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Abstract 

Gunshot residue (GSR) is produced during a firearm discharge and its recovery from 

the hands of a suspect may be used to support an inference that the suspect 

discharged a firearm.  Various mechanisms of GSR transfer and deposition involving 

the hands of subjects were studied through a series of experimental scenarios that 

were intended to mimic real-world forensic situations.  Samples were analysed using 

SEM-EDX with an automated search and detection package (INCAGSR, Oxford 

Instruments, U.K.).  The results demonstrate the possibility of recovering considerable 

quantities of GSR from the hands of subjects as a result of a secondary transfer via a 

handshake with a shooter, or through handling a recently discharged firearm.  As many 

as 129 particles were recovered from a handshake recipient.  Additionally, GSR 

particles were found to undergo tertiary transfer following successive handshakes, 

while the possibility of GSR deposition on the hands of a bystander was confirmed.  

Particle size analysis revealed that very large (>50µm and >100µm) particles may 

undergo secondary transfer.  The implications of these findings for forensic 

investigations are considered, particularly for interpreting the presence of GSR under 

competing activity level propositions about its deposition and the actions of the 

suspect.  Bayesian Networks are inferential tools that are increasingly being employed 

in the interpretation of forensic evidence.  Using the empirical data derived during the 

experimentation, the utility of Bayesian Networks for reasoning about mechanisms of 

GSR deposition is demonstrated.  Further research aimed at unlocking the 

interpretative potential of GSR through empirical research and establishing the use of 

Bayesian Networks in forensic applications is recommended.  It is anticipated that this 

emphasis on empirical support and probabilistic interpretation, in combination with 

the findings of this study, will strengthen the scientific basis of inferences made about 

GSR evidence and contribute to the accurate interpretation of evidence in legal 

settings. 

Keywords: Gunshot residue (GSR), secondary transfer, interpretation, evidence 

dynamics, Bayesian Networks     
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Chapter 1 Introduction 

1.1 Outline 

This chapter introduces the context for undertaking a piece of research in forensic 

science in general, and in particular, one that seeks to understand mechanisms of 

gunshot residue (GSR) transfer.  This involves a survey of some of the factors that 

currently influence the practice of forensic science and the undertaking of research in 

forensic science, in the U.K. and beyond.  The commentary addresses legal and 

scientific issues and the place of this thesis in relation to them.  The importance of the 

forensic reconstruction of firearms offences is demonstrated through an illustration of 

the nature and rates of firearm offences in England and Wales which are, ultimately, 

the security issue with which this project is concerned.  Indeed, it is the assessment of 

evidence associated with these offences that the findings of this piece of research are 

intended to inform.  This chapter also previews the issues that currently surround the 

use of Bayesian and probabilistic reasoning in a forensic and legal context in England 

and Wales.  As a result, it will be demonstrated that research into the application of 

this approach in forensic science is both valuable and timely.    

1.2 The need for research in forensic science: a context 

Forensic science, its outputs, the reliability of its methods, the scientific basis of the 

assumptions which underpin its conclusions, and the body of empirical research 

available to the support the inferences it makes have all come under scrutiny in recent 

years.  Identifying the reasons for this scrutiny and considering a path forward is 

currently the focus of much introspection on the part of sections of the forensic 

science community.  A number of legal and scientific forces have been identified as the 

source of the questions that are being asked of ‘traditional’ forensic science.  The aim 

of this section is to survey these converging developments and to demonstrate the 

importance of carrying out empirical research in light of recent and ongoing debates. 

According to Saks and Koehler (2005, p.892), the ‘traditional forensic identification 

sciences’ are being forced to undergo ‘fundamental change’.  The authors invoke the 
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notion of a ‘paradigm shift’1 to describe the process by which these sciences have been 

forced to adapt by what are termed ‘converging legal and scientific forces’ (ibid., 

p.892).  Traditionally, the modus operandi of these identification sciences has involved 

comparing patterns, marks and impressions to determine, ultimately, that two marks 

are indistinguishable from one another and thus, were made by the same object or 

person.  By extension, all other potential sources of the mark are excluded in this 

process and the assumption is that it is possible to ‘individualize’ [sic] (ibid., Stoney 

1991, Saks and Koehler 2008).  Thus, handwriting analysis, toolmark comparison and 

the comparison of latent finger marks to prints have been considered the reliable 

‘mainstays’ of forensic science which are used in court (Mnookin et al 2011, p.726).  

This is changing. 

The advent and development of DNA as a forensic tool has resulted in a number of 

exonerations in cases which it was not originally utilised.  In a number of these 

exonerations, forensic evidence had been presented by the prosecution (Garrett 2008) 

and moreover, this evidence was subsequently found to be misdirected and to have 

had its probative value overstated (Garrett and Neufeld 2009).  Concurrently, a 

number of errors and scandals have emerged that have cast doubt on the accuracy and 

reliability of forensic comparisons.  For example, in the U.S., Brandon Mayfield was 

erroneously linked to the 2005 Madrid train bombings via a fingerprint comparison.  

Meanwhile the central issue in the protracted case of Shirley McKie in Scotland was 

whether a fingerprint examiner was capable of making an error when comparing 

marks (The Fingerprint Inquiry Scotland, 2011). 

Simultaneously, critical scholarship and research has begun to examine the claims and 

underlying assumptions inherent in the comparison sciences (Saks 1998, Pretty and 

Sweet 2001, Faigman et al 2002, Epstein 2002, Saks and Koehler 2008).  The 

assumption of ‘uniqueness’ (Osterburg 1969) – that no two objects will generate the 

same mark, pattern or impression – which permits unconditional identification of an 

individual or object, has been questioned.   Saks and Koehler (2005, 2008) argue that 

when invoked, this assumption serves to apparently negate the need for population 

data or empirical research into the common attributes of two different objects.  

Crucially, these assumptions are often theoretically and empirically unfounded. 

                                                           
1 After Kuhn (1962)  
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Such critique and scrutiny stems, at least in part, from the apparent differences 

between identification sciences and the scientific paradigm associated with the 

emergence, development and practice of DNA analysis for forensic purposes (ibid., 

Broeders 2006).  DNA science represents a different model to which the criticisms 

aimed at traditional identification sciences appear not to apply.  DNA science exhibits a 

theoretical, statistical and empirical underpinning.  DNA typing and identifications 

made using DNA involve a statistical, probabilistic approach founded on population 

genetics and empirical research into the occurrence of genetic characteristics within 

populations (Saks and Keohler 2005).  Saks and Keohler (2005) observe that DNA 

science can demonstrate probabilistic conclusions based on databases, established 

standards, known error rates, empirically determined random match probabilities and 

a body of empirical research which can be used to support inferences.  By comparison 

these elements, it is argued, are conspicuous in their absence with respect to non-DNA 

forensic science, particularly in those fields that involve mark, pattern or impression 

comparison. 

Scientific developments and pressures have been accompanied by legal developments 

regarding the admissibility of forensic evidence.  This is a response to (as well as a 

source of) the criticisms that have been mentioned.  In the U.S., the admissibility of 

expertise and of scientific evidence was addressed in Frye v U.S. (293 F.1013 D.C. Cir 

[1923]) and in Daubert v Merrell Dow Pharmaceuticals (509 U.S. 579 [1993]), with the 

latter giving its name to a set of rules and standards which scientific evidence must 

satisfy if it is to be admitted to the courtroom in over half of U.S. states.   Among these 

is the requirement to demonstrate the scientific foundation and to provide supporting 

data, as well as to indicate the error rate of the forensic technique.  The courts in the 

U.S. have heard a number of challenges to forensic evidence on these grounds which 

further emphasise the apparent shortcomings of traditional forensic science.     

The 2009 report by the National Academy of Sciences, ‘Strengthening forensic science 

in the United States: A path forward’ (NAS 2009), was considered by many to 

represent a damaging critique of the state of forensic science.  The report targeted the 

way forensic science is practiced, the research which underpins it, the reliability of its 

techniques and conclusions, and ultimately, the probative value of its outputs.  For 

Mnookin et al (2011, p.731), the report represents a ‘watershed’ for forensic science; 
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highlighting, in accordance with Bono et al (2011), that what was once accepted as 

good enough can no longer be considered sufficient.  It is important to stress that, 

while the report, and indeed the subsequent commentaries on it (see Mnookin et al 

2011, Bono et al 2011, Linacre 2013 Margot 2011), focus on pattern and impression 

comparison evidence, ‘…pattern evidence areas are not alone in generating the 

[expressed] concerns’ (Mnookin et al 2011, p.733).  Rather, the deficiencies and 

subsequent recommendations reverberate within all fields of forensic science, 

including trace evidence analysis and the domain of DNA analysis.  Furthermore, while 

primarily an evaluation of the state of forensic science in the U.S., its observations and 

implications are ‘global in their reach’ as they ‘are intended to apply to forensic science 

as a whole’ (ibid., p.733).  The consultation report prepared by the Law Commission 

(2009) on the admissibility of expert evidence concerns similar issues within the legal 

context of England and Wales. 

The NAS and Law Commission reports consolidate, reflect and reinforce many of the 

debates and much of the scrutiny surrounding the practice of forensic science referred 

to in this chapter.  Critically, on the scientific basis and empirical research underpinning 

forensic science, the NAS report concludes:   

‘The simple reality is that the interpretation of forensic evidence 
is not always based on scientific studies to determine its validity. This 
is a serious problem. Although research has been done in some disciplines, 
there is a notable dearth of peer-reviewed, published studies establishing 
the scientific bases and validity of many forensic methods.’  (NAS 2009, p.8) 

A number of commentators within the forensic science community have recognised 

the need to look hard at forensic science in light of the report and other legal and 

scientific developments.  Change is clearly necessary and some have attempted to 

consider what the post-NAS report world of forensic science – or new ‘paradigm’ of 

forensic science (Saks and Koehler 2005, p.892) – should look like.  

Subsequent commentaries have been unanimous in highlighting the need for empirical 

research.  While this call is not novel, the urgency with which it is made has increased.  

Mnookin et al (2011) argue that simply engaging in research is not enough but rather, 

what is required, is the creation of a research culture which is institutionalised and into 

which the practice forensic science is firmly embedded.  Their review considers why 

this culture is currently lacking and considers what a research culture in forensic 
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science should look like.  At its heart, they argue, should be the question of the 

‘relationship’ between ‘research-based knowledge’ and practices (in the laboratory 

and in the field).  Consequently, in different domains of forensic science the following 

questions should become commonplace: What do we know?  How do we know it?  

How reliable is that knowledge?  Mnookin et al (2011), among others, argue that these 

questions are only answered by reference to empirical scientific data and cannot be 

presumed or concluded with reference to notions such as ‘experience’ or 

‘competence’.  In short, a new paradigm is called for in which claims and assumptions 

which lack empirical foundations are replaced by inferences and conclusions which are 

made with reference to an empirical and theoretical knowledge base.  This 

necessitates a commitment to generating and testing hypotheses regarding, for 

instance, the behavior of evidence under certain conditions; to deriving error rates and 

carrying out blind testing for comparison and analytical tests, and to collecting data on 

environmental (‘background’) rates of traces or the occurrence of patterns within 

populations. 

1.2.1 The current investigation and the need for a research 

culture 

The aims and objectives of this piece of research into the transfer and deposition of 

GSR resonate strongly with calls for the provision of a research basis in forensic science 

(see section 1.4.1).  Its nature and undertaking also reflect the values of the research 

culture that Mnookin et al (2011) discuss.  The authors consider a ’respect’ for 

empirical support (ibid., p.742) to be essential; that bodies of data are desirable and 

that attention should be paid to the degree of support they can provide for a claim.  

The authors distinguish conclusions based on rigorous data from those based on 

‘hunches’ (ibid., p.742) and highlight the connection that should be made between the 

results of research, the claim or proposition that is proffered and the degree of 

confidence or reliability that can be assigned to it.  While it is desirable that robust 

research will inform practices, reports and testimonies, the authors add the caveat 

that care should be taken not to cite data as support for propositions or hypotheses 

that ‘extend beyond the reach of the research design’ (ibid., p.742).  The importance of 

making data sets, as well as the practices and procedures employed in producing 
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them, available for others is identified.  In so doing, further research should be actively 

encouraged and avenues for its undertaking should be highlighted.  In addition, a 

‘critical perspective’ should be at the core of attempts to design, review and guide 

research.  In order to eschew dogma the findings of research should be considered 

provisional claims that can be modified, altered and improved with further study.  It is 

acknowledged that this rationale to answering questions which constantly and 

incrementally improves and builds knowledge may not satisfy the definitive questions 

which are asked in the courtroom and means that judge and jury may have to make 

use of the ‘best available answers to scientific questions at that given moment in time’ 

(ibid., p.744).  Finally, Mnookin et al (2011) advocate the open exploration of research 

problems rather than seeking to legitimise and vindicate current practices or to 

reproduce certain results or hypotheses.   

The principles that are integral to this new research culture are well served by this 

thesis.  Crucially, this piece of research seeks to generate an empirical understanding 

of the transfer of GSR which can be referred to when making inferences regarding the 

presence of GSR.  Meanwhile, in drawing conclusions and considering the implications 

for forensic practice and interpretation, the scope and limitations of the research 

design are acknowledged.  Publishing and presentation of results and methods 

represent an inherent element of this research process, while particular consideration 

is given to suggesting and encouraging complementary and further work.  This thesis is 

concerned with various mechanisms of GSR deposition, a relatively under-researched 

topic.  It tests and explores the assumption that the potential for GSR secondary 

transfer is likely to be minimal in casework situations.  In doing so, this thesis considers 

novel reconstructive and probative potential of GSR in a way that supplements the 

current capacity to utilise GSR evidence in casework.  An open, exploratory approach 

that follows the findings derived is required, so as to expand our understanding and 

consider the potential implications for forensic protocol.  Finally, the latter phase of 

this piece of work reflects recent research in forensic science in its exploration of a 

Bayesian approach to interpreting GSR evidence under competing hypotheses about 

its transfer and deposition.  

In illustrating the potential value of research, Linacre (2013) provides an example that 

resonates with the subject matter of this thesis.  An instance is referred to when the 
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possibility that a secondary transfer mechanism was responsible for a transfer of 

bodily fluids and the subsequent recovery of a DNA profile in a case.  When cross-

examined, the expert in question was able to refer to research publications regarding 

the likelihood of a secondary transfer.  For Linacre (2013), the provision of an opinion 

informed and supported by recent empirical research in this example represents a 

perfect illustration of the connection that can and should exist between forensic 

research and practice.  In essence it is this connection that this thesis is concerned with 

making with regard to the transfer of GSR.  By empirically deriving data concerning the 

potential for transfers of GSR, inferences that are made regarding the likelihood of a 

secondary transfer, for example, can be supported by reference to published empirical 

data.  Furthermore, by exploring the potential for employing an interpretative 

framework based on Bayesian Networks in the assessment of transfer problems 

involving GSR, this investigation will also consider the application of empirical research 

in forensic practice. 

1.2.2 The path towards a research culture 

While it is desirable that the need for research in various fields of forensic science will 

be met by work motivated by the same concerns as those which stimulate this thesis, 

there are several difficulties.  The limited resources for funding, particularly in the 

current economic climate, are in danger of stymieing the potential for research where 

it is needed (ibid., Robertson 2011, Linacre 2013).  In the U.K., the recent closure of the 

Forensic Science Service (FSS), which has been met with disapproval by many 

internationally (ibid.), has dramatically changed the landscape of forensic science 

provision.  A number of questions are raised by this development and of particular 

concern are the potential implications for the development and undertaking of 

research programs in forensic science.  The research arm of the FSS had previously 

provided valuable, high quality research in many areas of forensic science including 

DNA and evidence interpretation (see, for example, Evett et al 1998, 2002).  While the 

responsibility of carrying out research cannot be assigned to one body, Linacre (2013, 

among others2) has identified the research ‘vacuum’ that will be left to fill.  In the U.K. 

                                                           
2 Ian Evett echoed this sentiment at the 6

th
 European Academy of Forensic Science Conference (EAFS 

2012) and at ‘Forensic Horizons 2012’ hosted by the Forensic Science Society.  Evett was also critical of 
the ruling of the Court of Appeal in R. v. T (2010)(see Chapter Seven)    
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it remains to be seen whether the need for rigorous scientific research can be 

reconciled with the requirements of the police services; namely, cost effectiveness, 

rapid delivery and outputs which are error free, all within the wider economic context 

of financial constraints and budget cuts.   

There are a number of further dilemmas regarding the undertaking of research.  Many 

forensic practitioners are not trained researchers and moreover, the financial 

implications of carrying out research may mean that commercial laboratories do not 

do so (Mnookin et al 2011, Linacre 2013).  Accordingly, it seems that universities must 

be at the centre of attempts to establish research programs and projects (Linacre 

2013).  Funding, however, is limited and that which is made available to carry out 

research in forensic science may continue to represent an impasse.  Universities are, 

notwithstanding, free from other constraints such as law enforcement balance sheets 

or “provider-customer” dynamics.  Crucially, however, this must not mean that the 

scientific research becomes disconnected from practice (Linacre 2013).  Rather, its 

relevance, value and practical application should be demonstrable, and its aims and 

objectives need to be informed by an understanding of knowledge gaps, police needs, 

the legal context and operational problems.  Ensuring the applicability and wider 

benefit of research will involve careful research design and attention to the practical 

consequences of research in writing up.  Also crucial are effective reporting and 

dissemination of research and results in the relevant spheres (Mnookin et al 2011).  

For research in this field, these will include the scientific and forensic research 

communities, as well as legal and practitioner audiences.  

The features of a relevant piece of research have been central to the formulation and 

execution of this thesis.  Given the source of its funding3, the Raison d'être of this 

thesis is the motivation for the use of science and techniques from different disciplines 

to address security problems.  Therefore, this thesis is well placed to further the 

forensic science knowledge base whilst contributing to operational practices, 

specifically in the investigation and detection process following incidents involving 

firearms.  It will also contribute to the scientific underpinning of claims made in court, 

in the pursuit of safe and reliable justice.  Cooperation and engagement with, and 

                                                           
3 EPSRC funding was acknowledged in the ‘acknowledgements’ section on page 3 of this thesis  
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presentation to, the relevant user communities, as well as consideration of the 

relevance and benefit of the research are central tenets of this research project. 

1.3 Firearms offences in England and Wales: underlining 

the importance of firearms forensics 

Section three of The Office for National Statistics’ bulletin entitled ‘Focus on: Violent 

Crime and Sexual Offences, 2011/12’ (ONS 2013) presents figures relating to offences 

involving the use of firearms in England and Wales.   These offences include any 

recorded crime in which a firearm has been used; when it has been fired, or used 

either as a blunt instrument, or to make a threat.  Importantly, this category of 

offences does not include possession offences (in which the firearm was not ‘used’).   

 

A firearm was used in 9,555 recorded offences in 2011/12 in England and Wales.  A 

60% decrease in the number of firearms offences recorded since 2004, is however, 

largely attributable to the reduction in recorded offences involving air weapons (which 

tend to have less serious consequences) by 74% since 2004.   

 

 

 

 

 

 

 

 

While offences involving the use of firearms represent a relatively small proportion of 

all recorded crimes in England and Wales (0.2%), they tend to be associated with 

serious crimes such as homicide or aggravated robbery (especially when the firearm is 

not an air weapon).  A firearm was used in 42 of the 540 homicides that are currently 

recorded for 2011/2012 in England and Wales, and in all of these cases, the firearm 

was fired.  Meanwhile, around 3% of robberies in 2011/12 involved the use of a 

 
Firearms offences in England and Wales 

2011/12 

Air weapon offences 3554 

Non-air weapon offences 6001 

Total 9555 

Table 1.1 Air weapon and non-air weapon firearms offences in England and 

Wales 2011/12 (ONS 2013) 
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firearm and 282 serious injuries were caused by firearms during the same period.  

Taking all firearms offences for 2011/12 into consideration, 35% were for violence 

against the person (homicide being the most severe), while 27% were for robbery.  

From 2009 (incorporating 2009/10, 2010/11 and 2011/12), 8% (141) homicides have 

resulted from the shooting of a gun.   

 

Offences involving non-air weapon firearms numbered 6001 in 2011/12, compared to 

7040 in 2010/11.  It is these offences that tend to be associated with the most serious 

crimes and that are more likely to result in serious injury or fatality, as demonstrated 

by figure 1.1.  While 46 % of the 6001 recorded offences involving a non-air weapon 

were instances of violence against the person offences only 6% were for criminal 

damage.  On the other hand, 77% of all air weapon offences were for criminal damage 

offences, while only 16% involved violence against the person, underlining the less 

serious nature of most air-weapon offences.   

 

 

 

In terms of the type of firearm used in offences, 2651 of the 6001 non-air weapon 

firearms offences involved the use of handguns.  Of these handgun offences, firing of 

the weapon took place in 13% of cases and a fatal or serious injury was the result in 

36% of offences in which a handgun was discharged.  The prevalence of the use of 
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Figure 1.2 Robberies involving a firearm in England and Wales 2011/12 by 

weapon type (ONS 2013) 

handguns in the most serious of offences involving firearms is illustrated by the fact 

that, of the 42 homicides caused by shooting in 2011/12, 18 (43%) involved the use of 

a handgun.  Meanwhile, the prevalence of handguns compared to long-arms and other 

firearms is also evident in figure 1.2 with regard to the robberies that involved firearms 

in 2011/12; handguns were used in 64% of cases.   
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Offences involving the use of firearms represent a significant contribution to the 

number of serious crimes in England and Wales.  Moreover, within these offences, the 

prevalence of handguns is notable.  Whether the gun is fired or merely handled, the 

capacity for forensic scientists to employ trace evidence analysis in making inferences 

about the identity of the perpetrator(s) and to reconstruct the crime scene is vital if 

public safety is to be assured through the identification and safe conviction of 

offenders.  Research which enhances the use of forensic methods and techniques 

which assist the process of investigation and detection with regard to such firearms 

offences is, therefore, valuable.  Conceivably, the present piece research could assist in 

investigation and detection when it is necessary to distinguish between a number of 

suspects, perhaps in a case in which a gang or group of individuals were present and it 

is necessary to determine their respective roles in the commission of the offence.   

1.4 Thesis overview 

This section presents the aims and objectives of this thesis.  An outline of each of the 

eight chapters is then provided. 

1.4.1 Aims and objectives 

Aims:  

- The aim of this piece of research is to investigate the nature of the transfer and 

deposition of GSR and the implications of these mechanisms for the 

interpretation of GSR evidence and for the forensic investigation of incidents 

involving firearms 

Objectives:  

- To experimentally simulate transfer and deposition scenarios involving GSR 

- To use SEM-EDX to quantify the GSR presence on samples taken during the 

experiments in order to generate a body of data on GSR transfer and 

deposition 

- To consider the importance of the experimental findings for our understanding 

of the dynamics and behaviour of GSR under different scenarios 
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- To consider the implications of the experimental findings for the collection, 

analysis, interpretation and presentation stages of a forensic investigation that 

involves GSR evidence 

- To explore the utility of using Bayesian Networks to facilitate the interpretation  

of GSR evidence, particularly for scenarios that involve multiple suspects  

- Using case examples, to incorporate the empirical findings generated during 

the experimental phase within a Bayesian Network framework in order to 

explore the process of reasoning about mechanisms of GSR deposition 

- To explore and highlight the avenues for further research into the dynamics of 

GSR evidence which will further contribute to our understanding of evidence 

dynamics and their impact on the process of interpreting evidence 

- To consider the future of research in forensic science in light of the findings of 

the present research project 

1.4.2 Thesis outline 

Chapter one 

Chapter one has set out the context for undertaking the piece of research presented in 

this thesis.  Particular attention has been afforded to elucidating the importance of 

research within various domains of forensic science.   

Chapter two 

Chapter two will introduce trace evidence theory with a focus on the process of 

interpreting trace evidence via the formulation and assessment of interpretative 

propositions.  The concept of ‘evidence dynamics’ and its importance to interpreting 

forensic evidence will also be introduced.  Examples of research into the science of 

trace evidence will be cited and concurrently, the importance of issues of secondary 

transfer will be emphasised.   

Chapter three 

Chapter three is concerned with GSR; its characteristics and formation, our 

understanding of its dynamics and its use in crime reconstruction.  The discussion 

considers the significance of transfer and deposition mechanisms with respect to GSR 

and identifies significant knowledge gaps.  As part of the review, the development and 
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of analytical methods for the detection and identification of GSR are be discussed.  This 

account also serves to introduce the analytical methods that were employed in 

experimental phase of this thesis.  This chapter concludes by elucidating the research 

questions which were formulated, and with which this thesis engages. 

Chapter four 

Chapter four details the materials and methods used in the experimental phase of this 

thesis, with particular attention given to the ways in which the validity of the outputs 

of the experimental work was assured.  This account proceeds to document the 

procedures and processes which were involved in detecting and quantifying the 

presence of GSR, using SEM-EDX with automated detection software.  On the one 

hand, this account is intended to detail the steps taken to safeguard the accuracy and 

reliability of the results on which the findings and conclusions are based.  Meanwhile, 

it is also intended to serve as a guide for future analysis and research projects that 

employ the same (or similar) methods.   

Chapter five 

Chapter five reports the results of the analysis of the samples taken during the 

experiments.  The results and observations represent a body of empirical data on 

various transfer and deposition mechanisms involving GSR.  

Chapter six 

The findings of the experimental research are discussed in chapter six with reference 

to their contribution to our understanding of the dynamics of GSR.  Importantly, this 

chapter considers the implications of these findings for forensic protocol and for the 

various stages of an investigation.  In addition to assessing the ramifications for the 

collection of GSR, this discussion includes an evaluation of the analytical methods used 

for this piece of research.  It is argued that it is in the interpretation of GSR evidence 

that the findings of the experimental work have the greatest potential significance. 

 

 

Chapter seven 
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This chapter introduces the application of Bayesian Networks and probabilistic 

reasoning in forensic science.  It explores the application of a Bayesian Network 

approach to the interpretation of GSR evidence and to reasoning about mechanisms of 

GSR deposition.  The capacity of a Bayesian Network approach to reason in this way is 

demonstrated through the incorporation of the experimental findings into graphs 

representing a range of casework scenarios.  The discussion is set within the context of 

contemporary debates regarding the relationship between Bayesian reasoning and the 

law in light of recent judgments in legal cases in England and Wales.  The commentary 

identifies the need for clarity and consensus regarding the status of Bayesian 

approaches among legal communities and emphasises the importance of research 

which demonstrates the utility of Bayesian Networks for reasoning about legal and 

forensic problems that multiple sources of uncertainty. 

Chapter eight 

The final chapter summarises the principal findings of the research, and considers their 

implications and the limitations of their applicability.  The avenues for further research 

are charted prior to a discussion of the wider significance of the research findings.  
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Chapter 2 Trace evidence: Evidence dynamics, 

interpretation and the forensic investigation  

2.1 Outline 

This chapter provides an introduction to trace evidence theory, with an emphasis on 

the importance of evidence dynamics.  Particular attention will be given to introducing 

secondary transfers of trace material.  The interpretation of trace evidence, and the 

manner in which evidence dynamics are incorporated into this process, will also be 

introduced.   

2.2 An introduction to trace evidence 

The term ‘trace evidence’ is interchangeable with others such as ‘trace material’, ‘trace 

particulate evidence’, or ‘trace physical evidence’, the unifying feature of which is their 

description of ‘trace’, or microscopic, quantities of substances that are of probative 

value in a criminal investigation.  The use of ‘evidence’ as opposed to ‘material’ implies 

that, to some extent, the probative value of the substance has been recognised in the 

context of a case.   

The terms refer to a plethora of naturally occurring and anthropogenically generated 

materials such as fibres (natural and synthetic), glass fragments, paint fragments, hair 

and GSR (the focus of the current investigation), as well as geoforensic materials such 

as soils, silts, palynological material and trace minerals.   This list of physical traces is 

not exhaustive.  In theory, any particulate material could be included which occurs in 

trace quantities and which can be transferred between surfaces, subsequently 

recovered, and compared to a comparator sample.  Grieve (1987) reports, for 

example, the importance of glitter particles, of the sort used by artists or for fancy 

dress, for establishing contact in the investigation of a rape case.  

‘Traces’ need not be physical.  Indeed, the growing salience of digital traces in many 

cyber-crimes and in the increasing number of other crimes in which a computer or 

other device can provide valuable evidence underlines the importance of ‘computer’, 
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‘cyber’ or ‘digital’ forensics (see, for example, Casey 2004, Vacca 2005, Hankins et al 

2009, Casey 2011).  Meanwhile, it may be argued that fingermarks or tool marks are 

‘traces’, but these traditionally fall into the category of patterns, marks and 

impressions.  Other ‘traces’ that are often utilised include fluids such as blood, 

perspiration, urine and semen, the transfer and persistence properties of which can be 

interpreted in a similar manner to trace physical materials (Genge 2003).  Importantly, 

it is also possible to extract DNA from these fluids.  DNA can certainly be regarded as 

‘trace’ evidence although, as mentioned, owing to its directly individualising potential 

it is often considered to occupy a domain of its own (Saks and Koehler 2005, Broeders 

2006).  Technological advances have rendered it possible to obtain a (partial) DNA 

profile from ever more minute traces of material and vectors.  Subsequently, the use 

of Low Copy Number (LCN) or ‘touch’ DNA in investigations has developed and 

concurrently, this has resulted in the emergence of a plethora of interpretation issues 

associated with this type of evidence (Thompson et al 2003).  In this discussion of the 

properties of trace materials and their use in forensic investigations, trace physical 

materials will be most often referred to as their properties are analogous to GSR.  

However, where relevant, the properties of other types of evidence, especially DNA, 

will also be cited. 

2.2.1 Trace evidence and the investigative process 

Trace materials derive their forensic utility from the fact that they can be transferred 

from one surface to another and subsequently remain adhered.  When compared to a 

comparator sample, these traces may represent a (spatial and temporal) record of the 

association between suspects, victims, crime scenes, environments, locations, objects 

and events.  The elucidation of this logic is often attributed to Edmund Locard whose 

“principle of exchange” is often condensed into the axiom: “every contact leaves a 

trace”.  Accordingly, Locard observes that these ‘traces’ can be regarded as ‘mute 

witnesses… of all our movements and encounters’ (1930 cited in Bisbing 2001, p.87, 

Lee 1995, Erzinçlioglu 2006).  This causal logic underpins the use of trace materials in 

making inferences about criminal events. 

In an investigative context, the use of trace evidence can be represented as a five-

stage process (Figure 2.1).  Initially, material must be transferred via a contact 
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Figure 2.1 The ‘five stage process’ of a forensic enquiry involving the use of 

trace physical evidence.  Produced by the author after Morgan and Bull (2007a) 

between surfaces and then remain in situ for a sufficient period of time so as to permit 

its collection, (from the scene of a crime or from a suspect, for instance).  The material 

may then be analysed at the scene, but more often in the laboratory.  The results 

derived from the analysis must, at this point, be interpreted in the context of the case.  

This involves the development and assessment of propositions to make inferences 

regarding the events that took place.  Finally, the probative value of the evidence and 

the interpretations made must then be presented in a report or in a court of law 

(Morgan and Bull 2007a).  Crucially, these conclusions should be supported by an 

empirical understanding of the issue at hand.  

 

2.2.2 The interpretation process 

A series of papers, namely those by Cook et al (1998a,b), Cook et al (1999) and Evett et 

al (2000), explore forensic science evidence interpretation and contribute to a deeper 

understanding of the practicalities of the process.  According to Cook et al (1998a, 

p.152) ‘the essence of forensic science is the drawing of rational and balanced 

inferences from observations, test results and measurements’.  This is the process of 

interpretation.  Writing in 1998, the authors comment on the period of evolution for 

forensic science interpretation, brought about by work on the application of the 

Bayesian paradigm and associated methodologies to forensic problems and in 

reasoning about forensic evidence under uncertainty (see Robertson and Vignaux 

1995, Aitken 1995  and, more recently, Taroni et al 2006)4. 

A central tenet of the Bayesian approach to evidence is that when considering the 

truth and validity of a proposition (for example, that the glass recovered from Mr X 

                                                           
4 The application of Bayesian approaches to forensic interpretation will be revisited in Chapter Seven, 
with an emphasis on the interpretation of GSR and the incorporation of the empirical findings of this 
thesis 

Transfer Collection Analysis Interpretation Presentation 
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came from the broken window Y), it is necessary to consider at least one alternative 

proposition (for example, that the glass came from another window or glass object and 

not window Y).  In a forensic context, this is framed by the adversarial nature of the 

criminal investigation; that there is a prosecution allegation and a defence allegation.  

The former attests that the trace incriminates the suspect in some way, while the 

latter will offer an alternative explanation that serves to exculpate the suspect.  As a 

result, interpretation necessitates the formulation of a pair of propositions that 

represent these two allegations and under which evidence is assessed.  The generation 

of these propositions is not a trivial process.  The role of the scientist is to review the 

evidence in the context of the case at hand in order to develop propositions that can 

‘realistically’ and logically be addressed (Cook et al 1998b, p.231).  Accordingly, Cook et 

al (1998b, p.231) propose a ‘hierarchy of propositions’ that should be considered when 

attempting to frame them.  This hierarchy enables the formulation of propositions that 

will assist the court as much as possible, while ensuring that the assessment does not 

digress from the limits of expertise, the conditions of the case and the probative value 

of the evidence and consequently, stray into the domains of jury deliberation and 

advocacy.  There are three (overlapping) categories into which these pairs of 

propositions can fall: 

Level I – Source level propositions 

Level II – Activity level propositions 

Level III – Offence level propositions 

 

These ‘levels’ of proposition differ in their similarity to the ultimate issue of 

determining guilt or innocence that the jury must decide; the higher the level of 

proposition, the greater the value that is added by the forensic evidence.  Importantly, 

the choice of propositions (and their place on the hierarchy) will depend on a number 

of factors including the context and circumstances of the case, the availability of 

research or empirical support, the observations which have been made and the 

expertise of the forensic scientist.  As a result, Cook et al (1998b, p.232) argue, it is 

often necessary to ‘settle’ on propositions which are, to varying degrees, removed 

from those which the jury must ultimately address.  A source level pair of propositions 

can be addressed via measurements, observations, analyses and through the 
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comparison of samples through various means.  The weighing of propositions of this 

type enables assessment of the likelihood that a trace came from a one source as 

opposed to another.  For example:  

a) The fibre came from garment X  

b) It came from some other fibre source  

.................... 

a) The glass fragment came from car Window Y  

b) It came from some other glass object  

  

Note that these propositions do not consider how the material came to be found - the 

circumstances of its transfer are not considered.  These propositions can be addressed 

through comparison, analytical examination, through the application of expertise and 

the consideration of background rates of different types of fibres/glass fragments.  

Mutually exclusive propositions such as these can be weighed against one another by 

calculating the likelihood ratio – a principal step in the Bayesian interpretation of 

evidence that will be revisited in chapter seven: 

 

 

 

Addressing a pair of propositions at the activity level (level II) will enable assessment of 

inferences about how the trace evidence came to be in the state it was recovered.  As 

well as using measurements and observations when addressing these propositions, 

considerations of transfer and persistence (and other dynamics) will necessarily be 

incorporated.  For example, using the examples provided by Cook et al (1998b, p.234)5:  

a) Mr A is the person who smashed window X  

b) Mr A was not present when window X was smashed   

Addressing these propositions will involve determining probability of finding a given 

quantity of glass given that Mr A smashed the window, and the probability of finding 

that quantity given the defence proposition that he was not present.  Notably, the 

                                                           
5 It is acknowledged that this illustrative example is adapted from Cook et al (1998b)  

Probability of the evidence if the prosecution proposition is true 

Probability of the evidence if the defence proposition is true 
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authors also point out that if evidence was not found, the propositions above could 

still be addressed and the probabilities that would be of interest would be those of 

finding no glass given that Mr A smashed the window and of finding no glass given that 

he was not present.  Clearly, unlike ‘level I’ propositions, circumstantial information is 

crucial when addressing these ‘level II’ propositions.  For example, in order to assess 

whether Mr A smashed the window or was not present, some indication of the timing 

of the event will be required and the persistence of the glass fragments would need to 

be incorporated.  It would also be important to know if the suspect had engaged in 

activities that would mean he was exposed to glass fragments; if he was a builder, for 

example.  Meanwhile, information regarding the modus operandi of the breaking of 

the window – whether it was smashed by throwing a brick, or whether it was kicked in, 

for instance, would have a bearing on the expected number and pattern of transferred 

fragments.  Interaction, therefore, is required between the forensic scientist, the 

investigating team, the witnesses and the advocate to establish what Cook et al 

(1998b, p.234) term the ‘framework of circumstances’ within which propositions are 

generated and addressed.  It will be argued in chapter seven, that Bayesian Networks 

are a means weighing and incorporating these multiple sources of uncertainty within a 

probabilistic framework.        

‘Level III’ (or offence level propositions) relate to the commission of the offence and 

amount to the ultimate consideration of the jury.  This often involves consideration of 

issues that are beyond the realm of the forensic scientist.  Importantly, level III 

propositions are simultaneously level II propositions.  Cook et al (1998b, p.232) use the 

following pairs as examples: 

a) Mr A committed the burglary  

b) Another person committed the burglary  

.................... 

a) Mr B raped Ms Y  

b) Some other man raped Ms Y  

.................... 

a) Mr C assaulted Mr Z  

b) Mr C had nothing to do with the assault of Mr Z   
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In reality the distinction between level II and level III propositions is often blurred, but 

in practice, it is more common to assess propositions about trace evidence that are 

‘below’ the addressing of the ultimate issue of establishing the commission of a crime 

(ibid., Robertson and Vignaux 1995). 

The representation of the investigative process in figure 2.1 is simplified and does not 

capture the nuance and iterative nature of interpretation.  In setting out a model for 

case assessment, decision-making and interpretation which embodies the principles of 

Bayesian inference, Cook et al (1998a) stress that interpretation is not restricted to the 

latter stages of an investigation (a single fourth stage in figure 2.1), or to the writing of 

a statement.  Rather, a broader view of the interpretation process is preferred 

whereby the interpretation of material transcends stages and begins when the 

scientist is first approached by law enforcement.  Thus, process of interpretation 

beings with its collection, and prior to its analysis.  The model for case assessment and 

interpretation which is proposed reflects this.  During the first stage, where law 

enforcement or the investigator represents the customer, the needs of the customer 

must be assessed and a detailed view of the case and access to all of the relevant 

information should be sought.  A balanced view, which includes the explanations 

offered by the suspect, will embody the Bayesian approach to assessing evidence.  

Consideration of the types of examination that may be undertaken and the results that 

they may generate will be made.  At this point, the process of generating a pair of 

propositions will begin and these will be refined in the second, ‘Case assessment’ 

stage.  Here, serious thought is given to the expected outcomes of an examination 

regarding the propositions that have been formulated in light of the circumstances of 

the case (ibid.).  Statements such as “if this proposition were true, a small quantity of 

GSR particles would be expected” will be generated and considered at this stage.  This 

will inform the decision-making later during interpretation, as will the expected 

weights of evidence given a range of circumstances which are (quantitatively) 

estimated at this stage.  Here, the anticipated limitations of the interpretation should 

be made clear (Evett et al 2000).  The last, ‘service delivery’, phase involves the 

forensic examination itself and it is here that the propositions and expectations may be 

adjusted as a result of the examination (Cook et al 1998a).  The structure of the model 

means that, once the statement is written or the testimony is given, the weighing up 
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processes have already been followed through: expectations and propositions have 

been generated and assessed throughout the various phases of the interpretation and 

inferences, therefore, are not ‘post hoc’ (ibid., p.154). 

The iterative nature of the process of interpretation and decision-making is underlined 

by Evett et al (2000) who note that it is often inevitable that propositions will have to 

be revised and refined in the light of results and observations in the examination and 

analysis stages.  In addition, while the scientist formulates propositions within the 

‘framework of circumstances’, these conditions can change if, for example, 

developments are presented by the suspect or defence, or elements of the framework 

are not admitted.  In such cases, the propositions will have to be revisited in light of 

the alterations to the ‘framework of circumstances’.  Furthermore, Evett et al (2000) 

demonstrate how alternative explanations proffered by a suspect, witness, or victim 

may result in the reframing of propositions and crucially, their revision (promotion or 

demotion) to different levels in the hierarchy.  Determining logical propositions in the 

first instance has been shown to be a delicate process and Evett et al (2000) suggest 

that between the collection of observations and the formulation of propositions there 

is routinely an intermediate phase whereby informal explanations are considered, 

which represent precursors to the final propositions.  Explanations are offered which 

may explain the observations of the presence/absence of trace evidence, and are 

refined so that they form testable, opposing propositions that provide the greatest 

assistance to the jury; which are informative, and which are legitimately addressed 

within the bounds of scientific expertise and the circumstances of the case. 

