
(1) Overview

Introduction
Modern scientific software is often complex, and con-
sists of a range of hand-picked components which are
combined to address a pressing scientificModern scien-
tific software is often complex, and consists of a range
of hand-picked components which are combined to
address a pressing scientific or engineering challenge.
Traditionally, these components are combined locally to
form a single framework, or used one after another at vari-
ous locations to form a scientific workflow, like in AMUSE
(AMUSE - http://www.amusecode.org) [17,16]. However,
these two approaches are not universally applicable, as
some scientifically important functionalities require the
use of components which run concurrently, but which
cannot be placed on the same computational resource.
Here we present MPWide, a library specifically developed

to facilitate wide area communications for these distrib-
uted applications.

The main use of MPWide is to flexibly manage and
configure wide area connections between concurrently
running applications, and to facilitate high-performance
message passing over these connections. These function-
alities are provided to application users and developers, as
MPWide can be installed and used without administrative
privileges on the (super)computing resources. We initially
reported on MPWide in 2010 [9], but have since extended
the library considerably, making it more configurable and
usable for a wider range of applications and users. Here
we describe MPWide, its implementation and architec-
ture, requirements and reuse potential.

MPWide was originally developed as a supporting com-
munication library in the CosmoGrid project [15]. Within
this project we constructed and executed large cosmo-
logical N-body simulations across a heterogeneous global

SOFTWARE METAPAPER

MPWide: a light-weight library for efficient message
passing over wide area networks
Derek Groen,1 Steven Rieder2 and Simon Portegies Zwart2

1	Post-doctoral Research Associate, Centre for Computational Science, University College London, United Kingdom
2	Professor, Leiden Observatory, Leiden University, the Netherlands
3	PhD Student at the System and Network Engineering research group, University of Amsterdam, the Netherlands; Leiden Observa-
tory, Leiden University, the Netherlands; Post-doctoral Research Associate at the Kapteyn Instituut, Rijksuniversiteit Groningen,
Groningen, the Netherlands

Groen et al 2013 MPWide: a light-weight library for efficient message passing over wide area
networks. Journal of Open Research Software, 1: e9, DOI: http://dx.doi.org/10.5334/jors.ah

Keywords: communication library; distributed computing; message passing; TCP; model coupling; data
transfer; communication performance; co-allocation
Funding Statement: This research is supported by the Netherlands organization for Scientific research
(NWO) grants #614.061.608 (AMUSE), #614.061.009 (LGM), #639.073.803, #643.000.803 and
#643.200.503, the European Commission grant for the QosCosGrid project (grant number: FP6-2005-
IST-5 033883), the Qatar National Research Fund (QNRF grant code NPRP 5-792-2-328) and the MAP-
PER project (grant number: RI-261507), SURFNet with the GigaPort project, NAOJ, the International
Information Science Foundation (IISF), the Netherlands Advanced School for Astronomy (NOVA), the Leids
Kerkhoven-Bosscha fonds (LKBF) and the Stichting Nationale Computerfaciliteiten (NCF). SR acknowledges
support by the John Templeton Foundation, grant nr. FP05136-O. We thank the organizers of the Lor-
entz Center workshop on Multiscale Modelling and Computing 2013 for their support. We also thank the
DEISA Consortium (www.deisa.eu), co-funded through the EU FP6 project RI-031513 and the FP7 project
RI-222919, for support within the DEISA Extreme Computing Initiative (GBBP project).

We present MPWide, a light weight communication library which allows efficient message passing over
a distributed network. MPWide has been designed to connect application running on distributed (super)
computing resources, and to maximize the communication performance on wide area networks for those
without administrative privileges. It can be used to provide message-passing between application, move
files, and make very fast connections in client-server environments. MPWide has already been applied to
enable distributed cosmological simulations across up to four supercomputers on two continents, and to
couple two different bloodflow simulations to form a multiscale simulation.

