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Abstract 

Members of the RASSF family (RASSF1-10) have been identified as candidate tumour 

suppressors that are frequently downregulated by promoter hypermethylation in cancers. 

These adaptor proteins carry a common Ras-association (RA) and SARAH domain 

(RASSF1-6) that can potentially bind Ras oncoproteins and mediate protein-protein 

interactions with other SARAH domain proteins (e.g. MST kinase). However, there is a 

notable lack of comparative characterisation of the RASSF family, as well as of 

molecular and structural information that facilitate their tumour suppressive functions. 

As part of our comparative analysis, we modelled the RA and SARAH domains 

of the RASSF members based on existing structures and predicted their potential 

interactions and the key residues involved. These in silico predictions were compared to 

in vitro studies and intracellular binding assays using Förster Resonance Energy Transfer 

(FRET). Several SARAH domain mutants were also investigated for their effects on 

RASSF interactions. Furthermore, we compared the interactions of the RASSF family 

with several key proteins involved in death and NFκB signalling.  

Our biochemical data show a diversity of interactions within the RASSF family 

RA domain, whereas interactions between RASSF and MST correlate with the presence 

of the SARAH domain, which is supported by the FRET experiments. Mutations of 

specific non-polar residues in the dimerisation interface of the SARAH domain also 

prove detrimental to the interaction between selected RASSF members and MST. 

Moreover, we observed stimulation-dependent interactions between specific RASSF 

members and MOAP1, TNF-R1, DAPK and TBK1. These results suggest that different 

members, despite shared general architecture, may have distinct binding properties, but 

ultimately could share overlapping functions. Current data also support an interaction 

model where RASSF serves as an adaptor for the assembly of multiple protein 

complexes and further functional interactions, involving MST kinases and other 

interacting partners, which could be regulated by Ras. 
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1 Introduction 
The topic of this thesis is the molecular and structural basis for the interactions of the 

Ras-association domain (RASSF) family members with their various binding partners. 

This introduction will first provide an overview of the RASSF family, their structural 

features and main interactions. This will be followed by a brief description of the main 

features of the signalling pathways in which the RASSF family are involved through 

their main interacting partners. The functions of the RASSF family in these signalling 

networks and their roles in diseases will also be discussed in more detail for each RASSF 

member. Finally, the aims of the project will be introduced. 

 

1.1. The Ras-association domain (RASSF) family 

1.1.1. Overview of the RASSF family 

The RASSF family consists of 10 members, known as RASSF1 to RASSF10. Studies 

have revealed that at least eight of the RASSF members are downregulated by promoter 

hypermethylation in various types of cancer (Table 1.1). This epigenetic silencing is 

often linked to advanced or aggressive tumours, poor prognosis, disease progression and 

survival (Lee et al., 2010, Pfeifer and Dammann, 2005, Wen et al., 2011).  

For the last decade since its identification, the RASSF family has been 

extensively studied. The RASSF proteins carry several characteristic domains and 

function as adaptor proteins in many important biological processes. Initial studies 

elucidated their interactions with various Ras GTPases and the MST kinases, as well as 

their tumour suppressor roles in apoptosis, the Hippo pathway, cell cycle and 

cytoskeleton regulation. Two of the main hallmarks of cancer are evasion of apoptosis 

and insensitivity to anti-growth signals during the cell cycle (Hanahan and Weinberg, 

2000). Collectively, these mark the RASSF family as potential tumour suppressors and 

tumour diagnostic and prognostic markers, which have been comprehensively 

summarised in previous reviews (Richter et al., 2009, van der Weyden and Adams, 2007).  

Since then, there has been increasing evidence of various RASSF members 

having more diverse functions than just tumour suppression (Del Re et al., 2010, 

Oceandy et al., 2009). A role in emerging pathways including the NFκB and 
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Table 1.1 Overview of the RASSF family  

Gene Chromosome 
location 

Splice variants 
(described in literature) 

Expression Changes in expression in cancer References 

RASSF1 3p21.3 
Loss of 
heterozygosity 
reported 

Promoter 1: Rassf1A 
 Rassf1D 
 Rassf1E 
 Rassf1F 
 Rassf1G 
 
 
 
Promoter 2:  Rassf1B 
 Rassf1C 

Ubiquitously 
Specifically in cardiac cells 
Specifically in pancreatic cells 
 
 
 
 
 
Predominantly in haematopoietic cells 
Ubiquitously 

Epigenetically silenced in at least 37 
tumour types: bladder, brain, breast, 
cervical, colon, oesophageal, gastric, 
head and neck, hepatocellular (HCC), 
Hodgkin’s lymphoma, kidney, lung, 
melanoma, nasopharyngeal, 
osteosarcoma, ovarian, pancreatic, 
prostate, childhood tumours 
Upregulated in pancreatic, breast cancer 
cell lines 

van der Weyden and 
Adams (2007) 
 
 
 
 
 
 
Malpeli et al. (2011), 
Reeves et al. (2010) 

RASSF2 20p13  Rassf2A 
Predicted: Rassf2B, C 

Widely expressed in most tissues, high 
levels in brain, peripheral blood, 
placenta, lung 

Epigenetically silenced in various 
cancers: breast, colorectal, lung NSCLC, 
gastric, nasopharyngeal, HCC, thyroid, 
prostate, squamous cervical cancer 

Calvisi et al. (2012), 
Guerrero-Setas et al. 
(2013), Liu et al. (2013), 
Richter et al. (2009), 
Schagdarsurengin et al. 
(2010) 

RASSF3 12q14.1  Rassf3A 
Predicted: Rassf3B, C 

Widely expressed in all normal tissues  Epigenetically silenced in somatotroph 
adenomas 

Peng et al. (2013), 
Tommasi et al. (2002) 

RASSF4 10q11.21  Rassf4A 
Predicted: Rassf4B-F 

Widely expressed in most normal 
tissues (heart, brain, placenta, lung, 
liver, skeletal muscle, pancreas) 

Epigenetically silenced in nasopharyngeal 
carcinoma, breast, lung, colorectal, 
kidney tumour cell lines 

Chow et al. (2004), 
Eckfeld et al. (2004) 
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RASSF5 1q32.1 Promoter 1: Rassf5A 
 Rassf5B 
 Rassf5D 
 
Promoter 2: Rassf5C 

Widely expressed in normal tissues  
 
 
 
Widely expressed in normal tissues  

Epigenetically silenced in lung NSCLC, 
breast, kidney primary tumours, HCC, 
leukaemia, melanoma, neuroblastoma cell 
lines 
Epigenetically silenced in colorectal 
carcinoma, HCC 

Calvisi et al. (2009), 
Djos et al. (2012), Lee et 
al. (2010), Macheiner et 
al. (2006), (2009), van 
der Weyden and Adams 
(2007) 

RASSF6 4q13.3  Rassf6A 
 Rassf6B 
Predicted: Rassf6C 

Varying levels of expression in colon, 
thymus, kidney, small intestine, 
placenta, lung  

Gene deletion and epigenetic silencing in 
30-60% of breast, colon, kidney, liver, 
rectum, pancreas, stomach and thyroid 
primary tumours, many childhood 
leukaemias, neuroblastoma 

Allen et al. (2007), Djos 
et al. (2012), Hesson et 
al. (2009) 

RASSF7 11p15.5  Rassf7A 
Predicted: Rassf7B, C 

Varying levels of expression in 
normal tissues, high levels in lung and 
brain 

Epigenetically silenced in neuroblastoma 
Upregulated in pancreatic ductal 
adecnocarcinoma, islet cell tumours, 
endometrial cancers due to hypoxia 

Djos et al. (2012), 
Recino et al. (2010), 
Sherwood et al. (2008) 

RASSF8 12p12.3  Rassf8A 
 Rassf8B 
Predicted: Rassf8C-G 

 
Widely expressed in normal tissues 

Downregulated in lung adenocarcinomas  
Epigenetically silenced in small subset of 
leukaemias  

Falvella et al. (2006), 
Hesson et al. (2009) 

RASSF9 12q21.31 No known splice 
variants   

Testis, kidney, skeletal muscle, liver, 
lung, brain, heart, pituitary gland, 
adrenal gland, ovary 

Not reported Chen et al. (1998) 

RASSF10 11p15.2 
 

No known splice 
variants  

Bone marrow, precursors of peripheral 
nervous system and sensory organs, 
salivary gland, testes, kidney, lung, 
brain 

Epigenetically silenced in many 
childhood leukaemias, astrocytomas, 
primary glioblastomas, lung, head and 
neck, sarcoma, pancreatic, prostate, 
thyroid cancers, melanoma  

Dansranjavin et al. 
(2012), Hesson et al. 
(2009), Hill et al. (2011), 
Richter et al. (2009), 
Schagdarsurengin et al. 
(2009) 
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Wnt signalling pathways, has been reported (Del Re et al., 2010, Lock et al., 2010, Song 

et al., 2012, Wei et al., 2013).  

1.1.2. The RASSF structural features and main interactions 

The ten members of the RASSF family are divided into the classical RASSF (RASSF1-6) 

and the new N-terminal RASSF (RASSF7-10) subgroups. They each have many splice 

variants and isoforms. Those that have been studied and shown to exhibit biological 

functions are illustrated in Figure 1.1.  

All ten members share a common feature in the form of the Ras-association (RA) 

domain. This is located at the C-terminal region of the classical RASSF1-6 and the N-

terminus of the N-terminal RASSF7-10. The presence of the RA domain implies 

potential Ras binding. Direct interactions with various Ras GTPases have been 

demonstrated for most classical RASSF members and RASSF7 of the N-terminal 

subgroup (Table 1.2). However, some of these reports appear to contradict each other in 

terms of the specificity of interaction and whether the interactions were direct or 

mediated by a third binding partner.  

RASSF1A and RASSF5A also share the protein kinase C conserved region 1 (C1) 

domain at their N-terminal region. The C1 domain is essential for the association of 

RASSF1A with the TNF-R1/MOAP1 and TRAIL/MOAP1 complex (Foley et al., 2008). 

Additionally, following the C1 domain, RASSF1A carries an ATM domain, which is a 

putative ATM kinase phosphorylation motif. ATM kinase is known to regulate cell cycle 

checkpoints leading to DNA repair and apoptosis, thus implicating RASSF1A in the 

DNA damage and repair pathway, which was reviewed recently (Scrace and O'Neill, 

2012). 

Finally, the classical RASSF1-6 share an additional common feature known as 

the Sav/Rassf/Hippo (SARAH) domain. This is located at their C-terminus and is known 

to facilitate homotypic and heterotypic protein-protein interactions. All six classical 

RASSF members have been shown to heterodimerise with MST1 and MST2, whilst 

RASSF1 and RASSF5 can also form homodimers (Table 1.3). Furthermore, a motif 

within the SARAH domain is known to mediate the interaction between RASSF1A and 

MOAP1 from the death pathway (Baksh et al., 2005, Foley et al., 2008). Recent studies 
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Figure 1.1 Schematic representations of the RASSF family members 

One biologically relevant isoform is shown for each RASSF member, with two for 

RASSF1 (RASSF1A and RASSF1C) and RASSF5 (RASSF5A and RASSF5C, also 

known as RAPL). Characteristic domains shown are the protein kinase C conserved 

region (C1, grey), ATM kinase phosphorylation site (purple), Ras-association (RA, 

orange), Sav/Rassf/Hippo (SARAH, green) and coiled-coil motif (blue). The red line 

between the RA and SARAH domain in RASSF3 indicates an overlapping residue.  
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Table 1.2 Summary of the known interactions between the RASSF proteins and Ras family GTPases  

The types of interaction assays performed to identify RAS binding are also shown. 

RASSF protein Binding to RAS GTPases Experimental method Comments  Reference  

RASSF1 

aa1-340 (full length) 

 

 

 

aa133-291 (RA) 

 

NRas, KRas, MRas 

Ran 

 

Rap1A 

HRas 

 

Pull-down from cell lysates 

2D liquid-chromatography-tandem mass 

spectrometry (MS), pull-down 

Pull-down 

Guanine nucleotide dissociation inhibitor 

(GDI) assay 

 

 

 

Rodriguez-Viciana et al. 

(2004) 

Dallol et al. (2009) 

Verma et al. (2011) 

Stieglitz et al. (2008) 

RASSF2 

aa1-326 (full length) 

 

Endogenous 

aa176-264 (RA) 

 

KRas, MRas, NRas, RRas, 

TC21 

KRas 

KRasV12 

 

Pull-down from  cell lysates 

 

Co-immunoprecipitation  (Co-IP) 

Pull-down 

  

Rodriguez-Viciana et al. 

(2004) 

Clark et al. (2012) 

Vos et al. (2003a) 

RASSF4 

aa1-321 (full length) 

 

aa174-262 (RA) 

 

Rap1, Rap2, KRas, MRas, 

NRas, RRas 

KRas, KRasV12 

 

Pull-down from cell lysates 

 

Pull-down 

  

Rodriguez-Viciana et al. 

(2004) 

Eckfeld et al. (2004) 

RASSF5A 

aa1-417 (full length) 

 

 

Rap1, Rap2, KRas, MRas, 

NRas, RRas, TC21 

 

Pull-down from cell lysates 

 

  

Rodriguez-Viciana et al. 

(2004) 
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RASSF protein Binding to RAS GTPases Experimental method Comments  Reference  

RASSF5C (RAPL) 

aa1-265 (full length) 

aa42-265 (RA + SARAH) 

 

 

mNORE1 (mouse) 

aa200-358 (RA) 

aa203-363 (RA) 

aa203-363Δloop 

aa95-358 (C1 + RA) 

 

Rap1 

HRasV12, MRasV22, 

Rap2BV12 

 

 

 

WT Ras, Ras D30E/E31K, Rap1 

HRasV12 

HRasV12 

 

Pull-down 

Pull-down, isothermal titration calorimetry 

(ITC) 

 

 

GDI assay 

Co-IP 

Co-IP 

ITC 

 

 

Mutations K154L, K155L and 

D160L abolish Ras-binding 

 

 

Protein crystallised 

Mouse RA also binds tubulin 

 

RA binds C1 domain 

 

Katagiri et al. (2003) 

Miertzschke et al. (2007) 

 

 

 

Stieglitz et al. (2008) 

Bee et al. (2010) 

 

Harjes et al. (2006) 

RASSF6 

aa1-337 (full length) 

aa186-274 (RA) 

 

KRas, KRasV12 

KRas 

 

Pull-down from cell lysates 

Pull-down  

 

Disputed by Ikeda et al. 

(2007), no binding detected 

 

Allen et al. (2007) 

RASSF7 

aa1-373 (full length) 

 

NRas, NRasV12 

 

Co-IP 

  

Takahashi et al. (2011) 

RASSF9 

aa1-435 (full length) 

 

KRas, MRas, NRas 

 

Pull-down 

  

Rodriguez-Viciana et al. 

(2004) 
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have also revealed RASSF3 and RASSF6 as MOAP1 binding partners, possibly 

mediated by the same motif, which will be further discussed in Chapter 6 (Allen et al., 

2007, Ikeda et al., 2007, Kudo et al., 2012). These interactions underpin the general role 

of the RASSF family in pro-apoptosis regulation, with increasing evidence of their 

involvement in both the Hippo and death receptor apoptotic pathways (Fausti et al., 

2012).  

 

1.2. Signalling networks and pathways involving the RASSF family 

1.2.1. Ras signalling  

The first RAS genes were discovered 30 years ago as a result of studies on cancer-

causing viruses and since then have been implicated in a diverse range of biological 

functions and the regulation of many intracellular signalling pathways ranging from cell 

survival and proliferation to apoptosis (Cox and Der, 2003, Malumbres and Barbacid, 

2003). To date, more than 150 members of the Ras small GTPase superfamily have been 

identified and are sub-classified into five individual families: Ras, Rho, Rab, Ran and 

Arf (Wennerberg et al., 2005). We will focus on the most prominent Ras subfamily as it 

undergoes interaction with the RASSF family (see Table 1.2).  

The canonical Ras signalling pathway is the Raf/Mek/Erk protein kinase cascade 

downstream of Ras that regulates growth and development (Figure 1.2A). Various Ras 

effectors have also been identified and several of them have been implicated in Ras-

mediated oncogenesis (Figure 1.2B). Ras mediates cell survival primarily through PI3K 

pathways that elicit strong anti-apoptotic effects via Akt/PKB, which activates NFκB 

signalling downstream (Cox and Der, 2003, Downward, 2003). On the other hand, it 

promotes cell proliferation mainly via the Raf/Mek/Erk signalling cascade, which 

activates transcription factors to upregulate key cell cycle regulatory proteins, thus 

promoting cell cycle progression (Downward, 2003). Interestingly, Ras can also both 

inhibit and promote apoptosis through the Raf/Mek/Erk pathway depending on the 

cellular homeostatic conditions (Figure 1.2B) (Cox and Der, 2003). 
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Table 1.3 Summary of the known interactions mediated by the SARAH domain of the RASSF proteins  

The types of interaction assays performed to identify protein-protein interaction are also shown. 

RASSF protein Binding to other 

proteins 

Experimental method Comments  Reference  

RASSF1A 

aa1-340 (full 

length/endogenous) 

 

aa1-320 (truncated SARAH) 

 

RASSF1C 

aa220-270 (SARAH) 

 

MST1, MST2 

 

RASSF5 

MOAP1  

 

 

MST1 

 

IP from KB cells, two-hybrid screen, 2D 

liquid-chromatography-tandem MS 

Co-IP 

Co-IP 

 

 

NMR titration, cross-linking 

 

Inhibits MST1 autoactivation 

through phosphorylation 

Also forms homodimers 

 

 

 

 

 

Praskova et al. (2004) 

Khokhlatchev et al. (2002) 

Ortiz-Vega et al. (2002) 

Baksh et al. (2005) 

 

 

Hwang et al. (2007) 

RASSF2 

aa1-326 (full 

length/endogenous) 

 

MST1, MST2 

 

RASSF1, RASSF3, 

RASSF5 

 

Co-IP, MS, IP from KB cells, two-hybrid 

screen 

Co-IP, yeast two-hybrid 

  

Khokhlatchev et al. (2002) 

Schagdarsurengin et al. 

(2010) 

Hesson et al. (2005) 

RASSF3 

aa1-238 (full 

length/endogenous) 

 

MST1 

MST, MST2 

 

Two-hybrid screen 

Co-IP 

  

Praskova et al. (2004) 

Kudo et al. (2012) 

RASSF4 

aa1-321 (full length) 

 

MST1 

 

(data not shown) 

  

Eckfeld et al. (2004) 
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RASSF protein Binding to other 

SARAH domains 

Experimental method Comments  Reference  

RASSF5A 

aa1-413 

aa266-413 (SARAH) 

 

 

 

RASSF5C (RAPL) 

aa1-265 

 

 

MST1, MST2 

MST1 

 

 

 

 

MST1 

SKAP1 

 

Two-hybrid screen 

NMR titration, chemical shift perturbation 

 

 

 

 

Two-hybrid screen, co-IP 

Co-IP 

 

 

Crystallised as a homodimer 

Ras-binding to RASSF5 

enhances MST1 activity to 

promote apoptosis 

 

Forms homodimers and 

oligomers (Miertzschke et al., 

2007) 

 

Khokhlatchev et al. (2002)  

Hwang et al. (2007), 

Makbul et al. (2013) 

 

 

 

Katagiri et al. (2006) 

Raab et al. (2010) 

RASSF6 

aa1-337 (full length) 

 

MST2 

 

Two-hybrid screen, pull-down 

 

RASSF6 and MST2 mutually 

inhibit each other 

 

Ikeda et al. (2009) 
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Figure 1.2 The Ras signalling network 

(A) The canonical Ras signalling pathway through the Raf/Mek/Erk cascade.   

(B) The Ras signalling network, adapted from Cox and Der (2003). Pro-apoptotic 

pathways are shown in orange, anti-apoptotic pathways in blue and pathways 

involved in other functions in green.   
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1.2.2. Hippo signalling  

The Hippo signalling network was first elucidated in Drosophila melanogaster and plays 

an important role in controlling organ size in animals (Saucedo and Edgar, 2007). Recent 

studies have shown that many components and some regulatory aspects of this network 

are evolutionarily conserved in mammals and deregulation of the various pathways 

involved is linked to cancer (Table 1.4) (Harvey et al., 2013, Matallanas et al., 2008, 

Ribeiro et al., 2010). One major component is the mammalian sterile 20-like (MST) 

kinases, which are known to interact with several RASSF members (see Table 1.3), thus 

implicating the RASSF family in the regulation of Hippo signalling. 

The Hippo signalling network consists of a core kinase cascade beginning with 

the activation of MST1/2 by various apoptotic and stress stimuli. The mechanisms of 

activation include caspase 3 cleavage, autophosophorylation and interaction with other 

proteins, such as WW45 and RASSF (Avruch et al., 2012). Activated MST then 

phosphorylates its substrates, such as WW45, LATS1/2, NDR1/2, FOXO, H2B and the 

kinases in the JNK signalling cascade, the latter of which is essential in facilitating MST-

mediated chromatin condensation during apoptosis (Matallanas et al., 2008). These 

phosphorylation events lead to a cascade of further phosphorylation, including that of 

YAP transcription coactivator, and finally apoptosis. Additionally, MST-activated AGC-

family kinases NDR1/2 and LATS1/2 also contribute to cell cycle arrest at G1/S and 

G2/M phases by reducing the levels of cyclin E and cyclins A/B respectively (O'Neill et 

al., 2005, Radu and Chernoff, 2009). The multiple apoptotic signalling pathways 

mediated by activated MST are summarised in Figure 1.3. 

1.2.3. Death receptor apoptosis signalling 

The interactions between several RASSF members and MOAP1 have linked them to 

death receptor signalling (Baksh et al., 2005, Ikeda et al., 2007, Kudo et al., 2012, Vos et 

al., 2006). The extrinsic death signal is activated by the ligation of membrane bound 

death receptors (Fas, TNF-R1 and TRAIL-R) to their cytokine ligands (FasL, TNFα and 

TRAIL). This leads to the recruitment of adaptor molecules, such as FADD and TRADD, 

followed by pro-caspase 8 to form the Death Inducing Signalling Complex (DISC). 

Subsequently, caspase 8 is activated upon its dimerisation and directly cleaves and 

activates caspase 3 and caspase 7, leading to apoptosis. Alternatively, crosstalk between 
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Table 1.4 Hippo pathway components and their links to cancer 

Compiled from Harvey et al. (2013), Saucedo and Edgar (2007) 

D. melanogaster 
gene 

Human 
orthologue 

Oncogene 
or TSG* 

Implications in cancer 

hippo (hpo) MST1/2 TSG None 

salvador (sav) SAV1 (WW45) TSG Mutations in cell lines derived 

from kidney cancer   

warts (wts) LATS1 

LATS2 

TSG None 

Deleted  

mats MOB1A/B TSG Mutations in cancer cell lines  

yorkie (yki) YAP 

TAZ 

Oncogene Amplified 

None  

scalloped (sd) TEAD1-4 Oncogene  None  

fat FAT1 

FAT2 

FAT3 

FAT4 

TSG 

TSG 

TSG 

TSG 

Mutations in ovary, head and neck 

Mutations in colorectum 

None  

Mutations in rectum  

merlin (mer) NF2 TSG Somatic mutations, heritable 

cancer syndrome, inactivated in 

tumours of nerve tissue 

  
* TSG, tumour suppressor gene 
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Figure 1.3 The Hippo signalling network in apoptosis 

Multiple apoptotic signalling pathways are mediated by MST targets, adapted from 

Fausti et al. (2012), Radu and Chernoff (2009). The main Hippo pathway components 

are shown in rectangles and other components in ovals. Yellow and pink phosphates 

indicate activating and inhibitory phosphorylation respectively by MST. Red lines 

indicate RASSF-mediated activation. 
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intrinsic and extrinsic pathways through caspase 8 can activate executioner caspase 3 and 

caspase 7 via Bax and cytochrome c release from the mitochondria caused by 

mitochondrial outer membrane permeabilisation (MOMP) (Khosravi-Far and Esposti, 

2004, Tait and Green, 2010). The latter is where RASSF and MOAP1 enter the picture. 

RASSF1A binds MOAP1/TNF-R1 to facilitate MOAP1 interaction with Bax, thus 

driving Bax activation and MOMP to cause apoptosis (Foley et al., 2008). This extrinsic 

signalling network and its crosstalk with the intrinsic pathway are summarised in Figure 

1.4 and will be further discussed in Chapter 6.  

1.2.4. NFκB signalling  

The NFκB family consists of two structurally related subfamilies: the NFκB proteins 

(p100 and p105) and Rel proteins (RelA, RelB and RelC). All these proteins share a 

common DNA-binding domain known as the Rel homology domain (RHD) and are post-

translationally modified (Perkins, 2007). NFκB is involved in cellular responses to a 

variety of stimuli and regulates physiological processes that include immune responses, 

apoptosis and inflammation. Deregulation of NFκB signalling has been associated with 

cancer, chronic inflammation, autoimmune diseases and viral infection (Courtois and 

Gilmore, 2006). 

Under normal cellular conditions, the NFκB dimer, made up of the p50 and p65 

subunits from NFκB p105 and RelA respectively, is present in its latent, inactive state 

and bound to inhibitory IκB proteins that mask its nuclear localisation sequence (NLS) 

and block DNA binding. In the presence of harmful stimuli, such as stress, cytokines and 

viral infections, the IκB kinase (IKK) complex, consisting of catalytic kinase subunits 

(IKKα and/or IKKβ) and a scaffold protein NFκB essential modulator (NEMO), is 

activated in the canonical pathway. This results in the phosphorylation-induced 

degradation of IκB, thus allowing active NFκB dimers to enter the nucleus and activate 

specific target genes. This general mechanism of activation is summarised in Figure 1.5. 

The regulation of NFκB signalling and its crosstalk with other signalling networks will 

be covered in greater detail in Chapter 6.  
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Figure 1.4 Death receptor signalling  

RASSF is involved in a crosstalk between the intrinsic and extrinsic death pathway. The 

extrinsic pathway (right) is initiated by death receptor signalling, recruitment, 

dimerisation and activation of FADD and caspase 8, leading to the activation of caspase 

3 and caspase 7. The crosstalk with the intrinsic pathway (left) occurs through caspase 8 

or the RASSF/MOAP1/TNF-R1 complex following internalisation of TNF-R1 to cause 

mitochondrial outer membrane permeabilisation (MOMP) and apoptosis. Adapted from 

Tait and Green (2010).  
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Figure 1.5 NFκB signalling  

The canonical NFκB signalling pathway, adapted from Gilmore (2006). Harmful stimuli 

activate the IκB kinase (IKK) complex, leading to the phosphorylation and proteasomal 

degradation of the inhibitory IκB. This releases the active NFκB p50/p65 dimer, which 

enters the nucleus and activates specific target genes.  
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1.2.5. Wnt signalling  

Wnt signalling is involved in various biological functions, mainly axis patterning, cell 

proliferation, differentiation, migration and stem cell control (Amin and Vincan, 2012, 

Nusse, 2008). Mutations of pathway components and abnormal signalling within the Wnt 

signalling network have been implicated in some diseases, most notably cancer (Clevers 

and Nusse, 2012). 

There are three different Wnt signalling pathways: the canonical Wnt pathway 

and two non-canonical planar polarity and Wnt/calcium pathways (Moon et al., 2004). 

The canonical pathway is best-characterised and also the most functionally relevant with 

regards to the RASSF family. In the absence of Wnt ligands, β-catenin is recruited into 

the cytoplasmic “destruction complex” consisting of adenomatous polyposis coli (APC), 

AXIN, casein kinase 1 (CK1), glycogen synthase kinase 3 (GSK3) and ubiquitin ligase 

β-TrCP. AXIN facilitates β-catenin phosphorylation by CK1 then GSK3, targeting it for 

β-TrCP ubiquitination and proteosomal degradation (Figure 1.6A) (Clevers and Nusse, 

2012). Recent studies have shown that the AXIN gene is mutated in several human 

cancers, which interferes with GSK3 binding and results in inappropriate activation and 

deregulation of the Wnt signalling pathways (Clevers, 2000, Lammi et al., 2004, Webster 

et al., 2000).  

Wnt signalling is activated by the binding of WNT protein ligands to the 

receptors of the Frizzled (FZ) and LRP families on the cell surface. Upon activation, the 

complex associates with phosphorylated LRP to block the ubiquitination of β-catenin by 

β-TrCP. Newly synthesised β-catenin translocates to the nucleus where it binds to T-cell 

factor and lymphoid enhancer binding factor (TCF-LEF) family transcription factors to 

activate transcription of Wnt target genes (Figure 1.6B).  
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Figure 1.6 Wnt signalling  

The canonical Wnt signalling pathway, adapted from Clevers and Nusse (2012). 

(A) In the absence of WNT protein ligands, the signalling pathway is “off” as β-catenin is 

targeted for proteasomal degradation by the “destruction complex”. The components 

of this complex are adenomatous polyposis coli (APC), AXIN, Dishevelled (Dvl), 

casein kinase 1 (CK1), glycogen synthase kinase 3 (GSK) and ubiquitin ligase β-

TrCP.  

(B) In the presence of WNT protein ligands, the pathway is “turned on”. The “destruction 

complex” is recruited by the phosphorylated receptor LRP to block the degradation 

of β-catenin, which enters the nucleus to activate transcription of Wnt target genes 

via T-cell factor and lymphoid enhancer binding protein (TCF) and CREB-binding 

protein (CBP).  
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1.3. The functional characterisations of the RASSF family 

1.3.1. RASSF1 

1.3.1.1. RASSF1, a frequently downregulated tumour suppressor 

RASSF1 is the first member of the RASSF family, identified using a yeast-two-hybrid 

screen via its interaction with XPA, a protein involved in DNA excision repair 

(Dammann et al., 2000). RASSF1 is also the most extensively studied member of the 

RASSF family in terms of its biological functions. It consists of at least seven different 

isoforms but there is evidence of biological functions for only RASSF1A and RASSF1C. 

These are expressed ubiquitously in normal tissues and cells but RASSF1A is often 

downregulated by promoter hypermethylation in various cancer cell lines and primary 

tumours (Table 1.1). 

Previous studies have included Rassf1a knockout mouse models, overexpression 

of RASSF1A or silencing its expression using RNAi in cancer cell lines. The outcome of 

these studies are in agreement that the functions of RASSF1A include tumour growth 

inhibition through the promotion of different apoptotic pathways, microtubule 

stabilisation, subsequent regulation of the cell cycle and cell migration (Avruch et al., 

2006, Dallol et al., 2005, Donninger et al., 2011, Guo et al., 2007, Matallanas et al., 2007, 

Oh et al., 2006, Praskova et al., 2004). The apoptotic pathways regulated by RASSF1 

include KRas and death receptor-induced apoptosis, and the Hippo pathway through its 

SARAH domain-mediated interaction with MST1 and MST2, whilst it regulates the cell 

cycle at metaphase, G1, G2/M and prometaphase. RASSF1A is also involved in the 

DNA repair pathway and feedback loop activated by DNA damage, ATM kinase and 

p53 (Scrace and O'Neill, 2012). In addition, several polymorphisms have been found in 

RASSF1A. The polymorphism at codon 133 has been reported to disrupt its microtubule 

association and stabilisation domain, and is associated with tumour alterations and early 

onset of breast cancer in BRCA1/2 mutation carriers (Gao et al., 2008, Schagdarsurengin 

et al., 2005).  

There have been fewer studies carried out on RASSF1C. It has been shown to 

interact with and stabilise microtubules, while inducing G2/M cell cycle arrest (Rong et 

al., 2004). Its overexpression also induces apoptosis, presumably by its translocation to 

microtubules upon stress and DNA damage, and its participation in the activation of 
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SAPK/JNK signalling pathway that regulates gene expression leading to apoptosis 

(Kitagawa et al., 2006). 

1.3.1.2. Microtubule association, organisation and stabilisation 

RASSF1A was recently shown to directly bind Ran GTPase via its RA domain and 

MST2 via its SARAH domain to control microtubule organisation and the integrity of 

the mitotic spindle (Dallol et al., 2009). MST2 cooperates with RASSF1A to increase 

Ran-GTP levels by phosphorylating RCC1, a Ran nucleotide guanine exchange factor 

(GEF), on S2 and S11, whilst RASSF1A regulates its localisation during interphase in 

mitotic cells. This pathway also includes a negative feedback loop in which Ran-GTP 

disrupts the RASSF1A/MST2 complex.  

A different member of the large Ras GTPase family, Rap1A, is also involved in 

microtubule regulation by RASSF1A (Verma et al., 2011). Rap1A directly binds 

RASSF1A in a GTP-dependent manner and the complex is localised to the circular 

perinuclear network. Overexpression of either protein leads to the circularisation of 

microtubules around the nucleus and a loss of the microtubule organising centre 

(MTOC), whilst the complex induces bundling of the circularised microtubules around 

the nucleus. Consequently, this affects processes directly or indirectly dependent on 

microtubule organisation, such as vimentin retraction in perinuclear bundles, partial 

dispersal of the Golgi complex or complete fragmentation.  

A recent study on the polymorphisms in RASSF1A has shed more light into its 

effects on microtubule association, which was first reported by Schagdarsurengin et al. 

(2005). The regions in RASSF1A required for microtubule association have been 

mapped to the ATM motif (131SQAEI) and the SARAH domain (300ELHNFL) (El-Kalla 

et al., 2010). The three polymorphisms found in RASSF1A include C65R, A133S and 

E264K, which are in the C1 domain, ATM motif and RA domain respectively. Each of 

these mutations exhibited distinctive defects in localisation, tubulin association and 

acetylation, resulting in microtubule instability and enhanced tumour formation in nude 

mice. 

The SARAH domain of RASSF1A also plays a role in the MTOC stability as its 

deletion resulted in multipolar and monopolar spindles (Dittfeld et al., 2012). However, 
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it appears that this is not due to microtubule destabilisation and the mechanism behind 

the regulation of the MTOC in which the SARAH domain is involved is not known.  

1.3.1.3. Regulation of the cell cycle 

The role of RASSF1A in cell cycle regulation is well studied and often correlates with its 

ability to stabilise microtubules, which are a crucial component of the mitotic spindles. 

Dallol et al. (2009) showed the importance of MST2 in RASSF1A-mediated mitotic 

spindle stability as RNAi silencing of either RASSF1A or MST2 caused prometaphase 

delay during the cell cycle. Additionally, deletion of the SARAH domain leading to 

aberrant spindle formation resulted in unequal alignment of chromosomes between poles, 

abnormal mitoses and reduced mitotic rates (Dittfeld et al., 2012). 

Earlier studies reported RASSF1A phosphorylation at S203 within the RA 

domain by mitotic kinase Aurora A during mitosis, interfering with RASSF1A 

association with microtubules and its ability to induce M phase cell cycle arrest (Rong et 

al., 2007). RASSF1A also interacts with CDC20 during early prometaphase to inhibit the 

formation of the APC/CDC20 complex, which is part of the ubiquitin-conjugation 

system that marks proteins for proteasomal degradation (Song et al., 2004). This inhibits 

APC activity and arrests the cell cycle. A more recent study illustrated a link between 

Aurora A, RASSF1A and the APC/CDC20 complex in cell cycle regulation whereby 

Aurora A inhibits the ability of RASSF1A to suppress the APC/CDC20 complex (Song 

et al., 2009). Aurora A phosphorylates RASSF1A at S203 at the spindle poles during 

early mitosis to induce its dissociation from CDC20. This leads to prometaphase 

progression after G2/M. Overexpression of Aurora A has also been shown to upregulate 

phosphorylation of RASSF1A, leading to tumourigenesis due to a lack of cell cycle 

arrest (Song et al., 2009). Despite these observations, the interaction between RASSF1A 

and CDC20 has been disputed by Liu et al. (2007). 

RASSF1A was recently shown to regulate the Raf/Mek/Erk pathway to arrest the 

cell cycle in a p21-dependent manner (Thaler et al., 2009). It inhibits Akt signalling, 

leading to the upregulation of p21, a cyclin-dependent kinase (CDK) inhibitor, which 

reduces the level of cyclin A. This regulation is independent of p53 and results in the 

inhibition of S phase progression, thus an arrest at the G1 phase.  
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1.3.1.4. Regulation of apoptosis 

Heterodimerisation between RASSF1A and the MST kinases, and its role in MST 

kinase-mediated apoptosis are well documented. The binding of RASSF1A to MST1 

initially inhibits its kinase activity but recruitment of the complex to the membrane via 

Ras association with RASSF1A leads to its activation (Avruch et al., 2006, Oh et al., 

2006, Praskova et al., 2004). Recently, RASSF1A was reported to prevent the 

dephosphorylation of MST1 and MST2 by phosphatase PP2A to keep the kinases in an 

active state to induce apoptosis (Guo et al., 2011). Interestingly, RASSF1A stabilises 

MST2 but has no effect on the level of MST1, thus implying that RASSF1A acts via 

MST2 for apoptosis, a concept that contradicts previous reports. This is also the first 

instance of a tumour suppressor protein acting as an inhibitor of the dephosphorylation 

pathway. Another study highlighted the importance of the SARAH domain and 

heterodimerisation in regulating apoptosis as deleting the SARAH domain led to aberrant 

apoptosis at a rate that is 39% higher than the wild-type (Dittfeld et al., 2012). 

Previous studies have demonstrated the role of RASSF1A in the death receptor 

apoptotic pathway. It interacts with the TNF-R1/MOAP1 complex and its interaction 

with MOAP1 may be enhanced by the presence of KRas to induce Bax activation and 

cell death (Baksh et al., 2005, Foley et al., 2008, Vos et al., 2006). More recently, El-

Kalla et al. (2010) showed that microtubule localisation of RASSF1A is crucial for 

RASSF1A-driven cell death. A lack of microtubule association by RASSF1A reduces 

RASSF1A-mediated cell death and PARP cleavage due to a slower rate of TNF-R1 

internalisation. This was also observed for the polymorphism at codon C65 of RASSF1A, 

a mutation that inhibits microtubule localisation, thus is unable to prevent tumour growth 

in nude mice.   

