
(1) Overview

Introduction
Modern scientific software is often complex, and con-
sists of a range of hand-picked components which are 
combined to address a pressing scientificModern scien-
tific software is often complex, and consists of a range 
of hand-picked components which are combined to 
address a pressing scientific or engineering challenge. 
Traditionally, these components are combined locally to 
form a single framework, or used one after another at vari-
ous locations to form a scientific workflow, like in AMUSE 
(AMUSE - http://www.amusecode.org) [17,16]. However, 
these two approaches are not universally applicable, as 
some scientifically important functionalities require the 
use of components which run concurrently, but which 
cannot be placed on the same computational resource. 
Here we present MPWide, a library specifically developed 

to facilitate wide area communications for these distrib-
uted applications.

The main use of MPWide is to flexibly manage and 
configure wide area connections between concurrently 
running applications, and to facilitate high-performance 
message passing over these connections. These function-
alities are provided to application users and developers, as 
MPWide can be installed and used without administrative 
privileges on the (super)computing resources. We initially 
reported on MPWide in 2010 [9], but have since extended 
the library considerably, making it more configurable and 
usable for a wider range of applications and users. Here 
we describe MPWide, its implementation and architec-
ture, requirements and reuse potential.

MPWide was originally developed as a supporting com-
munication library in the CosmoGrid project [15]. Within 
this project we constructed and executed large cosmo-
logical N-body simulations across a heterogeneous global 
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We present MPWide, a light weight communication library which allows efficient message passing over 
a distributed network. MPWide has been designed to connect application running on distributed (super)
computing resources, and to maximize the communication performance on wide area networks for those 
without administrative privileges. It can be used to provide message-passing between application, move 
files, and make very fast connections in client-server environments. MPWide has already been applied to 
enable distributed cosmological simulations across up to four supercomputers on two continents, and to 
couple two different bloodflow simulations to form a multiscale simulation.
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network of supercomputers. The complexity of the under-
lying supercomputing and network architectures, as well 
as the high communication performance required for the 
CosmoGrid project, required us to develop a library that 
was both highly configurable and trivial to install, regard-
less of the underlying (super)computing platform.

There are a number of tools which have similarities to 
MPWide. ZeroMQ [1], is a socket library which supports 
a wide range of platforms. However, compared with 
MPWide it does have a heavier dependency footprint. 
Among other things it depends on uuid-dev, a package 
that requires administrative privileges to install. In addi-
tion, there are several performance optimization param-
eters which can be tweaked with MPWide but not with 
ZeroMQ. Additionally, the NetIBIS [3] and the PadicoTM [5] 
tools provide functionalities similar to MPWide, though 
NetIBIS is written in Java, which is not widely supported 
on the compute nodes of supercomputers, and PadicoTM 
requires the presence of a central rendez-vous server. For 
fast file transfers, alternatives include GridFTP and various 
closed-source file transfer software solutions. There are 
also dedicated tools for running MPI applications across 
clusters [11,14,2] and for coupling applications to form 
a multiscale simulation (e.g., MUSCLE [4] and the Jungle 
Computing System [6]).

Summary of research using MPWide
MPWide has been applied to support several research 
and technical projects so far. In this section we summa-
rize these projects, the purpose for which MPWide has 
been used in these projects, and the performance that we 
obtained using MPWide.

The CosmoGrid project
MPWide has been used extensively in the CosmoGrid pro-
ject, for which it was originally developed. In this project 
we required a library that enabled fast message passing 
between supercomputers and which was trivial to install 
on PCs, clusters, little Endian Cray-XT4 supercomputers 
and big Endian IBM Power6 supercomputers. In addi-
tion, we needed MPWide to deliver solid communication 
performance over light paths and dedicated 10Gbps net-
works, even when these networks were not optimally con-
figured by administrators.

In CosmoGrid we ran large cosmological simulations, 
and at times in parallel across multiple supercomputers, 
to investigate key properties of small dark matter haloes 
[13]. We used the GreeM cosmological N-body code [12], 
which in turn relied on MPWide to facilitate the fast mes-
sage-passing over wide area networks.