Journal of
open research software

http://www.amusecode.org
www.deisa.eu

Groen et alArt. e9, p.  2 of 8

network of supercomputers. The complexity of the under-
lying supercomputing and network architectures, as well
as the high communication performance required for the
CosmoGrid project, required us to develop a library that
was both highly configurable and trivial to install, regard-
less of the underlying (super)computing platform.

There are a number of tools which have similarities to
MPWide. ZeroMQ [1], is a socket library which supports
a wide range of platforms. However, compared with
MPWide it does have a heavier dependency footprint.
Among other things it depends on uuid-dev, a package
that requires administrative privileges to install. In addi-
tion, there are several performance optimization param-
eters which can be tweaked with MPWide but not with
ZeroMQ. Additionally, the NetIBIS [3] and the PadicoTM [5]
tools provide functionalities similar to MPWide, though
NetIBIS is written in Java, which is not widely supported
on the compute nodes of supercomputers, and PadicoTM
requires the presence of a central rendez-vous server. For
fast file transfers, alternatives include GridFTP and various
closed-source file transfer software solutions. There are
also dedicated tools for running MPI applications across
clusters [11,14,2] and for coupling applications to form
a multiscale simulation (e.g., MUSCLE [4] and the Jungle
Computing System [6]).

Summary of research using MPWide
MPWide has been applied to support several research
and technical projects so far. In this section we summa-
rize these projects, the purpose for which MPWide has
been used in these projects, and the performance that we
obtained using MPWide.

The CosmoGrid project
MPWide has been used extensively in the CosmoGrid pro-
ject, for which it was originally developed. In this project
we required a library that enabled fast message passing
between supercomputers and which was trivial to install
on PCs, clusters, little Endian Cray-XT4 supercomputers
and big Endian IBM Power6 supercomputers. In addi-
tion, we needed MPWide to deliver solid communication
performance over light paths and dedicated 10Gbps net-
works, even when these networks were not optimally con-
figured by administrators.

In CosmoGrid we ran large cosmological simulations,
and at times in parallel across multiple supercomputers,
to investigate key properties of small dark matter haloes
[13]. We used the GreeM cosmological N-body code [12],
which in turn relied on MPWide to facilitate the fast mes-
sage-passing over wide area networks.

Our initial production simulation was run distributed,
using a supercomputer at SurfSARA in Amsterdam, and
one at the National Astronomical Observatory of Japan in
Tokyo [15]. The supercomputers were interconnected by a
lightpath with 10 Gigabit/s bandwidth capacity. Our main
simulation consisted of 20483 particles, and required
about 10% of its runtime to exchange data over the wide
area network.

We subsequently extended the GreeM code, and used
MPWide to run cosmological simulations in parallel

across up to 4 supercomputers [8]. We also performed a
distributed simulation across 3 supercomputers, which
consisted of 20483 particles and used 2048 cores in total
[10]. These machines were located in Espoo (Finland),
Edinburgh (Scotland) and Amsterdam (the Netherlands).
The run used MPWide version 1.0 and lasted for about 8
hours in total. We present some performance results of

Fig. 1: Comparison of the wallclock time required per
simulation step between a run using 2048 cores on
one supercomputer (given by the teal line), and a nearly
identical run using 2048 cores distributed over three su-
percomputers (given by the red line). The two peaks in
the performance of the single site run were caused by
the writing of 160GB snapshots during those iterations.
The run over three sites used MPWide to pass data be-
tween supercomputers. The communication overhead
of the run over three sites is given by the black line. See
Groen et al. [10] for a detailed discussion on these per-
formance measurements.

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

t [
s]

Simulation step number

total time using 3 sites
communication time (3 sites)

total time using 1 site

Fig. 2: Snapshot of the cosmological simulation discussed
in Fig. 1, taken at redshift z = 0 (present day). The con-
tents have been colored to match the particles residing on
supercomputers in Espoo (green, left), Edinburgh (blue,
center) and Amsterdam (red, right) respectively [10].

