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ABSTRACT 

Purpose: 

We report a psychophysical investigation of five observers with the retinal disorder “cone dystrophy 

with supernormal rod ERG”, caused by mutations in the gene KCNV2 that encodes a voltage-gated 

potassium channel found in rod and cone photoreceptors. We compare losses for rod- and for cone-

mediated vision to further investigate the disorder and to assess whether the supernormal ERG is 

associated with any visual benefit. 

Methods: 

L-cone, S-cone and rod temporal acuity (critical flicker fusion frequency—cff) was measured as a 

function of target irradiance; L-cone temporal contrast-sensitivity was measured as a function of 

temporal frequency.  

Results: 

Temporal acuity measures reveal that losses for vision mediated by rods, S-cones and L-cones are 

roughly equivalent. Further, the gain in rod function implied by the supernormal ERG provides no 

apparent benefit to near-threshold rod-mediated visual performance. The L-cone temporal contrast-

sensitivity function in affected observers is similar in shape to the mean normal function but only 

after the mean function has been compressed by halving the logarithmic sensitivities. 

Conclusions: 

The name of this disorder is potentially misleading because the comparable losses found across rod 

and cone vision suggest that the disorder is a generalized cone-rod dystrophy. Temporal acuity and 
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temporal contrast-sensitivity measures are broadly consistent with the defect in the voltage-gated 

potassium channel producing a nonlinear distortion of the photoreceptor response but after 

otherwise normal transduction processes. 

 

Keywords: Supernormal rod ERG, cone dystrophy, cone-rod dystrophies, flicker sensitivity, critical 

flicker fusion, temporal acuity, temporal processing, KCNV2 gene. 

 

 

INTRODUCTION 

The subject of this investigation is an unusual, autosomal recessive visual disorder, first 

described in 1983 in two siblings,1 with a generalized and sometimes progressive loss of cone vision 

including reduced visual acuity, abnormal colour vision, photophobia and an attenuation of the cone 

ERG, all of which are consistent with cone dystrophy. A pathognomonic symptom, not associated 

with most other cone dystrophies, is that the rod b-wave is delayed and markedly reduced or absent 

at low flash intensities yet normal or “supernormal” in amplitude at the upper end of the scotopic 

region.2-8 This electrophysiological enhancement has led to the disorder being referred to as “cone 

dystrophy with supernormal rod ERG” (CDSR).1 Although electrophysiologically appropriate (but see 

Robson et al.9), the name of the disease seems strangely at odds with consistent reports, beginning 

with the initial description of the disease by Gouras et al.,1 of night blindness (nyctalopia). Rod 

sensitivity losses of about 2 log10 units have typically been reported.6-8 Surprisingly, night blindness is 

not reported in some CDSR observers,9-12 even in cases with reduced rod b-waves at low flash 

intensities. Subsequent to the initial report, the phenotype of this disorder has been the focus of 

several studies.2-10, 12 

Our primary goal was to better characterize this disorder psychophysically under both scotopic 

(rod) and photopic (cone) conditions using standard behavioral assessments of temporal acuity 

measured as a function of light level. These measures allow us to compare the losses for rod- and 

cone-mediated vision. Are they similar, or are they more pronounced for cone-mediated vision? 

And, in particular, is there any visual advantage to the “supernormal” rod ERG response found at 

higher scotopic levels? One complication is that any progressive deterioration associated with the 

disease is likely to affect central cone-mediated vision more than peripheral rod-mediated vision.9, 13 

Yet any deficits due to the KCNV2 mutation (as distinct from deficits resulting from progressive 

deterioration) should be more clearly apparent in rod sensitivity measurements. 
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Because the initial slope of ERG a-waves, which is receptoral in origin, is typically normal 14, 15  in 

CDSR, the deficit is reasonably assumed to arise after the transduction cascade, but before the inner 

nuclear layer.6-8 More recently, sequence variants in the gene KCNV2 have been found to underlie 

the disorder. KCNV2 encodes a subunit of a voltage-gated potassium channel found in both rod and 

cone photoreceptors.11, 16-18 Thus it has been suggested that the variants might affect the potassium 

current within photoreceptor inner segments.16  Potassium channels in the inner segment are 

important for shaping the photoreceptor output response and setting the resting potential,19 but 

precisely how defects in such channels might affect visual performance remains unclear. Our 

secondary goal was therefore to use psychophysical measures of cone temporal sensitivity to reveal 

more about the nature of the underlying molecular deficit. On the basis of previous findings we 

predicted that features of the temporal sensitivity functions that can be related to processes in the 

transduction cascade (such as activation and sensitivity regulation) would be relatively normal.20, 21 

Our results suggest that the supernormal rod ERG response confers no benefit to rod-mediated 

visual performance in CDSR observers near threshold: rod-mediated visual performance seems as 

deficient as S- and L-cone-mediated performance, thus the disorder is consistent with a generalized 

cone-rod dystrophy. In light of this, we suggest renaming the disease “cone-rod dystrophy with 

supernormal rod ERG” (CRDSR), and we shall use this descriptor. One plausible interpretation of our 

measurements is that the mutant voltage-gated potassium channels attenuate and distort the cone 

response after transduction processes in the cone outersegment. 