For Evett et al (2000) (and reflected in the remainder of the series of papers; Cook et al 

1998a,b, Cook et al 1999), exploring the process of evidence interpretation reveals the 

difficulties and complexities, but also the fundamental importance of, the construction 

of informative propositions that can be meaningfully addressed within the context of a 

case.  Doing so prompts a departure from the use of statements such as “consistent 

with” and “may/could have” which are uninformative; which require little rigorous 

interpretation, and which are simply ‘statements of the obvious’ (ibid. 10)6.   

                                                           
6 This will be revisited in Chapter Seven in light of recent legal rulings concerning the presentation of 
probabilistic conclusions in U.K. courts 
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This model and conception of evidence interpretation frames this thesis.  By 

contributing to the empirical understanding of the behaviour of GSR evidence, the 

findings of thesis can be employed in the formulation and assessment of level II 

propositions during case-assessment and evaluation with regard to GSR.  Meanwhile, 

chapter seven explores the capacity of graphical approaches underpinned by Bayesian 

reasoning to assist in reasoning about GSR evidence under competing propositions, 

particularly when faced with multiple sources of uncertainty.  Bayesian Networks, it 

will be argued, are well placed to incorporate information about the framework of 

circumstances and thus among other forensic applications, can be utilised in making 

inferences about mechanisms of GSR transfer. 

2.3 Evidence dynamics 

It has been shown that when the circumstances of the case permit the forensic 

scientist to make inferences by addressing level II (and level III) propositions, issues of 

transfer and persistence must be considered.  Determining the probability of observing 

evidence ‘X’ given that Mr A smashed the window, and considering, for instance “is 

this the kind of blood distribution on the hand of Mr B if he had punched Mr C?” 

inherently involves incorporation of the factors governing the deposition and longevity 

of evidence, which have a bearing on the state of the material when it is recovered.   

When recovered from a crime-scene, victim or suspect, even if very soon after an 

event, trace evidence will have been subjected to multiple influences.  All available 

material is not transferred and over time, that which is transferred will be altered.  

When it is recovered, trace evidence is not pristine; rather, it is partial and has been 

modified.  Consequently, for Chisum and Turvey (2007, p.195), the assumption that 

material is transferred in its entirety from one surface to another and remains 

unaltered in its pristine state in the period between a contact and the collection of 

material ‘…has the potential to provide for misinterpretations of physical evidence’.  

Moreover, this assumption would result in misjudgement when determining the 

probability of observing a quantity of trace material ‘X’, given that a certain 

proposition was true, and would foster an incomplete answer to the question of 

whether this quantity is what one would expect if the suspect had engaged in a 

particular activity.   
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The mechanisms, influences and principles of interest fall under the heading ‘evidence 

dynamics’.  According to Chisum and Turvey (2000, p.2), evidence dynamics include 

‘...any influence that changes, relocates, obscures or obliterates physical evidence’ 

from the conditions governing the initial transfer, through the period between transfer 

and collection, through its processing and analysis, and ceasing with the adjudication 

of evidence (Chisum and Turvey 2007).  It should be emphasised at this point that the 

influences of evidence dynamics transcend the entire forensic science process.  They 

govern trace materials both before the forensic event, and after transfer has taken 

place.  Variables continue to exert their influence on trace material during and after 

collection; as samples are packaged, stored, transported and analysed, for example.  In 

sum, trace forensic evidence will represent a record of pre, syn and post forensic event 

movements, encounters and dynamics.  It is during the period between the transfer 

and the collection of material - which can vary greatly depending on the speed of the 

response by law enforcement, scene of crime officers or the investigative team – that 

the greatest number of variables may be influential.  The length of this period will 

determine the extent of relocation, altering or obscuring of evidence.   

A catalogue of evidence dynamics will also include variables and factors that are often 

synonymous with ‘contamination’, as these too could theoretically provide 

explanations for the alteration of trace material from the initial state in which it was 

deposited.  The commonly cited ‘evidence dynamics’ are presented in figure 2.2, which 

also indicates the juncture at which each factor may be influential in the sequence of a 

forensic investigation.  It should be noted that this is a general survey and that 

particular trace materials will, in some cases, be subject to influences specific to the 

material in question7, while the plethora of context specific influences that might be 

encountered mean that the catalogue in figure 2.2 is not exhaustive.   

                                                           
7 Evidence dynamics will be revisited in Chapter Three with reference GSR 
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Figure 2.2 Evidence dynamics throughout the course of an investigation – pre-, syn- and post- forensic event, after various sources including Chisum and Turvey (2000, 2007) 
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Figure 2.2 demonstrates the array of factors which could conceivably be considered 

when considering how material has been transferred, altered, redistributed, obscured, 

added to, removed or destroyed.  The interaction between these factors is also 

important.  Material may, for example, decay from a surface naturally, only for 

removal to be accelerated by a change in climatic conditions.  While some influences 

appear ‘natural’ (those that are a product of the physical properties of the surfaces 

and materials involved), there are many which are exerted by people, whether a 

victim, an offender, a witness, an emergency respondent or a forensic 

scientist/laboratory technician.  In these cases, individuals wittingly (in the case of 

counter-forensic actions by an offender) or unwittingly (with regard to emergency 

personnel or forensic technicians packaging evidence) alter evidence and on occasions, 

compromise its probative value.  Clearly, some of these variables cannot be guarded 

against but others can.  Protocol for the retrieval, packaging and transportation of 

samples can be implemented with a view to maintaining the integrity of evidence and 

limiting the effects of contamination.  A chain of custody should be enforced which 

tracks the integrity of the exhibit during the investigative process (Chisum and Turvey 

2000, 2007).  This will be revisited with regard to GSR in section 3.5.   

Indubitably, unpicking the effects of evidence dynamics when determining the 

probability of finding a given trace given the truth of a certain proposition, can be 

extremely complex.  However, doing so is crucial if competing propositions about how 

the evidence came to be are to be logically and accurately addressed.  Reliable 

interpretation and the making of inferences which assist in the accurate reconstruction 

of an event will require reference to scientific research on the principles, laws and 

mechanisms which govern the transfer, persistence and behaviour of trace materials in 

a variety of contexts.  The salience of experimental research to this end was 

introduced in chapter one will be further elucidated in chapter four with regard to this 

thesis.  The importance of experimental work is illustrated by Bennett et al (2010) in an 

account of a murder case in Australia in which fibres identified as being from the 

suspect’s car were recovered from the soles of the victim’s shoes.  The source was not 

disputed at trial, yet the length of time they had persisted was at issue and 

experimental work on the transfer and persistence of car carpet fibres proved crucial.  

Indeed, contributing to the understanding of evidence dynamics via experimental 
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research with respect to GSR is one of the principal objectives of this piece of research.  

Meanwhile, it will be demonstrated in chapter seven that Bayesian Networks can be 

used to incorporate this empirical knowledge and reason about the origins of trace 

evidence under alternative propositions.     

The body of literature on the behaviour of trace evidence under different conditions 

can be thought of as part of the “toolkit” used by the forensic scientist to understand, 

account for and incorporate evidence dynamics during the iterative process of trace 

evidence interpretation examined by Cook et al (1998a) (set out in section 2.2.2). 

Through the experimental simulation of transfer and persistence in settings which 

mimic forensic scenarios, and through the reporting of observations encountered 

during casework, a body of theory and data on the effect of different variables on 

various types of trace evidence has been established.  Development of this body of 

work resonates with the calls for an empirical research culture in forensic science that 

were discussed in chapter one.  The opportunities for research continue to grow due 

to demands to understand the effects of particular variables in particular contexts and 

with technological improvements which permit detection and analysis of the 

previously undetectable or imperceptible.  There are, however, significant gaps in our 

understanding of the influence of certain factors on different forms of trace material in 

various contexts.   

The sections below deal in with concepts introduced in figure 2.1 namely, transfer, 

persistence and multiple transfer.  In doing so, relevant experimental studies are cited 

which concern different forms of trace evidence.  This commentary provides an 

overview of the principal factors that govern the (multiple) transfer and persistence of 

trace materials and studies which have been formulated to investigate them22. 

2.3.1 The initial transfer 

While every contact leaves a trace, a number of factors determine the amount and 

distribution of the material that is transferred from A to B.  If a direct contact between 

surfaces initiates a transfer of material, the nature of the donor (A) and recipient (B) 

surfaces are important.  Surface properties will influence how readily material is shed 

and the extent to which trace material is able to adhere.  For example, in a study of the 

                                                           
22 Studies concerning GSR are reserved for consideration in Chapter Three 
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transfer of glass fragments, Hicks et al (1996) and Brewster et al (1985) report that the 

number and size of glass fragments transferred to clothing during the breaking of 

panes of glass is dependent on the composition and weaving of the garment.  In both 

studies, garments with coarse woollen weaves tended to retain more and larger 

fragments.  Fewer fragments were transferred to denim garments than woollen ones 

due to the existence of ‘pore’ spaces in woollen weaves which encouraged adhesion 

(ibid.804).  With regard to fibres, Deedrick (2001) notes that certain fabrics do not 

shed (donate) fibres well, while others do not hold fibres well, and therefore, are poor 

recipients.  In addition, Pounds and Smalldon (1975a) found that coarse garments 

favoured the receipt of short fibres.  Following a further study, Pounds and Smalldon 

(1975c) concluded that fibre transfer from a garment will be encouraged when fibres 

are sat on the surface of a donor garment, or when fibres are loosely incorporated in 

its yarn.  When considering garment-to-garment fibre transference, the condition, age 

and state of the garments involved will also be of importance.  Roux et al (1999) 

examined the transfer of automobile carpet fibres to shoes and found that the 

properties of the shoes soles were influential, as well as the type of carpet involved.  

Interestingly, they note that increased fibre transference was encouraged when a 

sticky substance was on the sole of the shoe.  Finally, their findings corroborated those 

of Scott (1985) in concluding that older carpets tended to ‘donate’ fewer fibres than 

new carpets. Logically, while the nature of the recipient surface will be influential, if a 

transfer is to occur the donor surface must be one that can readily donate material – if 

a material is a poor ‘shedder’, or the trace evidence is tightly enmeshed within the 

donor surface, a transfer will be less likely to take place.   

The properties of the trace material itself will have a bearing on the propensity for 

transfer.  The dimensions and surface textures of particles, for example, will both be of 

significance when it comes to the transfer of many different trace materials.  Brewster 

et al (1985) note that the quantity of glass that is transferred will be dependent on the 

size of the fragments that are involved.  Meanwhile, Deedrick (2001) conclude that 

certain fibres lend themselves to being transferred over others, depending on 

construction, fibre composition and fibre length (Pounds and Smalldon 1975a).  In a 

study of animal hair transfer, D’Andrea et al (1998) found that the finest and lightest 
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hairs were most readily transferred.  Clearly, the size of the initial source of trace 

material will be important in determining the extent of a transfer. 

When direct contacts are made, the nature of this contact will be influential.  As part 

of a comprehensive experimental review of fibre transference and the subsequent 

persistence of fibres during wear, Pounds and Smalldon (1975a) reported that 

considerably more fibres tended to be transferred when greater pressure was applied 

during the contacts.  Meanwhile, fewer and fewer fibres were found to transfer when 

successive contacts were made with the same area of a garment.  Deedrick (2001) and 

Roux et al (1999) report that increased duration of the contact tends to encourage 

higher rates of transfer.   Notably, the latter study also concluded that movement of 

the shoe sole against a carpet creates electrostatic forces which attract extra fibres to 

the shoes.  

Keeping with the study of the transfer of glass fragments as an illustrative example, if 

considering an event in which no direct contact has taken place then the distance of 

the recipient surface from the source of the glass fragments will be influential.  It has 

been established that the number of fragments deposited on, and recoverable from, a 

surface will be fewer with increased from the source (Pounds and Smalldon 1978, Luce 

et al 1991, Brewster et al 1985, Allen and Scranage 1998, Brozek-Mucha 2009, Hicks et 

al 1996).  Hicks et al (1996) also demonstrate that further striking of a glass pane when 

breaking it will result in greater levels of transfer. 

In sum, the principal factors that have a bearing on the extent of initial transfer of 

trace materials in general include: 

 The nature, properties and condition of the donor and recipient surfaces 

 The physical and surface properties of the trace particulates being transferred 

 The force, duration and conditions of contact if a direct contact is being 

considered 

 The distance/angle in relation to the source of material if an indirect contact is 

being considered 

The transfer and deposition of trace material is a complex process and this will be 

emphasised with regard to GSR in section 3.4.4a.  Case-specific variables will often be 

influential and as such, the issues associated with applying results from experimental 
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studies to real cases will be addressed in section 4.2.5 and chapters six and eight with 

regard to this piece of research.   

2.3.2 Persistence and decay 

During the period between transfer and collection, trace material will be lost from the 

site of deposition.  This loss, or decay, will reduce the size of the population of trace 

material which can subsequently be recovered.  Incorporating the persistence of 

material is crucial when addressing activity level propositions and when, accordingly, 

timeframes and the order of events are being considered in the reconstruction of a 

crime.  The persistence of different materials and the factors that contribute to this 

have, therefore, been afforded much experimental consideration.  The work of Pounds 

and Smalldon (1975a; 1975b; 1975c) on the transfer and persistence of fibres provides 

a basis for understanding persistence and decay.  In short, previously transferred 

material will usually be lost from a surface over time according to a pattern of 

exponential decrease; initial rapid loss of material followed by subsequent, more 

conservative loss (figure 2.3).  As a result of this two-stage mechanism of decay, 

studies have demonstrated that varying percentages of the originally transferred 

material may remain present for many hours following an initial transfer.  Comparable 

results have been obtained in studies of glass (Curran et al 2000, Allen and Scranage 

1998, Hicks et al 1996, Brewster et al 1985), paint (Pearson et al 1971), foam 

fragments (Wiggins et al 2002), fibres (Akulova et al 2002 and Ashcroft et al 1988), 

chemical marker powder (Howarth et al 2009), scalp-hair (Dachs et al 2003) and trace 

DNA (Raymond et al 2009) (Bull et al 2006).   

Bull et al (2006) explain, with regard to geoforensic particulates, that the two-stage 

pattern of decrease owes its existence the weakly-bound particulates, that are shed 

initially, and those which are more strongly-bound into the weave of the garment and 

which subsequently persist.  The relative strength of these bindings and the 

persistence of material will also be contingent on the conditions of initial transfer 

(Morgan and Bull 2007a).  Indeed, Robertson et al (1982) found that the persistence of 

fibres was strengthened with increased pressure during the initial transfer.  In all of the 

experiments, trace particulates (all of less than 100µm diameter) were found to 

conform to the general shape of decay curve already mentioned, yet were also found 
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Figure 2.3 A ‘classic’ two-stage decay graph, taken from Pounds and Smalldon 

(1975b) demonstrating the persistence of fibres on a woollen jacket 

 

to exhibit a tendency to persist for long periods of time.  Indeed, particulates in some 

instances were found to persist for several days (647 hours after the initial contact in 

the case of the pollen grains) (Bull et al 2006), thus extending the temporal frame of 

reference and the window for evidence retrieval. 

Persistence and decay are the principal determinants of the changes that evidence 

undergo over time (Margot 2000).  Studies have revealed that many more factors 

influence the persistence of trace material on a surface than simply the passage of 

time.  It is these influences that serve to increase or decrease the rate of material loss.  

It is important to appreciate that transfer and persistence are inextricably linked; that 

interpreting how much material has decayed will involve estimating how much 

material was initially transferred.  Meanwhile, a number of the factors that determine 

the extent of initial transfer also have a bearing on the rate of decay.  These include 

the retentive properties of the recipient surface and the binding properties of the trace 

particulates themselves. 

 

 

 

 

 

 

 

 

Morgan and Bull (2007a) explored the impact of the characteristics of the recipient 

medium on persistence of trace evidence and its rate of decay.  The effects of different 

host materials on the persistence of some geoforensic trace materials (in this case, 

pollen grains, fluorescent powder and lighter flint particles) were experimentally 

investigated.  The authors reported that surface type, rather than the particulate type, 
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represented the controlling factor with regard to persistence.  In an investigation of 

the persistence of fibres during wear, Pounds and Smalldon (1975b) reported no 

discernible difference in the rate of shedding of wool versus acrylic fibres across 

different garments (rendering fibre type of little significance).  They concluded, 

however, that fibres were found to decay at a higher rate from the fine-textured sports 

jacket and smooth cotton laboratory coat used in the experiment.  Smooth recipient 

surfaces, therefore, appear to encourage the rapid loss of fibres and retain them 

poorly.  In addition, Dachs et al (2003) reported similar findings with regard to the 

persistence of scalp hair with rough, woollen, open-weave materials cited as being 

particularly conducive to retaining material for long periods and polyester surfaces 

prompting the most rapid shedding of hairs.   The persistence of fibres on head hair, 

meanwhile, was shown to be greater than on clothing and was strongly influenced by 

hair style (Salter and Cook 1996). 

In a further study of fibre persistence, Akulova et al (2002) demonstrate that recipient 

surface structure and texture, as well as the location of the material on the garment 

itself, have a greater bearing on persistence than the type of fibre that is transferred.  

Relief features such as studs or creases (see also Morgan et al 2010) encouraged 

retention, while fibres that were transferred to movable areas of the garment (i.e. 

sleeves) were shed more readily.  The nature of post-transfer movement and activity 

also influence the longevity of material, particularly if skin or garments are the 

recipient surfaces.  Sitting or immobility will encourage the retention of material, 

whereas walking or running accelerates the rate of decay of (Deedrick 2001, Salter and 

Cook 1996).  Robertson et al (1982) confirmed that wearing a recipient garment will 

lessen the persistence of fibres (similar findings are reported by Raymond et al 2009 

for DNA).  Akulova et al (2002) found that transferred fibres are lost rapidly from 

garments when the participant uses public transport, as a result of the movements 

involved and the multiple opportunities for casual contacts.   

Palmer and Polwarth (2011) found that fibres can persist on the skin of a deposited 

body for up to 12 days, with most being lost in the first two.  Meanwhile, when 

transferred to the skin of a living, moving subject, Palmer and Burch (2009) observed a 

similar exponential pattern of decrease but no fibres were detectable after 24 hours.  

Notably, in the former study, strong winds and rain served to increase the rate of fibre 



130 

 

loss, thus underlining the salience of environmental influences.  In a study of the 

persistence of Cannabis sativa DNA, Wilkinson and Linacre (2000) report that hand 

washing removed traces left after handling cannabis leaf or resin, and while rubbing 

hands on the trousers or placing hands in pockets encouraged dissociation, C. sativa 

DNA could still be detected.  Ashcroft et al (1988) found that fibres could persist in 

head hair for up to six days, but that this was reduced to three days if the hair was 

washed.  Morgan et al (2013a), meanwhile, found that large traces of pollen can be 

found in a room 20 days after cut flowers had been removed and that human 

disturbance accelerates its decay.  Finally, Twibell et al (1984) considered the 

persistence of traces of military explosives on hands and found that while hand-

washing can be expected to remove around 90% material, traces could be detected 

after 24 hours, but not after 48 hours and 12 hand washes.  Successive hand washes 

were found to be progressively less efficient in the removal of the material. 

In terms of the characteristics of the trace material itself, Pounds and Smalldon 

(1975b), Palmer and Burch (2009) and Robertson et al (1982) all note that smaller 

fibres (<2.5mm in the latter study) will persist for long periods of time and that 

concurrently, larger fibres tend to be shed first.  However, during these experiments, 

the time elapsed since the contact was made appeared to govern the decay of fibres to 

a greater extent than the type and length of the fibres themselves.  The persistence of 

glass fragments was studied by Hicks et al (1996) and it was found that while the 

majority of glass fragments transferred to a garment were shed in the first half an 

hour, some of the smallest fragments were detectable after eight hours: large 

fragments, however, had been lost by this time.  Importantly, in some cases, a trace 

material of interest may be transferred as part of a conglomeration of material and in 

such instances its persistence will be related to that of the carrier or vector.  Walsh and 

Horrocks (2008) provide the example of palynomorphs contained within soil, other 

examples include hair in body fluid, or pollen on hair/fibres.  

The rate of decay of material from garments might also be complicated by 

reincorporation and redistribution.  In the Bull et al (2006) study, it was noted that at 

points on the decay curve, the quantity of trace material appeared to increase.  The 

authors propose that such anomalies may be explained by decayed material that may 

have become reincorporated within clothing rather than being lost.  The possibility of 
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this phenomenon was subsequently confirmed by Morgan et al (2010), who found that 

trace particulates may become reincorporated at low levels of a garment, particularly 

in the ‘lap’ area and around relief or design features of a garment such as stitching.  

Rather than being lost to the environment, these particulates become reincorporated 

and, therefore, redistributed on the garments.  Redistribution is also posited as an 

explanation for some trends in the persistence of a chemical marker powder by 

Howarth et al (2009).  It is argued that this should be taken into account when 

interpreting tapings as it could be assumed that recovered particulates indicate a 

recent transfer, when in fact material has already decayed and has simply been 

redistributed.  It is this kind of interpretative nuance that is revealed through 

experimental studies and which will be considered in the context of findings regarding 

the transfer of GSR in section 6.4.  

The experimental work cited thus far can assist in the process of trace evidence 

interpretation, particularly in assessing the likelihood of observing a quantity of 

material given the truth of a certain activity level proposition.  Additionally, 

understanding the persistence can also guide forensic protocol, particularly in guiding 

the collection of trace material.  This underscores the value of experimental research 

for forensic practice.  Kamodyová et al (2013), for example, determined that male DNA 

can be extracted from female saliva after enforced kissing and thus highlight the utility 

of sampling saliva.  However, these valuable profiles could be obtained a maximum of 

60 minutes after the contact, demonstrating that collection should take place as soon 

as possible and suggesting that the utility of sampling is likely to be limited if the 

incident took place several hours previously.  Similarly, Matte et al (2012) report that 

foreign DNA can persist under fingernails but again, stress that the material does not 

persist for long and rapid collection is necessitated.  Furthermore, male salivary DNA 

transferred to skin has been shown to yield a full DNA profile after 96 hours, 

highlighting the window for available evidence (Kenna et al 2011).  The need for 

expeditious scene processing is also emphasised by Raymond et al (2009).  Keeping 

with biological traces, Courts et al (2012) highlight the utility of swabbing for DNA 

traces on the inside of a gun barrel for biological backspatter that has persisted in the 

barrel following a shooting into tissue.  Successful collection of material may 

necessitate the targeting of particular areas in sampling.  Accordingly, Howarth et al 
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(2009), in a study of the persistence of chemical marker powder, report that what little 

powder remains on hands two hours after the transfer may be recovered from the 

webbing between fingers, the beds of the fingernails and in the creases of the hands.  

In some cases, the strong bindings between trace and surface that permit persistence 

may actually inhibit the collection of material (Pounds and Smalldon1975c).  

Interestingly, some studies have demonstrated the utility of searching for trace 

material even after the influence of extreme conditions.  For example, Morgan et al 

(2013b) demonstrate that different forms of palynological evidence can persist and are 

readily identifiable after exposure to extreme heat over long periods of time.  Pollen 

grains can also remain adhered to clothing during laundering (Bull et al 2006).  The 

ramifications for GSR collection which are posed by experimental findings of this thesis 

are presented in section 6.3.1.  

The property of persistence, while providing the opportunity to recover evidential 

material, may also be regarded as something of a problematic issue.    As Bull et al 

(2006, see also Morgan and Bull 2007b) point out, when material persists for a long 

period, material recovered following a forensic event may theoretically represent a 

multi-provenance amalgamation of particulates comprising material that was 

transferred before, during, or after the event.  The unpicking of this ‘layering’ is 

practically and theoretically challenging and poses a number of implications for 

forensic protocol (Morgan and Bull 2006).  For example, techniques that require the 

homogenisation of layers are rendered inappropriate (ibid.).  Meanwhile, visual 

analysis methods that discriminate between layers are recommended when examining 

components of soil on footwear (Morgan et al 2009a).  The case of soil on footwear, 

therefore, effectively demonstrates the complexities of persistence and the resultant 

implications for forensic protocol (Morgan and Bull 2007b).   

The persistence of trace materials can be a ‘thorny’ issue (Bull et al 2006), one that is 

contingent on many variables and one that can be challenging to interpret.  However, 

an understanding of the way in which a certain material will be expected to decay from 

a host surface will assist in reconstructing the order of events (Margot 2000).  

However, the uniqueness of each case and that uniform application of experimentally 

derived decay curves to investigative contexts may yield errors (Dachs et al (2003).  

Caution is urged when making interpretations, especially as anomalies are reported 
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within experimental studies (Hicks et al 1996).  A greater understanding of the 

variables that have a bearing on the persistence of different materials under different 

conditions will assist in informing interpretation23.  

Several factors and influences pertinent to the persistence of different materials have 

been identified: 

 The time elapsed since the transfer took place 

 The nature, properties and condition of the recipient surface 

 The properties of the trace material that was transferred 

 The conditions of initial transfer and resultant bindings between particulates 

and the recipient surface 

 The nature and level of post-transfer activity and disturbance 

 Environmental conditions 

 The extent of reincorporation and redistribution 

This list is not exhaustive and arguably, any factor which impinges on the state of the 

trace material (counter-forensic ‘clean up’ by the perpetrator, for example) is 

necessarily one that affects persistence and decay.  Furthermore, If material persists 

on a recipient surface, opportunities exist for further transfers of material.  These 

further transfers will involve the movement of particulates to a new surface and can 

represent a further disruption of the ‘normal’ pattern of decay from a recipient 

surface.  It is to a consideration of these transfers that this review now turns.  

2.3.3 Multiple transfers of trace evidence 

‘Multiple transfers’, the subject of this thesis, are introduced in this section.  The 

possibility exists for evidence to be transferred after it has been primarily transferred, 

possibly multiple times.  This section defines these transfer mechanisms and surveys 

the (inconsiderable) body of literature devoted to their investigation.   

The meaning of the term ‘secondary transfer’ is seldom elucidated within a forensic 

context.  As a starting point in this discussion, the definition used by Grieve et al (1989) 

will be employed.  Primarily concerned with fibres, but applicable to other forms of 

                                                           
23

 For a discussion regarding palynological evidence, see Walsh and Horrocks (2008) 
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trace evidence, Grieve et al (1989, p.267) label a ‘secondary transfer’ as the ‘first 

indirect transfer of the donor... [trace material] after the primary transfer, taking place 

via an intermediary object’.  Thus, in figure 2.4, a secondary transfer has taken place 

when surface C acquires material from surface B. The transfer of material between A 

and B represents the primary transfer.  Crucially, the original source (A) is not directly 

involved in the secondary transfer: 

 

 

 

 

 

Notably, however, in the aforementioned definition, the authors limit the role of the 

intermediary (‘B’ in the above diagram) to being played by an ‘object’.  The possibility 

of person-to-person-to-person transfer, whereby an individual plays the role of the 

intermediary, rather than an object, has been comprehensively addressed by French et 

al (2012), among others.  Hence, the original definition may be updated by the use of 

‘surface’ as opposed to ‘object’, accounting for the fact that a transfer can be 

facilitated by a person or an inert object (a piece of clothing, a contaminated surface 

such as a table, or a door handle, for instance).  An arrangement of two or more 

surfaces in a sequence of transfers, as depicted in figure 2.4, can be referred to as a 

‘transfer chain’. 

Grieve et al (1989, p.267) account for the possibility of subsequent transfers along a 

transfer chain: ‘tertiary and higher transfer[s]’ are ‘further indirect transfers occurring 

from consecutive intermediary items’.  Again, ‘surfaces’ is preferable to ‘items’ given 

the possibility of further persons playing the role of intermediaries in longer transfer 

chains.  A multi-step transfer chain involving five surfaces and thus, primary, 

secondary, tertiary and quaternary transfers is depicted in figure 2.5:    

 

 

 

A

A 

B C 

A B C D E 

Figure 2.4 A primary transfer (solid line) and a secondary transfer (dotted line) 

of trace material 
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In theory, ‘Transfer chains’ need not be linear.  Rather, providing sufficient material is 

available for transfer at the donor surface as contacts are made, multiple surfaces may 

acquire material from a single intermediary.  Thus, a ‘transfer chain might appear as 

shown in figure 2.6: 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 illustrates two secondary transfers (to ‘C’ and ‘D’) resulting from their 

mutual contact with intermediary surface ‘B’.  Conceivably, given favourable 

conditions for subsequent transfer material of, a network of contacts and transfers 

could result.  In this network, multiple surfaces could become seeded with trace 

material via (in)direct contacts with an initial source.  Demonstrating this possibility 

was one of the objectives of a study by French et al (2012).  The authors demonstrated 

that from a single introductory source, trace particulates may be transferred among 

surfaces (both people and inert objects) to the full extent of a contact network and 

that this is largely a consequence of indirect transfer mechanisms.   

A ‘direct’ transfer is one that involves a contact between two surfaces and results in a 

transfer, without the presence of an intermediary.  ‘Indirect’ transfers, on the other 

hand, describe a transfer between two surfaces, via an intermediary.  It is important to 

C 

A 

C 

B 

D 

Figure 2.5 A primary transfer (solid line) and secondary, tertiary and quaternary 

transfers (dotted lines) of trace material 

Figure 2.6 A primary transfer (solid line) and two secondary transfers (dotted 

lines) of trace material 
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note that if A transfers to B and then B transfers to C, then C has acquired material 

from A via an indirect transfer, but the transfers between A and B, and between B and 

C, are direct.  In addition, ‘contacts’ are distinct from transfers.  Contacts between 

surfaces may or may not result in transfer, while transfer does not necessarily require 

physical contact (consider, for example, wind dispersed pollen).  The possibility of 

repeat contacts and two-way transfers of material exist within transfer chains and 

networks.  If an initial contact was made between a ‘contaminated’ and an 

‘uncontaminated’ surface that rendered both surfaces ‘contaminated’, any repeat 

contact between the two surfaces would result in a two-way transfer.  Rather than 

effecting newly ‘contaminated’ surfaces, this will result in the redistribution of material 

between surfaces.   

The investigative significance of the tendency for trace evidence to be transferred in 

this way lies in the possibility of establishing a link between an offender and a crime 

event, albeit via intermediaries (French et al 2012, Lee and Ladd 2001).  However, 

multiple transfers may also pose an array of more problematic consequences.  French 

et al (2012, p.33) identify the following possibilities: 

 Forensically relevant  trace material may be indirectly transferred to 

unconnected individuals 

 Material pertaining to an innocent individual could be deposited at the crime 

scene via an offender 

 Material may be ‘lost’ from the original source as a result of further transfer  

 Associative evidence could be secondarily transferred to an offender and 

provide an incriminating link 

 Secondary transfers could compromise evidence during collection and analysis 

 

When samples of trace evidence are interpreted, it is necessary to recognise the 

possibility of multiple transfer.  Conceivably, investigative errors or even miscarriages 

of justice could result if such mechanisms are not acknowledged (ibid.).  For example, 

consider an elementary scenario in which: 

Offender ‘A’ acquired a quantity ‘X’ of material specific to the scene of a crime ‘Y’ which 

‘A’ committed.  Having avoided apprehension, ‘A’ subsequently made contact with 
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individual ‘B’ – himself unconnected to the criminal event – and transferred a quantity 

‘Z’ of the incriminating material to ‘B’.  Seen by a witness to be near the crime scene at 

the alleged time of the offence , ‘B’ was later questioned and quantity ‘Z’ of material 

was recovered and used to associate ‘B’ with scene ‘Y’ at the time of the offence and 

became the subject of the investigation leaving ‘A’ at large.   

Further scenarios, specific to GSR and the findings of this study will be developed for 

consideration in chapters six and seven.  The interpretation of evidence in these 

contexts will be considered accordingly.  Research concerned with secondary (and 

further) transfer is particularly timely in light of analytical advances which permit the 

detection of trace amounts of material, and which have elevated the possibility that 

secondarily transferred material may be encountered in casework.  A number of 

notable cases have deliberated the possibility of secondary (and further) transfers of 

trace evidence, as well as the possibility of contamination (see, for example R. v. Reed 

and Reed; R. v. Garmson 2009, Linacre 2013). 

The following sections survey the modest body of work that addresses multiple 

transfer mechanisms and the implications for trace evidence interpretation and 

forensic protocol.  Most of the research cited presents experimentally derived results, 

and therefore, echoes the approach of this thesis which addresses GSR transfer 

through experimentation.  The following sections discuss studies by evidence type, 

while a discussion of secondary transfer and contamination issues regarding GSR is 

reserved for section 3.5.  It will be argued in chapter seven that Bayesian Networks 

provide a means of reasoning about alternative transfer mechanisms, with particular 

reference to GSR. 

2.3.3a Fibres and scalp hair 

Jackson and Cook (1986) conducted a study of the transfer of fibres to car seats.  

‘Direct’ contacts (i.e. between the source of fibres and the car seat), which facilitated 

primary transfers tended to result in the transfer of large numbers of matching fibres.  

The authors cited secondary transfer mechanisms as causal mechanisms when few 

fibres were recovered.  Grieve et al (1989) attempted to simulate the secondary 

transfer of fibres in the context of a homicide investigation.  They report, again, that 

while fibres readily underwent secondary transfer, they did so in fairly small quantities.  
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The small quantities involved, it is argued, render these transfers difficult to interpret, 

especially as the quantity of material that was primarily transferred is unknown.  

Studies should, therefore, attempt to establish the quantities involved at different 

stages in a transfer chain.  Factors that govern rates of primary transfer (including the 

nature of donor and recipient surfaces and those mentioned in 2.3.1) were found to be 

similarly significant in influencing the quantities of fibres that were involved in 

secondary transfers (ibid.).  Finally, the authors found that, like any other transfer, 

material is not transferred in its entirety during a secondary transfer event; fibres 

remained adhered to the intermediate surface following the transfer.  

For Lowrie and Jackson (1994), the low quantities involved in the secondary transfer of 

fibres mean that it is unlikely a forensic scientist will misinterpret secondarily 

transferred fibres as evidence of a direct contact and primary transfer.  Thus, they 

conclude, minimal significance can be attributed to secondarily transferred quantities 

when interpreting fibre evidence.  However, crucially, this conclusion fails to take 

account of the lag between deposition and collection and that a small quantity of 

recently secondarily transferred fibres may, in theory, resemble a primary transfer that 

has been subject to decay.  In addition,   it is assumed that samples from primary and 

secondary transfers will be available for comparison purposes in a casework situation, 

and this is not always the case.  The probative value of trace samples will be context 

dependent and only fully realised through reference to research which informs their 

interpretation.  Notwithstanding this, it is significant that Lowrie and Jackson (1994) 

observed the persistence of secondarily transferred fibres on recipient surfaces.  The 

authors reported, however, that these fibres remained adhered for less than one hour 

after transfer, thus immediate collection, where practicably possible, is recommended.  

Meanwhile, the car seats in the study were termed ‘reservoirs’ (ibid.81) of fibres from 

multiple provenances, which represent a source of subsequent secondary transfer. 

Palmer and Banks (2005) investigated the transfer of fibres from masks to head hair 

and subsequently, to pillow cases.  They observed secondary transfers of fibres to 

pillowcases via the head of the wearer up to two weeks after the mask had been worn, 

with the rate of secondary transfer diminishing with increased time since wear.  In 

accordance with previous work on fibre transfer, the amount of secondary transfer 

was also influenced by fibre type and hair type. 
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Figure 2.7 The transfer of hairs along a transfer chain reported by Gaudette and 

Tessarolo (1987)  

 

With regard to the transfer of human scalp-hair, Gaudette and Tessarolo (1987) found 

that in casework situations, many mechanisms and possibilities for indirect transfers 

exist, compared to relatively few opportunities for direct transfer.  The amount and 

extent of secondary hair transfer were found to be extremely variable and contingent 

upon a number of factors including the nature of the garments worn, as well as the 

number of personal contacts an individual has and the number of times an individual 

made contact with commonly handled objects.  Importantly, via these surfaces, 

Gaudette and Tessarolo (1987, p.1250) identified ‘chains of secondary transfer’ formed 

when material was transferred from the clothing of one individual to further 

individuals, via communal seating.   While the authors report that it was unusual for 

more than one intermediary to be involved in a transfer chain, a chain consisting of 

five surfaces was observed in one of the experiments (figure 2.7): 

  

 

 

Simons (1986) observed secondary fibre transfer from one item of clothing to another 

during the laundering of items.  Secondary transfers are not restricted to the period 

prior to evidence collection.  Rather, transfers may continue to take place in the 

forensic laboratory.  These transfers may result in the contamination of samples and 

the compromise of evidence.  Several studies cite the potential for secondary fibre 

transfers to cause loss, redistribution or contamination during evidence packaging 

(Chewning et al 2008), during the processing of a crime scene (Deedrick 2001) and 

when handling samples in the laboratory (Wiggins and Houck 2001).  Roux et al (2001), 

meanwhile, investigated the secondary transfer of fibres during an examination in a 

search room.  Fibre populations existed in and beyond the room, with fewer fibres 

being transferred to areas remote from the site of the examination.  The transfer 

mechanisms that were identified mean that search rooms are seldom ‘clean’ and the 

authors suggest precautions and protocol to control the level of contamination. 

Taupin (1996) provides an account of the interpretation of secondarily transferred 

fibres and hair in an abduction case.  Awareness of the potential for secondary transfer 

in this case enabled the identification of a number of complex pathways for transfer.  

A’s clothing Chair C’s clothing Chair B’s clothing 
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Secondary and tertiary transfers of material from the mother of the victim to the 

victim, and then to the accused, served to increase the strength of the association 

between suspect and victim and ultimately, when presented at trial, forced a guilty 

plea from the accused.  For Taupin (1996), this case affirms the probative value of 

secondary transfer evidence and underlines the importance of understanding and 

being able to interpret it.  

2.3.3b DNA 

That DNA can potentially be used to identify an individual renders it an extremely 

powerful forensic tool.  Coupled with advances in DNA technology, the value of DNA in 

a forensic investigation has increased and accordingly, so has the desire and capacity 

to generate a partial profile from ever decreasing quantities of biological material (Port 

et al 2005, Van Oorschot et al 2010).  Increasing the number of polymerase chain 

reaction (PCR) cycles will dramatically increase the sensitivity of analysis so that a 

partial profile may be generated from very small amounts of material which may be 

easily transferred (Lee and Ladd 2001, Van Oorschot et al 2003).  Gill (2002) argues 

that consequently, the interpretation process becomes more complex as issues such as 

contamination and innocent transfer have to be considered.  In addition, it is often 

necessary to deal with samples that are mixtures of partial profiles from different 

sources.  Clearly, the potential for misinterpretation, whereby for example, the DNA of 

an individual could be left at a crime scene which they had never visited, is a 

concerning prospect and an extreme example of the way the secondary transfer issues 

may manifest themselves with regard to DNA evidence.  Alongside a number of 

criminal trials in which the interpretation and possibility of secondary transfer of DNA 

has been an issue (Scott and Skellern 2010, Linacre 2013, R. v. Reed and Reed; R. v.  

Garmson 2009), interest in contamination and transfer issues with regard to DNA has 

grown.  

Studies addressing the need to comprehend the nature and extent of secondary DNA 

transfer are relatively numerous.  Following a series of transfer experiments, Van 

Oorschot and Jones (1997) conclude that handled objects may yield DNA profiles from 

more than one user and that handshakes can result in the transfer and exchange of 

DNA between individuals.  It was also reported that when poly-propylene tubes were 
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passed between individuals, it was possible to generate a profile of the initial handler 

from the hands of the second handler of the tube – providing evidence for the 

secondary transfer of DNA via an inert intermediary surface.  These findings appear to 

counter Wickenheiser (2002) who suggested that secondary transfers are unlikely.  It is 

not disputed, however, that when secondary transfers of DNA do occur, they tend to 

involve small quantities of material.  Daly et al (2012), meanwhile, demonstrate that 

mixed profiles of touch DNA, resulting from secondary transfers, can be yielded from 

various surfaces. 

Ladd et al (1999) concluded that DNA can be recovered from objects such as computer 

keyboards and telephone handsets in low quantities, yet found no evidence for the 

occurrence of secondary transfer and subsequently, question its interpretative impact.  