Groen et al Art. e9, p.  3 of 8

this run in Fig. 1, and also provide the performance of
the simulation using one supercomputer as a reference.
The distributed simulation is only 9% slower than the one
executing on a single site, even though simulation data is
exchanged over a baseline of more than 1500 kilometres
at every time step. A snapshot of our distributed simula-
tion, which also features dynamic load balancing, can be
found in Fig. 2. The results from the CosmoGrid project
have been used for the analysis of dark matter haloes [10]
as well as for the study of star clusters in a cosmological
dark matter environment [18,19].

Distributed multiscale modelling of bloodflow
We have also used MPWide to couple a three-dimensional
cerebral bloodflow simulation code to a one-dimensional
discontinuous Galerkin solver for bloodflow in the rest
of the human body [7]. Here, we used the 1D model to
provide more realistic flow boundary conditions to the 3D
model, and relied on MPWide to rapidly deliver updates
in the boundary conditions between the two codes. We
ran the combined multiscale application on a distributed
infrastructure, using 2048 cores on the HECToR super-
computer to model the cerebral bloodflow and a local
desktop at University College London to model the blood-
flow in the rest of the human body. The two resources are
connected by regular internet, and messages require 11
ms to traverse the network back and forth between the
desktop and the supercomputer. We provide an overview
of the technical layout of the codes and the communica-
tion processes in Fig. 3.

The communications between these codes are par-
ticularly frequent, as the codes exchanged data every 0.6
seconds. However, due to latency hiding techniques we
achieve to run our distributed simulations with neglishi-
ble coupling overhead (6 ms per coupling exchange, which
constituted 1.2% of the total runtime). A full description
of this run is provided by Groen et al. [7].

Other research and technical projects
We have used MPWide for several other purposes. First,
MPWide is part of the MAPPER software infrastructure
[20], and is integrated in the MUSCLE2 coupling envi-
ronment (MUSCLE2 - http://www.qoscosgrid.org/trac/

muscle). Within MUSCLE2, MPWide is used to improve
the wide area communication performance in coupled
distributed multiscale simulation [4]. Additionally, we
applied the mpw-cp file transferring tool to test the net-
work performance between the campuses of University
College London and Yale University. In these throughput
performance tests we were able to exchange 256 MB of
data at a rate of ~8 MB/s using scp, a rate of ~40 MB/s
using MPWide, and a rate of ~48 MB/s using a commer-
cial, closed-source file transfer tool named Aspera.

We have conducted a number of basic performance
tests over regular internet, comparing the performance
of MPWide with that of ZeroMQ (ZeroMQ - http://www.
zeromq.org), MUSCLE 1 and regular scp. During each
test we exchanged 64MB of data (in memory in the case of
MPWide, MUSCLE and ZeroMQ, and from file in the case
of scp), measuring the time to completion at least 20
times in each direction. We then took the average value of
these communications in each direction. In these tests we
used ZeroMQ with the default autotuned settings.

Implementation and architecture
We present a basic overview of the MPWide architecture
in Fig. 4. MPWide has been implemented with a strong
emphasis on minimalism, relying on a small and flexible
codebase which is used for a range of functionalities.

Core MPWide library
The core MPWide functionalities are provided by the
MPWide C++ API, the communication codebase, and
the Socket class. Together, these classes comprise about
2000 lines of C++ code. The Socket class is used to man-
age and use individual tcp connections, while the role of
the communication codebase is to provide the MPWide
API functionalities in C++, using the Socket class. We pro-
vide a short listing of functions in the C++ API in Table 2.
More complete information can be found in the MPWide
manual, which resides in the /doc subdirectory of the
source code tree.