 

 

METHODS 

Subjects 

The experimental group of observers consisted of 5 individuals affected by CRDSR. The 

genotypes of the observers, with respect to the KNCV2 gene, their gender and ages at the time of 

testing, and right and left eye acuities are as follows: 

SR1   M 54  6/60 6/60  p.Lys3X homozygous 

SR2   M 35  6/36 6/36  p.Gly306X homozygous 

SR3   F 29  6/36, 6/36  c.1016_1024del, p.(Asp339_Val341del) 

SR4   F 48  6/60, 6/60  p.Gly461Arg homozygous 
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SR5   F 44  6/24, 6/36  c.1199delT, c.8_11delAACA 

Groups of adults with normal or corrected to normal visual acuity and normal colour vision 

provided representative control data. The normal observers all had normal colour vision as assessed 

by the Farnsworth-Munsell 100 hue test and other standard colour vision tests. Three of the 

supernormal rod ERG group also carried out the FM-100 test. All had low colour discriminations, but 

the axis of worst error varied: SR2 performed worst along a tritan/deutan axis (Total Error Score: 

380), SR4 along a tritan/protan axis (TES: 219), and SR5 along a protan axis (TES: 248). These are 

consistent with the previous colour vision assessments of CRDSR observers referenced in the 

Introduction. 

These studies conformed to the standards set by the Declaration of Helsinki, and the procedures 

have been approved by local ethics committees at Moorfields Eye Hospital and at University College 

London. 

 

Apparatus 

 The psychophysical measurements were made using two standard, Maxwellian-view systems 

with 2-mm exit pupils. One system, used for the cone (photopic) experiments, was illuminated by a 

900-W Xe arc lamp. The second system, used for the rod (scotopic) experiments, was illuminated by 

a 75-W Xe arc lamp. Both systems allow the projection of lights directly onto the observer’s retina. 

The wavelengths of the target and background were selected by interference filters (Ealing or Oriel) 

with full bandwidth at half-maximum transmission of between 7 and 11-nm. The radiance in each 

channel was controlled by a combination of neutral-density filters (Oriel), and by the rotation, under 

computer control, of a circular, variable-neutral-density filter (Rolyn Optics). 

Sinusoidal variation in the target radiance was produced by pulse-width modulation of the target 

beam by a fast, liquid-crystal, light shutter located in the target beam with rise and fall times faster 

than 50 μs (Displaytech). The shutter was turned on and off at a fixed frequency of 400 Hz, but with 

a pulse-width that was varied sinusoidally under computer control using programmable timers (Data 

Translation, DT2819) to produce the sinusoidal stimuli at the desired visible frequencies and at signal 

modulations up to 92%. (Frequencies near the 400-Hz rectangular-pulse frequency and above were 

much too high to be resolved, so that observers saw only the sinusoidally-varying stimuli produced 

by the variation of the pulse-width.)  

The position of the observer's head was maintained by a hardened dental wax impression 

mounted on a milling-machine head that could be adjusted in three dimensions to locate the exit 
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pupil of the optics in the centre, and in the plane of the observer’s pupil. The system is described in 

full detail elsewhere.21-23 

 

Stimuli 

The targets were sinusoidally flickered about a fixed mean radiance, 𝑅𝑅�. The flickering waveform, 

A (t), is given by: 

      𝐴𝐴(𝑡𝑡) = 𝑅𝑅�{1 +𝑚𝑚 sin(2𝜋𝜋𝜋𝜋𝑡𝑡)},       [1] 

where f is the frequency of the flicker (in Hz), and m is the ripple ratio or “modulation”, defined as 

the conventional Michelson contrast:  

𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚−𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚+𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

.           [2] 

Imax and Imin are the maximum and minimum radiances of the stimulus, respectively. The modulation, 

m, could be varied under computer control, but was limited to a maximum of 92%. In the critical 

flicker fusion (cff) measurements the modulation was fixed at the maximum of 92%. In the 

modulation sensitivity measurements m was varied to find threshold. 

 

L-cone stimuli.  A flickering circular target of diameter 4° in visual angle and 650-nm in wavelength 

was presented in the centre of a 9° diameter background field of 481 nm. Fixation was central. The 

481-nm background, which delivered 8.29 log quanta s-1 deg-2 at the cornea (1.42 log10 photopic 

trolands or 2.58 log10 scotopic trolands), mainly served to suppress the rods, but also selectively 

desensitized the M-cones at lower target radiances. The primary target wavelength of 650-nm was 

chosen to favour detection by cones rather than rods. For the cff measurements, the target intensity 

was varied from 6.5 to 11.5 log10 quanta s-1 deg-2. These conditions isolate the L-cone response over 

most of the 650-nm intensity range, but at high intensities the M-cones are also likely to contribute 

to flicker detection. For the modulation sensitivity measures the 650-nm target was fixed at a time-

averaged radiance of 10.28 log quanta s-1 deg-2. 