1.3.1.5. Regulation of the cardiac function 

Traditionally, RASSF1A is known to be a major player in tumour suppression. However, 

it is now evident that it has a wider role as it is also involved in cardiac pathologies. 

Oceandy et al. (2009) first reported RASSF1A in the regulation of cardiac function and 

the mechanism involves the Ras/Raf/Erk pathway. RASSF1A was shown to interact with 

RASSF5 and indirectly form a complex with Ras. These interactions block the 

recruitment of Raf1 to active Ras, thus inhibiting the prohypertrophic Erk1/2 pathway in 
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the heart. RASSF1A expression was also reported to be lower in human heart failure 

patients. Taken together, this suggests a new role for RASSF1A in cardiac protection.  

A second report demonstrated the importance of the RASSF1A/MST1 complex 

in the protection of cardiac fibroblasts against pressure overload (Del Re et al., 2010). 

Cardiac stress upregulates the expression of RASSF1A, which then interacts with and 

activates MST1. This series of events prevents proliferation and induces apoptosis via 

MST1 to suppress fibrosis following stress, thus improving cardiac function. RASSF1A, 

mediated by MST1, also inhibits the NFκB pathway as silencing RASSF1A resulted in 

the upregulation of TNFα and NFκB signalling, in turn causing hypertrophy through a 

paracrine mechanism and fibroblast proliferation. This was also observed when the 

RASSF1/MST1 complex was disrupted by a specific point mutation in the RASSF1 

SARAH domain, thus demonstrating the importance of the synergistic properties of both 

proteins. These observations are in line with the first report and have added a new player 

in the form of MST1 in facilitating the RASSF1A function in cardiac protection.  

RASSF1A plays a role in a diverse range of processes, including the regulation of 

apoptosis, genomic stability, microtubule organisation and the cell cycle. Now it is 

known that these functions are not limited to tumour suppression, but are also essential in 

cardiac function, thus RASSF1 may serve as a key adaptor to integrate various signalling 

pathways to control critical biological functions and provide a link between tumour 

development and heart failure (summarised in Figure 1.7). 

1.3.1.6. RASSF1C, a potential oncogene 

The role of RASSF1C is very ambiguous and reports concerning its functions have been 

contradictory as RASSF1C has been shown to exhibit both tumour suppressive as well as 

oncogenic properties (Richter et al., 2009). Recent reports include its upregulation in 

pancreatic endocrine tumours, primary epithelial cells and breast cancer cell lines 

(Malpeli et al., 2011, Reeves et al., 2010). Overexpression of RASSF1C downregulated 

pro-apoptotic genes, including Bax and caspase 3, whilst upregulating growth promoting 

genes, such as CXCR4 chemokine receptor. The combination of these effects led to an 

increase in cell proliferation and enhanced cell invasion, hence metastasis in breast 

cancer (Reeves et al., 2010). 
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Figure 1.7 Summary of the network of interactions and functions of RASSF1A 

The arrow on the left indicates the direction of the signalling cascades from signal inputs 

at the membrane level to the biological outputs. The proteins involved in signal inputs 

are shown in brown, Ras GTPases in lilac and RASSF in purple. The proteins that 

RASSF1A directly bind or inhibit are coloured according to the biological functions in 

which they are involved: apoptosis (light blue), DNA repair (dark blue), microtubule 

regulation (green) and cell cycle arrest (pink). Solid lines are part of the signalling 

cascades and dotted lines show the biological outcomes. The grey lines represent 

consolidated pathways and functions, and red lines represent emerging functions. 
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Previous studies have implicated RASSF1C in aiding the activation of 

SAPK/JNK signalling upon DNA damage (Kitagawa et al., 2006). In contrast, RASSF1C 

was recently reported to be targeted for degradation in response to DNA damage (Zhou 

et al., 2012). Under stress conditions, RASSF1C is phosphorylated by GSK3β, targeting 

it for polyubiquitination and degradation via Mule and SCFβ-TrCP. This process is 

negatively regulated by the PI3K/Akt pathway, which suggests that RASSF1C could 

function as an oncogene.  

A different study also showed that RASSF1C upregulates genes involved in cell 

growth and proliferation, whilst downregulating pro-apoptotic genes (Reeves et al., 

2012). RASSF1C induces phosphorylation of Erk1/2 and activates the Mek/Erk pathway 

to upregulate one of the identified target genes, stem cell renewal gene PIWIL. The 

expression of PIWIL is elevated in lung cancer cell lines and has been implicated in 

promoting cancer cell growth. Collectively, these recent studies point towards a more 

oncogenic role for RASSF1C as opposed to the tumour suppressor function of its 

isoform RASSF1A.  

1.3.2. RASSF2 

1.3.2.1. RASSF2, a potential tumour suppressor 

RASSF2 is widely expressed in most tissues but is often downregulated by promoter 

hypermethylation and histone deacetylation in various cancer cell lines and primary 

tumours (Table 1.1). Its downregulation is also correlated with primary colorectal 

cancers with BRaf and KRas mutations (Akino et al., 2005). RASSF2 exhibits tumour 

suppressor properties by inhibiting cell growth, inducing apoptosis via its interaction 

with the MST kinases and arresting the cell cycle at G0/G1 and G2/M phase (Akino et al., 

2005, Praskova et al., 2004, Vos et al., 2003a).  It is also implicated in actin cytoskeleton 

organisation, as overexpressing RASSF2 disrupted the actin stress fibre network by 

suppressing the Ras/Rho pathway (Akino et al., 2005).  

1.3.2.2. Regulation of apoptosis 

The tumour suppressor function of RASSF2 lies mainly in its ability to regulate and 

promote apoptosis. Most studies on its apoptotic functions illustrated the significance of 

its interaction with either or both MST1 and MST2 (Cooper et al., 2009, 

Schagdarsurengin et al., 2010, Song et al., 2010). These reports highlighted the 
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importance of the SARAH domain in mediating this interaction and the apoptotic 

activities of the RASSF2/MST complex. Schagdarsurengin et al. (2010) showed that 

deletion of the SARAH domain and downregulation of RASSF2 by promoter 

hypermethylation in thyroid cancer significantly reduced apoptosis. Furthermore, 

RASSF2 is reported to be phosphorylated by MST1 and MST2 to maintain its stability 

and the complex maintains it in a phosphorylated state, which protects MST from 

degradation and turnover, thus mutually stabilising each other (Cooper et al., 2009, Song 

et al., 2010). The RASSF2/MST1 complex also greatly enhances MST1 activity and 

apoptosis by activating the JNK signalling pathway that is needed for MST-mediated 

apoptosis (see section 1.2.2) (Song et al., 2010). However, the same effect was also 

observed in the absence of MST1, leading to the speculation that MST1 activity can be 

compensated by MST2 or RASSF2-induced apoptosis may be independent of MST1.  

RASSF2 was also reported to regulate death receptor-induced apoptosis via 

Prostate Apoptosis Response Protein 4 (PAR4) (Donninger et al., 2010). It forms a direct 

endogenous complex with PAR4 and this interaction is regulated and activated by KRas. 

PAR4 is involved in FAS and TRAIL-induced cell death (see section 1.2.3) and RASSF2 

appears essential in TRAIL-induced PAR4 nuclear localisation and apoptosis in prostate 

cancer cells. 

1.3.2.3. Other tumour suppressor activities of RASSF2 

With the increasing number of studies on the functions of RASSF2, one study has 

revealed the role of nucleo-cytoplasmic shuttling of RASSF2 in facilitating its tumour 

suppressor functions (Kumari and Mahalingam, 2009). This process is regulated by Erk2 

phosphorylation of RASSF2, which carries a nuclear export signal (NES) within residues 

240-260 and interacts with export receptor CRM-1. The report also highlighted the 

importance of nuclear localisation of RASSF2 in promoting apoptosis and G1/S cell 

cycle arrest.  

Apart from apoptosis, RASSF2 also regulates other biological activities to 

suppress tumourigenicity and may be a potential therapeutic target in lung cancer (Clark 

et al., 2012). RASSF2 was confirmed as a bona fide KRas effector. It appears to 

modulate the Ras signalling pathway, as the loss of its expression correlated with the 

increase of active, phosphorylated Akt. This increased the transforming potential of 

activated KRas, leading to a more aggressive phenotype with enhanced cell proliferation 
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and invasion, decreased cell adhesion and cell morphological changes, the latter of which 

was also observed in an earlier study (Akino et al., 2005). The study also showed for the 

first time, that the loss of RASSF2 expression resulted in resistance to known 

chemotherapeutic drugs, taxol and cisplatin; therefore it can potentially be used for 

epigenetic-based therapy in lung cancer.  

1.3.2.4. Regulation of bone development and remodelling 

A novel function of RASSF2 was elucidated in a recent study using the first Rassf2 

knockout mouse model. This study illustrated the RASSF2 regulation of postnatal bone 

development and remodelling and the significance of this in haematopoiesis (Song et al., 

2012). In the mouse model, Rassf2 knockout induced bone defects, which resulted in 

haematopoiesis anomalies and lymphopenia. To regulate this process, RASSF2 

associates with and inhibits the IKK activity to suppress NFκB hyperactivation (see 

section 1.2.4), thus normalising osteoclast and osteoblast differentiation. Song et al. 

(2012) also reported the gradual increase in the expression of RASSF2 and the Hippo 

pathway components, MST1 and LATS1, during osteoclast and osteoblast differentiation. 

These observations suggest that RASSF2 may synergise with the Hippo signalling 

network to regulate bone development.  

 In general, RASSF2 exerts its tumour suppression function mainly by mediating 

different pro-apoptotic pathways. However, there is increasing evidence suggesting the 

functional diversity of RASSF2, which is summarised in Figure 1.8.  

1.3.3. RASSF3 

1.3.3.1. RASSF3, a RASSF member in need of further characterisation 

RASSF3 is present in all normal tissues and does not harbour any inactivating mutations 

(Tommasi et al., 2002). When the RASSF family was last reviewed, it was only known 

to interact with MST1 from a yeast-two-hybrid screen with no further functional 

characterisation (Praskova et al., 2004).  

1.3.3.2. The tumour suppressor activities of RASSF3 

There has been a gradual increase in studies on RASSF3 in recent years. The first 

functional characterisation of RASSF3 comes from an interesting study performed on 
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Figure 1.8 Summary of the network of interactions and functions of RASSF2 

The arrow on the left indicates the direction of the signalling cascades from signal inputs 

at the membrane level to the biological outputs. The proteins involved in signal inputs 

are shown in brown, upstream proteins in lilac and RASSF in purple. The proteins that 

RASSF2 directly bind, regulate or inhibit are coloured according to the biological 

functions in which they are involved: differentiation (green) and apoptosis (blue). 

Proteins with dual functions are shown in orange. Other representations are as described 

in Figure 1.7.   
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MMTV/neu transgenic mice to screen for alterations in gene expression in the mammary 

gland. The study showed that RASSF3 is overexpressed in the mammary gland of 

tumour-resistant mice (Jacquemart et al., 2009). Its overexpression delays tumour 

formation and inhibits proliferation in breast cancer cell lines by inducing apoptosis.  

In the latest report, RASSF3 was shown for the first time to be downregulated by 

promoter hypermethylation in approximately 80% of somatotroph adenomas cell lines 

(Table 1.1). New studies have also revealed its role in regulating apoptosis, the cell cycle 

and potentially also DNA repair in a p53-dependent manner (Kudo et al., 2012, Peng et 

al., 2013).  

RASSF3 was shown to stabilise p53 by directly interacting with and facilitating 

the ubiquitination of Mdm2, the E3 ligase that targets p53 for degradation (Kudo et al., 

2012). Although it interacts with MST1 and MST2, RASSF3-induced apoptosis does not 

appear to be MST-dependent as knocking down MST1/2 and LATS1/2 did not inhibit 

apoptosis. In contrast, p53 negative cells failed to induce apoptosis. Interestingly, 

RASSF3 also interacts with MOAP1 and knocking down MOAP1 partially inhibited 

apoptosis. Furthermore, RASSF3 induces cell cycle arrest at G1/S phase via p53, whilst 

its depletion impaired the G1/S checkpoint and led to genomic instability and an increase 

in polyploidy due to a compromise in DNA repair. In line with the observations from this 

study, Peng et al. (2013) also reported RASSF3-mediated increase in the expression of 

p53, Bax and caspase, leading to apoptosis.  

Collectively, RASSF3 exhibits tumour suppressor properties as it promotes 

apoptosis possibly via the death receptor-induced pathway, regulates the cell cycle and 

may play a role in DNA repair and all these processes are p53-dependent. 

1.3.4. RASSF4 

1.3.4.1. The tumour suppressor functions of RASSF4 

RASSF4 is widely expressed in most normal tissues but epigenetically silenced in 

various cancer cell lines (Table 1.1). The only functional study on RASSF4 

demonstrated its direct interaction with KRas and that addition of a C-terminal CAAX 

motif enhanced apoptosis and growth inhibition (Eckfeld et al., 2004). RASSF4 was also 

shown to interact with both MST1 and MST2 via its SARAH domain and inhibits MST2 

activity (Ikeda et al., 2009).  
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1.3.5. RASSF5 

1.3.5.1. RASSF5, a structurally characterised and functionally diverse RASSF 

RASSF5 is the closest homologue of RASSF1 and was first discovered in the form of 

mouse NORE1 (Vavvas et al., 1998). The two main isoforms of RASSF5 with known 

biological functions are RASSF5A and RASSF5C, which are also known as NORE1A 

and NORE1B (or RAPL) respectively. They differ mainly at the N-terminus, where 

RASSF5A carries a C1 domain that is absent in RASSF5C. Nevertheless, they share 

identical RA and SARAH domains. Both isoforms are widely expressed in normal 

tissues. However, there are mixed reports on their expressions in cancer with evidence 

suggesting epigenetic silencing of RASSF5A in specific tumour types whilst the 

expression of RASSF5C in tumours is more variable (Table 1.1) (van der Weyden and 

Adams, 2007, Vos et al., 2003b).  

RASSF5 is the only member of the family that has been structurally characterised 

in terms of its RA and SARAH domains and it binds various Ras GTPases and both 

MST kinases (Makbul et al., 2013, Stieglitz et al., 2008). Previous studies highlighted the 

importance of Ras binding and SARAH domain-mediated heterodimerisation as the 

RASSF5A/MST1 complex is needed to mediate the apoptotic effect of KRasV12 whilst 

the RASSF5A/RASSF1A complex is essential for indirect Ras association with 

RASSF1A and its tumour suppressor function (Khokhlatchev et al., 2002, Ortiz-Vega et 

al., 2002). 

Both RASSF5 isoforms also suppress tumour growth either in a HRas-dependent 

manner that induces apoptosis or through a mechanism independent of Ras and MST1/2 

that induces cell cycle delay at the G1/S phase (Aoyama et al., 2004, Vos et al., 2003b). 

RASSF5A was also reported to be a centrosomal protein and its RA domain is required 

for microtubule association and its tumour suppressor activity of inhibiting the Erk 

signalling pathway (Moshnikova et al., 2006). 

RASSF5C has a more specialised function in the immune system and cell 

migration. Its interactions with Rap1, Rap2 and MST1 facilitate its regulation of 

lymphocyte adhesion, T cell migration and T cell receptor activation, whilst its 

microtubule localisation contributes to directional vascular endothelial cell migration 

(Fujita et al., 2005, Katagiri et al., 2003, 2004, 2006). 
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1.3.5.2. Silencing of RASSF5A in cancer 

Although the loss of RASSF5A expression has been previously reported for different 

types of cancer, a correlation between these observations and disease progression was 

never established. Recent reports showed that RASSF5A is downregulated by promoter 

hypermethylation in 70% of colorectal cancer cell lines, 38.8% of primary carcinoma 

tissues and 35% of hepatocellular carcinoma (HCC) tumour samples (Calvisi et al., 2009, 

Lee et al., 2010). Additionally, RASSF5A is also silenced by loss of heterozygosity in   

15% of HCC. 85.7% of HCC displaying promoter hypermethylation were characterised 

with poor prognosis whilst RASSF5A reduction was significantly higher in stage III 

colorectal tumours (52.8%) compared to the early stage I and II tumours (26.9% and 

27.8%). Therefore, the loss of RASSF5A expression contributes to poor prognosis and 

more aggressive tumour phenotypes, and is also associated with malignant progression. 

1.3.5.3. Microtubule association and organisation 

RASSF5A has previously been linked to the microtubule cytoskeleton but did not appear 

to require microtubule localisation for its growth suppression function (Moshnikova et 

al., 2008). In a more recent study, RASSF5A was shown to directly interact with tubulin 

via its RA domain and induce microtubule nucleation (Bee et al., 2010). This event is 

downregulated in a dual specific way: 1) RASSF5A interacts with and is phosphorylated 

by Aurora A within its RA domain at S277 or 2) RASSF5A binds to activated Ras. 

These two processes are mutually exclusive as Aurora A and Ras compete for 

overlapping binding sites within the RA domain, whilst binding to Ras restricts Aurora A 

phosphorylation.  

1.3.5.4. Regulation involving E3 ubiquitin ligases 

To date, two different E3 ubiquitin ligases have been shown to play a part in the 

RASSF5A-regulated processes. The first is Mdm2, a well-known negative regulator of 

p53. Similar to RASSF1A, RASSF5A directly interacts with Mdm2, possibly via the 

well-conserved C1 domain as is the case for RASSF1A (Lee et al., 2012, Song et al., 

2008). However in this instance, the interaction induces the polyubiquitination and 

proteasomal degradation of oncoprotein HIPK1. The mechanism by which this occurs is 

through RASSF5A recruitment of HIPK1 and Mdm2 to nuclear dots to enhance their 

interaction. The consequence of HIPK1 degradation is reduced tumourigenicity by way 

of reduced proliferation, cell migration and anchorage-independent growth.  
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The second report involves a HECT class E3 ubiquitin ligase, Itch, which acts as 

a negative regulator of RASSF5A (Suryaraja et al., 2013). RASSF5A binds Itch via a 

PPxY motif, leading to its degradation by the polyubiquitination 26S proteasome 

pathway. The study also revealed acetylation as a regulatory mechanism for RASSF5A 

stability. RASSF5A is hyperacetylated in selected tumours, which restricts Itch binding 

and stabilises RASSF5A. However, both acetylation and Itch-mediated ubiquitination 

inhibit the growth suppressive functions of RASSF5A. 

1.3.5.5. Regulation of the cell cycle 

Earlier studies showed that RASSF5A induces growth suppression in A549 lung cancer 

cell line primarily by causing cell cycle delay rather than apoptosis. However, the 

mechanism involved has never been investigated (Aoyama et al., 2004). Recently, 

RASSF5A was reported to modulate p21 via p53 and it was found that their expression 

levels are closely correlated and often downregulated together in HCC (Calvisi et al., 

2009). RASSF5A, facilitated by p53, activates p21 to inhibit CDK2, thus arresting the 

cell cycle at G1. It appears that RASSF5A also promotes the nuclear localisation of p53 

possibly via post-translational modifications. Furthermore, the loss of p21 expression in 

cell systems impaired the growth inhibitory effects of RASSF5A, highlighting the 

importance of p21 and p53 in activating RASSF5A-mediated cell cycle regulation.  

RASSF5A has also been reported as a nucleo-cytoplasmic shuttling protein, 

similar to RASSF2, and this plays an important role in facilitating its function in cell 

cycle regulation (Kumari et al., 2010). The study revealed a hydrophobic-rich NES 

(residues 260-300) and two NLSs at each end of RASSF5A. It was shown to interact 

with the SH2 domain of tyrosine kinase Lck via its C-terminus putative SH2 binding 

motif and its phosphorylation by Lck is critical for its nuclear translocation. Nuclear 

retention of RASSF5A is required for its regulation of the cell cycle, whereby it causes 

an arrest in the G1/S phase. Suryaraja et al. (2013) also showed that acetylation and 

ubiquitination negatively regulate RASSF5A and the incidence of these events is 

inversely correlated to the RASSF5A-induced cell cycle arrest. 

1.3.5.6. Regulation of apoptosis  

Calvisi et al. (2009) showed that suppression of RASSF5A reduces apoptosis, whilst in 

cells induced for its expression, several pro-apoptotic genes were upregulated, including 
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a target of p53. In addition, the inactivation of RASSF5A and p53 are mutually exclusive, 

thus implicating RASSF5A in the p53-induced apoptotic pathway. Conversely, 

restoration of both RASSF5A and RASSF5C showed significant growth suppression by 

apoptosis in mutant p53 colorectal cancer cell line Caco-2, thus the process is not 

dependent on p53 (Lee et al., 2010). 

Kumari et al. (2010) reported that the RASSF5A-induced apoptosis occurs 

independently of cell cycle arrest, thus is regulated by a different pathway. Moreover, the 

apoptotic effect of RASSF5A is dependent on its nuclear localisation, an observation that 

contradicts previous findings that showed the importance of nuclear export and 

cytoplasmic localisation for RASSF5-mediated apoptosis (Kumari et al., 2010, Park et al., 

2008). In addition, E3 ligase Itch negatively regulates RASSF5-mediated apoptosis (see 

section 1.3.5.4) (Suryaraja et al., 2013). 

Lastly, RASSF5A was also shown for the first time to play a role in death 

receptor-mediated cell death (Park et al., 2010). It forms a complex with TNF-R1 and is 

needed for the oligomerisation and activation of Bax. Additionally, YAP1, a component 

of the Hippo pathway, interacts with TNF-R1 and is required for TNFα-induced 

apoptosis. RASSF5A also activates p38 kinase and JNK signalling that is known to 

facilitate MST1-mediated apoptosis, whilst the Rassf5a knockout mice failed to activate 

MST1 and were resistant to TNFα- and TRAIL-induced apoptosis. Collectively, these 

observations demonstrate that apart from RASSF1A, RASSF5A is also capable of 

mediating TNFα- and TRAIL-induced apoptosis, and does so via MST1. This also raises 

the possibility of overlapping functions between the two RASSF members, especially 

when taking into account their ability to form heterodimers.   

In summary, recent studies have reinforced the pro-apoptotic and cell cycle 

regulatory functions of RASSF5A. It is able to regulate several different apoptotic 

pathways that are either death receptor-induced, dependent or independent of p53. 

RASSF5-induced apoptosis and cell cycle arrest may be separately regulated, but often 

occur simultaneously to promote its growth inhibitory effects (summarised in Figure 1.9). 

1.3.5.7. The tumour suppressor properties of RASSF5C 

Previous reports vary regarding the expression of RASSF5C in tumours, with some 

reporting downregulation in selected cancer cell lines whilst other reporting no evidence 
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of promoter methylation (van der Weyden and Adams, 2007). The potential tumour 

suppressor activities of RASSF5C were also never investigated until recently. It was 

found to be downregulated by promoter hypermethylation in 31.3% of primary colorectal 

carcinoma tissues and 40% of colorectal cancer cell lines; and 62% of HCC tumours 

(Lee et al., 2010, Macheiner et al., 2006, 2009). 

Interestingly, the epigenetic silencing of RASSF5C in HCC is directly correlated 

with that of RASSF1A, with both downregulated in a combined 97% of HCC tumours 

(Macheiner et al., 2006). A follow-up study revealed that RASSF5C acts via RASSF1A 

to suppress replication and cell transformation in hepatocytes (Macheiner et al., 2009). 

This requires intact RA and SARAH domains to facilitate heterodimerisation of 

RASSF1A and RASSF5C, which allows them to synergise to induce cell cycle arrest at 

the G1 and G2/M phases. Furthermore, this complex is required to suppress c-

Myc/HRas-induced cell transformation, thus exerting their tumour suppressor properties 

early in carcinogenesis. Additionally, Rassf5c knockout mice had a higher propensity in 

developing B cell lymphoma, HCC, and lung adenocarcinomas (Katagiri et al., 2011).  

1.3.5.8. RASSF5C in the immune system 

A recent study showed that RASSF5C-deficient mice developed lupus-like 

autoimmunity in addition to B cell lymphoma and other tumours (Katagiri et al., 2011). 

Further investigation revealed that RASSF5C serves as a G1/S phase checkpoint in the 

cell cycle to prevent lymphoproliferative disorder. It does so by regulating the 

localisation of p27, a major CDK2 inhibitor, in both B and T cells through the 

suppression of its S10 phosphorylation by Kinase Interacting Stathmin (KIS). This 

promotes nuclear localisation of p27 and reduces CDK2 activity to delay S phase entry, 

thus preventing hyperproliferation of lymphocytes. 

A novel interaction partner of RASSF5C, SKAP1, has been identified recently 

(Raab et al., 2010). It forms a 1:1 complex with RASSF5C via the SARAH domain and 

competes with MST1 for binding to RASSF5C. The PH domain of SKAP1 is needed for 

the RASSF5C/Rap1 complex formation in T cells and the binding of this ternary 

complex to LFA-1 (Raab et al., 2011). This complex regulates T cell motility and 

interactions, thus mutations disrupting this interaction also disrupt component 

localisation in vesicles and T cell-dendritic cell conjugation. A later report showed that 
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Figure 1.9 Summary of the network of interactions and functions of RASSF5 

The arrow on the left indicates the direction of the signalling cascades from signal inputs 

at the membrane level to the biological outputs. The proteins involved in signal inputs 

are shown in brown, Ras GTPases in lilac and RASSF in purple. The proteins that 

RASSF5A directly bind, regulate or inhibit are coloured according to the biological 

functions in which they are involved: microtubule regulation (green), cell cycle arrest 

(light pink) and apoptosis (light blue). Proteins with dual functions are in orange. The 

proteins that interact with RASSF5C and are involved in regulation of the immune 

system are shown in dark blue. Other representations are as described in Figure 1.7.  
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the PH domain of SKAP1 and PI3K activity are also needed to facilitate the membrane 

localisation of RASSF5C/Rap1 in T cells for the T cell receptor “inside-out” signalling 

pathway (Raab et al., 2011).  

1.3.6. RASSF6 

1.3.6.1. RASSF6, a mainly pro-apoptotic protein 

RASSF6 is expressed in most normal tissues at varying levels, but has been shown to be 

downregulated in various childhood leukaemias and 30-60% of different primary tumour 

tissues (Table 1.1). It exhibits growth inhibitory properties primarily by promoting 

apoptosis in synergy with MOAP1 in caspase-dependent and -independent pathways 

(Allen et al., 2007, Ikeda et al., 2007). RASSF6 is also genetically linked to Respiratory 

Syncytial Virus (RSV)-induced bronchiolitis and is able to suppress the NFκB pathway, 

thus it may potentially play a role in the inflammatory response to RSV (Allen et al., 

2007).  

1.3.6.2. Silencing of RASSF6 in cancer 

Recent studies have highlighted the significance of epigenetic silencing of RASSF6 in 

prognostication and patient outcome. Complete silencing of RASSF6 was found in 71.6%

of gastric cancer tissues and 86.5% of lymph node metastasis tissues (Wen et al., 2011). 

The study also found that patients with RASSF6-negative tumours have higher 

recurrence rates and poor survival after radical surgery, whilst the downregulation of 

RASSF6 is significantly associated with cancer invasion, lymph node and distal 

metastasis, and advanced tumour stage. Collectively, this makes RASSF6 a novel 

prognostic marker for gastric cancer patients and a biomarker for aggressive gastric 

cancer. Similar observations were reported for neuroblastoma, in which RASSF6 was 

downregulated in 67% of the cell lines tested (Djos et al., 2012). This was correlated to 

unfavourable outcome, chromosome 1p (short arm) deletion that increases the risk of 

neoplasia, and MYCN (proto-oncogene) amplification.  

1.3.6.3. Regulation of apoptosis  

RASSF6 has been shown to bind MST1 and MST2 via its SARAH domain (Ikeda et al., 

2009). Through its interaction with MST2, it is involved in promoting both Hippo-

dependent and -independent apoptotic pathways (Ikeda et al., 2009). Interestingly, the 

RASSF6/MST2 complex is mutually inhibitory to the apoptotic functions of both 
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proteins and antagonises the Hippo pathway. This complex appears to be a ternary 

complex including WW45. However, upon the activation of the Hippo pathway by other 

stimuli, the complex dissociates, presumably due to heavy phosphorylation of WW45 by 

MST2. Consequently, MST2 is free to mediate apoptosis via the canonical Hippo 

pathway, whilst RASSF6 induces apoptosis in an independent, parallel pathway, partially 

via MOAP1, which was also observed in a previous study (Ikeda et al., 2007).  

1.3.6.4. RASSF6 and obesity 

Recently, RASSF6 was shown to be downregulated at the mRNA level in adipocytes 

(Sanada et al., 2013). The expression of RASSF6 is negatively correlated with the level 

of macrophage infiltration into adipose tissues, an event associated with obesity. 

Downregulation of RASSF6 also enhances the expression of CD44 and high mobility 

group protein HMGA2. CD44 is an adhesion molecule and major receptor for a main 

component of the tumour extracellular matrix, whilst HMGA2 is related to mesenchymal 

tumour cell types, such as fat cell tumours lipomas. This latest study has revealed a novel 

role for RASSF6 in the regulation of obesity and its related physiological processes, such 

as white adipose tissue development and lipoma formation.  

1.3.7. RASSF7 

1.3.7.1. RASSF7, with unclear functions as a tumour suppressor or oncogene 

RASSF7 was originally known as HRC1 and identified due to its close genetic proximity 

to the HRAS gene (Weitzel et al., 1992). Since then, several independent studies have 

found RASSF7 upregulated in different types of cancers, apparently due to hypoxia 

(Table 1.1). Additionally, the expression of RASSF7 could be inversely correlated to the 

tumour suppressor BRCA1 (Welcsh et al., 2002). Despite this, there is no evidence to 

suggest that RASSF7 could promote tumour formation. Nevertheless, RASSF7 has been 

linked to several biological functions, including the regulation of mitotic spindle 

formation, mitotic progression and necroptosis, a regulated form of necrosis distinct from 

apoptosis (Hitomi et al., 2008, Sherwood et al., 2008). 

1.3.7.2. Regulation of the microtubule cytoskeleton and the cell cycle  

Consistent with a previous study in Xenopus, Recino et al. (2010) showed that human 

RASSF7 localises to the centrosome and promotes mitotic progression (Recino et al., 

2010, Sherwood et al., 2008). However, unlike in Xenopus, centrosomal localisation is 
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independent of microtubule association. Silencing RASSF7 led to defects in the 

microtubule cytoskeleton and spindle assembly, as well as a loss of Aurora B activation 

and localisation to the kinetochore, hence a failure in chromosomal congression. 

Therefore, RASSF7 is required for normal microtubule growth, completion of mitosis 

and cell growth.  

1.3.7.3. Anti-apoptotic effects of RASSF7 

A recent study has revealed the anti-apoptotic role of RASSF7, mediated by its binding 

to activated NRas (Takahashi et al., 2011). This was also the first report of a Ras 

interaction by RASSF7. The RASSF7/NRas complex binds to phosphorylated MKK7 to 

prevent its dephosphorylation, thus inhibiting downstream JNK phosphorylation by 

MKK7 and negatively regulating the pro-apoptotic JNK signalling pathway. However, in 

prolonged stress, RASSF7 stability is regulated by ubiquitination that targets it for 

degradation to allow cell death signalling to progress. The mechanism behind RASSF7 

ubiquitination and the E3 ubiquitin ligase involved are yet to be identified.  

1.3.7.4. Silencing of RASSF7 in cancer 

To date, there is only one report of RASSF7 silencing by promoter hypermethylation in 

89% of neuroblastoma cell lines tested (Djos et al., 2012). However, Recino et al. (2010) 

found no evidence of RASSF7 epigenetic silencing in the 57 cell lines screened, 

including 20 lung, 12 breast, eight colorectal, five glioma and four neuroblastoma. 

Although reports on the expression levels of RASSF7 in cancers are conflicting, 

its anti-apoptotic, pro-mitosis and proliferation functions suggest a more oncogenic 

potential rather than a tumour suppressor role for RASSF7. 

1.3.8. RASSF8 

1.3.8.1. RASSF8 in lung carcinogenesis 

RASSF8 was first known as HOJ-1 and C12ORF2 before joining the RASSF family 

(Sherwood et al., 2010). The RASSF8 gene was found to be located in close proximity to 

the KRAS2 gene and has been linked to lung tumourigenesis (Falvella et al., 2006). 

RASSF8 is ubiquitously expressed in normal tissues but downregulated in lung 

adenocarcinomas and leukaemias (Table 1.1). Overexpression of RASSF8 in lung cancer 

cell lines reduced anchorage-independent growth, a phenotype associated with tumour 
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progression and metastasis. Conversely, RNAi silencing of RASSF8 in NSCLC cell lines 

promoted anchorage-independent growth and in vivo tumourigenicity in severe combined 

immunodeficiency (SCID) mice, whilst morpholino-mediated knockdown in Xenopus 

increased cell proliferation (Falvella et al., 2006, Lock et al., 2010).  

1.3.8.2. Regulation of cell-cell adhesions and tumour suppression 

Recent studies have highlighted a new biological role of RASSF8 in the regulation of 

cell-cell adhesions (Langton et al., 2009, Lock et al., 2010). The RASSF8 homolog in 

Drosophila, dRASSF8 was first shown to interact with dASPP (Langton et al., 2009). 

The complex localises to adherens junctions (AJs) and regulate cell-cell adhesion during 

Drosophila retinal morphogenesis. It does so by promoting C-terminal Src kinase (CSK) 

activity, which inhibits the proto-oncogene Src, thus modulating the Src signalling 

pathway that is known to promote AJ remodelling in development and metastasis. 

Furthermore, dRASSF8 also promotes apoptosis of excess cells in the Drosophila eyes. 

Interestingly, the RASSF8/ASPP interaction is conserved in humans, whilst both ASSP 

and RASSF8 are potential tumour suppressors, with ASPP also involved in p53 pro-

apoptotic function (Langton et al., 2009, Underhill-Day et al., 2011).  

Similarly, Lock et al. (2010) showed that RASSF8 co-localises with adhesion 

junctions (AJs) components, β-catenin and E-cadherin, to regulate cell-cell adhesion. The 

loss of RASSF8 destabilised AJs through the mislocalisation of β-catenin and p65 from 

the site of cell-cell contact to the nucleus, whilst E-cadherin was lost from cell membrane, 

the latter was also observed by Langton et al. (2009). The relocalisation of β-catenin and 

the p65 subunit of the NFκB heterodimer to the nucleus increased Wnt signalling via its 

interaction with the TCF-LEF transcription factor and NFκB signalling respectively. In 

addition, RASSF8 was also shown to maintain the actin cytoskeleton with its knockdown 

resulting in an increase in cellular migration. 

Taken together, these observations suggest that the tumour suppressor function of 

RASSF8 includes the regulation of cell-cell adhesion via the Src signalling pathway, 

which in turn modulates the Wnt and NFκB signalling pathways that are known to 

promote malignant transformation and inhibit apoptosis. RASSF8 could also promote 

apoptosis and regulate the actin cytoskeleton to prevent lung carcinogenesis and 

metastasis.   
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1.3.9. RASSF9 

1.3.9.1. RASSF9, a potential Ras effector with unknown functions 

RASSF9, formerly known as PAM C-terminal interactor-1 (P-CIP1) is widely expressed 

in multiple organs (Table 1.1). It interacts with peptidylglycine alpha-amidating 

monooxygenase (PAM) and recycling endosomes, thus may be involved in regulating 

vesicle trafficking (Sherwood et al., 2010, Underhill-Day et al., 2011). It was also 

reported to show preferential binding to KRas and NRas (Rodriguez-Viciana et al., 2004). 

1.3.9.2. Regulation of epidermal homeostasis 

A recent report finally shed some light into the function of RASSF9. It was shown to 

play a role in the maintenance of epidermal homeostasis (Lee et al., 2011). The study 

reported high levels of RASSF9 expression in epidermal keratinocytes of the skin. The 

Rassf9 knockout mouse model exhibited a dramatic change in epithelial organisation of 

the skin, whilst displaying a phenotype that resembled human ageing with growth 

retardation, short lifespan, less subcutaneous adipose layer and alopecia. Furthermore, 

aberrant proliferation and differentiation in the skin were observed in the knockout mice. 

Therefore, RASSF9 negatively regulates cell proliferation through p21 during growth 

and early differentiation, and is required for normal differentiation of keratinocytes.  

1.3.10. RASSF10 

1.3.10.1. Epigenetic silencing of RASSF10 in cancer 

RASSF10 was the last member to join the RASSF family and is widely expressed in 

various organs and tissues, with high levels of expression in several brain tissues (Table 

1.1) (Underhill-Day et al., 2011). Epigenetic silencing of RASSF10 has also been 

observed in an increasing number of tumours; the most prominent ones include 100% of 

leukaemia cell lines, 88% of T cell ALL, 100% of thyroid cancer cell lines, 66% of 

primary thyroid carcinoma, 75% of gastric cancers, 80% pancreatic cancer cell lines, 60-

70% lung, sarcoma and head and neck cancer cell lines and gliomas (Table 1.1). 

Furthermore, promoter hypermethylation of RASSF10 is a potential prognostic marker 

for secondary glioblastomas associated with worse progression-free survival and overall 

survival and early stage tumour development (Hill et al., 2011). Downregulation of 
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RASSF10 was also observed in 56% of neuroblastoma cell lines; however, promoter 

hypermethylation does not appear to be the cause in this case.  