MPWide relies on a number of data structures, which
are used to make it easier to manage the customized con-
nections between endpoints. The most straightforward
way to construct a connection in MPWide is to create a

Fig. 3: Overview of the codes and communication processes in the distributed multiscale bloodflow simulation. Here the
1D pyNS code uses MPWide to connect to an MPWide data forwarding process on the front-end node of the HECToR
supercomputer. The 3D HemeLB code, which is executed on the compute nodes of the HECToR machine also connects
to this data forwarding process. The forwarding process allows us to construct this simulation, even when the incoming
ports of HECToR are blocked, and when the nodes where HemeLB will run are not known in advance. Once the connec-
tions are established, the simulations startd and boundary data is exchanged between the codes at runtime.

http://www.qoscosgrid.org/trac/muscle
http://www.qoscosgrid.org/trac/muscle
http://www.zeromq.org
http://www.zeromq.org

Groen et alArt. e9, p.  4 of 8

Endpoint 1 Endpoint 2 Name of Tool Average throughput in each
direction MB / s-1

London, UK Poznan, PL scp 11/16

London, UK Poznan, PL MPWide 70/70

London, UK Poznan, PL ZeroMQ 30/110

Poznan, PL Gdansk, PL scp 13/21

Poznan, PL Gdansk, PL MPWide 115/115

Poznan, PL Gdansk, PL ZeroMQ 64/-

Poznan, PL Amsterdam, NL scp 32/9.1

Poznan, PL Amsterdam, NL MPWide 55/55

Poznan, PL Amsterdam, NL ZeroMQ 18/18

Table 1: Summary of the throughput performance tests using MPWide and several other tools to exchange data between
resources in the United Kingdom (UK), the Netherlands (NL) and Poland (PL) using regular internet. Tests over individual
connections were performed in quick succession to mitigate potential bias due to background load on the internet back-
bone. A full report on these tests can be found at http://www.mapper-project.eu, Deliverable 4.2 version 0.7.

Function Name Summary description

MPW_Barrier () Synchronize between two ends of the network.

MPW_CreatePath () Create and open a path consisting of 1+ tcp streams.

MPW_Cycle () Send buffer over one set of channels, receive from another.

MPW_DCycle () AS MPW_Cycle (), but with buffers of unknown size using caching.

MPW_DestroyPath () Close and destroy a path consisting of 1+ tcp streams.

MPW_DNSResolve () Obtain an IP address locally, given a hostname.

MPW_DSendRecv () Send/receive buffers of unknown size using caching.

MPW_Init () Initialize MPWide.

MPW_Finalize () Close connections and delete MPWide buffers.

MPW_Recv () Receive a single buffer (merging the incoming data).

MPW_Relay () Forward all traffic between two channels.

MPW_Send () Send a single buffer (merging the incoming data).

MPW_SendRecv () Send/receive a single buffer.

MPW_ISendRecv () Send and/or receive data in a non-blocking mode.

MPW_Has_NBE_Finished () Check if a particular non-blocking call has completed.

MPW_Wait () Wait until a particular non-blocking call has completed.

MPW_setAutoTuning () Enable or disable autotuning (default: enabled).

MPW_setChunkSize () Change the size of data sent and received per low-level tcp send command.

MPW_setPacingRate () Adjust the software-based communication pacing rate.

MPW_setWin () Adjust the tcp window size within the constraints of the site configuration.

Table 2: List of available functions in the MPWide API.

communication path. Each path consists of 1 or more tcp
streams, each of which is used to facilitate actual com-
munications over that path. Using a single tcp stream is
sufficient to enable a connection, but in many wide area
networks, MPWide will deliver much better performance
when multiple streams are used. MPWide supports the
presence of multiple paths, and the creation and dele-
tion of paths at runtime. In addition, any messages can be
passed from one path to another using MPW_Cycle(),

or MPW_Relay() for sustained dedicated data forward-
ing processes (See Tab. 2).

MPWide comes with a number of parameters which
allow users to optimize the performance of individual
paths. Aside from varying the number of streams, users
can modify the size of data sent and received per low-level
communication call (the chunk size), the tcp window
size, and limit the throughput for individual streams by
adjusting the communication pacing rate. The number of

http://www.mapper-project.eu

Groen et al Art. e9, p.  5 of 8

streams will always need to provided by the user when
creating a path, but users can choose to have the other
parameters automatically tuned by enabling the MPWide
autotuner. The autotuner, which is enabled by default, is
useful for obtaining fairly good performance with mini-
mal effort, but the best performance is obtained by test-
ing different parameters by hand. When choosing the
number of tcp streams to use in a path, we recommend
using a single stream for connections between local pro-
grams, and at least 32 streams when connecting programs
over long-distance networks. We have found that MPWide
can communicating efficiently over as many as 256 tcp
streams in a single path.