 

Rod stimuli.  A flickering target of 5.74° in diameter and 500-nm in wavelength was presented at an 

eccentricity of 10° in the temporal retina. Fixation was aided by a small red fixation light. No 

background was present. By convention, we use scotopic trolands (scot. td) for the rod 

measurements rather than quantal units. (To convert from log10 scot. td to log10 quanta s-1 deg-2 at 

500-nm add 5.66 to the log troland values.) The intensity of the 500-nm target was increased in 
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steps from near absolute threshold (c. -4.25 log scot. td) to above cone threshold (c. 2 log scot. td). 

The detection by cones at the highest levels was marked by an abrupt increase in cff. For two normal 

subjects, a control experiment was carried out and verified that the abrupt increase was due to cone 

detection by restricting measurements to the cone plateau that occurs over 3 and 10 minutes 

following an intense white bleach during which cones have recovered but rods have not (data not 

shown).24, 25 

 

S-cone stimuli.  A flickering target of 4° in diam. and 440-nm in wavelength was presented in the 

centre of a 9° diam. background field of 620 nm. Fixation was central. The 620-nm background 

radiance, fixed at 11.41 log10 quanta s-1 deg,-2 selectively desensitized the M- and L-cones, but had 

comparatively little direct effect on the S-cones. For normal observers, this field isolates the S-cone 

response to a 440-nm target up to a radiance of about 10.0 log10 quanta s-1 deg-2; 26-28 above that 

radiance, the M-cones contribute to flicker detection. For the cff measurements, the 440-nm target 

radiance was varied from 6.30 to 11.00 log10 quanta s-1 deg-2. 

 

Procedures 

Before every cone measurement, all observers light adapted to the background and target for 3 

minutes. Before making any rod measurements, observers first dark-adapted in total darkness for 40 

minutes. 

The observers viewed the stimuli monocularly with their right eye unless they preferred to use 

their left eye and interacted with the computer that control the apparatus by means of an eight-

button keypad. They received information and instructions via tones and a computer-controlled 

voice synthesizer. Each experiment was repeated three times usually on separate days.  The mean of 

the results for each experimental run was averaged and the standard error determined. The visual 

stimulus, focused in the plane of the pupil, and the fixation light for the rod experiments, were the 

only visible light source for the observers in an otherwise dark room. The image of the source in the 

plane of the observers’ pupils was always less than the minimal pupil size so that retinal illumination 

was not affected by pupil size. The method of adjustment was used to measure visual responses in 

the experiments. 

Two types of experiments were performed. 

Critical flicker fusion measurements. At each target radiance, observers adjusted the flicker 

frequency (at the fixed maximum stimulus modulation of 92%) to find the frequency at which the 
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flicker just disappeared—the critical fusion frequency or cff. The target radiance was increased from 

the lowest to highest radiances in steps of about 0.3 log10 unit for the cone measurements and about 

0.5 log10 unit for the rod measurements. During a single run of the experiment, three settings were 

made at each radiance and averaged. The experimental runs were repeated on three separate 

occasions.  

Modulation sensitivity measurements. The mean radiance of the 481-nm background and 650-nm 

target were fixed at 8.29 and 10.28 log quanta s-1 deg-2, respectively, and the frequency of the 

flickering target was fixed. Observers adjusted the modulation of the flickering stimulus (m in 

Equation 1) to determine the lowest modulation at which flicker was just visible. During a single run 

of the experiment, three settings were made at each radiance and flicker rate and then averaged. 

Then the frequency of the flicker was changed in 0.5-Hz steps from the lowest to the highest 

frequency that could be seen at the maximum modulation depth of 92%. The experimental runs 

were repeated on three separate occasions. 

 

Calibration 

The radiant fluxes of the target and background fields were measured at the plane of the exit 

pupil using an UDT radiometer, calibrated by the manufacturer (Gamma Scientific) against a 

standard traceable to the US National Bureau of Standards. The neutral-density filters (and circular 

neutral-density wedge) were calibrated in the optical system, separately for each wavelength used, 

using the radiometer. All radiances are reported as time-averaged values. 

 

 

RESULTS 

In all figures, data for the five CRDSR observers are distinguished as blue triangles (SR1), purple 

inverted triangles (SR2), green diamonds (SR3), yellow circles (SR4) and orange hexagons (SR5). The 

mean data for the five observers (or three in Figure 4) are shown by the grey dotted circles. Over the 

common ranges over which all observers could make settings (temporal frequencies in Figure 2, 

target irradiances in Figures 1, 3 and 4), , the mean was obtained by simply averaging the individual 

data.  Outside those ranges, the means were determined by first shifting the individual data on the 

vertical y-axis (in Hz for the cff measures or in log modulation units for the temporal contrast 

measurements) to align each observers data with the mean obtained from within the common range 

(using a least-squares fitting criterion). Then the aligned data were averaged to give the mean for 
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the data that lay outside the common range. This procedure avoided discontinuities due to 

individual observers’ being unusually sensitive or insensitive. We note the best-fitting vertical shifts 

below, since they are of use in quantifying individual differences. The standard errors associated 

with the means were obtained from the unshifted individual data. The model fits described in the 

Discussion are fits to the unshifted data. 