Lowe et al (2002), meanwhile, establish that it is possible for an individual to deposit 

the DNA of another individual on an inert object. This could be extremely significant if 

one considers that the inert object could be a firearm or knife, for instance.  The 

propensity for transfer was shown to depend on a number of factors including the 

length of the period between contacts and the heterogeneity that exists between 

individuals in terms of their tendency to deposit, or ‘shed’, DNA.  Similarly, Lowe et al 

(2003) note that longer time lags between contacts tend to reduce the likelihood that 

the DNA of an individual is transferred to an object via the hand of another.  

Importantly, the samples taken from the object in this experiment routinely yielded 

mixed profiles; from both the individual who handled the object and the subject who 

did not. 

On the factors that influence the likelihood of primary and secondary DNA transfer, 

Phipps and Petricevic (2007) question the simple distinction between ‘good’ and ‘bad’ 

shedders of DNA (people who are more or less likely to deposit DNA).  They report that 

the occurrence of transfer will be determined by the length of time that has passed 

since the last hand wash and the hand used to make the contact.  Meanwhile, Van 

Oorschot et al (2003) conclude that the propensity for an individual to shed and 

transfer DNA will also be dependent on the number of contacts an individual has 

made, with a greater number of previous contacts serving to diminish the amount of 

transfer that will occur when a subsequent contact is made.  Goray et al (2010) identify 

the moisture content of the biological sample and the porosity of surfaces will govern 
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levels of secondary transfer.  A non-porous intermediary transferring a wet trace to a 

non-porous surface will result in the most efficient transfer and such information 

assists in determining the probability of a secondary transfer given certain conditions.  

Regarding transfer events involving saliva DNA, Warshauer et al (2012) found that 

increased moisture and a smooth primary contact surface will enhance the efficiency 

of the transfer.  They also report large losses in DNA that were observed following the 

third step in the transfer chain and the difficulty in extracting a profile that results.  

Eventual samples were mixtures of multi-provenance DNA.  Mixed partial DNA profiles 

were recovered from shoes by Hillier et al (2005) and secondary transfers were posited 

as an explanation for their presence. 

Rutty (2002) examined the transfer of DNA during manual strangulation events.  

Persistence of the DNA from the victim on the offender for several days was found to 

be encouraged by secondary transfer mechanisms but perhaps more notably, DNA 

originating from a third party was transferred to the neck of the victim.  Clearly, the 

ramifications of this could be severe.  Ansell (2002), meanwhile, demonstrates the 

importance of secondary DNA transfer via an intermediary to the assessment of 

activity level propositions in a rape case.  The DNA of the partner of the complainant 

was recovered from a penile swab taken from the suspect and assisted in establishing 

an association between suspect and victim.  Finally, Goray et al (2012) examined 

multiple transfers of DNA in a mock case scenario.  The results for multi-step transfers 

were variable and were not always well predicted by available transfer rate data.  This 

underscores the inherent variability associated with multi-step transfer events and 

variations that may be attributed to the effects of surface type, the size of the transfer 

area and temperature/humidity.  The authors identify the need for further research in 

this area to generate data on the factors affecting multi-step transfers which can be 

inform the interpretation of evidence.   

Secondary transfers of biological material during the collection and examination 

phases can result in the contamination of samples and give rise to opportunities for 

misinterpretation (Goswami et al 2013).  Work has been carried out to study the risks 

and to recommend precautions and protocol that manage and reduce them.  For 

example, Van Oorschot et al (2005) recommend caution when powdering for 

fingermarks from surfaces that may bear DNA such as brushes that tend to collect, 
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harbour and transfer DNA.  The consequences of secondary transfer in scene 

processing (perhaps between scenes) here are conceivably severe and steps should be 

taken to limit the risk of DNA contamination.  Durdle et al (2009) describe how 

blowflies have the potential to act as secondary transfer vectors of human DNA 

through the consumption and subsequent excretion of human DNA from blood and 

semen.  Sufficient DNA for typing was recovered from minute artefacts underlining on 

one hand, a potentially valuable source of DNA at a crime scene, but on the other, a 

risk of contamination.  Wiegand et al (2011) conclude that there is a risk of 

contamination by police as they come into contact with the sort of weak blood and 

saliva stains that can be analysed using highly sensitive methods.  Small DNA transfers 

were reported but their incidence was relatively low and contingent upon the surfaces 

involved.  Poy and Van Oorschot (2006), meanwhile, report on the contamination that 

can result from secondary transfer and the DNA that can be recovered as a result from 

objects and surfaces in a laboratory.  The authors identified several surfaces bearing 

DNA but the risk was described as relatively low due to the number of steps involved in 

transfer.  Two ‘high’ risk vectors were pinpointed which yielded sufficient material for 

the generation of a partial profile.  DNA was also shown to accumulate on laboratory 

gloves.  Awareness of these risks is crucial for practitioners in a laboratory setting and 

can inform procedures for forensic examination.  This process of ensuring quality 

control in this manner is in line with the recommendations of the 2009 NAS report and 

the logic of improving forensic science.  Lastly, the design of experimental research 

projects involving trace material is also informed by such findings and this will be 

discussed in chapters four and six with regard to safeguarding the validity of the 

findings of this thesis.    

2.3.3c Other trace materials 

Further noteworthy studies of the secondary transfer of trace forensic evidence 

include an investigation into mortuary contamination by Archer and Ranson (2005).  

The authors identify the possibility of insects being brought into the mortuary via 

exhibits.  These insects may establish mortuary populations and contaminate new 

entomology samples.  This secondary transfer mechanism poses a contamination risk 

that, while relatively low, must be guarded against to safeguard the integrity and 

probative value of evidence.  Montani et al (2010), meanwhile, outline a sampling kit 
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for ignitable liquids designed to limit the possibility of cross contamination in the 

processing of arson scenes.  Leintz (2011) explored the risk of investigative personnel 

transferring blood from a floor from which blood had been cleaned.  The cleaning 

process was found to be sufficient to prevent secondary transfer and contamination.   

French et al (2012) carried out an exploratory investigation into the potential for trace 

particulates (mean diameter 15µm) to be transferred multiple times along transfer 

chains and within contact networks.  Four experimental scenarios of increasing 

complexity were set up, involving participants and surfaces that could come into 

contact.  The scenarios were intended to approximate a series of contacts that might 

occur following an initial transfer in the period prior to suspect apprehension, scene 

processing and evidence collection.  Ultra-violet powder was employed as a proxy for 

trace particulate materials (after Bull et al 2006 and Morgan et al 2010), and was 

introduced in the experimental scenarios via the hands of a chosen individual.  During 

the experiments, logs were kept which documented any contacts that were made and 

at various intervals, samples were taken from the hands of individuals and from 

various handled surfaces.  The sample stubs were then analysed and the presence of 

UV powder was quantified using an image rasterisation programme that made use of 

photographs of the stub which were taken under a UV-lit microscope.  This analysis 

enabled the mapping and quantification of trace material transfer, as well as an 

assessment of the occurrence and extent of multiple transfers.  The study borrowed 

theories and concepts from social network theory and contact network analysis when 

observing and analysing the nature and extent of transfers of trace evidence. 

The key findings of the French et al (2012, p.40) study are summarised as follows: 

 Particulates can readily undergo secondary transfer from one individual to 

another, via various intermediaries  

 Transfer chains involving primary, secondary, tertiary and quaternary transfers 

were observed.  Sampling from the subjects revealed a two-stage mechanism 

of decrease  

 Inert objects can act as ‘reservoirs’ of trace material for transfer, echoing the 

findings of Lowrie and Jackson (1994) 
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Explicit consideration of the ramifications of secondary transfer for an investigation 

has often been absent from studies of secondary transfer.  French et al (2012), 

therefore, explored the possible implications of their findings, particularly for the 

process of evidence interpretation.  The findings highlight the potential for 

unconnected individuals to become implicated in the investigation of a crime via trace 

particulate evidence which may have been inadvertently transferred to them.  The 

importance of acknowledging this possibility is recommended when interpreting 

samples, particularly when dealing with small amounts of material.  One of the aims of 

this piece of research was to demonstrate the potential for widespread transfer with a 

view to further, more targeted studies regarding alternative trace evidence types in a 

range of forensic scenarios.  French et al (2012) argue that the full and accurate 

interpretation of transfer evidence can be aided by the use of Bayesian networks.  

Such an approach, it is argued, would enable the handling of multiple variables and 

assist in unlocking the probative potential of trace particulate evidence.   
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Chapter 3 Gunshot residue (GSR) 

3.1 Outline 

Following discussions of trace evidence interpretation, evidence dynamics and multiple 

transfers, this chapter introduces GSR.  The chapter begins by defining GSR and 

outlining the process of its formation, before surveying the methods that have been 

developed to detect it.  An account will be provided of the ways in which GSR can be 

used in a forensic investigation and of the types of interpretative propositions that can 

be addressed when it is recovered.  A comprehensive review of the experimental 

literature concerning the dynamics of GSR behaviour will follow.  A number of reviews 

of the GSR literature and of developments in detecting GSR particles have been carried 

out (see, for example, Romolo and Margot 2001, Singer et al 1996 and Dalby et al 

2010), yet this chapter differs from previous work in that it is written specifically for 

the purposes of this thesis, with a particular emphasis on transfer issues and their 

interpretation.  This review concludes by highlighting the potential for further research 

into multiple transfers and contamination issues, in light of a consideration of the 

investigative and interpretative implications they can potentially pose in casework 

scenarios involving GSR.   

3.2 An introduction to gunshot residue 

The term Gunshot residue (GSR) is interchangeable with the less often employed terms 

firearm discharge residue (FDR) and cartridge discharge residue (CDR).  GSR falls into 

the category of ‘trace physical’ or ‘trace particulate’ forensic evidence.  It is produced 

during the process of firearm discharge and exhibits properties of transfer and 

persistence similar to those described in section 2.3.  GSR evidence is frequently 

utilised in the investigation of firearms offences, especially when a firearm has been 

discharged.  It can provide a basis on which to assess different levels of proposition in 

the interpretation process and can be used to reconstruct a variety of facets of a 

firearms offence. 
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3.2.1 The formation of GSR 

GSR is produced when a gun is fired and comprises solid ‘partially burnt and unburnt 

propellant particles and combustion products from the priming compound’ along with 

compounds from the bullet, cartridge and firearm (Heard 2008, p.241).  The 

composition of GSR particles results from a combination of primer and bullet derived 

compounds that become vaporised due to the high temperature and pressure and 

escape the firearm as part of an expansion plume, after which the materials cool and 

condense to form particles (Nag and Sinha 1992).  These particles are deposited on the 

shooter and surfaces in the vicinity of the discharge.  An understanding of the 

formation process underpins efforts to identify and interpret GSR, and to comprehend 

its transfer and persistence.  Figure 3.1 captures the generation of GSR via a step-by-

step diagram, after various sources.  It will be made evident in the subsequent 

discussion of GSR analysis that the capacity to detect and identify GSR particles stems 

from their distinctive morphology and elemental composition, which result from the 

formation process and the materials involved.   
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Figure 3.1 Sequence of events in the formation of GSR during firearm discharge 

(after Heard 2008, Rosenberg and Dockery 2008, Goode et al 2002, Molina et al 

2007, Nag and Sinha 1992) 

 

 

 

 

 

    

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Morphology, shape and structure 

The size, shape, morphology and texture of GSR particles owe much to the high 

temperature and pressure environment in which they are formed, and to the 

subsequent rapid cooling and condensing of the expansion plume.  The elemental 

contents of the particles are also influential and these will be described in section 
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3.2.3.  Various generic descriptions of the morphology of GSR particles have been 

offered and some variation exists.  This variation is owing to the fact that, in reality, 

there is no “typical” GSR particle in terms of size and shape.  However, there is 

generally a degree of agreement when attempting to provide definitions and 

descriptions that many GSR particles resemble metallic spheres, formed by the cooling 

and rapid solidifying of materials.  Wright and Trimpe (2006) report that participants of 

the FBI Laboratory’s Gunshot Residue Symposium employed terms such as “spheroid”, 

“noncrystalline”, “condensed”, “rounded”, “fused”, “molten” and “irregular” to 

describe the form of GSR particles.  These terms capture the variety of GSR shapes and 

forms, while also reflecting the fact that near-spherical, rounded particles are 

common.  An exterior appearance consistent with cooling and solidifying from a 

molten state is widely reported (Brozek-Mucha 2007, 2009, Wolten and Nesbitt 1980, 

Basu 1982, Lindsay et al 2011a, Brozek-Mucha 2011).  A summary of key findings and 

observations regarding the size, shape and texture of GSR particles is provided in table 

3.1. 

Size/Shape/Texture-
appearance 

Observation Reference 

Size 
The majority of GSR particles 

measure between <1µm and 10µm 

Basu 1982, Nesbitt et al 1976, Brozek-
Mucha 2011, Trimpe 2011, Thornton 
1994, Zeichner 2012, Zeichner 2003, 
Meng and Caddy 1997, Wolten et al 

1977, Lindsay et al 2011a 

Size 
Particles measuring <1µm-1.5µm 

most commonly encountered 
Brozek-Mucha 2009 

Size Mean particle size 2.6µm Halim et al 2010 

Size 
Particles measuring >30µm are 

sometimes encountered 
Andrasko and Maehly 1977 

Size 
Particles measuring >50µm are 

formed by the joining of smaller 
particles 

Basu 1982 

Shape Spheroid particles prevalent 

Basu 1982, Nesbitt et al 1976, Brozek-
Mucha 2011, Trimpe 2011, Thornton 
1994, Zeichner 2012, Zeichner 2003, 
Meng and Caddy 1997, Wolten et al 

1977, Lindsay et al 2011a 

Shape 
Categories of shape proposed: 

regular spheroids, nodular 
spheroids, irregular spheroids 

Basu 1982 

Shape 

Airborne GSR found to consist of 
regular/irregular spheres and 

assemblages of spheres.  Plate and 
branched structures among 

cartridge GSR 

Brozek-Mucha 2007 
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The texture of particles is readily observable using the Backscattered electron function 

on the SEM.  Wolten et al (1979a), for example, describe smooth surfaced particles, 

those with scaly, fuzzy exteriors, and particles that are covered in small spheres.  

External layering and cracking are also often observed, while it is common for GSR 

particles to be adhered to, or have associated with them, other materials from the 

firearm discharge.  In terms of their size, particles may be very small and measure less 

than one micrometre (µm) and can also be relatively large, measuring 20µm, 30 µm, or 

possibly in excess of 100µm.  Frequently, the majority of particles in a population of 

GSR will exhibit a spheroid appearance and measure in the order of a few 

micrometres: between <1µm and 10µm, for example (Basu 1982, Nesbitt et al 1976, 

Brozek-Mucha 2011, Trimpe 2011, Thornton 1994, Zeichner 2012, Zeichner 2003, 

Meng and Caddy 1997, Wolten et al 1977, Lindsay et al 2011a).  Andrasko and Maehly 

(1977) report that most particles encountered in their examination measured between 

one and five micrometres and were chiefly near-spherical, with a few large particles 

(>30µm) amongst the population.  Brozek-Mucha (2009) report that, following test 

firings, particles measuring between <1µm and 1.5µm were most common.  Finally, 

Halim et al (2010) examined the GSR produced by the firing of 9mm ammunition from 

a semi-automatic pistol and report a mean particle size of 2.6µm, with the majority of 

particles of this size exhibiting a spherical shape.  

Classification of GSR particles, particularly via shape and morphology is challenging as 

their heterogeneity serves to resist rigid categorisation.  Notwithstanding this, 

Shape 
Shape can modify on impact with 

target 
Burnett 1989 

Shape 
Shape and morphological features 
vary according to ammunition type 

Meng and Caddy 1997, Brozek-Mucha 
2007, Collins et al 2003 

Shape 
Large, fragmented particles that 
appear as fragments of a bigger 
object recovered from shooter 

Brozek-Mucha 2011 

Texture-appearance 
Holes, cavities, hollows and peeled 

textures 
Basu 1982 

Texture-appearance 
Appearance consistent with cooling 

from a molten states 

Wright and Trimpe 2006, Brozek-
Mucha 2007, 2009, Wolten and 

Nesbitt 1980, Basu 1982, Lindsay et al 
2011a, Brozek-Mucha 2011 

Texture-appearance 
Smooth surfaces, as well as scaly 

exteriors 
Wolten et al 1979a, Basu 1982 

Table 3.1 Summary of findings and observations regarding the size, shape and 

texture-appearance of GSR particles 
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attempts at classification have been made.  For example, in an examination of GSR 

from different sources, Basu (1982, p.77) acknowledged the prevalence of spheroids 

but also accounted for the variance in particle morphologies.  As such, three categories 

of particle morphology were proposed: regular spheroids with surfaces ranging from 

‘smooth’ to ‘knobbly’, nodular spheroids formed by the fusion of large and small 

spheres, and irregular spheroids with ‘large knobs and spikes’ on their surface.  Basu 

(1982) links these morphologies to the formation process, explaining that irregularities 

can be caused by extreme thermal exposure.  Basu (1982) also identified the possibility 

of the coalescence of spheres, which resulted in the formation of large particles 

measuring >50µm.  The large particles observed by Basu (1982, p.72) measured up to 

55µm and had the appearance of ‘peeled oranges’.  Small holes, cavities and large 

hollows were also observed and are routinely reported in GSR analysis (see also 

Brozek-Mucha 2011).  Brozek-Mucha (2011, p.977) recovered particles formed by the 

collision of smaller pieces of material, as well as ‘fragmented solid particles’ that 

consisted of several segments of a larger, ‘broken’ piece of material.  

Brozek-Mucha (2007) sought to compare the size and shape of GSR that is airborne 

and deposited in the vicinity of the firearm discharge, to that which can be recovered 

from the spent cartridge.  This is salient as often in casework, deposited GSR is 

compared to a reference sample from a spent cartridge.  Airborne GSR was found to 

predominantly consist of regular and distorted spheres with sizes ranging from sub-

micrometre to several micrometres, with many measuring around 20µm.  

Occasionally, assemblages of spheres and ‘sponge-like’ or ‘shell-like’ fragments were 

encountered, while irregular particles not conforming to these descriptors were also 

identified (ibid., p.400).  On the other hand, GSR within the cartridge exhibited 

features that were also suggestive of rapid cooling from a molten state, yet 

divergences existed in terms of shapes and sizes.  For example, spherical particles 

tended to be larger and the majority of GSR particles were best described as solid or 

porous ‘plates’ or structures resembling branched webs of material (ibid., p.400).  Akin 

to Basu (1982), morphological variations are attributed to the formation process.  It is 

argued that, while airborne, GSR cools in the air resulting in the formation of spheroid 

particles.  Conversely, GSR recovered from a spent cartridge is formed as material 

collides with the inner surface of the cartridge and cools. 
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Ueyama et al (1980) hypothesise that irregularities in GSR particle morphologies can 

be linked to firing distance.  Burnett (1989), meanwhile, reports that the shape of GSR 

particles can be modified on impact with a target.  This is explained by the fact GSR is 

molten when it collides with the target and as a result, spherical forms are flattened 

and modified on impact.  The type of ammunition used will also have an impact on the 

morphological form of GSR particles (Meng and Caddy 1997).  Indeed, Brozek-Mucha 

(2007, p.401) observe that some ammunition types result in GSR structures which 

appear ‘splashed’, rather like viscous liquid on a hard surface.  Furthermore, Brozek-

Mucha (2007, p.400) notes that ‘elongated’ particles or those resembling ‘sponge-like’ 

structures are produced by ammunition that contains powdered glass in its primer.  

Collins et al (2003) document glass-containing GSR particles produced by rimfire 

ammunition that were found to measure up to 25µm and exhibit a range of 

morphological features. While spheres were observed, surface fracturing was also 

noted and this was hypothesised to have been caused either during the formation 

process or during sampling.  Many of these particles were formed around a glass core. 

 

While the morphology of GSR particles can be distinct and can be used to distinguish 

them from other similar particles with environmental and occupational sources 

(Garofano et al 1999), morphological features do not always provide a sufficient basis 

on which to make a distinction.  Wolten et al (1979b), for instance identified spheroid, 

metallic particles that emanated from environmental sources.  Meanwhile, it has been 

shown (see, for example, Brozek-Mucha 2007) that GSR particles can take many 

shapes and consequently, to depict GSR as consisting exclusively of spherical particles 

is potentially misleading.  The elemental composition of particles must also be 

considered.  

3.2.3 Composition and classification  

Ammunition comprises a projectile, a cartridge case, a propellant and a primer.  GSR 

emanating from a firearm discharge will correspond, elementally, to the composition 

of the primer.  This can be illustrated by observing the presence of lead styphnate, 

barium nitrate and antimony sulphide in many ammunition primers (Molina et al 

2007).  These compounds are responsible for the ‘classic’ composition of GSR - lead, 

antimony and barium in combination (Pb–Sb-Ba).  It is the pursuit of particles with this 
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combination that represents the most diagnostic detection of GSR.  These primer 

contents are however, not exhaustive.  Residues resulting from different primers, such 

as those containing mercury (Hg) will yield elemental combinations such as mercury 

and antimony (Hg-Sb).  Meanwhile, in a recent review, Brozek-Mucha (2011) refers to 

relatively common primers that contain mercury fulminate, potassium chlorate and 

antimony sulphide (after Bydal 1990 and Brozek-Mucha 2009) and which produce 

corresponding GSR deposits.   Comprehensive reviews of the residues emanating from 

the use of different primers are available (see Wallace 2008 for a suitable example).  

Such reviews highlight the evolution of alternative lead-free, non-toxic and heavy 

metal-free primers which have subsequently been accommodated into GSR 

classification systems (see also Martiny et al 2008). 

It is acceptable, particularly within the context of this thesis (given the ammunition 

that was used for the experimental phase and which is introduced in chapter four), to 

consider the detection of a Pb-Sb-Ba (“three-component”) GSR particle as the typical 

benchmark for a positive GSR detection.  Indeed, this combination is the most 

commonly cited combination in the literature, and has been the focus of several 

decades of development with regard to its detection.  In surveys of ammunition, GSR 

particles with this elemental composition are widely reported due to the prevalence of 

certain primers (see, for example, Gökdemir et al 1999).  The specificity of this 

composition to GSR particles has been demonstrated.  Accordingly, in the latest ASTM 

Standard Guide for Gunshot Residue Analysis by Scanning Electron Microscopy/Energy 

Dispersive X-Ray Spectrometry, E1588–10e1, this particle composition is alone in being 

considered to be ‘characteristic’ of GSR.  ‘Characteristic’ compositions are those which 

are most likely to have emanated from a firearm discharge, as opposed to some other 

source: 

 

 Lead, antimony, barium24 [see footnote] 

 

                                                           
24

 The standard accounts for the fact that traces of further elements may be associated with these tri-

component particles.  These include, but are not limited to, one or more of the following:  aluminium, 

silicon, phosphorus, sulphur (trace), chlorine, potassium, calcium, iron (trace), nickel, copper, zinc, 

zirconium, and tin (ASTM E1588-10e1) 
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‘Characteristic’ particles are rarely recovered in great quantities without the presence 

of GSR particles with other compositions.  These particles may contain one or two of 

the elements, lead, antimony and barium, as well as many other elements besides.  

Therefore, a host of other particle compositions are deemed consistent with GSR.  

Particles with these elemental compositions may originate from firearm discharge but 

could also be traced to other, unrelated sources.  ‘Consistent’ compositions include: 

 

 Barium, calcium, silicon (with or without a trace of sulphur) 

 Antimony, barium (with or without a trace of iron or sulphur) 

 Lead, antimony 

 Barium, aluminium (with or without  a trace of sulphur) 

 Lead, barium 

 Lead (only in the presence of particles with compositions mentioned thus far) 

 Antimony (only in the presence of particles with compositions mentioned thus 

far) 

 Barium (with or without a trace of sulphur)25 [see footnote] 

 

Evidently, this category of compositions is somewhat broad and clearly a firearm 

discharge will not represent the only source of particles with some of the compositions 

listed.  Hence, careful interpretation is required, along with contextual information 

when propositions about the source of particles are being addressed.  Particles cannot 

be considered in isolation and the presence of different compositions in the sample 

will also determine the evidential weight of a particular particle.  Studies that have 

attempted to identify and catalogue environmental and occupational sources of similar 

particles are reviewed in section 3.2.4. 

 

The above classifications are those most generally referred to in the literature.  

However, these only account for GSR generated from primers which contain 

compounds of lead, antimony and barium.  The standard also lists elemental 

compositions of GSR that have been found to originate from the use of ammunition 
                                                           
25 Once again, it is acknowledged that particles exhibiting the compositions above may also incorporate 

one or more of the following: aluminium, silicon, phosphorus, sulphur (trace), chlorine, potassium, 

calcium, iron (trace), nickel, copper, zinc, zirconium, and tin (ASTM E1588-10e1) 
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which has a lead-free or non-toxic primer.  Particles with compositions that are 

characteristic of such GSR can contain the following: 

 

 Gadolinium, titanium, zinc  

 Gallium, copper, tin  

 

Other compositions are consistent with GSR originating from lead-free or non-toxic 

primers: 

 

 Titanium, zinc26 [see footnote] 

 Strontium 

 

These compositions and classifications are not exhaustive and a particular primer may 

generate particles that may require additional classification.  Such classifications may 

be generated via case-specific test firings or experimental research, but should be 

effective in distinguishing the GSR from environmentally or occupationally generated 

material of similar composition.   

 

The elemental composition of particles within a population of GSR formed as a result 

of firing a particular type of ammunition will not be homogeneous.  Rather, a 

population will include a mixture of characteristic, consistent and environmental 

particles.  Additionally, analysis of individual particles has shown that the elemental 

composition can vary across different regions of the same particle (Andrasko and 

Maehly 1977).  Matricardi and Kilty (1977) observed particles with a lead exterior 

which encased a bulk of barium, calcium and antimony.  In an examination of GSR from 

0.22 calibre ammunition, Coumbaros et al (2001) linked the distribution of lead and 

barium within particles to the formation process and found that many particles 

exhibited a barium core that was covered by lead. 

 

                                                           
26

 Elements such as aluminium, silicon, calcium, copper, or tin from the jacketing of the ammunition may 

be found in place of zinc 
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Certain exotic materials have also been found to occur within GSR and these 

compositional features can represent an additional discriminatory tool with which to 

make source level inferences.  For example, Collins et al (2003) observed a previously 

undocumented GSR particle type consisting of glass fused with the primer 

components.  These particles were produced by firing 0.22 calibre rimfire ammunition 

in which the primer is sensitised with glass.  The observed particles tended to be large 

and exhibited a core of glass, with a surface coating of lead and barium.  Alternatively, 

spheres of Pb-Ba were fused to the glass.  Rimfire ammunition generally produces GSR 

consisting of lead only or lead and barium which, as described above, can be identified 

as GSR with less certainty.  The authors argue that owing to the environmental rarity of 

these glass-containing particles, the presence of glass in the manner described renders 

these particles highly characteristic of GSR and indeed, of the use of certain types of 

0.22 calibre ammunition.   Meanwhile, chemical taggants, such as lanthanide ions 

(Lucena et al 2013) which are added to some ammunition, can be identified in 

resultant GSR.  These can assist in the determination of GSR presence and in 

distinguishing ammunition types, particularly with regard to identifying GSR from law-

enforcement ammunition (Wright and Trimpe 2006, Niewoehner et al 2005, Zeichner 

2012).  Owing to these compositional nuances, Dalby et al (2010) advocate a case-by-

case approach to identifying GSR. 

3.2.4 GSR-like particles from environmental and occupational 

sources 

Elements routinely encountered in the analysis of GSR can also be traced to many 

other environmental and occupational sources (see, for instance, Havekost et al 1990).  

For example, lead is used in glazing and plumbing, and is recoverable from battery 

terminals and leaded fuels.  Lead compounds, meanwhile, are commonplace in 

ceramics.  Barium compounds are responsible for the green colouring of some 

fireworks, are present in paper, and are used in welding and in the production of face 

make-up powders (Wolten et al 1979b, Thornton 1994).  Finally, antimony is present in 

many alloys and is used to coat fibres, while its compounds are used in the heads of 

safety matches (Heard 2008). 
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As articulated in 2.2.2, the formulation and addressing of source (Level I), as well as 

activity and offence (Level II and III) level propositions involves accounting for the 

background rates of the material being interpreted.  When interpreting the presence 

of Pb-Ba or Sb particles, for example, the scientist will be required to consider 

alternative sources of particles with this composition and the activities and 

environments that could result in the presence of such particles.  Consider the 

following:   

a) The particles were produced by a firearm discharge  

b) The particles were produced by some other source of elementally similar particles 

The assessment of the above pair of propositions requires knowledge of particles that 

may have similar elemental or morphological properties to GSR.  Some estimation of 

the background rate of such materials is required.   

Consider the following: 

a) Mr A fired the gun 

b) Some other person found the gun 

When addressing the pair of propositions above, some information regarding activities 

engaged in by Mr A, which may leave him predisposed to having GSR on his person will 

be required.  Moreover, activities that he has engaged in which may have resulted in 

the presence of particles that have similar properties to GSR and that could result in a 

false positive GSR identification will also need to be considered.    

Thus, interpreting the source of GSR-like particles requires an appreciation of sources 

of similar particles.  The environmental occurrence of compositions detected in GSR 

determines whether they can be classified as ‘characteristic’, ‘consistent’ or 

‘environmental’.  Studies addressing this important issue are numerous.  A summary of 

the findings of a number of relevant studies is presented in table 3.2. 
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Table 3.2 Summary of findings and observations regarding environmental and 

occupational sources of GSR-like particles 

Study 
Environmental/occupational 

source 
Observation 

Garofano et al 1999 

Various occupational sources 
including plumbing, welding, 

automobile work and fireworks 
handling 

Generally low false-positive risk.  Ba-
Sb, Pb-Ba and Pb-Sb particles from 

vehicle sources  

Wolten et al 1979b 
Plumbers, machinists and 

technicians 

Some spheroidal lead particles 
detected. Pb-Sb and Pb-Ba particles 

from lead-acid battery plants and leas 
smelting operations 

Garofano et al 1999 
Cartridge-operated industrial 

tools  
Ba, Pb, Sb particles detected 

measuring 5-55µm 

Gerard et al 2011a 
Cartridge-operated/powder-

actuated tools 
Pb-Ba, Pb and Ba particles deposited 

Wolten et al 1979b Cartridge-operated tools 
Particle elementally consistent with 

GSR in some cases 

Wolten et al 1979b Cap guns and blank cartridges No GSR-like particles observed 

Garofano et al 1999 Fireworks 
Irregular Sb, Ba, Pb-Ba, Pb-Sb particles 

measuring 10-20µm detected 

Grima et al 2012 Fireworks 
Small proportion of Pb, Sb, Ba, Sr, Sb-

Ba, Ba-Al particles detected 

Mosher et al 1998 Fireworks Pb, Sb, Ba particles 

Torre et al 2002 Brake linings 
Pb-Sb-Ba and Pb, Sb, Ba containing 

particles detected.  Many contained 
elements incongruous with GSR 

Giacalone 2000 and 
Martiny et al 2005 

Brake pads 
GSR-like particles detected.  Many 

found to have irregular morphologies 
and elements incongruous with GSR  

 

 

Garofano et al (1999) surveyed the hands of various individuals engaged in a range of 

occupations (plumbing, electrical-work, printing, welding and painting, etc.), as well as 

participants who had handled various parts of automobiles and others who had used 

industrial tools or who had handled fireworks.  The authors found that, generally, 

occupational sources did not present a risk of false-positive GSR detection and 

accordingly, samples tested negative for the presence of GSR-like particles using SEM-

EDX, despite the nature of the materials involved.  This finding echoes those of Wolten 

et al (1979b) who, in a similar survey of plumbers, machinists and technicians found 

little in the way of GSR-like particles other than some lead and spheroidal particles that 

could be discriminated by various means.  However, Garofano et al (1999) found that 

mechanics, vehicle electricians and tyre-fitters were exposed to Ba-Sb, Pb-Ba and Pb-

Sb particles, which proved difficult to distinguish from GSR.  The authors comment on 

the irregular morphologies of these particles that with careful evaluation, in most 
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cases, should enable discrimination from GSR.  However, Ba-Sb particles in the 

presence of other elements were recovered that were extremely hard to distinguish 

from GSR particles with more irregular morphologies.  Brake hubs and batteries 

yielded Pb-Sb and Pb-Ba particles, while the presence of particles compatible with GSR 

in vehicle interiors was found to be negligible.  Wolten et al (1979b) detected 

spheroidal Pb-Sb and Pb-Ba particles with diameters of 2µm, 3µm and some >5µm 

from individuals in lead-acid battery plants and it was only the presence of other 

particles that enabled discrimination from GSR.  Wolten et al (1979b) took samples 

from employees at a lead smelting operation.  Pb and Pb-Sb particles were 

subsequently detected, although the authors noted the high proportion of particles 

with irregular morphologies or divergent compositions that were observed on the 

samples.  It is noted that in cases in which only a few particles exist on a sample, the 

potential to use the particle population in this discriminative fashion will be more 

limited and interpretation problems will be exacerbated.   

Garofano et al (1999) determined that cartridge-operated industrial tools (nail 

staplers) can generate particles that can conceivably be mistaken for GSR.  The authors 

explain this with reference to the antimony and lead present in the primers used in 

these cartridges.  These particles measure between 5µm and 55µm, can be irregularly 

or spherically shaped, and can exhibit ‘cratered or nodular’ appearances (ibid.11). 

These results regarding industrial tool residues followed those previously presented by 

Wallace and McQuillan (1984).  In the study, residues from cartridge-operated tools 

used in building and construction were compared to those from firearms.  The paucity 

of Pb-only particles from cartridge tools was highlighted as a distinguishing feature and 

this underscores the importance of examining the entire particle population.  Crucially, 

interpretative issues may be exacerbated when only a few particles are recovered.  

The authors also point to the importance of what Cook, Evett and others (see section 

2.2.2) term the ‘framework of circumstances’ in the interpretation process.  For 

example, knowledge about the occupation of a suspect could be valuable; if it may 

involve exposure to cartridge tools, then an indication of the time since handling the 

tool would inform the assessment of the likely provenance of the material.  Finally, the 

authors highlight the importance of particle analysis methods in distinguishing the 

elemental contributions of relevant particles.  These are discussed in 3.3.2.   
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Gerard et al (2011a) examined residues from cartridge-operated/powder-actuated 

tools and their relative similarities to GSR.  The use of such tools by subjects resulted in 

the deposition of Pb-Ba, Pb and Ba particles, yet no Pb-Ba-Sb particles.  However, 

rimfire cartridges which were fired from a firearm and which were used for 

comparison also did not yield and Pb-Ba-Sb particles.  Thus, because the residues from 

this ammunition and from the tools were not characteristic of GSR, a basis for 

discriminating between the two types of residues could not be identified.  Wolten et al 

(1979b) submitted samples taken from users of cartridge-operated tools for blind-

testing by GSR examiners.  While some particles were identified that were consistent 

with GSR when examined in isolation, the wider context of particles rendered the 

sample inconsistent with GSR.  In other cases, exotic elements not found in GSR were 

identified and this, or an absence of spherical particles, was used to distinguish the 

material on the sample from GSR.  While inconsistent particles can be used to 

discriminate a sample, the authors note that if a sample contained both types of 

residue, a false-negative could result from taking this approach.  Wolten et al (1979b) 

also examined residue from children’s cap guns and from blank cartridges, with neither 

producing any particles approximating GSR.   

Garofano et al (1999) sampled subjects who had handled and set off fireworks.  These 

samples yielded Sb, Ba, Pb-Ba and Pb-Sb particles that were irregularly shaped and 

measured between 10µm and 20µm.  When these particles occur in composite 

configurations, their appearance renders them readily distinguishable from GSR.  

Grima et al (2012) carried out an investigation into the propensity of fireworks to 

produce GSR-like particles that are subsequently deposited at a display site and on 

spectators.  Taking the entire firework particle population into account, discrimination 

of particles from GSR was possible but some particles were recovered that, if taken in 

isolation, could give rise to a false-positive GSR detection.  A relatively small proportion 

of the particles recovered contained Pb, Sb, Ba or Sr, the latter consistent with GSR 

from lead-free ammunition.  The presence of magnesium and sodium in some of these 

restricted the possibility of a false-positive. Around 0.5% of recovered particles were 

termed ‘GSR-similar’ (ibid.51) on the basis of their elemental composition, amounting 

to nine Sb-Ba and three Ba-Al features among well over 2,000 particles.  Some of these 

were recovered from spectators who had no direct contact with the fireworks 
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themselves.  A situation in which one or two of these particles were deposited in 

isolation or in a case in which it was not possible to compare the sample to a reference 

population from a firearm discharge, these particles could represent a source of error.  

These particles were also found to persist for several hours, akin to GSR.  Mosher et al 

(1998) also recovered particles containing lead, antimony and barium from fireworks, 

thus underlining them as a potential source of GSR-like particles. 

Torre et al (2002) surveyed brake linings and their products for the presence of GSR-

like particles.  The elemental constituents of brake linings and the high temperatures 

they are exposed to means that residues are produced in conditions which are 

analogous to those observed during the formation of GSR.  Elemental profiles echoing 

those obtained from GSR were generated when the samples were analysed using SEM-

EDX.  Particles containing Sb, Ba and Pb in combination were found, as well as many 

containing Pb, Sb and Ba in various combinations and forms.  However, high iron 

content and the presence of exotic elements (such as Mg) were sufficient to 

discriminate most of these particles.  The authors suggest that when composition and 

particle size are compatible with GSR, the shape of the particle can be used to 

discriminate.  GSR, it is argued, consists of spherical, smooth, globular, nodular or 

cratered particles which are not ‘rough or dusty’ (ibid.504).  However, as shown in 

section 3.2.2, GSR particles can often have shapes which are irregular and which prove 

resistant to classification.  In samples taken from brake mechanics, Wolten et al 

(1979b) found two particles (one spheroidal and one irregular) that were elementally 

consistent with GSR but elements other than lead and barium which accompanied 

them, such as iron and sulphur, were present unusually high quantities.  Giacalone 

(2000) and Martiny et al (2005) found GSR-like particles associated with brake pads, 

yet incongruous elements and inconsistent morphologies were again sufficient to 

permit discrimination from GSR. 

In summary, environmental and occupational sources of GSR-like particles pose a 

potential source of error in the detection of GSR.  Careful examination is required, as 

well as the consideration of morphology and the context of the remainder of the 

particle population.  Meanwhile, the importance of contextual information regarding 

the exposure of a suspect to sources of GSR-like materials is evident and this is in 

accordance with the account of interpretation provided by Cook et al (1998b) 
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(Garofano et al 1999).  Cursory examinations that ignore the wider particle context and 

the morphology of particles, particularly if interpreted without information regarding 

possible exposure of environmental and occupational sources, will leave room for 

error (ibid.).  While the experience of a GSR examiner is cited as aiding his/her ability 

to discriminate sources (Wolten et al 1979b), the development of automated particle 

analysis methods coupled with complementary manual morphological examination 

and verification can assist in making such discriminations.  The latest standard for GSR 

examination (ASTM E1588-10e1) refers to particles which are ‘characteristic and 

‘consistent’ with rather than “unique” or “indicative”, as used in the old nomenclature.  

This change is significant and reflects the findings of studies like that of Torre et al 

(2002) in light of which it is not prudent or accurate to describe the presence of some 

GSR compositions as an unequivocal indicator of GSR.  Moreover, as described in 

chapter one, the principle of ‘uniqueness’ has been questioned amid recent debates in 

forensic science and consequently, this change of classification also reflects an 

adaptation of forensic discourse more generally. 

3.3 The detection and analysis of GSR 

The use of GSR evidence in formulating and addressing different levels of proposition 

relating to a firearms offence relies on the analytical detection (and often 

quantification) of its presence.  Samples may have been taken from the hands, clothing 

or face of a suspect, from a wound, or from surfaces at the crime scene, and these 

must be analysed in the laboratory.  Various methods have been developed and 

subsequently employed in this process, each with their own strengths and drawbacks.  