Python extensions
We have constructed a Python interface, allowing MPWide
to be used through Python (Python - http://www.python.
org). We construct the interface using Cython (Cython -
http://www.cython.org), so as a result a recent version
of Cython is recommended to allow a smooth transla-
tion. The interface works similar to the C++ interface,
but supports only a subset of the MPWide features. It also
includes a Python test script. We also implemented an
interface using SWIG, but recommend Cython over SWIG
as it is more portable.

Forwarder
It is not uncommon for supercomputing infrastructures
to deny direct connections from the outside world to com-
pute nodes. In privately owned infrastructures, adminis-
trators commonly modify firewall rules to facilitate direct
data forwarding from outside to the compute nodes. The
Forwarder is a small program that mimicks this behav-
ior, but is started and run by the user, without the need
for administrative privileges. Because the Forwarder
operates on a higher level in the network architecture,
it is generally slightly less efficient than conventional
firewall-based forwarding. An extensive example of using
multiple Forwarder instances in complex networks of
supercomputers can be found in Groen et al. [8]

mpw-cp
Mpw-cp is a command-line file transfer tool which relies
on SSH. Its functionality is basic, as it essentially uses SSH
to start a file transfer process remotely, and then links
that process to a locally executed one. Mpw-cp works
largely similar to scp, but provides superior performance
in many cases, allowing users to tune their connections
(e.g., by using multiple streams) using command-line
arguments.

DataGather
The DataGather is a small program that allows users to
keep two directories synchronized on remote machines
in real-time. It synchronizes in one direction only, and it
has been used to ensure that the data generated by a dis-
tributed simulation is collected on a single computational
resource. The DataGather can be used concurrently with
other MPWide-based tools, allowing users to synchronize
data while the simulation takes place.

Constraints in the implementation and architecture
MPWide has a number of constraints on its use due to the
choices we made during design and implementation. First,
MPWide has been developed to use the tcp protocol, and
is not able to establish or facilitate messages using other
transfer protocols (e.g. udp). Second, compared to most
MPI implementations, MPWide has a limited performance
benefit (and sometimes even a performance disadvantage)
on local network communications. This is because vendor
MPI implementations tend to contain architecture-spe-
cific optimizations which are not in MPWide.

Third, MPWide does not support explicit data types in
its message passing, and treats all data as an array of char-
acters. We made this simplification, because data types
vary between different architectures and programming
environments. Incorporating the management of these in
MPWide would result in a vast increase of the code base,
as well as a permanent support requirement to update
the type conversions in MPWide, whenever a new plat-
form emerges. We recommend that users perform this

Fig. 4: Overview of MPWide functionalities and their links to underlying components. Functionalities available to the
user are given by black arrows, links of these functionalities to the corresponding MPWide API by red lines, and internal
codebase dependencies by dark blue lines.

http://www.python.org
http://www.python.org
http://www.cython.org

Groen et alArt. e9, p.  6 of 8

serialization task in their applications, with manual code
for simple data types, and relying on a high-quality seriali-
zation libraries for more complex data types.

Quality control
Due to the small size of the codebase and the develop-
ment team, MPWide has a rather simplistic quality control
regime. Prior to each public release, the various function-
alities of MPWide are tested manually for stability and
performance. Several test scripts (those which do not
involve the use of external codes) are available as part of
the MPWide source distribution, allowing users to test the
individual functionalities of MPWide without writing any
new code of their own. These include:
•	MPWUnitTests - A set of basic unit tests, can be run

without any additional arguments.
•	MPWTestConcurrent - A set of basic functional tests,

can be run without any additional arguments.
•	MPWTest - A benchmark suite which requires to be

started manually on both end points.
More details on how to use these tests can be found in the
manual, which is supplied with MPWide.