 

L-cone critical flicker fusion 

Figure 1 shows L-cone cff (temporal acuity) data for the five observers affected by CRDSR plotted 

on a linear scale as a function of log10 target radiance. The mean L-cone cff data for twelve observers 

with normal vision are plotted as red squares. The error bars in all figures are ±1 standard error of 

the mean (s.e.m.) within observers for the individual CRDSR measurements, and between observers 

for the mean CRDSR data (grey circles) and mean normal measurements (red squares). The optimal 

least-squared shifts of the individual data required to vertically align with the mean (grey circles) 

over the common range of target radiances was -1.88, +0.73, +4.55, -5.88 and 1.16 Hz for SR1, SR2, 

SR3, SR4 and SR5, respectively.  

[Insert Figure 1 about here] 

In normal observers, L-cone cff starts to rise at about 6.5 log10 quanta s-1 deg-2, increases with a 

gradually decreasing slope until it approaches a plateau near 40 Hz.29, 30 By contrast, the L-cone cff 

functions for all five CRDSR observers all show substantial losses in cff. Flicker is not detected until 

the mean 650-nm target radiance reaches 8.3 log10 quanta s-1 deg-2—nearly 100 times more intense 

than for normal observers. Thereafter, the cff increases with radiance but only up to about 30 Hz—

25% lower than the normal cff.  

        The black dashed straight lines fitted to the mean normal and the mean CRDSR data illustrate 

the linear relation between cff and the logarithm of target radiance known as the Ferry-Porter law 31, 

32. For both the normal and affected observers, the Ferry-Porter law holds over a two and one-half 

log unit range. The best-fitting slopes of 8.57 and 8.51 Hz per log10 unit of radiance for the normal 

and CRDSR observers with standard errors of 0.16 and 0.80, respectively, are very similar in the two 

cases. (The fitted red line will be considered in the Discussion.) 

 

L-cone modulation sensitivity 

The left-hand panel of Figure 2 shows the logarithm of temporal modulation sensitivity plotted 

as a function of temporal frequency (logarithmic axis) for the five CRDSR observers and the normal 
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comparison group averaged from data from eight observers. (Note that sensitivity, the reciprocal of 

threshold, increases upwards.) 

 [Insert Figure 2 about here] 

In the mean normal observer, the L-cone modulation sensitivity is highest near 7.5 Hz and 

decreases at lower and higher temporal frequencies.  A modulation-sensitivity function of this shape 

is known as a “band-pass” function. Band-pass functions are typically found in normal observers 

when achromatic or monochromatic flicker is used to measure sensitivity.33-38 The attenuation at low 

temporal (and spatial) frequencies is usually attributed to surround antagonism.39-45 

With the exception of the data for SR5, the L-cone modulation sensitivities for the CRDSR 

observers are about 1 log10 unit lower than those of the mean normal observer. SR5’s data are about 

0.5 log units worse than the mean normal data on average, i.e., performance is about a third as good 

as normal. In all but one CRDSR case (SR2), however, the shapes of the modulation sensitivities 

functions remain approximately band-pass. 

The mean CRDSR data are plotted in the upper and lower right-hand panels of Figure 2 as gray 

dotted symbols. To highlight the differences in shape between the normal and CRDSR data, we have 

replotted the individual data in the upper panel after vertically aligning them with the mean CRDSR 

data (using a least-squares fitting criterion). The optimal least-squared shifts of the individual data 

required to vertically align with the mean over the common range of frequencies was +0.06, +0.01, 

+0.35, -0.08 and -0.47 for SR1, SR2, SR3, SR4 and SR5, respectively. The lower right-hand panel of 

Figure 2 shows the differences between the mean normal and CRDSR data (black crosses) as well as 

the mean CRDSR data (grey dotted circles). Notice that the differences between the mean normal 

and CRDSR data and the mean CRDSR data themselves are relatively similar. This similarity and the 

continuous blue curve in the right-hand panels will be discussed subsequently. 

 

Rod critical flicker fusion  

Figure 3 shows rod cff data for the five observers affected by CRDSR plotted as a function of log10 

target scotopic luminance and the mean rod cff data for five observers with normal vision (green 

squares). The optimal least-squared shifts of the individual data required to vertically align with their 

mean over the common range of target luminances was +1.92, -0.57, +0.62, -0.24 and -1.72 Hz for 

SR1, SR2, SR3, SR4 and SR5, respectively. 