The unifying feature of each of these approaches is that they seek to exploit the 

aforementioned characteristics of GSR which result from the formation process and 

the materials involved.  The development of these detection methods is presented in 

section 3.3.1 before an account of contemporary techniques using scanning electron 

microscopy and those that are to be utilised in the present investigation. 
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3.3.1 The development of analytical detection methods  

The various GSR detection methods reported in the literature rely on the detection of 

certain elements, often lead, barium and antimony in some combination.  Wet 

chemical tests (Harrison and Gilroy 1959) provided confirmation regarding the 

presence of lead, barium and antimony, while earlier tests confirmed the presence of 

their nitrates (Romolo and Margot 2001).  These tests along with paraffin cast 

examinations, while rapid, easily executed and inexpensively conducted, were found 

lacking in their sensitivity and in their GSR specificity.  Positive results could be yielded 

by materials other than GSR that contained the elements of interest (ibid.).  Further 

techniques that have been widely employed in the detection of GSR and that have 

undergone significant development and refinement include instrumental methods 

such as neutron activation analysis (NAA) (Ruch et al 1964, Rudzitis et al 1973, 

Krishnan 1974, Saferstein 1982) and atomic absorption spectroscopy (AAS) (Krishnan 

1971, Koons et al 1987).  A method involving photoluminescence has also been 

explored (Jones and Nesbitt 1975, Nesbitt et al 1977).   

Further methods that have been trialled, developed and utilised for the detection of 

the inorganic fraction of GSR include X-ray microfluorescence (Brazeau and Wong 

1997, Flynn et al 1998), inductively coupled plasma mass spectrometry/atomic 

emission spectroscopy (ICP-MS/AES) (Koons 1998, Koons et al 1988), as well as anodic 

stripping voltammetry (ASV) (Liu et al 1980) (Romolo and Margot 2001).  All of the 

methods described exhibit a number of drawbacks.  For example, some are able to 

identify certain elements but do not have the capacity to detect all those which might 

comprise a characteristic GSR particle.  Most problematic of all is that bulk quantitative 

elemental analysis methods provide a measurement of the total elemental presence 

from the entire sampled area.  While confirming the presence of certain primer-

derived elements of interest, such methods lack GSR specificity as the total elemental 

content is considered and quantified.  Unavoidably, this can result in a false-positive 

identification of GSR when the elemental contribution has in fact been made by one or 

more of the environmental and occupational sources described in section 3.2.4.  These 

methods, therefore, are unable to rule out the possibility that the presence of 

individual elements is attributable (at least in part) to a source other than a firearm 

discharge (Bird et al 2007).  Moreover, they are not sufficiently sensitive to permit the 
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identification and quantification of the elemental contribution of individual (GSR) 

particles (Tillman 1987).   

3.3.2 Detection and particle analysis using SEM-EDX  

In response to the shortfalls and difficulties associated with many methods, the 

evolution of scanning electron microscopy with energy-dispersive X-ray spectrometry 

(SEM-EDX/EDS) as a means of identifying GSR particles has followed the early work of 

Boehm (1971).  Detection using SEM-EDX has the advantage of being a non-destructive 

technique, meaning that samples may be re-analysed, and results verified, at a later 

date.  Furthermore, very little sample preparation is required.  SEM-EDX is considered 

a superior method as it permits the analysis of individual particles and enables the 

analyst to specify them as GSR both morphologically and elementally (Tillman 1987).  It 

is this capacity which has for some time rendered SEM-EDX as the preferred analytical 

method for GSR detection (Brozek-Mucha and Jankowicz 2001), and concurrently as 

that which will be used in the experimental phase of this thesis (see chapter four).  

SEM-EDX represents a two-pronged approach to detecting the presence of GSR in a 

sample; at once, high quality, magnified images of individual particles can be examined 

to distinguish particle shapes, size and features, while it is possible to identify X-rays 

pertaining to the atomic structure of a particular element and thus, to determine the 

elemental composition at a point on an object.  This dual approach reduces the 

possibility for error as elemental profiles can be obtained for individual particles, which 

themselves can be morphologically examined with a view to satisfying the conditions 

for a positive GSR identification.  It also means that there is greater scope to 

distinguish GSR from environmental and occupational sources of GSR-like materials.   

There are two approaches to searching for and detecting GSR particles using SEM-EDX.  

Until quite recently, manual, operator-based search approach to detection using SEM-

EDX was the only option.  Prior to discussing automated search and detection facilities 

and the benefits they provide in detecting and analysing GSR, it is useful to provide an 

account of the manual process and its limitations.  The work of Matricardi and Kilty 

(1977), which describes the manual approach to search and detection with SEM-EDX, 

represented an important early contribution to the exploration of GSR detection and 

analysis using this method.  Generally, the preferred method of sampling involves the 
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use of aluminium SEM stubs with a self-adhesive tab (see section 4.2.3).  The surface of 

these stubs should be carbon coated prior to analysis to avoid the charging of 

background material.  Under the SEM, the first stage is to conduct a visual examination 

of the samples expected to contain GSR.  A particle of interest, that is, one which 

seems to be of suitable size, brightness and shape/sphericity, prompts the increase of 

magnification until the full beam is centred upon it.  Note that this examination should 

take place using backscattered electron (BSE) imaging rather than secondary electron 

imaging, as inorganic particles will be better distinguished from background material.  

The object is then scrutinised using EDX, which provides an indication of its elemental 

composition.  However, the authors note that many of these apparently “promising” 

particles are subsequently found not to contain the elements of interest and instead 

may contain large amounts of silicon, calcium or iron.  Problematically, trace amounts 

of an element (Sb, for example) can often be masked by the greater presence of 

another (Ca, for example).  It is noted that particles are often hard to see and locating 

them is dependent on achieving a clear screen resolution and carrying out a careful, 

thorough and methodical examination.  Clearly a learning process, as well as a 

development of expertise, is involved in successfully “spotting” GSR particles.  While a 

GSR particle may be located very quickly if there are many present in the sample, full 

and reliable analysis of the entire sample is curtailed by the time taken for the manual 

search and the potential for error inherent in this process.   

Despite the drawbacks described, Wolten et al (1979c, p.868) proclaimed analysis by 

SEM-EDX the most ‘definitive’ method in GSR detection.  Citing its use in securing a 

number of convictions, the authors assert that detection by SEM-EDX is more effective 

than previous methods in discriminating between elemental contributions by GSR and 

environmental/occupational sources.  Moreover, unlike bulk analysis methods, SEM-

EDX can potentially be used to identify tiny traces of GSR.  These would have 

previously gone undetected as they would not have satisfied the elemental threshold 

of many techniques.  Thus, successful GSR detection several hours after a shooting was 

rendered possible by the advent of SEM-EDX.  However, problems still existed.  The 

slow, laborious task of manual particle analysis had somewhat prevented the potential 

of SEM-EDX being fully realised (Wallace 2008).  Matricardi and Kilty (1977) recognised 

that manual analysis was an extremely time-consuming process, requiring great 
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operator experience and patience (notwithstanding the cost of the manpower 

involved).  Matricardi and Kilty (1977) understandably considered the excessive 

operator time required to be the major shortcoming of the method, and also 

highlighted the potential for false-negatives.  The process involves a trained eye 

searching the visualisation of the sample area for objects which look morphologically 

similar to GSR.  These can be missed if, for example, the operator loses concentration 

and/or the particles are too small to see at a certain magnification, or are obscured by 

extraneous material (ibid., Tillman 1987).  The quantity of GSR is likely to be 

underestimated and if the entire particle population is not scanned, incongruent 

particles which might indicate that particles came from an environmental source may 

be missed.  Issues are further amplified when investigating multi-suspect cases and 

other incidents that may necessitate the analysis of several samples (Wallace 2008).  

The confirmation of GSR presence (yes/no) via this approach is achievable, although 

this may be more difficult if only one or two small particles exist in the entire sample.  

Achieving accurate particles counts, however, will prove elusive when manually 

searching for particles.    

Romolo and Margot (2001) explain how efforts were subsequently made to increase 

the efficiency of sampling, to clean up and concentrate samples (Wallace and Keeley 

1979), and to decrease area being sampled.  Reducing background contamination by 

using a sampling surface that contains no elements that generate ‘bright’ noise under 

BSE imaging was advised (DeGaetano et al 1992).  Despite these efforts, problems 

associated with the time taken to manually search a (noisy) sample area continued to 

represent an impasse.  Statistical methods have been proposed that can be used to 

reduce the area which needs to be searched when analysing a sample.  However, 

Owens (1990, p.699) warned that efforts to determine the ‘necessary’ search area in 

an attempt to overcome the ‘prohibitive’ timeframes required for manual analysis 

should be treated with caution.  Owens (1990) explained that, particularly if only a very 

small number of GSR particles exist on a sample, the possibility of ‘missing’ particles, 

and therefore, of a false negative result, is very real when statistical methods are used 

to justify a reduced search area.  In short, the question of when to “call off” a search 

for GSR is an inherently risky one.    
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In recognition of the problems associated with manual searching, Tillman (1987) as 

well as Matricardi and Kilty (1977), responded by calling for the development of 

automated search techniques that would reduce operator time and simultaneously, 

limit the potential for error: 

‘In our opinion, automation of the search process is one of the essential 

developments needed before this technique can be routinely used’           

(Matricardi and Kilty 1977, p.738) 

Efforts towards automation have thus followed and much progress has been made 

(Kee and Beck 1987, Germani 1991, White and Owens 1987).  Tillman (1987) employed 

an automated particle search and characterisation program that enabled an 

unattached search for GSR particles.  The investigation served as a feasibility study for 

the use of similar programs in GSR analysis.  Tillman (1987) explains how ‘X’ and ‘Y’ 

locations are generated for each GSR particle by the program, and reports that 

measures of the diameter and chemical typing of each particle are recorded.  To 

evaluate the reliability of the technique, manual analysis was used to verify the 

automated detection.  No false-positives were highlighted as a result of this 

verification process, although it should be noted that this does not confirm that no 

particles were missed entirely by both the automated and manual search processes 

(false-negatives).  Tillman (1987) concluded that the system could provide reliable data 

and accurate detection via chemical typing and was effective in the characterisation of 

particle shape and morphology, while dramatically reducing the time taken to examine 

a sample.   

The use of SEM-EDX with automated particle search and recognition has since become 

more ubiquitous and has undergone significant development.  As technology and 

processor capacities have evolved, rapid and reliable automated search and detection 

packages have been created.  These are commercially available and are used in many 

forensic laboratories that carry out GSR particle analysis.  Modern systems automate 

the SEM and detector, and combine processing techniques and rule-based 

classification of particles of interest (Krüsemann 2000).  Many of the problems 

associated with scanning a large, highly populated sample area have thus been eased.  

Krüsemann (2000) observes that these packages enable reliable, fast, unattended 

analysis which can even take place overnight.  The software also enables the analysis 



168 

 

of non-GSR particles to provide information regarding the wider particle context and 

further salient evidence regarding the commission of the crime and the activities of the 

suspect.  According to Garcia and Martinez (2000), the advent of automated systems 

has enhanced the ability of the forensic scientist to search for and detect GSR.  As a 

result of its less labour-intensive nature, automated analysis opens up the possibility to 

analyse multiple samples and samples taken from surfaces other than the hands, such 

as clothing and other surfaces at the crime scene (ibid.).  Thus, the evidential utility of 

GSR is potentially increased and new interpretative possibilities are opened up.  An 

automated analytical system of the type described is employed in the analysis of 

samples from the experimental phase of this thesis and its use will be described in 

chapter four27.  

When surveying automated methods a number of caveats must be stressed.  For 

example, the assertion that analysis may take place unattended perhaps oversimplifies 

the intricate set-up and calibration processes involved.  It also overlooks the in-run 

monitoring, manual post-sample processing and filtering that form part of the process.  

In short, the expertise and experience required to carry out an automated analysis is 

not insignificant and the potential for overlooking particles of interest still exists if 

there are errors in the set-up (see section 4.3 and the discussion in section 6.3.2).  

Furthermore, depending on the sample area and the size of the population of material 

on the sample, analysis can still take very long time.  However, the level of accuracy 

and repeatability in determining particle counts is demonstrably increased.  Automatic 

identification programs have been employed in many studies of GSR including, for 

example, those by Brozek-Mucha and Jankowicz (2001) in differentiating ammunition 

via the analysis of GSR and Brozek-Mucha (2007) in a comparison of airborne and 

spent-cartridge GSR.   

Nakai et al (2009) explored the utility of a SEM-EDX system coupled with a transition 

edge sensor (TES) for the forensic analysis of paint and GSR.  The high spatial 

resolution of the elemental mapping offered by this system renders it a powerful 

analytic tool for GSR analysis.  Further contemporary applications of alternative 

methods for the detection and analysis of GSR have included the use of time-resolved 

                                                           
27 A detailed account of the setting up, running and processing of an automated detection programme, 
INCAGSR, is provided in 4.3 with reference to the analysis process that was followed in the experimental 
phase of this thesis 
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fluorescence microscopy (TRFM), which is routinely implemented in monitoring the 

dynamics of intricate biological systems, by Bird et al (2007).  The authors concluded 

that TRFM represents a non-destructive imaging method for individual GSR particles 

and one capable of identifying their origin in terms of the likely firearm/ammunition 

combination.  However, as a result of the complexity of the particles and their 

formation conditions, an unequivocal determination of the source of fluorescence is 

problematic.  Meanwhile, Schumacher et al (2010) recognise the problems associated 

with visualising the distribution of lead, copper or nitrocellulose in shooting range 

estimation when lead-free primers are involved.  Milli-X-ray-fluorescence (m-XRF) was 

found to be useful in visualising GSR distributions and in the identification of bullet 

holes.   

Bailey and Jeynes (2009) demonstrated the use of ion beam analysis (IBA) for the 

identification of trace elements within GSR.  Meanwhile, Romolo et al (2013) assessed 

the use of IBA in the characterisation of GSR particles.  The increased sensitivity of this 

method for detecting trace element contributions is cited as possessing great 

discriminative power in the characterisation of GSR from different sources.  Finally, 

Christopher et al (2013) employed a scanning proton microbeam and particle induced 

X-ray emission (µ-PIXE) coupled with Elastic Backscattering Spectrometry (EBS) in the 

elemental analysis of individual GSR particles.  This rapid, non-destructive method was 

used to group particles from different ammunition sources. 

3.4 GSR: Evidential value, evidence dynamics, 

reconstruction and interpretation 

The value of GSR evidence in reconstructing different aspects of firearms offences is 

outlined in the sections below.  When GSR evidence is interpreted in casework, it may 

inform conclusions about one or more of a number of issues.  Accordingly, a number of 

facets of GSR evidence may be drawn on in the formulation and assessment of 

different levels of interpretative proposition.   

 

3.4.1 Identification of the shooter of a firearm 
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Of paramount importance in the context of this thesis is the possibility of using GSR 

recovered from a suspect to make an inference about their involvement in discharging 

a firearm.  As will be described in 3.4.4a and 3.5, GSR is deposited in the vicinity of the 

shooter and along the projectile path when a firearm is discharged (Perdekamp et al 

2010).  This results in deposition not only on the shooter, but also on bystanders and 

surfaces that may later be handled by persons unconnected with the shooting.  

Airborne GSR may even be acquired simply by entering a room in which a gun was 

recently fired.  These issues will be fully considered in discussions of transfer, 

deposition, secondary transfer and contamination but at this juncture it is important to 

emphasise that, owing to multiple methods of its transfer and deposition, the 

presence of GSR does not necessarily indicate that an individual fired a gun, or even 

handled one (see, for example, Matricardi and Kilty 1977 and Lindsay et al 2011a).   

Notwithstanding this, the presence of GSR has been used successfully in many 

instances to make inferences regarding the identity of the shooter.  Achieving this 

involves addressing activity level propositions and will necessitate the incorporation of 

information about environmental sources of GSR-like particles and a consideration of 

evidence dynamics, particularly  the transfer and persistence properties of GSR.  These 

will be discussed in section 3.4.4.  The potential to discriminate between individuals 

who have acquired GSR via different mechanisms through the interpretation of GSR 

counts and other pieces of evidence will be discussed in section 6.4 and chapter seven.   

The reconstructive value of GSR in identifying the shooter is also demonstrated by 

cases in which GSR evidence has been used to designate a fatal shooting as a suicide or 

homicide/suspicious death (Reed et al 1990).  The processes of examination and 

interpretation in such cases involve comparing the presence/absence and distribution 

of GSR particles from the victim to expected quantities given that, on the one hand, 

they discharged the firearm themselves and on the other, that some other person fired 

it.  Nelson et al (2000) document a case in which the absence of GSR on the hands of 

the victim was deemed inconsistent with suicide.  

 

3.4.2 Identification of the ammunition and firearm combination 
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An important element of the reconstruction process is the potential to infer 

characteristics about the ammunition used from GSR evidence (Lebiedzik 2000, Schütz 

et al 2001, Murdock 1984, Brozek-Mucha and Zadora 2001, Yanez et al 2012).  

Methods and techniques that permit the discrimination of sources of GSR can be of 

great value in a forensic investigation (Bailey and Treverrow 2010).  Brozek-Mucha and 

Zadora (2003) examined the chemical classes of GSR produced by four ammunition 

types and cluster analysis revealed that some ammunition types could be readily 

distinguished from one another based on the composition of the GSR produced, while 

others resisted discrimination.  Brozek-Mucha and Jankowicz (2001), meanwhile, 

reported success in statistically differentiating GSR from six ammunition types with 

reference to the percentages of particles in different chemical classes.  In addition, 

Rijnders et al (2010) were able to identify different compositional profiles and to make 

positive and negative associations regarding GSR from different ammunition types.  

Halim et al (2010) observed different sizes and shapes of GSR produced by the firing of 

different ammunition types.  Furthermore, Brozek-Mucha et al (2003) explored the 

possibility of distinguishing the inorganic GSR produced by firing 9mm Luger 

ammunition produced by different manufacturers.  Although some compositional 

differences were noted, most populations were found to be similar to one another, 

despite variations in their origins. 

Christopher et al (2013) characterised populations of GSR particles using µ-PIXE and 

multivariate analysis.  This dual method was deemed to be successful in grouping 

populations of particles according to ammunition type.  Others, such as Heard (2008), 

have provided comprehensive reviews of the composition of GSR derived from primers 

and propellants with different geographical and manufacturing origins for reference 

purposes.  DiMaio (1985) reports that GSR patterns in and around wounds can be 

expected to vary as a function of the composition of the ammunition propellant, thus 

making inferences about ammunition type possible.   

Identification of the source of GSR in casework routinely involves the comparison of 

GSR recovered from, for instance, a suspect to GSR from a spent cartridge that may 

have been recovered from a scene.  However, Brozek-Mucha (2007) reports that 

airborne GSR and that which can be recovered from a spent cartridge can differ 

elementally and morphologically.  Rijnders et al (2010), meanwhile, warn that the 
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chemical compositions of GSR deposited around the firearm can differ from that which 

is recovered from the barrel.  Thus, caution and also consistency in sampling is advised 

when attempting to infer information about the source of GSR.  Andrasko and Maehly 

(1977) note that it can be very difficult to determine the type of ammunition due to 

the fact that the amounts of lead, barium and antimony can differ between particles 

from the same source.  It is also true that different regions of the same particle may 

have differing elemental compositions (see section 3.2.3).  However, as detailed in 

section 3.2.3, other compositional features such as taggants can assist in the 

identification of ammunition type, while GSR from lead-free ammunition can be readily 

identified.  It is also important to note that when considering the source of the 

recovered evidence, it is necessary to consider the possibility that environmentally and 

occupationally produced GSR-like particles may represent the true source.  A 

consideration of these sources was the focus of section 3.2.4. 

Inferences about the firearm that was used may be made from the pattern and 

quantity of GSR deposition.  Large differences have been noted between the GSR 

depositions resulting from firing handguns and long-arms (see for example, Ditrich 

(2012) and section 3.4.4a for a full exploration of this issue). 

3.4.3 Estimation of shooting distance and direction  

Much of the research that has been undertaken on the reconstruction of shooting 

incidents has centred on the use of GSR for providing an estimation of shooting 

distance and direction.  In the literature, it is not unreasonable to suggest that there is 

something of a preoccupation with these estimations and that this arguably clouds the 

potential utility of GSR in other areas of firearm incident reconstruction.  Shooting 

distance/range estimation rests on the ability of the forensic scientist to examine and 

interpret patterns and distributions of GSR on targets (Schumacher et al 2010).  

Brozek-Mucha (2002), for example, provides an account of the reconstruction of a 

shooting incident involving a policeman in which testimonies relating to the positions 

of the actors in relation to one another differed considerably.  Through consideration 

of the distribution of GSR particles on the victim, along with other lines of evidence, 

this issue was resolved.  Meanwhile, Brozek-Mucha and Jarosz (2001) report a similar 

case in which the testimony of a suspect was rendered invalid by analysis of a GSR 
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distribution and the resulting reconstruction of the relative positions of the parties 

involved. 

The issue of firing distance (the distance from muzzle to target) is often of a critical 

issue in the reconstruction of shooting incidents.  It can be estimated through 

interpretation of the distribution and quantity of deposited particles around the bullet 

impact site (De Forest et al 2008).   Cecchetto et al (2011), in an experimental study 

involving the firing of guns at sections of human skin, found that as shooting distance 

increased, the quantity of GSR deposited on the surface of the target was reduced.  

Furthermore, the distribution of these particulates can be expected to change.  At 

close range (under 23cm), GSR was found to be deposited on the dermis and epidermis 

around the entry wound as well as within the cavity itself, while at greater distances 

(above 23cm), GSR was recovered from the surface of the skin only.  Nag and Sinha 

(1992) similarly report that at close range, GSR exhibits a radial distribution a few 

centimetres around the bullet hole with some particulates being transported, along 

with the bullet, into the wound.  The ratio of GSR which has been delivered via these 

two transfer mechanisms is posed as a means of distinguishing between long and close 

range firings.  However, Haag (2005) notes that care must be taken because quantity 

of GSR transferred to the target surface and its distribution at a shooting distance, ‘X’, 

will vary as a function of the particular propellant used.  Plattner et al (2003) 

experimentally investigated the shape and pattern of GSR deposits from near-contact 

and contact shots at different angles and distances to explore the potential of using 

them as a means to infer shooting distance and direction.  Brozek-Mucha (2009) also 

identified trends in GSR composition and particle size when shots were fired at targets 

over increasing distances.  The relationships were, however, complex and difficult to 

interpret. 

3.4.4 Evidence dynamics  

Section 2.3 introduced the concept of evidence dynamics and the way that such 

dynamics are incorporated into the assessment of propositions about trace evidence.  

The section dealt with findings from a range of experimental studies concerned with a 

variety of different trace materials.  This section revisits evidence dynamics, with 

regard to GSR. 
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3.4.4a GSR transfer and deposition  

When considering the transfer of GSR it should be noted that, unlike many other trace 

evidence transfers, direct contact is not always involved.  Rather, GSR emanating from 

the discharging weapon becomes airborne and is deposited rather than transferred.  

Hence it is appropriate to refer to the transfer and deposition of GSR.  During a firearm 

discharge, GSR is deposited on the shooter (on the face, hands, clothing and hair) and 

also in the vicinity which may include objects, bystanders, the firearm itself, and the 

target.  Consequently, it is agreed that GSR presence can result from a number of 

mechanisms including deposition on the shooter from a discharge, deposition on 

surfaces or subjects in the vicinity, or handling of a surface “contaminated” with GSR 

such as a firearm or spent cartridge (Singer et al 1996, Lindsay et al 2011a, Zeichner 

2012, Andrasko and Maehly 1977, Romolo and Margot 2001, Wolten et al 1979c).  For 

Lindsay et al (2011a), multiple mechanisms of transfer and deposition serve to 

complicate the interpretation of GSR presence.  Factors affecting rates of deposition 

and transfer are discussed below, while secondary transfer issues are addressed in 

section 3.5.  

The amount of GSR which is produced and deposited during the firing of a gun has 

been shown to be poorly reproduced from firing to firing, even when using the same 

firearm and ammunition, and under the same conditions (Matricardi and Kilty 1977, 

Jalanti et al 1999, Schütz et al 2001, Lindsay et al 2011a, Brozek-Mucha 2011).  This is 

attributable to the dynamic and complex process of GSR formation (Brozek-Mucha 

2011).  Predicting expected quantities of GSR can, therefore, be challenging when 

attempting to assess activity level propositions concerning GSR presence.  While the 

results of Lindsay et al (2011a) were insufficient to assess whether the ammunition 

type, calibre, or features of the firearm were responsible for some of the variation in 

the GSR produced, other studies have offered some indication of the effects of some 

of these variables.   Rates and patterns of GSR deposition will vary according to the 

firearm used (Murdock 1984).  For instance Krishnan (1982) compared short-barrelled 

handguns to long arms and concluded that when the former are fired, the hands of the 

shooter are closer to the muzzle and therefore, are closer to the cloud of GSR that 

emanates from the muzzle blast.  The result is an increased contribution of muzzle-

blast GSR to the population of particles on the hands of the shooter when handguns 
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are discharged.  Ditrich (2012) employed high-speed video to examine the GSR plumes 

produced by different firearms.  A high degree of variance between weapons was 

reported, with revolvers depositing much material near the shooter in contrast to 

relatively sealed shotguns.  Basu et al (1997) found that firing a cleaned shotgun will 

result in little GSR deposition on the hands of the shooter.  While concurring with the 

conclusion that long and short arms will generate different patterns and levels of GSR, 

Basu et al (1997) also noted that the nature of the breeches can also be influential.  

Revolvers, for example, with open breeches and multiple avenues for escape will 

encourage deposition of GSR on the shooter.   

Wolten et al (1977) argued that the GSR deposited on hands will chiefly emanate from 

the breeches, but a contribution will be made from the muzzle-blast.  Basu et al (1997, 

p.580) also highlighted these two mechanisms of deposition and argue that GSR from 

the breeches undergoes a ‘backward thrust’ and is directly deposited on the hands 

(including the support hand) and other surfaces, including the firearm itself.  The Basu 

et al (1997) study provides a detailed survey of the mechanisms of GSR deposition.  In 

the study, the authors also attest that the rate of deposition is not influenced by the 

substrate onto which GSR is deposited and that the population of GSR recoverable 

from the back of the firing hand will be fairly constant if the gun is cleaned between 

test firings.  The latter view has not generally been expressed elsewhere.  Brozek-

Mucha (2011) argues that the adhesive properties of the hands of different shooters 

will influence the effectiveness of sampling and that this contributes to the variation 

between the particle counts which are recovered following different firings.  

Meanwhile, Brozek-Mucha (2011) attributes some of the between-firing variation to 

the deposition of certain types of particles.  Large, fragmented structures and clusters 

of smaller particles, when deposited, serve to inflate the particle count.    

While GSR is deposited on the shooter, some may become airborne and be deposited 

on bystanders, or may even remain suspended in air, for later deposition.  Renfro and 

Jester (1973) employed neutron activation analysis (NAA) to analyse GSR remaining in 

the air following the firing of a single shot.  Remarkably, airborne GSR was detected 

over 72 hours after the discharge.  The amount of GSR remaining suspended in air was 

found to be a function of time and to be of potential utility in estimating the time of 

firing, although variation from shot to shot is likely to render accurate temporal 
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reconstruction difficult.  Levels of GSR in the air were found to decrease rapidly in the 

first 48 hours, after which the rate of loss was found to slow (akin to the two-stage 

mechanism of decay discussed in 2.3.2).  The authors explain that sub-micron particles 

remained suspended for the longest periods of time.  Matricardi and Kilty (1977) 

recovered many spherical GSR particles by suspending tape in the air one minute after 

a gun had been fired in a clean room.  Fojtášek and Kmječ (2005) reported that while 

determining a time curve for GSR sedimentation from the air following a shooting is 

difficult, it can be demonstrated that GSR remain in the air and are subsequently 

deposited for several minutes after discharge.  The time periods for deposition were 

shown to vary according to the firearm used, with the firing of a pistol resulting in 

fallout for eight minutes, while GSR continued to be deposited for ten minutes when a 

revolver was fired.  This effect, the authors argue, will not only contribute to the GSR 

which is recoverable from the shooter if he/she remains present after the shooting, 

but can also pose a risk of contamination to other individuals who enter the 

environment.  These issues will be fully addressed in section 3.5.   

The distribution of GSR around the site of discharge is potentially useful for 

reconstruction purposes and has been studied experimentally.  Fojtášek et al (2003) 

experimentally investigated the distribution of GSR at a number of points around the 

firing of a 9mm pistol.  The highest concentrations of GSR particles were not found 

directly in front of the firearm, but instead were recovered between two and four 

metres to the front-right of the discharge.  The authors also recovered GSR ten metres 

from the firearm and argue that climatic variances in external environments will 

influence the distribution of GSR deposited around the shooter.  Brozek-Mucha (2009) 

examined the distribution of GSR emanating from the firing of a 9mm Luger pistol.  The 

spatial scope of this investigation was smaller than that of the Fojtášek et al study and 

a single shot was fired at targets 10cm, 20cm, 30cm, 70cm and 100cm from the 

muzzle.  In each repeat, the greater the distance from muzzle to target, the fewer GSR 

particles were deposited on the target.  In separate experiments, samples were taken 

from the right and left hands of the shooter as well as from their sleeves, the front and 

back of their upper garments, and the target.  In each experiment, most GSR was 

recovered from the target, followed by the hands.  The sleeves, front of the upper 

garment and back of the upper garment (30cm, 70cm and 90 cm from the discharge 
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respectively) yielded smaller quantities of GSR.  Generally, the trend that was observed 

was one of decreased deposition with distance from the discharge, save for the target.  

In addition to influencing the quantities of deposited GSR, the distance from the 

shooting and the direction of a surface in relation to it tended to affect the chemical 

classes and sizes of recovered particles.  This is attributable to the processes of 

formation and dispersion.  The relationship between the distance from the shooting 

and the sizes of recovered particles was shown to be a complex one.  While the 

average size of particle recovered from the hands was 1.80µm, multiple mechanisms 

of deposition were identified. Large GSR particles (akin to those recoverable from a 

spent cartridge) are formed in the rear of the gun and these were shown to have been 

emitted from the ejection ports at the back of the gun and to have settled on the 

shooter. 

Gerard et al (2011b), meanwhile, examined the distance that GSR can travel 

horizontally during discharge and the distance over which it is deposited along the 

firing range.  The largest deposition was recovered 13.5 metres along the bullet path 

and some particles were found 18 metres down-range of the discharge.  GSR particles 

are associated with the bullet and with the broader cloud of gases.  Owing to the 

multiple means of deposition, the authors conclude that it may be difficult to 

distinguish a shooter from someone along the projectile path using GSR counts alone.  

It is important to note when interpreting the results of this study that it was carried 

out in a room with no ventilation, meaning that the dispersion of GSR will have been 

limited compared to an outdoor setting. 

Given that GSR remains airborne after discharge, that it is deposited around the scene 

of discharge, and is deposited along the bullet path, it follows that there exists a 

possibility that a bystander in the vicinity of a discharge may acquire GSR by passive 

exposure.  Accordingly, this has been studied experimentally.  Lindsay et al (2011a) 

report that in 17 of 30 test firings, at least one GSR particle was recovered from a 

bystander in close proximity to the firing.  Between zero and 27 GSR particles were 

recovered from these bystanders and the quantity was found to be independent of 

whether the subject was standing to the left, right or rear of the shooter.  In some 

cases, the authors recovered similar quantities from shooters and bystanders, 
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rendering these mechanisms of deposition indistinguishable on the basis of GSR counts 

alone. 

Rather than being ejected via the muzzle or breeches, Rijnders et al (2010) note that 

some GSR is deposited on the inside of the firearm during discharge.  These deposits 

may be loosened during subsequent firings and ejected amongst the GSR pertaining to 

the second firing.  This two-stage mechanism of deposition describes the “memory 

effect” (detailed in section 3.4.4b), which is outlined by Basu et al (1997) who observed 

the deposition of old residues from the breeches of a gun when it was not cleaned 

between firings.  

3.4.4b GSR persistence  

As with other forms of trace evidence, the accurate interpretation of GSR will 

necessitate an understanding of its persistence under different circumstances.  Issues 

of persistence and decay are especially salient in instances where a suspect has not 

been apprehended immediately after the incident took place (Jalanti et al 1999, 

Krishnan 1977, Meng and Caddy 1997).  Jalanti et al (1999) consider the literature on 

the persistence of GSR on the hands of a shooter and observe that, owing to different 

experimental conditions, previous studies vary in terms of the timeframes of GSR 

longevity.  The authors summarise that GSR has been detected one (Nesbitt et al 

1977), two (Kilty 1975), three (Andrasko and Maehly 1977), four (Heard 2008), five 

(Knechtle and Gallusser 1996), 12 (DiMaio 1985, Murdock 1984, Wolten et al 1979a), 

13 (Wolten et al 1979c), 17 (Krishnan 1974), 24 (Krishnan 1977, Zeichner and Levin 

1993) and 48 hours (Harrison and Gilroy 1959) after deposition, with long timeframes 

being reported in casework (ibid., Zeichner and Levin 1995). Furthermore, Rosenberg 

and Dockery (2008), attempt to establish a timeframe for forensically relevant 

sampling following six shots from a revolver.  Using laser-induced breakdown 

spectroscopy (LIBS), the authors observed positive test results for GSR on hands some 

126 hours (5.25 days) after shooting.  Meanwhile, Lindsay et al (2011b) recovered 121 

particles from a firearms technician who had discharged a gun the previous day.  In the 

persistence experiments carried out by Jalanti et al (1999), a large decrease was 

reported in the number of recovered GSR particles from the hands of a shooter as a 

function of time following a firearm discharge.  The authors report that much of this 
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particulate loss occurred in the first two to four hours after discharge and that 

importantly, the chemical composition of the particles did not affect their persistence.   

When examining the factors influencing the persistence of GSR on hands, Schütz et al 

(2001) observed a two-stage mechanism of decay with the greatest losses occurring 

the first two hours after discharge (see also Murdock 1984 and Nesbitt et al 1977).  

Interestingly, particles were not retained preferentially according to factors such as 

size, shape, or chemical composition.  Andrasko and Maehly (1977) detected GSR on 

the hands of a shooter after three hours of normal activity following a firearm 

discharge, but none was detected after five hours.  Crucially, the authors report that 

larger GSR particles (>10µm) were absent after the first hour and that the recoverable 

GSR after two hours consisted of small particles (<3µm).   Lindsay et al (2011a) 

examined the persistence of GSR on bystanders.  Referring to the decay of GSR from a 

shooter’s hands, the authors report a comparable pattern of loss for those who have 

experienced passive exposure to GSR, with most bystanders testing negative for GSR 

presence after two hours.  The bystanders to whom GSR had persisted after this period 

had no more than four particles on their hands.  Thus, the trend of initial rapid loss was 

replicated. 

The decay of GSR from a surface has been shown to be extremely variable.  Indeed, 

even when experimental conditions are not altered, the rate of loss has exhibited 

irreproducibility from firing to firing (Jalanti et al 1999, Rosenberg and Dockery 2008).  

This is owing to the high degree of variability and dynamism in the processes of GSR 

formation and deposition which has been outlined previously.  Meanwhile, 

divergences between the results of different studies can be attributed to variations in 

experimental design, the firearm/ammunition used, the number of shots fired, and the 

sampling method employed.  Furthermore, different studies have employed various 

detection and analysis methods that exhibit varying degrees of sensitivity and 

diverging capacities to detect precise quantities of particles (ibid.).  That studies have 

taken place at various points across several decades as analytical techniques were 

being developed, has only served to exacerbate the differences between firings.  

Notwithstanding this, a number of factors have been demonstrated to govern the 

persistence and decay of GSR. 
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Brozek-Mucha (2011) undertook a comprehensive study of GSR persistence on the 

shooter, using SEM-EDX and an automated search system in a very similar manner to 

that which will be described in the context of this thesis.  Samples were collected at 

intervals from the face, hands and clothing of the shooter and as expected, rapid initial 

loss was reported.  The half-lives of particle numbers varied according to sample site, 

with half of the deposited particles decaying in less than one hour from the hands, in 

over one hour for clothing, while half-lives of between two and three hours were 

observed for the face.  Particles persisting for four hours tended to be small and have 

irregular shapes.  In these cases, particles measuring <1µm were found to prevail and 

any remaining large (10-20µm) particles exhibited irregular and complex shapes, in 

contrast to those which were prevalent after the shooting.  Smooth round particles 

which were larger than one micrometre decayed rapidly, compared to those with a 

complex shape, while smooth, sub-micrometre particles exhibited greater persistence 

within hair, fibres and skin folds.  The chemical content of particles was found to have 

no bearing on their longevity.  It was concluded that sampling from the face and 

clothing of a shooter can be productive in yielding GSR in situations when a suspect is 

apprehended several hours after a shooting.  Rates of particle loss were apparently 

influenced by the nature of the surface, with contrasts noted between smooth skin on 

the hands, hair-covered skin (on the face or head) and fibrous clothing.  Zeichner and 

Levin (1993) also observed GSR longevity in hair, with particles being successfully 

recovered from unwashed hair 24 hours after deposition.  Meanwhile, Schwartz and 

Zona (1995) found that GSR can persist in the nasal mucus of a shooter.  Finally, 

Charles et al (2013) found that the fabric type affects the collection efficiency of GSR, 

owing to the propensity of various materials to shed GSR and to ‘clog’ the sample stub 

with fibres.  In the study, leather was found to donate significantly more GSR during 

sampling than the surface that was made of wool.     

As for other types of trace material, the persistence of GSR is affected by the nature 

and extent of post-transfer activity and movement.  Wolten et al (1979c) reported that 

in cases in which the presence of GSR has been used in the verification of a verdict of 

death by suicide, large quantities of GSR are often recoverable from a body that has 

lain undisturbed.  In one case, sampling yielded GSR 120 hours after deposition.  The 

authors concluded that handling, or transport, of the body will encourage the decay of 



181 

 

GSR, while for live subjects, wiping and moving the hands may have a similar effect.  

Furthermore, the distribution of GSR that has been transferred to hands may be 

altered over time, owing to reincorporation during the decay of material, and owing to 

transfer mechanisms that are initiated as parts of the hand come into contact with one 

another (Heard 2008).  Andrasko and Maehly (1977) found that rinsing and wiping the 

hands after firearm discharge did not result in the removal of all GSR, although the 

amount of recoverable material was found to be much smaller and no particles larger 

than 3µm persisted during the washing process.  Thorough hand washing was much 

more effective in the removal of GSR (see also Nesbitt et al 1976) yet, two particles 

measuring 1-2µm were recovered from the hands after they were washed.  In one 

case, Andrasko and Maehly (1977) report that two hand washes were not sufficient to 

effect the removal of at least one extremely persistent GSR particle.  Finally, Wolten 

and Nesbitt (1980) point out that thorough cleaning of a firearm, using brushes and 

solvents, is not always successful in removing all GSR. 

Vinokurov et al (2001) examined the effects of both machine washing and target 

brushing on the amount of residue that can be recovered from the surrounds of a 

bullet entrance hole and thus, on the potential to successfully estimate shooting 

distance.  The authors establish experimentally that machine washing at 40C 

considerably reduces the quantity of GSR around a bullet entrance hole, although 

sufficient amounts remain to permit range estimation when the shooting distance is 

very small.  Brushing tended to have the same effect, but was found to be less efficient 

in the removal of GSR.  These mechanical interventions more effectively removed GSR 

when the shooting distance was greater.  The authors attribute this observation to the 

strength of the bonds between the particles and the target which will be strongest 

when the shooting distance is smaller and the deposits possess greater kinetic energy 

as they interact with the target.  

The so called “memory effect”, that is effected by the persistence of GSR within the 

firearm itself, has also been experimentally studied (López-López 2013).  Charles et al 

(2011) explain that the “memory effect” can be observed when GSR is deposited that 

is elementally incongruent with the primer that was fired.  Instead, these residues are 

in part contributed to by primers that have previously been associated with that 

firearm.  Zeichner et al (1991), Harris (1995) and Lebiedzik and Johnson (2002) have 
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also observed this phenomenon.  Charles et al (2011) experimentally explored the 

“memory effect” and were able to demonstrate how, in an extreme case, 44% of 

recovered particles could be attributed to it.  They add, however, that it is often hard 

to attribute particles to this effect as many heavy metallic elements do occur in trace 

quantities within different primers, thus masking the effect.  It is assumed that the 

type of weapon fired will, in part, govern the strength of the “memory effect”, with 

barrel length and gaps between cylinder and barrel cited as being influential.  In the 

experiments that were carried out by Charles et al (2011), relatively low contributions 

by the “memory effect” are reported for .38 calibre ammunition, while a strong effect 

was observed when .22 calibre ammunition was fired.  The authors concluded that the 

combination of weapon and ammunition is likely to be influential and stressed the 

importance of acknowledging the influence of the “memory effect” during analysis and 

interpretation.  That cleaning a firearm does not always remove all GSR will exacerbate 

this issue in the interpretation of casework samples and in the design of research 

experiments. Theoretically, the “memory effect” could represent an important 

investigative and reconstructive tool.     