Our initial production simulation was run distributed, 
using a supercomputer at SurfSARA in Amsterdam, and 
one at the National Astronomical Observatory of Japan in 
Tokyo [15]. The supercomputers were interconnected by a 
lightpath with 10 Gigabit/s bandwidth capacity. Our main 
simulation consisted of 20483 particles, and required 
about 10% of its runtime to exchange data over the wide 
area network.

We subsequently extended the GreeM code, and used 
MPWide to run cosmological simulations in parallel 

across up to 4 supercomputers [8]. We also performed a 
distributed simulation across 3 supercomputers, which 
consisted of 20483 particles and used 2048 cores in total 
[10]. These machines were located in Espoo (Finland), 
Edinburgh (Scotland) and Amsterdam (the Netherlands). 
The run used MPWide version 1.0 and lasted for about 8 
hours in total. We present some performance results of 

Fig. 1:  Comparison of the wallclock time required per 
simulation step between a run using 2048 cores on 
one supercomputer (given by the teal line), and a nearly 
identical run using 2048 cores distributed over three su-
percomputers (given by the red line). The two peaks in 
the performance of the single site run were caused by 
the writing of 160GB snapshots during those iterations. 
The run over three sites used MPWide to pass data be-
tween supercomputers. The communication overhead 
of the run over three sites is given by the black line. See 
Groen et al. [10] for a detailed discussion on these per-
formance measurements.
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Fig. 2:  Snapshot of the cosmological simulation discussed 
in Fig. 1, taken at redshift z = 0 (present day). The con-
tents have been colored to match the particles residing on 
supercomputers in Espoo (green, left), Edinburgh (blue, 
center) and Amsterdam (red, right) respectively [10].
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this run in Fig. 1, and also provide the performance of 
the simulation using one supercomputer as a reference. 
The distributed simulation is only 9% slower than the one 
executing on a single site, even though simulation data is 
exchanged over a baseline of more than 1500 kilometres 
at every time step. A snapshot of our distributed simula-
tion, which also features dynamic load balancing, can be 
found in Fig. 2. The results from the CosmoGrid project 
have been used for the analysis of dark matter haloes [10] 
as well as for the study of star clusters in a cosmological 
dark matter environment [18,19].

Distributed multiscale modelling of bloodflow
We have also used MPWide to couple a three-dimensional 
cerebral bloodflow simulation code to a one-dimensional 
discontinuous Galerkin solver for bloodflow in the rest 
of the human body [7]. Here, we used the 1D model to 
provide more realistic flow boundary conditions to the 3D 
model, and relied on MPWide to rapidly deliver updates 
in the boundary conditions between the two codes. We 
ran the combined multiscale application on a distributed 
infrastructure, using 2048 cores on the HECToR super-
computer to model the cerebral bloodflow and a local 
desktop at University College London to model the blood-
flow in the rest of the human body. The two resources are 
connected by regular internet, and messages require 11 
ms to traverse the network back and forth between the 
desktop and the supercomputer. We provide an overview 
of the technical layout of the codes and the communica-
tion processes in Fig. 3.

The communications between these codes are par-
ticularly frequent, as the codes exchanged data every 0.6 
seconds. However, due to latency hiding techniques we 
achieve to run our distributed simulations with neglishi-
ble coupling overhead (6 ms per coupling exchange, which 
constituted 1.2% of the total runtime). A full description 
of this run is provided by Groen et al. [7].

Other research and technical projects
We have used MPWide for several other purposes. First, 
MPWide is part of the MAPPER software infrastructure 
[20], and is integrated in the MUSCLE2 coupling envi-
ronment (MUSCLE2 - http://www.qoscosgrid.org/trac/

muscle). Within MUSCLE2, MPWide is used to improve 
the wide area communication performance in coupled 
distributed multiscale simulation [4]. Additionally, we 
applied the mpw-cp file transferring tool to test the net-
work performance between the campuses of University 
College London and Yale University.  In these throughput 
performance tests we were able to exchange 256 MB of 
data at a rate of ~8 MB/s using scp, a rate of ~40 MB/s 
using MPWide, and a rate of ~48 MB/s using a commer-
cial, closed-source file transfer tool named Aspera.