1.3.10.2. The tumour suppressor activities of RASSF10 

The distribution of RASSF10 has recently been shown to be cell cycle-dependent (Hill et 

al., 2011). It relocates to the nucleus specifically during mitosis and associates with 

microtubules at developing centrosomes and spindle poles. Other functional tests showed 

that RASSF10 inhibited anchorage-independent growth and cell proliferation in glioma 

cells, potentially via cell cycle regulation at the G1/S and G2/M phases (Hill et al., 2011, 

Richter et al., 2012). The study also revealed putative NLS and NES on RASSF10, 

making it a potential nucleo-cytoplasmic shuttling protein, similar to RASSF2 and 

RASSF5, so its tumour suppressive functions could be dependent upon its cellular 

localisation. 

RASSF10 was shown to inhibit growth and colony formation whilst inducing 

apoptosis in various cell lines (Richter et al., 2012, Wei et al., 2013). These tumour 

suppressive properties are facilitated by its inhibition of the Wnt signalling pathway, 

which is known to be aberrantly activated in gastric cancers (Wei et al., 2013). RASSF10 

reduces nuclear localisation of β-catenin, resulting in lower levels of expression of the β-

catenin downstream target genes, such as c-Myc, cyclin D1, CD44, that are required for 

cell proliferation. Interestingly, RASSF10 expression is upregulated upon contact 

inhibition. This is regulated at the promoter level and is controlled upstream by forksolin, 

protein kinase A (PKA) and activator Protein 1 (AP-1) member JunD, thus RASSF10 

may activate cAMP and PKA signalling to upregulate p27 and halt cell cycle progression 

to inhibit tumour growth (Richter et al., 2012).  

In summary, RASSF10 acts as a tumour suppressor potentially by inducing 

apoptosis and inhibiting cell cycle progression upon contact inhibition via its regulation 

of the Wnt, cAMP and PKA signalling pathways.  
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1.4. Aims of the project 

As summarised in Figure 1.10, most of the RASSF family members are either 

established or potential tumour suppressors, with some members having wider biological 

roles. Many of the RASSF members are functionally well studied, with most studies 

highlighting the significance of the RA and SARAH domain-mediated interactions in the 

regulation of various signalling pathways and biological processes. However, there is a 

notable lack of systematic comparative characterisation of the RASSF family, as well as 

the molecular and structural information that facilitate their tumour suppressive functions.  

 The hypothesis is that all six classical RASSF members should display similar 

interaction behaviours due to their high homologies and protein interaction domains, 

whereas the interactions of the N-terminal RASSF members may vary as their interaction 

domains and sequences are more divergent.  

 The aim of this project was to characterise the RA and SARAH domains across 

the ten RASSF members and compare their interactions with several binding partners 

that facilitate their main functions. The experimental approaches included in silico 

structural predictions, as well as in vitro and cell based interaction and functional studies. 

Specific point mutations were introduced in the SARAH domain to assess their effect on 

interactions. Several other potential RASSF interacting partners were also investigated. 
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Figure 1.10 Summary of the multiple RASSF functions 

The ten RASSF members are shown in grey and abbreviated 1-10. The biological 

functions involved in tumour suppression (or possible tumour formation for RASSF7) 

and the lines connecting them to the individual RASSF member are colour coded: 

apoptosis (orange), cell cycle (blue), cytoskeleton stability (green), cell migration (purple) 

and biological functions not associated with tumour suppression (pink). Solid lines 

depict well-established functions, and dotted lines represent new pathways and emerging 

functions. Major or new signalling pathways and interactions involved are labelled along 

the relevant lines. 
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2 Material and Methods  
 

2.1. DNA Manipulation and Analysis 

2.1.1. Isolation and purification of DNA  

2.1.1.1. Preparation of plasmid DNA  

For small scale plasmid preparations, the QIAprep Spin Miniprep Kit (Qiagen) was used. 

5 ml of bacterial cultures were grown overnight at 37 °C in Luria Broth (LB) medium 

[10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl] containing the appropriate antibiotic 

and harvested by centrifugation at 3,700 xg (Allegra® X-15R Centrifuge, Beckman 

Coulter). Bacterial pellets were then processed according to the manufacturer’s 

instructions for the kit and DNA was eluted in 50 μl of elution buffer provided by the kit.  

 For large scale plasmid purification, 500 ml of LB bacterial cultures were grown 

overnight at 37 °C with the appropriate antibiotics (i.e. 100 μg/ml ampicillin, 50 μg/ml 

kanamycin, 34 μg/ml chloramphenicol or 10 μg/ml gentamicin). The overnight culture 

was harvested by centrifugation at 3,700 xg for 20 min at 4 °C (Allegra® X-15R 

Centrifuge, Beckman Coulter). All centrifugation steps were performed at 3,700 xg and 

4 °C unless otherwise stated. The cell pellet was resuspended in 37 ml of Alkaline Lysis 

Buffer I [50 mM glucose, 25 mM Tris-HCl pH 8.0, 10 mM EDTA] and lysed by addition 

of 50 ml of Alkaline Lysis Buffer II [200 mM NaOH, 1% (v/v) SDS]. Lysis was stopped 

by addition of 37 ml of Alkaline Lysis Buffer III [3 M potassium acetate, 115 mM 

glacial acetic acid]. The lysate was centrifuged for 10 min and the supernatant was 

filtered through cheesecloth into a 250 ml centrifuge bottle then mixed with 0.7 volumes 

of isopropanol to precipitate the total amount of nucleic acids. This mixture was 

centrifuged for 15 min and the nucleic acid pellet was resuspended in 2 ml of TE buffer 

pH 8.0 [10 mM Tris-HCl pH 8.0, 1 mM EDTA] then transferred to a 15 ml Falcon tube. 

The RNA was precipitated by addition of an equal volume of 5 M LiCl (Sigma) and 

pelleted by centrifugation for 10 min. The supernatant was transferred to a fresh 15 ml 

Falcon tube and the DNA was precipitated by addition of 0.7 volumes of isopropanol. 

The DNA was pelleted by centrifugation for 10 min and the pellet resuspended in 0.5 ml 

TE buffer pH 8.0. To remove residual RNA, 5 μl of RNAse (Qiagen stock 100 mg/ml) 

was added and the mixture was incubated for 15 min at 37 °C. The DNA solution was 
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transferred to a 1.5 ml centrifuge tube and mixed with an equal volume of 13% PEG 

8,000 (Sigma) and 1.6 M NaCl. This mixture was incubated on ice for 60 min and 

centrifuged at 21,000 xg for 15 min at 4°C (Centrifuge 5417R, Eppendorf). The pellet 

was resuspended in 200 μl TE buffer pH 8.0 and mixed with an equal volume of 

phenol:chloroform:isoamyl alcohol (Sigma) to precipitate residual proteins. After 

centrifugation at 21,000 xg for 5 min, the aqueous phase was transferred to a fresh 

microfuge tube. This phenol/chloroform extraction step was repeated twice. Finally, the 

DNA was precipitated by adding 0.1 volume of 3 M sodium acetate and 2.5 volumes of 

100% ethanol, followed by centrifugation at 21,000 xg for 2 min. The pellet was washed 

once with 70% ethanol and air dried before resuspension in 100-200 μl of TE buffer pH 

8.0.  

 The DNA concentration was determined by measurement of absorbance at 260 

nm and 280 nm using a NanoDrop 2000c (Thermo Scientific). An A260 nm value of 1.0 

corresponds to approximately 50 μg/ml double stranded DNA. The ratio between A260 nm 

and A280 nm values provides an indication of the DNA purity.  

2.1.1.2. Purification of DNA from agarose gels 

Agarose gels were typically prepared at 0.8% agarose concentration by dissolving the 

appropriate amount of agarose (Sigma) in 1x TAE buffer [40 mM Tris-HCl pH 8.0, 20 

mM glacial acetic acid, 1 mM EDTA] and run in the same buffer. Samples for running 

on the gel were prepared in 10x sample buffer [50% (v/v) glycerol, 0.1% (w/v) 

bromophenol blue]. A 1kb plus or 100bp DNA ladder (Invitrogen) was also run for 

reference. Gels were stained with GelRed™ (Biotium) and a G:BOX (Syngene) gel 

documentation system was used to obtain a digital image of the gel.  

QIAEX II Gel Extraction Kit (Qiagen) was used to purify PCR products and 

restriction digest fragments. The DNA bands were excised from the gel using a clean 

scalpel and DNA was extracted and purified following the manufacturer’s instructions. 

2.1.2. Polymerase Chain Reaction (PCR) 

PCR was used for the following applications: 1) amplification of DNA for cloning 

specific genes into expression vectors (section 2.1.2.1), 2) colony screening of clones 

(section 2.1.2.2) and 3) introduction of mutations using primers (section 2.1.2.3).  
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2.1.2.1. KOD Hot Start Polymerase 

The high fidelity, proofreading KOD Hot Start Polymerase (Novagen, Merck) was used 

to amplify DNA that was subsequently used for cloning into pTriEx™-6 Ek/LIC, 

pENTR™ and pmCherry-C1 vectors (Table 2.1). 

 Reaction mixtures contained 1x Buffer, 0.16 mM dNTPs, 1 mM MgSO4, 0.4 μM 

forward and reverse primers, 10 ng template DNA, 0.02 U/μl KOD Hot Start DNA 

Polymerase in a total volume of 25 μl. The PCR was carried out in a thermal cycler (GS1, 

G-Storm) using the following temperature cycles:  

95 °C for 5 min 

95 °C for 30 sec 

50 °C for 30 sec          30 cycles 

70 °C for 20 sec per kb of the plasmid DNA 

70 °C for 10 min  

2.1.2.2. Taq DNA Polymerase 

Taq DNA Polymerase (Qiagen) was used for insert verification of genetic constructs. 

PCR reactions were carried out using primer pairs, one of which bound the destination 

vector close to the cloning site and the second bound the inserted gene. Insertions were 

identified by the presence of a product of a predicted size. Reaction mixtures were 

prepared using 1x QIAGEN® CoralLoad PCR Buffer, 0.1 mM dNTPs, 1 μM forward 

and reverse primers and 0.05 U/μl Taq DNA Polymerase. A pipette tip was used to 

transfer bacteria directly from the colony to be verified into the reaction mix. 

 The PCR was carried out in a thermal cycler (GS1, G-Storm) using the following 

temperature cycles:  

94 °C for 3 min 

94 °C for 30 sec 

50-68 °C for 30 sec           30 cycles 

72 °C for 1 min 

72 °C for 10 min 
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Table 2.1 DNA constructs and primers used for cloning 

Vector and 
construct name 

Properties and protein 
encoded by DNA insert  

Cloning 
method 

Primers 5’ → 3’ 

pTriEx™-6 All with N-terminal 
StrepII, SUMO*, myc tag 

Ligation-
independent 
cloning (LIC)  

 

MST1 FL aa 1-487   2 step PCR 

Fwd1 Linker CAGGGACCCG GTTGGTCTCA TCCTCAATTT GAGAAAAGCG ATAGCGAAGT GAAC 

Rev1 Linker AACAACGATC TGTTCGCG 

Fwd  GCGAACAGAT CGGTGGTGAA CAAAAACTCA TCTCAGAAGA GGATCTGGAG ACGGTACAGC TGAGG  

Rev GGCACCAGAG CGTTGAAGTT TTGTTGCCGT CTCTT 

MST1 SARAH  aa 432-487  2 step PCR 

Fwd1 Linker CAGGGACCCG GTTGGTCTCA TCCTCAATTT GAGAAAAGCG ATAGCGAAGT GAAC 

Rev1 Linker AACAACGATC TGTTCGCG  

Fwd  GCGAACAGAT CGGTGGTGAA CAAAAACTCA TCTCAGAAGA GGATCTGGAC TACGAGTTTC TTAAGAGTTG 

Rev  GGCACCAGAG CGTTGAAGTT TTGTTGCCGT CTCTT 

MST2 FL  aa 1-491   2 step PCR 

Fwd1 Linker CAGGGACCCG GTTGGTCTCA TCCTCAATTT GAGAAAAGCG ATAGCGAAGT GAAC 

Rev1 Linker AACAACGATC TGTTCGCG 

Fwd GCGAACAGAT CGGTGGTGAA CAAAAACTCA TCTCAGAAGA GGATCTGGAG CAGCCGCCGG CGCCT  

Rev GGCACCAGAG CGTTAAAGTT TTGCTGCCTT CTTTT 

MST2 SARAH  aa 437-491  2 step PCR 

Fwd1 Linker CAGGGACCCG GTTGGTCTCA TCCTCAATTT GAGAAAAGCG ATAGCGAAGT GAAC 

Rev1 Linker AACAACGATC TGTTCGCG 

Fwd GCGAAGAGAT CGGTGGTGAA GAAAAAGTCA TCTCAGAAGA GGATCTGTTT GACTTTTTGA AAAATCTAAG 

Rev  GGCACCAGAG CGTTAAAGTT TTGCTGCCTT CTTTT 

    

pTriEx™-4   Gateway® ^  

MST1 SARAH aa 432-487, N-terminal TEV-
linker, C-terminal myc tag 

 Fwd  ATGGAGAATC TTTATTTTCA GGGCGACTAC GAGTTTCTTA AGAGTTGGA 

Rev  TTACAGATCC TCTTCTGAGA TGAGTTTTTG TTCGAAGTTT TGTTGCCGTC TCT 

RASSF5 SARAH aa 212-265, C-terminal myc 
tag 

 Fwd ATGGAGGTAG AGTGGGATGC CTTCTC 

Rev CAGATCCTCT TCTGAGATGA GTTTTTGTTC CCCAGGTTTG CCCTGGGATT 
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Vector and 
construct name 

Properties and protein 
encoded by DNA insert  

Cloning 
method 

Primers 5’ → 3’ 

pEGFP-C1  Gateway® ^  

RASSF1 FL aa 1-340  Fwd ATGTCGGGGG AGCCTGAG 

Rev TCACCCAAGG GGGCAGGC 

RASSF2 FL aa 1-326  Fwd ATGGACTACA GCCACCAA 

Rev TCAGATTGTT GCTGGGGT 

RASSF3 FL aa 1-238  Fwd ATGAGCAGCG GCTACAGC 

Rev CTTAATCAGG CTTCCACACC TC 

RASSF4 FL aa 1-321  Fwd ATGAAGGAAG ACTGTCTGCC 

Rev TTACTTGGCC TCCACCAC 

RASSF5 FL aa 1-265  Fwd ATGACCGTGG ACAGCAGCAT 

Rev TTACCCAGGT TTGCCCTGGG 

RASSF5 ΔSARAH aa 1-211  Fwd ATGACCGTGG ACAGCAGCAT 

Rev TTATCCAGTT TCATTCTCCT TTAGCACA 

RASSF5 SARAH aa 212-265  Fwd ATGGAGGTAG AGTGGGATGC CTTCTC 

Rev  TTACCCAGGT TTGCCCTGGG 

RASSF6 FL aa 1-337  Fwd ATGGCTCACC AGTACCCC 

Rev CTAAACTGTT GTCTCTGTTT TTATT 

RASSF7 FL aa 1-373  Fwd ATGTTGTTGG GACTGGCG 

Rev TCACAGAGCC TGGGGCTG 

RASSF7 RA aa 6-89  Fwd GCGGCCATGG AGCTGAAGGT 

Rev TTAGGGCCCT GTGCGCCTCA G 

RASSF8 FL aa 1-392  Fwd ATGGAACTTA AAGTATGG 

Rev CTAATCTTTA CACTCCTGCT TATC 

RASSF9 FL aa 1-435  Fwd ATGGCTCCCT TTGGAAGA 

Rev CTATGTTGAC AACAGCACCA C 

RASSF10 FL aa 1-507  Fwd ATGGATCCTT CGGAAAAGAA G 

Rev CCACAAGGGA TTCGCACATG GG 

MST1 FL aa 1-487  Fwd ATGGAGACGG TACAGCTGAG G 

Rev TTACGAAGTT TTGTTGCCGT CTCTT 

MST1 SARAH  aa 432-487  Fwd  ATGGAGGTAG AGTGGGATGC CTTCTC 

Rev TTACGAAGTT TTGTTGCCGT CTCTT 

  



 

 
 

65 

Vector and 
construct name 

Properties and protein 
encoded by DNA insert  

Cloning 
method 

Primers 5’ → 3’ 

pEGFP-C1  Gateway® ^  

MST2 FL aa 1-491  Fwd ATGGAGCAGC CGCCGGCGCC T 

Rev TTACAAAGTT TTGCTGCCTT CTTTT 

    

pTagRFP-T  Gateway® ^  
MST1 FL aa 1-487  Fwd ATGGAGACGG TACAGCTGAG G 

Rev TTACGAAGTT TTGTTGCCGT CTCTT 

MST1 SARAH  aa 432-487  Fwd  ATGGAGGTAG AGTGGGATGC CTTCTC 

Rev TTACGAAGTT TTGTTGCCGT CTCTT 

    

pmCherry-C1  Restriction 
digest and 
ligation 

 

MST1 FL aa 1-487  Fwd  GAAGATCTAT GGAGACGGTA CAGCTGAGG 

Rev  CCCAAGCTTG TTAGAAGTTT TGTTGCCGTC TC 

MST1 ΔSARAH aa 1-431  Fwd  GAAGATCTAT GGAGACGGTA CAGCTGAGG 

Rev CCCAAGCTTG TTATCCATCC TGTGGTATTT TCCAATC 

MST1 SARAH aa 432-487  Fwd GAAGATCTGA CTACGAGTTT CTTAAGAGTT GGA 

Rev  CCCAAGCTTG TTAGAAGTTT TGTTGCCGTC TC 

 
^ All Gateway® cloning primers start with the following sequences (5’ → 3’): 

 Forward (Fwd) GGGGACAAGT TTGTACAAAA AAGCAGGCTC CACC 

 Reverse (Rev)  GGGGACCACT TTGTACAAGA AAGCTGGGT   
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2.1.2.3. Mutagenesis PCR 

QuickChange® Site-Directed Mutagenesis Kit (Stratagene), containing PfuUltra™ 

High-Fidelity DNA Polymerase, was used to introduce point mutations into plasmid 

constructs. Primers of at least 20 nucleotides in length were designed to incorporate the 

mutations (Table 2.2). The primers are extended around the whole plasmid by the 

polymerase, resulting in a nicked, mutated plasmid. 

 Each reaction mix contained 1x PfuUltra™ HF reaction buffer, 0.2 mM dNTPs, 

0.05 U/μl PfuUltra™ HF DNA polymerase, 2.5 ng/μl forward and reverse primers, 6% 

DMSO and 10 ng template DNA in a total volume of 25 µl. The PCR was carried out in 

a thermal cycler (GS1, G-Storm) using the following temperature cycle:  

95 ºC for 1 min 

95 ºC for 50 sec 

60 ºC for 50 sec     18 cycles 

68 ºC for 1 min per kb of the plasmid DNA 

68 ºC for 7 min 

The mutagenesis product was treated with 0.25 U/µl DpnI (New England Biolabs) at 37 

ºC for 1 h, which digests the template DNA leaving the DNA containing the mutation. 

This was transformed into ultracompetent XL10 Gold cells (section 2.1.3.5) and the 

mutated DNA constructs were verified by sequencing (section 2.1.4). 

2.1.3. Cloning of plasmid constructs 

2.1.3.1. Cloning into pTriEx™-6 vector  

MST1 and MST2 kinases and their respective SARAH domains were cloned into 

pTriEx™-6 (Novagen) using the pTriEx™ Ek/LIC vector kit. This method uses ligation 

independent cloning. The 3’ to 5’ exonuclease activity of T4 DNA polymerase is utilised 

in the presence of dATP so its activity is counteracted by the 5’ to 3’ polymerase activity 

when it reaches a dATP residue. This results in DNA with single strand overhangs. KOD 

polymerase (section 2.1.2.1) was used to produce insert fragments encoding a StrepII, 

SUMO* and myc tag in addition to the gene of interest with complementary sequences 

to the linearised pTriEx™-6 vector. The vector and gel purified gene fragment (section 

2.1.1.2) were treated with T4 DNA polymerase following the manufacturer’s instructions 
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Table 2.2 Mutagenesis of DNA constructs by point mutation(s) 

Template construct Mutation introduced  Primers with indicated mutated codon(s) 5’ → 3’ 
pTriEx™-6 Ek/LIC   

MST1 FL AAG → AGG 
K59R 

Fwd CCGGCCAGAT TGTTGCTATT AGGCAAGTTC CTGTGGAATC AGA  

Rev  TCTGATTCCA CAGGAACTTG CCTAATAGCA ACAATCTGGC CGG  

MST2 FL AAG → AGG 
K56R 

Fwd  CCGGTCAAGT TGTCGCAATT AGGCAAGTAC CTGTTGAATC AGA 

Rev  TCTGATTCAA CAGGTACTTG CCTAATTGCG ACAACTTGAC CGG 

   

pEGFP-C1   

RASSF1 FL CTA → CCC 
L301P 

Fwd CCTTCAGCAT GCCTGAACCC CATAACTTCC TACG 

Rev CGTAGGAAGT TATGGGGTTC AGGCATGCTG AAGG 

RASSF1 FL CTA → CCC 
L305P 

Fwd GAACTACATA ACTTCCCCCG TATCCTGCAG C 

Rev GCTGCAGGAT ACGGGGGAAG TTATGTAGTT C 

RASSF1 FL CTG → CCC 
L308P 

Fwd CATAACTTCC TACGTATCCC CCAGCGGGAG GAGGAGGAGC AC 

Rev GTGCTCCTCC TCCTCCCGCT GGGGGATACG TAGGAAGTTA TG 

RASSF1 FL CTA → CCC, CTA → CCC 
L301P + L305P 

Fwd CCTTCAGCAT GCCTGAACCC CATAACTTCC CCCGTATCCT GCAGC 

Rev GCTGCAGGAT ACGGGGGAAG TTATGGGGTT CAGGCATGCT GAAGG 

RASSF1 L301P (CTA → CCC)*, CTG → CCC 
(L301P)* + L308P 

Fwd CATAACTTCC TACGTATCCC CCAGCGGGAG GAGGAGGAGC AC 

Rev GTGCTCCTCC TCCTCCCGCT GGGGGATACG TAGGAAGTTA TG 

RASSF1 FL CTA → CCC, CTG → CCC 
L305P + L308P 

Fwd CTACATAACT TCCCCCGTAT CCCCCAGCGG GAGGAG 

Rev CTCCTCCCGC TGGGGGATAC GGGGGAAGTT ATGTAG 

RASSF5 FL CTT → CCC 
L224P 

Fwd CTCCATCCCT GAACCCCAGA ACTTCC 

Rev  GGAAGTTCTG GGGTTCAGGG ATGGAG 

RASSF5 FL CTA → CCC 
L228P 

Fwd CTTCAGAACT TCCCCACAAT CCTGG 

Rev  CCAGGATTGT GGGGAAGTTC TGAAG  

RASSF5 FL CTG → CCC 
L231P 

Fwd CAGAACTTCC TAACAATCCC CGAAAAAGAG GAGCAGGACA AAA 

Rev TTTTGTCCTG CTCCTCTTTT TCGGGGATTG TTAGGAAGTT CTG 

  



 

 
 

68 

Template construct Mutation introduced  Primers with indicated mutated codon(s) 5’ → 3’ 
RASSF5 FL CTT → CCC, CTA → CCC 

L224P + L228P 
Fwd CTCCATCCCT GAACCCCAGA ACTTCCCCAC AATCCTGG 

Rev  CCAGGATTGT GGGGAAGTTC TGGGGTTCAG GGATGGAG  

RASSF5 L224P (CTT → CCC)*, CTG → CCC 
(L224P)* + L231P 

Fwd CAGAACTTCC TAACAATCCC CGAAAAAGAG GAGCAGGACA AAA 

Rev TTTTGTCCTG CTCCTCTTTT TCGGGGATTG TTAGGAAGTT CTG 

RASSF5 FL CTA → CCC, CTG → CCC 
L228P + L231P 

Fwd CTTCAGAACTTCCCCACAATCCCCGAAAAAGAGGAG 

Rev  CTCCTCTTTTTCGGGGATTGTGGGGAAGTTCTGAAG 

MST1 FL CTT → CCC 
L444P 

Fwd GAGTTGGACA GTGGAGGACC CCCAGAAGAG GCTCTTGGCC CTG 

Rev CAGGGCCAAG AGCCTCTTCT GGGGGTCCTC CACTGTCCAA CTC 

MST1 FL CTC → CCC 
L448P 

Fwd CTTCAGAAGA GGCCCTTGGC CCTG 

Rev CAGGGCCAAG GGCCTCTTCT GAAG 

MST1 FL CTG → CCC 
L451P 

Fwd CTCTTGGCCC CCGACCCCAT G 

Rev CATGGGGTCG GGGGCCAAGA G 

MST1 FL CTT → CCC, CTC → CCC 
L444P + L448P 

Fwd GAGTTGGACA GTGGAGGACC CCCAGAAGAG GCCCTTGGCC CTG 

Rev CAGGGCCAAG GGCCTCTTCT GGGGGTCCTC CACTGTCCAA CTC 

MST1 L444P (CTT → CCC)*, CTG → CCC 
(L444P)* + L451P 

Fwd CTCTTGGCCC CCGACCCCAT G 

Rev CATGGGGTCG GGGGCCAAGA G 

MST1 FL CTC → CCC, CTG → CCC 
L448P + L451P 

Fwd CTTCAGAAGA GGCCCTTGGC CCCCGACCCC ATG 

Rev CATGGGGTCG GGGGCCAAGG GCCTCTTCTG AAG 

 
* Brackets indicate existing mutation in template DNA and codons mutated are highlighted in blue in the primer sequence. 
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to insert the fragment into pTriEx™-6. The final reaction mix was transformed into 

ultracompetent XL10 Gold cells (section 2.1.3.5). 

2.1.3.2. Gateway® cloning   

GATEWAY® cloning technology (Invitrogen) is a reversible two-step strategy. First, a 

pENTR™ entry clone with the gene of interest is constructed. The gene can be 

subsequently shuttled into any destination vectors that carry a different antibiotic 

resistance gene and are compatible with the GATEWAY® system in a single 

recombination reaction to produce an expression clone. 

 To generate an entry clone, pDONR207 was the entry vector of choice. KOD 

polymerase (section 2.1.2.1) was used to produce insert fragments encoding the gene of 

interest between two attB recombination sites (Table 2.1). The reaction mix was set up 

using BP Clonase™ II following the manufacturer’s instructions. The final product was 

transformed into ultracompetent DH5α cells (section 2.1.3.5). 

 Gene inserts in sequence verified entry clones were transferred into destination 

vectors using LR Clonase™ II following the manufacturer’s instructions. pEGFP-C1 

(Clontech) and pTriEx™-4  (Novagen) were the main destination vector used. These 

have previously been converted to GATEWAY® compatible vectors by inserting a 

GATEWAY® RfC.1 reading frame cassette in the original multiple cloning site of each 

vector. Newly made GATEWAY® compatible vectors were grown and selected in E. 

coli DB3.1 strain that carries a special resistance to the toxic ccdB gene present in the 

reading frame cassette. Gene inserts for pTriEx™-4 also contained an additional TEV 

protease recognition site linker at the N-terminus and a C-terminus myc tag. The final 

reaction mix was transformed into ultracompetent DH5α cells (section 2.1.3.5). 

2.1.3.3. Cloning by restriction digest and ligation  

pmCherry-C1 gene constructs (Table 2.1) were cloned using the traditional method of 

restriction digest and ligation. KOD polymerase (section 2.1.2.1) was used to generate 

insert fragments with specific restriction site sequences at the 5’ (BglII) and 3’ (HindIII) 

ends. The gel purified DNA and vector were cut with BglII and HindIII (New England 

Biolabs) in double digest reactions to generate complementary overhangs. The digested 

DNA was gel purified (section 2.1.1.2). 



 

70 
 

 Vector and insert were then ligated using T4 DNA ligase (New England Biolabs) 

in a 1:4 molar ratio of vector to insert. The ligation reaction was prepared following the 

manufacturer’s instructions and incubated overnight at 16 °C. The final reaction mix was 

diluted 5x with sterile water before transformation into ultracompetent XL10 Gold cells. 

The constructs were verified by sequencing (section 2.1.4). 

2.1.3.4. In-Fusion™ cloning 

pOPINs (Oxford Protein Production Facility) gene constructs (Table 3.2) were cloned 

using In-Fusion™ technology (Clontech). This is a high throughput and universal 

method that joins any DNA fragments with 15 bases of homology at their linear ends. 

Vectors were linearised using the appropriate restriction enzymes and DNA inserts with 

compatible ends were generated using KOD polymerase (section 2.1.2.1). These were 

mixed with the In-Fusion™ enzyme according to the manufacturer’s instructions. The 

final reaction mix was transformed into ultracompetent XL10 Gold cells (section 2.1.3.5). 

Table 2.3 Competent cells  

Strains E. coli Purpose  Genotype 

DH5α Gateway® cloning F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR 
nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, 
hsdR17(rK

- mK
+), λ– 

DB3.1 Propagate Gateway® 
vectors 

F- gyrA462 endA1 glnV44 Δ(sr1-recA) mcrB mrr 
hsdS20(rB

-, mB
-) ara14 galK2 lacY1 proA2 

rpsL20(Smr) xyl5 Δleu mtl1 
XL10 Gold DNA amplification 

for plasmid 
preparation 
General cloning  

endA1 glnV44 recA1 thi-1 gyrA96 relA1 lac Hte 
Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 tetR 
F'[proAB lacIqZΔM15 Tn10(TetR Amy CmR)] 

C41(DE3) Protein expression by 
IPTG induction 

F– ompT gal dcm hsdSB(rB
- mB

-)(DE3) derived 
from BL21(DE3) with at least one unidentified 
mutation 

 

2.1.3.5. Transformation of competent cells  

1-2 μl of plasmid or reaction mix was added to 25 μl ultra competent cells (Table 2.3) 

and incubated on ice for 30 min. Competent cells were heat shocked for 30 sec at 42 °C 

in a water bath then chilled on ice for 2 min. 250 μl of SOC medium [20 g/L tryptone, 5 

g/L yeast extract 0.5 g/L NaCl, 20 mM glucose, 10 mM MgCl2, 2.5 mM CaCl2] was 
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added to the cells and incubated at 37 °C for 1 h in a shaking incubator. 100 μl aliquots 

were plated on L agar plates containing appropriate antibiotics and incubated overnight 

at 37 °C.  

2.1.4. Verification of constructs by sequencing  

Following cloning and transformation, the resulting colonies were first checked for 

inserted genes by PCR (section 2.1.2.2). Once the insertions were verified, the specific 

clones were picked and grown in 5 ml cultures for DNA purification and sequencing. For 

mutagenesis products, individual clones were directly picked, cultured and sequenced. 

Sequencing was carried out to identify mutants and to ensure no additional mutations, 

insertions or deletions were introduced. 

 Each sequencing reaction contained 3 μl BigDye sequencing buffer, 2 μl BigDye 

Terminator v3.1 sequencing mix (ABI Prism), 1.6 μM forward or reverse primer and 

150-500 ng plasmid DNA in a final volume of 12 μl. The temperature cycle was as 

follows: 

96 °C for 1 min 

96 °C for 10 sec 

50 °C for 5 sec    25 cycles 

60 °C for 4 min 

 

Free fluorescent nucleotides were removed from the PCR products using the DyeEx™ 

2.0 Spin Kit (Qiagen) following the manufacturer’s instructions. The purified PCR 

products were dried on a heat block and the samples were sent to the sequencing 

laboratory at Source BioScience. DNA sequence alignments were performed using 

ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) to confirm that the sequence 

was correct. 

All constructs are of human origin and all RASSF5 constructs were derived from 

the RASSF5C isoform unless otherwise stated (Table 2.1 and 2.2). Other constructs used 

in this study were available in the lab, these included pTriEx™-4 constructs: 

RASSF5Δ41myc (aa42-265), RASSF5 SARAH (aa212-265) (Miertzschke et al., 2007), 

HRasV12, KRasV12, MRasV22, NRasV12 and Rap2BV12 (Bunney et al., 2006). The 

expression plasmids pXJ40 mycMOAP1 and pcDNA3 HA-DAPK were obtained from 

Dr Shairaz Baksh (University of Alberta, Edmonton) for a collaborative study. 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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2.2. Protein expression, purification and analysis 

2.2.1. Production of recombinant protein from E. coli  

2.2.1.1. Expression of recombinant protein 

RASSF5 RA, RASSF5 SARAH, MST1 SARAHmyc and the various Ras GTPases were 

expressed from the pTriEx™-4 vector. Several colonies of freshly transformed C41(DE3) 

cells were grown in 500 ml pre-warmed 2xYT broth [16 g/L tryptone, 10 g/L yeast 

extract, 5 g/L NaCl] cultures at 37 °C and 250 rpm until an OD595nm of 0.4. The 

temperature was lowered to 20 °C and protein expression was induced by addition of 

100μM isopropyl 1-thio-β-D-galactopyranoside (IPTG) between OD595nm 0.6 and 1.0. 

The cultures were grown overnight at 20 °C then pelleted at 3,700 xg for 30 min at 4 °C 

(Allegra® X-15R Centrifuge, Beckman Coulter). Pellets were stored at -20 °C until 

further processing.  

2.2.1.2. Purification of His/S-tagged recombinant proteins 

Bacterial pellets from 500 ml cultures were lysed in 25 ml Bacterial Lysis Buffer [25 

mM Tris-HCl pH 8.0, 250 mM NaCl, 40 mM imidazole, 10 mM Benzamidine, 100 

μg/ml lysozyme] at 4 °C for 30 min with shaking at 100 rpm. Lysis was continued for 1 

h following the addition of 1 Kunit of DNase I and 5 ml of 10% (v/v) Triton-X100. The 

lysate was centrifuged at 4 °C for 1 h at 18,000 rpm in an SS34 rotor (Sorvall) and the 

supernatant containing the soluble proteins was further processed. 

 An ÄKTApurifier (GE Healthcare) was used for protein purification. The 

chromatography was performed at 5 ml/min flow. A 5 ml HisTrap HP column (GE 

Healthcare) was used to purify His-tagged proteins. The semi-automated purification 

program included column equilibration with 2 column volumes (CV) of His Buffer A [25 

mM Tris-HCl pH 8.0, 500 mM NaCl, 40 mM imidazole, 1 mM Tris(2-

carboxyethyl)phosphine (TCEP)] prior to the injection of the supernatant using a 50 ml 

Superloop. This was followed by 10 CVs of His Buffer A washes and elution of bound 

proteins with a linear gradient from His Buffer A to His Buffer B [25 mM Tris-HCl pH 

8.0, 500 mM NaCl, 500 mM imidazole, 1 mM TCEP] over 5 CVs.  

 The proteins collected were either immediately further purified by gel filtration 

chromatography or subjected to TEV protease cleavage to remove the N-terminal His 



 

73 
 

and S tags (Table 2.5). For the latter, 10-15 ml of eluted protein were mixed with 100 μl 

of 8 mg/ml TEV protease in SnakeSkin Dialysis tubing (Thermo Scientific) with the 

appropriate molecular weight cut off. The tubing was placed in Dialysis Buffer [25 mM 

Tris-HCl pH 8.0, 150 mM NaCl, 10 mM imidazole, 1 mM TCEP] and stirred at 4 °C for 

16-72 h.  

 A 5 ml HisTrap HP column was used to remove the TEV protease, cleaved His 

and S tags and any proteins that bound non-specifically to the column. It was 

equilibrated in Dialysis Buffer and the dialysed sample was loaded. The program used 

for this purification step is similar to the first step with the exception that the cleaved 

protein flowing through the column was collected whilst His Buffer B was used to elute 

the waste. The collected flow-through was purified in a final step of gel filtration (section 

2.2.1.3).  

2.2.1.3. Gel filtration chromatography 

Gel filtration was used as a final step of purification for all proteins expressed in this 

study. Proteins are separated based on their sizes and polypeptide aggregates are also 

removed. Superdex 200 26/60 columns (GE Healthcare) were used to purify proteins 

expressed in E. coli and Freestyle™ 293F (section 2.2.2.1).  

 The chromatography was performed at a 4 ml/min flow. The column was 

equilibrated with 1 CV of Gel Filtration Buffer [25 mM Tris-HCl pH 8.0, 150 mM NaCl, 

1 mM TCEP] before injecting the protein sample, which was eluted in 1 CV of the same 

buffer. The protein was collected based on peak fractionation monitored by A280nm and 

was concentrated to 10-20 mg/ml using Vivaspin 20 centrifugal concentrators (Sartorius 

Stedim Biotech) with the appropriate molecular weight cut off. Protein concentrations 

were measured using NanoDrop 2000c (Thermo Scientific) by inputting the theoretical 

protein molecular weight and molar extinction coefficient. Aliquots of protein were snap 

frozen in liquid nitrogen and stored at -80 °C.  

2.2.1.4. Buffer exchange of purified protein 

Proteins used for mass spectrometry (MS) were buffer exchanged into MS buffer [150 

mM sodium acetate, 0.5 mM dithiothreitol (DTT), pH 8.0]. These included TEV-cleaved 

RASSF5 RA, RASSF5 SARAH and MST1 SARAHmyc. Two methods were used for 

the buffer exchange step.  
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For quick buffer exchanges, Micro Bio-Spin® 6 chromatography columns 

(BioRad) were used. The columns were equilibrated and washed using the MS buffer 

and protein samples were loaded and eluted following the manufacturer’s instructions.  

An Ettan™ LC system (GE Healthcare) was used for a more efficient buffer 

exchange and to remove any aggregates from freeze-thaw cycles. This step is in essence 

a small scale gel filtration. The chromatography was performed at a 0.1 ml/min flow rate. 

A Superdex 200 10/300 GL column was equilibrated with 1 CV of MS buffer. 40 μl of 

concentrated protein samples were injected consecutively into the system from a 96-well 

plate using the autosampler. Each sample was eluted in 1 CV of MS buffer and collected 

as in gel filtration. The appropriate peak fractions were combined and concentrated to 

approximately 10-20 μM as described (section 2.2.1.3). Protein concentrations were 

measured and the samples were used immediately for MS.  