[Insert Figure 3 about here] 
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 In the mean normal observer, rod cff rises from about -4.0 log10 scot. td until reaching a shallow 

shoulder above about -1.5 log10 scot. td.  The cff remains on the shallow shoulder until the cones 

begin to detect the target near -0.5 log10 scot. td.  From about 0.5 log10 scot. td the cff again rises 

steeply.  The shape is fairly typical for rod cff functions (see, for example, Figure 3 of Hecht & 

Shlaer30). For other target sizes and wavelengths, the scotopic cff can reflect complex interactions 

between slow and fast rod signals46, 47 or between rod signals and cones.48 The rod cff functions for 

all five CRDSR observers all show substantial losses in cff. Comparable to the cone cff data shown in 

Figure 1, scotopic flicker is not detected by CRDSR observers until the mean 500-nm target is nearly 

100 times more intense than the detection threshold for normal observers. The continuous red 

curves fitted to the CRDSR data will be discussed subsequently. 

 

S-cone critical flicker fusion  

Figure 4 shows S-cone cff data plotted as a function log10 target radiance for SR1, SR2, and SR4, 

the only three CRDSR observers available to participate in this part of the experiment. For 

comparison, the mean cff data for twelve normal control observers are also plotted (dark blue 

squares). The optimal least-squared shifts of the individual data required to vertically align with their 

mean over the common range of target radiances was +0.51, +2.37, and -2.88 Hz for SR1, SR2 and 

SR4, respectively. 

[Insert Figure 4 about here] 

 In the normal observer, S-cone cff rises steadily from just above a radiance of 6.5 log10 quanta 

s-1 deg-2 until about 9.0 log10 quanta s-1 deg-2, at which it reaches a broad maximum near 22 Hz and 

then decreases slightly. The decrease is due, in part, to a saturation of the S-cone signal that occurs 

under these conditions, and also in part to chromatically-opponent interactions with the other cone 

types.28, 49, 50 The rise in the normal cff above about 9.9 log10 quanta s-1 deg-2 is due to the M-cones 

becoming more sensitive than S-cones and thus determining flicker detection above about 9.9 log10 

quanta s-1 deg -2 (see Figure 4 of Stockman & Plummer28). 

As with the L-cone and rod cff data, the S-cone cff data for the CRDSR observers show 

considerable sensitivity losses compared to the normal data. The values for SR1 and SR4 show losses 

along the radiance axis of about 1 log10 unit and those of SR2 of about 1.5 log10 unit. 

The black dashed lines again indicate the linear relation between cff and log radiance implied by 

the Ferry-Porter law. The slopes for the S-cone data are slightly shallower than for the L-cone data: 

The best-fitting slopes of 7.83 and 6.63 Hz per log10 unit of radiance for the normal and CRDSR 
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observers with standard errors of 0.16 and 0.43, respectively, are, like the L-cone cff data, fairly 

similar in the two cases. (The red fitted curve will be discussed subsequently.) 

 

 

DISCUSSION 

 A consistent finding across all psychophysical measures in this study was that compared to 

normal observers, those affected by CRDSR suffer substantial losses in both rod- and cone-mediated 

visual performance. 

We next quantify the extent of these sensitivity and acuity losses.  

 

L-cone deficits  

The differences between the CRDSR and normal L-cone cff functions shown in Figure 1 can be 

quantified by shifting the normal function rightwards along the logarithmic radiance axis and 

displacing it vertically downwards along the linear cff axis until the normal function aligns with an 

individual CRDSR function. (Note that horizontally shifting the template along the logarithmic 

radiance axis is equivalent to scaling the radiance.) To facilitate these alignments, we derived an 

arbitrary polynomial template, to describe the normal data and shown in Figure 1 as the dark red 

line passing through the red squares. 

 TABLE 1 

 Vertical linear 
shift in cff (Hz) 

Horizontal 
logarithmic shift R2 

L-cone 4.62±3.74 1.28±0.38 0.72 

Rods 4.59±0.59 1.09±0.16 0.40 

S-cone 3.04±0.90 0.86±0.15 0.79 

Mean 4.05 1.08  

 

The fit to the CRDSR data was carried out by shifting the template using a least-squares fitting 

criterion to fit all the unshifted CRDSR data (as plotted in Figure 1). The mean best-fitting values and 

± the standard error of the two shifts are given in Table 1 (L-cone row). The fit has an R2 of 0.72 

(relative to the unshifted individual data).The best-fit shown by the solid red curve is the template 
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polynomial shifted rightwards by 1.28±0.38 log10 unit (a scaling of 19.05) and shifted down by 

4.62±3.74 Hz. These mainly descriptive values are difficult to relate to the underlying physiology 

without making speculative assumptions, but they do allow us to quantify the losses of the CRDSR 

observers. 