We have conducted a number of basic performance 
tests over regular internet, comparing the performance 
of MPWide with that of ZeroMQ (ZeroMQ - http://www.
zeromq.org), MUSCLE 1 and regular scp.  During each 
test we exchanged 64MB of data (in memory in the case of 
MPWide, MUSCLE and ZeroMQ, and from file in the case 
of scp), measuring the time to completion at least 20 
times in each direction. We then took the average value of 
these communications in each direction. In these tests we 
used ZeroMQ with the default autotuned settings.

Implementation and architecture
We present a basic overview of the MPWide architecture 
in Fig. 4. MPWide has been implemented with a strong 
emphasis on minimalism, relying on a small and flexible 
codebase which is used for a range of functionalities.

Core MPWide library
The core MPWide functionalities are provided by the 
MPWide C++ API, the communication codebase, and 
the Socket class. Together, these classes comprise about 
2000 lines of C++ code. The Socket class is used to man-
age and use individual tcp connections, while the role of 
the communication codebase is to provide the MPWide 
API functionalities in C++, using the Socket class. We pro-
vide a short listing of functions in the C++ API in Table 2. 
More complete information can be found in the MPWide 
manual, which resides in the /doc subdirectory of the 
source code tree.

MPWide relies on a number of data structures, which 
are used to make it easier to manage the customized con-
nections between endpoints. The most straightforward 
way to construct a connection in MPWide is to create a 

Fig. 3:  Overview of the codes and communication processes in the distributed multiscale bloodflow simulation. Here the 
1D pyNS code uses MPWide to connect to an MPWide data forwarding process on the front-end node of the HECToR 
supercomputer. The 3D HemeLB code, which is executed on the compute nodes of the HECToR machine also connects 
to this data forwarding process. The forwarding process allows us to construct this simulation, even when the incoming 
ports of HECToR are blocked, and when the nodes where HemeLB will run are not known in advance. Once the connec-
tions are established, the simulations startd and boundary data is exchanged between the codes at runtime.

http://www.qoscosgrid.org/trac/muscle
http://www.qoscosgrid.org/trac/muscle
http://www.zeromq.org
http://www.zeromq.org
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Endpoint 1 Endpoint 2 Name of Tool Average throughput in each 
direction MB / s-1

London, UK Poznan, PL scp 11/16

London, UK Poznan, PL MPWide 70/70

London, UK Poznan, PL ZeroMQ 30/110

Poznan, PL Gdansk, PL scp 13/21

Poznan, PL Gdansk, PL MPWide 115/115

Poznan, PL Gdansk, PL ZeroMQ 64/-

Poznan, PL Amsterdam, NL scp 32/9.1

Poznan, PL Amsterdam, NL MPWide 55/55

Poznan, PL Amsterdam, NL ZeroMQ 18/18

Table 1:  Summary of the throughput performance tests using MPWide and several other tools to exchange data between 
resources in the United Kingdom (UK), the Netherlands (NL) and Poland (PL) using regular internet. Tests over individual 
connections were performed in quick succession to mitigate potential bias due to background load on the internet back-
bone. A full report on these tests can be found at http://www.mapper-project.eu, Deliverable 4.2 version 0.7.

Function Name Summary description

MPW_Barrier () Synchronize between two ends of the network.

MPW_CreatePath () Create and open a path consisting of 1+ tcp streams.

MPW_Cycle () Send buffer over one set of channels, receive from another.

MPW_DCycle () AS MPW_Cycle (), but with buffers of unknown size using caching.

MPW_DestroyPath () Close and destroy a path consisting of 1+ tcp streams.

MPW_DNSResolve () Obtain an IP address locally, given a hostname.

MPW_DSendRecv () Send/receive buffers of unknown size using caching.

MPW_Init () Initialize MPWide.