While not of direct relevance in the context of the current investigation into the 

inorganic fractions of GSR, but nevertheless important for a comprehensive 

understating, the persistence of the organic components of GSR (OGSR) has been 

studied.  Arndt et al (2012) target diphenylamine (DPA) using ion mobility 

spectrometry (IMS) to establish the longevity of this component of OGSR following a 

shooting.  The timeframe for persistence was determined to be four hours but a half-

life estimate was not possible due to the variability between tests.  Notably, hand 

washing with soap and water was effective in removing the targeted organic 

components. 

3.5 GSR multiple transfer and contamination 

A number of studies have focused on multiple transfer and contamination issues with 

respect to GSR.  This body of work is valuable in the formulation and assessment of 

propositions during the interpretation process, and ultimately, in the reconstruction of 

firearms incidents.  Meanwhile, as well as having interpretative value, this work also 

guides and informs forensic protocol, particularly concerning the handling, collection 
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and processing of samples.  It has been shown that the capacity exists to successfully 

recover and detect, for example, a single sub-micrometre GSR particle that has 

persisted for several hours.  However, as the timeframe in which GSR can be recovered 

has extended, so too has the possibility that we might detect GSR from a previous 

firearm discharge or from another source, or transfer mechanism.  This is one of the 

quandaries posed by persistence and by the improved capacity for analysis and 

detection.   

Lindsay et al (2011b) sampled members of staff at firearms factories who did not fire 

guns themselves.  The sample taken from a shipper charged with handling recently 

test-fired firearms yielded 424 GSR particles, while nine particles were recovered from 

a tour guide who had handled two firearms several hours previously.  Meanwhile, a 

receptionist, an accountant and an engineer (none of whom handled firearms or their 

components) yielded between zero and two GSR particles.  Large secondary transfers 

can result when discharged firearms are handled, yet high levels of GSR are not 

necessarily acquired by being in a GSR-rich environment – small traces are more likely 

to be transferred, and subsequently recovered.  Mann and Espinoza (1993), 

meanwhile, investigated the incidence of GSR on recreational hunters in Oregon and 

Washington.  A total of 30 hunters were sampled, of which half regularly fired guns 

and of whom 80% were wearing the same clothing or were sat in the vehicle that they 

were when they last handled a gun.  The environmental incidence resulting from the 

persistence of GSR from a legitimate source was found to be low - only one Pb-Sb-Ba 

particle was recovered across all samples.   It is noted that because long arm weapons 

were being considered in this study, initial populations of unique GSR particles 

deposited on surfaces would have been relatively low.  So, while activities and 

behaviour can increase the risk of innocent GSR presence, the incidence of particles in 

this case was found to be limited.  Mann and Espinoza (1993) concluded that the risk 

of secondary GSR transfer that results from the handling of cleaned long-arms is also 

low.        

The issue of contamination was discussed at the FBI Laboratory Gunshot Residue 

Symposium (Wright and Trimpe 2006).  A background survey of 102 people with 

different occupations yielded only a single GSR particle and this was recovered from an 

individual who had cleaned a hunting rifle 12 hours prior to being sampled (Martinez 
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cited in Wright and Trimpe 2006).  Garcia, cited in Wright and Trimpe (2006), found 

that groups including military personnel will be exposed to greater levels of GSR as a 

result of background contamination.  Acknowledging the previous activity and 

occupation of an individual is, therefore, important when assessing the likelihood of 

contamination.  The creation of a threshold of GSR particles (for example, two or three 

particles) for a positive GSR identification is one method of overcoming the risk of 

contamination in interpretation, but in certain contexts these particles may have 

probative value and should not be overlooked.  Kotrly and Turková (2010) monitored 

potential sources of environmental GSR contamination in the city of Prague.  No GSR 

particles were found on samples taken from public transport systems, civilian vehicles 

and public areas such as supermarkets and banks.  However, some particles were 

found at the city Institute of Criminalistics, while the number of particles recovered 

from police vehicles and in some cases, from policemen (depending on their position), 

was high.  It has also been experimentally demonstrated that merely entering a room 

in which a gun has been fired (within a certain timeframe) may pose a high risk of 

contamination from airborne GSR (Matricardi and Kilty 1977 and Fojtášek and Kmječ 

2005).  Gerard et al (2012) surveyed police officers; their equipment; their vehicles, 

and police workers and as a result, found several potential sources of secondary 

transfer and contamination.  One or more GSR particles were yielded from 60% of 

officers sampled and from 24% of police equipment tested.  Two of the 18 police 

vehicles that were sampled yielded a single GSR particle, while 25% of the forensic 

identification officers had at least a single GSR particle recoverable from their person.  

All civilians who worked in the police environment tested negative for GSR presence. 

Berk et al (2007) note that following a firearm discharge, a plethora of opportunities 

exist for contamination as a result of secondary transfer mechanisms.  Suspect 

detention facilities and the vehicles used to transport suspects were tested for GSR, to 

determine the extent to which these surfaces could represent sources of secondary 

GSR transfer.  When particles were recovered, they were detected in relatively small 

numbers – the highest being the seven particles yielded from an interview room 

restraining bar and from an office table surface.  The incidence of GSR particles was 

low with respect to police vehicles.  The authors argue that while the possibility of a 

secondary transfer exists, the probability of such transfers occurring in casework 



185 

 

scenarios is relatively low.  Wright and Trimpe (2006) cite a number of similar surveys 

including one in which at least one Pb-Sb-Ba particle was detected in samples taken 

from 14 of 26 police vehicles.  A further study is cited in which 45 of 50 samples taken 

from the creases in police vehicle seats yielded two-element GSR particles, while Pb-

Sb-Ba particles were detected in four cases.  In a final study, samples were taken from 

the backseats of 20 police vehicles and while none revealed any Pb-Sb-Ba particles, 

two yielded a single Pb-Sb particle.  When reviewing studies concerned with 

background contamination or contamination by law enforcement, it is important to 

appreciate the nature of the experimental setting.  For example, the background rates 

of GSR particles in police facilities in general are likely to be higher in the U.S. 

compared to the U.K., where the risk of exposure to GSR might be assumed to be 

limited to Tactical Firearms Units and their officers, as opposed to affecting police 

facilities more generally.   

Charles and Geusens (2012) acknowledge that the risk of contamination via secondary 

transfer of GSR to suspects is potentially serious, given that the probative value of a 

few particles can often be high.  However, it was also pointed out that previous studies 

have indicated that the extent of such risks is negligible.  The authors simulated arrest 

scenarios involving suspects and police special force units who are routinely exposed 

to high levels of GSR.  It is reported that levels of observed secondary transfer were 

non-negligible in both low and high contamination scenarios.  Contaminated vests, and 

particularly gloves, were found to effect high rates of transfer.  Measures are 

recommended that are aimed at identifying and minimising opportunities for 

contamination.  Wright and Trimpe (2006) describe a study in which an individual, 

known to have GSR on their hands, was handcuffed and placed in a vehicle.  Ten 

minutes later, a GSR-free individual sat in the seat and subsequently, it was found that 

22 GSR particles had been transferred to the second individual via the seat.  In another 

simulation, GSR-free individuals were handcuffed by officers and placed in a patrol car; 

24 of 41 of these previously ‘clean’ subjects subsequently tested positive for GSR 

presence after the experiment.  While contamination and secondary transfer from law 

enforcement environments are possible, insufficient data exist to predict exact rates of 

expected transfer (ibid).    
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Cetó et al (2012) indicate that GSR can be acquired by handling a firearm and that the 

quantities transferred in this way can be analytically distinguished from those 

deposited during shooting.  Basu et al (1997) concur and demonstrate experimentally 

that contact between a non-firing hand and the cylinder, trigger, rear and barrel of a 

fired revolver can initiate a secondary transfer.  They report secondary transfers of 36, 

40 and 42 particles when the revolver was held and contact was made with the trigger.  

More than 500 particles were secondarily transferred to the palm of the subject when 

the barrel and cylinder were grasped tightly and 268 were transferred when the 

cylinder and barrel were brushed.  Notably, these latter transfers resulted in greater 

numbers of GSR particles on the handler than on the shooter who discharged the 

firearm.  Nelson et al (2000) hypothesise that the distribution of GSR encountered 

during a particular forensic reconstruction may have been the result of GSR secondary 

transfer via a pillow, although this was not experimentally established.  

Gialamas et al (1995) explored the possibility of GSR transfer from officers to suspects.  

Considering the fact that a firearm was carried by all officers who were tested, the 

incidence of GSR particles was markedly low.  18 of 43 officers yielded at least one 

unique GSR particle, while no GSR particles were recovered from the 25 remaining 

subjects.  Again, while existent, the risk of contamination and the potential for 

secondary transfers from officers to suspects was concluded to be low.  It is important 

to note, however, that this study is concerned with contamination via secondary 

transfer during arrest or suspect processing, rather than attending to the secondary 

transfers that could conceivably occur in the period between the firearm discharge and 

suspect apprehension.  It is during this period that contacts may be made between a 

shooter and another individual, or between a non-shooter and a recently discharged 

firearm.  At present, there is a need for detailed and extensive consideration of the 

transfer mechanisms that may alter the distribution of GSR following an initial transfer.  

Moreover, the ramifications of these secondary transfer mechanisms for the 

collection, analysis, interpretation and presentation of GSR evidence remain largely 

under-researched.  How the forensic scientist might go about interpreting such 

samples and determining their probative value, therefore, remains an avenue for 

exploration.   



187 

 

The risk of secondarily transferring GSR during arrest and suspect processing should be 

minimised in order to safeguard against the contamination of the hands of a suspect.  

Wright and Trimpe (2006) cite several discussions and studies on this subject which 

featured at the FBI Laboratory Gunshot Residue Symposium.  It was agreed that 

preferably, sampling should take place prior to bagging the hands of a suspect, as the 

bagging process can initiate a secondary transfer from hand to bag and result in a loss 

of GSR (Wolten 1979c).  If sampling cannot be carried out at the scene, bagging is 

advised before transporting the suspect in a vehicle.  Moreover, firearms equipment 

and exhibits should always be kept remote from sampling kits and sampling areas 

(Wright and Trimpe 2006).  The incorporation of detectable chemical taggants into 

ammunition which is used by law enforcement is recommended so that GSR 

originating from contamination mechanisms can be readily identified (ibid., 

Niewoehner et al 2005, Zeichner 2012). 

An awareness of the possibility of contamination and secondary transfer mechanisms 

should inform practices in the GSR analysis workplace and influence protocol in the 

laboratory.  This matter is also explored by Wright and Trimpe (2006) who cite the 

need to monitor the laboratory working environment for GSR presence.  Martinez 

(cited in Wright and Trimpe 2006) identified the need to establish zones in the 

laboratory which are likely to represent sources of contamination and accordingly, 

outlined a policy whereby no examiner who had entered a firearm zone on a given day 

could enter the GSR instrument space.  Similar measures will also need to be replicated 

in experimental research if reliable, valid results are to be generated (see chapter 

four).   

Previous reviews of the secondary (and further) transfer of trace physical material 

(French et al 2012, for example) have demonstrated that the extent of multiple 

transfer mechanisms and their potential investigative implications are not 

inconsiderable (see also section 2.3.3).  Indeed, the aforementioned study posits that 

findings related to the transfer of trace particulate materials may be applicable to 

further forms of trace material, including GSR.  The studies of GSR contamination and 

transfer outlined in this section clearly demonstrate the potential salience of 

secondary transfer in the formulation and assessment of interpretative propositions 

regarding the transfer of GSR.  Thus, these issues warrant in-depth study.  In a piece 
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that outlines some of the concerns associated with forming conclusions based on trace 

samples of GSR, Mejia (2005) suggests that transfer mechanisms cast doubt on the 

reliability of GSR evidence generally.  Mejia (2005) suggests that because an individual 

who had never fired a gun could acquire GSR through contamination, and that other 

environmental particles exist which can be mistaken for GSR, doubt can be cast on the 

reliability of reconstructions based on GSR.  While perhaps an extreme outlook, it is 

certainly the case that further research into the extent and rates of these transfer 

mechanisms is necessary.  The possible implications of these mechanisms for the 

process of interpreting GSR evidence are relatively uncharted and this is concerning 

given some of the interpretative issues that could conceivably be posed by the 

multiple transfer of GSR: 

 GSR could, in theory, be transferred from a shooter/firearm, thus incriminating 

an unconnected individual, potentially leading to a wrongful conviction or an 

offender remaining at large  

 GSR could be ‘lost’ from the original site of deposition 

Clearly, the consequences of a failure to acknowledge the effects of multiple transfer 

could lead to misinterpretation and have severe ramifications in the pursuit of safe 

justice.  Very little attention has been afforded to understanding the nature and extent 

of these transfers and even less consideration has been given to assessing the 

probative value transferred GSR evidence.  Moreover, developing an empirical basis to 

inform the interpretation of such evidence, and exploring the way this may be used to 

distinguish between mechanisms of transfer, represent avenues for further research.  

Goray et al (2010) concur with this call for further investigation.  The authors highlight 

a lack of work that identifies the plausible modes or scenarios in which secondary 

transfers may occur, concluding that further research will enhance our ability to assess 

the likelihood that secondary transfers have taken place and to make inferences about 

the nature of the activity that resulted in the deposition of GSR. 

 

3.6 Summary 

This review has demonstrated the evidential value of GSR to the reconstruction of 

firearms-related offences.  The morphological and compositional features of GSR 
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particles have been described, along with an account of the formation process to 

which these features are attributable.  The development of analytical methods for the 

detection of GSR has been surveyed, with a particular focus on the evolution of 

detection using SEM-EDX assisted by an automated search capability. 

Significant bodies of research exist in the field of GSR with regard to analysis and 

detection techniques, the environmental and occupational sources of GSR-like 

particles, and the reconstruction of shooting angles and distances.  It has been 

demonstrated that formulating and addressing interpretative propositions (according 

to the process set out in section 2.2.2) may necessarily involve considerations of 

alternative sources of GSR-like particles and an acknowledgement of the dynamics of 

GSR, as well as the various possible mechanisms of GSR transfer and deposition.  While 

issues of contamination, particularly those which involve law enforcement, have been 

well studied, significantly less attention has been afforded to the formal assessment of 

secondary (and further) transfer mechanisms involving GSR and the interpretation of 

GSR presence resulting from different transfer and deposition mechanisms.  In general, 

evidence dynamics and their impact on the interpretation of GSR evidence remain 

avenues for further research.   

For Lindsay et al (2011a, p.90) ‘…the interpretation of the presence of GSR particles is 

complicated by the fact that there are several possible mechanisms of deposition.’  

These include deposition on the hands of the shooter during discharge, deposition on a 

bystander during or after discharge, and secondary transfer via contact with a surface 

contaminated with GSR.  Further experimental work aimed at understanding these 

mechanisms is required if these possibilities are to be effectively incorporated into the 

formulation and addressing of interpretative propositions regarding the mechanism of 

GSR deposition in casework. 

In their review of the identification of GSR, Romolo and Margot (2001) also 

acknowledge these multiple means of deposition and argue that calculation of the 

likelihood ratio of GSR evidence under competing hypotheses can assist in making 

inferences regarding suspect activity.  For this to be possible, activity and offence level 

(level II and III) propositions regarding the origin of GSR must be formulated and 

addressed.  Assessing the weight of GSR evidence under prosecution and defence 

propositions at this level will consider the probability of evidence transfer and 
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persistence, and the likelihood of GSR presence or absence under these conditions.  

The incorporation data from experimental work that examines these mechanisms will 

be crucial.  For Romolo and Margot (2001), a Bayesian approach for dealing with 

transfer evidence under competing hypotheses should represent the basis for 

interpretation.  They conclude by recommending research into models and data, akin 

to those which have been explored for other types of trace evidence, to develop a 

Bayesian approach to interpreting GSR. 

In order to address these issues, an experimental investigation into mechanisms of 

GSR deposition was carried out.  Subsequently, two phases of discussion and 

interpretation are embarked upon, the first of which will consider the implications of 

the experimental findings for our understanding of GSR dynamics and the ramifications 

for a forensic investigation, particularly when interpreting GSR evidence.  Secondly, 

these findings are employed in exploring and developing an approach to the 

interpretation of GSR transfers using Bayesian Networks.  In experimentally addressing 

GSR transfer and considering the process of making inferences under competing 

hypotheses, this piece of research aims to contribute to our understanding GSR 

deposition mechanisms by producing repeatable experimental data.  It also seeks to 

explore a model of interpretation and reasoning that is rooted in a Bayesian approach 

and that is applicable to casework scenarios that involve GSR.    

3.7 Research questions 

In light of the preceding review and summary, a set of research questions and have 

been generated.  It is these which the experimental and interpretative phases of this 

thesis will seek to address, explore and resolve.  Each major research question 

comprises a number of subsidiary and associated research questions.  

RESEARCH QUESTION ONE: Can GSR particles undergo secondary transfer from the 

hands of a shooter to those of an individual who was not present at the scene of a 

firearm discharge? 

While much attention has been afforded to the use of GSR in shooting angle/distance 

estimation, firearm/bullet identification and in the reconstruction of bullet entry/exit, 

the investigation of GSR transfer has been limited to a small number of studies.  These 
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studies have been primarily focused on transfer to hands during shooting, or have 

attended to issues of contamination.  Secondary transfer has been given very little 

explicit consideration.  The hands of subjects were targeted in order to explore the 

potential for secondary transfer.  This decision was made as it has been demonstrated 

that greater quantities of GSR are deposited on the hands of the shooter compared to 

other sampling sites (Brozek-Mucha 2009).  Meanwhile, samples are most frequently 

taken from the hands during the sampling of suspects in casework scenarios. 

This question will be answered experimentally through the replication of a real-world 

scenario involving a participant firing a live firearm and engaging in subsequent contact 

with an individual28.  Samples taken from the hands of individuals will then be analysed 

for the presence of GSR. 

Several related subsidiary research questions will be addressed when exploring 

Research question one, which include: 

 If secondary transfer does occur, what quantities of particles involved? 

 If secondary transfer does occur, what sizes of particle are involved? 

 What are the implications of any findings for the collection, analysis, 

interpretation and presentation of GSR in an investigative context? 

Particle size has been selected as the variable of interest as opposed to the elemental 

content of particles, owing to the findings of previous experimental work which were 

presented in section 3.4.4.  For example, Brozek-Mucha (2011) and Jalanti et al (1999) 

have found that the persistence of GSR particles is not affected by their chemical 

content.  By contrast, the deposition, transfer and persistence of particles has been 

found to be affected by their size (see, for example, Andrasko and Maehly 1977). 

RESEARCH QUESTION TWO:  Can particles of GSR undergo multiple transfers (i.e. 

tertiary) from the hands of a shooter to another surface and then be transferred to 

subsequent surfaces which were not present at the scene of a firearm discharge?   

Gaudette and Tessarolo (1987) and French et al (2012) demonstrate the possibility of 

multiple transfers which may result in the formation of transfer chains and networks.  

The latter study considers the implications of such mechanisms for real-world forensic 

                                                           
28 Section 4.1 provides a detailed account of the reasons for employing an experimental approach 
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investigations and given the findings, recommends further in-depth study of multiple 

transfers with regard to different types of trace evidence.  Very little work on this 

subject has been undertaken with respect to GSR and this represents a further gap in 

understanding that this study aims to resolve. 

Again, this research question will be explored via the analysis of results derived from 

transfer experiments simulating scenarios involving successive contacts between 

surfaces.  The subsidiary research questions that will be addressed here include: 

 

 If multiple transfers do occur, what are the quantities of material involved? 

 If multiple transfers do occur, what sizes of GSR particle are involved? 

 Are any discernible trends or patterns identifiable in any transfer chains that are 

formed? 

 What are the implications of any findings for the collection, analysis, interpretation 

and presentation of GSR in an investigative context? 

RESEARCH QUESTIONS THREE AND FOUR: Can GSR particles undergo secondary 

transfer from a discharged firearm to the hands of an individual who was not present 

at the scene of a firearm discharge but who handled the firearm afterwards? 

Can GSR particles be deposited on a bystander who was in the vicinity of a firearm 

discharge? 

In both cases the following questions will also be addressed: 

 What quantities of particles involved? 

 What sizes of particle are involved? 

 What are the implications of any findings for the collection, analysis, 

interpretation and presentation of GSR in an investigative context? 

Again, these research questions will be answered through experimentation and the 

interpretation of results from sample analysis. 

To some extent, previous empirical studies have provided a positive answer to both 

research questions two and three.  However, these questions have not been addressed 

using the same experimental conditions, methods and procedures as those employed 
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when answering research question one.  Moreover, these previous contributions are 

not sufficient to address the answer to the following research question: 

RESEARCH QUESTION FIVE: On the basis of samples of GSR taken from individuals, can 

shooters, secondary transfer recipients and bystanders be distinguished?  

And accordingly: 

 Are GSR counts of interpretative value in this process? 

 Are the sizes of recovered GSR particle of interpretative value in this process? 

 Does the possibility of misinterpretation exist? 

In accordance with recent work in forensic science, the utility of Bayesian Networks as 

an interpretative tool will be explored and demonstrated when answering this 

question.  The use of GSR evidence to make inferences about the likely mechanism of 

GSR acquisition by an individual will be explored using a Bayesian Network approach, 

assisted by the use of a Bayesian decision support tool, AgenaRisk.  Thus: 

RESEARCH QUESTION SIX:  Can Bayesian Networks be used to provide a framework to 

make inferences about the mechanism of GSR deposition from GSR evidence? 

Furthermore: 

 Can they assist in inference-making in casework scenarios? 

 How might other items of evidence be incorporated? 

 Are there any practical or computational issues associated with this approach? 

 What are the issues associated with presenting evidence in this way? 

Alongside the research questions, two further areas have been identified that will be 

afforded explicit consideration during and after the experimental phase of the thesis:  

1. An assessment of the use of SEM-EDX with an automated search and detection 

method for the analysis of (multiple) GSR samples 

2.  An assessment of both the methods used, and the implications of findings for, 

future experimental research projects concerning GSR 

The experimental and interpretative phases of this thesis will be undertaken with a 

view to identifying key issues and concepts within the field of GSR and trace evidence 

more generally, and pursuing issues that maybe unforeseen at this stage.  A 
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commitment to demonstrating the practical utility and applicability of the research 

findings will be demonstrated throughout, while attention will be given to identifying 

and highlighting avenues for further, complementary research.  These convictions 

resonate strongly with the ideals of a research culture in the forensic sciences that 

were surveyed in chapter one.  
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Chapter 4 The experiments: Materials, methods and 

procedures 

4.1 Introduction: an experimental approach 

It is necessary to elucidate the reasons behind the decision to adopt an experimental 

approach to addressing the research questions outlined in section 3.7.  Theoretically, 

one alternative means of exploring GSR deposition and transfer could involve 

gathering data from various published experimental and case-related work.  However, 

this would not be feasible as different studies will have employed different firearms; 

they will vary in terms of the number of shots fired, the method of sampling and the 

method, sensitivity and accuracy of analysis.  To develop a body of coherent, 

comparable and accurate data on the occurrence, rate and patterns of GSR multiple 

transfer, it was concluded that data would best be generated experimentally (see, for 

example the experimental work of Pounds and Smalldon 1975a, 1975b, 1975c, Bull et 

al 2006 and van Oorschot and Jones 1997 for work relating to different types of trace 

evidence).  The experiments were designed so that the quantity of transferred GSR 

under different scenarios and conditions could be compared.  The experimental design 

process was guided and informed by the methods, findings and recommendations of 

previous studies on trace evidence such as those described in sections 2.3, 3.4.4 and 

3.5.  The objective of the experimental phase was to develop a body of repeatable data 

on GSR transfer and deposition that contributes to the body of literature on GSR 

dynamics.  This same body of data will be used to highlight implications for forensic 

protocol and to explore of the use of a Bayesian Network approach to assessing GSR 

evidence.  This approach represents the novelty of the present study.  First, it is a 

practical determination of the science, nature and extent of GSR transfer and its 

implications, and secondly, it represents a commitment to exploring a model for 

reasoning about GSR evidence using Bayesian Networks in light of the experimental 

findings.   

On the role of experimental studies in forensic science research, Morgan et al (2009b) 

argue that experimentation which mimics the forensic reality is vital if the behaviour of 

trace materials is to be understood and then successfully interpreted within an 
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investigative context.  Such experimentation may be undertaken to resolve a specific 

case-related issue or, alternatively, informed by knowledge of the sorts of scenarios 

encountered in an investigative context.  The results can be used to support inferences 

during the process of interpretation set out in section 2.2.2 (Linacre 2013).  While the 

present study echoes the commitment of other experimental work to understanding 

the behaviour of forensic evidence in different scenarios, it also considers its 

probabilistic interpretation in chapter seven.   

4.1.1 A progressive experimental design 

In a similar manner to a number of previous forensic transfer studies (see French et al 

2012 and Lowe et al 2002, for example), a “progressive” approach to experimentation 

was chosen, whereby transfer scenarios - each building on the findings of the former - 

represent portions of the forensic reality which is being mimicked.  This allows a 

number of possible forensic scenarios to be investigated and for data to be derived for 

each scenario in turn.  For example, after establishing the quantity of GSR transferred 

to the hands of a shooter, a further experiment assessed the quantity of material that 

is transferred when a shooter makes contact with an individual not present at the 

scene of the shooting.  Each scenario or experiment contributes in part to the overall 

approximation of a set of simulated transfers and depositions involving GSR.  Details of 

the specifics of each scenario will be provided in this chapter as well as an account of 

the relevant materials, methods and procedures that were standardised throughout 

the experimental work. 

4.2 Materials and methods 

This section outlines the methods and materials which were standardised across the 

experimental transfer scenarios.  The individual experimental scenarios are described 

alongside an account of the procedures and control measures that were implemented 

during the experimental phase of the research 

4.2.1 The test firings 

Firing of the weapons was carried out by firearms officers from the Tactical Firearms 

Unit of Surrey Police at their firing range in Guildford, U.K.  One officer fired at a time, 
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overseen by the Chief Firearms Instructor.  Sampling was undertaken by the author.  A 

SIG Sauer P226 9mm self-loading pistol was used for the firings and the firearm was 

loaded with 9mm Luger 95 grain jacketed soft point 9P1 ammunition (manufactured 

by FEDERAL Ammunition).  This ammunition was chosen as a result of preliminary 

testing of residues recovered from the inside of spent cartridges.  Testing revealed that 

GSR produced by this ammunition contains lead, antimony and barium in combination, 

in accordance with the most commonly encountered ammunition types (see section 

3.2.3).  The use of this ammunition for the present study, therefore, serves to ensure 

that results and findings are applicable to a wide range of ammunition types (akin to 

Brozek-Mucha 2011).  A ‘firing’ comprised five rounds of ammunition.  Five rounds 

were fired in order to generate a population of GSR that was considerable enough to 

properly assess the potential for secondary transfer, given the variations that were 

expected in the amount of deposited GSR between firings (see section 3.4.4a).  The 

firearm was not cleaned between experiments, as it was decided that a ‘dirty’ firearm 

would best serve the approximation of forensic reality.  The use of an indoor firing 

range limited the effects of GSR dispersion by climatic conditions (Fojtášek et al 2003). 

 

 

Above: Figure 4.1 The SIG Sauer P226 self-

loading pistol 

Top Right: Figure 4.2 The ammunition used 

for the test firings 

Bottom Right: Figure 4.3 The test firings in 

progress 
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4.2.2 The experimental scenarios 

The experimental phase of this thesis comprised five experimental scenarios.  The 

methods, materials and sampling procedures documented in this chapter were 

employed uniformly across all of the experiments which were carried out.  The 

decision was taken to simulate contacts and transfers immediately after the firearm 

discharges had taken place.  In the absence of comprehensive studies on the extent 

and rates of GSR transfer, it was deemed important to ensure that the maximum 

quantity of GSR available for transfer was present at the time of contact.  Thus, 

without a noteworthy window for GSR decay, the full extent of possible transfer could 

be captured.  The interpretative implications of this will be discussed in chapter six. 

4.2.2a Scenario one 

Firearm  Shooter 

In the initial and most straightforward experiment, samples were taken which enabled 

the measurement of the number of GSR particles deposited on the hands of the 

shooter during the firing of the pistol.  The hands of the shooter were thoroughly 

cleaned and control samples were taken prior to the commencement of any shooting 

with a view to ensuring no GSR was present on the subjects prior to the experiment 

(described in detail in section 4.2.4a).  The SIG Sauer P226 9mm self-loading pistol was 

loaded with 9mm Luger 95 grain jacketed soft point 9P1 ammunition (manufactured 

by FEDERAL Ammunition) and was fired five times.  Following the shots, the firearm 

was laid down, and no contacts were made with any other surface (including 

garments).  These measures limited the loss of GSR or acquisition of further particles 

by contamination mechanisms.  The shooter then made his way to the designated 

sampling location that was set up 15 metres from the shooting location to ensure the 

safety of the sampler, while also restricting the possibility of contamination.  The 

hands of the shooter were then sampled according to the established sampling 

procedure using ½ inch SEM stubs (described in section 4.2.3).  Three runs of this 

experiment were carried out so that the repeatability of results could be tested and 

demonstrated.   
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4.2.2b Scenario two 

Firearm  Handler 

Experimental scenario two involved a second individual who, following the discharging 

of the handgun by the shooter held the gun for five seconds.  This experiment 

simulated, for example, a scenario in which an accomplice handled a firearm following 

a discharge.  Both the shooter and handler washed their hands as a precaution against 

contamination from GSR already present on the hands.  Prior to the experiment, 

control samples were taken from the subjects.  In the same manner as scenario one, 

five rounds were discharged by a shooter although, when the firing was complete, the 

shooter made his way over to the handler who took the gun and held it by the handle 

as if about to fire it, for five seconds, before placing it on the ground.  The handler then 

made his way to the sampling area and hands were sampled according to the standard 

procedure.  Again, three runs of the experiment took place. 

4.2.2c Scenario three 

Firearm  Shooter  Subject 

Scenario three was set up in order to establish whether GSR which is deposited on the 

hands of the shooter during a discharge can subsequently be transferred to the hand 

of a second individual who was not present at the scene of the shooting, via a direct 

(hand-to-hand) contact.  Both the shooter and subject washed their hands and were 

control sampled before the firing was carried out.  When the shooter had completed 

the five rounds and left the firing location, he was instructed to shake hands with the 

subject who was not present at the shooting.  The shooter used his firing hand (the 

right hand in all cases) and shook hands with the second individual.  Following the 

handshake, both the shooter and subject were sampled so that the quantity of GSR 

remaining at the shooter could be measured, in addition to that which was 

transferred.  Three runs of the experiment were carried out. 

4.2.2d Scenario four 

Firearm  Shooter  Subject  Subject 
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In this experiment, the shooter made hand-to-hand contact with a subject who then 

made hand-to-hand contact with a second subject.  The shooter and two subjects had 

control samples taken from them following hand-washing, before the firing then took 

place.  After the five rounds had been discharged, the shooter made his way over to 

the two subjects who had not been present at the firing.  He shook hands (right-to-

right) with the first subject, who then shook hands with the second subject in the same 

manner, thus completing a chain of three individuals.  Following the handshakes, all 

three participants had their hands sampled for the presence of GSR.  In this way, the 

GSR which remained at the donor surfaces (and thus, did not undergo transfer) during 

the two contacts could be quantified, as well as the GSR that was transferred to the 

third individual in the chain.  Three runs of the experiment took place. 

4.2.2e Scenario five 

Firearm  Subject in proximity to firing 

In this experimental scenario, the quantity of GSR deposited on the hands of an 

individual in the proximity of a firearm discharge was the subject of interest.  The 

shooter and bystander washed their hands and had control samples taken from them.  

When firing took place, the subject stood one metre behind the shooter.  When firing 

had ceased, both individuals made their way to the sampling area and were sampled.  

Three runs of the experiment took place. 

4.2.2f Summary 

Across the five experimental scenarios, five different mechanisms of GSR deposition 

and transfer were simulated: 

1) Shooter: via airborne GSR from a firearm discharge 

2) Subject handling: via handling of a recently discharged firearm 

3) Subject via handshake: with a shooter 

4) Subject via handshake (2): via direct contact with a subject who has had direct 

contact with a shooter 

5) Bystander: via airborne GSR from a firearm discharge 
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4.2.3 Sampling strategy and procedures 

Sampling from the hands of subjects was standardised across all experimental 

scenarios. In an investigation into ‘stub’ and ‘swab’ methods of GSR collection, Reid et 

al (2010) conclude that the use of stubs is superior in terms of collection efficiency.  

The use of stubs is also preferable in terms of speed and simplicity, and also involves 

little preparation prior to analysis, thus minimising the potential for particle loss and 

contamination.  The use of stubs is commonplace in research studies involving GSR 

(Brozek-Mucha 2007, 2009, 2011) and in real-world forensic settings (Wright and 

Trimpe 2006).  Accordingly, the stub sampling method was chosen for this piece of 

experimental work.  

½ inch diameter pin-type aluminium SEM stubs (supplied by TAAB Laboratories, U.K.), 

coated with 12mm diameter self-adhesive carbon discs (supplied by TAAB laboratories, 

U.K.), were used to collect material from hands (figure 4.4).  Following the 

recommendations of Heard (2008), each stub was stored in its own sealed SEM tube 

(supplied by TAAB laboratories, U.K.), the lid of which was removed for sampling and 

then returned and sealed prior to analysis (figure 4.5).  This procedure prevented the 

cross-contamination of stubs which could arise when six stubs are stored and 

transported together.  Meanwhile, given the sealed nature of the tubes, unnecessary 

exposure to the potentially GSR-contaminated surroundings was limited29. 

  

 

 

                                                           
29

 An inventory of the materials used, including catalogue numbers, is included in Appendix I 

Above: Figure 4.4 Aluminium stub in stub gripper 

Right: Figure 4.5 Aluminium stub in sealed stub container 



202 

 

Table 4.1 Results of preliminary testing of the tackiness of self-adhesive tabs on 

different surfaces 

When sampling from hands, Heard (2008) recommends that the sampled area is 

covered at least three times, in order to ensure that any particles embedded in minute 

skin creases are collected.  Reid et al (2010) indicate that stubs should be ‘dabbed’ 

over the area of interest until the tackiness of the adhesive has been lost in order to 

capture as much GSR as possible.  Further dabbing beyond this stage could result in 

the loss of sampled material from the stub.  According to the results of unpublished 

trial experiments carried out by the author (see table 4.1), this loss of tackiness occurs 

after circa 20-30 dabs, or up to circa 50 dabs, depending on the surface being sampled 

(in keeping with the findings of Charles et al 2013).  For the purposes of the present 

experiments, stubs were ‘dabbed’ fleetingly with light but not insignificant pressure 

onto the area of interest (i.e. the hands) 50 times, or as many as required to cover the 

area three times; whichever was fewest. 

 

 

When sampling from the hands of participants, a standard procedure was followed.  In 

all experiments, the entire hand surface (i.e. front and back of the left and right hands) 

was sampled using one stub so that one sample was taken from each individual (figure 

4.6).  Both hands were included in the sampling following the recommendations of 

Heard (2008) and Molina et al (2007) who note that GSR is deposited on the stabilising 

hand of the shooter, as well as the hand in contact with the handle and trigger.  The 

same strategy was applied to sampling the handshake recipients, even though only 

one hand would have made contact with the shooter.  In a real-world forensic 

scenario, sampling from a group of suspects would be carried out without prior 

knowledge of the identity of the shooter and a uniform sampling strategy would be 

applied to each suspect.  Sampling from all participants in a standard manner 

safeguarded the GSR counts from sampling bias and would enable between-run and 

between-scenario comparisons.  It was not considered fruitful to sample from the left 

Test Sample surface 
Dabs before tackiness 

lost 
1 Palm of hand 55 
2 Palm of hand 61 
3 Palm of hand 52 
4 Cotton t-shirt 22 
5 Arm of male - hair 28 
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and right hands separately, or to make a distinction between the front and back of 

hands.  This was because, in a real-world scenario, GSR may be redistributed between 

left and right hands and between the front and back, during the period between 

deposition and collection (Heard 2008).  One sample per subject was deemed an 

appropriate sampling technique for this study and one that would enable the 

comparison of various mechanisms GSR deposition.  

A variety of sampling strategies have been employed in the literature in an attempt to 

maximise the yield of GSR that can be collected.  Rosenberg and Dockery (2008), 

among others, refer to sampling the ‘knuckle’ of the trigger finger, the ‘knuckle’ of the 

thumb and the ‘webbing’ in-between.  These regions can be expected to be 

particularly ‘GSR-rich’ following a firearm discharge.  Consequently, when sampling 

during the present set of experiments, particular attention was paid to sampling from 

this area so that the full extent of GSR deposition could be captured.  The sampling 

regions proposed by Heard (2008) were effectively extended for this study to 

represent a more comprehensive sample of the hand as opposed to just the palm by 

incorporating the fingers, thumbs and webbing in-between when sampling from each 

subject (figure 4.6). 

 

 

 

 

 

 

 

 

 

The decision was taken to sample subjects immediately after the firearm had been 

discharged, or after contacts had taken place.  The opportunity for the decay of GSR 

between deposition and sampling was, therefore, limited and ensured that the full 

extent of any deposition or transfer was captured in order to inform our understanding 

Figure 4.6 Palm (front) and back of left hand showing areas that were sampled 
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of GSR evidence dynamics.  The implications of this decision for the applicability of 

findings will be discussed in chapter six. 

 

4.2.4 Avoiding errors and stub contamination 

The propensity of GSR to be transferred from one surface to another, even when direct 

contact between surfaces does not take place, posed the problem of unwanted 

transfer during the experiments.  Meanwhile, the persistence of GSR – its propensity 

to remain adhered to a surface (as discussed in section 3.4.4b) – gave rise to the 

possibility of material from a previous experimental run being retained on surfaces 

involved in a subsequent experiment.  Moreover, the range was a ‘GSR-rich’ 

environment and the potential for acquisition of GSR from various surfaces was high.  

The transmission of GSR had to be limited to that which was intentionally being 

(Clockwise from top-left): Figure 4.7 Sample stubs in 

labelled sample tubes, pre-sampling 

Figure 4.8 Sampling the subject post-firing 

Figure 4.9 Sample in sealed tube, secured in two re-

sealable bags and labelled  

Figure 4.10 Removing the adhesive film from the SEM 

sample stub 
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simulated by the experiments.  Ultimately, if not controlled, unwanted transfers could 

have resulted in erroneous results.  These errors would either have been false-positive 

GSR presence whereby GSR was detected which had been deposited by a mechanism 

other than that which was being tested, or false-negative GSR presence, whereby GSR 

was unintentionally transferred away from a surface of interest.  In this way, the very 

‘evidence dynamics’ being investigated would have been the source of contamination 

and error, and posed a threat to the accuracy and reliability of results. 

Control measures were implemented which were intended to reduce the risks of 

contamination.  This was particularly crucial given that small numbers of particles were 

expected in many of the experimental transfer scenarios.  The development of 

appropriate measures and procedures was assisted by creating a step-by-step “script” 

of each experimental scenario.  These were examined to locate the junctures at which 

contamination or unwanted transfer might occur.  This process necessitated an 

appreciation of the ‘evidence dynamics’ associated with GSR (outlined in section 

3.4.4).  A section of one such script is provided in figure 4.11.  In this simple case, a 

shooter discharges the firearm and makes contact with a second subject, before both 

individuals are sampled.  The script demonstrates that a plethora of opportunities for 

contamination and unwanted transfer existed when carrying out the experimental 

work.  Not represented in this script are the risks that were present during the 

analytical phase and during processing in the laboratory, these are discussed in section 

4.2.4c. 
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4.2.4a Controlling GSR contamination on hands 

It was vital to ensure that any GSR recovered from the hands was a result of the 

transfer mechanism being simulated.  In the absence of any countermeasures, 

participants (shooters or transfer recipients) could have taken part in an experiment 

already contaminated with GSR from a previous experiment, or from contact with a 

surface at the range.  Therefore, all participants were instructed to wash their hands 

 

Subject (as 

well as 

shooter) could 

acquire GSR 

during firing  

The hands of 

the sampler 

could 

introduce GSR 

to samples or 

‘Fallout’ of 

GSR could 

contaminat

e the 

samples 

GSR from a 

previous firing or 

from contacts 

with surfaces 

could be on the 

shooter’s hands 

GSR from a 

previous firing or 

from contacts 

with surfaces 

could be on the 

subject’s hands 

Prior to 

sampling, GSR 

could be 

added or 

removed by 

further 

Shooter shakes 

hands with second  

Shooter discharges 

gun 

Sample stubs are 

prepared 

Hands of the two 

participants are 

sampled 

Figure 4.11 ‘Script’ of events and potential contamination risks highlighted which correspond to 

different points in the script 
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thoroughly using soap (from a dispenser) and water.  This was deemed adequate for 

the removal of GSR (Andrasko and Maehly 1977, Nesbitt et al 1976).  Control samples 

taken from participants following hand-washing during the pilot experiments had 

corroborated this.  Hands were then dried with disposable kitchen towel, avoiding the 

contamination that may have resulted from the use of a communal hand towel.  This 

washing took place in an adjacent room following each experimental run in 

preparation for the next.  Participants were instructed not to make contact with other 

surfaces such as doors or their own garments, from which GSR could conceivably have 

been acquired, or to which material have could been transferred.  Following hand-

washing and prior to the commencement of each experimental run, participants were 

control sampled.  The experiments and movements of participants were scheduled in 

such a way that there was very little delay between hand-washing and control 

sampling and between control sampling and participation in the experiment.     