A clear conclusion from the fit is that the 650-nm target is much less effective for the CRDSR 

observers than for the normal observer by over an order of magnitude. The interpretation of the 

vertical shift in cff, and the extent to which it can be considered as independent from the horizontal 

logarithmic shift (given its high standard error), is more equivocal. The inclusion of a linear shift in 

the model allows us to apply a metric developed in the Appendix of a companion paper on enhanced 

S-cone syndrome51 that translates vertical shifts in cff to changes in photoreceptor number (for 

targets of between 2.98° and 7.10° in diameter).  The metric is based on (i) a useful approximation, 

known as the Granit-Harper law: that the cff increases linearly with the logarithm of the target 

area,52, 53 (ii) cff data from Kugelmass & Landis54 measured as a function of target area and 

luminance, and (iii) human cone density measurements that link target area and cone number made 

by Curcio et al.55 It equates the changes in cone number caused by changing target area with 

changes in cone number caused by photoreceptor gain or loss within a fixed target area and 

provides a crude guide to photoreceptor loss. 

For a change in cff of ∆cff Hz, the relative change, r, in the number of cones: 

𝑟𝑟 = 10
∆cff
5.93.           [3] 

Using Equation [3], we can calculate from the decrease in cff the factor by which r changes 

According to Equation [3], the decline in cff of 4.53 Hz in CRDSR observers is caused by a decrease in 

the number of cones by a factor of 5.81. We emphasize that this a speculative approximation, but it 

provides a rough estimate of the changes caused by CRDSR. There are cone density measurements 

using adaptive optics scanning laser ophthalmoscopy (AOSLO) against which we can compare this 

estimate. In three observers with CRDSR, AOSLO reductions in cone density of about 3, 9 and 19 

times were found (see p. 910 of Vincent et al.13). 

Another way of comparing cff data of the normal and affected observers is to consider the 

slopes of the cff versus log radiance functions where the Ferry-Porter law holds.  Some have 

suggested that this slope can be directly related to the limiting properties of the underlying 

unadapted cone photoreceptor response (see, in particular, Tyler & Hamer56). However, it seems 

more likely—at least for central vision— that the Ferry-Porter slopes reflect the convolution of the 

properties of the underlying photoreceptor response and those of adapting stages—some of which 

are probably within the photoreceptor (see, for example, Stockman et al.57).  Nevertheless, 
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according to both views, the Ferry-Porter law slopes can, at least in principle, be linked to the 

underlying photoreceptor responses. The similarities between the mean Ferry-Porter law L-cone cff 

slopes in Hz per decade of radiance for normals (8.57±0.16) and affected observers (8.51±0.80) 

suggests that the initial L-cone photoreceptor response is relatively unaffected in the disease, and 

supports the proposal6-8 that the deficit arises after the transduction cascade, but before the inner 

nuclear layer. 

As noted above, the voltage-gated potassium subunit encoded by the KCNV2 gene is important 

for shaping the photoreceptor output response and setting the resting potential.19 The differences 

between the shapes of the CRDSR and mean normal temporal contrast sensitivity functions shown in 

Figure 2 provide clues about precisely how the defect alters the visual response.  For instance, the 

differences between the normal and CRDSR functions are not obviously due to changes in the 

effective adaptation level. Such changes would have the effect of shortening or lengthening the time 

constants of low-pass stages contributing to the visual response (see upper panels of Figure 6 of 

Stockman et al.57) rather than the changes seen in Figure 2. Instead, the CRDSR data can be 

reasonably well accounted for simply by halving the normal logarithmic modulation sensitivities as 

shown by the blue curves (which is equivalent to taking the square-root of the linear sensitivities). As 

a result, not only are the CRDSR data similar to a halving of the normal logarithmic modulation 

sensitivities, but so too are the logarithmic differences between the mean normal and CRDRS data as 

illustrated by the crosses in the lower right-hand panel of Figure 2. 

 This compression of the CRDSR temporal contrast sensitivity function is consistent with the 

defect in the voltage-gated potassium channel causing a nonlinear distortion of the visual signal in 

the CRDSR observer. One possibility is that the defect causes the photoreceptor to have an 

expansively nonlinear input-output function, such that the output is relatively depressed at low 

inputs but grows with the square of the input (rather than linearly as in the normal observer). As a 

result, the CRDSR modulation sensitivity functions will be compressed relative to the normal 

functions in the way that we find. If the input-output function continues to be expansive up to high 

input levels, it could also account for the supernormal ERG amplitudes found with intense scotopic 

flashes. For our psychophysical measurements, however, the thresholds for the CRDSR observers 

always fall below those of normal observers, which suggests that output of the putative expansively 

nonlinear input-output function in the CRDSR observers never exceeds that of the normal input-

output function under the conditions we tested. 

The fact that the relationship between the logarithmic mean sensitivities is consistent with a 

simple halving of the normal (logarithmic) function, suggests that underlying the distortion of the 

visual signal in the CRDSR observer, other aspects of visual processing, such as lateral inhibition and 
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adaptation-dependent changes in modulation sensitivity in the transduction cascade (see, for 

discussion, Stockman et al.57) are relatively normal.  