(2) Availability

Operating system
MPWide is suitable for most Unix environments. It can be
installed and used as-is on various supercomputer plat-
forms and Linux distributions. We have also been able to
install and use this version of MPWide successfully on Mac
OS X.

Programming language
MPWide requires a C++ compiler with support for
pthreads and UNIX sockets.

Additional system requirements
MPWide has no inherent hardware requirements.

Dependencies
MPWide itself has no major dependencies. The mpw-cp
functionality relies on ssh and the Python interface has
been tested with Python 2.6 and 2.7. The Python interface
has been created using SWIG, which is required to gener-
ate a new interface for different types of Python, or for
non 64-bit and/or non-Linux platforms.

List of contributors
•	 Derek Groen, has written most of MPWide and is the

main contributor to this writeup.
•	 Steven Rieder, assisted in testing MPWide, provided

advice during development, and contributed to the
writeup.

•	 Simon Portegies Zwart, provided supervision and sup-
port in the MPWide development, and contributed to
the writeup.

•	 Joris Borgdorff, provided advice on the recent
enhancements of MPWide, and made several recent
contributions to the codebase.

•	 Cees de Laat, provided advice during development
and helped arrange the initial Amsterdam-Tokyo
lightpath for testing and production.

•	 Paola Grosso, provided advice during development
and in the initial writeup of MPWide.

•	 Tomoaki Ishiyama, contributed in the testing of
MPWide and implemented the first MPWide-enabled
application (the GreeM N-body code).

•	 Hans Blom, provided advice during development and
conducted preliminary tests to compare a tcp-based
with a udp-based approach.

•	 Kei Hiraki, provided advice during development and
infrastructural support during the initial wide area
testing of MPWide.

•	 Keigo Nitadori, provided advice during development.
•	 Junichiro Makino, for providing advice during devel-

opment.
•	 Stephen L.W. McMillan, provided advice during devel-

opment.
•	 Mary Inaba, provided infrastructural support during

the initial wide area testing of MPWide.
•	 Peter Coveney, provided support on the recent

enhancements of MPWide.

Archive

Name
MPWide version 1.8.1

Persistent identifier
http://dx.doi.org/10.6084/m9.figshare.866803

License
MPWide has been released under the Lesser GNU Public
License version 3.0.

Publisher
Derek Groen

Date published
03/12/2013

Code Repository

Name
MPWide

Identifier
https://github.com/djgroen/MPWide

License
MPWide has been released under the Lesser GNU Public
License version 3.0.

Date published
15/10/2013

http://dx.doi.org/10.6084/m9.figshare.866803
https://github.com/djgroen/MPWide

Groen et al Art. e9, p.  7 of 8

Language
GitHub uses the git repository system. The full MPWide
distribution contains code written primarily in C++, but
also contains fragments written in C and Python. The code
has been commented and documented solely in English.

(3) Reuse potential
MPWide has been designed with a strong emphasis on
reusability. It has a small codebase, with minimal depend-
encies and does not make use of the more obscure C++
features. As a result, users will find that MPWide is triv-
ial to set up in most Unix-based environments. MPWide
does not receive any official funding for its sustainability,
but the main developer (Derek Groen) is able to respond
to any queries and provide basic assistance in adapting
MPWide for new applications.

Reuse of MPWide
MPWide can be reused for a range of different purposes,
which all share one commonality: the combination of
light-weight software with low latency and high through-
put communication performance.

MPWide can be reused to parallelize an application
across supercomputers and to couple different applica-
tions running on different machines to form a distributed
multiscale simulation. A major advantage of using MPWide
over regular tcp is the more easy-to-use API (users do not
have to cope with creating arrays of sockets, or learn low-
level tcp calls such as listen() and accept()), and
built-in optimizations that deliver superior performance
over long-distance networks.