MPW_Finalize () Close connections and delete MPWide buffers.

MPW_Recv () Receive a single buffer (merging the incoming data).

MPW_Relay () Forward all traffic between two channels.

MPW_Send () Send a single buffer (merging the incoming data).

MPW_SendRecv () Send/receive a single buffer.

MPW_ISendRecv () Send and/or receive data in a non-blocking mode.

MPW_Has_NBE_Finished () Check if a particular non-blocking call has completed.

MPW_Wait () Wait until a particular non-blocking call has completed.

MPW_setAutoTuning () Enable or disable autotuning (default: enabled).

MPW_setChunkSize () Change the size of data sent and received per low-level tcp send command.

MPW_setPacingRate () Adjust the software-based communication pacing rate.

MPW_setWin () Adjust the tcp window size within the constraints of the site configuration.

Table 2:  List of available functions in the MPWide API.

communication path. Each path consists of 1 or more tcp 
streams, each of which is used to facilitate actual com-
munications over that path. Using a single tcp stream is 
sufficient to enable a connection, but in many wide area 
networks, MPWide will deliver much better performance 
when multiple streams are used. MPWide supports the 
presence of multiple paths, and the creation and dele-
tion of paths at runtime. In addition, any messages can be 
passed from one path to another using MPW_Cycle(), 

or MPW_Relay() for sustained dedicated data forward-
ing processes (See Tab. 2).

MPWide comes with a number of parameters which 
allow users to optimize the performance of individual 
paths.  Aside from varying the number of streams, users 
can modify the size of data sent and received per low-level 
communication call (the chunk size), the tcp window 
size, and limit the throughput for individual streams by 
adjusting the communication pacing rate. The number of 

http://www.mapper-project.eu
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streams will always need to provided by the user when 
creating a path, but users can choose to have the other 
parameters automatically tuned by enabling the MPWide 
autotuner.  The autotuner, which is enabled by default, is 
useful for obtaining fairly good performance with mini-
mal effort, but the best performance is obtained by test-
ing different parameters by hand. When choosing the 
number of tcp streams to use in a path, we recommend 
using a single stream for connections between local pro-
grams, and at least 32 streams when connecting programs 
over long-distance networks. We have found that MPWide 
can communicating efficiently over as many as 256 tcp 
streams in a single path.

Python extensions
We have constructed a Python interface, allowing MPWide 
to be used through Python (Python - http://www.python.
org). We construct the interface using Cython (Cython - 
http://www.cython.org), so as a result a recent version 
of Cython is recommended to allow a smooth transla-
tion. The interface works similar to the C++ interface, 
but supports only a subset of the MPWide features. It also 
includes a Python test script. We also implemented an 
interface using SWIG, but recommend Cython over SWIG 
as it is more portable.

Forwarder
It is not uncommon for supercomputing infrastructures 
to deny direct connections from the outside world to com-
pute nodes. In privately owned infrastructures, adminis-
trators commonly modify firewall rules to facilitate direct 
data forwarding from outside to the compute nodes. The 
Forwarder is a small program that mimicks this behav-
ior, but is started and run by the user, without the need 
for administrative privileges. Because the Forwarder 
operates on a higher level in the network architecture, 
it is generally slightly less efficient than conventional 
firewall-based forwarding. An extensive example of using 
multiple Forwarder instances in complex networks of 
supercomputers can be found in Groen et al. [8]

mpw-cp
Mpw-cp is a command-line file transfer tool which relies 
on SSH. Its functionality is basic, as it essentially uses SSH 
to start a file transfer process remotely, and then links 
that process to a locally executed one. Mpw-cp works 
largely similar to scp, but provides superior performance 
in many cases, allowing users to tune their connections 
(e.g., by using multiple streams) using command-line 
arguments.

DataGather
The DataGather is a small program that allows users to 
keep two directories synchronized on remote machines 
in real-time. It synchronizes in one direction only, and it 
has been used to ensure that the data generated by a dis-
tributed simulation is collected on a single computational 
resource. The DataGather can be used concurrently with 
other MPWide-based tools, allowing users to synchronize 
data while the simulation takes place. 