4.2.4b Controlling contamination during the sampling process  

The sampling process involved a number of risks of contamination.  As a result, a 

systematic sampling protocol aimed at minimising the potential for stub contamination 

was developed.  All sampling was carried out 15-20 metres from the scene of the firing 

to restrict the possibility of contamination from the ‘fall-out’ of GSR (Fojtasek and 

Kmjec 2005, see section 3.4.4a).  Meanwhile, the sampler did not enter the shooting 

area, nor did any individual who was not involved in the experiment.  After Heard 

(2008), each stub was stored in its own, sealed stub container (manufactured by TAAB 

laboratories U.K.).  This would ensure that the stub was not exposed to the 

environment following sampling at the range and in the lead up to analysis in the 

laboratory.  This method of storage was chosen over storage boxes which can hold six 

stubs because of the risk of cross-contamination that might be associated with storing 

sample stubs next to one another.  These boxes were also deemed to be less effective 

in keeping stubs securely in position. 

The lid of the stub storage tube and the adhesive film covering the stub were not 

removed until the stub was about to be used.  Once the sample had been taken the 

stub was sealed in its labelled storage tube which, in turn, was placed within two re-

sealable plastic bags (supplied by TAAB Laboratories, U.K.), according to the procedure 
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set out by Heard (2008) (figure 4.9).  During sampling, powder-free vinyl gloves were 

worn and disposed of between samples in order to minimise the risk of contamination 

(figure 4.8).  Tweezers were used to remove the adhesive film from the stub (figure 

4.10).   While sampling, care was taken to prevent any contact between the sampler 

and the hand being sampled.   

4.2.4c Contamination risks during the laboratory analysis 

Opportunities for contamination also existed in the laboratory.  Measures that can 

assist in preventing contamination in this setting were surveyed in section 3.5 (see also 

Wright and Trimpe 2006).  Equivalent procedures were implemented during the 

analysis phase of this research project.  For example, samples were stored separately 

and not exposed to the surrounding environment, while carbon coating of the samples 

did not take place in the same room as the microscope equipment and stub grippers 

were thoroughly washed after each use.  The carbon coater was cleaned between 

sessions and new rods were used for each coating.  Analysis of the control samples 

confirmed that no contamination resulted from the coating procedure.  Importantly, 

the laboratory in question had never previously been used for GSR analysis and was, 

therefore, a ‘GSR-clean’ laboratory.   

Pilot experiments 

Pilot experiments were carried out prior to the experimental work.  As well as 

familiarising the author with the facilities, this set of experiments enabled the 

testing, piloting and rehearsal of the experimental procedures and scenarios which 

would be run.  The pilot experiments also served as training for the subjects. 

Issues were identified during the piloting and adjustments were made to ensure the 

smooth running of the live experiments.  Most of these issues concerned the 

choreography of experiments and sampling.   

The samples from the pilot experiments represented an initial guide to the level of 

GSR that might be expected in each scenario.  However, most significantly, these 

samples were used in the pilot analysis phase in the optimisation of the operating 

conditions and settings for the analytical equipment and software.  This process is 

described in detail later in the chapter (see section 4.3). 
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4.2.5 Validity 

When designing the experimental phase of the research, particular attention was paid 

to ensuring that any findings that were generated would be applicable to real-world 

forensic contexts.  In addition, the conditions of the experiments and the procedures 

of sample collection were intended to approximate the occurrence of, and response 

to, a firearms incident.  Formulating experiments that satisfy these requirements 

involves consideration of their ‘external’ and ‘ecological’ validity.   

In research design terminology, the ‘external’ validity of a study refers to the extent to 

which the results of a study may be generalised, or applied, to situations outside the 

laboratory.  Particularly in the context of laboratory-based (in this case, firing-range) 

experiments in forensic science, approximating the forensic reality  and ensuring what 

is termed ‘ecological’ validity – as suggested by Morgan et al (2009b) – will ensure that 

the findings can be employed to assist interpretation within a real-world forensic 

investigative context.  

In conducting the experimental phase of the investigation, there were a number of 

unavoidable limitations that affected the ecological validity.  Chiefly, there is the very 

fact that the experiments were simulations themselves and not real-world firearm 

incidents.  To control and gather the necessary data from criminal activity would be 

unethical, unsafe and impractical.  Experimentation at a police firing range was 

deemed the most suitable alternative.  Despite this, various steps were taken to 

ensure that the experimental scenarios that were developed were carried out in a way 

which mimicked real world scenarios.  These steps, including the decision not to clean 

the gun between test firings, are documented in the account of methods and 

procedures included in this chapter.  In addition, procedures for sampling (including 

sample preparation and the act of sampling), packaging, storage and subsequent 

analysis were intended to reflect the response to a firearms offence.   

The very aim of the experiments – to understand the transfer of GSR when contacts 

are made following the discharge of a firearm – is inherently linked to approximating 

the sorts of scenarios that may be played out following a firearm discharge.  In 

considering that a shooter may transfer GSR to another individual or that GSR may be 

deposited on a bystander, this investigation is concerned with what might actually be 
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occurring following forensic events, but which may be overlooked if it is believed that 

GSR is only deposited on the hands of the shooter.  Clearly, it was necessary to control 

a number of variables during the experiments.  Controls (such as hand-washing) were 

vital to safeguarding from threats to internal validity, but were perhaps not wholly 

“realistic” in the sense that such controls would not be in place in the real world.  The 

conflict between providing ecological and external validity and ensuring that the GSR 

transfers were a result of the mechanisms being investigated necessitated a number of 

methodological decisions and compromises.  However, controls and measures 

implemented during collection, storage and analysis, while countering threats to 

internal validity, also ensured external and ecological validity as these measures 

approximated those implemented in the real world to safeguard against 

contamination and to maximise the evidential value of the material which is collected. 

The applicability of the findings to forensic contexts will be discussed in greater detail 

in chapter six, while the limitations of extrapolating from the present study, and from 

experimental studies in general, will be discussed in section 8.2.4.  Consideration will 

be afforded to the application of experimental findings to the interpretation of GSR 

evidence in real world forensic contexts, taking into account multiple sources of 

uncertainty.  It will be suggested that a Bayesian Network approach can facilitate this.    

4.3 Sample analysis 

All samples stubs taken during the experiments were analysed in order to quantify the 

presence of GSR.  Detection and analysis methods were extensively reviewed in 

section 3.3.  Particle analysis using SEM-EDX with automated detection and analysis 

software (INCAGSR, Oxford Instruments, U.K.) was employed in the analysis phase of 

the experimental work.  The principles of imaging and detection using SEM-EDX are 

surveyed before details are provided of the specific procedures involved in the use of 

the automated SEM-EDX system for this piece of research.   

4.3.1 Imaging and detection using SEM-EDX 

Imaging and detection using SEM-EDX relies on the interaction of the specimen with an 

electron beam.  The application of thermal energy to the tungsten filament results in 

the generation of an electron beam by thermionic emission.  Within a vacuum, that 
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prevents oxidisation of the filament and interference with the electron beam, the 

beam is focused, moved and angled using electromagnetic coils.   The development of 

field emission guns provides an alternative means of producing an electron beam and 

enables enhanced current density, enhanced spatial resolution of imaging and 

increased emitter longevity. 

The electron beam interacts with the sample in a number of ways: 

1. Secondary electrons are emitted when the electron beam results in the 

ionisation of atoms in the specimen.  These secondary electrons are used by a 

secondary electron detector to form an image.  Bright areas correspond to 

regions and features that are responsible for the emission of large quantities of 

these electrons 

2. Backscattered electrons are those which are detected following the interaction 

of the beam and specimen.  Electrons are reflected by elastic scattering.  The 

number of these backscattered electrons, and therefore, the strength of the 

signal are dependent on the atomic number of the constituent element; with 

elements of higher atomic number appearing brighter on an image owing to 

the production of greater number of electrons (this is central to the detection 

of features of interest using INCAGSR).   

3. X-rays are emitted by atoms and correspond to the change in energy associated 

with the dislocation of an electron from an inner shell, owing to excitation 

caused by the electron beam.  This vacancy is filled by an electron from an 

outer shell and it is the difference in the energy associated with these shells 

that is emitted in the form of X-rays. 

X-rays are measured using an energy-dispersive spectrometer.  The energy and 

signature of the emitted X-rays correspond to the energy differences between shells 

and their energy is characteristic of the atomic number of the specimen.  It is this 

principle that enables the identification of specific elemental contributions from the 

sample.    

While each element has a family of characteristic X-rays associated with it, several 

issues can arise when interpreting spectra.  These stem from spectral artefacts and the 

limited resolution capacity for certain pairs of elements.  ‘Escape peaks’ arise as a 
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result of X-rays that are generated by the detector crystal.  In some cases, X-rays that 

are processed almost simultaneously are not distinguished.  Rather, the energies are 

summed and the signals are ‘piled-up’ on the spectrum plot.  The software package 

(INCAGSR) that was employed during the analysis of GSR samples in the research 

project was able to deal with these issues.  The ‘pulse pile-up’ inspector resolved 

instances across the energy range that would otherwise have caused ‘sum peaks’.  The 

input rate set during the analysis was such that any sum peaks that remained would 

have been equivalent to a negligible concentration.  The INCA AutoID algorithm used 

by the system to analyse the contents of the spectrum peaks ensured that the 

elemental contributions to peaks were correctly identified, even in cases when peaks 

overlapped.  The classification scheme used INCAGSR is compliant with the ASTM 

standard (documented in section 3.2.3) and upon interpretation of the spectra, the 

system assigned features to ‘GSR’ or ‘Environmental’ categories.  INCAGSR also allows 

the operator to reacquire spectra for individual features to verify their composition, 

while it is also possible to reclassify features according to their elemental composition 

(this will be revisited in section 4.3.5).  

The peaks that were of particular interest when detecting the GSR produced by the 

ammunition used in the experiments were:  

 Lead (Pb) Lα 10.5517 and Mα 2.3426 

 Barium (Ba) Lα 4.663 

 Antimony (Sb) Kα 26.3595 and Lα 3.4440 

The peak positions corresponding to a ‘Characteristic’ GSR particle that was detected 

during the analysis are shown on the spectrum in figure 4.12. 
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4.3.2 The equipment 

4.3.2a The microscope and detector 

The SEM used for the analysis was a JEOL JSM-6480LV SEM which was fitted with an 

Oxford INCA X-sight Energy Dispersive Spectrometer30 (figure 4.14). 

4.3.2b The analysis software 

INCAGSR (Oxford Instruments, U.K.) was the analysis platform used for the detection 

and analysis of GSR on the samples31.  This is one of a suite of add-ons which are 

available to supplement the basic INCA suite used to run the SEM-EDX for analytical 

work.  Realising the analytical potential of INCAGSR required extensive training and 

refinement of the set-up process, effective sample preparation and careful setting-up 

and calibration of the SEM and software.  A detailed account of these procedures is 

presented in the following sections, beginning with the preparation of samples and 

culminating with the filtering and extraction of relevant data.  This represents on the 

                                                           
30

 Located in the Department of Earth Sciences, University College London (UCL) 
31

 The software was provided as part of a collaboration with the manufacturers, Oxford Instruments Ltd  

Figure 4.12 EDX Spectrum of a ‘Characteristic’ GSR particle with peaks of 

interest marked   
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one hand, an explanation of the measures taken to ensure the accuracy, reliability and 

consistency of results, as well as representing a guide for future research or work 

which employs a similar approach to sample analysis.  

4.3.3 The procedure 

4.3.3a Sample preparation 

One at a time, stubs were removed from their individual stub containers and carbon 

coated to prevent charging, using an Emitech K950 coater.  Samples were then 

returned to their individually labelled container.  This was the full extent of the sample 

preparation required before the SEM-EDX analysis and meant that samples were only 

briefly exposed to the environment. 

4.3.3b Loading the samples and setting up the SEM 

In each session of sample analysis (from henceforth, an analysis ‘run’), one, two, three, 

four, or more carbon-coated stubs were removed from their containers using stub-grip 

tweezers and placed on the SEM plate, the centre of which was always occupied by the 

calibration stub (see section 4.3.4f).  Care was taken to record the positions of the 

individual stubs on the plate.  The plate was placed carefully in the vented chamber of 

the SEM whilst wearing vinyl gloves to prevent the introduction of any debris.  A 

vacuum was then created and the stage driven so that the ‘x’ and ‘y’ positions meant 

that the beam was centred on the cobalt (Co) on the calibration stub.  The working 

distance was set to 10mm (a requirement for INCAGSR), the accelerating voltage was 

set to 20kV and the backscattered electron mode was activated on the SEM control 

screen.  At this point, the ‘z’ (height) was adjusted (without altering the working 

distance) so that the cobalt appeared more or less in focus, while the gun was aligned 

and the aperture adjusted so that there was a clear image with no disturbance at the 

perimeter. 

Next, the stage was driven so that the beam was centred on the sample which was to 

be analysed. Secondary electron mode was enabled and the beam was finely focused 

on the sample.  This involved coarse focusing, correction of ‘X’ and ‘Y’ stigmatisms and 

fine focusing on a feature that was relatively flat at between 5,000 and 10,000 times 

magnification.  It was vital that the stage remained at this final ‘z’ position for the run.   



215 

 

Owing to the minute difference in height of the GSR sample and the calibration 

sample, if the ‘z’ was changed so that the calibration sample was in perfect focus, the 

target sample would not have been in focus and small features would have been 

missed (for settings and operating conditions see table 4.2).      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

SEM filaments 

Periodically, SEM filaments will burn out and will need to be replaced.  The 

longevity of the filament depends on a number of factors.  Turning the beam on and 

off and running at a high kV will reduce the lifetime of a filament, while a defective 

batch or debris on the filament will limit its life or cause its output to fluctuate.  

SEM filaments (JEOL K-type filaments) represented the major consumable during 

the analysis process (figure 4.13).  Measures were taken which prolonged the 

existence of a filament such as thorough cleaning of the Wehnelt cap, gradually 

increasing the kV and minimising the turning on/off of the beam.  Nevertheless, the 

nature of the analysis meant that the filament was active for long periods; 

fluctuations in filament performance and intermittent filament ‘burn outs’ were 

inevitable.  Supplies of new filaments and clean Wehnelt caps were kept on hand so 

that when problems did occur, interruptions to analysis runs were minimised. 

Left: Figure 4.13 The JEOL K-type filaments used in the SEM during the sample 

analysis 

Right: Figure 4.14 The SEM and two control screens. INCAGSR control screen 

(left) and microscope control (right) 
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4.3.4 INCAGSR and calibration of the SEM: setting up and running 

the automated search and analysis 

Setting up the GSR detection software and calibrating the SEM prior to an analysis run 

comprised several stages.  At least one hour was needed to set up the system, 

although the process was sometimes longer due to variation in the performance of the 

SEM. Careful preparation and calibration ensured the generation of accurate, reliable 

and repeatable results. 

4.3.4a File management 

The GSR navigator was opened in INCA and at the beginning of each session.  The 

system prompted the naming of the project, say ‘Run 1’, for example and then the 

naming of the sample(s) to be analysed (figure 4.15).  Rather than using a complex 

code (Scenario 3: Run 1: Shooter Control, for instance), samples had previously been 

labelled 1, 2, 3... etc. and the more complex reference assigned on a master sheet.  

This helped to ensure that results were assigned to the corresponding sample.  All 

samples on the current SEM plate were entered and saved as part of the project 

before moving to the next step. 

 

                                                           
32

 ‘Field’ is the term used in INCAGSR to describe the units into which an analysis area is divided.  INCA 
generates a backscattered image of each field and highlights features within this field which are to be 
analysed.  The number of fields will vary as a function of the size of the area being analysed and as a 
function of the magnification. 

Conditions for automatic search using 

INCAGSR, Oxford Instruments, U.K. 
Setting 

Magnification 200 X 

Accelerating voltage 20 kV 

Working distance 10 mm 

Field width32 

Detector 

626.8 µm 

Backscattered electron 

Table 4.2 Operating conditions for SEM and INCAGSR 
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4.3.4b Area layouts 

Defining areas at the ‘Area Layout’ stage has already been mentioned with regard to 

instructing the system as to the location of the ‘Cobalt reference position’.  During this 

stage, areas that were to be part of the analysis were defined; this involved marking 

where they were located on the stage.  In INCAGSR, areas can take the form of a point, 

a circle, a rectangle, a line, or a reference position (for quant optimisation/beam 

compensation).  The layouts created for this project consisted of reference positions 

and circles – the samples were taken using circular SEM stubs and the whole of the 

stub was of interest.  ‘New area layout’ was selected and the layout was named and 

saved.  ‘Add’ was selected under the ‘Area Layout’ tab and ‘Reference’ was selected 

from the dropdown menu.  The stage was driven so that Cobalt filled the field of view, 

then ‘Next’ was clicked so that the centre of the field was saved as the reference 

Random access memory (RAM) 

INCAGSR is a complex program which involves many processes running 

simultaneously.  Technicians from Oxford Instruments, U.K., recommended that 

extra RAM was installed to prevent INCAGSR becoming restrictively slow or crashing 

during set-up and analysis.   

Figure 4.15 INCAGSR screenshot – project naming and file management under 

the ‘Project’ tab  
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position.  Once named ‘Cobalt reference’ this position appeared as a very small circle 

at the centre of the stage mimic.  

In order to define the samples as areas, ‘Add’ was clicked and this time, ‘circle’ was 

selected.  INCA then prompted the operator to drive the stage ‘to the first reference 

position’ and subsequently, to the second and third.  These reference positions 

corresponded to three points on the circle from which INCA could ‘draw’ a circular 

area.  In Secondary electron mode (to render the edge of the stub visible) the stage 

was driven so that the centre of the beam corresponded to 12 o’clock, then 4 o’clock, 

and finally, 8 o’clock, clicking ‘next’ between stage movements before clicking ‘finish’ 

at the end (figures 4.16 and 4.17).  The area was named according to the sample being 

analysed (‘sample 1’, ‘sample 2’, etc.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

X X 

X 

beam X axis 

beam Y axis 

Above: Figure 4.16 Diagram showing three marked points on 

sample stub (X) from which INCAGSR was able to draw the area 

layout.  Centre of stub shown in line with beam position 

Right: Figure 4.17 Cutaway of bottom-right of stub showing 

beam position being aligned to edge of stub at 4 o’clock 
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Each area layout contained a reference (Cobalt) position and one or more sample 

areas, depending on the number of samples to be analysed.  Each sample area was 

split into regular fields by INCAGSR.  The number of fields into which an area is divided 

varies as a function of the level of magnification.  For 200 times magnification, the stub 

was divided into around 336 fields.  When scanning and analysing the contents of 

these fields, the beam ran from one field to the next from right to left.  At the end a 

row, the stage would move so that the beam began the next row on the right hand 

side and again, ran from right to left (figures 4.18 and 4.19). 

 

 

 

 

 

 

 

 

 

Above: Figure 4.18 INCAGSR 

screenshot – two stub areas (one 

highlighted) and a Co reference 

position shown on an area layout 

relative to the stage and beam 

under the ‘Area Layout’ tab 

Left: Figure 4.19 INCAGSR 

screenshot – stage mimic showing 

sample stub area divided into 335 

regular fields.  Detected features 

are shown 
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The facility existed to select a number or percentage of fields to be analysed.  

Moreover, this sample could be a regular line or segment (for example, the first 50 

fields) or a random selection of fields.  During this study the entirety of each sample 

was analysed, meaning that this facility was not used for the analysis phase.  However, 

field selection was employed during the pilot analysis for the optimisation of settings.  

The potential for the use of this feature for routine analysis will be assessed in section 

6.3.2. 

4.3.4c The recipe set-up 

Parameters which define the detection, acquisition, measurement and classification of 

features during a run comprise a ‘recipe’ in INCAGSR.  These recipes may be modified, 

refined, or deleted and are saved as ‘.rdb’ files for use with different samples at 

different times and can be associated with multiple projects.  The default recipe ‘GSR’ 

was selected was chosen and the project saved so that the recipe was embedded as 

part of the project (figure 4.20).  The same recipe was used for all runs; all samples 

were thus analysed under the same settings and parameters.  The default recipe was 

modified slightly for this study.  High magnification will enable the detection of the 

smallest particles but will significantly increase the time taken to analyse a sample.  

During ‘pilot’ analysis and testing, it was determined that sub-micron particles could be 

detected at 200 times magnification  

 

 

 

Figure 4.20 INCAGSR screenshot – Selecting the recipe and creating and 

embedding the database under the ‘Recipe’ tab  
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Figure 4.21 INCAGSR screenshot – INCAGSR tab navigator 

Training and pilot analysis 

The author was provided with an introduction and practical tutorial in using 

INCAGSR by an applications specialist from Oxford Instruments Ltd and also had 

access to the INCA feature Instruction Manual for GSR (Oxford Instruments, U.K.).  A 

period of ‘pilot’ analysis followed the training.  Using samples taken from the pilot 

test firings, an appropriate recipe was developed and time was spent optimising 

conditions.  Particular time was taken to determine appropriate threshold levels, a 

suitable magnification and to perfect the brightness and contrast levels as well as 

the microscope settings required to optimise the X-ray count rate.   
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4.3.4d Microscope set-up 

The first step in this stage of the process was to optimise the X-ray count rate.  The 

stage was driven to the cobalt section of the calibration stub and a spectrum was 

acquired.  Around 3,000 counts are required for analysis using INCAGSR and the spot 

size was tweaked to achieve this.  Depending on the status of the filament, a spot-size 

of 48-53 was needed to optimise the count rate. 

4.3.4e Quant optimisation  

This important stage served to measure peak positions and the resolution of the 

detection system with relation to the reference sample.  Completion of this process 

permitted the identification of elemental contributors to the peaks produced by EDX.  

The microscope stage was manually driven so that the beam was centred on the 

Cobalt section of the calibration stub (see section 4.3.4f) and ‘Cobalt (Co)’ was chosen 

as the optimisation element from the dropdown list.  Co, along with Si, Ti, V, Cr, Mn, 

Fe, Ni and Cu are cited as elements with which accurate calibration is possible.  Cobalt 

was selected as Oxford Instruments recommend it as an optimisation element when 

using an accelerating voltage of 20kV.   A livetime of 50.00 seconds was chosen, in 

accordance with the guidelines provided in the feature manual, thus ensuring that the 

spectrum generated was of sufficient quality to provide an accurate reading of the 

peak positions.  Acquisition then began and on completion, ‘measure’ was pressed and 

INCAGSR compared the counts in the peak to any previous acquisition; if this was the 

first ‘quant opt’ of the run, ‘Measurement OK’ would appear (figure 4.22).   

During the Quant Optimisation stage, it was possible to set up periodic ‘quant opt’ 

measurements during an analysis run which serve as a measure of the stability of the 

beam current.  By intermittently performing a ‘quant opt’ from a standard reference 

(in this case the cobalt), INCAGSR was able to compare the counts in the elemental 

peak that was acquired to the previous value, thus monitoring any variation in the 

beam current over time.  While small variations (often due to temperature) do not 

affect the quantitative results, larger shifts are undesirable.  The run was set up so that 

these quant optimisations were performed every 120 minutes.  The manufacturers 

recommend performing at least one quant optimisation per analysis run and that 

repeats during long runs are advisable.   However, the system is designed to maintain 
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stability given variations in temperature and most routine analysis can be carried out 

uninterrupted.  During the pilot analysis, quant optimisations were performed at 30 

minute intervals, although the variability that was observed was very minimal.  Such a 

small delay was, therefore, deemed unnecessary and quant optimisations were 

scheduled to take place every two hours.  The result of this set up meant that, at the 

commencement of the run, and every two hours thereafter: 

1) Analysis of the current field would pause 

2) The stage would drive so that the beam was centred on the ‘Co reference’ 

position 

3) A Quant optimisation would be performed and a spectrum would be generated 

over a 50.00 second period 

4) The measurement would be compared to the previous value and: a) the 

conditions would be satisfied and the stage would drive back to the field being 

analysed prior to the quant optimisation and resume, or: b) the quant 

optimisation would be deemed to have failed, analysis would be halted and an 

error message would be displayed 

 

 

 

Figure 4.22 INCAGSR screenshot – performing a quant optimisation using the 

cobalt reference under the ‘Quant Optimization’ tab  
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4.3.4f Feature detection 

During this part of the set-up, the detection of features by the system was optimised.  

Again, due to varying conditions and the orientation of the samples, this stage had to 

be completed at the beginning of each run.  The feature detection screen has two tabs: 

‘Calibration’ and ‘Thresholds’. 

A) Calibration 

This tab was addressed first and involved setting up the backscatter detector.  

Essentially, the object here was to calibrate the ‘eye’ of the system so that black 

(background) areas were ignored and bright features were detected and subjected to 

analysis.  Upper and lower level grey thresholds were set so that any feature that fell 

within this range was detected.  Effective settings here ensured that unnecessary time 

was not spent detecting and acquiring spectra for unwanted features (lower than 

optimum thresholds), thus increasing the time per field and ensured that features of 

interest were not overlooked (higher than optimum thresholds). 

A calibration stub was needed for this stage of the process.  According to the INCA 

feature manual, the reference sample employed should display a range of 

black/grey/white under the SEM.  During the aforementioned introductory tutorial 

demonstration, a stub on which pieces of cobalt, gold and rhodium were aligned was 

used.  Details of the preparation of a replica backscattered electron calibration stub 

are provided below: 

1) A ½ inch aluminium SEM stub was taken and the top 5mm was ‘machined’ off 

and smoothed 

2) A self-adhesive carbon disc was affixed to the surface 

3) Pure cobalt (Co) and rhodium (Rh) samples set in silver and brass mounts, as 

well a strip of pure gold (Au) film were  cleaned with methanol and placed in an 

ultrasound cleaner to remove any impurities or debris 

4) Under a light microscope and using a pair of cleaned tweezers, the Co and Rh 

were set side-by-side with a small gap between them 
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5) The Au was set in silver cement between the Co and Rh and manipulated until 

all three elements were aligned on a horizontal plane that was also level with 

the top of a regular aluminium stub coated with a carbon disc  

N.B gold leaf was used initially but it proved to be too thin and fragile to be securely 

mounted.  A strip of thicker gold film was sourced instead and was mounted on its thin 

edge on silver cement so that it aligned on a horizontal plane with the cobalt and 

rhodium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The three materials were placed as close as possible to ensure that all three could be 

included in the same field of view at 30 times magnification.  It was also important to 

make sure that the three materials were aligned along a horizontal plane and 

moreover, to ensure that this plane was also on a level with the tops of the target 

sample stubs in the mount.  Failure to achieve this would have meant that the system 

was calibrated to detect features at distances that were inconsistent with the samples 
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Figure 4.23 (A) Side view of backscattered electron calibration stub showing the 

three reference materials on a horizontal plane relative to an unaltered sample 

stub 

(B) Plan view of backscattered electron calibration stub  
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being analysed, thus potentially giving rise to errors.  The beam was always focused on 

the sample rather than the calibration stub to account for any minor discrepancy in 

distance from the beam. 

With the reference sample in place, the field of view was driven over the reference 

stub so that all three elements were viewed on the same screen.  Making sure that the 

sample was being viewed using BSE imaging, the auto contrast and brightness (ACB) 

was turned off and the start button was clicked in order for the system to generate a 

continuous live image.  The yellow line that appeared was dragged so that the two 

ends of the line were over the Co and the Rh, passing over the Au.  A graph 

simultaneously appeared with peaks corresponding to the distribution of signal 

intensity along the area that the line covered.  In this case, eight peaks appeared – 

each of which pertained to a different material along the line, in order from left to 

right.  Peaks appeared for the different materials (chiefly brass) in which the Co and 

the Rh were mounted and for the background carbon.  These irrelevant peaks had to 

be highlighted and ignored and only the Co, Au and Rh peaks were considered.  The Co 

appeared grey on screen with Au and Rh bright white, while the background carbon 

was black.  The brightness and contrast were manually adjusted so that the three 

peaks of interest on the graph settled and appeared as follows: Co was mid grey, 

roughly half of the height of the histogram, peaking at about 128 on the scale; Au 

reached the top of the histogram and was saturated as much as possible; Rh also 

reached the top of the histogram and was slightly less saturated (more ‘spiky’ than the 

Au peak).  Optimising the signal level to this pattern was achieved by toggling the gain 

(contrast) which altered the separation of the plateaux of the waveform and adjusting 

the offset (brightness) which moved the waveform up and down.  The required levels 

of contrast and brightness varied slightly as a function of SEM and filament 

performance from day to day.  

B) Thresholds 

Under this tab, the same calibration stub was used to set thresholds on the image.  In 

essence, if the features (i.e. the Co, Au and Rh) could be seen on the threshold image, 

features of interest on the samples being analysed would not be missed.  The 

reference sample was used here rather than a stub containing GSR particles because it 

would have proved difficult to locate and verify the small and rare features.  The 
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‘cobalt’ reference was selected in the dropdown menu before ‘Move to Reference’ 

was clicked; clicking ‘Start’ generated an electron image.  The grey level (representing 

signal intensity) was displayed on a graph, along with lower and upper thresholds.  

These thresholds were adjusted by dragging them along the peak so that the Co was 

just detected (i.e. it was set at the point where Co was displayed red and the 

background black).  Routinely, this corresponded to a peak on the graph with a 

threshold at 128 and 155.  Also at this stage of the process, it was possible to schedule 

beam compensation checks during the analysis run.  Drift of the beam current affects 

the image thresholds and INCAGSR allows for the automatic compensation of this drift 

during the run.  Rather like the quant optimisation scheduling, the system periodically 

returned to a reference and adjusted the thresholds to ensure the consistent detection 

of features.  ‘Cobalt reference’ defined as the area to be used for the beam 

compensation check.  The checks were set to take place every 30 minutes (this was 

deemed appropriate for a run time of several hours) and ‘save for report’ was checked 

which meant that a graph of the alterations in beam current would be plotted in the 

report (figure 4.24).  At this point, it was also possible to instruct the system as to the 

acceptable levels of fluctuation in beam current.  Following the advice of technicians 

from Oxford Instruments, the system was set to halt the run if the Cobalt peak position 

changed by +/- 20 from its original peak position (usually 128). 
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4.3.4g Commencing and running the analysis 

Once the set-up was complete, the ‘batch set-up’ (or analysis schedule) was examined 

to verify that all stages of the set-up had been completed and that the samples were 

assigned to the corresponding areas for analysis. 

‘Play’ was clicked to start the run.  During the run, a stage mimic was displayed on 

which the progress in analysing the sample could be charted and on which the 

locations of detected features were displayed.  On another tab, a live backscattered 

electron image of the current field could be viewed on which the GSR particles were 

shown.  A third tab displayed a list of the detected and analysed features, while a 

spectrum derived from the feature which was most recently analysed appeared on the 

central screen along with a backscattered image of the particle.  Finally, a progress bar 

displaying an estimate of the ‘remaining analysis time’ appeared alongside a count of 

the number of completed fields (figures 4.25, 4.26, 4.27, 4.28). 

Figure 4.24 INCAGSR screenshot – beam compensation and quant optimisation 

graphs relating to the analysis of a sample stub.  ‘Stability’ tab under ‘Review 

Classes’ tab  
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It was possible to leave INCAGSR unattended.  At the end of the run, the system had 

been programmed to automatically turn off the beam and filament and to save the 

results to disk.  However, occasionally, owing chiefly to the burning out of the filament, 

analysis was halted.  In order to be able to rectify any interruptions as they emerged, it 

was elected that the analysis should be attended as far as was possible.   
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Top: Figure 4.25 INCAGSR screenshot – 

run screen showing live analysis of a 

sample under the ‘Run’ tab 

Middle-left: Figure 4.26 Spectrum and 

image of the latest feature in the analysis 

Middle-right: Figure 4.27 Status of analysis 

run showing field progress, time to 

completion and a running total of 

detected features by category 

 

Above: Figure 4.28 Live stage mimic showing analysis 

progress.  Features are displayed on completed (light 

green) fields; current field of analysis (orange) is 

shown, and the remaining fields are shown (grey) 
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4.3.5 Post-run sample processing 

On the completion of a run, it was possible to explore the saved data, backscattered 

images and spectra for all features (figures 4.29, 4.30. 4.31, 4.32, 4.33).  However, the 

outputs were not, at this stage, suitable for extracting GSR counts.  Rather, a number 

of processes were carried out before the data could be exported into a software 

package for analysis.  The ‘Review Features’ stage on the INCA flowchart revealed all of 

the features that were detected and for which spectra were obtained in every field  

From the drop down menu, only ‘Characteristic’ and ‘Consistent’33 features were 

checked so that the feature list was now a list of GSR particles only; environmental and 

unclassified particles were ignored for the time being.  For each sample, the stage was 

driven to a number of features and fields for verification via the ‘relocate’ field/feature 

button which drove the stage back to a particular field/feature from the list.  It was 

then possible to ‘reacquire’ an image of the fields and to reacquire a spectrum for an 

individual feature.  This process served as a manual verification of a random sample of 

the detected features.  In no cases during the investigation was a conflicting spectrum 

obtained on a second pass.   

 

                                                           
33

 N.b. INCAGSR employs the terms ‘Unique’ and ‘Indicative’.  The use of ‘Characteristic’ and ‘Consistent’ 
is now preferred, according to the latest ASTM standard (ASTM E1588-10e1) (see section 3.2.3) 

Figure 4.29 INCAGSR screenshot – List of detected features and associated data, 

image and spectrum for the selected feature.  Backscattered image of the 

selected field is also shown under the ‘Review Features’ tab 
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Top: Figure 4.30 INCAGSR screenshot – summary of completed analysis of a 

sample stub.  ‘Summary’ tab under the ‘Review Classes’ tab  

Bottom: Figure 4.31 INCAGSR screenshot – summary of detected features for a 

sample stub by feature classes.  ‘Classes’ tab under the ‘Review Classes’ tab 
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Routinely, the list of features did contain a number of other errors which had to be 

manually processed.  These included double counting of GSR particles at boundaries 

and instances where INCAGSR had split one particle into several smaller particles.  

Top: Figure 4.32 INCAGSR screenshot – stage mimic showing all detected 

features on a sample by class.  ‘Stage mimic’ tab under the ‘Project’ tab  

Bottom: Figure 4.33 INCAGSR screenshot – list of all detected features and 

corresponding data which was exported to Excel under the ‘Review Data’ tab 
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Without processing, these anomalies would have introduced error into the GSR count 

data.  Identifying, processing and rectifying these results (particularly in a highly 

populated sample) took extreme care.  A set of procedures and rules for completing 

the task was developed. 

4.3.5a Double-counting at boundaries  

In a limited number of instances, GSR particles (especially large ones) came into 

contact with the left-hand edge or bottom edge40 of a field and consequently, spanned 

two fields.  In some cases, when this overlap was large enough, the same feature 

would be counted more than once.  Clearly, this was undesirable as the GSR count 

would be overestimated.  The following process was carried out 

1. Scrolling down the list of GSR particles, features that touched, or that were 

markedly near, the left-hand or bottom edge of the saved image of the field 

were noted  

2. The adjacent field was located by a) selecting the next numerical field if 

concerned with a particle which touched the left-hand edge b) locating the field 

directly below using the stage mimic 

3. If a feature was found at the corresponding edge it was necessary to determine 

if it was the same feature.  A checklist was used here: 

              

 Is the feature located at a point along the edge which corresponds to the 

original feature? 

 Is the shape of the feature broadly the same (allowing for a degree of 

cut off)? 

 Do the spectra and element quantification correspond? 

 

If the answers to the questions above were ‘yes’, the feature had been double 

counted.  If features needed to be merged, the largest feature would be taken and its 

size amended in Excel.  The length of the feature was combined with the length of the 

                                                           
40

 INCAGSR covered fields from right to left in rows.  At the end of a row, the stage would drive to the 
next row down and cover fields from right to left again.  Fields were never covered from left to right.  
Hence, if a feature was to span two fields it would touch the left-hand/bottom edge of the first field it 
spanned and would be seen at the right-hand or top edge of the adjacent field 
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feature to be joined with it if the two features were adjacent.  Failing this, the callipers 

on INCAGSR were used to provide a measurement of the feature across the two fields.  

The original spectra was retained and merges were marked in the Excel spreadsheet by 

use of a ‘/’ between the feature numbers.  For example, if features 203, 204 and 205 

had to be merged together, the new feature would appear as 203/204/205 with a 

length measurement combining all three features.  Finally, the feature(s) which 

became part of another feature were deleted from the list (and saved for reference on 

another sheet) so that they were no longer counted as separate particles.  

4.3.5b Feature fragmentation 

The problem of ‘feature fragmentation’ was more commonly encountered.  In certain 

instances a single feature was designated as several separate features by INCAGSR.  

This splitting of the feature into a number of separate particles was encountered when 

the brightness varied over the particle according to its surface texture rather than due 

to variations in the elemental composition across the particle.  Instances of this were 

easily identified according to the following process: 

1. Scrolling down the list of GSR particles, features which were located which 

were located in the same field 

2. On examination of these features, if they were clearly separate particles no 

change was made, yet if they appeared to be part of a single feature, a checklist 

was used: 

 

 After zooming in on the highlighted features, are the features clearly joined 

with no blank (black) space between? 

 Do the suspected joined features share corresponding elemental spectra? 

If the answers to the questions above were ‘yes’, the features were considered to be 

part of the same particle and were merged.  In such cases, the same merging process 

outlined for double-counting was carried out.  There were a few occasions when this 

process was made more complicated.  For example, separate GSR particles frequently 

occurred in close proximity or were joined via another piece of debris.  These particles 

had markedly different elemental spectra and could thus be identified as being 

separate.  Sometimes, existing within the same cluster, were particles that had been 

correctly treated separately as well as those which had erroneously divided.  In such 
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cases it was necessary to merge some particles and maintain some separate features.  

Determining which features to merge and which to retain was more complex here but 

followed the same procedure as above.   

There were a few particles which, when divided into constituent parts, exhibited 

slightly different spectra across the surface of the feature.  Particularly in the case of 

(large) spherical particles it was not uncommon for a single particle to be divided into 

many separate features as a result of these variations (and also due to a very uneven 

surface texture).  When some of these features, which clearly formed part of the same 

particle were, for example, PbSb and others were PbSbBa, the merged feature would 

be assigned the PbSbBa spectra.  Finally, it is worth noting that a handful of particles 

were both ‘double counted’ at field boundaries and erroneously ‘fragmented’ by 

INCAGSR.  In these situations, both filtering and merging processes were followed. 

4.3.5c Concentrations of particles 

There were a number of instances in which a conglomerate of large particles was 

detected on a sample.  These conglomerates contributed significantly to the particle 

count for the sample in question.  Such concentrations of particles could be identified 

by scrolling down the list of particles to find fields which contained a very high number 

of GSR particles, or, alternatively, these instances could be identified by viewing the 

BSE image for each field.  It was necessary to determine whether these concentrations 

represented clusters of many individual particles, or whether these has been 

anomalously separated by INCAGSR and were in fact best treated as a single particle 

and ‘merged’ in the manner described above.   