In addition, users can apply MPWide to facilitate high
speed file transfers over wide area networks (using mpw-
cp or the DataGather). MPWide provides superior per-
formance to existing open-source solutions on many
long-distance networks (see e.g., section Other research
and technical projects]). MPWide could also be reused to
stream visualization data from an application to a visu-
alization facility over long-distances, especially in the case
when dedicated light paths are not available.

Users can also use MPWide to link a Python program
directly to a C or C++ program, providing a fast and light-
weight connection between different programming lan-
guages. However, the task of converting between data
types is left to the user (MPWide works with character
buffers on the C++ side, and strings on the Python side).

Support mechanisms for MPWide
MPWide is not part of any officially funded project, and as
such does not receive sustained official funding. However,
there are two mechanisms for unofficial support. When
users or developers run into problems we encourage them
to either raise an issue on the GitHub page or, if urgent,
to contact the main developer (Derek Groen, djgroennl@
gmail.com) directly.

Possibilities of contributing to MPWide
MPWide is largely intended as stand-alone and a very light-
weight communication library, which is easy to maintain
and support. To make this possible, we aim to retain a very

small codebase, a limited set of features, and a minimal
number of dependencies in the main distribution.

As such, we are fairly strict in accepting new features
and contributions to the code on the central GitHub
repository. We primarily aim to improve the performance
and reliability of MPWide, and tend to accept new contri-
butions to the main repository only when these contribu-
tions boost these aspects of the library, and come with a
limited code and dependency footprint.

However, developers and users alike are free to branch
MPWide into a separate repository, or to incorporate
MPWide into higher level tools and services, as allowed by
the LGPL 3.0 license. We strongly recommend integrating
MPWide as a library module directly into higher level ser-
vices, which then rely on the MPWide API for any required
functionalities. MPWide has a very small code footprint,
and we aim to minimize any changes in the API between
versions, allowing these high-level services to easily swap
their existing MPWide module for a future updated ver-
sion of the library. We have already used this approach in
codes such as SUSHI, HemeLB and MUSCLE 2.

References
1.	 ZeroMQ - www.zeromq.org, 2013
2.	 Agullo, E, Coti, C, Herault, T, Langou, J, Peyronnet,

S, Rezmerita, A, Cappello, F, and Dongarra, J 2011
QCG-OMPI: MPI applications on grids. Future Genera-
tion Computer Systems 27(4): 357-369.

3.	 Aumage, O, Hofman, R and Bal, H 2005 Netibis: an
efficient and dynamic communication system for het-
erogeneous grids. In CCGRID ‘05: Proceedings of the
Fifth IEEE International Symposium on Cluster Comput-
ing and the Grid (CCGrid’05) - Volume 2, pages 1101-
1108, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

4.	 Borgdorff, J, Mamonski, M, Bosak, B, Groen, D, Ben
Belgacem, M, Kurowki, K and Hoekstra, A G 2013
Multiscale computing with the multiscale modeling
library and runtime environment. In accepted by the
International Conference for Computational Science.

5.	 Denis, A, Perez, C and Priol, T 2003 PadicoTM: An
open integration framework for communication mid-
dleware and runtimes. Future Generation Computer
Systems 19(4): 575–585.

6.	 Drost, N, Maassen, J, van Meersbergen, M, Bal, H,
Pelupessy, I, Portegies Zwart, S, Kliphuis, M, Dijk-
stra, H and Seinstra, F 2012 High-performance dis-
tributed multi-model / multi-kernel simulations: A
case-study in jungle computing. In Proceedings of the
2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum, IPDP-
SW ’12, pages 150–162, Washington, DC, USA, 2012.
IEEE Computer Society.

7.	 Groen, D, Borgdorff, J, Bona-Casas, C, Hethering-
ton, J, Nash, R W, Zasada, S J, Saverchenko, I, Ma-
monski, M, Kurowski, K, Bernabeu, M O, Hoekstra,
A G and Coveney, P V 2013 Flexible composition and
execution of high performance, high fidelity multi-
scale biomedical simulations. Interface Focus 3(2).

djgroennl@gmail.com
djgroennl@gmail.com
www.zeromq.org

Groen et alArt. e9, p.  8 of 8

How to cite this article: Groen et al 2013 MPWide: a light-weight library for efficient message passing over wide area
networks. Journal of Open Research Software, 1: e9, DOI: http://dx.doi.org/10.5334/jors.ah

Published: 20 December 2013

Copyright: © 2013 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License (CC-BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/3.0/.

The Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

8.	 Groen, D, Portegies Zwart, S, Ishiyama, T and Mak-
ino, J 2011 High Performance Gravitational N-body
simulations on a Planet-wide Distributed Supercom-
puter. Computational Science and Discovery 4(015001).

9.	 Groen, D, Rieder, S, Grosso, P, de Laat, C and Por-
tegies Zwart, P 2010 A light-weight communication
library for distributed computing. Computational Sci-
ence and Discovery 3(015002).

10.	Groen, D, Rieder, S and Portegies Zwart, S 2011
High performance cosmological simulations on a grid
of supercomputers. In Proceedings of INFOCOMP 2011.
Thinkmind.org.

11.	Hockney, R W 1994 The communication challenge
for mpp: Intel paragon and meiko cs-2. Parallel Com-
puting 20(3): 389-398.

12.	Ishiyama, T, Fukushige, T and Makino, J 2009
GreeM: Massively Parallel TreePM Code for Large Cos-
mological N-body Simulations. Publications of the As-
tronomical Society of Japan 61: 1319-1330.

13.	Ishiyama, T, Rieder, S, Makino, J, Portegies Zwart,
S, Groen, D, Nitadori, K, de Laat, C, McMillan, S,
Hiraki, K and Harfst, S 2013 The cosmogrid simula-
tion: Statistical properties of small dark matter halos.
The Astrophysical Journal 767(2): 146.

14.	Manos, S, Mazzeo, M, Kenway, O, Coveney, P V,
Karonis, N T and Toonen, B R 2008 Distributed mpi
cross-site run performance using mpig. In HPDC: 229-
230.

15.	Portegies Zwart, S, Ishiyama, T, Groen, D, Nitadori,
K, Makino, J, de Laat, C, McMillan, S, Hiraki, K,
Harfst, S and Grosso, P 2010 Simulating the universe
on an intercontinental grid. Computer 43: 63–70.

16.	Portegies Zwart, S, McMillan, S, Harfst, S, Groen,
D, Fujii, M, Ó Nualláin, B, Glebbeek, E, Heggie, D,
Lombardi, J, Hut, P, Angelou, V, Banerjee, S, Belkus,
H, Fragos, T, Fregeau, J, Gaburov, E, Izzard, R, Juric,
M, Justham, S, Sottoriva, A, Teuben, P, van Bever,
J, Yaron, O and Zemp, M 2009 A multiphysics and
multiscale software environment for modeling astro-
physical systems. New Astronomy 14(4): 369-378.

17.	Portegies Zwart, S, McMillan, S L W, van Elteren, E,
Pelupessy, I and de Vries, N 2013 Multi-physics simu-
lations using a hierarchical interchangeable software
interface. Computer Physics Communications 183: 456-
468.

18.	Rieder, S, Ishiyama, T, Langelaan, P, Makino, J, Mc-
Millan, S L W and Portegies Zwart, S 2013 Evolution
of star clusters in a cosmological tidal field. ArXiv e-
prints, September 2013.

19.	Rieder, S, van de Weygaert, R, Cautun, M, Beygu, B
and Portegies Zwart, S 2013 Assembly of filamentary
void galaxy configurations. MNRAS 435: 222-241.

20.	Zasada, S J, Mamonski, M, Groen, D, Borgdorff, J,
Saverchenko, I, Piontek, T, Kurowski, K and Cov-
eney, P V 2012 Distributed infrastructure for multi-
scale computing. In Distributed Simulation and Real
Time Applications (DS-RT), 2012 IEEE/ACM 16th Inter-
national Symposium on, pages 65 –74.

Thinkmind.org

