameters are constant. Note that Assumption SB(5) does not require the local maximum likeli-

hood estimator to be consistent for �, which is the reason for why it is not necessary to bias-correctb� (�) when computing the local relative performance (21): Primitive conditions that are su¢ cient
for SB(5) can be found for example in Kristensen (2013), who considers the general case of local

maximum likelihood estimators, and Rao (2006), for the special case of ARMA-ARCH models.

The conditions in Kristensen (2013) or Rao (2006) guarantee that the local maximum likelihood

estimator b� (�) is consistent (once bias-corrected) and asymptotically normal in the case that the
true parameters are time-varying. The conditions are thus stronger than necessary, as in our case

the parameters are constant under the null hypothesis and we do not require the local estimator to

be consistent, but only that its asymptotic distribution is bounded. The boundedness assumption

is in turn satis�ed since under our assumptions the bias of the local estimator is �nite.

Assumption SB is satis�ed in the context of the example in Section 2, where et = 1
2 [�

2
t

�
x2t � 1

�
�


2t
�
z2t � 1

�
] + (�txt � 
tzt)ut, with xt; zt and ut i.i.d. and independent of each other, so that,

under the null hypothesis, �t = � and 
t = 
 and thus et is i.i.d. and the variance of et; �2t =

14



1
2 [�

4
t + 


4
t ] + �

2
t + 


2
t is constant, which implies that assumptions SB(1) is satis�ed. Under the null

hypothesis, we further have that �st (�) = (�
�
x2t � 1

�
+ xtut;�


�
z2t � 1

�
� ztut)

0; which is i.i.d..

We are thus in a standard i.i.d. environment, where central limit theorems and other regularity

conditions can be invoked to show that SB(4) and SB(5) are satis�ed.

The following proposition gives the con�dence bands which are the basis for the nonparametric

test.

Proposition 3 Under Assumption SB, asymptotic 100(1��)% simultaneous con�dence bands for

�KLICt are given by

e��� ;b� (�)�� � b�p
Th

24BK � ln
h
ln (1� �)�1=2

i
q
2 ln

�
1
h

�
35 ; (23)

where

e��� ;b� (�)� = b��� ;b� (�)�� h2	b��� ;b� (�)�00 (24)

�2 =

Z
K2 (u) du; 	 =

Z
K(u)u2du=2 (25)

BK =

s
2 ln

�
1

h

�
+

1q
2 ln

�
1
h

�
"
2�  
2 

ln(ln
�
h�1

�
) + ln

 
C
1= 
K h 2

1= 

2
p
�

!#
; (26)

CK = DK=2�
2; DK = lim

�!0

�
j�j� 

Z
fK (x+�)�K (x)g2 dx

�
; (27)

b��� ;b� (�)�00 denotes the second derivative with respect to the �rst argument, 1 �  � 2 and h 

is as in Theorem A1 of Bickel and Rosenblatt (1973) (e.g.,  = 1 and h = 1 for the rectangular

kernel and  = 2 and h = ��1=2 for the triangle, quartic, Epanechnikov and Parzen kernels).

b� is a consistent estimator of the long-run variance � in assumption SB(1), e.g. the estimator
in equation (15). Note that the con�dence bands in (23) depend on a bias-corrected estimator of

local performance e��� ;b� (�)� : As in Wu and Zhao (2007), we recommend considering a jackknife
estimator e��� ;b� (�)� = 2b��� ;b� (�)�� b�p2h �� ;b� (�)� where b�p2h �� ;b� (�)� is the estimator (21)
computed using the bandwidth

p
2h.

A test of the hypothesis that the models have equal performance at each point in time can be

obtained by rejecting the null if the horizontal axis is not fully contained within the con�dence

bands obtained above.

We now specialize the results to the common case of the rectangular kernel.

Corollary 4 For the rectangular kernel, let m = Th be an even integer. The estimator of the local

relative KLIC becomes

b��t;b�t� = 1

m

T�m=2X
j=t�m=2+1

�Lj(b�t); (28)
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t = m=2; :::; T �m=2; where b�t = �b�0t; b
0t�0 is de�ned as
b�t = argmax

�
m�1

t+m=2X
j=t�m=2+1

fj(�) (29)

b
t = argmax



m�1
t+m=2X

j=t�m=2+1
gj(
):

The asymptotic 100(1� �)% simultaneous con�dence bands for �KLICt are given by

e��t;b�t�� b�p1=2p
m

24s2 ln�1
h

�
+

1q
2 ln

�
1
h

�
"
ln
�
ln
�
1
h

��
2

+ ln
1

2
p
�

#
�
ln
h
ln (1� �)�1=2

i
q
2 ln

�
1
h

�
35 ;

where e��t;b�t� is the jackknife estimator considered in Proposition 3 computed for h=m/T and b�
can be estimated as in (15).