2.2.2. Production of recombinant protein from mammalian cells  

2.2.2.1. Expression of recombinant protein in Freestyle™ 293F 

Freestyle™ 293F cells were the eukaryotic system of choice for expression of full length 

MST1 and MST2 and their respective kinase domain mutants K59R and K56R in the 

pTriEx™-6 vector (Table 2.1 and 2.2). Cells were grown and maintained as described in 

section 2.4.2, and transfected as described in section 2.5.1.3. A total volume of 1 L 

culture was used to express each recombinant protein. 72 h after transfection, the cells 

were pelleted by centrifugation at 2000 xg for 15 min. The pellets were snap frozen in 

liquid nitrogen and stored at -80 °C until further processing. 

2.2.2.2. Purification of His/StrepII-tagged proteins  

Cell pellets from a total of 1L cultures were resuspended in 25 ml of 293F Lysis Buffer 

[25 mM Tris-HCl pH 8.0, 250 mM NaCl, 40 mM imidazole, 10 mM benzamidine, 1 

EDTA free protease inhibitor tablet (Roche)]. Cells were lysed by constant agitation on a 

rotating wheel at 4 °C for 30 min. Lysis was continued for 1 h following the addition of 1 

Kunit of DNaseI and 5 ml of 10% Triton-X100 (v/v). Lysed material was clarified by 

centrifugation at 4°C for 1 h at 18,000 rpm in an SS34 rotor (Sorvall). 

The supernatant was first processed by His affinity chromatography as described 

in section 2.2.1.2. The N-terminus 2xStrepII, SUMO*, myc tags and C-terminus 10xHis 



 

75 
 

tag were left intact and the eluted proteins were immediately applied to a 5 ml 

StrepTactin column (GE Healthcare). The column was washed with Streptactin Buffer A 

[50 mM Tris-HCl pH 8.0, 150 mM NaCl] to remove non-specifically bound 

contaminants. The recombinant proteins were eluted from the column using Streptactin 

Buffer B [50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM d-Desthiobiotin (Sigma)]. 

Eluted proteins were further purified by gel filtration using the standard Gel Filtration 

Buffer, concentrated, quantified and stored (section 2.2.1.3). 

2.2.3. Protein analysis 

2.2.3.1. SDS-PAGE and Coomassie staining  

Discontinuous polyacrylamide gels were made according to the method of Laemmli 

(Laemmli, 1970). Polymerised gels were placed in running tanks (BioRad Miniprotean 3) 

with running buffer [25 mM Tris-HCl, 192 mM glycine, 0.1% SDS, pH 8.3]. Protein 

samples were mixed with 4x sample buffer [62.5 mM Tris-HCl pH 6.8, 2% SDS, 25% 

glycerol, 0.01% bromophenol blue, 0.72 M β-mercaptoethanol] in ratios between 1:1 and 

3:1. These were incubated on a 95 °C heat block for 5 min. Between 10 and 50 μg of 

each sample were loaded and electrophoresis carried out between 150 and 200 V. 

Electrophoresis was stopped when the dye front reached the end of the gel.  

 Quick Coomassie Stain (Generon) was used to stain acrylamide gels following 

SDS-PAGE. The gels were rinsed in water then covered in 25 ml of the stain and left 

incubating on a rocker for 1 h at room temperature. These were destained in water for 30 

min then photographed using a G:BOX (Syngene).  

2.2.3.2. Western blotting  

Proteins were analysed by western blotting according to the method of Towbin et al. 

(1979). Proteins resolved by SDS-PAGE were transferred to a PVDF membrane 

(Hybond-P, GE Healthcare) overnight at 30 V, 4 °C in transfer buffer [25 mM Tris-HCl, 

192 mM glycine, 20% methanol, pH 8.3]. Following the transfer, non-specific binding to 

the membrane was blocked by incubation in blocking buffer [25 mM Tris-HCl pH 7.5, 

144 mM NaCl, 0.2% Tween 20, 5% (w/v) non-fat milk (Sigma)] for 30 min at room 

temperature. Primary antibodies were diluted in blocking buffer (Table 2.4) and 

incubated with the membrane for 2 h at room temperature. The membrane was washed 

twice for 10 min in TBS-Tween [25 mM Tris-HCl, 144 mM NaCl, 0.1% Tween, pH 7.5] 
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before the addition of horseradish peroxidase-conjugated secondary antibody (GE 

Healthcare) diluted 1:4000 in blocking buffer. Following 1 h of incubation, the 

membrane was washed twice for 10 min in TBS-Tween then once for 10 min in TBS. 

ECL Prime Western Blotting Detection Reagent (GE Healthcare) was used for detection 

of immunoreactive proteins with BioMax XAR (Kodak) or RX (FujiFilm) films.  

Table 2.4 Primary antibodies used for western blotting   

Antibody Antibody type  Company   Dilution 

GAPDH (D-6) Mouse monoclonal Santa Cruz 1:25,000 
GFP (B-2) Mouse monoclonal  Santa Cruz 1:2,500 
HA (12CA5) Mouse monoclonal In-house hybridoma provided by Dr 

Shairaz Baksh 
1:400 

Myc (9E10/12) Mouse monoclonal  In-house 1:2,500 
TBK1 (M-375) Rabbit polyclonal Santa Cruz 1:1,000 
TNF-R1 (H-271) Rabbit polyclonal Santa Cruz 1:500 
tRFP Rabbit polyclonal Evrogen 1:2,000 

 

2.3. Specific protein constructs  

Table 2.5 shows all the protein constructs used in this study. The table also includes 

notes about their specific purification and further application purposes. All proteins were 

shock frozen in liquid nitrogen in the same buffer they were purified by gel filtration 

indicated in the table and stored at -80 °C. Proteins used in this study that were already 

available in the laboratory were c-Raf RBD, RalGDS RA, PLCε RA2 and RASSF5Δ52.  

 

2.4. Cell culture and cell lines  

2.4.1. Adherent cells 

COS-7 monkey kidney fibroblast-like cells, human A549 lung adenocarcinoma and 

HCT116 colon carcinoma cells were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM) (Invitrogen) supplemented with 10% foetal bovine serum (FBS) and 0.5 mM 

L-glutamine. Cells were grown as a monolayer at 37 °C in 5% CO2. When confluent, the 

cells were removed from the flask using 0.05% trypsin-EDTA (Invitrogen) and split 1:10. 
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Table 2.5 Recombinant proteins and their purification  

Plasmid Purification  Protein Gel Filtration Application 
pTriEx™-6      
MST1 FL His affinity, StrepTactin purification, gel 

filtration 
2xStrepII/SUMO*/myc MST1-
10xHis 

25mM Tris-HCl pH8.0, 150mM NaCl, 1mM TCEP Immunoprecipitation  

MST1 K59R His affinity, Streptactin purification, gel 
filtration 

2xStrepII/SUMO*/mycMST1 
K59R-10xHis 

25mM Tris-HCl pH8.0, 150mM NaCl, 1mM TCEP Immunoprecipitation 

MST2 FL  His affinity, Streptactin purification, gel 
filtration 

2xStrepII/SUMO*/mycMST2-
10xHis 

25mM Tris-HCl pH8.0, 150mM NaCl, 1mM TCEP Immunoprecipitation 

MST2 K56R His affinity, Streptactin purification, gel 
filtration 

2xStrepII/SUMO*/mycMST2 
K56R-10xHis 

25mM Tris-HCl pH8.0, 150mM NaCl, 1mM TCEP Immunoprecipitation 

     
pTriEx™-4      
RASSF5 RA 
(mouse 
NORE1A_199-358) 

His affinity purification, gel filtration 
 
His affinity purification. TEV cleavage, 
gel filtration 

6xHis/S-RASSF5 RA 
 
RASSF5 RA 

25mM Tris-HCl pH8.0, 150mM NaCl, 1mM TCEP 
 
150mM Sodium Acetate, 0.5mM DTT 

In vitro pull-down 
 
Mass spectrometry 

RASSF5 SARAH  His affinity purification, gel filtration 
 
His affinity purification. TEV cleavage, 
gel filtration 

6xHis/S-RASSF5 SARAH 
 
RASSF5 SARAH 

25mM Tris-HCl pH8.0, 150mM NaCl, 1mM TCEP 
 
150mM Sodium Acetate, 0.5mM DTT 

In vitro pull-down 
 
Mass spectrometry 

MST1 SARAH His affinity purification, gel filtration 
 
His affinity purification, TEV cleavage, 
gel filtration 

6xHis/S-MST1SARAHmyc 
 
MST1 SARAHmyc 

25mM Tris-HCl pH8.0, 150mM NaCl, 1mM TCEP 
 
150mM Sodium Acetate, 0.5mM DTT 

In vitro pull-down 
 
Mass spectrometry 

HRasV12  His affinity purification, gel filtration 6xHis/S-HRasV12 25mM Tris-HCl pH8.0, 150mM NaCl, 1mM TCEP In vitro pull-down 
KRasV12 His affinity purification, gel filtration 6xHis/S-KRasV12 25mM Tris-HCl pH8.0, 150mM NaCl, 1mM TCEP In vitro pull-down 
MRasV22 His affinity purification, gel filtration 6xHis/S-KRasV12 25mM Tris-HCl pH8.0, 150mM NaCl, 1mM TCEP In vitro pull-down 
NRasV12 His affinity purification, gel filtration 6xHis/S-NRasV12 25mM Tris-HCl pH8.0, 150mM NaCl, 1mM TCEP In vitro pull-down 
Rap2BV12 His affinity purification, gel filtration 6xHis/S-Rap2BV12 25mM Tris-HCl pH8.0, 150mM NaCl, 1mM TCEP In vitro pull-down 
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2.4.2. Suspension cells  

Freestyle™ 293F cells were grown in suspension on a platform shaker in a humidified 

37 °C CO2 incubator (Infors) with rotation at 130 rpm. The cells were maintained 

between 4 x 105 and 3 x 106 cells/ml in a volume of 250 ml in 1 L culture flasks using 

Freestyle™ 293F Expression Medium (Invitrogen). 

2.4.3. Frozen stocks 

Adherent and suspension cells were frozen at a concentration of 1 x 106 in DMEM 

containing 5% DMSO and 1 x 107 cells/ml in Freestyle 293F Expression Medium 

containing 5% DMSO respectively. Cells were frozen slowly in cryo-vials in a freezing 

box at -80 °C overnight and transferred to liquid nitrogen.  

 

2.5. Expression of exogenous DNA in mammalian cells  

2.5.1. Transient transfection  

2.5.1.1. Electroporation  

COS-7 cells were transfected by electroporation using the Nucleofector™ 2b Device 

(Lonza). For each transfection, 100 µl of electroporation buffer [140 mM KCl, 8 mM 

NaCl, 0.88 mM MgSO4, 2.97 mM Na2HPO4, 1.06 mM NaH2PO4, 0.5% BSA, pH 7.4] 

were mixed with 4-5 µg of DNA construct or a total of 8 µg of two DNA constructs for 

co-transfection. 1.2 x 106 cells were pelleted and resuspended in the buffer:DNA mix. 

The cell suspension was transferred to an electroporation cuvette and electroporated 

following the manufacturer’s instructions. This was diluted with 500 µl normal medium 

(DMEM, 10% FBS, 0.5 mM L-Glutamine) and 3 x 104 cells were seeded per well in a 

96-well glass-bottom plate.  

2.5.1.2. Polyethylenimine (PEI) 

For large scale protein expression, 250 ml of 293F cells were seeded at around 0.6 - 0.7 x 

106 cells/ml a day prior to transfection for the cell density to reach 1.0 x 106 cells/ml at 

the time of transfection. At a smaller scale, 20 ml or 30 ml of 293F cells were seeded as 

described above. For transfection, the cells were mixed with plasmid DNA:PEI (~25kDa 

branched) (Sigma) complexes prepared as follows. 10 ml of OptiPRO SFM™ 
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(Invitrogen) supplemented with 4 mM L-Glutamine were mixed with 312 μg DNA and a 

volume of PEI (1 mg/ml stock in deionised water) that is 1.5 times the mass ratio of the 

amount of DNA. 1.2 ml or 800 μl of supplemented OptiPRO SFM™ and a total of 37.5 

μg or 25 μg DNA were used for small scale 30 ml and 20 ml transfections respectively. 

The transfection mix was incubated for 15 min at room temperature before it was added 

to the 293F cells. The cells were incubated at 37 °C for 72 h with shaking and then 

pelleted as described in section 2.2.2.1. 

2.5.1.3. DharmaFECT  

siRNA studies were performed by transfecting A549 and HCT116 using the reverse 

transfection method in a 96-well plate format. The cells were cultured to 90% confluency 

on the day of transfection and harvested using trypsin. Mix A contained 25 nM siRNA in 

a total volume of 15 µl Hank’s Balanced Salt Solution (HBSS). Mix B contained 0.45 µl 

DharmaFECT (Thermo Scientific) diluted in a total volume of 45 µl HBSS. Mix A was 

added to Mix B and transferred onto a black 96-well plate. This was incubated for 30 

min at room temperature and 7 x 103 cells were added to the siRNA:DharmaFECT 

complex in a total volume of 100 µl DMEM. Each set of transfections was performed in 

triplicates. The cells were incubated at 37 °C for 72 h before further treatment.  

2.5.2. Protein analysis of cell lysates 

For 1 L transfected 293F cultures, 1 ml aliquots were pelleted as described in section 

2.2.2.1, washed in PBS and transferred into a 1.5 ml centrifuge tube before a final 

centrifugation step at 2,000 xg for 10 mins. The cells were lysed directly in 100 μl 4x 

sample buffer and prepared as described in section 2.2.3.1 for SDS-PAGE. For small 

scale transfected 293F cells, the cell pellets were lysed as described in section 2.6.1.2 

and 2.6.2. A sample of each lysate was mixed 1:1 with 4x sample buffer. All samples 

were subjected to SDS-PAGE and western blotting. 
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2.6. Characterisation of protein-protein interaction 

2.6.1. In vitro pull-down using pure proteins or cell lysates 

The in vitro pull-down assay was used to test protein interactions between RASSF and 

different Ras small GTPase family members (section 2.6.1.1 and 2.6.1.2) and MST 

kinases (section 2.6.1.2). 

2.6.1.1. Interaction between Ras small GTPases and isolated RA domains 

Pull-down assays were performed using two slightly different approaches. The first 

method used immobilised S-tagged Ras GTPase and the second method used 

immobilised GST-tagged RA domains.  

For pull-downs using S-tagged Ras GTPases, 40 μl of S-protein agarose 

(Novagen) were washed once in 0.5 ml Nucleotide Loading Buffer (NLB) [50 mM Tris-

HCl pH 8.0, 15 mM EDTA, 1 mM TCEP] and loaded with 50 μg of purified S-tagged 

Ras small GTPases (Table 2.5). This was incubated for 30 min at room temperature and 

the beads were washed once with 0.5 ml NLB to remove unbound small GTPase. In 

order to force the GTPases into their respective active (GTP-bound) or inactive (GDP-

bound) state, 0.5 ml NLB containing 1 mM GTP or GDP respectively was added to the 

beads and incubated for 10 min at room temperature. The reaction was stopped by 

addition of 20 mM MgCl2 and excess nucleotides were removed. The beads were then 

incubated with 100 μg of purified RASSF5 RA (Table 2.5) and existing RA domain 

proteins in the lab (section 2.3) in 0.5 ml Binding Buffer (BB) [50 mM Tris-HCl pH 8.0, 

150 mM NaCl, 1 mM TCEP, 1% (v/v) Triton X-100, 10 mg/ml BSA] for 30 min at room 

temperature. The beads were then washed in 0.5 ml Wash Buffer [25 mM Tris-HCl pH 

8.0, 150 mM NaCl, 1 mM TCEP, 1% (v/v) Triton X-100].  

For pull-downs between purified GST-tagged RA domain and untagged 

Rap2BV12 proteins, 40 μl of prewashed Glutathione Sepharose™ 4B beads (GE 

Healthcare) were used to immobilise the RA domain proteins in 0.5 ml NLB. This was 

incubated for 30 min at room temperature. The beads were washed in 0.5 ml NLB to 

remove unbound RA domain proteins. Purified Rap2BV12 was loaded with GDP or GTP 

as described above in a separate reaction and added to the RA domain-loaded beads in 

0.5 ml BB. These were incubated for 30 min at room temperature and washed as above. 
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Finally, the beads were mixed with 20 μl 4x sample buffer and the eluted samples 

were subjected to SDS-PAGE and western blotting.  

2.6.1.2. Interaction between Ras small GTPases and full length RASSF  

Full length RASSFs, which could not be purified, were each expressed in 30 ml of 293F 

cell cultures transfected with 37.5 μg of pEGFP-C1 RASSF constructs and harvested as 

described in sections 2.2.2.1 and 2.5.1.3. The cell pellets were lysed in Lysis Buffer [25 

mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% (v/v) NP-40, 1 mM TCEP, 1 EDTA free 

protease inhibitor tablet (Roche)]. Cell lysates were clarified by centrifugation at 21,000 

xg for 15 min.  

Various S-tagged Ras GTPases were immobilised and loaded with GDP or GTP 

as described in section 2.6.1.1. The beads were then incubated with 2 mg of each cell 

lysate in a total volume of 0.5 ml modified Binding Buffer [50 mM Tris-HCl pH 8.0, 150 

mM NaCl, 1 mM TCEP, 0.1% (v/v) Triton X-100, 10 mg/ml BSA]. Following 1 h 

incubation at 4 °C, the beads were washed three times in 0.5 ml Lysis Buffer. The 

samples were then eluted in 20 μl 4x sample buffer and subjected to SDS-PAGE and 

western blotting. 

2.6.1.3. Dimerisation between RASSF and MST kinases 

Fifty μg of purified S-tagged RASSF5 SARAH were immobilised on 40 μl of S-protein 

agarose in 0.5 ml PBS. This was then incubated with 50 μg of purified MST1 

SARAHmyc for 1 h with constant agitation at room temperature. The beads were washed 

three times in PBS and the bound proteins were eluted in 20 μl 4x sample buffer and 

subjected to SDS-PAGE.  

2.6.2. Co-immunoprecipitation (Co-IP) 

20 ml of 293F cell cultures were transfected with a total of 25 μg of DNA constructs as 

described in section 2.5.1.3. These were either single transfections of pEGFP-C1 RASSF, 

co-transfections of equal concentrations of pEGFP-C1 RASSF5 SARAHmyc with 

pTgFRP-T MST1 or MST1 SARAH, or various combinations of pEGFP-C1 RASSF 

with other constructs (Table 2.6). 
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Table 2.6 DNA constructs and concentrations for co-transfection of 293F cells 

pEGFP-C1 RASSF1-10 12 μg 14 μg 14 μg 12.5 μg 12 μg 

pTriEx™-4 RASSF5Δ41myc 13 μg - - - - 

pTriEx™-6 mycMST1 K59R - 11 μg - - - 

pTriEx™-6 mycMST2 K56R - - 11 μg - - 

pXJ40 mycMOAP1 - - - 12.5 μg - 

pcDNA3 HA-DAPK - - - - 13 μg 

 

72 h post-transfection, 20 ml cultures of cells co-transfected with pXJ40 

mycMOAP1 and pEGFP-C1 RASSF or only pEGFP-C1 RASSF were split into two 10 

ml aliquots. One set of the co-transfected cultures was treated with TNFα (PeproTech) at 

a final concentration of 50 ng/ml. One set of the singly transfected cultures was treated 

with either TNFα as above or lipopolysaccharide (LPS) from Salmonella minnesota 

R595 (Re) (Enzo Life Sciences) at a final concentration of 2 μg/ml. The cells were 

harvested 3 h after treatment. Cell pellets were lysed in 0.8 ml CellLytic™ M Lysis 

Reagent (Sigma) and clarified by centrifugation at 21,000 xg for 15 min at 4 °C.  

Co-IP of myc-tagged proteins was performed using the Anti-c-Myc 

Immunoprecipitation kit (Sigma). In co-IP assays using purified proteins of full length or 

kinase-dead myc-tagged MST (see Table 2.5), 50 μg of each purified protein were 

immobilised on 20 μl of anti-c-myc agarose affinity gel antibody in SigmaPrep™ spin 

columns (Sigma) and incubated with 2 mg of cell lysate for 1 h at 4 °C with constant 

agitation. For co-IP assays using only cell lysates, 2 mg of each cell lysate were directly 

added to 20 μl of anti-c-myc agarose affinity gel antibody and incubated as above.  

For co-IP of other proteins, 2 μg of anti-TNF-R1, anti-TBK1 or anti-HA antibody 

(see Table 2.4) were mixed with 1 mg of cell lysate in a SigmaPrep™ spin column 

(Sigma). Following overnight mixing at 4 °C, 25 μl of protein A (for polyclonal 

antibodies) or protein G (for monoclonal antibodies) agarose (Roche) were added to the 

antibody-lysate mixture and incubated with constant agitation for a further 2 h at 4 °C.  

For all reactions, the beads were washed three times with PBS or PBS containing 

0.01% (v/v) Triton-X100 and bound proteins were eluted in 80 μl 4x sample buffer then 

subjected to SDS-PAGE and western blotting. 



 

83 
 

2.6.3. Förster Resonance Energy Transfer (FRET) 

FRET was used as a means of measuring protein-protein interactions. It entails exciting 

the “donor” fluorophore, resulting in a transfer of the excitation energy to an appropriate 

“acceptor” fluorophore. This transfer of energy is non-radiative and occurs over an 

extremely small radius; therefore, FRET efficiency is dependent on several factors. First, 

the distance between the donor and acceptor has to be within a 10 nm range to facilitate 

the short distance non-radiative energy transfer (Jares-Erijman and Jovin, 2006). This 

also requires the spectral overlap of the donor emission and acceptor excitation spectra, 

and the correct relative orientations of their respective dipole moments. In the presence 

of an acceptor and where the above conditions are fulfilled, FRET causes a decay in the 

donor lifetime, which is the signal being measured. This allows for the detection of 

interaction between the appropriately labelled proteins. 

The FRET data are obtained using a high throughput fluorescence lifetime 

imaging (FLIM) automated multiwell plate reader developed in-house by our 

collaborators in the Photonics Group at Imperial College London (Figure 2.1A) (Alibhai 

et al., 2013, Kumar et al., 2011). A wide-field time-gated imaging and laser scanning 

TCSPC (Time-Correlated Single Photon Counting) microscope is linked to the 

automated Nipkow FLIM multiwell plate reader, which is based on a commercial plate 

reader (IN Cell Analyser 1000, GE Healthcare). The GOI (gated optical image intensifier) 

produces intensity images acquired at different precise time points for a few seconds 

(Figure 2.1B). These are used to reconstruct the fluorescence decay of the donor 

fluorophore, which is analysed with exponential decay functions. The technical details of 

the microscope set up and image acquisition are described by Kumar et al. (2011).   

In this study, the proteins of interest were tagged with the “donor” GFP or 

“acceptor” mCherry by cloning their gene encoding DNA into the vectors pEGFP-C1 

and pmCherry-C1 respectively (sections 2.1.3.2 and 2.1.3.3). COS-7 cells were 

transfected with 4-5 μg of pEGFP-C1 RASSF plasmids alone or together with 3.8 μg of 

pmCherry-C1 MST1 or MST1 SARAH or 3.5 μg of unlabelled KRasV12 by 

electroporation and seeded on 96-well glass-bottom plates as described in section 2.5.1.1. 

Following overnight incubation in a 37 °C incubator, transfected cells were washed in 

PBS, fixed in 4% formaldehyde in PBS for 15 min and washed twice in PBS to remove 

the formaldehyde.  
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Figure 2.1 The FLIM system 

(A) Schematic of the high throughput automated FLIM multiwell plate reader and 

microscope setup. Adapted from Alibhai et al. (2013) and Kumar et al. (2011). (GOI, 

gated optical image intensifier; CCD, camera; Sapph, sapphire laser) 
(B) The GOI acts as a very fast electronic shutter that is synchronized with the laser 

pulses and opens at various delays after excitation to produce a series of different 

intensity images.  
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The cells were imaged in PBS by our collaborator, Dr Anca Margineanu 

(Photonics Group, Imperial College), using the FLIM multiwell plate reader and 

microscope described above and a 10x objective. Ten fields of view (FOV) per well, 

each consisting at least five cells, were acquired with five time gates and an 

exposuretime of typically 1 s per gate for the donor (GFP). The data were then analysed 

by Dr Anca Margineanu using an in-house segmentation and global fitting software, 

FLIMfit (Warren et al., 2013), whereby convolution and background correction were 

applied in the monoexponential analysis of the GFP donor lifetime. 

2.6.4. Mass spectrometry (MS) 

Protein samples (RASSF5 SARAH and MST1 SARAHmyc) were buffer exchanged into 

150 mM ammonium acetate as described in section 2.2.1.4. For the mixing experiment, 

equimolar MST1 SARAHmyc and RASSF5 SARAH were incubated for 1 h at 4 °C 

prior to MS analysis. The protein samples were given to Jun Yan (Thalassinos Lab, 

ISMB, UCL) for MS analysis. Mass spectrometry experiments were carried out on a 

first-generation Synapt HDMS (Waters Corp., Manchester, UK) Quadrupole-TOF (time 

of flight) mass spectrometer (Pringle et al., 2007). 2.5 μl aliquots of the protein sample of 

15 μM in concentration were introduced to the mass spectrometer by means of nano-

electrospray ionisation using gold-coated capillaries prepared in-house. The instrument 

was mass calibrated using a 33 mM solution of Cesium Iodide in 250 mM ammonium 

acetate. Typical instrumental parameters were as follows: capillary voltage 1.0 kV, cone 

voltage 50 V, trap energy 6 V, transfer energy 4 V, bias voltage 2.0 V, and trap pressure 

8.6e^-3 mbar. 

 

2.7. Cell viability assay 

Cell viability assays were performed using CellTitre-Blue® (Promega), which provides a 

fluorometric method to estimate the number of viable cells present in a multiwell plate. 

The metabolic capacity of cells, an indicator of cell viability, is measured using the 

indicator dye resazurin, which is reduced by viable cells into highly fluorescent resorufin. 

This change is detected by measuring absorbance using excitation and emission 

wavelengths of 560 nm and 590 nm respectively. 
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A549 cells were transfected with different siRNAs in black 96-well plates as 

described in section 2.5.1.3. After 72 h, 20 μl of CellTitre-Blue® (Promega) were added 

to each well of cells and incubated at 37 °C for 3 h. Absorbance readings were taken 

using a FLUOstar OPTIMA (BMG Labtech) with the wavelengths above. 

 

2.8. Protein modelling  

The sequences encoding the RA domain and SARAH domain were predicted using 

Prosite. For RASSF1-4 and RASSF6, the RA domain sequences were aligned to the 

template of RASSF5 RA domain (PDB: 3DDC) excluding the N-terminal subdomain 

(residues 274–358). The sequences of the predicted RA domain for RASSF7-9 were 

aligned to c-Raf RBD (PDB: 1GUA). A multiple alignment was first performed for all 

RA domain sequences using clustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

Subsequently, the alignments were manually adjusted for each RA domain sequence 

using Swiss-PdbViewer 4.01 to take into account secondary structural elements of the 

ubiquitin fold and conserved residues important for interaction with small GTPases. 

Secondary structure predictions were performed using Psipred secondary structure 

prediction algorithm (http://bioinf.cs.ucl.ac.uk/psipred/). 3D models generated using the 

project mode of the Swissmodel server (http://swissmodel.expasy.org/) and their 

stereochemical quality were evaluated with Procheck (Laskowski et al., 1993).  

The SARAH domains of RASSF1-6 were aligned to the template of MST1 

kinase SARAH (PDB: 2JO8) using Prosite multiple sequence alignment. The 3D models 

were constructed using Modeller v9.8 (Eswar et al., 2006). 100 dimer models were 

calculated and the chosen model for each RASSF represents the best model with the 

lowest objective function. The models were evaluated and validated as described above 

and analysis was performed using PyMol and Swiss-PdbViewer.  

SARAH domain heterodimer models were generated using the docking approach 

by our collaborators, Dr Delphine Flatters and Dr Fernando Rodriguez-Lima (Université 

Paris Diderot). Docking programs Hex (http://hexserver.loria.fr/index.php) and ClusPro 

(http://nrc.bu.edu/cluster) were used for rigid body docking and to run simulations of the 

heterodimers consisting of the monomer structures of MST1 (PDB: 2JO8) and the 

RASSF SARAH homology models from above (Comeau et al., 2004, Kozakov et al., 

http://bioinf.cs.ucl.ac.uk/psipred/
http://swissmodel.expasy.org/
http://hexserver.loria.fr/index.php
http://nrc.bu.edu/cluster
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2010, Macindoe et al., 2010, Ritchie and Kemp, 2000). Each run generated 100 or more 

solutions that were ranked by cluster sizes and the top two ranked models were selected. 

The results were analysed using naccess (http://www.bioinf.manchester.ac.uk/naccess/), 

which calculated the size of the dimer interfaces (Equation 1) and the difference in 

solvent accessibility per residue (ΔASA) in the dimeric structure and in each individual 

monomer (Equation 2 and 3).  

Equation (1) 

Interface size = [ASAtot (chA monomer) + ASAtot (chB monomer)] – ASAtot (dimer) 

Equation (2) 

ΔASAA = ASAres_i (chA free monomer) – ASAres_i (chA in dimer) 

Equation (3) 

ΔASAB = ASAres_i (chB free monomer) – ASAres_i (chB in dimer) 

where ASAtot is total ASA and ASAres_i is ASA of residues involved in interaction. The 

differences in ASA are indications of the involvement of specific residues in the 

dimerisation interface. 

http://www.bioinf.manchester.ac.uk/naccess/
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3 The RASSF RA domain and Ras interaction 
 

3.1. Introduction 

As mentioned in the Introduction chapter, all ten members of the RASSF family share a 

common RA domain, which makes them potential Ras effectors that could be involved 

in various biological pathways regulated by Ras. As the RAS genes are mutated in up to 

30% of human tumours (Pylayeva-Gupta et al., 2011), the RASSF RA domain and its 

ability to interact with Ras GTPases carry particular importance in determining the role 

of the various RASSF members in cancer. 

Structures of HRas in both GDP- and GTP-bound forms were first described 

more than 20 years ago (Wittinghofer and Pai, 1991). These provided significant insights 

into the biochemistry and molecular properties of Ras and the principles that define all 

regulatory GTPases. Various other Ras-related GTPases have also since been structurally 

characterised. These small GTPases consist mainly of the 20-25 kDa G domain, in which 

variations exist in different subfamilies, including insertions and extensions at the amino 

or carboxy termini. The Ras proteins have an additional CAAX motif at the C-terminal 

region, which is post-translationally processed by prenylation, typically farnesylation, 

and further modifications (Hancock, 2003) (Figure 3.1A). These lipid modifications are 

important for Ras subcellular membrane targeting and its biological functions (Magee 

and Seabra, 2005).  

The G domain is the core active site in Ras that carries out its function of 

nucleotide and effector binding, as well as GTP hydrolysis. It has an α/β fold containing 

a six-stranded β-sheet and five helices located on both sides (Wittinghofer and Pai, 1991), 

a well-conserved canonical structure with a universal switch mechanism. The main 

regions of the G domain involved in Ras effector binding are the dynamic switch I and II 

regions, which cover residues 32-38 and 59-67 respectively (Karnoub and Weinberg, 

2008) (Figure 3.1A). Upon GTP hydrolysis, switch I and II undergo conformational 

changes (Figure 3.1Bi), best described as a loaded-spring mechanism, which 

consequently results in the dissociation of the effector complex (Wittinghofer and Nassar, 

1996). Ras in its GDP-bound state is incompatible with complex formation; therefore, 

 



89 
 

 

Figure 3.1 Common structural features of the Ras family GTPases 

(A) Schematic representation of Ras. The regions important for nucleotide and effector 

binding are shown and the residue positions are indicated on top.  

(B) Crystal structure of HRas. (i) Ribbon representations of HRas in complex with GDP 

(PDB: 1WQ1, pink) or GTP (PDB: 5P21, purple). Switch I (green) and switch II 

(blue) for the GDP- and GTP-bound forms are differentiated by light and dark 

colours respectively. (ii) Surface electrostatic potentials of the Ras effector binding 

interface, with positive charges in blue and negative charges in red. (iii) The specific 

residues on the effector binding interface that form direct contact with its effectors. 

Regions around switch I are in purple, switch II in blue. 

  



90 
 

only proteins that exhibit GTP-dependent tight binding to Ras are considered true Ras 

effectors.  

The majority of Ras effectors share a common structural feature in the form of 

the Ras-binding domain (RBD) or RA domain. Both belong to the ubiquitin fold 

superfamily and there are no structural differences between RA and RBD, which are 

merely different names used for protein domains with the same ubiquitin fold 

(Wohlgemuth et al., 2005). From this point onwards they will both be referred to as RA 

domains. These names imply that the proteins carrying such domain bind to Ras 

GTPases. However, it has been shown that not all RA domains are true Ras binders and 

their interaction with Ras has to be determined empirically (Bunney et al., 2006, 

Kalhammer et al., 1997).  

c-Raf was the first identified Ras effector with a putative RA domain. Amongst 

all the known RA domains to date, the c-Raf, RalGDS, PI3Kγ, PLCε and RASSF5 RA 

domains are best-characterised (Bunney et al., 2006, Huang et al., 1998, Nassar et al., 

1996, Pacold et al., 2000, Stieglitz et al., 2008). They all display the conserved ubiquitin 

superfold, which is an α/β-roll consisting of five-stranded β-sheet and two helices. The 

Ras/effector complex is formed via an antiparallel intermolecular β-sheet between switch 

I of Ras and β2 strand of the canonical ubiquitin fold, a binding mode shared by most 

Ras effectors (Figure 3.2A) (Herrmann, 2003). Due to this common structural feature, 

most Ras/effector complexes show very similar binding kinetics with short lifetimes and 

dissociation constants (KD) of 20 nM-2 µM (Wohlgemuth et al., 2005). Initial structural 

analyses only show interaction with Ras switch I (Figure 3.2Bi); however, subsequent 

structures of full-length PI3Kγ and PLCε RA2 illustrate the involvement of switch II, 

which appears to have a regulatory effect on the enzymatic functions of PI3Kγ and PLCε 

(Bunney et al., 2006, Pacold et al., 2000).  

RASSF5 RA also makes contact with Ras switch II (Figure 3.2Bii) (Stieglitz et 

al., 2008). However, this contact is facilitated by a N-terminal subdomain of the 

canonical RA domain. The subdomain consists of a helix and β-strand (Figure 3.2Aii). It 

establishes a hydrophobic interface with Ras switch II and is indispensable for Ras 

interaction. This extension essentially doubles the size of the RASSF5 RA to about 160 

residues, making it a unique RA domain. As RASSF5 is a non-enzymatic Ras effector, 
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Figure 3.2 The RA domain and its binding to Ras family GTPases 

(A) Ribbon representation of the RA domain ubiquitin fold of (i) c-Raf (PDB: 1GUA) 

and (ii) RASSF5 (PDB: 3DDC). The secondary elements of the ubiquitin fold are 

labelled in numerical order, those in the N-terminal subdomain of RASSF5 are 

labelled ‘N’. 

(B) Ribbon representation of the complex structures for the binding of HRas to (i) c-Raf 

RA domain and (ii) RASSF5 RA domain and N-terminal subdomain. Ras is shown in 

purple and RA domains in light blue or cyan. The secondary structures involved in 

Ras interaction are labelled as above. Ras switch I (green) and switch II (blue) are 

highlighted.  
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its distinctive kinetics of an average 10 s complex lifetime and a KD of 0.08 µM point 

towards the characteristics of an adaptor protein. 

Previous studies have highlighted the importance of general electrostatic 

interactions in Ras/effector binding in stabilising the intermolecular β-sheet (Kiel et al., 

2004, Nassar et al., 1996). This was demonstrated by the clear difference in binding 

affinities to Ras between c-Raf and RalGDS. The strong electrostatic complementarity 

between Ras and c-Raf produces a strong, nanomolar affinity, whereas the poorer 

complementarity between Ras and RalGDS accounts for their lower affinity. Other 

characterised RA domains also display similar positively charged Ras binding interface 

(Figure 3.3). As the surfaces of Ras switch I and II are highly negatively charged (Figure 

3.1Bii), an overall positive charge of the RA domain interacting surface suggests that one 

of the key criteria for Ras interaction is fulfilled.  

Apart from electrostatic attraction, there are also specific residues on the surface 

of both Ras and its effectors that are involved in direct interaction. The residues on the 

Ras effector binding region known to form direct contact with the effector are generally 

well-conserved (Figure 3.1Biii). However, those on the effector surface are unique to 

each effector and cannot be predicted (Figure 3.3), therefore it is necessary to understand 

individual structures of these effectors to gain further insight into the mechanisms 

involved in Ras interaction. Nevertheless, there is a further complication that in some 

instances, these individual RA domain structures can provide only one part of the 

binding domain and cannot be analysed in isolation. 

Although Ras interaction with several classical RASSF members has been 

reported, many of these observations are inconclusive and the methods used to show 

interaction were also widely different. In recent years, homology modelling using 

existing structural information, coupled with protein design algorithms have been used to 

predict new protein interactions. In particular, Kiel et al. (2007) have adopted this 

approach to draw a fairly accurate network of interactions between Ras and putative RA 

domains of various GEFs, GAPs and downstream effectors; the latter includes the 

RASSF family and are summarised in Figure 3.4. This method provides a platform for in 

silico predictions of Ras interaction with the RASSF family RA domains using the key 

criteria mentioned above and these can then be confirmed experimentally. 
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Figure 3.3 Surface representations of structurally known Ras effector RA domains 

Surface representation of the Ras binding interface of the effector RA domains. (Top) 

Regions of key interacting residues are in cyan. Each residue and its position are labelled. 