There are other interpretations of the differences between the CRDSR and normal temporal 

contrast sensitivity functions. Another possibility is that the defect in the voltage-gated potassium 

channel, rather than making the input-output function expansively nonlinear, might result in 

receptor signalling becoming much noisier. If noise with equal variance from a number of 

uncorrelated and uninformative channels affects the cone signal, there would be a loss in signal-to-

noise ratio that would decline as the square-root of the number of uninformative channels.58 This 

decline would cause a compression of the temporal contrast sensitivity function comparable to the 

one that we find.  

 

Scotopic (rod) deficits  

Like the L-cone data, the differences between the CRDSR and normal rod cff functions shown in 

Figure 3 can be approximated by a horizontal displacement of the normal function along the 

logarithmic radiance axis and a vertical displacement along the cff axis. Again, to facilitate these 

approximations, we have derived an arbitrary polynomial template, shown, in Figure 3, by the black 

line through the normal data points (green squares). 

As for the L-cone cff data, the fit to the CRDSR rod data was carried out by shifting the template 

using a least-squares fitting criterion to fit all the unshifted CRDSR data (as plotted in Figure 3). The 

best-fitting values and ± the standard error of each parameter are given in Table 1 (row labelled 

Rods). The best-fit shown by the solid red curve is the template polynomial shifted rightwards 

1.09±0.16 log10 unit (a scaling of 12.30) and shifted vertically by 4.59±0.59 Hz. The fit has an R2 of 

0.40 (relative to the unshifted individual data).  

The fits suggest that the 500 nm target is 12.30 times less effective for the CRDSR observers. The 

need for a vertical shift in cff is much more apparent in these data because of the shoulder in the cff 

function. Using Equation [3], this suggests a decrease in photoreceptor number by a factor of 5.94. 

Note that for both fits, the best-fitting scotopic values are similar in magnitude to those for the 

L-cone fits, which suggests that the rod and cone losses in this disease are also of a comparable 

magnitude.  

The lowest target luminance at which flicker of any frequency can be seen for our  CRDSR 

observers is about 100 times higher than for normal observers, which is consistent with other 

quantified reports of rod sensitivity losses.6-8 Yet many other clinical evaluations of CRDSR 
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observers9, 12 report observers without night blindness. The results of Figure 3, show clearly that any 

diagnosis of night blindness in CRDSR affected patients is likely to be equivocal, because the degree 

of ‘night blindness’ depends very much on the lighting conditions. Below about -2 log10 scot. td our 5 

observers were effectively ”night blind”, but above that level some rod response could be measured 

in all of them. 

 

S-cone deficits  

The differences between the CRDSR and normal S-cone cff functions shown in Figure 4 can also 

be approximated by a horizontal displacement of the normal function along the radiance axis and a 

vertical displacement along the cff axis. As before, we derived an arbitrary polynomial template, 

shown, in Figure 4, by the black line passing through the normal data points (blue squares). 

As for the L-cone and rod cff data, the fit to the CRDSR S-cone data was carried out by shifting 

the template using a least-squares fitting criterion to fit all the unshifted CRDSR data (as plotted in 

Figure 4). The best-fitting values and ± the standard error of each parameter are given in Table 1 (S-

cone row). The best-fit shown by the solid red curve is the template polynomial shifted rightwards 

0.86±0.15 log10 unit (a scaling of 7.24) and shifted vertically by 3.04±0.90 Hz. The fit has an R2 of 0.79 

(relative to the unshifted individual data).  

The fits suggest that the 440 nm target is 7.24 times less effective for the CRDSR observers. 

Using Equation [3], this suggests a mean decrease in cone number by a factor of 3.26. Contrary to 

previous suggestions,1, 10 the S-cones in our observers appear to be also affected by this disease. 

Like the L-cone cff data, the mean Ferry-Porter law S-cone cff slopes in Hz per decade of 

radiance for normals (7.83±0.16) and affected observers (6.63±0.43) are fairly similar, which 

suggests that the initial S-cone photoreceptor response is relatively unaffected in the disease. 

 

Conclusions 

The losses in temporal acuity caused by CRDSR are roughly equivalent for vision mediated by 

rods, L-cones and S-cones.  Our analyses show that relative to the normal cff data the mean shifts in 

the CRDSR data are a rightward logarithmic shift of 1.08 log10 unit along the radiance or luminance 

scale (which is equivalent to a scaling of about 12) and a downward shift of 4.05 Hz along the cff 

scale. The rightward scaling differs by no more than a factor of 2.63 between photoreceptor types 

and the downward shift by a factor of 1.51. However, the Ferry-Porter slopes for the L-cone and S-
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cone cff data are similar, which suggests that the cone photoreceptor responses may be relatively 

unaffected by the disease. 