4.3 The Fluctuation Test

The third test that we propose in this paper is based on the same nonparametric estimator of the

local relative performance (21), but the di¤erence is that we now consider an alternative asymptotic

approximation in which the bandwidth is �xed instead of shrinking as the sample grows.

For simplicity, in this section we restrict attention to a rectangular kernel, but the analysis

could be easily extended to the case of a general kernel.

For a particular choice of �xed bandwidth m = [hT ] ; we thus de�ne the smoothed local relative

KLIC using a rectangular kernel as:

�KLIC�t (�
�
t ) = m�1

t+m=2X
j=t�m=2+1

E[�Lj(�
�
t )]; t = m=2; :::; T �m=2: (30)

A test of

HFB
0 : f�KLIC�t (��t ) = 0g \ f��t = ��g for t = m=2; :::; T �m=2 and some �� 2 � (31)

against (32)

HFB
1 : �KLIC�t (�

�
t ) 6= 0 at some m=2 � t � T �m=2;

which we call the �uctuation test, can be derived under the following assumptions:8

Assumptions FB: Let �� be the constant value of ��t under the null hypothesis and t = [�T ]. The

following holds: (1)
n
T�1=2

P[�T ]
j=1 �Lj (�

�)
o
obeys a Functional Central Limit Theorem (FCLT)

8See Brown et al. (1975) and Ploberger and Kramer (1992) for �uctuation tests in the context of parameter

instability.
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under HFB
0;T for 0 < � < 1; such that: ��1T�1=2

P[�T ]
j=1 �Lj (�

�) =) B (1) and has bounded uni-
formly continous sample paths (as functions of �) with probability one; (2) sup�jjb��[T�] � ��jj =
op (1) and sup�jjT 1=2

�b��[T�] � ��� jj = Op (1) under HFB
0;T as T ! 1 (and similarly b
�[T�] (�));

(3) sup�jjm�1P[T�]+[T�]=2
j=[T�]�[T�]=2+1r

2 ln fj

� ::
�[T�]

�
� E

�
r2 ln fj (��)

�
jj !

p
0 whenever

::
�[T�]satis�es

sup�jj
::
�[T�] � ��jj !

p
0 as m;T ! 1, and E

�
r2 ln fj (��)

�
is positive and �nite; (4) �2 =

var
�
T�1=2

PT
t=1�Lt (�

�)
�
> 0 is constant and �nite, and b�2 is a consistent estimator of �2;

(5) m=T = h; with h 2 (0;1) and m;T !1.

The assumptions underlying the �uctuation test are similar to those considered for the other

tests. In particular we require the loss di¤erences to satisfy a FCLT when evaluated at the pseudo-

true parameters, which are assumed to be constant under the null hypothesis. We also assume the

asymptotic variance to be constant under the null hypothesis, which again is a stronger requirement

than necessary, but it facilitates the statement of the FCLT. Assumptions FB(2,3) are high-level

but standard; more primitive conditions can be speci�ed in the context of speci�c models. The

main di¤erence between assumption FB and assumption SB is that the �uctuation test considers

a bandwidth that is a �xed proportion of the total sample size (assumption (6)).

One can verify that Assumption FB(1) is satis�ed in the example of Section 2, where �Lt (��)

= 1
2

nh
2�0t�

� � (��)2
i
x2t �

h
2
0t


� � (
�)2
i
z2t

o
. Since xt and zt are i.i.d., under the further as-

sumption that the true parameters �0t and 

0
t are also constant under the null hypothesis, �Lt (�

�)

is i.i.d. and �2t is constant, which satis�es the assumptions of Donsker�s FCLT theorem. It is easy

to verify that Assumptions FB (2,3) hold in the linear model case that we consider.

The following proposition provides a justi�cation for the �uctuation test.

Theorem 5 (Fluctuation Test) Suppose Assumption FB holds. Consider the test statistic

max
t=m=2;:::;T�m=2

jFtj = max
t=m=2;:::;T�m=2

������b��1m�1=2
t+m=2X

j=t�m=2+1
�Lj(b�t)

������ ; (33)

where b�t is as in equation (29) and b�2 is a consistent estimator of �2; e.g. as in equation (15).
Under the null hypothesis (31)

Ft =) [B (�+ h=2)� B (�� h=2)] =
p
h; (34)

where t = [�T ] and B (�) is a standard univariate Brownian motion. The critical values for a
signi�cance level � are � k�, where k� solves

Pr

�
max
�

���[B (�+ h=2)� B (�� h=2)] =ph��� > k�

�
= �: (35)
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The null hypothesis is rejected when maxt jFtj > k�: Simulated values of (�; k�) are reported in

Table 1 for various choices of h = m=T .