Clusters or conglomerates were relatively rare.  Some of those which were identified 

consisted of angular fragments which appeared to ‘fit’ together, suggesting that they 

originated as a single piece of material.  The concentrations of material included many 

smaller, satellite and fragmented particles that were associated with the larger 

particles.  During the post-run sample processing, the ‘fragmented’ particles were 

assessed and it was decided that where there was clear separation between the 

fragments, the particles would be treated as separate entities.  These ‘fragmented’ 

particles and clusters will be revisited in sections 5.5.2 and 6.2.1.   
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4.3.5d Summary 

The need for post-run feature filtering and processing underlines the dangers 

associated with merely ‘reading off’ the GSR count produced by INCAGSR.  Failure to 

address the inconsistencies or errors in feature counting by the system could, in 

theory, result in an inaccurate final GSR count.  In the case of some of the samples 

analysed as part of this project, significant false positives could have resulted without 

manual verification.  In one instance, for example, before processing a sample 

registered 549 GSR particles only for that number to be reduced to 443 following 

examination and filtering of the feature list during the post-run sample data processing 

stage.  Clearly, such a shift in the GSR count underscores the importance of checking 

the outputs of the system, particularly when determining the quantity of GSR is crucial 

(as in this study).  Conceivably, over-estimation of the GSR count could have serious 

ramifications in a real-world forensic investigation and this will be addressed in section 

6.3.2.  
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Chapter 5 The experiments: Results, analysis 

and observations 

5.1 Outline 

This chapter presents the results of the SEM-EDX analysis of the samples taken during 

the experimental work41.  The results that are presented were generated during 

analysis using INCAGSR and have been processed according to the procedures outlined 

in section 4.3.5.  The particle counts for the runs of each scenario are presented and 

then the data on the sizes of the particles involved in the different simulated 

mechanisms of transfer and deposition are considered.  An analysis of the efficiency 

and dynamics of the transfers in scenarios three and four is provided, while additional 

observations that were made during the sample analysis phase are documented.   

5.2 GSR particle counts 

This section deals with the GSR particle counts that were generated during the 

SEM-EDX analysis of the samples.  It is important to note that the particle counts 

documented below only include those particles that were ‘characteristic’ or 

‘consistent’ with the presence of GSR, according to the latest ASTM standard (see 

section 3.2.3).  Thus, only GSR particles were counted; environmental and 

unclassified features had been filtered out.  These sections deal with the results of 

each scenario in turn.   

A note on control samples 

As outlined in chapter four, a control sample was taken from each participant prior 

to each experiment in order to identify any contamination that had not been 

removed by hand-washing.  As anticipated, the majority of control samples that 

were subsequently analysed yielded no GSR particles.  However, in two cases, a 

small number of GSR particles were detected on the control sample.  The samples 

in question were taken from the individual who would receive the handshake in 

                                                           
41 A selection of the results in this chapter are presented in French et al (2013), see Appendix II 
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the third run of scenario three, and from the shooter before the gun was fired in 

the third run of scenario four.  One and five GSR particles were recovered 

respectively (table 5.1). 

 

 

 

 

 

In the following sections, acknowledgement is made of cases in which the results 

from the two control samples meant that there was the possibility of a small error 

in the results for that sample/run.  The possible implications of these errors are 

considered.  When no such acknowledgement is made, it should be assumed that 

the relevant control sample was negative42.  No further action was taken and the 

particle counts and particle size analysis were not adjusted as it could not be 

determined which, if any, particles were not present as a result of the firearm 

discharge.  Explicitly stating the presence of low levels of contamination rather 

than attempting to adjust the particle counts was also the approach adopted by 

Lindsay et al (2011a).  The level of contamination in both cases is likely to have 

been very low, as indicated by the control sample.  Moreover, although control 

sampling is unlikely to have removed all material from the subject’s hands, it will 

have assisted in the removal of at least some of the few persistent GSR particles.  

As a result, the influence of contamination on the results would have been even 

smaller.     

 

That in a very limited number of cases, some GSR either persisted thorough hand-

washing is a noteworthy finding in itself.  The possible impact on the conclusions 

which can be drawn from this data will be discussed in chapter six.  Meanwhile, the 

potential implications for forensic protocol, for interpreting small numbers of GSR 

particles in casework, and for undertaking further experimental research will also 

be discussed in sections 6.3 and 6.4.   

 

                                                           
42 Indeed, only control samples which tested positive for the presence of GSR are included in table 
5.1 

Control sample Number of GSR particles 

Scenario three, run 3, transfer subject  1 

Scenario four, run 3, shooter   5 

Table 5.1 GSR particle counts for control samples which tested positive for GSR 
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5.2.1 Scenario one  

The GSR counts from samples taken from the hands of the shooter immediately after 

discharging the firearm are provided in table 5.2.  As expected, large numbers of GSR 

particles were recovered from the hands of the shooter following the discharge in each 

of the three experimental runs.  206, 335 and 443 particles were recovered in run one, 

two and three, respectively.  A degree of variability exists in the GSR counts across the 

three runs, yet such variation in the amount of GSR produced between firings is not 

unprecedented in the literature and was to be expected (see, for example, Matricardi 

and Kilty 1977, Jalanti et al 1999).  A proportion of the variation in this case may be 

attributable to the “memory effect” caused by firing a ‘dirty’ firearm in runs two and 

three (this was an experimental design decision that was made to ensure ecological 

validity, see section 4.2.1).  The results suggest that a few hundred particles can  be 

expected if the hands of the shooter are sampled following the firing of five rounds 

under the conditions set out in scenario one. 

 

 

 

 

 

Further approximations of the quantity of GSR recovered from the shooter were made 

using the data from scenarios three and four.  In both of these scenarios, the shooter 

was sampled after shaking hands with another individual (after some of the material 

deposited during discharge had been transferred to the handshake recipient).  

Combining this particle count with that which was derived from the subsequent 

individual(s) provided an approximation of the initial particle count at the shooter.  

Assigning these transferred particles to the shooter is logical given that any transferred 

GSR originated at the shooter.  As particles were recovered once the handshakes(s) 

had taken place there was no possibility that: 

Run 
Particles recovered from 

shooter 

1 206 

2 335 

3 443 

Table 5.2 Particles recovered from the shooter in runs one, two and three of 

scenario one 
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1) Particles could have been double counted  

2) Particles could have been removed from the ‘system’ through sampling before 

transfer, which would have meant that less material was available for transfer 

Combined particle counts were calculated as follows43: 

For run one of scenario three (figure 5.1): 

 746 GSR particles were recovered from the shooter after a handshake and 88 

GSR particles were recovered from the individual  

 746 + 88 = 834 GSR particles originally at the shooter 

 

 

 

 

 

 

For run one of scenario four (figure 5.2): 

 647 GSR particles were recovered from the shooter after the handshakes,  26 GSR 

particles were recovered from the first individual (who shook hands with the shooter 

and then the second individual) and 18 GSR particles were recovered from the final 

individual in the chain 

 647 + 26 +18 = 691 GSR particles originally at the shooter 

 

 

 

 

 

 

 

It must be stressed that combining counts in this way involves the assumption that all of the 

material which transferred to the recipient was collected.  It is assumed that the sample 

                                                           
43 Particle count data for scenarios three and four, including corresponding samples are presented 
in section 5.4 

746 88 

647 26 
1

8 

Figure 5.1 Particles recovered from the shooter in runs one, two and three of 

scenario one 

Figure 5.2 Particles recovered from the shooter in runs one, two and three of 

scenario one 
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represents all of the material that would have been available for collection from the shooter if 

no transfer had taken place.  Clearly, to assume the total veracity of the sampling technique in 

this way is problematic, but because the sampling strategy was maintained across all runs, any 

potential for error was consistent.  Approximations of the shooter GSR count, which have been 

generated by combining samples, are likely to consistently underestimate the true figure, 

albeit slightly.  This caveat is explicitly stated here and will be acknowledged where 

appropriate.  By combining counts in the manner described, six ‘new’ runs44 of scenario one 

were created.  It is noted that the count for the handshake recipient used to form the result 

for ‘run’ six (431) may have introduced a very slight error as one particle was detected on the 

relevant control sample (see table 5.1).  It is suggested that the influence of any error is 

negligible among several hundred particles.  Similarly, in ‘run’ nine, five particles were 

detected on the shooter prior to firing.  Once again, the possibility exists that a small error is 

associated with this result but given between-run variability and the number of particles 

involved, this is unlikely to significantly impact the conclusions that may be drawn from this 

result.  Table 5.3 includes these supplementary ‘runs’, totals for runs six and nine are marked 

‘†’ to denote GSR presence on a control sample.  Control samples in all other runs were 

negative. 

 

 

 

 

 

 

 

 

 

 

 

 

Taking all observations into consideration, including the combined runs, the conclusion 

that in the order of several hundred particles can be expected to be recovered from 

                                                           
44 Combined ‘runs’ are marked by ‘*’ in the following tables 

Run 
Particles recovered from 

shooter 

1 206 

2 335 

3 443 

  4* 834 

  5* 238 

  6*  431† 

  7* 691 

  8* 462 

  9*  221† 

Mean 429 

Range 628 

Standard deviation 215.72 

Table 5.3 Particles recovered from the shooter in all runs (including 

supplementary) of scenario one, with descriptive statistics 
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the hands of the shooter in conditions analogous to these test firings is confirmed.  The 

results serve to re-emphasise the observation that the particle counts varied between 

runs; counts ranged from 206 to 834 (standard deviation 215.72).  The mean particle 

count recovered from the shooter was 429.   

5.2.2 Scenario two  

The particle counts for experimental scenario two are presented in table 5.4. 

 

 

 

 

 

In all three runs of scenario two, a secondary transfer of GSR particles took place from 

the discharged firearm to the second handler.  In other words, GSR that was deposited 

on the firearm during discharge was subsequently transferred to a handler upon 

contact.  Samples from the hands of the second firearm handler yielded much lower 

numbers of GSR particles than the hands of the shooter, although as many as 86 GSR 

particles (run one) were transferred.  Results were again variable; while 86 particles 

were detected in run one, this was markedly higher than the counts of 18 and 14 

yielded from runs two and three, respectively.  Notwithstanding this variation, 

potentially significant numbers of GSR particles were transferred in each case.    

5.2.3 Scenario three  

The particle counts for experimental scenario three are presented in table 5.5. 

 

 

 

Run 
Particles recovered from 

firearm handler 

1 86 

2 18 

3 14 

Run 
Particles recovered from 

handshake individual 

1 88 

2 30 

3 129 

Table 5.4 Particles recovered from the firearm handler in runs one, two and 

three of scenario two 



177 

 

 

A handshake following the discharge of the firearm resulted in the transfer of GSR 

particles to the hands of the second subject in all three runs of scenario three.  This 

represented a secondary transfer from the shooter, who had previously acquired 

material via a primary deposition from the firearm discharge, to a second individual 

who was not present at the firing.  The transfer of as many as 129 particles (run three) 

was observed.  As was the case with the counts in scenario one, the amount of GSR 

detected on the samples taken during the experiments varied across the three runs 

(88, 30 and 129).  Akin to scenario two, samples that were recovered from the 

secondary transfer subjects yielded fewer particles than the samples taken from the 

shooters in scenario one (88, 30 and 129 compared to 206, 335 and 443 in the first 

three runs of scenario one).  However, these samples (particularly in runs one and 

three) did yield relatively large numbers of particles (129, for example) that contrast 

the very low, perhaps negligible, levels of secondary contamination that have been 

reported in the literature and this will be discussed in section 6.2.2.  It is acknowledged 

that in run three the possibility of a small error exists due to one GSR particle that was 

detected on the control sample taken from this individual (see table 5.1).  However, 

given that only one particle was detected, it is likely that any influence of 

contamination would have been minimal and very unlikely to have contributed to the 

high particle count in run three.   

In a similar manner to scenario one (section 5.2.1), further results for scenario three 

were generated, this time by combining counts from scenario four.  The number of 

particles recovered from the second handshake individual was combined with the 

particle counts that remained at the first handshake individual in the three runs of 

scenario four.  In this manner, three further measures of the secondary transfer in 

scenario three were approximated.  Estimating counts in this way, as discussed in 

5.2.1, does involve certain assumptions, yet it is reasonable to include these results in 

table 5.6 with the caveats that have previously been elucidated.  The result for run six 

was yielded from the experimental run in which five GSR particles were recovered 

from the control sample taken from shooter prior to firing.  However, as discussed, the 

contribution of any contamination to the high number of particles recovered from the 

Table 5.5 Particles recovered from the handshake recipient in runs one, two 

and three of scenario three 
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shooter is likely to have been small and therefore, the possibility that it then 

contributed to the number of particles transferred to the handshake recipient is slim.   

 

   

 

 

 

 

 

 

 

 

With the inclusion of these supplementary results, the variability between runs 

continues to be observable; with results ranging from 21 particles to 129.  An average 

of 60.5 particles was secondarily transferred from shooter to the recipient individual 

via a handshake.  All six counts for this scenario were lower than the lowest particle 

count yielded form a shooter in scenario one (206 particles).  However, in the case of 

runs one and three the difference between the secondary transfer particle counts and 

this lowest quantity recovered from the shooter was less pronounced. 

5.2.4 Scenario four 

When a third individual shook hands with a subject who had shaken hands with a 

shooter in scenario four, GSR was transferred in each of the three runs (table 5.7).   

 

 

 

 

 

Run 
Particles recovered from 

handshake individual 

1 88 

2 30 

3 129 

  4* 44 

  5* 51 

  6* 21 

Mean 60.50 

Range 108 

Standard deviation 40.75 

Run 
Particles recovered from 

second handshake 
individual 

1 18 

2 22 

3 12 

Table 5.6 Particles recovered from the handshake recipient in all runs (including 

supplementary) of scenario three, with descriptive statistics 

Table 5.7 Particles recovered from the second handshake recipient in runs one, 

two and three of scenario four 
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These particles, collected from the third subject, had undergone tertiary transfer.  In 

other words, these particles had been transferred to the shooter during firearm 

discharge before being secondarily transferred via a handshake, and subsequently 

underwent a tertiary transfer from the second to the third subject.   Some variation 

between runs is evident (22 particles in run two and 12 particles in run three, for 

example), but this was not unexpected given the further variables that were 

introduced by initiating successive transfers.  Fewer GSR particles were recovered 

following the tertiary transfers than were deposited during most of the secondary 

transfers in run three.  The quantities that were recovered (18. 22 and 12) are similar 

to the number of particles observed in runs two and three of scenario two (18 and 14) 

when the ‘dirty’ firearm was handled by the subjects.  The result for run three (12 

particles) was yielded from the experimental run in which five GSR particles were 

recovered from the control sample taken from the shooter prior to firing.  However, as 

discussed the contribution of any contamination to the high number of particles 

present on the shooter was likely to have been small.  Therefore, the possibility that it 

would then have contributed to the number of particles transferred to the handshake 

recipient and from there, to the second handshake recipient, is very slim.   

5.2.5 Scenario five 

In all three experiments in which an individual was standing one metre behind the 

shooter, GSR was recovered from the hands of that individual, due to GSR that was 

deposited in the vicinity of the discharges.  Moreover, the results in table 5.8 

demonstrate that the quantity of GSR recovered from the hands of the bystanders was 

fairly similar across the three runs (21, 36 and 28 particles).  The particle counts 

resulting from this deposition mechanism were similar to some of the counts 

encountered in scenarios two (18 particles in run two), three (30 particles in run two) 

and four (22 particles in run two), in which secondary and tertiary transfers took place. 

 

 

 
 
 
 

 

Run 
Particles recovered from 
individual in proximity 

1 21 

2 36 

3 28 

Table 5.8 Particles recovered from the bystander in runs one, two and three of 

scenario five 
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5.2.6 Summary 

The particle counts for the individual experimental runs, including the supplementary 

runs generated by combining particle counts, for each scenario are provided for 

comparison purposes in figure 5.3.   

 

 

 

Unsurprisingly, the GSR counts yielded from the shooters in the runs of scenario run 

stand out as being markedly higher than the counts recovered from subjects in the 

remaining four scenarios.  Experimental scenario one aside, run one of scenario two 

(86 particles) and runs one and three of scenario three (88 and 129 particles) yielded 

the highest counts in the remaining experiments.  It should be emphasised that in 

none of the simulated transfer or deposition scenarios did the analysis fail to detect 

GSR presence: all transfers and depositions were effective in resulting in the 

acquisition of GSR by the recipient subject. 
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Figure 5.3 Particle counts recovered from subjects in all runs (including 

supplementary) of scenarios one, two, three, four and five (each bar represents 

the count for a single run) 



181 

 

5.3 GSR particle sizes 

INCAGSR provides data relating to each detected particle according to a number of 

categories including ‘X’ and ‘Y’ position, brightness and size.  Measurements of particle 

‘length’ were generated and filtered to identify cases requiring manual verification and 

correction according to the procedures set out in section 4.3.5.  Analysis of the particle 

size data was carried out in order to explore a number of the Research Questions (see 

section 3.7).  The particle size data and subsequent analysis are presented in sections 

5.3.1-5.3.5.  For the purposes of this analysis and in a manner akin to Basu et al (1997), 

size classes were created into which the GSR particles were sorted.  Seven classes of 

particle sizes were created (0-0.99µm; 1-2.99µm; 3-4.99µm; 5-9.99µm; 10-29.99µm; 

30-99.99µm, and 100+µm).  Particle size data for each scenario are dealt with in turn.  

The particles that make up the counts presented in section 5.2 have been categorised 

according to their size and the average and maximum particle sizes for each run 

included.  In addition, the number of GSR particles in each size class is displayed as a 

percentage of the total particle count for that sample.  The use of these proportional 

distributions renders it possible to make between-run and between-scenario 

comparisons of the particle size data despite the high levels of variation in particle 

counts both between and within the experimental scenarios.   

The experimental runs that may have been influenced by a small degree of 

contamination owing to the results of the control samples were acknowledged in 

section 5.2 during the presentation of the particle counts.  The same 

acknowledgements apply to the particle size analysis for the runs in question although, 

as argued previously, any influence of contamination on the results is likely to be 

negligible.  For this reason, and owing to the impossibility of identifying which 

individual particles, if any, may have derived from contamination, particle size data are 

presented without modification.   

4070 particles were detected and analysed across all sample stubs.  These particles 

were sorted into classes according to their size and are presented in table 5.9 and 

proportionally, in table 5.10 and figure 5.4.   
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Particles 

0-0.99µm 620 

1-2.99µm 1980 

3-4.99µm 655 

5-9.99µm 442 

10-29.99µm 263 

30-99.99µm 100 

100+µm 10 

Total Number of Particles 4070 

Average Particle Size (µm) 4.90 

Largest Particle (µm) 214.29 

Range 213.86 

Standard deviation 10.26 

Percentile 50% (median) 4.16 

Percentile 95% 18.67 

 
Particles 

0-0.99µm 15.23% 

1-2.99µm 48.65% 

3-4.99µm 16.09% 

5-9.99µm 10.86% 

10-29.99µm 6.46% 

30-99.99µm 2.46% 

100+µm 0.25% 
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Left: Table 5.9 Particles per size category and descriptive statistics for overall 

particle population 

Right: Table 5.10 Percentage of particles per size category for overall particle 

population 

Figure 5.4 Percentage of particles per size category for overall particle 

population 
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The particle size data for the overall GSR particle population will be compared to the 

data for different samples throughout the following sections.  The modal class of 

particle was 1-2.99µm and the mean particle size was 4.9µm, while proportionally, few 

particles were recovered that measured >10µm and very few were >100µm.  It is clear 

that sizes of particles are heavily skewed towards the smaller particle sizes (under 

10µm). 

5.3.1 Scenario one 

In each of the three runs of scenario one, the modal class of GSR particles was 1-

2.99µm (table 5.11).   

 

 

 

 

 

 

 

 

The proportional distribution of particles among the size categories in each of the 

three runs was remarkably similar with around 50% of the GSR particle count in each 

run falling within the 1-2.99µm size category (table 5.12).   

 

 

   

 

  Run 1 Run 2 Run 3 

  GSRs on shooter GSRs on shooter GSRs on shooter 

0-0.99µm 20 51 56 

1-2.99µm 112 163 225 

3-4.99µm 39 58 82 

5-9.99µm 23 39 52 

10-29.99µm 7 18 21 

30-99.99µm 5 6 7 

100+µm 0 0 0 

Total Number of Particles 206 335 443 

Average Particle Size (µm) 4.09 4.13 4.11 

Largest Particle (µm) 66.05 81.4 83.55 

Table 5.11 Particles per size category for runs one, two and three of scenario one 

 



184 

 

0

10

20

30

40

50

60

70

80

90

100

GSRs on shooter GSRs on shooter GSRs on shooter

Run 1 Run 2 Run 3

P
er

ce
n

ta
ge

 (
%

) 

100+µm

30-99.99µm

10-29.99µm

5-9.99µm

3-4.99µm

1-2.99µm

0-0.99µm

  

 

 

 

 

 

Figure 5.5 demonstrates that the distribution of particles among the size classes was 

very closely replicated in each of the three experimental runs.  The distribution of 

particles apparent in this experiment suggests that an increase in the number of 

particles generated did not prompt a departure from the distribution.  In other words, 

‘extra’ particles were not, for example, exclusively small.  It is notable that the average 

particle sizes for the three runs (4.09µm, 4.11µm and 4.13µm) are almost identical.  In 

addition, the largest particles that were encountered in each of the three runs were 

broadly similar (66.05µm, 81.40µm and 83.55µm).   

 

  Run 1 Run 2 Run 3 

  
GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

0-0.99µm 9.71% 15.22% 12.64% 

1-2.99µm 54.37% 48.66% 50.79% 

3-4.99µm 18.93% 17.31% 18.51% 

5-9.99µm 11.17% 11.64% 11.74% 

10-29.99µm 3.40% 5.37% 4.74% 

30-99.99µm 2.43% 1.79% 1.58% 

100+µm 0.00% 0.00% 0.00% 

Figure 5.5 Percentage of particles per size category for runs one, two and three of scenario one 

 

Table 5.12 Percentage of particles per size category for runs one, two and three of scenario one 
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As discussed with regard to the analysis of the particle counts, further results for the 

GSR deposited on the shooter during firearm discharge were generated via the 

combination of reciprocal GSR counts from scenarios three and four.  When combining 

the counts (in the manner described in section 5.2.1), the particle counts were also 

combined so that, for example, if 20 GSR particles that were 3-4.99µm in size were 

recovered from the transfer recipient and 15 remained at the donor surface, then it 

was estimated that 35 (20+15) particles measuring 3-4.99µm were initially deposited 

on the hands of the shooter.  As with the particle counts that were generated in this 

manner, the particle size results produced by combining samples need to be treated 

with a degree of caution.  The same assumptions outlined in section 5.2.1 are made 

and in addition, it is assumed that sampling did not favour the recovery of a certain 

size of particle (very large particles, for instance) over another.  However, the sampling 

strategy was maintained in all experimental runs meaning that any slight error will 

have been consistent.  The potential for some error in these combined results was 

acknowledged during the analysis and when comparing particle size data with those of 

the first three runs.  Accordingly, results for ‘runs’ four to nine are marked: ‘*’.  Table 

5.11 has been extended in table 5.13 to include ‘runs’ four to nine that have been 

generated by combining data for reciprocal samples.  The particle size data have been 

converted to percentages in table 5.14 to permit analysis of the distribution of 

particles within the size categories.  The proportional data are   displayed graphically in 

figure 5.6. 
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  Run 1 Run 2 Run 3 Run 4* Run 5* Run 6* Run 7* Run 8* Run 9* 

  
GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

0-0.99µm 20 51 56 109 37 61 129 92 35 

1-2.99µm 112 163 225 427 104 234 264 233 115 

3-4.99µm 39 58 82 154 40 70 93 59 30 

5-9.99µm 23 39 52 80 40 40 68 55 20 

10-29.99µm 7 18 21 45 10 21 86 20 16 

30-99.99µm 5 6 7 17 6 4 46 3 4 

100+µm 0 0 0 2 1 1 5 0 1 

Total Number of Particles 206 335 443 834 238 431 691 462 221 

Average Particle Size (µm) 4.09 4.13 4.11 4.50 5.88 4.02 8.07 3.37 4.69 

Largest Particle (µm) 66.05 81.4 83.55 110.55 214.29 102.46 113.27 54.64 118.62 

  Run 1 Run 2 Run 3 Run 4* Run 5* Run 6* Run 7* Run 8* Run 9* 

  
GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

GSRs on 
shooter 

0-0.99µm 9.71% 15.22% 12.64% 13.07% 15.55% 14.15% 18.67% 19.91% 15.84% 

1-2.99µm 54.37% 48.66% 50.79% 51.20% 43.70% 54.29% 38.21% 50.43% 52.04% 

3-4.99µm 18.93% 17.31% 18.51% 18.47% 16.81% 16.24% 13.46% 12.77% 13.57% 

5-9.99µm 11.17% 11.64% 11.74% 9.59% 16.81% 9.28% 9.84% 11.90% 9.05% 

10-29.99µm 3.40% 5.37% 4.74% 5.40% 4.20% 4.87% 12.45% 4.33% 7.24% 

30-99.99µm 2.43% 1.79% 1.58% 2.04% 2.52% 0.93% 6.66% 0.65% 1.81% 

100+µm 0.00% 0.00% 0.00% 0.24% 0.42% 0.23% 0.72% 0.00% 0.45% 

Top: Table 5.13 Particles per size category for all runs (including supplementary) of scenario one 

Bottom: Table 5.14 Percentage of particles per size category for all runs (including supplementary) 

of scenario one 
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Taking all nine runs into consideration, the modal class of particle in all runs was 1-2.99µm.  In six 

of the nine runs, the average particle size of the GSR particles which were deposited on the 

shooter was between four and five micrometres.  This figure was slightly higher in run five and 

slightly lower in run eight, although given the variability in the number of particles that were 

deposited during the discharge event (the range was 628), these figures are all remarkably similar.  

Run seven does stand out as having a larger average size of particle (8.07µm) and this is owing to 

the relatively high numbers of particles in the 10-29.99µm and 30-99.99µm categories, as well as 

the proportionally lower numbers of particles in the 1-2.99µm category compared to the other 

runs.  All runs yielded large particles in the 30-99.99µm category, while five firings also resulted in 

the deposition of particles of over 100µm.  The largest particle encountered in each run varied 

from 54.64µm in run eight to the extremely large particle measuring 214.29µm in run five. 

From the proportional size data displayed in table 5.14 and figure 5.6, it is evident that the 

distribution of particles among the size categories is replicated closely, with relatively few notable 
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departures, across all nine runs.  For example, circa 50% of recovered particles measured between 

1-2.99µm in most runs, the slight exceptions being runs five and seven.  Regardless of the 

numbers of particles that were deposited during each firearm discharge, it appears that the 

proportional distribution of these particles among the size categories was much less variable, this 

is also despite any error that may have been introduced in calculating results for runs four to nine.  

Run seven, as mentioned previously, perhaps represents a departure from the other results owing 

to a greater proportion of larger particles.  In this run, 19.83% of recovered particles measured in 

excess of 10µm, compared to 5.83% for run one, yet this does not detract significantly from the 

relative uniformity of the distributions of each run of the test firing that deposited such variable 

quantities of GSR.     
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5.3.2 Scenario two 

Compared to the data for scenario one, the particle size results from the three runs of 

scenario are somewhat more variable.  Unlike scenario one, the distribution of 

particles among the size categories varied across the three runs (tables 5.15 and 5.16, 

figure 5.7) despite.  It is re-emphasised that the gun was held in the same manner in 

each run.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Run 1 Run 2 Run 3 

  
GSRs on 
firearm 
handler 

GSRs on 
firearm 
handler 

GSRs on 
firearm 
handler 

0-0.99µm 18 4 0 

1-2.99µm 50 6 1 

3-4.99µm 12 3 5 

5-9.99µm 2 1 6 

10-29.99µm 4 3 2 

30-99.99µm 0 1 0 

100+µm 0 0 0 

Total Number of Particles 86 18 14 

Average Particle Size (µm) 2.61 6.96 6.17 

Largest Particle (µm) 20.35 41.44 18.03 

 
Run 1 Run 2 Run 3 

 

GSRs on 
firearm 
handler 

GSRs on 
firearm 
handler 

GSRs on 
firearm 
handler 

0-0.99µm 20.93% 22.22% 0.00% 

1-2.99µm 58.14% 33.33% 7.14% 

3-4.99µm 13.95% 16.67% 35.71% 

5-9.99µm 2.33% 5.56% 42.86% 

10-29.99µm 4.65% 16.67% 14.29% 

30-99.99µm 0.00% 5.56% 0.00% 

100+µm 0.00% 0.00% 0.00% 

Top: Table 5.15 Particles per size category for runs one, two and three of 

scenario two 

Bottom: Table 5.16 Percentage of particles per size category for runs one, two 

and three of scenario two 
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Akin to the experiments in scenario one, 1-2.99µm was the modal class of particles in 

the first and second runs of scenario two, while in run three the modal category was 5-

9.99µm.  In terms of the distribution of particles among size categories, run one 

exhibited a somewhat similar distribution to that observed in most runs of scenario 

one, save for an absence of particles in the larger particle classes and a greater 

proportion of particles under 3µm.  The size distribution of the 18 particles in run two 

also replicated the distributions encountered in scenario one to some degree.   The 

particles in run three, however, represented a departure from this distribution owing 

to an absence of sub-micrometre particles and the fact that the bulk of the 14 particles 

were concentrated in the mid-range to large particle size categories.   

In this scenario, the largest particles encountered tended to be smaller than those 

detected in the previous scenario; particles measuring 20.35µm, 41.44µm and 

18.03µm were recovered in runs one, two and three, respectively.  The largest 
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particles deposited during the firearm discharge, it seems, tended to be deposited on 

hands rather than on the firearm and later transferred to a firearm handler.  The 

average particle size varied across the three runs.  The average particle in run one 

measured 2.61µm and this was markedly smaller than the mean particle sizes 

encountered in scenario one, which were generally circa 4µm (ranging from 3.37µm to 

8.07µm).  However, the average particle size was higher in runs two and three (6.96µm 

and 6.17µm), owing to a relative absence of smaller particles.  It appears that as well 

as generating variable particle counts, handling the discharged firearms resulted in the 

transfer of sets of particles that were variably distributed among the size categories. 

5.3.3 Scenario three 

The modal class of particle in each of the three runs of scenario three was 1-2.99µm, 

as was the case for all runs of scenario one (table 5.17, table 5.18 and figure 5.8).   

 

 

 

 

 

 

 

 

 

 

 

 

 

  Run 1 Run 2 Run 3 

  
GSRs on 

handshake 
individual 

GSRs on 
handshake 
individual 

GSRs on 
handshake 
individual 

0-0.99µm 8 6 20 

1-2.99µm 40 12 73 

3-4.99µm 19 7 17 

5-9.99µm 15 4 11 

10-29.99µm 4 0 6 

30-99.99µm 2 1 1 

100+µm 0 0 1 

Total Number of Particles 88 30 129 

Average Particle Size (µm) 4.71 4.62 4.21 

Largest Particle (µm) 64.39 57.22 102.46 

  Run 1 Run 2 Run 3 

  
GSRs on 

handshake 
individual 

GSRs on 
handshake 
individual 

GSRs on 
handshake 
individual 

0-0.99µm 9.09% 20.00% 15.50% 

1-2.99µm 45.45% 40.00% 56.59% 

3-4.99µm 21.59% 23.33% 13.18% 

5-9.99µm 17.05% 13.33% 8.53% 

10-29.99µm 4.55% 0.00% 4.65% 

30-99.99µm 2.27% 3.33% 0.78% 

100+µm 0.00% 0.00% 0.78% 

Top: Table 5.17 Particles per size category for runs one, two and three of scenario three 

Bottom: Table 5.18 Percentage of particles per size category for runs one, two and three of scenario three 
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The average particle sizes for the three runs of scenario three are strikingly similar 

(4.71µm, 4.62µm and 4.21µm), and are also very similar to the majority of the mean 

particle sizes of the samples taken from the shooters in run one.  In each run there was 

at least one particle in the 30-99.99µm category, while in run three a particle 

measuring 102.46µm was detected.  The largest particle sizes encountered in each run 

are similar to the largest that were recovered from the shooter in run one, suggesting 

that the full extent of particles (from the very smallest to the very largest) were 

transferred from the shooters to the individuals via handshakes, with no size of 

particle seemingly less likely to have undergone transfer. 

With reference to the proportional data, it is clear that the particle distribution is 

replicated closely across the three runs.  Moreover, these distributions (when 

compared to those in section 5.3.1) bear a close resemblance to those exhibited by the 

GSR particles transferred to the shooters in scenario one.  The particles detected on 

samples in this scenario clearly represent the population of particles transferred to the 
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shooter initially.  That is, their ‘source’, namely the population of particles deposited 

on the shooter, can be identified with reference to the particle size profile.  The 

proportional data also show that the full extent of particles, in more or less 

representative proportions, seemed to be transferred from shooter to subject via the 

handshakes. 

Supplementary results for scenario three were generated by combining counts from 

scenario four in the manner described in section 5.2.1.  The particle size data for these 

extra ‘runs’ are provided alongside the first three runs in table 5.19.  Proportional size 

data are calculated in table 5.20 and displayed in figure 5.9.  The caveats and 

assumptions associated with combining results in this way have been described 

previously. 
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  Run 1 Run 2 Run 3 Run 4* Run 5* Run 6* 

  
GSRs on 

handshake 
individual 

GSRs on 
handshake 
individual 

GSRs on 
handshake 
individual 

GSRs on 
handshake 
individual 

GSRs on 
handshake 
individual 

GSRs on 
handshake 
individual 

0-0.99µm 8 6 20 14 11 0 

1-2.99µm 40 12 73 13 22 6 

3-4.99µm 19 7 17 8 4 5 

5-9.99µm 15 4 11 5 9 6 

10-29.99µm 4 0 6 3 5 3 

30-99.99µm 2 1 1 1 0 1 

100+µm 0 0 1 0 0 0 

Total Number of 
Particles 

88 30 129 44 51 21 

Average Particle Size 
(µm) 

4.71 4.62 4.21 5.45 4.50 7.85 

Largest Particle (µm) 64.39 57.22 102.46 35.47 29.39 49.19 

  Run 1 Run 2 Run 3 Run 4* Run 5* Run 6* 

  
GSRs on 

handshake 
individual 

GSRs on 
handshake 
individual 

GSRs on 
handshake 
individual 

GSRs on 
handshake 
individual 

GSRs on 
handshake 
individual 

GSRs on 
handshake 
individual 

0-0.99µm 9.09% 20.00% 15.50% 31.81% 21.57% 0.00% 

1-2.99µm 45.45% 40.00% 56.59% 29.55% 43.14% 28.57% 

3-4.99µm 21.59% 23.33% 13.18% 18.18% 7.84% 23.81% 

5-9.99µm 17.05% 13.33% 8.53% 11.36% 17.65% 28.57% 

10-29.99µm 4.55% 0.00% 4.65% 6.82% 9.80% 14.29% 

30-99.99µm 2.27% 3.33% 0.78% 2.27% 0.00% 4.76% 

100+µm 0.00% 0.00% 0.78% 0.00% 0.00% 0.00% 

Top: Table 5.19 Particles per size category for all runs (including supplementary) of scenario three 

Bottom: Table 5.20 Percentage of particles per size category for all runs (including supplementary) of 

scenario three 
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Examination of the extended dataset shows that 1-2.99µm was the modal category of 

particle in five of the six runs (in run six, it was the joint modal class along with 5-

9.99µm) and contained one particle less than the model class (0-0.99µm) in run four.  

The average particle sizes for the first five runs were all very similar; between 4.21µm 

and 5.45µm.  These average particle sizes also resemble closely those that were 

calculated for the majority of runs in scenario one when shooters were sampled.  Runs 

four, five and six yielded maximum particle sizes that were slightly smaller than those 

encountered in the first three runs, yet these may still be considered large GSR 

particles.  Taking the ‘extra’ runs into account, it is evident that the transfers in these 

experiments involved the full range of particles, including the largest45.  Notably, run 

six yielded no particles in the 0-0.99µm category and represented a departure from 

the other five runs in which a full range of particles was transferred.  The relative 

absence of smaller particles in this run is responsible for the higher average particle 

size of 7.85µm. 

The proportional data demonstrate that, despite some variation, the distribution 

among the size categories was fairly closely replicated by each set of particles that 

underwent transfer.  Moreover, these distributions closely resemble those produced 

by the data for particles recovered from the shooter in scenario one.  The only 

anomaly in this sense is represented by run six.  The GSR particles that were 

transferred during this run included no particles measuring 0-0.99µm and 

proportionally, more particles measuring between 3µm and 9.99µm.   Generally, the 

distributions of particle sizes between runs in scenario three were slightly more 

variable when compared to the well replicated distributions in scenario one.    

However, this is perhaps to be expected given that smaller numbers of particles were 

detected in scenario three, meaning that a small number of particles of a similar size 

will significantly inflate the relevant size category.  In addition, scenario three is 

concerned with particles that were deposited onto hands from a firearm discharge 

before being transferred to a second hand by direct contact.  Therefore, it is 

reasonable to assume that during the contact, variables such as the location of 

particles on the donor hand and the strength of their adherence on the hand may be 

                                                           
45 Incidentally, the particle measuring 49.19µm in run six in fact underwent two transfers, as 

will be described in 5.3.4 
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responsible for the slight divergences in particle size distributions in some runs.  Given 

this consideration, the close resemblance between the proportional distributions for 

runs one to five of scenario three and the distributions in runs one to nine of scenario 

one, is all the more notable.  Evidently, the particles that were transferred via the 

handshakes were representative of those generated and deposited on the shooter in 

the first instance by the firearm discharge.  Thus, the particles deposited on the 

shooter and the particles transferred to the subject via the handshakes are 

representative of similar initial populations of particles that were generated during the 

test firings.  

5.3.4 Scenario four 

Echoing the majority of experimental results so far, 1-2.99µm was the modal category 

of GSR particle size in runs one and two of scenario four, yet this was not the case in 

run three (table 5.21).   

 

 

The average particle size for runs one and two were similar (3.92µm and 3.25µm, 

respectively) to one another and were similar, if a little lower, to the average figures 

for the majority cases in scenarios one and three.  The slightly lower average particle 

size in these runs can be attributed to the relative absence of larger particles.  This 

observation is supported by referring to the size of the largest particle for these two 

  Run 1 Run 2 Run 3 

  
GSRs on second 

handshake 
individual 

GSRs on second 
handshake 
individual 

GSRs on second 
handshake 
individual 

0-0.99µm 4 5 0 

1-2.99µm 7 10 2 

3-4.99µm 2 2 4 

5-9.99µm 3 4 5 

10-29.99µm 2 1 0 

30-99.99µm 0 0 1 

100+µm 0 0 0 

Total Number of Particles 18 22 12 

Average Particle Size (µm) 3.92 3.25 8.82 

Largest Particle (µm) 15.69 13.25 49.19 

Table 5.21 Particles per size category for runs one, two and three of scenario 

four 
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runs; 15.69µm and 13.25µm, respectively.  These particles are significantly smaller 

than the largest particles encountered in scenarios one and three. In run three, the 

observations reported for runs one and two were not replicated.  The absence of very 

small particles in this tertiary transfer resulted in the average particle size on the 

recipient being significantly higher (8.88µm) than that observed in the previous two 

runs.  Meanwhile, a particle measuring 49.19µm in length was transferred from the 

shooter to the subject and then to the second subject in this run.  It is worth making 

explicit that this large particle underwent a tertiary transfer.  Furthermore, the 

presence of this particle meant that the largest particle encountered in this run echoed 

more closely the larger particles that featured in scenarios one and three.  

Proportional size data for scenario four are provided in table 5.22 and figure 5.10. 