(Bottom) Electrostatic potentials of the Ras binding interface are represented by positive 

(blue) and negative (red) charges. (A) c-Raf (PDB: 1GUA), (B) RalGDS (PDB: 1LFD), 

(C) PI3Kγ (PDB: 1HE8), (D) PLCε RA2 (PDB: 2C5L) and (E) RASSF5 (PDB: 3DDC). 

Images created in PyMol. 
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Figure 3.4 Ras interactome 

This Ras network chart focuses on RA domain-containing proteins that act as immediate 

downstream effectors as shown. Other Ras binding proteins, such as GEF, GAP, CAAX 

modification and post-translational enzymes are grouped as “others”. Adapted from Cox 

and Der (2010). 
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The aim of this work was to compare the RA domains of all ten RASSF members, 

in terms of structure and their interaction with Ras GTPases, using RASSF5 as a 

benchmark and positive control. Here we observe differences between the in silico 

predictions and in vitro studies. The RASSF members also showed differential binding 

characteristics and affinities to Ras. 

 

3.2. Results 

3.2.1. Modelling the RASSF RA domain and predicting its interactions 

First, we compared the homologies of the RA domains amongst the ten RASSF members 

by generating a phylogenetic tree (Figure 3.5). The classical RASSF1-6 and the N-

terminal RASSF7-10 are clearly separated into two branches, which are both further split 

into two sub-branches. The homology scores for each RASSF pair are summarised in 

Table 3.1. RASSF1, 3 and 5 are 40-60% identical, whilst RASSF2, 4 and 6 share a 50- 

70% homology. In contrast, the RA domains of the classical RASSF and N-terminal 

RASSF appear to have little in common, with homologies mostly below 15%. However, 

within the N-terminal RASSF subgroup, RASSF7 and RASSF8 RA domains are 67% 

identical, whilst RASSF9 and RASSF10 share a 58% homology. 

3.2.1.1. The classical RASSFs 

Due to the high homology amongst the classical RASSF members, we performed 

homology modelling of their RA domains using RASSF5 as the structural template. 

However, the template was modified by removing the N-terminal subdomain and the β1 

strand due to the unstructured loop region connecting β1 and β2, which makes it 

impossible to model the N-terminal extension and the canonical RA domain as a single 

unit. The sequences for the regions not modelled (Figure 3.6A) were aligned separately 

from the Prosite predicted RA domain sequences (Figure 3.6B) to compare the 

conservation pattern of the key interacting residues. In the N-terminal subdomain and β1 

regions, only residues aligning to L226 and K241 are relatively conserved. However, 

interestingly, the residues in RASSF2, 4 and 6 aligning to K241 are oppositely charged. 

The main residues involved in electrostatic interactions are found in β2 and the C-

terminus of α1. Several key residues, such as P283, K308 and F309 are 
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Figure 3.5 Phylogenetic tree of the RASSF family RA domain 

Multiple sequence alignments were performed as described in section 2.8. The 

phylogenetic tree was built in njplot using the sequence alignments. Bootstrap figures are 

shown to represent the confidence level of each node, with 1000 being the maximum. 

The 0.05 scale bar refers to the branch length, which is a measure of the amount of 

divergence between two nodes in a tree. The tree is split into two branches, which are 

colour-coded: blue for classical RASSF1-6 and red for N-terminal RASSF7-10.
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Table 3.1 Homology scores for each pair of RASSF members 

RASSF RASSF Score (%)   RASSF RASSF Score (%) 
1 2 24.72  3 10 13.76 
1 3 44.21  4 5 29.21 
1 4 33.71  4 6 52.81 
1 5 58.24  4 7 4.76 
1 6 32.58  4 8 13.41 
1 7 15.48  4 9 7.87 
1 8 7.32  4 10 3.37 
1 9 18.95  5 6 28.09 
1 10 17.89  5 7 10.71 
2 3 26.97  5 8 4.88 
2 4 73.03  5 9 12.09 
2 5 29.21  5 10 25.27 
2 6 55.06  6 7 5.95 
2 7 2.38  6 8 6.10 
2 8 3.66  6 9 7.87 
2 9 6.74  6 10 4.49 
2 10 3.37  7 8 67.07 
3 4 29.21  7 9 27.38 
3 5 51.65  7 10 28.57 
3 6 24.72  8 9 34.15 
3 7 14.29  8 10 30.49 
3 8 10.98  9 10 57.89 
3 9 9.47         
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fully conserved. However, other important residues in β2 aligning to D285, I287, K288 

and Q289 are not as well conserved, with RASSF1 sharing the most conserved residues 

with RASSF5.  

In the remodelled RASSSF5 template, β2 is not seen as a strand due to its anti-

parallel position with β1, which was removed from the original template (Figure 3.6C). 

This is also the case for all the classical RASSF RA domain models (Figure 3.6D). 

Interestingly, the RA domain sequences predicted by Prosite for all six classical RASSF 

members do not include the β1 strand, which traditionally is part of the canonical RA 

domain. In the RASSF2, 4 and 6 models, β4 is also missing due to the gap aligning to 

that region (Figure 3.6B). Despite this minor structural variation and some differences in 

the key interacting residues, there are no major changes in the electrostatic surfaces for 

all models in the main interacting regions of β2 and α1, with the exception of RASSF3, 

which appears to have a more neutral surface around the β2 region (Figure 3.6Diii). 

However, theoretically, these changes should not affect Ras interaction for most of the 

classical RASSFs as they are not within the interacting surfaces. 

3.2.1.2. The N-terminal RASSFs 

The RA domains of the N-terminal RASSFs were modelled using c-Raf as a template 

due to its higher percentage of sequence identity (11.69%, 7.79% and 6.49% for 

RASSF7, 8 and 9 respectively) and better alignments (Figure 3.7A). There is a good 

alignment between c-Raf and RASSF7 and RASSF8 where most key interacting residues 

in β1 and β2, such as R59, Q66, R67 and V69 are 100% conserved. In contrast, the 

RASSF9 residues in these positions are not as well conserved, with only a conserved 

residue aligning to V69 and a semi-conserved residue at R67. Unlike the classical 

RASSFs, the residues aligning to K84 and R89 in the α1 region are not well conserved. 

The differences observed in the sequence alignments are evident in the structural 

models. The template c-Raf has a highly positively charged surface around the β1, β2 

and α1 regions (Figure 3.7B). Whilst there are no major electrostatic surface changes in 

the β1 and β2 regions of RASSF7 and RASSF8, their α1 region is neutral (Figure 3.7Ci, 

ii). This change is more significant in RASSF9, where the large negatively charged patch 

in the β2 region is a stark contrast to the template (Figure 3.7Ciii). The slight differences 

in the electrostatic potential in RASSF7 and RASSF8 interacting surfaces should not 
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Figure 3.6 Modelling the classical RASSF RA domain 

Multiple sequence alignments with secondary structural elements indicated above. The 

residues in RASSF5 involved in Ras interaction are marked with an asterisk (*) above 

and the conserved residues aligning to those positions are highlighted in grey. Other 

residues are coloured according to their similarity, fully conserved residues in red, highly 

similar residues in green and weakly similar residues in blue.  

(A) RASSF1-6 sequences aligning to the RASSF5 N-terminal subdomain  

(B) RASSF1-6 RA domain sequences predicted by Prosite 
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(C) The remodelled RASSF5 template without the N-terminal subdomain. (Left) Ribbon 

representation with the side chains of the key interacting residues in pink and labelled. 

(Right) Surface electrostatic potentials are represented as in Figure 3.3. 

(D) Ribbon representation of the RA domain structural models of (i) RASSF1, (ii) 

RASSF2, (iii) RASSF3, (iv) RASSF4 and (v) RASSF6. Side chains of residues 

aligning to the conserved residues of RASSF5 are shown in pink. Surface 

electrostatic potential is superimposed as represented as above. 

  



102 
 

 

Figure 3.7 Modelling the N-terminal RASSF RA domain 

(A) Multiple sequence alignments of RASSF7-10 and c-Raf RA domain sequences 

predicted by Prosite. The representations are as described in Figure 3.6A.  

(B) The c-Raf RA domain template. The ribbon representation and surface electrostatic 

potential are superimposed. The side chains of key interacting residues are labelled 

and shown in yellow. 

(C) RA domain structural models of (i) RASSF7, (ii) RASSF8 and (iii) RASSF9 

represented as described in Figure 3.6D. 
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eliminate their ability to interact with Ras, but may serve to weaken this interaction. 

 Overall, in addition to the bona fide Ras effector RASSF5, we predict that 

RASSF1, 2, 4, 6, 7 and 8 are also potential Ras effectors. With a more neutral surface, 

the ability of RASSF3 to bind Ras can only be determined empirically, whereas RASSF9 

with its large surface of negative charge is a clear non-binder.  

3.2.2. RA domain of RASSF1-10 shows differential Ras interactions 

In order to validate the in silico predictions and determine whether the predicted RASSF 

RA domains are able to bind Ras with a relatively high affinity, we performed an in vitro 

pull-down assay for the whole panel of full-length RASSF family members using 

purified proteins of activated HRasV12, KRasV12, MRasV22, NRasV12 and Rap2BV12. 

The pull-down method used in this study typically detects binding affinities of up to a KD 

of 10 μM (Bunney et al., 2006). Therefore, protein interactions with a low affinity (high 

KD) or fast off rate (high koff) will not be detected using such a method.  

 A first set of pull-downs were conducted using purified proteins of structurally 

characterised RA domains to confirm detection and relative affinities using such 

technique (Figure 3.8A). Sequence alignments of the RA domains of c-Raf, RalGDS, 

PLCε, PI3Kγ and RASSF5 showed that whilst there is little sequence identity, their 

secondary structural elements are very well-conserved and all the key interacting 

residues are found within the β1, β2 and α1 region (Figure 3.8B). RASSF5 and PI3Kγ 

also share the common feature of having an additional helix after α1. As the isolated RA 

domain of PI3Kγ cannot be expressed, it was not included as a control in the pull-down 

assay. However, those of c-Raf, RalGDS, PLCε and RASSF5 were all detected at 

comparable levels with HRasV12 (Figure 3.8C). Whereas only RalGDS and RASSF5 

were detected in complex with Rap2BV12, with RalGDS being the stronger binder 

(Figure 3.8D). 

In many effectors, it has been shown that the isolated RA domain is a stronger 

Ras binder compared to their longer or full-length protein, and whilst they show less 

selectivity for lipid-modified Ras, they still preserve their specificity for GTP-bound Ras, 

for example c-Raf and PLCε (Bunney et al., 2006, Fischer et al., 2007, Stang et al., 1997). 

Therefore, our initial efforts were to express and purify isolated RA domains for the 

remaining nine RASSF members as these will allow us to first identify GTP-dependent 
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Figure 3.8 Interaction between Ras GTPases and isolated RA domain proteins 

(A) Schematic outline of in vitro pull-down assay as described in section 2.6.1.1. 

(B) Sequence alignments of ubiquitin folds from RASSF5, c-Raf, RalGDS, PLCε RA2 

and PI3Kγ. Secondary structural elements are indicated above and the amino acid 

residues in those regions are coloured accordingly. Key Ras interacting residues are 

underlined. 

(C) Amino acid residue boundaries for the purified RA domain proteins of c-Raf, 

RalGDS, PLCε RA2 and RASSF5Δ52 used in in vitro pull-down assays. 

(D) Pull-down assay to show interaction between purified proteins of Ras GTPases and 

isolated RA domains listed in Figure 3.8C. Each set of pull-down experiment was 

repeated three times and a representative is shown here. (i) Immobilised HRasV12 in 

GDP (D) or GTP (T) bound form was used to pull-down GST-tagged RA domains. 

(ii) Immobilised GST-tagged RA domains were used to pull down untagged 

Rap2BV12 in (D) or (T) form. 
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binders in a more definitive manner. However, most of these RA domains, regardless of 

the tags added to aid expression and solubility, either could not be expressed or produced 

very low yield, thus cannot be purified (Table 3.2). The few isolated RA domains that 

were successfully purified included those for RASSF3, 7, 8 and 9, which were 

subsequently tested for interaction with HRasV12 but no binding was detected (data not 

shown). This set of data provided the first indication that RASSF5 may in fact be quite a 

distinct member despite predicted similarities. The differences in inter-domain 

interactions and their integration into the overall structure could be one possible reason.   

It has been shown in some cases that Ras interaction is influenced by other 

regions outside of the RA domain. For instance, RASSF5 which makes contacts with Ras 

switch II via its N-terminal subdomain (Stieglitz et al., 2008); and PI3Kγ, in which a 

loop insertion in the RA domain changes the binding orientation of Ras to establish 

switch II contacts with the PI3Kγ catalytic domain (Pacold et al., 2000). In the case of 

PI3Kγ, it is only possible to express an almost full-length protein but not its isolated RA 

domain. We considered that this might be a possibility for the RASSF proteins in 

bacterial expression systems. Thus, we attempted to express them as full-length proteins 

attached to a SUMO tag, which is the most efficient fusion technology to date in terms of 

aiding expression (Marblestone et al., 2006). Some expression was detected using the 

bacterial system; however, none of the proteins were expressed to a level that can be 

efficiently purified (Table 3.2).  

Due to the extreme difficulty in purifying any form of the RASSF proteins and 

the negative results for the isolated RA domains tested, we resorted to using mammalian 

cell lysates containing full-length recombinant GFP-RASSF and purified Ras GTPases in 

a slightly modified pull-down assay (Figure 3.9Bi). In subsequent pull-down 

experiments, full-length RASSF5 served as a positive control and consistently showed 

GTP-dependent strong binding to all Ras GTPases tested (Figure 3.9Bii). The most 

striking observation was that no other RASSF member displayed as strong binding, if at 

all, as RASSF5. It is important to note here, we cannot confirm that the different RA 

domains are well folded in the E. coli or mammalian expression systems. It is possible 

that some of the RASSF1-10 RA domains fold incorrectly when overexpressed and thus 

cannot bind Ras. Nevertheless, RASSF1 showed GTP-dependent binding, although 

weaker and only to KRasV12 and NRasV12. The RASSF1 bands detected in MRasV22 
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Table 3.2 Summary of protein expression for the RASSF RA domain and full length 
proteins 

Vector and tags Constructs Boundaries 
(aa) 

Purification 
method 

Yield 
(mg/L 
culture)  

Pull-down 
assay 

pTriEx™-6 
(StrepII, 10xHis) 

RASSF1 RA1 133-291 Section 2.2.1.2  
No cleavage 

No yield - 

 RASSF1 RA2 129-287  No yield - 
 RASSF2 RA 113-263  No yield - 
 RASSF3 RA1 48-186  No yield - 
 RASSF3 RA2 79-186  0.76  Performed, 

negative 
 RASSF4 RA 108-261  No yield - 
 RASSF6 RA 120-236  No yield - 
 RASSF7 RA 1-89  No yield - 
 RASSF8 RA 1-82  No yield - 
 RASSF9 RA 22-119  No yield - 
 RASSF10 RA 1-133  No yield - 
      
pDEST565 
(6xHis, GST) 

RASSF1 RA1 133-291 3c protease 
cleaved 

No yield - 

 RASSF1 RA2 129-287  No yield - 
 RASSF2 RA 113-263  No yield - 
 RASSF3 RA1 48-186  No yield - 
 RASSF3 RA2 79-186   - 
 RASSF4 RA 108-261  No yield - 
 RASSF6 RA 120-236  No yield - 
 RASSF7 RA 1-89  No yield - 
 RASSF8 RA 1-82  No yield - 
 RASSF9 RA 22-119  No yield - 
 RASSF10 RA 1-133  No yield - 
      
pOPINS 
(6xHis, SUMO) 

RASSF1 RA1 133-291 Ulp1 protease 
cleaved 

No yield - 

 RASSF1 RA2 129-287  No yield - 
 RASSF2 RA 113-263  No yield - 
 RASSF3 RA1 48-186  No yield - 
 RASSF3 RA2 79-186  Very poor - 
 RASSF4 RA 108-261  No yield - 
 RASSF6 RA 120-236  No yield - 
 RASSF7 RA 6-89  3.3 Performed, 

negative 
 RASSF7 RA99 6-99  3.5  
 RASSF7 RA109 6-109  3.5  
 RASSF7 RA119 6-119  5  
 RASSF7 RA129 6-129  Aggregate  
 RASSF7 RA139 6-139  5.3  
 RASSF7 RA149 6-149  5.3  
 RASSF7 RA159 6-159  5.4  
 RASSF7 RA176 6-176  11.2  
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Vector Constructs Boundaries 
(aa) 

Purification 
method 

Yield 
(mg/L 
culture)  

Pull-down 
assay 

pOPINS 
(6xHis, SUMO) 

RASSF8 RA 1-82 Section 2.2.1.2 
Ulp1-cleaved 

9.9 Performed, 
negative 

 RASSF8 RA92 1-92  12.8  
 RASSF8 RA102 1-102  13.7  
 RASSF8 RA112 1-112  10.4  
 RASSF8 RA122 1-122  5.4  
 RASSF8 RA132 1-132  10.5  
 RASSF8 RA142 1-142  13.2  
 RASSF8 RA157 1-157  8.3  
 RASSF9 RA 22-119  3.4  
 RASSF10 RA 1-133  No yield - 
 RASSF1 1-340  No yield - 
 RASSF2 1-326  No yield - 
 RASSF3 1-238  No yield - 
 RASSF4 1-321  No yield - 
 RASSF5 1-265  Very poor - 
 RASSF6 1-337  No yield - 
 RASSF7 1-373  No yield - 
 RASSF8 1-392  Very poor - 
 RASSF9 1-435  No yield - 
 RASSF10 1-507  No yield - 
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Figure 3.9 Interaction between Ras GTPases and full length RASSF 

(A) Schematic outline of in vitro pull-down assay as described in section 2.6.1.2. 

(B) Pull-down assay to show interaction between purified Ras GTPases and full length 

RASSF in whole cell lysates. Each set of pull-down experiment was repeated three 

times and a representative is shown here. (i) RASSF1-10 were expressed as full 

length GFP fusion proteins in the mammalian 293F expression system as described 

in sections 2.5.1.3 and 2.6.1.2. The expression of these proteins was detected by 

western blotting using the anti-GFP antibody and GAPDH was used as a loading 

control (top panel). Purified S-tagged Ras GTPases as described Table 2.5 (bottom 

panel). (ii) The indicated immobilised Ras GTPase in GDP (D) or GTP (T) bound 

form (bottom panels) was used to pull down GFP-tagged RASSF. The bound 

proteins were analysed by western blotting (top panels).  
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and Rap2BV12 pull-downs are likely the result of non-specific binding. RASSF3 and 

RASSF4 are much weaker binders, both binding HRasV12 and KRasV12, with RASSF3 

also weakly interacting with MRasV22. On the other hand, RASSF6 displayed more 

consistency, binding relatively strongly to HRasV12, but very weakly to MRasV22 and 

NRasV12 and is the only other classical RASSF to bind to Rap2BV12. RASSF7 is the 

only N-terminal RASSF to show GTP-dependent binding to all Ras GTPases tested 

except MRasV22. In all cases binding was considerably weaker when compared to 

RASSF5. No binding was observed for RASSF2 and the rest of the N-terminal RASSFs. 

3.2.3. Possible roles for RASSF proteins in Ras-dependent cellular functions 

There are various reports implicating the RASSF family as tumour suppressors in many 

important biological pathways that could be regulated by Ras, including apoptosis and 

cell cycle arrest (Richter et al., 2009). In order to comparatively assess the importance of 

the RASSF proteins in relation to Ras in a physiological setting, we used siRNA to 

knockdown the individual RASSF members in cell lines carrying mutant KRas. These 

were human A549 lung adenocarcinoma and HCT116 colon carcinoma cell lines. Cell 

viability was used as a measure of phenotypic change as a result of these knockdowns.  

Different responses were observed between the two cell lines (Figure 3.10). KRas 

knockdown was used as a positive control and as expected, caused a significant 

reduction in cell viability in HCT116. However, this change was much smaller in A549. 

Likewise, no significant changes were observed for all knockdowns in A549, with the 

exception of RASSF9, the loss of which resulted in an increased viability. In contrast, in 

HCT116, the loss of RASSF2, 4 and 7 caused a small but statistically significant 

reduction in viability. These observations are in line with the controls, whereby greater 

effects were observed in HCT116. 

 As a comparison to other potential or known Ras effectors, we also performed a 

siRNA screen on a panel of 46 other RA domain-containing proteins using the same cell 

lines (Table 3.3). Again, we observed differences between the two cell lines. However, 

we also identified a few positive hits after multiple repeats. These are the knockdowns 

that repeatedly produced significant decrease in cell viability in both A549 and HCT116, 

and they include PIK3C2α, b-Raf, TIAM2 and RIAM. 
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Figure 3.10 siRNA knockdown of RASSF1-10 in KRas mutant cell lines 

A549 and HCT116 cell lines were transfected with siRNA and cell viability was used as 

a measure of phenotypic change as described in sections 2.5.1.3 and 2.7. Untransfected 

cells were used as a negative control and KRas knockdown a positive control. Higher 

absorbance indicates greater viability and vice versa. The levels of statistical significance 

are shown as p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***). These were calculated using 

the Student’s t-test for each individual knockdown against the negative control. The 

experiments were repeated three times and each was performed in triplicates.  
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Table 3.3 Summary of the siRNA screen of a panel of Ras effectors 

The screens were performed in A549 lung adenocarcinoma and HCT116 colon 

carcinoma cell lines.  denotes significant decrease in viability in either cell line,  in 

both cell lines and  no effect. 

Genes Viability 
inhibition 

Genes Viability 
inhibition 

Genes Viability 
inhibition 

RALGDS  RAPGEF4  ARHGAP13  

RGL1  RAPGEF6  ARHGAP14  

RGL2  SOS1  ARHGAP19  
RIN1  SOS2  ARHGAP20  
RIN2  a-Raf  KRIT 1  

RIN3  b-Raf  RIAM   
ARAP1  c-Raf  Raf pool*   
ARAP2  RGS12  PIK3C pool*   
ARAP3  SNX27   RASSF1  

PLCε1  RGS14  RASSF2   
DGKQ  TIAM1  RASSF3   
MAP3K1  TIAM2   RASSF4   
PIK3Cα  MLLT4  RASSF5  

PIK3Cβ  MYO9A  RASSF6  

PIK3Cγ  MYO9B  RASSF7  

PIK3C2α  MYO10  RASSF8  
PIK3C2β  GRB7  RASSF9  

PIK3C2γ  GRB10  RASSF10  

RAPGEF2  GRB14    

RAPGEF3  ARHGAP4    

 
* Raf pool contains a-Raf, b-Raf and c-Raf, and PIK3C pool contains PIK3Cα, PIK3Cβ 

and PIK3Cγ. 
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3.3. Discussion 

The comparison between in silico predictions and in vitro data clearly demonstrates the 

deficiencies in electrostatic surface predictions to determine Ras binding. The predicted 

Ras-binders were RASSF1, 2, 4, 6, 7 and 8 compared to the observed binders RASSF1, 3, 

4, 6 and 7. Whilst no binding for RASSF9 and RASSF10 was observed as expected, 

there are some definite discrepancies between the predicted and observed binders for 

other RASSF members. For instance, RASSF1, which shares the highest sequence and 

surface homology with RASSF5, even outside the canonical RA domain, showed limited 

and much weaker interactions with different Ras GTPases. RASSF2, which also has a 

similar surface potential, did not interact with any Ras GTPases tested. Furthermore, 

despite both having similar electrostatic surfaces, RASSF4 proved to be a much weaker 

binder, if at all, compared to RASSF6. The clearest example is the discrepancy observed 

for RASSF7 and RASSF8. Both their RA domains share a high level of sequence 

identity and have almost identical electrostatic surfaces yet showed completely opposite 

binding behaviours in the in vitro studies. These observations highlight the two main 

limitations in predicting binding based on electrostatic interaction: 1) important specific 

residues within the surfaces and 2) other parts of the protein can be important in RASSF/ 

GTPase interaction. Furthermore, the experimental data revealed that only RASSF5 has 

clear, strong binding for Ras GTPases either as a full-length protein or isolated binding 

domain. 

 In the context of existing reports of Ras interaction with the RASSF family, 

several RASSF members have been shown to interact with various Ras isoforms. 

However, some of these reports appear contradictory, whilst comparison with our 

observations is also inconsistent. 

Apart from RASSF5, the most studied RASSF member is RASSF1. It was first 

shown to directly bind HRas (Vos et al., 2000), only to be refuted by a report of indirect 

association via the RASSF5 RA domain when the two RASSF proteins heterodimerise in 

mammalian cells (Ortiz-Vega et al., 2002). Interestingly, RASSF1 has also been shown 

to interact with Ran-GTP from the Ran GTPases subfamily, which is the first report of 

RASSF interaction with a Ras-related small GTPase outside the Ras subfamily. 

Furthermore, this interaction is crucial in maintaining microtubule stability. Most 

recently, RASSF1 was shown to interact with Rap1A but not Rap2 and HRas, an 
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interaction which also appears to affect microtubule organisation (Verma et al., 2011). 

Our inability to detect any interaction between HRas and RASSF1 contrasts with these 

two reports. We also never tested for the presence of endogenous RASSF5 in the cell 

system we used to overexpress RASSF1. However, if RASSF1 interacted with Ras via 

RASSF5 as reported, then it should have shown GTP-dependent binding by RASSF1 for 

either all or none of the Ras GTPases tested, instead of the few that were observed. The 

last report is in agreement with our data as we did not observe specific interaction 

between RASSF1 and Rap2B or HRas, although both share an identical core effector 

region with Rap1 (Verma et al., 2011). Based on a previous study by Miertzschke et al. 

(2007) showing opposite binding behaviours by RASSF5 to Rap1 and Rap2, coupled 

with the high homology between RASSF1 and RASSF5, it is likely that we would also 

observe interaction between RASSF1 and Rap1 if tested. 

Reports of Ras interaction with other members of the RASSF family are scarce, 

with only one or two reports each for RASSF2, 4, 6, 7 and 9. RASSF2, 4 and 6, which 

we have established as being the most closely related within the classical RASSF 

subgroup, were all shown to interact specifically and directly with GTP-loaded 

farnesylated KRas with rather high affinities and the canonical RA domain is sufficient 

for interaction (Allen et al., 2007, Clark et al., 2012, Eckfeld et al., 2004, Vos et al., 

2003a). These interactions seem to have similar consequences in promoting apoptosis 

and cell cycle arrest in tumour cell lines. However, these observations of Ras interactions 

are in direct contrast with our data in which interaction between KRas and RASSF2 and 

RASSF6 was never detected whilst RASSF4 was barely detectable. This difference 

could be the result of farnesylation on the KRas CAAX box, which may contribute to 

effector recognition and specificity (Hancock, 2003).  

 Takahashi et al. (2011) was the first to demonstrate GTP-dependent interaction 

between farnesylated NRas and RASSF7, with a functional consequence in the JNK 

signalling pathway. However, they did not observe interaction with other Ras isoforms, 

including HRas and KRas. This is puzzling as our data indicate that RASSF7 is one of 

the more promiscuous Ras binders in the family, even in the absence of lipid 

modifications on the CAAX box.  

 Lastly, RASSF9 has also been shown to bind strongly to NRas and KRas, and 

weakly to MRas (Rodriguez-Viciana et al., 2004). As this study was performed using 
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cells co-overexpressing Ras and RASSF9, it is not clear whether these interactions are 

direct and stimulation- or GTP-dependent. They also contradict our findings where our in 

silico model greatly disfavoured binding, which was supported by our in vitro 

observation.  

The work presented here shows that whilst the predictions made of Ras 

interactions using structural information and surface charge distributions are informative 

and true to a certain extent, they are insufficient to determine definite strong binding to 

different Ras GTPases. This could in part, be due to the specificities that different Ras 

GTPases have for their effectors, which are defined by such subtle differences in residue 

conservation and structure, making them difficult to differentiate using our in silico 

approach. Examples of this include the reversal in binding affinities between Ras and 

Rap1 (Herrmann, 2003) and Rap1 and Rap2 (Miertzschke et al., 2007), although they are 

all highly related and belong to the Ras subfamily. Comparison of our observations with 

existing reports suggests that the reverse could also apply to these potential Ras effectors, 

whereby they have different affinities and specificities for different small GTPases 

dictated by the minor differences on their interaction surfaces. Additionally, a strongly 

positively charged surface does not always signify a strong binder, as demonstrated by 

our in vitro data. Therefore, these in silico predictions cannot be universally applied to 

define general Ras association for any specific effector. Further analysis using more 

advanced bioinformatics and computational tools will likely increase the accuracy of 

such predictions, as has been shown previously (Kiel et al., 2007, 2008). Ultimately, 

these predictions must always be confirmed through in vitro and finally in vivo 

experimentation.  

 Besides differential specificities and affinities, the experimental settings, in the 

case of such sensitive interactions, could play a significant role in the differences 

between earlier studies and our data. These include the assay conditions, such as the 

stringency of wash cycles, cellular versus in vitro systems and in particular, the isoforms 

and lengths of Ras GTPases and effectors used. The majority of previously shown 

RASSF interactions that contradicted our data involve farnesylated Ras. While it has 

been shown that farnesylation of the CAAX motif is crucial for Ras trafficking and 

localisation in cells (Magee and Seabra, 2005), it is interesting to note that, though not 

always the case, this lipid modification also plays an important role in specific effector 

binding. Another point of interest is the N-terminal subdomain in the classical RASSF 
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members. Previous studies suggest that it is not required for Ras binding in the case of 

RASSF2, 4 and 6; however, this has not been tested for RASSF1 and RASSF3, which 

are the two members most similar to RASSF5. 

 In terms of the physiological functions of the RASSF family, theoretically, 

tumour suppressors such as the RASSF members should reduce cell viability. Thus, 

siRNA knockdown of their expression should result in an increase in viability and the 

reverse applies to oncogenes. The lack of response to the knockdowns in A549 cells 

could be due to the already low levels of expression or absence of these targeted proteins 

due to epigenetic silencing, which is a phenomenon that is well documented for many of 

the RASSF members, for example RASSF1 is known to be downregulated in A549 cells 

(Dammann et al., 2000). It could also be due to the KRas-independent phenotype of 

A549. However, some of our observations from the KRas-dependent cell line HCT116 

appear to oppose the hypothesis. RASSF2 and RASSF4, which have been reported as 

potential tumour suppressors (Eckfeld et al., 2004, Vos et al., 2003a), appear to be 

important for cell viability. Interestingly, several recent studies, including a 

comprehensive siRNA study of tumour suppressor genes also reported similar 

observations whereby established tumour suppressors also exhibited oncogenic 

properties and vice versa under different assay conditions (Bric et al., 2009, Lamouille 

and Derynck, 2009, Negrini et al., 2013, Oleksiewicz et al., 2013, Pierce et al., 1999). 

Together, these suggest that some tumour suppressors may function in a context-

dependent manner based on the genetic background and tumour microenvironment, and 

may exhibit pro-oncogenic properties under certain circumstances. 

 Due to the limitations of our RNAi approach, the siRNA screen is inconclusive in 

determining the functional connection between Ras and the RASSF family. The caveats 

include the lack of information on the endogenous expression levels of all the targets in 

the cell lines used, as well as the validation of effective siRNA-mediated gene 

knockdown and off-target effects. Due to a lack of robust RASSF antibodies, possible 

optimisations for future RNAi studies include screening for endogenous target protein 

expression and efficient knockdowns at the RNA level using RT-PCR. Further 

validations should also be performed to eliminate off-target effects and confirm on-target 

effects for potential hits. 
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Despite the limitations of the siRNA screen, it does serve as a useful gateway to 

investigate the Ras network. In order to improve our understanding on the link between 

Ras specificity and the potentially different physiological functions of the RASSF family 

members, more diverse and exhaustive biological assays and screens are needed. Cell 

viability could be scored in parallel with apoptosis and cell cycle arrests during siRNA 

screens. These screens could also be performed in more cell lines harbouring different 

mutant Ras isoforms, cell lines with different genetic backgrounds, different tumour 

models and microenvironments, all of which may help to shed more light on the specific 

functions and possible context-dependent tumour suppressor properties of the RASSF 

members. 

Further work is also required to better characterise and compare the RA domains 

of the RASSF family and their interactions with different Ras GTPases. Various point 

mutations of critical interacting residues, especially those predicted to make contact with 

specific residues in Ras and Rap1 that may have opposite properties, may also be useful 

in determining Ras specificity.   
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4 The C-terminal SARAH domain and coiled-coil  
 

4.1. Introduction  

Although the ten RASSF members all share a common RA domain, their C-terminal 

domains differ between the classical RASSF1-6 and the N-terminal RASSF7-10. The 

classical RASSF members share a common SARAH domain. However, this is absent in 

the N-terminal RASSF. Instead, three of these RASSF members (RASSF7, 8 and 10) 

have predicted coiled-coil motifs at various positions towards their C-terminal region 

(see Chapter 1, Figure 1.1). 

 The name of the C-terminal domain, SARAH, is derived from the three proteins 

that share this common feature at their extreme C-terminal region: Salvador, RASSF, 

Hippo (Scheel and Hofmann, 2003). As mentioned in the Introduction chapter, the Hippo 

signalling pathway and many of its major components, including Salvador (Sav, human 

homologue WW45), RASSF and Hippo (Hpo, human homologues MST1 and MST2) are 

well conserved between Drosophila melanogaster and mammals. In the MST/Hippo 

pathway, the SARAH domain is a key feature that facilitates the interactions between 

MST1/2, WW45 and RASSF, all of which act in conjunction to promote apoptosis and 

restrict cell proliferation to suppress tumourigenesis (Guo et al., 2007, Khokhlatchev et 

al., 2002, Praskova et al., 2004, Scheel and Hofmann, 2003). MST1 and MST2 can also 

synergise with different RASSF members outside the Hippo pathway to induce apoptosis 

(Ikeda et al., 2007, 2009, Oh et al., 2006). Additionally, KRas has been shown to 

promote apoptosis via the RASSF1/MST1 and RASSF5/MST1 complexes 

(Khokhlatchev et al., 2002, Praskova et al., 2004). More recently, RASSF1 and MST1 

have also been linked to cardiac physiology and disease, whereby their interaction 

facilitated by the SARAH domain greatly influences the cardiac function in response to 

stress (Del Re et al., 2010).  

MST kinases consist of a N-terminal kinase domain, an inhibitory domain and a 

SARAH domain (Figure 4.1A) The MST1 SARAH domain was the first to be 

structurally characterised using Nuclear Magnetic Resonance (NMR) spectroscopy and 

has since been studied quite intensively (Hwang et al., 2007). The structure was solved 
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Figure 4.1 Comparison of the MST1 kinase and RASSF5 SARAH domain 

(A) Schematic representation of MST1 kinase. The main structural features are shown 

and the residue positions are indicated above. 

(B) The homodimer structure of the MST1 SARAH domain (PDB: 2JO8). (i) Ribbon 

representation of the SARAH homodimer. (ii) Surface representation of the SARAH 

domain in the same orientation (left) and the 180° rotated orientation. Basic residues 

are in blue, acidic in red, polar in white and hydrophobic in yellow. Side chains of 

hydrophobic residues involved in dimer stability are shown in yellow and labelled. 

Basic and acidic residues involved in electrostatic interactions are in blue and red 

respectively.  

(C) The homodimer structure of the murine RASSF5 SARAH domain (PDB: 2YMY). (i) 

Ribbon representation of the SARAH homodimer. (ii) Surface representation of the 

SARAH domain in two orientations as described above. The residues and side chains 

are also coloured and labelled as above.  

(D) Sequence alignment of the MST1 and murine RASSF5 SARAH domain. Fully 

conserved residues are marked by asterisks (*), highly conserved residues by colons 

(:) and moderately conserved residues by periods (.). Conserved hydrophobic 

residues involved in the dimer interface are highlighted in yellow, acidic residues in 

red and basic residues in blue. The top line indicates the heptad repeats within the 

SARAH domain and the stutters are shown in red text.  
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as a homodimer, with each monomer consisting of two helices (Figure 4.1Bi). The first 

helix, H1 is a short 310 helix folded toward the corresponding helix H1’ of the other 

monomer. It also brings the two kinase domains into close proximity to allow their 

autophosphorylation, an event that is important for the activation of its kinase activity 

and downstream signalling (Anand et al., 2008, Praskova et al., 2004). The second long 

helix, H2 constitutes the rest of the SARAH domain and exhibits coiled-coil properties 

(Constantinescu Aruxandei et al., 2011). The monomers form a dimer via a head-to-tail 

interaction of the two long helices in an antiparallel arrangement. This dimer interface is 

largely stabilised by hydrophobic interactions from the aliphatic side chains of the 

residues in H2 (Figure 4.1B). Additional intermolecular electrostatic interactions and 

bifurcated hydrogen bonds also contribute to the dimer stability.  

Initial structural studies revealed a higher propensity for the isolated MST1 

SARAH domain to form heterodimers, rather than homodimers, with the RASSF5 

SARAH domain with a KD in the nanomolar range (Hwang et al., 2007). However, later 

studies have shown that the isolated SARAH domain behaves differently compared to its 

longer construct, which is more reflective of its physiological state. When the MST1 

SARAH domain is expressed with its N-terminal inhibitory region that connects it to the 

kinase domain (Figure 4.1A), it has a higher homodimer affinity within the low 

micromolar (average 1 μM) KD range (Constantinescu Aruxandei et al., 2011). The 

inhibitory domain also contributes extra thermodynamic stability to the dimeric state of 

the SARAH domain, whereas the monomer is less stable and dimer dissociation is 

coupled to partial unfolding. This structural plasticity appears necessary in facilitating 

the switch from one complex to another, in the case of MST1, from a homodimer to a 

heterodimer. 