INSERT TABLE 1 HERE

The �uctuation test relies on a speci�c choice of bandwidth h, and the results of the test will

be di¤erent for di¤erent choices of h. As a practical recommendation, we suggest assessing the

sensitivity of the test to a few di¤erent choices of h, which is easy to do as we only provide critical

values for several possible choices of h.

5 A Small Monte Carlo Analysis

This section investigates the �nite-sample size and power properties of the tests for equal per-

formance introduced in the previous section. We consider two designs for the Data Generating

Processes (DGPs), which are representative of the features discussed in the main example in Sec-

tion 2. In particular, as mentioned before, the time variation in the relative KLIC might be due

to the fact that the parameters change in ways that a¤ect �KLICt di¤erently over time; design 1

focuses on this situation. However, time variation in the relative KLIC might also occur when the

parameters are constant but some other aspects of the distribution of the data change in di¤erent

ways over time, which will be described by design 2.

More in details, the true DGP is:

yt = �txt + 
tzt + "t; "t � i:i:d:N (0; 1) ;

where xt � N
�
0; �2x;t

�
; zt � N

�
0; �2z;t

�
; t = 1; 2; :::; T; T = 200. The two competing models are:

Model 1: yt = �txt + "1;t and Model 2: yt = 
tzt + "2;t: We consider the following designs:

Design 1. �2x;t = �2z;t = 1, 
t = 1; �t = 1 + �A � 1 (t � 0:5T )� �A � 1 (t > 0:5T ) : In this design,
we let the parameter � change over time, and this a¤ects the relative performance of the models

over time.

Design 2. �2x;t = 1+�
2
A �1 (t > 0:75T ), �2z;t = 1, �t = 1, 
t = 1: In this design, the parameters in

the conditional mean are constant but one of the variances (�2x;t) changes over time, thus resulting

in a change in the relative performance over time.

Tables 2 and 3 show the empirical rejection frequencies of the various tests for a nominal size

of 5%. For the nonparametric test, we utilize a Gaussian kernel with a bandwidth equal to 0.005,

which performs very well in design 1 relative to other bandwidths. Size properties are obtained by

setting �A = 0 and �A = 0: Table 2 demonstrates that all tests have good size properties. It also

shows that the tests with highest power against a one-time reversal are the ExpW �
1;T and QLR

�
T

tests; the MeanW �
T test has slightly lower power than the former. The �uctuation test has worse
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power properties relative to them, and the nonparametric test has considerably less power relative

to all the other tests. Note that a standard full-sample likelihood ratio test would have power equal

to size in design 1. Regarding design 2, Table 3 shows that, again, the nonparametric test has

considerably less power than the other tests. The ExpW �
1;T and QLR

�
T tests have quite similar

performance in terms of power, although the Sup-type test has slightly better power properties

than the other tests, and the �uctuation test has slightly worse power properties.

INSERT TABLES 2, AND 3 HERE

Finally, Table 4 explore the robustness of our results for the nonparametric test for di¤er-

ent bandwidth. The Monte Carlo design is the same as design 1 above. We consider a variety

of bandwidths, ranging from very small (h = 0:0005) to quite large (h = 0:7). Note that the

power properties do change signi�cantly depending on the bandwidth, and that the bandwidth

that performs the best is h = 0:005.9

INSERT TABLE 4 HERE

6 Empirical Application: Time-variation in the Performance of

DSGE vs. BVAR Models

In a highly in�uential paper, Smets and Wouters (2003) (henceforth SW) show that a DSGE

model of the European economy - estimated using Bayesian techniques over the period 1970:2-

1999:4 - �ts the data as well as atheoretical Bayesian VARs (BVARs). Furthermore, they �nd

that the parameter estimates from the DSGE model have the expected sign. Perhaps for these

reasons, this new generation of DSGE models has attracted a lot of interest from forecasters and

central banks. SW�s model features include sticky prices and wages, habit formation, adjustment

costs in capital accumulation and variable capacity utilization, and the model is estimated using

seven variables: GDP, consumption, investment, prices, real wages, employment, and the nominal

interest rate. Their conclusion that the DSGE �ts the data as well as BVARs is based on the

fact that the marginal data densities for the two models are of comparable magnitudes over the

full sample. However, given the changes that have characterized the European economy over the

sample analyzed by SW - for example, the creation of the European Union in 1993, changes in

productivity and in the labor market, to name a few - it is plausible that the relative performance

of theoretical and atheoretical models may itself have varied over time. In this section, we apply the

9Unreported Monte Carlo simulations show that, however, a bandwidth that works well in one design does not

necessarily work well for other designs. For example, h=0.005 is not the best choice for design 3. However, we decided

to keep the bandwidth �xed across Monte Carlo designs, as the researcher does not know the DGP in practice.
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techniques proposed in this paper to assess whether the relative performance of the DSGE model

and of BVARs was stable over time. We extend the sample considered by SW to include data up

to 2004:4, for a total sample of size T = 145:

In order to compute the local measure of relative performance, (the local �KLIC); we estimate

both models recursively over a moving window of size m = 70 using Bayesian methods: As in SW,

the �rst 40 data points in each sample are used to initialize the estimates of the DSGE model and as

training samples for the BVAR priors. We consider a BVAR(1) and a BVAR(2), both of which use

a variant of the Minnesota prior, as suggested by Sims (2003).10 We present results for two di¤erent

transformations of the data. The �rst applies the same detrending of the data used by SW, which

is based on a linear trend �tted on the whole sample (we refer to this as �full-sample detrending�).

As cautioned by Sims (2003), this type of pre-processing of the data may unduly favour the DSGE,

and thus we further consider a second transformation of the data, where detrending is performed

on each rolling estimation window (�rolling-sample detrending�).

Figure 2 displays the evolution of the posterior mode of some representative parameters. Figure

2(a) shows parameters that describe the evolution of the persistence of some representative shocks

(productivity, investment, government spending, and labor supply); Figure 2(b) shows the estimates

of the standard deviation of the same shocks; and Figure 2(c) plots monetary policy parameters.

Overall, Figure 2 reveals evidence of parameter variation. In particular, the �gures show some

decrease in the persistence of the productivity shock, whereas both the persistence and the standard

deviation of the investment shock seem to increase over time. The monetary policy parameters

appear to be overall stable over time.

FIGURE 2 HERE

We then apply our �uctuation test to test the hypothesis that the DSGE model and the BVAR

have equal performance at every point in time over the historical sample.

Figure 3 shows the implementation of the �uctuation test for the DSGE vs. a BVAR(1) and

BVAR(2), using full-sample detrending of the data. The estimate of the local relative KLIC is

evaluated at the posterior modes b�t and b
t of the models�parameters, using the fact that b�t andb
t are consistent estimates of the pseudo-true parameters �t and 
t (see, e.g., Fernandez-Villaverde
and Rubio-Ramirez, 2004).

FIGURE 3 HERE
10The BVAR�s were estimated using software provided by Chris Sims at www.princeton.edu/~sims. As in Sims

(2003), for the Minnesota prior we set the decay parameter to 1 and the overall tightness to .3. We also included

sum-of-coe¢ cients (with weight � = 1) and co-persistence (with weight � = 5) prior components:
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Figure 3 suggests that the DSGE has comparable performance to both a BVAR(1) and BVAR(2)

up until the early 1990s, at which point the performance of the DSGE dramatically improves relative

to that of the reduced-form models.

To assess whether this result is sensitive to the data �ltering, we implement the �uctuation test

for the DSGE vs. a BVAR(1) and BVAR(2), this time using rolling-window detrended data.

FIGURE 4 HERE

The results con�rm the suspicion expressed by Sims (2003) that the pre-processing of the data

utilized by SW penalizes the reduced-form models in favour of the DSGE. As we see from Figure

4, once the detrending is performed on each rolling window, the advantage of the DSGE at the end

of the sample disappears, and the DSGE performs as well as a BVAR(1) on most of the sample,

whereas it is outperformed by a BVAR(2) for all but the last few dates in the sample (when the

two models perform equally well).

7 Conclusions

This paper developed statistical testing procedures for evaluating the relative performance of two

competing models in unstable environments. We proposed three tests: 1) a one-time reversal test;

2) a nonparametric test; and 3) a �uctuation test. We investigated the advantages and limitations

of the di¤erent approaches and compared the quality of the approximation that they deliver in

�nite samples. Based on the results of the latter, we do not recommend the nonparametric test

for typical macroeconomic applications, whereas the choice between the one-time reversal and

the �uctuation test should be driven by the type of alternative hypothesis of interest in a given

application. Finally, an empirical application to the European economy points to the presence of

instabilities in the models� parameters, and suggests that a VAR �tted the last two decades of

data better than a standard DSGE model, a conclusion that is however sensitive to the detrending

method utilized.
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8 Appendix A - Proofs

Lemma 6 Let XT (�) = op;� (1) denote sup�2�jjXT (�) jj = op (1) and XT (�) = Op;� (1) denote

sup�2�jjXT (�) jj = Op (1) : Under Assumption OT and HOT
0 ,

T�1=2
[T�]X
t=1

�
ln ft(b�1 (�))� ln gt (b
1 (�))� = T�1=2

[T�]X
t=1

(ln ft(� (�))� ln gt (
 (�))) + op;� (1) :

Proof of Lemma (6). By applying a second order Taylor expansion around � =
h
�0; 


0
i0
:

T�1=2
[T�]X
t=1

�
ln ft(b�1 (�))� ln gt (b
1 (�))�

= T�1=2
[T�]X
t=1

(ln ft(�)� ln gt (
)) +

+
1

2
T�1

[T�]X
t=1

r ln ft(b�1 (�))�b�1 (�)� ��T 1=2 (36)

�1
2
T�1

[T�]X
t=1

r ln gt (b
1 (�)) (b
1 (�)� 
)T 1=2 (37)

+
1

2

�b�1 (�)� ��0
24T�1 [T�]X

t=1

r2 ln ft(
::
�1;T (�))

35�b�1 (�)� ��T 1=2 (38)

�1
2
(b
1 (�)� 
)0

24T�1 [T�]X
t=1

r2 ln gt
� ::

1;T (�)

�35 (b
1 (�)� 
)T 1=2 (39)

= T�1=2
[T�]X
t=1

(ln ft(�)� ln gt (
)) + op;� (1) + op;� (1) ; (40)

where
::
�1;T (�) is an intermediate point between b�1 (�) and � (similarly for ::
1;T (�)): By de�nition

of the ML estimator,
P[T�]

t=1 r ln ft(b�1 (�)) = 0 (similarly for r ln gt). By Assumption OT(2),

T 1=2
�b�1 (�)� �� = Op;� (1) which proves that (36) and (37) are op;� (1). Furthermore, As-

sumptions OT(2,3) ensure that, under the null hypothesis, T�1
P[T�]

t=1 r2 ln ft(
::
�1;T (�)) = Op;� (1)

(and similarly for the component in 
); by Assumption OT(2), T 1=2
�b�1 (�)� �� = Op;� (1) and�b�1 (�)� �� = op;� (1) (and similarly for the components in 
), proving that (38) and (39) are

op;� (1) :

Proof of Proposition 1. By Lemma 6 and similar arguments, as well as the consistency ofb�, we have:
(i) LM1 = ��2

"
T�1=2

TX
t=1

(ln ft(�t)� ln gt (
t))
#2
+ op;� (1)
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and

(ii) LM2 (�) = ��2��1 (1� �)�124(1� �)T�1=2 [�T ]X
t=1

(ln ft(�t)� ln gt (
t))+

��T�1=2
TX

t=[T�]+1

(ln ft(�t)� ln gt (
t))

352 + op;� (1) :
By Assumption OT, under the null hypothesis:

��1T�1=2
TX
t=1

(ln ft(�t)� ln gt (
t)) =) B (1) (41)

��1��1=2 (1� �)�1=2
24T�1=2 [T�]X

t=1

(ln ft(�t)� ln gt (
t))

��T�1=2
TX
t=1

(ln ft(�t)� ln gt (
t))
#

=) ��1=2 (1� �)�1=2 [B (�)� �B (1) ] = ��1=2 (1� �)�1=2 BB (�) ; (42)

where the limiting distributions in (41) and (42) are asymptotically uncorrelated.11 Then:

LM1 + LM2 (�) = ��2

"
T�1=2

TX
t=1

(ln ft(�t)� ln gt (
t))
#2

+��2��1 (1� �)�1
24T�1=2 [T�]X

t=1

(ln ft(�t)� ln gt (
t))

��T�1=2
TX
t=1

(ln ft(�t)� ln gt (
t))
#2
+ op;� (1)

=) B (1)2 + ��1 (1� �)�1 BB (�)2 (43)

and the result follows by the Continuous Mapping Theorem.

Proof of Corollary 2. The proof follows from T 1=2b� (�) =) �
��1B (�) ; (1� �)�1 [B (1)�B (�)]

�0
using Lemma 6 and arguments similar to those in Proposition 1. Thus, ��1HT 1=2b� (�) =)
[BB (�) ; B (1)]0 ; which implies WT (�) =) BB(�)2

�(1��) + B (1)2 ; and the result obtains by applying

the Continuous Mapping Theorem.

11See Rossi (2005).
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Proof of Proposition 3. The con�dence bands in (23) are obtained as in equation (23) of

Wu and Zhao (2007) (henceforth WZ), which is implied by their Theorem 2, adapted to our setting.

The mapping between our notation and the notation of WZ is as follows: we have T instead of n;

h instead of bn; � instead of t: In particular, the modi�ed statement of theorem 2 of WZ requires

us to show that, for every u 2 R and for T !1;

Pr

(p
Th

��
sup

�2[wh;1�wh]

���b��� ;b� (�)�� � (� ; �)� h2	�00 (� ; �)����BK � up
2 ln (1=h)

)
! exp (�2 exp (�u)) :

(44)

Write

b��� ;b� (�)�� � (� ; �)� h2	�00 (� ; �)
= b��� ;b� (�)�� E [b� (� ; �)]| {z }

A1

+ E [b� (� ; �)]� �� (� ; �)� h2��00 (� ; �)�| {z }
A2

:

WZ show that expression (44) follows from Lemmas 2 and 3 of WZ, which concern the stochastic

part A1 and the bias A2: The term A2 is the same as in WZ; so their Lemma 3 applies directly.