Constraints in the implementation and architecture
MPWide has a number of constraints on its use due to the 
choices we made during design and implementation. First, 
MPWide has been developed to use the tcp protocol, and 
is not able to establish or facilitate messages using other 
transfer protocols (e.g. udp). Second, compared to most 
MPI implementations, MPWide has a limited performance 
benefit (and sometimes even a performance disadvantage) 
on local network communications. This is because vendor 
MPI implementations tend to contain architecture-spe-
cific optimizations which are not in MPWide.

Third, MPWide does not support explicit data types in 
its message passing, and treats all data as an array of char-
acters. We made this simplification, because data types 
vary between different architectures and programming 
environments. Incorporating the management of these in 
MPWide would result in a vast increase of the code base, 
as well as a permanent support requirement to update 
the type conversions in MPWide, whenever a new plat-
form emerges. We recommend that users perform this 

Fig. 4:  Overview of MPWide functionalities and their links to underlying components. Functionalities available to the 
user are given by black arrows, links of these functionalities to the corresponding MPWide API by red lines, and internal 
codebase dependencies by dark blue lines. 

http://www.python.org
http://www.python.org
http://www.cython.org
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serialization task in their applications, with manual code 
for simple data types, and relying on a high-quality seriali-
zation libraries for more complex data types.

Quality control
Due to the small size of the codebase and the develop-
ment team, MPWide has a rather simplistic quality control 
regime. Prior to each public release, the various function-
alities of MPWide are tested manually for stability and 
performance. Several test scripts (those which do not 
involve the use of external codes) are available as part of 
the MPWide source distribution, allowing users to test the 
individual functionalities of MPWide without writing any 
new code of their own. These include:
•	MPWUnitTests - A set of basic unit tests, can be run 

without any additional arguments.
•	MPWTestConcurrent - A set of basic functional tests, 

can be run without any additional arguments.
•	MPWTest - A benchmark suite which requires to be 

started manually on both end points.
More details on how to use these tests can be found in the 
manual, which is supplied with MPWide.

(2) Availability

Operating system
MPWide is suitable for most Unix environments. It can be 
installed and used as-is on various supercomputer plat-
forms and Linux distributions. We have also been able to 
install and use this version of MPWide successfully on Mac 
OS X.

Programming language
MPWide requires a C++ compiler with support for 
pthreads and UNIX sockets. 

Additional system requirements
MPWide has no inherent hardware requirements.

Dependencies
MPWide itself has no major dependencies. The mpw-cp 
functionality relies on ssh and the Python interface has 
been tested with Python 2.6 and 2.7. The Python interface 
has been created using SWIG, which is required to gener-
ate a new interface for different types of Python, or for 
non 64-bit and/or non-Linux platforms.

List of contributors
•	 Derek Groen, has written most of MPWide and is the 

main contributor to this writeup.
•	 Steven Rieder, assisted in testing MPWide, provided 

advice during development, and contributed to the 
writeup.

•	 Simon Portegies Zwart, provided supervision and sup-
port in the MPWide development, and contributed to 
the writeup.

•	 Joris Borgdorff, provided advice on the recent 
enhancements of MPWide, and made several recent 
contributions to the codebase.

•	 Cees de Laat, provided advice during development 
and helped arrange the initial Amsterdam-Tokyo 
lightpath for testing and production.

•	 Paola Grosso, provided advice during development 
and in the initial writeup of MPWide.

•	 Tomoaki Ishiyama, contributed in the testing of 
MPWide and implemented the first MPWide-enabled 
application (the GreeM N-body code).

•	 Hans Blom, provided advice during development and 
conducted preliminary tests to compare a tcp-based 
with a udp-based approach.

•	 Kei Hiraki, provided advice during development and 
infrastructural support during the initial wide area 
testing of MPWide.