More recently, the RASSF5 SARAH domain was crystallised, the first example 

of a crystal structure of a RASSF SARAH domain (Makbul et al., 2013). However, this 

crystal structure consists only of the long helix H2 of the predicted SARAH domain 

(Figure 4.1C). Nevertheless, the RASSF5 SARAH domain also forms an antiparallel 

homodimer via its long helix and the dimer interface consists of inter-helical interactions 

of hydrophobic residues, electrostatic and water-mediated ionic interactions. 

The MST1 and RASSF5 SARAH domains share many similarities. They display 

the same coiled-coil characteristics in the form of a seven-residue (heptad) repeat, 
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although both are disrupted by two stutters at the same positions (Figure 4.1D). The 

RASSF5 SARAH domain homodimer also undergoes simultaneous dissociation and 

unfolding previously described for MST1 (Makbul et al., 2013). Interestingly, the C-

terminal end of the SARAH domain is flexible, which mirrors the inhibitory domain of 

MST1, and this may facilitate its dimerisation with different interaction partners. Despite 

this, a few distinctive characteristics were observed for the RASSF5 SARAH domain. Its 

homodimer is much less stable at physiological temperatures, with a KD of only 25 μM; 

whereas its monomer is slightly more stable. Additionally, this equilibrium between the 

monomeric and dimeric states could be dependent on the total protein concentration, 

which may in turn affect its activity.  

 In terms of the SARAH domain heterodimers, only the interactions between 

MST1 and RASSF5 or WW45 have been touched upon (Hwang et al., 2007). The MST1 

and RASSF5 SARAH heterodimer are formed in a 1:1 stoichiometry and involve 

hydrophobic residues from the dimer interface of the MST1 helical domain. The 

formation of this heterodimer also appears to induce a conformational change in MST1.  

Whereas, WW45 binds to a different surface on the MST1 SARAH domain and its 

binding affinity is much weaker and insufficient to dissociate the MST1 homodimer. In 

contrast, the Drosophila homologues dRASSF and Hpo appear to form a weaker 

complex that is easily displaced by increasing Sav concentrations (Polesello et al., 2006). 

Despite the different binding surfaces, a ternary complex of MST1/WW45/RASSF5 is 

thought to be unlikely (Hwang et al., 2007), which is consistent with the biochemical 

data on dRASSF (Polesello et al., 2006). However, RASSF6, WW45 and MST2 have 

been shown to form a tripartite complex (Ikeda et al., 2009). Apart from this, not much is 

known about the molecular mechanisms involved in these interactions.  

The SARAH domain is absent in the N-terminal RASSF members. However, 

alternative coiled-coil structures have been predicted for RASSF7, 8 and 10. The coiled-

coil was first described in 1953 as the main structural element of many fibrous proteins 

and is essentially a bundle of three to four α-helices wound into a superhelix (Ciani et al., 

2010, Lupas, 1996). This motif has been described to form different numbers of 

oligomers, including dimers, trimers, tetramers and other higher-order complexes, the 

actual number being determined by the distribution of the hydrophobic core residues 

(Ciani et al., 2010, Moutevelis and Woolfson, 2009). Given that hydrophobic 

interactions play a major role in SARAH domain dimerisation, the coiled-coil could 
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potentially also function similarly to the SARAH domain and facilitate homo- and 

hetero-dimerisation involving the N-terminal RASSF members. 

Multiple studies have illustrated the importance of the SARAH domain and its 

dimerisation. It is now widely recognised that these interactions play a significant role, 

not only in the Hippo signalling network, but also in other emerging novel pathways and 

functions as described in the Introduction chapter. The consequences involve tumour 

suppression and possibly also protection against heart failures and bone development. It 

is therefore imperative to further investigate the SARAH domain and the C-terminal 

coiled-coil to gain a better understanding of the mechanisms of their interaction and the 

possible functional consequences. 

The aim of this study was to compare the SARAH domain structure of the 

classical RASSF1-6 and the ability of the ten RASSF members to homo- and hetero-

dimerise within the family and with MST kinase via the SARAH domain or coiled-coil 

motif. The results strongly suggest that the SARAH domain is required for dimerisation, 

whereas the coiled-coil is insufficient to facilitate any dimerisation between the proteins 

analysed here. 

  

4.2. Results 

4.2.1. Modelling the RASSF SARAH domain and predicting its interactions 

We first built a phylogenetic tree for the SARAH domain of the classical RASSF1-6 and 

MST1 to compare their homologies and evolutionary links (Figure 4.2). There is a 

distinctive pattern similar to that observed for the RA domain (see Chapter 3, Figure 3.5). 

RASSF1, 3, 5 and RASSF2, 4, 6 are separated into two sub-branches, with MST1 

grouped together with the former. The homology scores for each RASSF pair and 

RASSF/MST pair are summarised in Table 4.1. RASSF1, 3 and 5 share 50-60% 

homology, but less than 30% similarity with RASSF2, 4 and 6. In this second subgroup, 

RASSF2 and RASSF4 are 65% identical, but RASSF6 appears quite different, sharing 

less than 40% sequence identity with both members. With regards to the MST1 SARAH 

domain, it shares 17-27% homology with the RASSF SARAH domains. Interestingly, it 

has exactly the same sequence identity scores for RASSF4, 5 and 6, which amongst 
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Figure 4.2 Phylogenetic tree of the MST1 and RASSF family SARAH domain 

Multiple sequence alignments were performed as described in section 2.8. The 

phylogenetic tree was built in njplot using the sequence alignments. Bootstrap figures are 

shown to represent the confidence level of each node, with 1000 being the maximum. 

The 0.05 scale bar refers to the branch length, which is a measure of the amount of 

divergence between two nodes in a tree. The tree is split into two branches, which are 

colour-coded: blue for MST1 and RASSF1, 3 and 5, and red for RASSF2, 4 and 6.
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Table 4.1 Homology scores for the RASSF and MST1 SARAH domains 

RASSF RASSF 
Score 
(%)   RASSF RASSF 

Score 
(%) 

 MST RASSF Score 
(%) 

1 2 29.17 
 

2 6 37.5  1 1 27.08 
1 3 50.0 

 
3 4 22.92  1 2 16.67 

1 4 25.0 
 

3 5 60.42  1 3 18.75 
1 5 54.17 

 
3 6 16.67  1 4 20.83 

1 6 20.83 
 

4 5 22.92  1 5 20.83 
2 3 31.25 

 
4 6 39.58  1 6 20.83 

2 4 64.58 
 

5 6 22.92     
2  5 25.0          
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themselves share rather low homologies. Thus, the phylogenetic tree is more reflective 

than the individual identity scores of the overall similarities and differences amongst the 

SARAH domains. 

 At the time of our study, the MST1 SARAH domain was the only structurally 

characterised SARAH domain. Therefore, we used MST1 as the structural template for 

the homology modelling of the RASSF SARAH domains. Although the homology scores 

between MST1 and the classical RASSF members are not high, their sequence 

alignments show that many of the key residues involved in maintaining dimer stability 

are remarkably well conserved (Figure 4.3A). Most residues involved in hydrophobic 

interactions (L444, L448, L451, I459, I462 and Y466 from MST1) are highly conserved 

except M455. The two residues involved in electrostatic interaction are D452 and R470; 

the first is only conserved in RASSF3 and RASSF5, whilst the latter appears very well 

conserved across all six RASSF members. The physico-chemical properties of the 

residues aligning to those involved in stabilising the H1 and H2 helices in the MST1 

monomer (L436, W439, V441, L444, I473 and I477) are generally conserved, thus still 

allowing for hydrophobic interactions. 

 The homodimeric SARAH domain models for all six RASSF members are very 

similar in terms of the distribution of the hydrophobic residues along helix H2 (Figure 

4.3B). They are also comparable to that of the MST1 and RASSF5 structures (Figure 

4.1Bi and Ci). Despite the poor conservation of residues aligning to D452, the models 

suggest electrostatic interactions with the second helix H2 are still possible due to the 

presence of a stretch of acidic residues between the regions aligning to L451 and I459 of 

MST1. Based on the conservation of the main features involved in dimerisation, we 

predict that all six classical RASSF members will be able to form homodimers and 

heterodimers within the RASSF family and with MST kinases.  

 Modelling of the N-terminal RASSF coiled-coil motifs was not performed due to 

a lack of available template structures and the widely variable sequence length of the 

motif. Due to these limitations, it is only possible to determine their interaction 

capabilities empirically.  
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Figure 4.3 Modelling the RASSF SARAH domain 

(A) Multiple sequence alignments of the Prosite predicted SARAH domain. The 

secondary structural elements are indicated as helix 1 (H1) and helix 2 (H2). 

Residues in MST1 involved in electrostatic interactions are marked with arrow heads 

(^), hydrophobic interactions for monomer stability with periods (.) and for dimer 

stability with asterisks (*). Fully conserved interacting residues are highlighted in 

grey. Other residues are coloured according to their similarity: fully conserved 

residues in red and highly similar residues in green. 

(B) Ribbon representation of the classical RASSF SARAH domain modelled against 

MST1 (PDB: 2JO8). Basic residues are in blue, acidic in red, polar in white and 

hydrophobic in yellow. Side chains of hydrophobic residues involved in dimer 

stability are labelled and shown in yellow; the major basic residue involved in 

electrostatic interaction is in blue.  



129 
 

4.2.2. In vitro interaction studies of the SARAH domain and coiled-coil 

In order to validate the in silico predictions, we used a few different experimental 

approaches to determine whether the predicted RASSF SARAH domains and coiled-coil 

motifs are able to form homodimers or heterodimers under different in vitro 

experimental settings. 

4.2.2.1. Dimerisation of isolated SARAH domain “in vitro” versus “in cells” 

As in vitro biochemical characterisation has never been done for the isolated RASSF5 

and MST1 SARAH domain, which are the only two SARAH domain proteins that can be 

feasibly expressed and purified (see Table 2.5), we performed a pull-down assay using 

these proteins. Unexpectedly, no binding was detected between the RASSF5 and MST1 

SARAH domain (Figure 4.4A). This observation was further confirmed by our mass 

spectrometry analysis, in which no heterodimers were detected when the proteins were 

mixed (Figure 4.4Biii). Conversely, monomers and homodimers were detected with sizes 

identical to those for the individual MST1 and RASSF5 SARAH domains (Figure 4.4Bi, 

ii). Surprisingly, these in vitro data contradicted the data obtained under cellular settings 

as the co-IP analysis using co-transfected cell lysates showed that the RASSF5 SARAH 

domain was able to heterodimerise with both full length MST1 and the MST1 SARAH 

domain in a cell context (Figure 4.4C). 

 Due to the differential preference for homodimerisation and heterodimeristion in 

a completely in vitro setting, we did not pursue any further studies on the kinetics and 

binding dynamics of the isolated RASSF SARAH domains under these conditions. 

Instead, we focused on their interactions under cellular conditions.  

4.2.2.2. Dimerisation within the RASSF family 

First, we performed a set of co-IPs using the myc epitope tag to show dimerisation 

within the RASSF family, specifically with RASSF5 (Figure 4.5Ai). This is a partial in 

vitro method using cell lysates containing overexpressed proteins, which may be in a 

pre-formed complex when immunoprecipitated. The myc-tagged RASSF5 DNA 

construct used for co-expression was RASSF5Δ41 as it co-expresses very well in cellular 

systems. This construct was generated by a previous member of the laboratory and has a 

deletion of the first 41 amino acid residues (Figure 4.5Aii).  
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Figure 4.4 Interaction between isolated SARAH domains “in vitro” and “in cells” 

(A) Pull-down analysis of purified proteins of MST1 SARAHmyc and immobilised S-

RASSF5 SARAH as described in section 2.6.1.3. This is a representative of the three 

repeats performed for this experiment.  

(B) Mass spectra of MST1 SARAHmyc and RASSF5 SARAH under native MS 

conditions, performed by Jun Yan as described in section 2.6.4. Experimental 

conditions are described in section 2.6.4. (i) Mass spectrum of MST1 SARAHmyc, 

(ii) RASSF5 SARAH and (iii) MST1 SARAHmyc mixed with RASSF5 SARAH in a 

1:1 stoichiometry. Charge states corresponding to MST1 SARAHmyc monomer and 

dimer, and RASSF5 SARAH monomer and dimer, are indicated and coloured in red 

and blue, green and cyan, respectively. The table below compares the protein 

monomeric and dimeric mass measurements to the theoretical masses. The low error 

confirms the accuracy of the experimental results. 

(C) Co-IP analysis of TagRFPT-MST1 SARAH and myc-RASSF5 SARAH, in which 

full length (FL) MST1 and TagRFPT (tRFP) served as a positive and negative 

control respectively. The DNA constructs were co-transfected in equal 

concentrations and co-IP were performed as described in section 2.6.2. IP and IB 

indicate immunoprecipitates and imunoblots respectively. This assay was repeated 

three times and a representative is shown here. 

Jia Jia
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Figure 4.5 Dimerisation within the RASSF family 

(A) (i) Schematic outline of the co-IP assay as described in section 2.6.2. (ii) Schematic 

representation of the myc-tagged RASSF5Δ41 construct used. The residue positions 

are indicated above. All co-IP assays were repeated three times and a representative 

is shown here. 

(B) Co-IP assay to show interaction between GFP-RASSF1-10 and myc-RASSF5Δ41. 

The RASSF loading controls and GAPDH endogenous control are shown below the 

co-IP panels for each cell lysate. The RASSF5 homodimer is marked with an asterisk 

above the panel.  

(C) Co-IP assay of the negative controls performed using cell lysates consisting only 

GFP-RASSF. The loading controls are shown below.   
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All six classical RASSF members were detected in the immunoprecipitates at 

varying levels, which confirmed that RASSF1, 2, 3, 4 and 6 could form heterodimers 

with RASSF5 and possibly with different affinities; whereas RASSF5 is also able to 

homodimerise (Figure 4.5B). A very weak signal was also detected for RASSF7. 

However, a further negative control experiment performed without the myc-tagged 

protein showed that RASSF7 has a propensity to bind non-specifically to the anti-c-myc-

agarose, with weak non-specific binding also detected for RASSF3, 8 and 9 (Figure 

4.5C). Therefore, the RASSF7 band from the co-IP experiment is likely a false positive, 

whereas the non-specific binding of RASSF3 should have minimal significance as the 

positive band detected in the dimerisation experiment was much stronger and 

comparable with the loading control.  

It is possible to repeat these experiments with other RASSF members in 

analogous settings. However, heterodimerisation or homodimerisation with other RASSF 

members were not tested in this study as the other myc-tagged RASSF proteins co-

expressed very poorly and inconsistently with the GFP-tagged RASSF proteins. 

Nevertheless, based on this set of data and the highly similar homology models, it is 

likely that the remaining classical RASSF members can also form different combinations 

of heterodimers amongst themselves.  

4.2.2.3. Heterodimerisation between the RASSF family and MST kinases 

Next, we looked at heterotypic interactions between the RASSF family and the MST 

kinases using the same technique and full length myc-tagged MST. As wild-type MST1 

and MST2 did not express very well or in a consistent manner (data not shown), we 

generated their respective kinase-dead mutants K59R and K56R that are known to 

improve expression levels and consistency. We attempted to express and purify these 

proteins, which were used for the initial experiments (Figure 4.6A). However, the yield 

of the purified proteins from large scale purifications was not sufficient to carry out all 

the experiments. Additionally, we could not obtain a purity of above 90% (data not 

shown). Therefore, all further experiments were performed using cell lysates co-

expressing RASSF and MST unless otherwise stated (Figure 4.6Aii). 

For the initial experiments, we compared RASSF5 dimerisation with purified 

proteins of wild-type and kinase-dead MST1 and MST2. RASSF5 co- 
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Figure 4.6 Heterodimerisation between the RASSF family and MST kinases 

(A) Schematic outline of co-IP assays using (i) purified proteins of myc-MST or (ii) co-

transfected cell lysates containing pre-formed complexes as described in section 

2.6.2. All co-IP assays were repeated three times and a representative is shown here. 

(B) Co-IP assay to show interaction between GFP-RASSF5 and purified proteins of wild-

type (WT) myc-MST1 and MST2 or their respective kinase-dead mutants, K59R and 

K56R. The RASSF loading controls and GAPDH endogenous control are shown 

below.  

(C) Co-IP assay to show interaction between wild-type (WT) RASSF5 or truncated 

RASSF5Δ213-265, lacking the SARAH domain, and MST1 K59R and MST2 K56R 

(left). The loading controls are shown on the right.  

(D) Co-IP assay to show interaction between GFP-RASSF1-10 and MST1 K59R (left) or 

MST2 K56R (right). The loading controls are shown below.  

(E) Sequence alignment of the MST1 and MST2 SARAH domain. Fully conserved 

residues are marked by asterisks (*), highly conserved residues by colons (:) and 

moderately conserved residues by periods (.). The conserved key interacting residues 

are highlighted: hydrophobic, acidic and basic residues are in yellow, red and blue 

respectively. 
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immunoprecipitated equally with all four types of MST kinases tested (Figure 4.6B). 

Subsequently, we also tested a truncated RASSF5Δ213-265 lacking the SARAH domain 

and no binding was detected (Figure 4.6C). This confirmed that the kinase activity does 

not interfere with heterodimerisation and the RASSF SARAH domain is crucial for 

interaction.  

 For all subsequent interaction assays involving MST1 and MST2, their kinase-

dead mutants were used unless otherwise stated. In the following co-IP assay, the 

complete panel of all ten RASSF members were tested for their interaction with MST1 

and MST2. All classical RASSF members were detected in complex with MST1 (Figure 

4.6D, left). RASSF7 was also detected in the immunoprecipitate. However, this could 

again be a false positive due to its non-specific interaction with the resin (see section 

4.2.2.1). A similar interaction pattern was observed with MST2, with the exception of 

RASSF1 (Figure 4.6D, right). As both MST kinases have a 67% sequence identity and 

almost 100% conservation in their key interacting residues (Figure 4.6E), this varied 

detection of RASSF1 between the two MST kinases could be due to the lower expression 

levels of both RASSF1 and MST2 when co-expressed rather than a difference in its 

interaction with MST1 and MST2.  

4.2.3. Using intracellular FRET to study heterodimerisation 

To date, all approaches used to demonstrate heterodimerisation between the RASSF 

family and MST kinases have been either in vitro or non-quantitative. Therefore, we next 

attempted to study these interactions in a cellular system using quantitative FRET 

measurements. This study was performed in collaboration with Dr Anca Margineanu 

from the Photonics Group at Imperial College London using their in-house FLIM 

automated multiwell plate reader and analysis software as described in section 2.6.3. 

Schematics of all the fluorescent constructs used in this study are shown in Figure 4.7. 

4.2.3.1. Heterodimerisation between the RASSF family and MST1 

First, we compared the interactions of the ten full length RASSF proteins with the 

isolated MST1 SARAH domain. The negative controls used were cells expressing only 

GFP-RASSF or both GFP-RASSF and mCherry-MST1ΔSARAH, a MST1 construct 

lacking the SARAH domain. These should give the maximum or close to the maximum 
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Figure 4.7 Schematic representations of the fluorescence FRET constructs 

The GFP-tagged (green) full length RASSF constructs are used as the FRET donors (left). 

The mCherry-tagged (red) constructs are used as the FRET acceptors (right). From top to 

bottom for the mCherry constructs: mCherry only, MST1ΔSARAH (SARAH domain 

deletion), MST1 SARAH (kinase domain deletion) and full length MST1. FRET 

experiments were performed and data were analysed as described in section 2.6.3. 
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Figure 4.8 FRET studies on RASSF and the isolated MST1 SARAH domain 

(A) Plate maps of the 96-well plate setup for GFP-RASSF and mCherry-MST1 or the 

negative control mCherry-MST1ΔSARAH. Image acquisitions and data processing 

were performed by Dr Anca Margineanu as described in section 2.6.3. (i) Images of 

the transfected cells in each well per field of view. (ii) FRET signals in each well is 

indicated by the colour bar on the right corresponding to the GFP donor lifetime 

measured in picoseconds (ps), with a transition from blue to red from low to high 

FRET signals. The positions of each well are labelled A-H on the left and 1-12 below. 

The RASSF members are labelled 1-10 above the grids. 
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(B) Bar graphs showing the GFP lifetime changes per condition for (i) the classical 

RASSF1-6 and (ii) the N-terminal RASSF7-10. The bars are colour-coded for each 

condition, indicated in the key. The GFP lifetimes were calculated as an average per 

well and error bars are the standard deviations. P-values were calculated against both 

negative controls using the Student’s t-test and are indicated as follows: p ≤ 0.05 (*), 

p ≤ 0.01 (**) and p ≤ 0.001 (***). Only p ≤ 0.01 is considered significant to take into 

account the occasional non-specific FRET in this study. 
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donor lifetime due to the lack of interaction. The decrease in the GFP donor lifetime, i.e. 

increase in FRET signal, is evident in the plate maps containing images of the cells 

(Figure 4.8Ai) or the FRET colour indicator (Figure 4.8Aii). This indicates the close 

proximity of the donor and acceptor fluorophores, hence, confirming the interaction 

between MST1 SARAH and RASSF1-6 (Figure 4.8Bi). In contrast, the changes 

observed for RASSF7-10 were minimal and statistically insignificant when taking into 

account the occasional occurrence of non-specific FRET signals, indicating no 

interaction between MST1 SARAH and the N-terminal RASSF members (Figure 4.8Bii).   

We next compared the interaction between the full length RASSF proteins and 

full length MST1 or its isolated SARAH domain. In this set of experiment, cells 

expressing only GFP-RASSF and co-expressing GFP-RASSF and the fluorophore 

mCherry served as the negative controls. A clear decrease in the GFP donor lifetime was 

observed for RASSF1-6 co-expressed with both full length MST1 and MST1 SARAH, 

which is consistent with our first set of data (Figure 4.9A). However, this change was 

significantly greater for the isolated MST1 SARAH domain, which is likely due to the 

shorter donor-acceptor distance in the absence of the MST1 kinase region rather than 

stronger binding to the isolated SARAH domain under cellular conditions. Whereas, the 

changes in the FRET signals for RASSF7-10 were statistically insignificant (Figure 

4.9B).  

4.2.3.2. Potentially different binding affinities amongst the classical RASSFs 

Interestingly, when we compared the two studies of RASSF interactions with the isolated 

MST1 SARAH domain, we noticed the strength of the FRET signals varied and 

somewhat followed the pattern of the SARAH domain sequence homologies (section 

4.2.1). This could be an indication of their different binding affinities, with stronger 

FRET signals signifying higher affinities. RASSF3 and RASSF5 consistently showed the 

strongest FRET signals (Figure 4.10A), whilst RASSF1 displayed different signal 

intensities between the two experiments. However, its averaged signal was similar to 

RASSF2 and RASSF4, with RASSF6 showing the weakest FRET signal compared to the 

rest of the classical RASSF members. These interactions were also confirmed in vitro for 

the classical RASSF members alongside full length MST1 (Figure 4.10Bi) and appeared 

to follow the general pattern of binding affinities at least with the isolated MST1 

SARAH domain (Figure 4.10Bii).  
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Figure 4.9 FRET studies comparing the interaction between RASSF and full length 
MST1 or its isolated SARAH domain 

(A) Plate maps (left) and bar graphs (right) showing the GFP lifetime changes per 

condition for the classical RASSF1-6.  

(B) Plate maps (left) and bar graphs (right) showing the GFP lifetime changes per 

condition for the N-terminal RASSF7-10. 

An additional negative control, mCherry was used. The positions of each well are 

labelled A-H and 1-10. The corresponding wells, conditions and coloured bars in the 

graphs are indicated in the key. The GFP lifetimes, errors and p-values were calculated 

and indicated as described in Figure 4.8. Image acquisitions and data processing were 

performed by Dr Anca Margineanu as described in section 2.6.3.  
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Figure 4.10 Comparison of binding affinities amongst the classical RASSF members 

(A) Graphical representation of the different FRET signals of each RASSF member, 

measured as a change in the GFP donor lifetimes from two separate studies. The 

changes were calculated using measurements from the isolated MST1 SARAH 

domain and the negative controls with mCherry-MST1ΔSARAH or mCherry only, 

and the error bars are the combined standard deviations (see Figure 4.8 and 4.9).  

(B) (i) Co-IP assay showing interactions between the classical RASSF1-6 and full length 

MST1 K59R (left) or its isolated SARAH domain (right). This is representative of 

the results from three separate experiments and the controls are shown below. (ii) 

Quantification of the bands using ImageJ. The relative intensity of RASSF1 was set 

at 1 and used as a reference point (colour-filled bars). The error bars are standard 

deviations and p-values were calculated and indicated as described in Figure 4.8B. 
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Without purified proteins, it is difficult to properly assess and compare binding 

affinities using the in vitro approach, thus quantitative FRET experiments were used in 

this study. However, further double exponential analysis of the FRET data, to take into 

account the different acceptor and donor intensities, is required to confirm our 

observations and more accurately quantify the binding affinities.  

4.2.3.3. KRasV12 enhances dimerisation between RASSF and MST1 

Previous studies have indicated an increase in MST1 activation upon forming a ternary 

complex with RASSF5 and activated Ras (Khokhlatchev et al., 2002, Praskova et al., 

2004), which could be due to enhanced interaction between the two SARAH domains 

upon Ras association. Therefore, we compared the interaction of the RASSF proteins 

with MST1 both in the absence and presence of KRasV12 (Figure 4.11A).  

Consistent with our initial observations, the preliminary data showed an increase 

in FRET signal when MST1 was co-expressed with RASSF1-6 (Figure 4.11Bi). 

Moreover, this signal was enhanced to different degrees upon the addition of activated 

KRas for all six classical RASSF members. Again, minimal changes were detected for 

RASSF7-10 (Figure 4.11Bii). In order to validate the effects of activated KRas on the 

interaction between MST1 and the classical RASSF proteins, additional controls could 

be used in future studies, including wild-type or inactivated KRas. 

 

4.3. Discussion 

Although the six RASSF SARAH domain models were generated using the MST1 

SARAH domain template, a comparison between our RASSF5 SARAH domain model 

and the recent crystal structure of the murine RASSF5 SARAH domain shows that our 

predictions of the dimer interface and critical residues were accurate (Figure 4.12A, B). 

The main interacting helix H2 in both structures is also well superposed and has good 

structural correspondence (Figure 4.12C). The key interacting residues from MST1 

correspond to those identified in the RASSF5 SARAH domain (L224, L228, L231, I239, 

Y246), with the addition of L253 and L257 (Figure 4.1C and 4.12A) (Makbul et al., 

2013). As highlighted in section 4.2.1, these non-polar residues are highly conserved, 

including the two additional residues specifically involved in the RASSF SARAH 
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Figure 4.11 FRET studies indicating enhanced heterodimerisation by KRasV12 

(A) Plate map showing the GFP lifetime changes from the interactions between GFP-

RASSF1-10 and mCherry-MST1 in the absence and presence of activated KRasV12. 

The map and FRET intensity colour bar are labelled as in Figure 4.8A. Image 

acquisitions and data processing were performed by Dr Anca Margineanu as 

described in section 2.6.3.   

(B) Bar graphs showing the GFP lifetime changes per condition for (i) the classical 

RASSF1-6 and (ii) the N-terminal RASSF7-10. The bars are colour-coded for each 

condition as indicated in the key. The GFP lifetimes, errors and p-values were 

calculated and presented as in Figure 4.8B. 
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Figure 4.12 Comparison of the RASSF5 SARAH domain crystal structure and our 
homology model 

(A) Sequence alignment of the SARAH domain of murine RASSF5 crystal structure and 

human RASSF5 used for homology modelling. Fully conserved residues are marked 

by asterisks (*) and highly conserved residues by colons (:) and shown in red text. 

Conserved hydrophobic residues involved in the dimer interface are highlighted in 

yellow, acidic residues in red and basic residues in blue.  

(B) The homodimer structure of the RASSF5 SARAH domain. (i) Ribbon representation 

of the murine RASSF5 SARAH homodimer (PDB: 2YMY). The N-terminal helix, 

H1 is not crystallised. (ii) Ribbon representation of the human RASSF5 SARAH 

domain homodimer model. Side chains of the key hydrophobic residues are labelled 

and shown in colours corresponding to the same positions in both structures.  

(C) Superposition of the crystallographic structure of murine RASSF5 SARAH (magenta) 

and human RASSF5 SARAH homology model (blue). 
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homodimerisation. In addition, our predictions of polar interactions between the stretch 

of acidic residues present in the RASSF SARAH domain and the highly conserved 

arginine residue aligning to R470 in MST1 (R250 in RASSF5) are confirmed by the 

RASSF5 structural studies. Specifically, E232, E234 and E235 of RASSF5 are involved 

in polar interactions at the dimer interface and these residues are well conserved across 

the classical RASSF members (Figure 4.3). These similarities between the RASSF5 

structure and our homology models demonstrate the high quality of our in silico data and 

predictions.  

 Our in vitro and intracellular observations are also consistent with the in silico 

predictions of the SARAH domain-mediated interactions and confirm previous studies 

showing interactions between the classical RASSF members with either MST1 or MST2 

(Eckfeld et al., 2004, Ikeda et al., 2009, Khokhlatchev et al., 2002, Praskova et al., 2004). 

All six classical RASSF members formed homotypic or heterotypic interactions with 

RASSF5 or the MST kinases, whereas the N-terminal RASSF7, 8, 9 and 10 that lack the 

SARAH domain failed to dimerise with either protein in vitro (see sections 4.2.2.2 and 

4.2.2.3). This is reinforced by the intracellular FRET data showing interactions between 

MST1 and RASSF1-6, but not RASSF7-10 (see section 4.2.3.1). We can infer from these 

data that the SARAH domain is required for homodimerisation and heterodimerisation, 

whereas the predicted coiled-coil motif is insufficient to facilitate such interactions. 

Interestingly, our preliminary FRET data also indicate a tendency of activated KRas to 

enhance heterodimerisation between RASSF and MST1, although not all are statistically 

significant (see section 4.2.3.3). In contrast to reports in the literature (Khokhlatchev et 

al., 2002, Praskova et al., 2004), RASSF5 did not show any significant increase in MST1 

binding in the presence of KRasV12. These observations involving KRas remain to be 

confirmed by further studies, thus the role of activated Ras in heterodimerisation 

between RASSF and MST remains an open question.  

 It is worth noting that these interactions were independent of the MST kinase 

activity, which supports an earlier study showing that the kinase activity was not 

required for the heterodimerisation between RASSF2 and the MST kinases (Cooper et al., 

2009). Furthermore, this is consistent with previous observations of initial inhibition of 

the MST kinase activation by RASSF1 and RASSF5 before its eventual activation upon 

Ras binding and membrane localisation (Praskova et al., 2004). Taken together, the 
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RASSF proteins appear to bind MST kinases in their inactive form and subsequently 

facilitate their activation via additional interactions and signals.  

 In terms of the different dimer propensities, our observations are in contrast to 

what has been shown in literature (section 4.2.2.3). Hwang et al. (2007) reported free 

RASSF5 SARAH domain tetramers in solution, whereas we only observed homodimers 

and monomers for the isolated RASSF5 and MST1 SARAH domain proteins. Contrary 

to their observation of a higher propensity for heterodimerisation, this heterodimer was 

never present under a full in vitro setting, but only under cellular conditions in our 

studies. In contrast, we observed a mixture of homodimers and monomers in their native 

states, with a higher proportion of the latter. There are several plausible explanations for 

these observations. First, the isolated SARAH domain proteins could exist as natural 

homodimers. These homodimers could also consist of relatively high affinity interactions, 

thus could not readily dissociate under experimental conditions to allow for the 

formation of heterodimers. Furthermore, the monomers present in solution could be 

partially unfolded or denatured, hence inactive and unable to form heterodimers. On the 

contrary, a comparison between the in vitro pull-down and the co-IP using cell lysates 

containing pre-formed complexes indicates that the SARAH domain alone is sufficient to 

facilitate heterodimerisation under cellular conditions, but not under complete in vitro 

settings. It also highlights the possible differential preferences for homotypic and 

heterotypic interactions under different experimental conditions, whereby 

heterodimerisation may not be preferred in some instances and may also require specific 

conditions and factors found only in cellular systems. 

The most remarkable discovery from our FRET data was the pattern of signal 

intensities of the RASSF proteins. Although the monoexponentially analysed FRET 

measurements are not definitive, they do provide an initial picture of the potential 

variations in binding affinities for the RASSF SARAH domains, which mirror their 

sequence homologies described in section 4.2.1. While the sequence homology scores 

vary, the phylogenetic tree indicates that the RASSF SARAH domains most similar to 

MST1 are RASSF1, 3 and 5. Coincidentally, RASSF3 and RASSF5 also appeared to be 

the strongest binders to MST1. This is followed by RASSF1, 2 and 4, with RASSF6 

being the weakest. RASSF1 is the anomaly as it displayed a similar affinity to RASSF2 

and RASSF4, despite their low homology identities and being grouped separately in the 

phylogenetic tree (Figure 4.2). This could be due to other more specific features in their 
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dimerisation interfaces that are not accounted for here. Conversely, the weak binding 

affinity between RASSF6 and MST1 could be due to a lack of specific key residues at its 

dimer interface given that it is the most divergent member amongst the classical RASSF 

members. Furthermore, this is in spite of its similar sequence identity score to MST1 

compared to RASSF4 and RASSF5. These observations highlight the importance of 

specific residues in determining protein-protein interactions and their affinities. 

Additionally, the residues required for heterodimerisation may be different from those 

needed for homotypic interactions.  

Interestingly, our observations are also in agreement with a previous study on 

using evolutionary distances in phylogenetic trees to predict protein-protein interactions 

with an accuracy of >66% (Pazos and Valencia, 2001). This is based on the foundation 

that proteins grouped together in a phylogenetic tree usually face similar selection 

pressures, thus they co-evolve, which is an indication of possible interacting partners. 

Furthermore, higher similarities could imply stronger interactions and vice versa, a 

pattern that was observed in this study as RASSF3 and RASSF5 fit into the former 

category, whilst RASSF2, 4 and 6 are in the latter category.  

Overall, these new observations suggest that all the classical RASSF members 

can be involved in MST signalling regulation and they may have some overlapping 

functions. However, their different binding affinities for MST1 could also mean that the 

MST kinases are preferentially regulated by the higher affinity binders, whereas those 

RASSF members with lower binding affinities could compensate for the loss of the 

former under pathological circumstances. The SARAH domain of WW45 has previously 

been shown to form heterodimers with MST1 and MST2, and it also forms an indirect 

complex with RASSF6 via MST2 (Hwang et al., 2007, Ikeda et al., 2009). However, not 

much is known about its interaction with the remaining RASSF members. Given its 

significant role as a scaffolding protein for the MST kinases in Hippo signalling, further 

studies on its interaction with the all ten members of the RASSF family in the presence 

and absence of MST1 or MST2 would also provide more insight into the underlying 

molecular mechanisms of Hippo signalling regulation.  

The predicted coiled-coil motifs do not appear to facilitate heterodimerisation 

with other RASSF members or the MST kinases. Although they cannot dimerise 

specifically with the SARAH domain, it is possible that they could homodimerise or 
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preferentially interact with other proteins and domains. For example, the RASSF7 

coiled-coil was recently shown to bind microtubules in Xenopus (personal 

communication with Tulay Gulsen from Dr Andrew Chalmer’s laboratory), which 

implicates it in cytoskeleton organisation and possibly cell cycle regulation. There have 

been no other studies on the RASSF coiled-coil motifs, thus they remain to be further 

investigated and characterised.  
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5 Mutations in the SARAH domain 
 

5.1. Introduction 

The SARAH domain, its structure and functions have been described in detail for MST1 

and RASSF5 in Chapter 4. Although the homodimeric structures have been solved for 

MST1 and RASSF5 (Hwang et al., 2007, Makbul et al., 2013), and many studies have 

reported interactions between different classical RASSF1-6 and MST1 or MST2 (Table 

1.3), there are few that focus on the importance of specific residues required for 

heterodimerisation.  

 The MST1 SARAH domain remains the most well studied in terms of its 

molecular interactions. Its NMR structure highlighted the importance of the network of 

aliphatic side chains in hydrophobic interactions, which are the main driving force for 

dimerisation (Hwang et al., 2007). In particular, L444 was highlighted as the key 

structural residue that contacts both helices in the homodimer and is completely buried 

with <1% solvent accessible surface area. Thus, a non-conservative mutation at this 

position could potentially disrupt the dimer. This hypothesis is supported by previous 

studies using a L444P point mutant that showed impaired homodimerisation, but still 

maintained its ability to heterodimerise with RASSF5 (Khokhlatchev et al., 2002, 

Praskova et al., 2004). However, reports on the biological effects due to a lack of 

homodimerisation are conflicting. Creasy et al. (1996) reported no effect on the MST1 

activity, whereas Praskova et al. (2004) showed a lack of MST1 activity. 

 Besides heterodimerisation with MST kinases, the RASSF5C SARAH domain 

was recently shown to also bind SKAP1, a protein involved in T cell activation (Raab et 

al., 2011). The study also tested the effect of the mutation at the same position in 

RASSF5C, L224A, which impaired SKAP1 binding but did not have any effect on its 

heterodimerisation with MST1. This point mutation essentially maintains the helical 

structure and the physico-chemical properties of the residue in that position, thus may 

have little effect on dimerisation with MST1. Conversely, SKAP1 may interact 

differently with the SARAH domain at the molecular level, therefore is affected by this 

specific mutation. 
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 Studies using a specific point mutant in the RASSF1 SARAH domain have also 

been performed. A mutation in a different conserved position, L308P aligning to L451 

on MST1 and L231 on RASSF5C, both of which are part of the hydrophobic network, 

also impairs heterodimerisation with MST1 and MST2 (Del Re et al., 2010, Donninger et 

al., 2011). Consequently, this prevents the activation of MST1, which supports previous 

observations carried out using the dimer deficient MST1 L444P mutant (Del Re et al., 

2010, Donninger et al., 2011, Praskova et al., 2004). Furthermore, the RASSF1 mutant is 

also defective in inducing the phosphorylation and activation of YAP, its nuclear 

localisation and binding to p73, which are components of the Hippo signalling network 

(Donninger et al., 2011). Interestingly, this mutation has no effect on RASSF1 

heterodimerisation with the Sav SARAH domain, and is able to activate p73 via Sav 

independent of the canonical Hippo pathway (Donninger et al., 2011). These 

observations highlight the possibility of differential molecular interactions between the 

structurally similar SARAH domains, therefore, allowing them to compensate for one 

another in some instances.  