For part A1; we have that
p
Th

�

hb��� ;b� (�)�� E [b� (� ; �)]i (45)

= ��1

(
1p
Th

TX
t=1

K

�
� � t=T

h

�h
�Lt

�b� (�)���Lt (�) + �Lt (�)� E [�Lt (�)]i)

= ��1

(
1p
Th

TX
t=1

K

�
� � t=T

h

�h
�Lt

�b� (�)���Lt (�) + eti) � eUT (�) ; (46)

where we used assumption SB(1).

We now show that Lemma 2 of WZ still holds, i.e., that

lim
T!1

 
Pr

(
max

�2[wh;1�wh]

��� eUT (�)����BK � up
2 ln (1=h)

)!
= exp (�2 exp (�u)) ;

even though eUT (�) contains an additional term VT (�) relative to the term UT (�) in equation (27)

of WZ:

eUT (�) =
1p
Th

TX
t=1

K

�
� � t=T

h

�
et
�| {z }

UT (�)

+ (47)

��1

(
1p
Th

TX
t=1

K

�
� � t=T

h

�h
�Lt

�b� (�)���Lt (�)i)| {z }
VT (�)

:
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The only modi�cation to the proof of Lemma 2 is equation (29) of WZ, which in our case requires

us to show that

ln1=2 (T ) jeUT (�)�WT (�) j = oAS (1) ;

where WT (�) � 1p
Th

PT
t=1K

�
��t=T
h

�
�B (t) ; with B (�) the Brownian motion de�ned in assump-

tion SB. Consider a Mean Value expansion of �Lt
�b� (�)� around �Lt (�):

�Lt

�b� (�)� = �Lt (�) + (48)

�st
�
� (�)

�0 �b� (�)� ��
where � (�) lies between b� (�) and � and substitute (48) into (47):

eUT (�) = UT (�) +

"
1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�0#�b� (�)� �� :
We thus have that:

ln1=2 (T ) jeUT (�)�WT (�) j

� ln1=2 (T ) jUT (�)�WT (�) j+ ln1=2 (T )
�����
"

1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�0#�b� (�)� �������
= oas (1) + ln

1=2 (T )

�����
"

1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�0#�b� (�)� ������� = oas (1) : (49)

The �rst inequality follows from the triangle inequality, the �rst oas (1) in the second equality fol-

lows from WZ, Lemma 2, equation (29). The last oas (1) follows from the fact that

ln1=2 (T )

�����
"

1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�0#�b� (�)� �������
�

����� 1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�0����� � ���pTh�b� (�)� ����� �
r
ln (T )

Th

and
��� 1p

Th

PT
t=1K

�
��t=T
h

�
�st

�
� (�)

�0��� = Oas (1) by Assumption SB(4) and consistency of b� (�) for
�;
���pTh�b� (�)� ����� = Oas (1) by Assumption SB(5); and

q
ln(T )
Th = o (1) by Assumption SB(3).

Proof of Theorem 5. Let XT (�) = op;� (1) denote sup�jjXT (�) jj = op (1) and XT (�) =

Op;� (1) denote sup�jjXT (�) jj = Op (1) : Let
P

j �
Pt+m=2

j=t�m=2+1 for t = m=2; :::; T �m=2: We �rst
show that, under the null hypothesis, ��1m�1=2P

j �Lj(
b��t ) = ��1m�1=2P

j �Lj(�
�) + op;� (1) :
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Applying a second order Taylor expansion, we have:

��1m�1=2
X
j

�Lj(b��t ) (50)

= ��1m�1=2
X
j

�Lj(�
�)

+��1
1

2

8<:
24m�1

X
j

r ln fj(b��t )
35pm�b��t � ��� (51)

�

24m�1
X
j

r ln gj(b
�t )
35pm (b
�t � 
�)

9=; (52)

+��1
�b��t � ���0

24m�1
X
j

r2 ln fj(
::
�
�
t )

35pm�b��t � ��� (53)

� (b
�t � 
�)0
24m�1

X
j

r2 ln gj(
::


�
t )

35pm (b
�t � 
�) ; (54)

where
::
�
�
t is an intermediate point between b��t and �� (and similarly for ::



�
t ). By construction,

m�1P
j r ln fj(b��t ) = 0 (and similarly for b
�t ); by Assumption FB(2), pT �b�t � �� is Op;� (1);

therefore, by Assumption FB(5), (51) is op;� (1) ; and similarly for (52). Note that

��1
�b��t � ���0

24m�1
X
j

r2 ln fj(
::
�
�
t )