•	 Keigo Nitadori, provided advice during development.
•	 Junichiro Makino, for providing advice during devel-

opment.
•	 Stephen L.W. McMillan, provided advice during devel-

opment.
•	 Mary Inaba, provided infrastructural support during 

the initial wide area testing of MPWide.
•	 Peter Coveney, provided support on the recent 

enhancements of MPWide.

Archive

Name
MPWide version 1.8.1

Persistent identifier
http://dx.doi.org/10.6084/m9.figshare.866803

License
MPWide has been released under the Lesser GNU Public 
License version 3.0.

Publisher
Derek Groen

Date published
03/12/2013

Code Repository

Name
MPWide

Identifier
https://github.com/djgroen/MPWide

License
MPWide has been released under the Lesser GNU Public 
License version 3.0.

Date published
15/10/2013
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Language
GitHub uses the git repository system. The full MPWide 
distribution contains code written primarily in C++, but 
also contains fragments written in C and Python. The code 
has been commented and documented solely in English.

(3) Reuse potential
MPWide has been designed with a strong emphasis on 
reusability. It has a small codebase, with minimal depend-
encies and does not make use of the more obscure C++ 
features. As a result, users will find that MPWide is triv-
ial to set up in most Unix-based environments. MPWide 
does not receive any official funding for its sustainability, 
but the main developer (Derek Groen) is able to respond 
to any queries and provide basic assistance in adapting 
MPWide for new applications.

Reuse of MPWide 
MPWide can be reused for a range of different purposes, 
which all share one commonality: the combination of 
light-weight software with low latency and high through-
put communication performance.

MPWide can be reused to parallelize an application 
across supercomputers and to couple different applica-
tions running on different machines to form a distributed 
multiscale simulation. A major advantage of using MPWide 
over regular tcp is the more easy-to-use API (users do not 
have to cope with creating arrays of sockets, or learn low-
level tcp calls such as listen() and accept()), and 
built-in optimizations that deliver superior performance 
over long-distance networks.

In addition, users can apply MPWide to facilitate high 
speed file transfers over wide area networks (using mpw-
cp or the DataGather). MPWide provides superior per-
formance to existing open-source solutions on many 
long-distance networks (see e.g., section Other research 
and technical projects]). MPWide could also be reused to 
stream visualization data from an application to a visu-
alization facility over long-distances, especially in the case 
when dedicated light paths are not available.

Users can also use MPWide to link a Python program 
directly to a C or C++ program, providing a fast and light-
weight connection between different programming lan-
guages. However, the task of converting between data 
types is left to the user (MPWide works with character 
buffers on the C++ side, and strings on the Python side).

Support mechanisms for MPWide
MPWide is not part of any officially funded project, and as 
such does not receive sustained official funding. However, 
there are two mechanisms for unofficial support.  When 
users or developers run into problems we encourage them 
to either raise an issue on the GitHub page or, if urgent, 
to contact the main developer (Derek Groen, djgroennl@
gmail.com) directly. 

Possibilities of contributing to MPWide
MPWide is largely intended as stand-alone and a very light-
weight communication library, which is easy to maintain 
and support. To make this possible, we aim to retain a very 

small codebase, a limited set of features, and a minimal 
number of dependencies in the main distribution. 

As such, we are fairly strict in accepting new features 
and contributions to the code on the central GitHub 
repository. We primarily aim to improve the performance 
and reliability of MPWide, and tend to accept new contri-
butions to the main repository only when these contribu-
tions boost these aspects of the library, and come with a 
limited code and dependency footprint.

However, developers and users alike are free to branch 
MPWide into a separate repository, or to incorporate 
MPWide into higher level tools and services, as allowed by 
the LGPL 3.0 license. We strongly recommend integrating 
MPWide as a library module directly into higher level ser-
vices, which then rely on the MPWide API for any required 
functionalities. MPWide has a very small code footprint, 
and we aim to minimize any changes in the API between 
versions, allowing these high-level services to easily swap 
their existing MPWide module for a future updated ver-
sion of the library. We have already used this approach in 
codes such as SUSHI, HemeLB and MUSCLE 2.
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