 Although structures for the MST1 and RASSF5 SARAH domain homodimers are 

now available, information on the underlying molecular mechanisms of interaction, 

especially for heterodimers remains scarce. Furthermore, the lack of structural 

information on the SARAH heterodimers and of a comparative analysis of the SARAH 

domain homodimers and heterodimers limits our understanding on the molecular 

mechanisms of their functions. The aim of this study was to generate structural models of 

the SARAH heterodimers, compare homodimer and heterodimer interfaces, and the 

effects of specific point mutations on these interactions. Our data suggest a higher 

propensity for heterodimer formation, with hydrophobic interactions and specific 

conserved non-polar residues, and to a lesser extent, electrostatic interactions and some 

charged residues playing an important role in dimerisation. 

 

5.2. Results  

5.2.1. Modelling SARAH domain heterodimers 

The structural models of SARAH domain heterodimers between MST1 and each 

classical RASSF1-6 were built as described in section 2.8. Although the RASSF SARAH 



155 
 

domains share a higher sequence similarity amongst themselves, we decided not to 

rebuild our homodimeric homology models using the recent crystal structure of the 

RASSF5 SARAH domain. Instead, we used monomers from our homodimeric homology 

models based on the NMR structure of the MST1 homodimer (see section 4.2.1). 

Theoretically, these should have their side chains more optimally positioned to interact 

with a MST1 monomer to form a heterodimer. This approach should help to minimise 

erroneous results from the rigid body docking strategy as a result of its limitation in 

dealing with the large degrees of flexibility in protein-protein interactions.  

The heterodimer models for each MST1/RASSF combination shown here are 

from the top of their ranked lists (Figure 5.1). They have the most favourable surface 

complementarities, electrostatic and desolvation free energies. Additionally, they also 

have the best scores from the clustering analysis whereby a 9Å Cα (central carbon atom 

of each amino acid residue) rms radius was used to find clusters with the most 

“neighbours”. These “neighbours” should include atomic partners of side chains via all 

possible forces of interaction, including non-covalent bonds, such as hydrogen bonds, 

ionic bonds, van der Waals forces and hydrophobic interactions, all of which should be 

within 4.5Å (Lodish et al., 2000, Samanta et al., 2002).  

The analytical output of these models is summarised in Table 5.1. The interface 

sizes shown were calculated from the ASA values as described in section 2.8. Residues 

that showed ≥10% change in ASA (ΔASA) upon dimerisation are considered part of the 

dimerisation interface and their side chains are highlighted in Figure 5.1. An increase in 

atomic partners is correlated with lower ASA, thus an increase in ΔASA and interface 

areas.  

It is evident that the contact interface involves mainly the side chains and non-

polar residues for all six heterodimers. There is also a small degree of polar or charged 

interaction between the highlighted acidic and basic residues. The polar interfaces make 

up 17.4-19.2% of the total interface for RASSF1-5, with RASSF6 having the smallest 

absolute as well as proportion of polar interface. The acidic residues involved are mostly 

Glu, with the occasional Asp, whilst the basic residues are a mixture of Lys and Arg. It is 

interesting to note that in all the heterodimers, there is at least one conserved Arg 

involved in the interface from the RASSF monomer except RASSF6 (Figure 5.1F).  
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Figure 5.1 Heterodimer models of the MST1 and RASSF SARAH domain 

(A-F) RASSF1-6 heterodimers models generated by Dr Delphine Flatters and Dr 

Fernando Rodriguez-Lima as described in section 2.8. The structure of the MST1 

monomer is in purple and the RASSF monomer in cyan. Non-polar (yellow), acidic (red) 

and basic (blue) side chains of residues involved in the heterodimeric interface are shown. 

The sequences for the MST1 and RASSF SARAH domain are shown above and below 

the structural model respectively. The MST1 monomer is in the same orientation of the 

sequence, whist the RASSF monomer is in the reverse orientation. The side chains 

shown in the structures are also highlighted in the sequences using the same colour 

scheme. Residues in conserved positions are shown in red text and polar residues 

involved in the interface are underlined.   
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Table 5.1 Interface sizes of the SARAH heterodimer models 

The interface sizes (in Å2) were calculated using naccess for the best SARAH 

heterodimer model of each RASSF with MST1. 

MST1 

with: 

Total  Side chain  Main chain  Non-polar  Polar 

RASSF1 2844.6 2733.1 111.6 2350.6 494.1 

RASSF2 2933.6 2808.9 124.6 2426.5 507.1 

RASSF3 2767.7 2684.2 83.5 2235.5 532.2 

RASSF4 2843.2 2731.5 111.7 2296.2 547.1 

RASSF5 2820.9 2717.3 103.5 2278.6 542.2 

RASSF6 2988.4 2889.5 98.9 2502.1 486.3 

 

Table 5.2 Comparison of the interface sizes between SARAH domain homodimers 
and heterodimers 

The interface sizes (in Å2) were calculated using naccess for each SARAH homodimer 

structure, homology models and heterodimeric models. 

 Total  Non-polar Polar 

 Homodimer Heterodimer Homodimer Heterodimer Homodimer Heterodimer 

MST1 

(2JO8) 

2869.8 - 2430.6 - 439.2 - 

RASSF1 2629.6 2844.6 2179.6 2350.6 450 494.1 

RASSF2 2683.9 2933.6 2170.8 2426.5 513 507.1 

RASSF3 2586.7 2767.7 2150.5 2235.5 436.2 532.2 

RASSF4 2789.7 2843.2 2193.1 2296.2 596.6 547.1 

RASSF5 2698.7 2820.9 2101.1 2278.6 597.5 542.2 

RASSF6 2643.1 2988.4 2246.5 2502.1 396.6 486.3 
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The total interface and non-polar interface areas are largely similar for RASSF1-5 

heterodimers with MST1. However, the MST1/RASSF6 heterodimer has a surprisingly 

larger total interface, whilst its larger non-polar interface area is due to the smaller 

contribution from polar residues. Essentially, all the conserved non-polar residues are 

involved in hydrophobic interactions in all six models. Interestingly, the MST1/RASSF1 

heterodimeric interface also involves two Cys residues (Figure 5.1A), whilst the rest 

involves one or two polar residues, such as Asn, Gln, Ser and Thr (Figure 5.1B-F).   

 Overall, there are no major differences in the heterodimer models and interfaces 

with the exception of RASSF6, which has a larger total interface area and a much 

smaller polar interface compared to the rest of the classical RASSF members. 

5.2.2. Comparison of SARAH domain homodimers and heterodimers  

Next, we compared the SARAH heterodimer models with the homodimer homology 

models from Chapter 4.  

5.2.2.1. Comparison of the homodimeric and heterodimeric structures 

The structures of the SARAH homodimers and heterodimers for MST1 and RASSF1-6 

are largely similar (Figure 5.2). All residues in the conserved positions described in 

Chapter 4 contribute to both the homodimeric and heterodimeric interfaces of all the 

models. However, the distinction between the homodimers and heterodimers, as well as 

amongst the six heterodimers, lies in the involvement of several specific residues in their 

dimeric interfaces. 

 A general comparison of the interface residues for the MST1 SARAH 

homodimer and its heterodimers with the classical RASSF members (Figure 5.2A) 

shows variation in several residues. These are mainly charged residues E434, D452, 

K469 and D475 and the non-polar P472. Interface residues are those showing ≥10% 

ΔASA as described in section 5.2.1. D475 is consistently absent from all the 

heterodimeric interfaces, whilst residues that contribute to the MST1 homodimeric 

interface but not to selected heterodimeric interfaces include D452, K469 and P472 

(Figure 5.2B). E434 is an addition to the heterodimeric interface with RASSF1 and 

RASSF5 (Figure 5.2Bi, v).   
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Figure 5.2 Comparison of the SARAH domain homodimers and heterodimers 

(A) The MST1 SARAH homodimer structure is shown in purple. All interacting side 

chains in the homodimeric interface are shown and coloured as described in Figure 

5.1. The SARAH domain sequence is shown above in the same orientation as the top 

monomer chain. Residues involved in the interface of the MST1 homodimer and its 

heterodimer with RASSF1-6 are highlighted in the corresponding colours to the 

structure. Changes in residue involvement in the heterodimeric interface are 

underlined. 

(B) RASSF1-6 SARAH domain homodimer homology models (left) and heterodimer 

models with MST1 (right). MST1 monomer is shown in purple in the same 

orientation as the sequence in (A). RASSF monomers are shown in cyan and the 

bottom monomer is in the reverse orientation to the corresponding RASSF sequence 

shown below each model. Side chains of all interacting residues are shown in the 

models and highlighted in the sequence as described in (A). Residues in conserved 

positions are shown in red text and polar residues involved in the interface are 

underlined.  
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 The residues from the RASSF monomers contributing to the dimeric interfaces 

are largely similar. There are no changes from RASSF1, whilst the variations in the 

remaining RASSF heterodimers are commonly addition of the aromatic residue Phe 

(Figure 5.2Bii), polar residues Gln, Ser and Thr (Figure 5.2Bii, iv) or charged residues 

Lys and Glu (Figure 5.2Biii, v, vi).  

5.2.2.2. Comparison of the interfaces sizes of the dimeric models 

The same parameters were used for the interface analysis of the homodimer models and 

these are summarised in comparison to the heterodimer analysis in Table 5.2. The main 

chain and side chain interface areas are not shown here as they are largely unchanged in 

proportion to the total interface areas in both types of dimers.  

 Similar to the heterodimers, the homodimer contact interfaces mainly involve 

side chains and non-polar residues. However, the total interface area for the heterodimers 

is noticeably larger than the homodimers, especially for the MST1/RASSF6 heterodimer, 

whereas the increase in the MST1/RASSF4 interface size is minimal. Naturally, this is 

accompanied by an increase in the non-polar interface areas by different magnitudes 

across the six heterodimers. These increases are the result of larger ΔASA for most of the 

existing interface residues and additional residues not involved in the homodimer 

interfaces (data not shown). Conversely, the minor differences in ΔASA between the 

RASSF4 homodimer and heterodimer interface residues are reflected by the minimal 

changes between the two interface areas. 

 The changes in the polar interface sizes are more varied, with an increase from 

homodimer to heterodimer for RASSF1, 3 and 6, and a small decrease for RASSF2, 4 

and 5. Most of these changes are minor (<10%), with the most significant increases 

observed for the RASSF3 and RASSF6 heterodimer with MST1. However, the polar 

interface of RASSF6 remains the smallest in absolute terms as well as in proportion for 

both its homodimer and heterodimer models.   

 It is also noteworthy that the interface area of the MST1 SARAH homodimer is 

larger than all six RASSF homodimers and more similar to the heterodimeric interface 

sizes. Furthermore, its non-polar interface area is also larger than most of the non-polar 

interfaces for the heterodimeric models, except for RASSF6.  
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5.2.3. Effects of mutations in the SARAH domain on dimerisation 

To test the importance of specific residues in the SARAH domain for homodimerisation 

and heterodimerisation, we generated specific single and double point mutants in MST1, 

RASSF1 and RASSF5, and performed co-IP experiments using cell lysates as described 

in section 2.6.2. MST1 and these two RASSF members were chosen for the mutational 

studies as either their SARAH domain structures or functions are well characterised. 

Existing literature on the MST1 L444P, RASSF1 L308P and RASSF5 L224A mutants 

are used as benchmarks and allow for comparison with our studies (Del Re et al., 2010, 

Donninger et al., 2011, Praskova et al., 2004, Raab et al., 2011). 

5.2.3.1. Mutations in the MST1 SARAH domain 

The three main residues in the MST1 SARAH domain, L444, L448 and L451 were 

mutated to Pro (Figure 5.3A). Single point mutants at each of these positions were 

generated, as well as all three possible combinations of double point mutants. 

 The mutants in their full length form were tested in comparison to the positive 

control, wild-type MST1, for binding to RASSF5. All six mutants retained their ability to 

heterodimerise with RASSF5 (Figure 5.3Bi). However, the signals detected for the 

double point mutants L444P/L451P and L448P/L451P were statistically weaker 

compared to the wild-type and the other mutants (Figure 5.3Bii).  

 In contrast, when wild-type MST1 and its mutants were tested for binding to the 

kinase-dead MST1 K59R, only the wild-type positive control was detected (Figure 

5.3Ci). Very weak signals were detected for the single point mutants L444P, L448P and 

L451P and all three double point mutants were barely detectable (Figure 5.3Cii). 

 To confirm the true positives, we also performed a set of negative control co-IP 

in the absence of myc-tagged proteins (Figure 5.3D). Weak non-specific binding was 

detected for the single mutants L444P and L451P, and double mutant L444P/L451P, and 

a stronger signal for double mutant L448P/L451P. When these observations are taken 

into account, the signals detected for binding to MST1 can be discounted, indicating all 

six mutants lost their ability to homodimerise (Figure 5.3C). However, they retained the 

ability to heterodimerise with RASSF5, with possibly a reduced affinity by the double 

mutant L448P/L451P due to its slightly stronger non-specific binding effect (Figure 

5.3B).   
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Figure 5.3 Effects of mutations in the MST1 SARAH domain on dimerisation 

(A) The SARAH domain sequence of MST1. Main interacting non-polar (yellow), acidic 

(red) and basic (blue) residues are highlighted. The three positions in which 

mutations were introduced are marked by asterisks (*).  

(B) (i) Co-IP assay to show heterodimerisation between myc-RASSF5Δ41 and wild-type 

(WT) GFP-MST1 and its three single and three double point mutants: L444P, L448P, 

L451P, L444P/L448P, L444/L451P and L448P/L451P. The loading controls and 

GAPDH endogenous controls are shown below. (ii) Quantification of the bands in 

terms of relative intensity to the WT control.  

(C) Co-IP assay to show homodimerisation between myc-MST1 K59R and wild-type 

(WT) GFP-MST1 and its six mutants as described in (B). The loading controls are 

shown below. (ii) Quantification of the bands in terms of relative intensity to the WT 

control. 

(D) Co-IP assay of the negative controls. A simultaneous negative control was performed 

using cell lysates containing only GFP-MST1 or its mutants. The loading controls are 

shown below.  

All co-IP assays (B-D) were repeated three times and a representative is shown here. The 

bands were quantified using ImageJ. The relative intensity of the WT control was always 

set at 1 and used as a reference point. The error bars are standard deviations, p-values 

were calculated using the Student’s t-test and indicated as follows: p ≤ 0.05 (*), p ≤ 0.01 

(**) and p ≤ 0.001 (***).   
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5.2.3.2. Mutations in the RASSF1 SARAH domain 

For RASSF1, we mutated the three Leu residues, aligning to the same positions as those 

in MST1, to Pro: L301, L305 and L308 (Figure 5.4A). Again, three single point mutants 

and three double point mutants were generated.  

 Similar to the experiments in section 5.2.3.1, wild-type RASSF1 was used as a 

positive control for the co-IP experiments. When co-expressed with RASSF5, a strong 

signal was detected only for the positive control, a very weak signal was detected for 

single point mutant L301P, whereas the remaining five mutants failed to bind RASSF5 

(Figure 5.4B).  Likewise, only wild-type RASSF1 showed strong binding to MST1 

(Figure 5.4C). Very weak signals were detected for all three single point mutants. 

However, the signal for L301P was slightly stronger in comparison to L305P and L308P, 

as well as to its interaction with RASSF5 (Figure 5.4Bii, Cii). Conversely, none of the 

double point mutants were detected. The negative control experiments, in which none of 

the wild-type or mutants showed non-specific binding, confirmed that the interactions 

detected were not false positives (Figure 5.4D). 

 We also performed intracellular FRET studies for the RASSF1 point mutants as 

described in section 2.6.3. Due to time constraint, we only tested the three single point 

mutants due to their very weak detection in the in vitro studies (Figure 5.5A). Wild-type 

RASSF1 showed a significant decrease in GFP donor lifetime (Figure 5.5Bi), whereas 

the changes in the FRET signals for the three mutants are statistically insignificant 

(Figure 5.5Bii-iv), indicating a lack of interaction between the mutants and MST1 

SARAH.  

5.2.3.3. Mutations in the RASSF5 SARAH domain 

As with MST1 and RASSF1, three single and three double point mutants were generated 

for RASSF5. The three residues mutated in the RASSF5 SARAH domain were L224, 

L228 and L231, which align to the same conserved positions (Figure 5.6A).  

 Wild-type RASSF5 was used as the positive control against the six mutants. All 

three RASSF5 single point mutants co-immunoprecipitated at similar levels with myc-

tagged RASSF5 (Figure 5.6B), thus retaining their ability to homodimerise. However, 

quantification of the bands showed that there were slight statistically significant 
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Figure 5.4 Effects of mutations in the RASSF1 SARAH domain on dimerisation 

(A) The SARAH domain sequence of RASSF1. Main interacting non-polar (yellow), 

acidic (red) and basic (blue) residues are highlighted. The three positions in which 

mutations were introduced are marked by asterisks (*).  

(B) Co-IP assay to show heterodimerisation between myc-RASSF5Δ41 and wild-type 

(WT) GFP-RASSF1 and its three single and three double point mutants: L301P, 

L305P, L308P, L301P/L305P, L301/L308P and L305P/L308P. The loading controls 

and GAPDH endogenous controls are shown below. (ii) Quantification of the bands 

in terms of relative intensity to the WT control. 

(C) Co-IP assay to show heterodimerisation between myc-MST1 K59R and wild-type 

(WT) GFP-RASSF1 and its six mutants as described in (B). The loading controls are 

shown below. (ii) Quantification of the bands in terms of relative intensity to the WT 

control. 

(D) Co-IP assay of the negative controls. A simultaneous negative control was performed 

using cell lysates containing only GFP-RASSF1 or its mutants. The loading controls 

are shown below.  

All co-IP assays (B-D) were repeated three times and a representative is shown here. The 

quantification of the bands and calculation of p-values are as described in Figure 5.3.  
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Figure 5.5 FRET studies on RASSF1 mutants and the MST1 SARAH domain 

(A) Plate map of the 96-well plate setup for GFP-RASSF1 WT and its single point 

mutants with mCherry-MST1 SARAH or the negative controls mCherry and 

mCherry-MST1ΔSARAH. The wells and FRET signal are indicated as described in 

Figure 4.8. Image acquisitions and data processing were performed by Dr Anca 

Margineanu as described in section 2.6.3. 

(B) Bar graphs showing the GFP lifetime changes per condition for (i) WT RASSF1 and 

(ii-iv) its three single point mutants. The GFP lifetimes were calculated as an average 

per well and error bars are standard deviations. P-values were calculated against the 

negative control mCherry using the Student’s t-test and are indicated as follows: p ≤ 

0.05 (*), p ≤ 0.01 (**) and p ≤ 0.001 (***).  

Jia Jia
Highlight



170 
 

differences between the wild-type and the L228P and L231P mutants (Figure 5.6Bii). 

Conversely, for the double mutants, L224P/L228P and L228P/L231P were detected at 

lower levels, whilst L224P/L228P was not detected (Figure 5.6Bii). Similarly, in the co-

IP assay for heterodimerisation with MST1, the signals detected for all six mutants were 

of a similar pattern to the homodimerisation assay above (Figure 5.6C). The negative 

control experiments confirmed that all the bands detected were not the result of non-

specific binding (Figure 5.6D). 

 Intracellular FRET studies were also carried out for the three RASSF5 single 

point mutants (Figure 5.7A). Statistically significant increases in FRET signals were 

detected for wild-type RASSF5 as well as the three mutants tested (Figure 5.7B). 

However, the increase in FRET signals for the three mutants were clearly of a much 

smaller magnitude compared to the wild-type, which is an indication of a reduced 

binding affinity by the RASSF5 mutants.  

5.2.3.4. Comparison of the effects of the RASSF1 and RASSF5 mutations 

Based on the FRET data from sections 5.2.3.2 and 5.2.3.3, the changes in GFP donor 

lifetimes were calculated for the wild-type and mutants of both RASSF1 and RASSF5 

(Figure 5.8A). As expected, both wild-type constructs showed the largest decrease in 

GFP lifetime, i.e. increase in FRET signal. All three RASSF1 mutants showed almost 

undetectable FRET signals, whereas this varies for the same mutations in RASSF5, with 

L228P producing the smallest increase in FRET signal, whilst L224P and L231P were 

less potent in inhibiting dimerisation. Overall, mutations of identical residues aligning to 

the same positions in RASSF1 (Figure 5.8B) appear to be more detrimental to 

heterodimerisation compared to RASSF5. 

 

5.3. Discussion 

The analytical outcome of both homodimeric and heterodimeric models places strong 

emphasis on side chain interactions and non-polar residues, which supports previous 

structural studies on the MST1 and RASSF5 SARAH domain (Hwang et al., 2007, 

Makbul et al., 2013). Furthermore, it suggests that the hydrophobic network plays a 

significant role not only in homodimerisation, but also in heterodimerisation, as the non-

polar interface dominates all SARAH dimer interfaces.  
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Figure 5.6 Effects of mutations in the RASSF5 SARAH domain on dimerisation 

(A) The SARAH domain sequence of RASSF5. Main interacting non-polar (yellow), 

acidic (red) and basic (blue) residues are highlighted. The three positions in which 

mutations were introduced are marked by asterisks (*).  

(B) Co-IP assay to show homodimerisation between myc-RASSF5Δ41 and wild-type 

(WT) GFP-RASSF5 and its three single and three double point mutants: L224P, 

L228P, L231P, L224P/L228P, L224/L231P and L228P/L231P. The loading controls 

and GAPDH endogenous controls are shown below. (ii) Quantification of the bands 

in terms of relative intensity to the WT control. 

(C) Co-IP assay to show heterodimerisation between myc-MST1 K59R and wild-type 

(WT) GFP-RASSF5 and its six mutants as described in (B). The loading controls are 

shown below. (ii) Quantification of the bands in terms of relative intensity to the WT 

control. 

(D) Co-IP assay of the negative controls. A simultaneous negative control was performed 

using cell lysates containing only GFP-RASSF5 or its mutants. The loading controls 

are shown below. 

All co-IP assays (B-D) were repeated three times and a representative is shown here. The 

quantification of the bands and calculation of p-values are as described in Figure 5.3.  
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Figure 5.7 FRET studies on RASSF5 mutants and the MST1 SARAH domain 

(A) Plate map of the 96-well plate setup for GFP-RASSF5 WT and its single point 

mutants with mCherry-MST1 SARAH or the negative control mCherry. The wells 

and FRET signal are indicated as described in Figure 4.8. Image acquisitions and 

data processing were performed by Dr Anca Margineanu as described in section 

2.6.3. 

(B) Bar graphs showing the GFP lifetime changes per condition for (i) WT RASSF5 and 

(ii-iv) its three single point mutants. The GFP lifetimes, errors and p-values were 

calculated and indicated as described in Figure 5.5B. 
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Figure 5.8 Comparison of the effects of the RASSF1 and RASSF5 mutations 

(A) Graphical representation of the different FRET signals of the WT and single point 

mutants for RASSF1 and RASSF5. These were measured as a change in the GFP 

donor lifetimes and the error bars are the combined standard deviations (see Figure 

5.5 and 5.7). 

(B) Sequence alignments of the RASSF1-6 SARAH domains. Positions of the non-polar 

residues involved in interaction are marked by asterisks (*). Conserved residues in 

these positions are shown in red and similar residues in green. The residues mutated 

in RASSF1 and RASSF5 for this study are highlighted in yellow. 
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The globally larger interface area for heterodimers is an indication of more 

residues being involved at the interface or more interacting partners per residue. The 

latter is more likely as even when there are minimal changes in the interface residues, 

such as in the MST1/RASSF1 or RASSF4 heterodimer (Figure 5.2Bi, iv), interface areas 

remain greater for heterodimers. This is due to a larger ΔASA for each individual residue, 

which indicates more contacts are being made by these residues, hence stronger 

interactions. On the other hand, this interface enlargement could be due to the 

contribution from MST1, which has a globally larger interface compared to all the 

RASSF SARAH domains. Nonetheless, our in silico data are in agreement with previous 

studies highlighting the association between stronger protein interactions and larger 

interface areas, whereby larger ΔASA contribution means more hydrogen bonds, salt 

bridges and other forces of interaction (Jones and Thornton, 1995). 

A previous study highlighted the natural preference for homodimers due to a 

higher affinity for self-attraction between two identical monomers with their identically 

aligned residues (Lukatsky et al., 2007). This is in agreement with our previous 

observation under complete in vitro experimental conditions (Chapter 4). However, this 

may be the opposite under cellular and physiological settings. Based on our in silico data 

and analyses, there is a high possibility that the SARAH domain has a greater propensity 

to heterodimerise due to the larger heterodimeric interface area and its correlation with 

stronger interactions. A higher heterodimer affinity in this case could also be due to the 

large degree of structural similarities between the different SARAH domains with the 

interacting side chains better orientated and tightly-packed in the heterodimeric 

structures (Figure 5.2B). The involvement of more aromatic residues (Phe, Trp, Tyr, His) 

in the heterodimeric interfaces probably contributes to the latter phenomenon. They are 

known to form strong hydrophobic interactions between bulky side chains, with parallel 

arrangements that create tighter packing with a better geometric fit (Yan et al., 2008).  

There were two slight discrepancies between our in vitro and intracellular FRET 

observations for the interaction of MST1 with the RASSF mutants. The first was the 

RASSF1 mutants, where very weak interactions were detected in vitro but not in the 

FRET studies (Figure 5.4 and 5.5). This could be due to the much weaker binding 

affinity increasing the fluorophore donor-acceptor distances beyond the required 10 nm, 

thus FRET would not have been efficient enough for any changes to be detected even if 

the two proteins were interacting very weakly. The second discrepancy was the almost 
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equal or very small change in binding of the RASSF5 mutants to MST1 observed in vitro 

against the much reduced FRET signals in cells (Figure 5.6 and 5.7). The latter indicates 

that while binding still occurs, the affinities are definitely compromised by the mutations. 

This inconsistency could be due to the variable expression levels of the proteins in the in 

vitro assays. Thus, such techniques are adequate for detecting interactions but 

insufficient to discriminate between different binding affinities, whereas FRET is a much 

more sensitive approach. Nevertheless, the FRET data confirm that these mutations 

weaken the ability of RASSF1 and RASSF5 to heterodimerise, although to different 

extents; thus double mutations would completely eliminate dimerisation.  

 The different degrees of disruption to heterodimerisation caused by the RASSF1 

and RASSF5 mutants (Figure 5.8) could be due to the variations in the specific residues 

involved in their individual heterodimeric interfaces, and the properties of the residues 

surrounding the mutated sites (Figure 5.1A, F). It is possible that the neighbouring 

residues in RASSF5, which are different from those in RASSF1, could compensate for 

the effects of the mutation, thus minimising the disruption. Alternatively, it could be the 

result of mutating the residues to Pro, which is known to introduce distortion to helices 

(Barlow and Thornton, 1988). This is observed in wild-type MST1, in which P453 and 

P472 cause a kink at their respective positions (Hwang et al., 2007). Thus, it is possible 

that introducing Pro into RASSF1 in those positions distorts the helical structure more 

severely than in RASSF5, resulting in an almost total loss of heterodimerisation, whereas 

RASSF5 still retains its ability to heterodimerise, albeit at a diminished level, which is in 

agreement with a previous report of a L224A mutant (Raab et al., 2011). It could also be 

that the Leu residues and hydrophobic interactions play a more critical role for RASSF1 

heterodimerisation as opposed to RASSF5. 

 Interestingly, the MST1 mutants retain their ability to heterodimerise but not 

homodimerise (Figure 5.3B, C), thus helix distortion by Pro should not play a role in this 

case. This observation supports previous studies using the MST1 L444P mutant, which 

lost its affinity for homodimerisation but not heterodimerisation with RASSF5 

(Khokhlatchev et al., 2002, Praskova et al., 2004). As described in Chapter 4, although 

the RASSF5 SARAH domain is structurally very similar to MST1, they are sequentially 

rather different with RASSF5 carrying a charged segment composed mainly of Asp, Glu 

and Lys residues. Consequently, heterodimeric interactions may be slightly different 

from homotypic interactions, whereby interactions between the charged residues could 
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compensate for the loss of some hydrophobic interactions. However, despite the in vitro 

data showing almost equal binding by the MST1 mutants to RASSF5, FRET studies 

would probably detect a reduction in binding affinities such as in the case of RASSF5.    

Observations from our previous FRET experiments in section 4.2.3.2 suggest a 

potential heterodimer affinity with MST1 in the following order: RASSF3 and RASSF5 >

RASSF4 > RASSF1 and RASSF2 >> RASSF6. The heterodimeric models here offer 

some plausible explanations for these differences. As the non-polar interface is a major 

feature and all the residues in the conserved positions are present, minor differences in 

the non-polar interfaces sizes amongst the heterodimers are unlikely to affect the 

dimerisation affinities. Conversely, we find a correlation between the affinity pattern and 

the proportion of the polar interface areas (Table 5.3). The potentially strongest binders, 

RASSF3 and RASSF5, have the largest proportional polar interface (19.2%). Although 

this is the same for RASSF4, it appeared to bind slightly weaker to MST1, which could 

be due to the fact that charged side chains make up only half of its polar interface, with 

the other half being polar uncharged side chains. This suggests that salt bridges formed 

between charged residues contribute more to stronger binding affinities compared to 

hydrogen bonds by polar uncharged side chains. The rest of the classical RASSF 

members 1, 2 and 6 follow a similar pattern. Therefore, whilst the hydrophobic network 

of non-polar residues plays an integral role in dimerisation and the maintenance of dimer 

stability (Hwang et al., 2007), the interactions between polar residues are likely also a 

strong contributing factor to the binding affinities. 

It is also worth noting that despite the MST1/RASSF6 heterodimer having the 

smallest polar interface, the number of polar side chains involved is in fact similar to 

RASSF1 and RASSF2. However, the distinct difference lies in the residue aligning to 

R470 in MST1. Residues in this position are highly conserved in all other RASSF 

SARAH domains except for RASSF6, which carries a Lys (Figure 5.1F). Various studies 

have shown that Arg is superior to Lys in forming stronger salt bridges and maintaining 

protein stability due to the geometric properties of the Arg guanidinium group (Kumar 

and Nussinov, 1999, Musafia et al., 1995, Sokalingam et al., 2012). Thus, even with the 

largest total and non-polar interfaces, RASSF6 still has the weakest binding affinity for 

MST1. From these observations, we can infer that besides non-polar residues and 
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Table 5.3 Comparison of the SARAH heterodimer polar interfaces 

The polar interfaces (in Å2), their proportion to the total dimeric interfaces and the polar 

residues involved (in red) are shown for each RASSF heterodimer. 

MST1 

with: 

Total Polar Polar/Total 

(%) 

SARAH domain sequence 

RASSF1 2844.6 494.1 17.4 EVNWDAFSMPELHNFLRILQREEEEHLRQILQKY
SYCRQKIQEALHAC 

RASSF2 2933.6 507.1 17.3 VAQYIKFEMPVLKSFIQKLQEEEDREVKKLMRKY
TVLRLMIRQRLEEI 

RASSF3 2767.7 532.2 19.2 IGEWEAFSLPELQNFLRILDKEEDEQLQNLKRRY
TAYRQKLEEALREV 

RASSF4 2843.2 547.1 19.2 VAQYIKFEMPVLDSFVEKLKEEEEREIIKLTMKF
QALRLTMLQRLEQL 

RASSF5 2820.9 542.2 19.2 EVEWDAFSIPELQNFLTILEKEEQDKIQQVQKKY
DKFRQKLEEALRES 

RASSF6 2988.4 486.3 16.3 VAQYINFHFSLLESILQRLNEEEKREIQRIVTKF
NKEKAIILKCLQNK 
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hydrophobic interactions, the specificity of charged residues and the strength of their 

interactions also dictate the affinity of SARAH heterodimers.  

Although we observed variations in the effect of all the mutations tested, the 

majority of them negatively affected dimerisation to different extents. These data could 

be used to predict the likelihood of the same mutations in disrupting the interactions of 

the other classical RASSF members. However, we do not know to what extent this effect 

will be for each individual RASSF member. Nevertheless, the residues mutated in this 

study are conserved within the family (Figure 5.8B), indicating that the residues and 

positions we have chosen are appropriate targets. Thus, similar residues could also play 

an important role in homodimerisation or heterodimerisation of the remaining RASSF 

members. Introducing mutations to these positions in other classical RASSF members 

may disrupt interaction. Moreover, any combination of double mutations to the residues 

highlighted in Figure 5.8B is highly likely to completely abolish dimerisation mediated 

by the SARAH domain. 

In addition to predicting interactions, these mutational studies could also be very 

useful for future cellular or in vivo studies. Mutations that disrupt interaction could be 

used to assess the functions of the RASSF family under physiological conditions. 

Furthermore, they could provide further insights on functions that are dependent on 

homodimerisation or heterodimerisation via the SARAH domain.  
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6 Other potential interacting partners of the RASSF family 
 

6.1. Introduction 

Apart from the main interacting RA and SARAH domains, a few of the RASSF member 

have been shown to associate with other interacting partners via specific motifs present 

in their sequences. RASSF1 is the only member of the family that has been extensively 

studied and characterised in this aspect. Earlier studies have revealed its interaction with 

several key proteins in death and NFκB signalling, namely TNF-R1, MOAP1, DAPK 

and TBK1 (Baksh et al., 2005, Bialik et al., 2008, El-Kalla et al., 2010, Foley et al., 

2008), whilst it could also be a potential phosphorylation target of DAPK (Shairaz Baksh, 

personal communication). These proteins consist of a variety of binding domains and 

motifs illustrated in Figure 6.1.  

6.1.1. Proteins involved in death signalling 

6.1.1.1. The RASSF/MOAP1/TNF-R1 complex 

 MOAP1 is a 40 kDa highly regulated pro-apoptotic protein, first identified in a 

yeast two-hybrid screen as a Bax-associating protein (Tan et al., 2001). It is ubiquitously 

expressed under normal cellular conditions but its expression levels are downregulated in 

a wide panel of human cancer tissues and cell lines (Law et al., 2012). Therefore, it has 

been suggested that the combined loss of MOAP1 and RASSF1 may be a common 

occurrence during carcinogenesis to deregulate the extrinsic death pathway. Similar to 

RASSF1, several single nucleotide polymorphisms (SNPs) have also been identified in 

MOAP1, with two of these observed in melanoma patients (P79S and A335D) (Wei et 

al., 2011). Although their biological consequences are yet to be determined, it has been 

speculated that these SNPs could impact phosphorylation patterns and RASSF1 

association respectively. 

 TNF-R1 is a 55 kDa transmembrane protein that binds its ligand trimer via its 

Cys-rich TNFR domain (Figure 6.1B). This is followed by the recruitment of adaptor 

proteins to its cytoplasmic death domain, initiating a signalling cascade leading to cell 

death (described in section 1.2.3) (Locksley et al., 2001).  
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Figure 6.1 Schematic representations of the RASSF1 interacting proteins 

(A-D) The length of each protein is indicated. The main structural features are labelled 

and the residue positions indicated above.  

(BH3, Bcl2 homology domain 3; TM, transmembrane region; Ca2+/CaM, calcium-

activated calmodulin; ULD, ubiquitin-like domain; SDD, scaffold/ dimerisation domain; 

CC, coiled-coil)  
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 The RASSF1/MOAP1/TNF-R1 complex has been extensively studied in recent 

years. RASSF1 and MOAP1 interact via a highly charged acidic segment in its SARAH 

domain (311EEEEH) and a region of oppositely charged basic residues (201EKRRR) in 

MOAP1 (Figure 6.2Ai, ii) (Baksh et al., 2005). Likewise, the complex between MOAP1 

and TNF-R1 is mediated by a C-terminal segment of acidic residues (333EAEEEEA) and 

a basic stretch in the death domain (408TWRRR) respectively (Figure 6.2Ai, iii) (Foley et 

al., 2008). Whilst interactions with MOAP1 appear to be predominantly governed by 

electrostatic interactions, the interaction between RASSF1 and TNF-R1 is mediated by 

Cys and His residues of the zinc finger motifs within the RASSF1 C1 domain (Figure 

6.2Aii) (Foley et al., 2008). RASSF1 and MOAP1 are mutually required to form a 

ternary complex with TNF-R1 and for their apoptotic function (Foley et al., 2008). At the 

same time, microtubule localisation of RASSF1 also plays an important role in 

accelerating TNF-R1 internalisation (El-Kalla et al., 2010). In its unbound form, MOAP1 

is held in a “closed” conformation via intra-electrostatic interactions between (178EEEF) 

and 202KRRR (Baksh et al., 2005). The binding of RASSF1 triggers a conformational 

change in MOAP1 that exposes its BH3-like domain. This allows MOAP1 to bind Bax 

and induce its conformational change, enabling it to translocate to the mitochondria to 

cause MOMP, cytochrome c release and a signalling cascade resulting in cell death as 

described in section 1.2.3 (Figure 6.2B) (Law et al., 2012). Another study also revealed 

that ability of the RASSF1/TNF-R1 complex to promote MST activation and its 

subsequent apoptotic response, which suggests that this complex could be involved in 

multiple apoptotic pathways (Vichalkovski et al., 2008). 