35pm�b��t � ���

= ��1
�b��t � ���0

24m�1
X
j

r2 ln fj(
::
�
�
t )� E

�
r2 ln fj (��)

�35pm�b��t � ��� (55)

+��1
�b��t � ���0E �r2 ln fj (��)�pm�b��t � ��� ; (56)

by Assumptions FB(2,3), (55) and (56) are both op;� (1), and similarly for (54). Thus,

��1m�1=2
X
j

�Lj(b��t ) = ��1m�1=2
X
j

�Lj(�
�) + op;� (1) : (57)

Now write

��1m�1=2
X
j

�Lj(�
�) = (m=T )�1=2

0@��1T�1=2 t+m=2X
j=1

�Lj(�
�)� ��1T�1=2

t�m=2X
j=1

�Lj(�
�)

1A :

By (57) and Assumptions FB(1), FB (4) and FB(5), we have

��1m�1=2
X
j

�Lj(b��t ) =) [B (�+ h=2)� B (�� h=2)] =
p
h:

The statement in the proposition then follows from consistency of b� for �:
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9 Tables and Figures

Table 1. Critical values for the

�uctuation test (k�)

�

h 0.05 0.10

0.1 3.393 3.170

0.2 3.179 2.948

0.3 3.012 2.766

0.4 2.890 2.626

0.5 2.779 2.500

0.6 2.634 2.356

0.7 2.560 2.252

0.8 2.433 2.130

0.9 2.248 1.950
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Table 2. Monte Carlo: Design 1
�A Nonparametric Fluctuation QLR�T Break ExpW�

1;T MeanW�
T

0 0.06 0.04 0.04 0.05 0.04 0.05

0.1 0.05 0.06 0.09 0.10 0.09 0.08

0.2 0.06 0.15 0.20 0.24 0.19 0.16

0.3 0.08 0.32 0.44 0.51 0.42 0.34

0.4 0.11 0.53 0.69 0.75 0.66 0.56

0.5 014 0.72 0.86 0.90 0.84 0.76

0.6 0.19 0.87 0.96 0.97 0.95 0.90

0.7 0.27 0.94 0.99 0.99 0.99 0.96

0.8 0.34 0.98 1 1 1 0.98

0.9 0.42 0.99 1 1 1 1

1.0 0.50 1 1 1 1 1

1.1 0.58 1 1 1 1 1

1.2 0.68 1 1 1 1 1

1.3 0.74 1 1 1 1 1

1.4 0.78 1 1 1 1 1

1.5 0.86 1 1 1 1 1

1.6 0.90 1 1 1 1 1

1.7 0.94 1 1 1 1 1

1.8 0.96 1 1 1 1 1

1.9 0.98 1 1 1 1 1

2 0.99 1 1 1 1 1
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Table 3. Monte Carlo: Design 2
�2A Nonparametric Fluctuation QLR�T Break ExpW�

1;T MeanW�
T

0 0.05 0.04 0.05 0.05 0.05 0.05

0.1 0.05 0.05 0.06 0.06 0.06 0.06

0.2 0.06 0.06 0.10 0.10 0.10 0.09

0.3 0.08 0.08 0.18 0.16 0.16 0.14

0.4 0.10 0.10 0.27 0.25 0.25 0.22

0.5 0.15 0.18 0.40 0.37 0.38 0.34

0.6 0.21 0.25 0.53 0.49 0.50 0.45

0.7 0.28 0.34 0.69 0.64 0.66 0.60

0.8 0.31 0.46 0.78 0.73 0.76 0.71

0.9 0.41 0.55 0.85 0.81 0.83 0.80

1.0 0.49 0.64 0.90 0.87 0.89 0.86

1.1 0.57 0.74 0.95 0.93 0.94 0.92

1.2 0.65 0.81 0.97 0.96 0.97 0.95

1.3 0.73 0.88 0.98 0.98 0.98 0.97

1.4 0.80 0.92 0.99 0.99 0.99 0.98

1.5 0.86 0.95 1 1 1 0.99

1.6 0.90 0.97 1 1 1 1

1.7 0.93 0.98 1 1 1 1

1.8 0.96 0.99 1 1 1 1

1.9 0.97 0.99 1 1 1 1

2.0 0.99 1 1 1 1 1
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Table 4. Bandwidth Selection Comparisons
h

�A 0.0005 0.005 0.05 0.1 0.5 0.7

0 0.04 0.04 0.04 0.05 0.05 0.06

0.2 0.06 0.06 0.06 0.06 0.06 0.06

0.4 0.11 0.12 0.08 0.08 0.08 0.06

0.6 0.17 0.19 0.13 0.12 0.07 0.07

0.8 0.31 0.31 0.23 0.19 0.10 0.08

1.0 0.46 0.51 0.35 0.28 0.13 0.10

1.2 0.64 0.66 0.42 0.37 0.15 0.10

1.4 0.75 0.79 0.54 0.43 0.19 0.13

1.6 0.87 0.91 0.64 0.53 0.21 0.14

1.8 0.94 0.96 0.72 0.61 0.22 0.17

2.0 0.97 0.98 0.80 0.69 0.25 0.19
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Notes to Tables and Figures

Notes to Table 1. The table reports critical values for the �uctuation test in Proposition 5.