The changes in temporal contrast-sensitivity are broadly consistent with the defect in the 

voltage-gated potassium channel producing either a nonlinear distortion of the photoreceptor 

response or perhaps an increase in transmission noise. 

Under the conditions of our experiments, the gain in rod function suggested by the supernormal 

scotopic ERG seems to be related to no observable benefit in vision mediated by rods. Measures of 

temporal contrast sensitivity suggest the possibility that the deficit in the voltage-gated potassium 

channel results in a nonlinear expansive distortion of the signals from the surviving cone 

photoreceptors. The name of the disorder is indeed a misnomer,9 mainly because it 

underemphasizes the associated rod dysfunction. 
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FIGURE LEGENDS 

Figure 1. L-cone critical flicker fusion frequencies (linear scale) measured on a 481-nm background of 

8.26 log10 quanta s-1 deg-2 are plotted as a function of the mean log10 radiance of a 650-nm flickering 

target. Data are plotted for five CRDSR observers: SR1 (blue triangles), SR2 (purple inverted 

triangles), SR3 (green diamonds), SR4 (yellow circles) and SR5 (orange hexagons). The mean CRDSR 

data (gray dotted circles) and mean data for 12 normal observers (dark red squares) are also shown. 

The dark red line through the red squares provides a template for the normal data. The red line is a 

shifted version of this template as described in the text. The error bars are ±1 standard error of the 

mean (s.e.m.) within observers for the individual CRDSR data, and between observers for the mean 
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data. The dashed black lines are best-fitting linear slopes fitted to the mean data for normals and 

affected observer over the range of radiances over which the Ferry-Porter law holds (see text for 

details). The best-fitting slopes are 8.6 Hz per decade for normals and 8.5 Hz per decade for the 

CRDSR observers.   

 

Figure 2. Left-hand panel: Log10 L-cone modulation sensitivities measured using a sinusoidally 

modulated 650-nm target fixed at a radiance of 10.28 log quanta s-1 deg-2 superimposed on a 480-

nm background of 8.29 log10 quanta s-1 deg-2 (1.42 log10 photopic trolands or 2.58 log10 scotopic 

trolands) are plotted as a function of temporal frequency (logarithmic axis). Data are plotted for the 

five CRDSR observers: SR1 (blue triangles), SR2 (purple inverted triangles), SR3 (green diamonds), 

SR4 (yellow circles) and SR5 (orange hexagons). The mean data for 8 normal observers (red squares) 

are also shown. Upper-right-hand panel: The log10 L-cone modulation sensitivities for the individual 

CRDSR observers vertically aligned using a least-squares fitting procedure with the mean CRDSR data 

(grey dotted circles).  The logarithmic mean normal data are replotted as in the left-hand panel (red 

squares) but also divided by two (blue line). Lower-right-hand panel: The logarithmic mean normal 

data divided by two (blue line) compared with the differences between the mean normal and CRDSR 

data (black crosses). The error bars in all figures are ±1 standard error of the mean (s.e.m.) within 

observers for the individual CRDSR data, and between observers for the mean data. 

 

Figure 3. Rod critical fusion frequencies (linear scale) measured at 10° in the temporal retina are 

plotted as a function of the mean log10 scotopic luminance of the 500-nm flickering target. Individual 

data are plotted for the five CRDSR observers: SR1 (blue triangles), SR2 (purple inverted triangles), 

SR3 (green diamonds), SR4 (yellow circles) and SR5 (orange hexagons). The mean CRDSR data (grey 

dotted circles) and mean data for 5 normal observers (green squares) are also shown. The black 

curve through the green squares provides a template for the normal data. The red line is a shifted 

version of this template as described in the text. The error bars are ±1 standard error of the mean 

(s.e.m.) within observers for the individual CRDSR data, and between observers for the mean data. 

 

Figure 4. S-cone critical flicker fusion frequencies measured on a 620-nm background of 11.41 log10 

quanta s-1 deg-2 are plotted as a function of the mean log radiance of the 440-nm flickering target. 

Only three CRDSR observers participated in this experiment: SR1 (blue triangles), SR2 (purple 

inverted triangles) and SR4 (yellow circles).  The mean CRDSR data (grey dotted circles) and the 

mean data for 12 normal observers (dark blue squares) are also shown.  The continuous blue curve 
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through the dark blue squares provides a template for the normal data. The red line is a shifted 

scaled version of this template as described in the text. The error bars are ±1 standard error of the 

mean (s.e.m.) within observers for the individual CRDSR data, and between observers for the mean 

data. The dashed black lines are best-fitting linear slopes fitted to the mean data for normals and 

affected observer over the range of radiances over which the Ferry-Porter law holds. The best-fitting 

slopes are 7.8 Hz per decade for normals and 6.6 Hz per decade for the CRDSR observers. 

 

 

 

TABLE LEGEND 

 

Table 1.  Best-fitting linear and logarithmic shifts for the L-cone, rod and S-cone cff data (see text for 

details). 
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