 RASSF3 and RASSF6 have also been shown to interact with MOAP1, whilst 

RASSF5A interacted with TNF-R1; and these protein complexes are partly responsible 

for the pro-apoptotic effects of the three RASSF members (Allen et al., 2007, Ikeda et al., 

2009, Kudo et al., 2012, Park et al., 2010). Interestingly, the interaction with MOAP1 

could possibly occur via other regions in the RASSF protein as a truncated RASSF6 

lacking the SARAH domain still bound to MOAP1 (Ikeda et al., 2009). However, the 

rest of the interactions have not been characterised and the underlying molecular 

mechanisms and specific interacting regions for these complexes are not known. 
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Figure 6.2 Key protein interactions in RASSF1-mediated death signalling 

(A) Schematic representations of the proteins and their key regions involved in the 

RASSF1/MOAP1/TNF-R1 complex. In each schematic, interacting proteins are 

shown in pink and the sequences from the illustrated protein involved in interactions 

are shown. Adapted from Foley et al. (2008). 

(B) The extrinsic signalling pathways involving the RASSF1/MOAP1/TNF-R1 complex. 

Adapted from Gordon et al. (2012) and Law et al. (2012). 
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6.1.1.2. Death-associated protein kinase (DAPK) 

DAPK is a 160 kDa Ca2+/CaM-regulated Ser/Thr kinase. It is known to induce cell death 

by multiple death signals and regulates both caspase-dependent apoptosis and caspase-

independent autophagy depending on specific cell types and death signals (Bialik and 

Kimchi, 2006). In addition to its ability to sensitise cells to apoptotic signals, DAPK has 

been shown to suppress cellular transformation at early stages of tumour development 

and inhibit metastasis in mouse models (Bialik and Kimchi, 2006). As it is also quite 

frequently downregulated in a large variety of tumour types due to promoter 

hypermethylation, DAPK has been identified as a tumour suppressor. Intriguingly, 

epigenetic silencing of DAPK and RASSF1 are correlative events that are linked to poor 

prognosis of patients with NSCLC and malignant mesothelioma (Buckingham et al., 

2010, Fischer et al., 2006).  

 DAPK consists of several key domains that are important for its functions (Figure 

6.1C). Its activation is a two-step process: 1) binding of Ca2+-activated CaM to the CaM 

regulatory domain releases DAPK autoinhibition and 2) dephosphorylation of S308 

increases the affinity for CaM, thus promoting the kinase catalytic activity (Bialik and 

Kimchi, 2006). Additionally, the cytoskeletal binding domain facilitates its association 

with the actin cytoskeleton and the induction of membrane blebbing during apoptosis. 

The C-terminal death domain mediates interaction with Erk that activates DAPK, whilst 

the Ser-rich tail negatively regulates the functions of DAPK. Most importantly, its N-

terminal kinase domain comprises two distinct clusters of acidic residues at the substrate-

binding site that have been suggested to play a role in substrate recognition (Tereshko et 

al., 2001). Thus, though not always the case, many of its substrates possess two to three 

basic residues just N-terminal to the S/T phosphorylation sites to facilitate electrostatic 

interactions (Bialik and Kimchi, 2006). Interestingly, RASSF1 is able to bind DAPK 

(Shairaz Baksh, personal communication), and a high throughput proteomics screen also 

identified two potential phosphorylation sites within the RASSF1 RA domain 

(193GRGTSVRRRTSFYLPK) (Gordon et al., 2012).   

 DAPK is activated by a wide variety of stimuli. Although most studies highlight 

the regulatory roles of DAPK in cell death signalling, it has been shown to have broader 

functions through its interaction with and regulation of the actin and microtubule 

cytoskeleton (Bialik and Kimchi, 2006, Harrison et al., 2008, Wu et al., 2011). Despite 
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the diverse functions of DAPK, few binding proteins have been identified for DAPK. 

Recent studies showed that DAPK is also able to inhibit TNFα-dependent NFκB activity 

and its targeted gene expression to cause cell cycle arrest and apoptosis (Wu et al., 2013, 

Yoo et al., 2012). The signalling network involving DAPK is outlined in Figure 6.3. 

6.1.2. TANK-binding kinase (TBK1) 

TBK1 is an 83 kDa Ser/Thr kinase and a non-canonical IKK along with its highly similar 

counterpart IKKε. It is a key node protein in multiple signalling pathways and is a 

critical inducer of the interferon (IFN) and NFκB signalling cascades (Figure 6.4) (Shen 

and Hahn, 2011). Stimuli and receptors that activate TBK1 include viral nucleic acids, 

LPS, and interleukins, TLR3, TLR4 and different IL-R’s respectively. The primary 

functions of TBK1 are antiviral and antibacterial innate immune response, inflammation, 

autophagy, proliferation and growth (Helgason et al., 2013). 

TBK1 carries several distinct domains shown in Figure 6.1D. The predicted CC2 

is required for its binding to adaptor proteins TANK, Sintbad and NAP1, which are 

mutually exclusive (Goncalves et al., 2011). This in turn leads to different subcellular 

localisation of TBK1, which is crucial for its activation and substrate specificity 

(Helgason et al., 2013). The recent structure of TBK1 also showed that all three of its 

major domains, the kinase domain (KD), ULD and SDD form a tripartite complex and 

homodimer that positions the kinase active sites away from one another (Tu et al., 2013). 

Thus, activation of TBK1 occurs in a biphasic reaction, whereby the lag phase relies on 

the “activation loop-swap” mechanism in the local cluster of TBK1 molecules for the 

initial phosphorylation event, followed by a second phase of rapid trans-

autophosphorylation (Ma et al., 2012). In addition to dimerisation, K63 

polyubiquitination on conserved K30 and K401 is required for the activating 

phosphorylation of S172 in the TBK1 kinase activation loop (Tu et al., 2013). 

Due to its broad spectrum of functions, TBK1 has been linked to the 

pathophysiology of various diseases, making it a potential therapeutic target 

(Niederberger et al., 2013). Of note, it has been shown to facilitate tumourigenesis and is 

highly expressed in several cancers (Shen and Hahn, 2011). Although its primary 

functions are mediated mainly by NFκB signalling, TBK1 is able to phosphorylate and 

activate Akt and drive pro-survival signals in lung cancer cells harbouring KRAS 

 



186 
 

 

Figure 6.3 Illustration of the DAPK signalling cascade 

DAPK signalling is initiated by various external stimuli to the cell, including 

inflammatory cytokines such as TNFα and IFNγ, oncogenes and oxidative stress. This 

leads to changes in apoptosis, autophagy and cell proliferation. Blue lines indicate JNK-

mediated apoptosis via PKD activation by DAPK. Adapted from Rennier and Ji (2013). 
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Figure 6.4 Illustration of NFκB signalling involving TBK1 

(A) Non-cell autonomous TBK1/IKKε signalling. Viruses and bacterial toxin LPS 

engage TLR to initiate K63 polyubiquitination of TRAF3, recruitment and activation 

of TBK1/IKKε/TANK, IRF and IFN target genes.  

(B) Cell autonomous TBK1 signalling. Stimuli activate the canonical NFκB signalling 

cascade. Ras activation leads to the formation of an exocyst complex of 

RalB/Sec5/TBK1. TBK1 mediates phosphorylation of multiple effectors, including 

Sec5, IKKβ and IκB, which leads to the activation of Bcl-xL, Akt and NFκB pro-

survival signalling. Adapted from Helgason et al. (2013) and Shen and Hahn (2011). 

(APRIL, a proliferation-inducing ligand; BAFF, B-cell activating factor; IFN, interferon; 

IL, interleukins; IRF, interferon response factors; TACI, TNF receptor superfamily 

member 13B; TLR, toll-like receptor; TRAF, TNF receptor-associated factor)  
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mutations, and is also activated by Ras GTPase RalB in cancers (Figure 6.4) (Helgason 

et al., 2013, Kim et al., 2013). Additionally, TBK1 has been shown to form a complex 

with TNF-R1 and upregulates anti-apoptotic genes in a NFκB-dependent manner upon 

TNFα stimulation (Delhase et al., 2012, Kuai et al., 2004). Current studies suggest 

crosstalk between Ras, TNF-R1 and NFκB signalling are likely to play an important role 

in the TBK1-driven immune response, inflammation and oncogenesis. 

Recently, an interaction screen has identified TBK1 as a RASSF1 binding partner 

(Shairaz Baksh and Gerd Pfeifer, personal communication). However, there is little 

sequence conservation around the TBK1 phosphorylation sites, thus it is difficult to 

predict whether RASSF1 is a target substrate or simply an adaptor for TBK1. The 

molecular mechanisms behind the interaction between RASSF1 and TBK1 are also not 

known.  

It is evident that MOAP1, TNF-R1, DAPK and TBK1 share some similar key 

functions, such as caspase-dependent cell death and other NFκB-driven activities. 

Furthermore, crosstalk between different signalling pathways appears to influence some 

of these functions. Given that the RASSF family members are relatively well conserved, 

it is possible that other RASSF members could also interact with these proteins, and may 

act as an adaptor or a phosphorylation substrate that adds another layer of regulation to 

these pathways. The aim of this study was to assess and compare the interactions of the 

RASSF family with these key proteins in cell death and NFkB signalling, and the effects 

of different stimuli on these interactions. Here, we observe differences in binding to the 

four interacting partners tested amongst the ten RASSF members, as well as in the 

absence and presence of different stimuli.    

 

6.2. Results  

6.2.1. Interaction between MOAP1 and the RASSF family 

We first studied the interaction of the RASSF family with MOAP1. Figure 6.5Ai shows 

the three charged regions in MOAP1, referred to as R1-3, that are known to form either 

intra- or inter-electrostatic interactions as described in section 6.1.1.1. Based on existing 

reports on MOAP1-R2 (Figure 6.5Ai) being the basic segment that interacts with the 



189 
 

Figure 6.5 Interaction between the RASSF family and MOAP1 

(A) Potential regions of interaction for (i) MOAP1 and (ii-iii) RASSF family members. 

The three regions in MOAP1 are referred to as R1-3. Acidic residues are shown in 

red, basic residues in blue and polar residues in green. Fully conserved residues are 

marked with asterisks (*) and weakly similar residues with periods (.).  

(B) (i) Co-IP assay to show interaction between GFP-RASSF1-10 and myc-MOAP1 with 

and without TNFα-stimulation. This is representative of the results from three 

separate experiments. The loading controls are shown below. (ii) Quantification of 

the bands using ImageJ. The relative intensity of the stimulated binding by RASSF1 

was set at 1 and used as a reference point. The error bars are standard deviations. P-

values were calculated using the Student’s t-test to compare unstimulated and TNFα-

stimulated binding for each individual RASSF and indicated as follows: p ≤ 0.05 (*), 

p ≤ 0.01 (**) and p ≤ 0.001 (***).  
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acidic residues in RASSF1, we performed multiple sequence alignments for this region 

in the classical RASSF members. As expected, as this region is part of the SARAH 

domain described in Chapter 4, the acidic residues are well-conserved across all six 

classical RASSF members (Figure 6.5Aii). However, the occurrence of charged 

segments are more variable in the N-terminal RASSF members. These are not present in 

RASSF7 and RASSF9. RASSF8 carries three different segments of acidic residues, 

whereas a long stretch of basic residues is found in RASSF10 (Figure 6.5Aiii). This 

basic region in RASSF10 could be involved in charged interaction with MOAP1 given 

that TNF-R1 is known to interact with MOAP1 via its segment of basic residues. 

 On the basis that interaction between the RASSF proteins and MOAP1 is 

mediated by electrostatic interactions, it would seem that all RASSF members except 

RASSF7 and RASSF9 are capable of binding MOAP1. To validate these predictions, we 

performed a series of co-IP using unstimulated and TNFα-stimulated cell lysates 

containing myc-MOAP1 and GFP-RASSF (Figure 6.5Bi). RASSF1 served as a positive 

control for stimulation-dependent binding. All six classical RASSF members were 

detected in the TNFα-stimulated immunoprecipitates. However, signals for RASSF2 and 

RASSF4 were very weak in comparison. Furthermore, RASSF3, 5 and 6 were also 

detected in the unstimulated immunoprecipitates, although signals for RASSF3 and 

RASSF6 were significantly higher for their stimulated interaction (Figure 6.5Bii). For 

the N-terminal RASSF members, RASSF8 and RASSF10 showed binding as expected. 

Conversely, the RASSF7 binding detected was unexpected and independent of 

stimulation. However, this could also be a case of non-specific binding, which has been 

demonstrated in section 4.2.2.2. These observations suggest stimulation-dependent 

binding for RASSF1, 2, 4 and 10, whereas RASSF3, 5, 6 and 8 appeared to bind MOAP1 

in the absence of TNFα, with enhanced interaction for RASSF3, 6 and 8 upon cytokine 

stimulation. 

6.2.2. Interaction between TNF-R1 and the RASSF family 

We next focused on TNF-R1, the second component in the RASSF1 complex involved 

in extrinsic cell death. The zinc finger sequence within the C1 domain of RASSF1 and 

the residues required for its association to TNF-R1 are shown in Figure 6.6A. The C1 

domain is absent in all other RASSF members except RASSF5A, which was not used in 

this study. Sequence alignments also did not show any similarities between other RASSF 
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Figure 6.6 Interaction between the RASSF family and TNF-R1 

(A) Sequence of the RASSF1 C1 domain. Cys and His residues involved in interaction 

are highlighted in yellow and blue respectively.  

(B) Schematic outline of the co-IP assay using co-transfected cell lysates containing pre-

formed complexes. Endogenous TNF-R1 was immunoprecipitated as described in 

section 2.6.2.  

(C) (i) Co-IP assay to show interaction between GFP-RASSF1-10 and TNF-R1 in the 

presence of MOAP1 with and without TNFα-stimulation. This is representative of 

the results from two separate experiments. The loading controls are shown below. (ii) 

Quantification of the bands using ImageJ. The error bars are standard deviations. The 

relative intensities and p-values were calculated and indicated as described in Figure 

6.5B.   
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members and this region in RASSF1 (data not shown), therefore their interaction with 

TNF-R1 can only be determined experimentally.  

 As a previous report showed that interaction between RASSF1 and TNF-R1 

required the presence of MOAP1 (Foley et al., 2008), we immunoprecipitated 

endogenous TNF-R1 from unstimulated and TNFα-stimulated cell lysates containing 

both myc-MOAP1 and GFP-RASSF (Figure 6.6B). The TNFα-stimulated interaction by 

RASSF1 was again used as a positive control. For the remaining classical RASSF 

members, both unstimulated and TNFα-stimulated interaction by RASSF2, 3, 5 and 6 

were detected, and no signals of either were detected for RASSF4 (Figure 6.6Ci). Similar 

to their interactions with MOAP1, RASSF7, 8 and 10 from the N-terminal RASSF 

subgroup showed binding to TNF-R1. However, only the RASSF10 interaction appeared 

TNFα-dependent, whilst RASSF3 and surprisingly, RASSF5 and RASSF7, may form a 

constitutive complex with TNF-R1, where interaction could be enhanced upon 

stimulation (Figure 6.6Cii).  

6.2.3. Interaction between DAPK and the RASSF family 

There are two known consensus sequences for substrate recognition and binding to the 

DAPK kinase active site (Figure 6.7A) (Harrison et al., 2008, Velentza et al., 2001). 

However, the first full motif is not found in any of the RASSF proteins. Therefore, we 

performed a search for potential Ser/Thr phosphorylation sites in all ten RASSF 

members that fit the minimum RxxS/T consensus. Each RASSF member contains at least 

one such predicted site and these sites vary in their confidence scores (Table 6.1). They 

also do not appear to be positionally conserved within the RASSF family. Interestingly, 

the second motif identified from MAP1B is largely conserved at different C-terminal 

regions of RASSF1 and RASSF5 (Figure 6.7Aii). As the conservation of these consensus 

sequences are variable in the RASSF family, the presence of such motifs is not definitive 

of their recognition and binding by the DAPK active site, which have to be confirmed 

empirically.  

 A set of co-IPs was performed using unstimulated and TNFα-stimulated cell 

lysates containing overexpressed HA-DAPK and GFP-RASSF (Figure 6.7B). All 

classical RASSF members (1, 2, 4, 5 and 6) except for RASSF3 were detected in the 

immunoprecipitates, whilst RASSF7, 8 and 10 from the N-terminal RASSFs were also 
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Table 6.1 Predicted DAPK Ser/Thr phosphorylation sites for RASSF proteins  

NetPhos 2.0 server (http://www.cbs.dtu.dk/services/NetPhos/) (Blom et al., 1999) was 

used to predict the phosphorylation sites. Those shown below carry the minimum 

consensus sequence required for DAPK phosphorylation: RxxS/T. Arg residues at the 

conserved position are in blue and Ser/Thr phosphorylation sites are underlined and 

numbered. The scores for the predictions are between 0 and 1, with 0.500 set as the 

minimum threshold. Higher scores indicate a higher level of confidence for a true 

phosphorylation site. 

RASSF Predicted phosphorylation site  Score  
1 VRPV175SVPSS 

GRGT197SVRRR 
RRRT203SFYLP   
VRRR202TSFYL 

0.980 
0.990 
0.993 
0.850 

2 VRIN197STMTT 0.664 

3 PRTD177TLSFV 
KRRY221TAYRQ 

0.872 
0.868 

4 PRRP90SCPLK 
VRVN194STMTT 

0.956 
0.737 

5 IRPQ107SIYDA 0.997 

6 YRTM155SEAAL 
VRVN207SNMRT 
QRIV312TKFNK 

0.614 
0.992 
0.516 

7 GRPS97SDSCP 
AREE327SLLGA 

0.990 
0.730 

8 ERPT90SDSVA 
IRLQ174TEKLQ   

0.996 
0.936 

9 NRSP19TKDMD 
KRTT49SADVI 
QRVF403SNYTN 

0.781 
0.952 
0.992 

10 SRRT27TCSDV 
RRLG54SAGDP 
ERVR392TQLST 

0.990 
0.996 
0.748 

 
  

http://www.cbs.dtu.dk/services/NetPhos/
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Figure 6.7 Interaction between the RASSF family and DAPK 

(A) The DAPK phosphorylation consensus sequences from (i) computational analysis 

using docked peptide substrates (Velentza et al., 2001) and (ii) a DAPK binding 

protein, MAP1B (Harrison et al., 2008). The regions in RASSF1 and RASSF5 

aligning to this sequence are shown. Fully conserved residues are in red and marked 

by asterisks (*) and partly conserved residues are in green. 

(B) Schematic outline of the co-IP assay using co-transfected cell lysates containing HA-

DAPK and GFP-RASSF as described in section 2.6.2. 

(C) (i) Co-IP assay to show interaction between GFP-RASSF1-10 and HA-DAPK with 

and without TNFα-stimulation. This is representative of the results from two separate 

experiments. The controls are shown below. (ii) Quantification of the bands using 

ImageJ. The error bars are standard deviations. The relative intensities and p-values 

were calculated and indicated as described in Figure 6.5B. 
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detected (Figure 6.7Ci). It is worth noting that the bands for RASSF5 overlapped with 

those for the immunoglobulin chains, thus RASSF5 binding may actually be weaker than 

observed. In addition, the difference in unstimulated and stimulated binding observed for 

RASSF1 and RASSF6 is more likely due to an inconsistency in exposure rather than a 

difference in binding. Overall, RASSF1, 2, 5 and 6 appeared to bind at their same 

respective levels regardless of stimulation, whilst RASSF4, 7, 8 and 10 showed 

statistically significant TNFα-dependent binding to DAPK (Figure 6.7Cii). 

6.2.4. Interaction between TBK1 and the RASSF family 

Interactions between the RASSF family and TBK1 were determined experimentally due 

to a lack of consensus sequence for substrate binding and recognition by TBK1 and data 

on regions of interaction for TBK1 and the RASSF proteins. As previous studies have 

shown TBK1 activation upon LPS treatment and association with TNF-R1 upon TNFα 

stimulation (Shen and Hahn, 2011), we used unstimulated, TNFα- or LPS-stimulated cell 

lysates containing GFP-RASSF for co-IP. Endogenous TBK1 was immunoprecipitated 

as shown in Figure 6.8A. 

 Low levels of RASSF1, 5 and 7 were detected in the unstimulated 

immunoprecipitates, whilst RASSF8 and RASSF10 appeared to bind TBK1 

constitutively with high affinities (Figure 6.8Bi). Interestingly, RASSF1 and RASSF7 

were the only members showing TNFα-stimulated binding to TBK1. Conversely, all six 

classical RASSF members, as well as RASSF7 and RASSF9, showed LPS-stimulated 

binding to TBK1. Quantification of the signals showed statistically significant 

differences between unstimulated and these stimulated interactions (Figure 6.8Bii). 

Furthermore, the interactions between RASSF1 or RASSF7 and TBK1 induced by the 

two different stimuli are significantly different. Overall, LPS appeared as the preferred, 

as well as stronger inducer of interaction between the RASSF proteins and TBK1.  

 

6.3. Discussion  

Given that this study focuses on MOAP1, TNF-R1, DAPK and TBK1 due to their known 

interactions with RASSF1, we set out to address a few main questions: 1) can other 

RASSF members also associate with these proteins, 2) are these interactions stimulation- 
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Figure 6.8 Interaction between the RASSF family and TBK1 

(A) Schematic outline of the co-IP assay using transfected cell lysates containing GFP-

RASSF. Endogenous TBK1 was immunoprecipitated as described in section 2.6.2. 

(B) (i) Co-IP assay to show interaction between GFP-RASSF1-10 and TBK1 with and 

without TNFα- or LPS-stimulation. This is representative of the results from two 

separate experiments. The controls are shown below. (ii) Quantification of the bands 

using ImageJ. The relative intensity of LPS-stimulated binding by RASSF1 was set 

at 1 and used as a reference point. The error bars are standard deviations. P-values 

were calculated and indicated as described in Figure 6.5B, to compare unstimulated 

and TNFα- or LPS-stimulated (black), as well as TNFα- and LPS-stimulated 

interactions (red, brackets).  
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dependent and 3) are they mediated by the same domains and motifs identified for 

RASSF1? 

 As unstimulated interactions were observed in several instances, it is important to 

take into account the possibility of non-specific binding as a result of overexpression of 

these proteins of interest. Therefore, most of the observed constitutive interactions could 

be an artefact that is obscuring true stimulation-dependent binding. Since most 

interactions were significantly enhanced upon stimulation, they are highly likely 

stimulation-dependent, albeit of a potentially lower affinity, if these non-specific 

backgrounds were subtracted. The observed interactions accounting for potential non-

specific binding are summarised in Table 6.2.  

 Whilst binding was observed between some RASSF members and MOAP1, 

TNF-R1 and DAPK (Table 6.2), it is difficult to draw any conclusions due to non-

specific interactions and artefacts. Further studies are required to consolidate more data 

to confirm these potentially new regulatory interactions. In contrast, TBK1 has displayed 

the clearest and most consistent stimulation-dependent interactions with eight of the ten 

RASSF members, with very few artefacts. 

TBK1 is known to form complexes with a large variety of interacting partners, 

most notably with distinct scaffolding proteins that are mutually exclusive and appear to 

localise TBK1 to different subcellular compartments (Helgason et al., 2013). As the 

RASSF family is famously known for its role as an adaptor, it could also act as a 

scaffolding protein for TBK1, and perhaps regulate the localisation and functions of 

TBK1 via its association with Ras GTPases or the cytoskeleton network. Mutational 

analysis has shown that similar to TNF-R1 binding, the RASSF1 zinc finger is also 

important for its interaction with TBK1 (Shairaz Baksh, personal communication). 

However, the TBK1 binding region may not be limited to the zinc finger as several 

polymorphisms in its ATM kinase phosphorylation motif and C-terminus also abolished 

association with TBK1. As some of these motifs are absent in the other RASSF members, 

TBK1 interaction is likely to involve other regions of the RASSF proteins. Taken 

together with previous observations of a TBK1/TNF-R1 complex (Kuai et al., 2004), 

interactions between some RASSF members and TBK1 could be linked to TNF-R1 and 

those that displayed differential binding patterns to TBK1 and TNF-R1 could have 

different regulatory roles. 
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Table 6.2 Summary of interactions between the RASSF family and proteins of 
interest  

Interaction 

with: 

MOAP1 TNF-R1 DAPK TBK1 

RASSF1 Induced Induced Constitutive 

(potential artefact) 

TNFα-, LPS-

induced  

RASSF2 Induced Constitutive 

(potential artefact) 

Constitutive 

(potential artefact)  

LPS-induced  

RASSF3 Constitutive 

(potential artefact), 

obscured induction 

Constitutive 

(potential artefact), 

obscured induction 

None observed LPS-induced  

RASSF4 Induced   None observed Induced  LPS-induced 

RASSF5 Constitutive 

(potential artefact) 

Constitutive 

(potential artefact), 

obscured induction 

Constitutive 

(potential artefact) 

LPS-induced 

RASSF6 Constitutive 

(potential artefact), 

obscured induction 

Constitutive 

(potential artefact) 

Constitutive 

(potential artefact) 

LPS-induced 

RASSF7 Constitutive 

(potential artefact), 

could be induced 

Constitutive 

(potential artefact), 

obscured induction 

Constitutive 

(potential artefact), 

obscured induction 

TNFα-, LPS-

induced 

RASSF8 Constitutive 

(potential artefact), 

obscured induction 

Constitutive 

(potential artefact) 

Induced  Constitutive 

(potential artefact), 

could be induced  

RASSF9 None observed Artefact None observed  LPS-induced 

RASSF10 Induced Induced Constitutive 

(potential artefact), 

obscured induction 

Constitutive 

(potential artefact) 
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Interestingly, most of the RASSF family appear to bind TBK1 in a stimulation-

dependent manner with the exception of RASSF10, whereas RASSF8 interaction could 

be inducible but is possibly obscured by a high level of non-specific binding (Table 6.2). 

Conversely, RASSF1 and RASSF7 were inducible by both TNFα and LPS, whilst the 

remaining interactions were solely dependent upon LPS stimulation (Table 6.2). 

However, in contrast to the high levels of clear LPS-stimulated binding by RASSF5 and 

RASSF6, interactions between TBK1 and RASSF2, 3, 4 or 9 could be TNFα-induced but 

were undetectable due to extremely low levels. These observations suggest the 

involvement of these selected RASSF members in TNFα- or LPS-activated NFκB 

signalling. Given that TBK1 is oncogenic, whereas the RASSF family is mostly anti-

tumourigenic, it would be of interest to elucidate the regulatory roles of the 

RASSF/TBK1 complexes and determine whether the RASSF proteins could inhibit the 

TBK1 oncogenic functions. As different RASSF members also showed different levels 

of binding upon stimulation, the weaker binders, such as RASSF2, 3 and 4, could have a 

lesser impact on regulation. In contrast, as RASSF7 has displayed some pro-growth and 

anti-apoptotic properties (Recino et al., 2010), its association with TBK1 may help to 

promote tumour formation.  

This study serves as a gateway for further investigation on the molecular 

mechanisms behind the interactions between the RASSF family and the four proteins of 

interest, the crosstalk between signalling pathways and their regulation. Foley et al. 

(2008) have shown that the RASSF1 homodimer dissociates upon death signal 

stimulation, allowing it to bind MOAP1 and TNF-R1. It would be interesting to assess 

how TNFα stimulation affects other RASSF dimers and likewise, how dimerisation 

affects other RASSF interactions. Furthermore, El-Kalla et al. (2010) showed that 

microtubule localisation of RASSF1 is required for its interaction with TNF-R1. 

Interestingly, RASSF5 and RASSF7 are associated with microtubules (Bee et al., 2010, 

Moshnikova et al., 2006, Recino et al., 2010, Sherwood et al., 2008), thus microtubule 

localisation could also be involved in the regulation of some of these interactions. Most 

importantly, identification of the specific residues and regions involved in the various 

interactions may provide more insight into the regulatory role of the RASSF family as an 

adaptor or a substrate for the kinases. 

More than half the RASSF family interacts with MOAP1, TNF-R1, DAPK and 

TBK1, which is indicative of their involvement in the regulation of apoptosis and NFκB 
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signalling pathways. They may also have overlapping downstream functions and 

biological effects that could be compensatory in a pathological setting. The majority of 

the family are likely pro-apoptotic and anti-proliferative via cell cycle arrests, whereas 

RASSF7 could be anti-apoptotic, which has been previously demonstrated (Takahashi et 

al., 2011). As DAPK and TBK1 are also linked to autophagy (Bialik and Kimchi, 2006, 

Helgason et al., 2013), their interactions with the RASSF members, especially those 

capable of microtubule association, could also implicate them in this pathway.  

Notably, our in vitro data are the most conclusive for TBK1, showing new 

stimulation-dependent interactions between TBK1 and the RASSF family, with some 

striking differences between TNFα and LPS stimulation. As shown in Figure 6.4, LPS 

activates the non-cell autonomous immune response, whilst TNFα induces cell 

autonomous responses in the form of inflammatory, pro-survival and anti-apoptotic gene 

expression (Shen and Hahn, 2011). Thus, the LPS-stimulated interactions of various 

RASSF members specifically implicate them in non-cell autonomous immune response. 

Furthermore, RASSF1 and RASSF7, that are inducible by both stimuli, could 

simultaneously regulate both types of immune responses and cell growth, which also 

suggests the presence of crosstalk between different NFκB signalling pathways. This 

essentially links the RASSF family to the regulation of both inflammation and 

tumourigenesis via NFκB, which has been a growing topic of interest (Ben-Neriah and 

Karin, 2011). Further studies determining the specific roles of each interacting RASSF 

member in NFκB signalling may provide a greater understanding of the regulation or 

deregulation of this signalling network in cancer and other diseases. 
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7 Conclusions and future perspectives  
The main aims of this project were to characterise and compare the RA and SARAH 

domains of the RASSF family members and their interactions with several important 

binding partners using in silico predictions as well as in vitro and cellular assays. This is 

the first comprehensive comparison of the ten RASSF members and their interactions 

with different binding partners, which are summarised in Figure 7.1. The results will be 

discussed here with the aim of clarifying existing literature, highlighting new findings 

and further studies required to address outstanding questions. Finally, the implications of 

these interactions on the regulatory roles of the RASSF family will be discussed. 

 

7.1. Ras interactions  

Although our in silico predictions and in vitro observations did not fully complement 

each other, both approaches are equally important in the study of the RA domain and its 

binding characteristics in different RASSF members. The Ras specificity and binding 

affinities of the RASSF family vary despite certain shared conserved residues and the 

overall predicted architecture (Figure 3.6, 3.7 and 3.9). Some of our findings support 

earlier reports of Ras binding by selected RASSF members, namely RASSF1, 4, 5, 6 and 

7 (see Table 1.2, Figure 7.1). We also identify a new Ras effector in the form of RASSF3 

and show that the N-terminal RASSF7 is a more promiscuous Ras effector than 

previously reported (Takahashi et al., 2011). Overall, there is a clear difference in 

binding affinities between RASSF5, the most potent Ras binder, and the remaining 

RASSF members. Furthermore, this study confirms previous observations that not all 

predicted RA domains are capable of Ras interaction (Bunney et al., 2006, Wohlgemuth 

et al., 2005), which has to be determined empirically. 

As Ras interaction may be influenced by many factors and conditions, negative 

detection of binding in this study should not rule out interaction with other types of Ras 

GTPases. Moreover, it is not known whether lipid modification of the Ras CAAX motif 

may account for some discrepancies between our in vitro data and the reported literature, 

particularly for RASSF2 (Clark et al., 2012, Vos et al., 2003a), for which we did not 

observe any interaction. Further studies are required to test more members of the Ras 
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Figure 7.1 Summary of the RASSF interactions 

The ten RASSF members are split into the classical members (left) and N-terminal 

members (right). The binding partners are shown in the middle, with reference to the 

figures showing their interactions. Only confirmed interactions are shown here with lines 

in colours corresponding to the respective binding partners. Other potential interactions 

are summarised in Table 6.2. 
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superfamily and compare interactions between unmodified and lipid modified Ras. 

Although the difficulty in expressing the RA domains in their isolated form presents a 

major hurdle in the study of Ras interaction, the in silico models could be used to select 

key residues for mutational studies, including those in the N-terminal subdomain of the 

classical RASSFs. These may provide valuable information on the molecular 

mechanisms specifically regulating Ras interaction with the RASSF RA domains, as well 

as Ras selectivity and binding affinities that may dictate the downstream functions of 

each RASSF member. 

 

7.2. RASSF homodimers and interactions with MST kinases 

The SARAH domain is highly conserved both in its key residues and structure, however 

the predicted coiled-coil motifs are more variable (see Chapter 4). Our data confirm that 

the SARAH domain in the classical RASSF1-6 mediates dimerisation. We also report for 

the first time that the coiled-coils do not interact with the SARAH domain as none of the 

N-terminal RASSF7-10 dimerised with RASSF5 or MST1/2 (Figure 7.1). Further studies 

are required to probe for other potential interactions mediated by the coiled-coils.  

Our observations of SARAH-mediated dimerisation support existing reports on 

different dimeric interactions of the classical RASSF members (Table 1.3). The 

structural similarity of different SARAH domains suggests other homodimers and 

heterodimer combinations within the RASSF family are possible. We also identify 

several key interacting residues, including a few conserved non-polar residues, from our 

in silico models and mutational studies (Figure 5.2-5.7), reinforcing the observations 

from the MST1 and RASSF5 SARAH domain structures (Hwang et al., 2007, Makbul et 

al., 2013). Our FRET studies highlight the potential differences in heterodimerisation 

affinities despite the highly similar SARAH domains (Figure 4.10). Although 

hydrophobic interactions play a key role in dimerisation, specific charged residues and 

electrostatic interactions may contribute to binding affinities (Table 5.3). Furthermore, 

the SARAH domain may have a higher affinity to heterodimerise, which could 

potentially be enhanced by Ras binding (Figure 4.11), thereby supporting earlier studies 

wherein activated Ras increased MST1 activation via RASSF5 (Khokhlatchev et al., 

2002, Praskova et al., 2004).  
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 More advanced FRET analysis could be used to quantify and compare the 

binding affinities of the different SARAH homodimers and heterodimers. This may 

provide an indication of the more dominant RASSF members in MST1-mediated 

apoptosis, which may be in a constitutive complex with MST1, whereas weaker binders 

may exist as homodimers that could be redundant under normal physiological conditions. 

Further FRET and biochemical studies could be used to address the effects of Ras on 

dimerisation and MST1 activities, while fluorescent microscopy could also be used to 

study the cellular localisation of RASSF and MST1 as a result of Ras interaction. These 

would offer more insight into the pro-apoptotic regulation by Ras and MST1. More 

extensive mutational studies could provide further details on the molecular mechanisms 

behind SARAH-mediated dimerisation. Moreover, these mutations could be used for 

cellular and in vivo studies, such as knock-in mice, to assess the importance of each 

RASSF member and establish their downstream signalling events. 

 

7.3. Other interactions of the RASSF family 

One of the major tumour suppressive functions of the RASSF family lies in its pro-

apoptotic regulation, which has mostly been associated with the MST kinases (see 

Chapter 1). While apoptotic regulation by the RASSF1/MOAP1/TNF-R1 complex is also 

well-documented (Baksh et al., 2005, El-Kalla et al., 2010, Foley et al., 2008), 

preliminary studies have identified new RASSF1 interacting partners, DAPK and TBK1, 

which are involved in apoptosis, autophagy and NFκB signalling (Bialik and Kimchi, 

2006, Helgason et al., 2013).  

Although we probed RASSF interactions with MOAP1, TNF-R1, DAPK and 

TBK1 (Figure 7.1), we did not consolidate enough data for the first three interacting 

partners to the point of conclusion. Several of these interactions remain ambiguous and 

require further studies for clarification. Nevertheless, our interaction data on TBK1 are 

the most conclusive, showing distinct stimulation-dependent binding to various RASSF 

members. Previous studies have implicated RASSF1, 2 and 6 in NFκB signalling (Allen 

et al., 2007, Del Re et al., 2010, Song et al., 2010), but the exact mechanism of 

regulation is not known. TBK1 could provide a link between the RASSF family and 

NFκB signalling. With such striking differences between TNFα- and LPS-induced 
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binding between the RASSF family and TBK1 (Figure 6.8), each RASSF member could 

be involved in different NFκB pathways. They could either regulate non-cell 

autonomous immune response or cell autonomous inflammation, apoptosis and 

proliferation (Figure 6.4), although crosstalk between pathways may be possible given 

that RASSF1 and RASSF7 are inducible by both stimuli, as discussed in section 6.3.  

Mutational and biochemical studies are required to elucidate the comprehensive 

molecular mechanisms underpinning these interactions. Additionally, cellular functional 

studies using kinase inhibitors, RNAi gene silencing and interaction mutants, could be 

used to determine the role of each RASSF member in the regulation of apoptosis, 

autophagy, cell cycle and immune response. These additional studies could contribute to 

building a more detailed signalling network involving these common proteins. 

 

7.4. Towards new interactions and functions  

To date, RASSF1 and RASSF5 are the best characterised tumour suppressors within the 

family. However, recent studies are gradually unravelling the interactions and regulatory 

roles of the remaining RASSF members, pointing towards a trend in probing for new 

interactions of the family. Using our experimental system, we have revealed more novel 

interactions for each RASSF member that carry different implications for their functional 

roles. 

 The majority of the RASSF members are potential tumour suppressors, with the 

exception of RASSF7, whose role remains ambiguous. Functional studies have 

consolidated their tumour suppressor functions primarily through the regulation of 

apoptosis, cytoskeleton stability and the cell cycle. These are accomplished via some 

well-known pathways, such as Hippo, extrinsic death and Raf/Mek/Erk signalling, and 

the more novel Wnt and NFκB signalling pathways (see Chapter 1). Our studies 

implicate a growing list of RASSF members in NFκB signalling, which may play a 

prominent role in the anti-tumourigenic functions of the RASSF family. Furthermore, 

these new interactions also suggest a wider biological role for the RASSF family, 

including immune response and autophagy. Further studies exploring other potential 

roles of the RASSF members both in vitro and in vivo will help to build a more complete 

picture of the RASSF family.  
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