Values of k� in Table 1 are obtained by Monte Carlo simulations (based on 8,000 Monte Carlo

replications and by approximating the Brownian motion with 400 observations).

Note to Tables 2-3. The tables report empirical rejection probabilities for the nonparamet-

ric ("Nonparametric"), �uctuation ("Fluctuation"), one-time reversal Sup-type ("QLR�T "), the

ExpW �
1;T and MeanW �

T tests. The table also reports empirical rejection probabilities for a stan-

dard QLR test for breaks ("Break"). Table 2 reports results for design 1 and Table 3 for design 2

�see Section 5 for details.

Note to Table 4. The table shows empirical rejection probabilities of the nonparametric test for

the Monte Carlo design 1 discussed in Section 5, using di¤erent bandwidth sizes (h).

Notes to Figure 1. The �gure refers to the example in Section 2. The solid line in the �gure

plots the path of time variation of �KLIC arising from �t varying smoothly while keeping the

other parameters constant (time varying parameter case, panel a) and from �2x;t experiencing a

one-time break while keeping the other parameters constant (break in the variance of the regressor

case, panel b). Panels c,d show the smoothed �KLIC (dotted line). In all panels, the large dot

shows the global (or average) �KLIC. Panels e,f show the Fluctuation test statistic (solid line) and

the boundary lines (dotted lines) in the time varying paramer case and in the break in the variance

of the regressor cases, respectively. Panels g,h plot �KLIC (solid line) and the one time reversal

estimate (dotted line) for the time varying paramer case and in the break in the variance of the

regressor cases, respectively.

Notes to Figure 2(a). The �gure plots rolling estimates of some parameters in Smets and

Wouter�s (2002) model. See Smets and Wouter�s Table 1, p. 1142 for a description.

Notes to Figure 2(b). The �gure plots rolling estimates of some parameters in Smets and

Wouter�s (2002) model using full-sample detrended data. See Smets and Wouter�s Table 1, p. 1142

for a description.

Notes to Figure 2(c). The �gure plots rolling estimates of the parameters in the monetary

policy reaction function described in Smets and Wouters�(2002) eq. (36), given by: bRt = � bRt�1
+(1� �)

n
�t + r� (b�t�1 � �t) + rY (bYt�1 � bY p

t )
o
+r�� (b�t � b�t�1) +r�Y ((bYt�bY p

t )�(bYt�1�bY p
t�1))+

�Rt ; �t = ���t�1 + ��t . The �gure plots: in�ation coe¢ cient (r�), d(in�ation) coe¢ cient (r��),

lagged interest rate coe¢ cient (�), output gap coe¢ cient (rY ), d(output gap) coe¢ cient (r�Y ),

and standard deviation of the interest rate shock (
p
var (��t )).

Notes to Figure 3. The �gure plots the Fluctuation test statistic for testing equal performance

of the DSGE and BVARs, using a rolling window of size m = 70 (the horizontal axis reports the

central point of each rolling window). The 10% boundary lines are derived under the hypothesis

that the local �KLIC equals zero at each point in time. The data is detrended by a linear trend
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computed over the full sample:The top panel compares the DSGE to a BVAR(1) and the lower

panel compares the DSGE to a BVAR(2).

Notes to Figure 4. The �gure plots the Fluctuation test statistic for testing equal performance

of the DSGE and BVARs, using a rolling window of size m = 70 (the horizontal axis reports the

central point of each rolling window): The 10% boundary lines are derived under the hypothesis

that the local �KLIC equals zero at each point in time. The data is detrended by a linear trend

computed over each rolling window. The top panel compares the DSGE to a BVAR(1) and the

lower panel compares the DSGE to a BVAR(2).
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Figure 1(a) Figure 1(b)

Figure 1(c) Figure 1(d)
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Figure 1(e) Figure 1(f)

Figure 1(g) Figure 1(h)
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Figure 2(a). Rolling estimates of DSGE parameters (persistence of the shocks).
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Figure 2(b). Rolling estimates of DSGE parameters ( standard deviation of the shocks).
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Figure 2(c). Rolling estimates of DSGE parameters (monetary policy parameters).
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Figure 3. Fluctuation test DSGE vs. BVARs. Full-sample detrending
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Figure 4. Fluctuation test DSGE vs. BVARs. Rolling sample detrending
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