 

 

 

 

 

 

 

 

 

  Run 1 Run 2 Run 3 

  
GSRs on second 

handshake 
individual 

GSRs on 
second 

handshake 
individual 

GSRs on 
second 

handshake 
individual 

0-0.99µm 22.22% 22.73% 0.00% 

1-2.99µm 38.89% 45.45% 16.67% 

3-4.99µm 11.11% 9.09% 33.33% 

5-9.99µm 16.67% 18.18% 41.67% 

10-29.99µm 11.11% 4.55% 0.00% 

30-99.99µm 0.00% 0.00% 8.33% 

100+µm 0.00% 0.00% 0.00% 

Table 5.22 Percentage of particles per size category for runs one, two and three of scenario four 
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There is a clear disjunction between the particle size distributions of runs one and two 

the distribution for run three.  Taking only the first two runs into account, the 

distribution of particles among the size categories, save for an absence of the particles 

in the largest size classes, resemble the majority of the distributions for scenarios one 

and three.  It is clear that in these two runs, the largest particles aside, a 

representative range of particles was transferred from A to B and then to C – the 

particles received by the recipient of the tertiary transfer were similarly distributed 

among the size classes when compared to the population of particles deposited on the 

shooter in the first instance.  The largest particles, it might be deduced, did not 

undergo tertiary transfer and either remained at the shooter (not initially transferred), 

or were transferred (secondarily) to the first handshake recipient and not to the third, 

thus they would have remained at the first handshake individual.  This hypothesis will 

be examined in greater detail in section 5.4.2.   
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As mentioned, the distribution of particles in run three diverges from these trends.  An 

absence of the smallest particles is the most notable departure, with the majority of 

particles measuring between 3µm and 9.99µm in length.  In run three, the particles 

that were transferred to the third individual in the chain were not fully representative 

of those transferred to the shooter in terms of their distribution among the size 

classes: a full range of particles was not recovered.  Only 12 particles were recovered 

from this subject and consequently an absence of particles in some categories, 

particularly after two transfers, is to be expected.  However, in runs one and two, it 

was the larger particles that failed to undergo transfer to the second handshake 

subject meaning that in run three, the absence of the smallest particles is conspicuous.  

Whether this was due to a small initial population of small particles deposited on the 

shooter at the outset of this run, or whether they simply did not undergo transfer and 

remained at the shooter or first handshake individual will be examined in section 5.4.2.     

5.3.5 Scenario five 

In all three runs of scenario five, where particles were deposited on an individual who 

was standing in the proximity of the discharging gun, the modal class of recovered 

particles was 1-2.99µm (table 5.23).   

 

 

 

 

 

 

 

 

 

  Run 1 Run 2 Run 3 

  
GSRs on 

proximity 
individual 

GSRs on 
proximity 
individual 

GSRs on 
proximity 
individual 

0-0.99µm 7 4 2 

1-2.99µm 12 18 9 

3-4.99µm 1 6 4 

5-9.99µm 1 4 7 

10-29.99µm 0 4 5 

30-99.99µm 0 0 1 

100+µm 0 0 0 

Total Number of Particles 21 36 28 

Average Particle Size (µm) 1.88 3.67 7.27 

Largest Particle (µm) 7.47 12.90 32.35 

Table 5.23 Particles per size category for runs one, two and three of scenario 

five 
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The average particle sizes, however, varied greatly across the three runs.  The mean 

was only 1.88µm in run one, suggesting that deposition from airborne GSR in this run 

involved the smallest particles.  Indeed, over 90% of particles in this run fell into the 0-

0.99µm and 1-2.99µm categories.   Meanwhile, the average of 3.67µm in run two was 

more akin to the average particle sizes that were generally encountered in scenarios 

one, three and four, albeit slightly lower as a result of the relative paucity of larger 

particles among those deposited on the individual standing in the proximity of the 

firearm discharge.  By contrast, the average particle size was much greater in run three 

(7.27µm).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Run 1 Run 2 Run 3 

  
GSRs on 

proximity 
individual 

GSRs on 
proximity 
individual 

GSRs on 
proximity 
individual 

0-0.99µm 33.33% 11.11% 7.14% 

1-2.99µm 57.14% 50.00% 32.14% 

3-4.99µm 4.76% 16.67% 14.29% 

5-9.99µm 4.76% 11.11% 25.00% 

10-29.99µm 0.00% 11.11% 17.86% 

30-99.99µm 0.00% 0.00% 3.57% 

100+µm 0.00% 0.00% 0.00% 

Table 5.24 Percentage of particles per size category for runs one, two and three 

of scenario five 
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Compared to runs one and two,  greater proportions of particles fell into the 5-

9.99µm, 10-29.99µm and 30-99.99µm categories in run three, while only around 39% 

of particles fell into the 0-0.99µm and 1-2.99µm categories.  The largest particles 

deposited on the individual in runs one and two (7.47µm and 12.90µm, respectively) 

are fairly small when compared to many of the largest particles encountered in the 

previous experimental scenarios, suggesting that larger particles may have been less 

likely to become airborne and be deposited on the hands of an individual a short 

distance from the shooter, than to have been deposited on the hands of the shooter 

himself.  However, in run three, a particle measuring 32.35µm was recovered from the 

hands of the subject in proximity.  32.35µm is a lower maximum particle size than 

those encountered in run one but similar to the maximum particle sizes recovered in 

the runs of scenario two and most of the runs in scenario three.  This result indicated 

that the deposition of larger (>30µm) particles onto an individual in the proximity of a 

firearm can take place.  In summary, while fairly similar numbers of particles were 
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deposited on the nearby subjects in the three runs, the size profiles of the deposited 

particle populations deposited varied between the three runs.     

The proportional size data provided in table 5.24 and figure 5.11, demonstrate that the 

distribution of particles among size class varied over the three runs.  The particle size 

distribution in run one was heavily weighted towards the smaller particles, and 

therefore, differed from the particle distributions encountered in the precious 

scenarios.  The data for run two, however, generated a particle size distribution that 

was not dissimilar to those encountered for some runs of scenarios one and three.  

However, the absence of large particles rendered this distribution more akin to runs 

one and two of scenario four.  That most categories are represented by the particles 

recovered in run three means that the distribution for this run is somewhat similar to 

the distributions of most runs in scenarios one, although by contrast, proportionally, 

the smallest categories (0-0.99µm and 1-2.99µm) are underrepresented. 

5.4 Transfer mechanisms and efficiency 

In experimental scenarios three and four, person-to-person contacts took place 

between shooters and handshake recipients and between primary handshake 

recipients and secondary handshake recipients.  These contacts initiated the secondary 

and tertiary transfers of GSR that have been described and analysed in this chapter so 

far.  The following section deals with these transfers in more detail by considering the 

reciprocal samples that were taken during these experiments46.  The reciprocal 

samples are those that were taken from donor surfaces after transfers had taken 

place.  Equipped with these results, it was possible to calculate the efficiency of each 

transfer and to carry out further analysis in order to understand the dynamics and 

mechanisms of each simulated transfer in greater detail.  

 

 

 

                                                           
46 N.B.  These ‘reciprocal’ samples were used to generate the supplementary runs of scenarios one 
and three as described earlier in this chapter 
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5.4.1 Scenario three 

5.4.1a Particle counts and transfer efficiency  

During the runs of experimental scenario three, samples were taken from the hands of 

the recipient (handshake individual) and the donor (shooter) following the handshake.  

Using these samples, it was possible to calculate the efficiency of the transfers, to 

demonstrate how much GSR was transferred and what proportion, if any, remained at 

the donor surface.  The corresponding particle counts for each run of scenario three 

are provided below in table 5.25. 

 

 

In each of the three runs, following the handshake, more particles were recovered 

from the shooter than from the recipient of the handshake.   The highest number of 

particles transferred during a handshake was 129.  However, the particle count yielded 

from the shooter in this run was not the highest, thus the large quantity of transferred 

particles was not the result of an unusually large quantity of initially deposited 

particles.  It seems that this transfer may have been a particularly efficient one.  To 

calculate the percentage of GSR particles that were transferred a measure of the 

particles that were initially deposited on the shooter, prior to transfer, was needed.  

Combining the counts recovered from the shooter and the second subject following 

the handshake, as described in section 5.2.1, can be used to approximate this initial 

population.  The caveats that must be acknowledged when taking this approach are 

described in section 5.2.1.  Using these figures, it was possible to calculate the 

efficiency of the transfers (table 5.26). 

 

Run 
Particles recovered from shooter after 

handshake 
Particles recovered from handshake 

recipient 

1 746 88 

2 208 30 

3 302 129 

Table 5.25 Post-transfer donor and recipient particle counts for runs one, two 

and three of scenario three 
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The percentage of GSR particles that were transferred from the shooter to the subject 

via a handshake varied across the three runs.  Runs one and two were similar (10.55% 

and 12.61 % of particles undergoing transfer, respectively), despite the very different 

initial GSR counts (834 and 238).  Thus, these two transfers were very similar in terms 

of efficiency regardless of the difference between starting GSR populations on the 

shooter.  In run three, by contrast, a particularly efficient transfer took place in which 

29.93% of GSR particles were donated from shooter to the subject via the handshake.  

In this run, the GSR count on the sample recovered from the handshake recipient was 

the highest of all three runs, yet the initial population was not the highest.  It is 

possible to conclude that the efficiency of transfers of GSR which are initiated by hand-

to-hand contacts can vary, in the same way that the amount of GSR initially deposited 

on a shooter can vary from firing to firing.   

Supplementary results for scenario three were generated in section 5.2.3 by combining 

particle counts from scenario four.  In table 5.27, particle counts for the six ‘runs’ of 

scenario three are provided.  The use of counts for ‘particles recovered from shooter 

after handshake’ in ‘runs’ four, five and six is unproblematic as these were derived 

from samples from the shooter after one handshake.  However, the same assumptions 

and caveats that have been described previously apply to the combined counts for 

‘particles recovered from handshake recipient’ in ‘runs’ four, five and six.  Again, while 

assumptions may be involved in combining counts in this fashion, the consistency in 

sampling should render any underestimation of the ‘true’ count as consistent as well 

as slight. 

 

Run 
Original particles on 

shooter* 
Particles recovered from 

handshake recipient 
Transfer efficiency 

1 834 88 10.55% 

2 238 30 12.61% 

3 431 129 29.93% 

Table 5.26 Transfer efficiency of runs one, two and three of scenario three 
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Echoing the particle counts for the first three runs, far fewer particles were recovered 

from the handshake recipient than remained at the shooter, following the handshakes 

in ‘runs’ four, five and six.  Taking all six runs into consideration, there was 

considerable variation between the numbers of particles that were transferred 

(standard deviation: 40.75, range: 108).   However, this variation did not necessarily 

correlate with the numbers of particles that were recovered from the shooters, or 

indeed with the numbers of particles that were initially available for transfer.  The 

efficiency of the transfers in the supplementary ‘runs’ of scenario three is calculated in 

the table below (table 5.28). 

 

 

It should be noted that the efficiency of the transfers in runs four, five and six is likely 

to be slightly underestimated.  Notwithstanding this caveat, run three still stands out 

as a remarkably efficient transfer in which 29.93% of particles were transferred 

(compared to run five in which 11.04% of a similar initial quantity of particles 

underwent transfer).  During the runs with the smallest initial populations of GSR, runs 

two and six (238 and 221 particles), 12.61% and 9.50% of particles were transferred.  

These were neither the most or least efficient transfers.  In runs one, two, five, six and 

Run 
Particles recovered from 
shooter after handshake 

Particles recovered from 
handshake recipient 

1 746 88 

2 208 30 

3 302 129 

  4* 647 44 

  5* 411 51 

  6* 200 21 

Run 
Original particles on 

shooter* 
Particles recovered from 

handshake recipient 
Secondary transfer 

efficiency 

1 834 88 10.55% 

2 238 30 12.61% 

3 431 129 29.93% 

  4* 691 44 6.37% 

  5* 462 51 11.04% 

  6* 221 21 9.50% 

Table 5.27 Post-transfer donor and recipient particle counts for all runs 

(including supplementary) of scenario three 

 

 

Table 5.28 Transfer efficiency of all runs (including supplementary) one, two 

and three of scenario three 
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to an extent, run four, the efficiency of the transfers was fairly similar despite 

variations in the initial populations of GSR (10.55%, 12.61%, 11.04%, 9.50% and 

6.37%).  The efficiency of the transfer in run three represents a departure from the 

other results.  This could have been the result of random variation, or attributable to a 

stronger physical contact.  In sum, while the efficiency of transfers was shown to vary 

(from 6.37% to 29.93%), the variation was not solely governed by the initial quantity of 

available particles. 

Control samples indicated that the results for runs three and six may contain a very 

small error owing to the presence of a very small number of GSR particles that were 

present on subjects before the firing.  However, as described earlier in this chapter, 

any contamination, if indeed it was influential, is likely to have been very limited given 

the large numbers of particles involved and the multiple transfer steps.  Thus, its effect 

on results and on the accuracy of the conclusions is minimal.  

5.4.1b GSR particle sizes 

Examination of the particle size data was carried out in order to provide a more 

detailed analysis of the dynamics of the secondary transfers that took place.  In this 

way, it could be assessed, for example, if some particles were generally more prone to 

transfer while others tended to remain at the donor surface.  The particles detected on 

each sample (shooter and subject post-handshake) in each run (including 

supplementary runs) were categorised according to their size.  Thus, it was possible to 

compare the sizes of particles that underwent transfer to the sizes of those that did 

not and which, consequently, remained at the donor surface.  While to some extent, 

observations have already been made regarding the sizes of particles which were 

deposited on shooters or which were secondarily transferred, this section deals with 

corresponding samples from the same experimental run and test firing.   Particle 

counts per size category for each of the six runs (including the supplementary runs) are 

provided in table 5.29, along with mean and maximum GSR particle sizes.  
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Upon an examination of the data, it is evident from the six runs that the transfers 

involved GSR particles representing the full range of particle sizes.  Across the runs, the 

very smallest (sub-micrometre), to the very largest (30-100+µm) particles were 

transferred.  Meanwhile, there was not a size of particle which appeared not to 

undergo transfer or one which was extremely prone to transfer.  For all samples (both 

  Run 1 Run 2 Run 3 

  

GSRs 
remaining 

on 
shooter 

GSRs on 
individual 

GSRs 
remaining 

on 
shooter 

GSRs on 
individual 

GSRs 
remaining 

on 
shooter 

GSRs on 
individual 

0-0.99µm 101 8 31 6 41 20 

1-2.99µm 387 40 92 12 161 73 

3-4.99µm 135 19 33 7 53 17 

5-9.99µm 65 15 36 4 29 11 

10-29.99µm 41 4 10 0 15 6 

30-99.99µm 15 2 5 1 3 1 

100+µm 2 0 1 0 0 1 

Total Number of 
Particles 

746 88 208 30 302 129 

Average Particle Size 
(µm) 

4.48 4.71 6.07 4.62 3.93 4.21 

Largest Particle (µm) 110.55 64.39 214.29 57.22 81.55 102.46 

  Run 4* Run 5* Run 6* 

  

GSRs 
remaining 

on 
shooter 

GSRs on 
individual 

GSRs 
remaining 

on 
shooter 

GSRs on 
individual 

GSRs 
remaining 

on 
shooter 

GSRs on 
individual 

0-0.99µm 115 14 81 11 35 0 

1-2.99µm 251 13 211 22 109 6 

3-4.99µm 85 8 55 4 25 5 

5-9.99µm 63 5 46 9 14 6 

10-29.99µm 83 3 15 5 13 3 

30-99.99µm 45 1 3 0 3 1 

100+µm 5 0 0 0 1 0 

Total Number of 
Particles 

647 44 411 51 200 21 

Average Particle Size 
(µm) 

8.24 5.45 3.23 4.5 4.36 7.85 

Largest Particle (µm) 113.27 35.47 54.64 29.39 118.62 49.19 

Table 5.29 Post-transfer particles per size category remaining on the shooter 

and recovered from the individual for all runs (including supplementary) of 

scenario three 
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donor and recipient) in the first three runs, the modal category of particles was 1-

2.99µm.  In runs four, five and six 1-2.99µm was the modal class of the particles 

remaining on the shooter.  It was also the modal category of particles that were 

recovered from the recipient of the handshake in runs five and six (in the case of the 

latter, it was the joint modal category) and was one particle short of being so in run 

four.  This aligns with the vast majority of samples comprising this investigation and 

indeed, with the overall particle size distribution when all particles encountered in this 

experimental investigation are considered (section 5.3).  

Across the three runs, generally, if particles of a particular size class were found to 

have remained on the shooter, particles of that size range were also present on the 

handshake recipient.  There were, however, some exceptions.  In runs one and two 

particles measuring >100µm were not present on the handshake recipient samples but 

such particles were recovered from the donors, albeit only two particles and a single 

particle in the respective runs.  Neither the 100+µm particle in run four nor the 

100+µm particle in run six were transferred.  Meanwhile, in run two, 10 particles 

measuring between 10 and 29.99µm were detected on the donor sample following 

transfer, yet particles of this size were absent on the recipient sample.  Run six 

represented an anomaly in that no sub-micrometre particles were transferred, yet 

particles in all other size categories were present on the sample taken from the 

handshake recipient.  These anomalies do not appear to significantly depart from the 

trend of a full range of different sized particles being secondarily transferred.  Indeed, 

the absence of transfer in these categories is not surprising given the small numbers of 

particles of this size that existed initially. 

In run three, the transfer of particles across the entire size range was observed.  In this 

instance, however, no particles in the 100+µm category were recovered from the 

donor surface but a particle measuring 102.46µm was recovered from the recipient.  

Run three was an exception in this sense.  This demonstrates that very large GSR 

particles can undergo secondary transfer.  Examination of the maximum particle sizes 

for each pair of samples reveals that large GSR particles were deposited on the shooter 

initially.  Only in the third run was the largest particle transferred and subsequently 

recovered from the handshake recipient.  Across all runs, the very largest particles 

were less prone to transfer, although this may be due to the fact that, with the 
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exception of run three, a maximum of 12.61% of particles were generally transferred, 

rather than because of a physical mechanism that inhibited the transfer of these 

largest particles.  It was previously noted that the transfer in run three was more 

efficient than those which took place in the remaining five runs.  Being similar in terms 

of efficiency to runs one and two, the transfers in runs four five and six did not involve 

the largest particle in the population, which instead remained on the shooter.  

Examination of the mean particle sizes for the sample pairs in the six runs reveals that 

in some cases values were similar for shooter and handshake recipient (runs one and 

three, for example), while in some cases they were less so.  For instance, in run two, 

the mean size of particle remaining at the shooter was 6.07µm which was somewhat 

larger than the mean particle recovered from the handshake recipient (4.62µm).  The 

difference between these means can be explained by the limited transfer of the largest 

particles in the second run and the consequent remainder of the largest particles 

(including one extremely large particle measuring 214.29µm) at the donor surface.  In 

run four the mean size of particle remaining at the shooter was higher owing to the 

particularly efficient transfer of the smallest (sub-micrometre) particles.  In run six the 

mean particle size for the sample taken from handshake recipient average was much 

higher than that for the donor sample due to the lack of movement of sub-micrometre 

particles. 

Further comparison of the particle size distributions of the donor and recipient 

samples following the handshakes can be made by examining the proportion of 

particles in each size category.  The percentages of GSR particles in each category for 

each of the six sample pairs are displayed in table 5.30 and are plotted graphically for 

each run in figures 5.12-5.17. 

 

 

 

 

  Run 1 Run 2 Run 3 
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GSRs 
remaining 

on 
shooter 

GSRs on 
individual 

GSRs 
remaining 

on 
shooter 

GSRs on 
individual 

GSRs 
remaining 

on 
shooter 

GSRs on 
individual 

0-0.99µm 13.54% 9.09% 14.90% 20.00% 13.58% 15.50% 

1-2.99µm 51.88% 45.45% 44.23% 40.00% 53.31% 56.59% 

3-4.99µm 18.10% 21.59% 15.87% 23.33% 17.55% 13.18% 

5-9.99µm 8.71% 17.05% 17.31% 13.33% 9.60% 8.53% 

10-29.99µm 5.50% 4.55% 4.81% 0.00% 4.97% 4.65% 

30-99.99µm 2.01% 2.27% 2.40% 3.33% 0.99% 0.78% 

100+µm 0.27% 0.00% 0.48% 0.00% 0.00% 0.78% 

  Run 4* Run 5* Run 6* 

  

GSRs 
remaining 

on 
shooter 

GSRs  on 
individual  

GSRs 
remaining 

on 
shooter 

GSRs on 
individual  

GSRs 
remaining 

on 
shooter 

GSRs on 
individual  

0-0.99µm 17.77% 31.81% 19.71% 21.57% 17.50% 0.00% 

1-2.99µm 38.79% 29.55% 51.34% 43.14% 54.50% 28.57% 

3-4.99µm 13.14% 18.18% 13.38% 7.84% 12.50% 23.81% 

5-9.99µm 9.74% 11.36% 11.19% 17.65% 7.00% 28.57% 

10-29.99µm 12.83% 6.82% 3.65% 9.80% 6.50% 14.29% 

30-99.99µm 6.96% 2.27% 0.73% 0.00% 1.50% 4.76% 

100+µm 0.77% 0.00% 0.00% 0.00% 0.50% 0.00% 
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Top: Table 5.30 Post-transfer percentage of particles per size category for all 

runs (including supplementary) of scenario three 

Bottom: Figure 5.12 Post-transfer percentage of particles per size category for 

run one of scenario three 
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Top: Figure5.13 Post-transfer percentage of particles per size category for run 

two of scenario three 

Bottom: Figure 5.14 Post-transfer percentage of particles per size category for 

run three of scenario three 
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Top: Figure5.15 Post-transfer percentage of particles per size category for run 

four of scenario three 

Bottom: Figure 5.16 Post-transfer percentage of particles per size category for 

run five of scenario three 
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The data in table 5.30 and figures 5.12-5.17 effectively demonstrate the similarity of 

the proportional distribution of particles among size categories between the pairs of 

donor and recipient samples in the first five runs.  In most cases, the percentages of 

particles in each size class for the handshake recipients are very similar to the 

percentages for the corresponding donor sample (for example, 51.88% and 45.45% of 

particles measured 1-2.99µm on the corresponding samples in run one).  When paired 

graphically, it is evident that the donor and recipient samples for each run correspond 

with one another and both appear representative of the same initial starting 

population of GSR particles for that particular run.  Furthermore, it is apparent from 

the graphs that 11 of the 12 samples are fairly similar in terms of the proportional 

distribution of particles among the size categories, the exception being the sample 

taken from the handshake recipient in run six.  These eleven samples appear 

representative of similar populations of GSR particles that were deposited during the 

firearm discharges.  However, it should be noted that there was a relative absence of 

larger particles in run five.  This is exemplified by the fact that, for example, in each 

sample, the proportion of particles measuring <3µm ranged between 54.54% and 72%. 
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 Figure5.17 Post-transfer percentage of particles per size category for run six of 

scenario three 
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Run six departed from the trends that have been observed.  The absence of sub-

micrometre particles on the recipient meant that the pair of samples differed in terms 

of their particle size distributions.  The distribution of particles remaining on the 

shooter in run six did, however, resemble the distribution exhibited by the other 

samples in the scenario.  This suggests that that a similar initial population of particles 

was deposited during firearm discharge in run six, yet due to the lack of sub-

micrometre particle transfer, this would not be obvious from the recipient sample 

alone.  

5.4.1c Particle sizes before and after transfer  

It was possible to assess the change in the particle size distribution of the particle GSR 

population that was recoverable from the shooter following a transfer event.  By 

combining particle size data in the manner outlined previously in section 5.4.1b, the 

population of particles that was initially present on the shooter following firearm 

discharge could be approximated.  The data could then be compared to the 

corresponding data from the sample taken from the shooter following the handshake, 

during which some particles had been lost.  The first three ‘runs’ in table 5.31 are 

derived from scenario three, while ‘runs’ four, five and six are a result of combining 

data from scenario four.   

  Run 1 Run 2 Run 3 

  

GSRs 
initially 

on 
shooter 

GSRs 
remaining 

on 
shooter 

GSRs 
initially 

on 
shooter 

GSRs 
remaining 

on 
shooter 

GSRs 
initially 

on 
shooter 

GSRs 
remaining 

on 
shooter 

0-0.99µm 109 101 37 31 61 41 

1-2.99µm 427 387 104 92 234 161 

3-4.99µm 154 135 40 33 70 53 

5-9.99µm 80 65 40 36 40 29 

10-29.99µm 45 41 10 10 21 15 

30-99.99µm 17 15 6 5 4 3 

100+µm 2 2 1 1 1 0 

Total Number of 
Particles 

834 746 238 208 431 302 

Average Particle Size 
(µm) 

4.50 4.48 5.88 6.07 4.02 3.93 

Largest Particle (µm) 110.55 110.55 214.29 214.29 102.46 81.55 
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Despite between-run variation in the number of particles that were ‘lost’ from the 

shooter during the transfer (see table 5.28), and despite the variation in the initial 

average particle sizes in the six runs (between 3.37µm and 8.07µm), the change in 

average particle size following a transfer is negligible.  For example, in run one the 

average particle size was initially 4.50µm and was 4.48µm once the transfer had taken 

place.  Similarly, in run four, the pre-transfer average particle size was 8.07µm and 

following the transfer, the average size of the recovered particles was 8.24µm.  This 

confirms that the groups of GSR particles that underwent transfer from shooters to 

subjects via the handshakes were representative of those deposited on the shooter 

initially and that transfer was not limited to either small or large particles.  In sum, a 

full range of particles were transferred, leaving a similar average particle size at the 

donor surface to that which existed prior to the transfer.   

Taking only the largest particles into consideration, the only in run in which the largest 

particle present at the outset was subsequently transferred was run three (a particle 

measuring 102.46µm underwent a secondary transfer).  When there was no 

movement of particles of a particular size, as in the case of particles measuring 30-

99.99µm category in run five, this may not be suggestive of a tendency for these 

  Run 4* Run 5* Run 6* 

  

GSRs 
initially 

on 
shooter 

GSRs 
remaining 

on 
shooter 

GSRs 
initially 

on 
shooter 

GSRs 
remaining 

on 
shooter 

GSRs 
initially 

on 
shooter 

GSRs 
remaining 

on 
shooter 

0-0.99µm 129 115 92 81 35 35 

1-2.99µm 264 251 233 211 115 109 

3-4.99µm 93 85 59 55 30 25 

5-9.99µm 68 63 55 46 20 14 

10-29.99µm 86 83 20 15 16 13 

30-99.99µm 46 45 3 3 4 3 

100+µm 5 5 0 0 1 1 

Total Number of 
Particles 

691 647 462 411 221 200 

Average Particle Size 
(µm) 

8.07 8.24 3.37 3.23 4.69 4.36 

Largest Particle (µm) 113.27 113.27 54.64 54.64 118.62 118.62 

Table 5.31 Pre and post transfer particles per size category on the shooter for 

all runs (including supplementary) of scenario three 
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particles to remain at the donor surface.  Instead, it might be reasonable to assume 

that they were not among the transferred proportions of particles as a result of 

random selection.  

Pre- and post-transfer proportional particle size distribution data are provided in table 

5.32 and are displayed graphically in figures 5.18-5.23 for each run in turn.  Given what 

has been revealed through examination of the data in table 5.31, it is unsurprising that 

the distribution of particles among the size categories on the shooter was almost 

identical before and after the transfer in each of the six runs.  A ‘loss’, or donation, of 

particles resulting from a handshake did not significantly alter the proportional 

distribution of particles among the size classes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Run 1 Run 2 Run 3 

  

GSRs 
initially 

on 
shooter 

GSRs 
remaining 

on 
shooter 

GSRs 
initially 

on 
shooter 

GSRs 
remaining 

on 
shooter 

GSRs 
initially 

on 
shooter 

GSRs 
remaining 

on 
shooter 

0-0.99µm 13.07% 13.54% 15.55% 14.90% 14.15% 13.58% 

1-2.99µm 51.20% 51.88% 43.70% 44.23% 54.29% 53.31% 

3-4.99µm 18.47% 18.10% 16.81% 15.87% 16.24% 17.55% 

5-9.99µm 9.59% 8.71% 16.81% 17.31% 9.28% 9.60% 

10-29.99µm 5.40% 5.50% 4.20% 4.81% 4.87% 4.97% 

30-99.99µm 2.04% 2.01% 2.52% 2.40% 0.93% 0.99% 

100+µm 0.24% 0.27% 0.42% 0.48% 0.23% 0.00% 

  Run 4* Run 5* Run 6* 

  

GSRs 
initially 

on 
shooter 

GSRs 
remaining 

on 
shooter 

GSRs 
initially 

on 
shooter 

GSRs 
remaining 

on 
shooter 

GSRs 
initially 

on 
shooter 

GSRs 
remaining 

on 
shooter 

0-0.99µm 18.67% 17.77% 19.91% 19.71% 15.84% 17.50% 

1-2.99µm 38.21% 38.79% 50.43% 51.34% 52.04% 54.50% 

3-4.99µm 13.46% 13.14% 12.77% 13.38% 13.57% 12.50% 

5-9.99µm 9.84% 9.74% 11.90% 11.19% 9.05% 7.00% 

10-29.99µm 12.45% 12.83% 4.33% 3.65% 7.24% 6.50% 

30-99.99µm 6.66% 6.96% 0.65% 0.73% 1.81% 1.50% 

100+µm 0.72% 0.77% 0.00% 0.00% 0.45% 0.50% 

Table 5.32 Pre and post transfer particles per size category on the shooter for 

all runs (including supplementary) of scenario three 
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Top: Figure 5.18 Pre and post transfer particles per size category on the shooter 

for run one of scenario three 

Bottom: Figure 5.19 Pre and post transfer particles per size category on the 

shooter for run two of scenario three 
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Top: Figure 5.20 Pre and post transfer particles per size category on the shooter 

for run three of scenario three 

Bottom: Figure 5.21 Pre and post transfer particles per size category on the 

shooter for run four of scenario three 
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Top: Figure 5.22 Pre and post transfer particles per size category on the shooter 

for run five of scenario three 

Bottom: Figure 5.23 Pre and post transfer particles per size category on the 

shooter for run six of scenario three 
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5.4.2 Scenario four 

5.4.2a Particle counts and transfer efficiency  

During experimental scenario four, samples were taken from the hands of the 

shooters, the first handshake recipients and the second handshake recipients following 

the transfers.  As in section 5.4.1 with regard to scenario three, the efficiency and 

dynamics of the transfers could be examined.  The corresponding particle counts for 

each run of scenario four are provided below in table 5.33. 

 

 

In each of the three runs, on completion of the handshakes (from shooter to first 

individual and from first individual to second individual), the quantity of GSR remaining 

on the hands of the shooter was far greater than that which was recovered from both 

the individual who shook hands with the shooter and the third individual in the chain 

(for example, 647 particles were recovered from the shooter in run one, while 26 and 

18 particles were recovered from the remaining two subjects).  In all three runs, the 

particle count at the second handshake recipient was comparable to the 

corresponding particle count remaining at the first handshake recipient.  In runs one 

and two, slightly more particles remained on the first handshake recipient than were 

recovered from the second recipient (26 compared with 18, and 29 compared with 

22), yet in the third run, the reverse was true as slightly fewer particles remained at 

the first handshake recipient than were recovered from the second recipient (9 

compared with 12). 

In a similar manner to that outlined in the analysis of scenario three, the efficiency of 

the transfers from A to B and from B to C could be calculated.  An approximation of the 

initial quantity of GSR on the hands of the shooter was needed and was calculated by 

combining the particles remaining at the shooter (A), the particles remaining at the 

Run 
Particles recovered 
from shooter after 

handshake 

Particles recovered from 
first handshake recipient 

after handshakes 

Particles recovered 
from second handshake 

recipient 

1 647 26 18 

2 411 29 22 

3 200 9 12 

Table 5.33 Particles recovered from the participants following the transfers in 

scenario four  
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first handshake recipient (B) and those recovered from the second handshake 

individual (C).  So, for run one: 

 Original particles on shooter = 647 + 26 + 18 = 691 

In addition, an approximation of the particle count at the first individual following the 

first transfer, and prior to the second handshake, was required (this was also necessary 

for calculating the efficiency of the transfer from B to C).  This figure was calculated by 

combining the particles remaining at the first handshake individual (B) with those 

recovered from the second handshake individual (C).  So, for run one:  

 Original particles on first handshake recipient (after first handshake and 

before second handshake) = 26 + 18 = 44 

As discussed previously, combining the particle counts to generate pre-transfer 

approximations involves certain assumptions about the veracity of sampling, yet 

because the sampling strategy was uniform across all samples any slight 

underestimation of counts will be relatively consistent.   

 

 

Despite the variation in the number of particles on the shooter prior to any transfers 

(as expected given the variation observed between runs in scenario one), the efficiency 

of secondary transfers from the shooter to the first handshake recipient were similar 

across the three runs (6.37%, 11.04% and 9.50%; results which were calculated and 

presented in 5.4.1a).  By comparison, the tertiary transfers between the first and 

second handshake individuals were much more efficient (40.91%, 43.14% and 57.14%) 

and resulted in similar quantities of GSR being recovered from the first and second 

handshake individuals at the culmination of the experiment (table 5.34).  The efficiency 

Run 

Original 
particles 

on 
shooter* 

Original 
particles on 

first 
handshake 
recipient* 

Secondary 
transfer 

efficiency 

Original 
particles on 

first 
handshake 
recipient* 

Particles 
recovered 

from second 
handshake 
recipient 

Tertiary 
transfer 

efficiency 

1 691 44 6.37% 44 18 40.91% 

2 462 51 11.04% 51 22 43.14% 

3 221 21 9.50% 21 12 57.14% 

Table 5.34 Transfer efficiency of the transfers in runs one, two and three of 

scenario four  
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was similar across all three runs, but the tertiary transfer in run three was markedly 

efficient. 

In run three, five GSR particles were recovered from the control sample taken from 

shooter prior to firing.  However, as discussed in section 5.2.4 the contribution of any 

contamination to the high number of particles that were recovered from the shooter 

was likely to have been small.  Furthermore, the possibility that those particles could 

have then contributed to the number of particles transferred to the handshake 

recipient and from there, to the second handshake recipient is minimal.  Any influence 

of contamination is likely to have been very limited and its impact on results and on 

the accuracy of the conclusions that will be drawn from them is relatively minor.  The 

implications of this contamination for interpreting the data and indeed, for 

experimental and forensic protocol, will be fully addressed in chapter six. 

5.4.2b GSR particle sizes 

Examination of particle size data was carried out in order to provide a more detailed 

analysis of the dynamics of the transfers which took place in scenario four.   The 

particles detected on each sample in each run were categorised by their size and are 

presented in table 5.35.  These permit the comparison of the sizes of particles that 

underwent transfer to those which remained at the donor surfaces.   
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Run 1 Run 2 Run 3 

  

GSRs 
remaining 

on 
shooter 

GSRs 
remaining 

on 
individual 

1 

GSRs on 
individual 

2 

GSRs 
remaining 

on 
shooter 

GSRs 
remaining 

on 
individual 

1 

GSRs on 
individual 

2 

GSRs 
remaining 

on 
shooter 

GSRs 
remaining 

on 
individual 

1 

GSRs on 
individual 

2 

0-0.99µm 115 10 4 81 6 5 35 0 0 

1-2.99µm 251 6 7 211 12 10 109 4 2 

3-4.99µm 85 6 2 55 2 2 25 1 4 

5-9.99µm 63 2 3 46 5 4 14 1 5 

10-29.99µm 83 1 2 15 4 1 13 3 0 

30-99.99µm 45 1 0 3 0 0 3 0 1 

100+µm 5 0 0 0 0 0 1 0 0 

Total Number of 
Particles 

647 26 18 411 29 22 200 9 12 

Average Particle Size 
(µm) 

8.24 3.90 3.92 3.23 5.45 3.25 4.36 6.56 8.82 

Largest Particle (µm) 113.27 35.47 15.69 54.64 29.39 13.25 118.62 16.11 49.19 

Table 5.35 Post-transfer particles per size category following the transfers in 

runs one, two and three of scenario four  
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The modal class of particle for most samples (echoing the many runs of other scenarios 

and the overall investigation) was 1-2.99µm.  This was the case for all three of the 

shooter samples, for two of the three first handshake recipient samples, and for two of 

the three second handshake recipient samples.  In runs one and two, particles from 

almost the full range of size categories were involved in the transfers from shooter to 

individual one, and subsequently, from individual one to individual two.  The transfer 

of a range of particle sizes during tertiary transfer has not been documented in the 

published literature on GSR dynamics.  Some very small and some of the larger (but 

not the largest) particles underwent transfer to the third individual in the chain in runs 

one and two.  The distribution of transferred particles among the size categories in run 

three was irregular.  For example, no sub-micrometre particles were transferred from 

A to B and nor from B to C.  The largest particle size data reveals that the largest 

particle encountered in each run was detected on the sample taken from the shooter.  

In other words, in each run, the largest particle was not secondarily transferred and 

remained at its site of deposition.  In runs one and two, the largest particle recovered 

from the first handshake individual was larger than that detected on the second 

individual.  However, in run three the largest particle recovered from the third 

individual (49.19µm) in the chain was larger than that recovered from the previous 

individual in the chain (16.11µm).  The particle measuring 49.19µm underwent a 

tertiary transfer. 

Comparison of the mean particle sizes for each sample yields few observable trends.  

In run one, the mean particle sizes on B and C were much lower than on the shooter, 

owing to the relative lack of transfer of large GSR particles that instead remained at 

the shooter.  Average particle sizes at B and C were very similar (3.90µm and 3.92µm).  

In run two, at the culmination of the handshakes, the mean sized particle remaining on 

the shooter and the mean sized particle eventually transferred to the second 

handshake recipient were, again, very similar (3.23µm and 3.25µm), while the figure 

for the first handshake recipient was slightly higher (5.45µm).  In run three, the mean 

particle size recovered from the individuals increased along the chain of three 

(4.36µm, 6.56µm, 8.82µm).  This was owing to the relative lack of movement of small 

particles from the shooter during the first transfer.  Further comparison of the 

similarities and differences between the particle size distributions relating to the three 
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samples in each run can be made by examining the proportion of particles in each size 

category.  The percentage of GSR particles in each category for each sample is 

displayed in table 5.36 and figures 5.24-5.26. 
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Run 1 Run 2 Run 3 

  

GSRs 
remaining 

on 
shooter 

GSRs 
remaining 

on 
individual 

1 

GSRs on 
individual 

2 

GSRs 
remaining 

on 
shooter 

GSRs 
remaining 

on 
individual 

1 

GSRs on 
individual 

2 

GSRs 
remaining 

on 
shooter 

GSRs 
remaining 

on 
individual 

1 

GSRs on 
individual 

2 

0-0.99µm 17.77% 38.46% 22.22% 19.71% 20.69% 22.73% 17.50% 0.00% 0.00% 

1-2.99µm 38.79% 23.08% 38.89% 51.34% 41.38% 45.45% 54.50% 44.44% 16.67% 

3-4.99µm 13.14% 23.08% 11.11% 13.38% 6.90% 9.09% 12.50% 11.11% 33.33% 

5-9.99µm 9.74% 7.69% 16.67% 11.19% 17.24% 18.18% 7.00% 11.11% 41.67% 

10-29.99µm 12.83% 3.85% 11.11% 3.65% 13.79% 4.55% 6.50% 33.33% 0.00% 

30-99.99µm 6.96% 3.85% 0.00% 0.73% 0.00% 0.00% 1.50% 0.00% 8.33% 

100+µm 0.77% 0.00% 0.00% 0.00% 0.00% 0.00% 0.50% 0.00% 0.00% 

Table 5.36 Particles per size category following the transfers in runs one, two 

and three of scenario four  
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Top: Figure 5.24 Particles per size category following the transfers in run one of 

scenario four  

Bottom: Figure 5.25 Particles per size category following the transfers in run 

two of scenario four  
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The data in table 5.36 and figures 5.24-5.26 demonstrate similarities and differences in 

the proportional distribution of particles among size categories between the donor 

and recipient samples.  The particle size distribution in run two appears to be well 

replicated across the three samples after the culmination of the transfers.  The three 

samples here clearly correspond and are evidently representative of the same initial 

population of GSR particles.  The largest particles were not transferred from A to B, but 

particles larger than 10µm were transferred from A to B and then to C.  The 

proportional distributions across the three samples in run two also appear to be 

representative of the same initial population of particles (and of a similar population of 

particles to those in run one) (for example, 19.71%, 20.69% and 22.73% of particles on 

the three samples measured 0-0.99µm).  There was some transfer of the largest 

particles from A to B, but not to C, while particles of 10+µm were transferred from A to 

B and then subsequently, to C.  Finally the replication of the distribution of particles 

was not observed in run three. While, the particles recovered from the shooter after 

the transfer exhibited a similar particles size distribution to the samples taken during 

the previous two runs, the subsequent samples represented a departure from the 

trend identified for runs one and two.  This can be attributed to the absence of sub-
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 Figure 5.26 Particles per size category following the transfers in run three of 

scenario four  
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micrometre particles among the secondarily transferred particles, as well as the lack of 

movement of particles falling into some other classes.  

5.4.2c Particle sizes before and after transfer 

The change in the size distribution of the particles that were recoverable from the first 

handshake recipient following a transfer event was assessed.  Individual ‘B’ in the 

chain received particles via a handshake, before transferring a portion of these 

onwards to another individual, ‘C’.  By combining particle size data in the manner 

outlined in section 5.3, the particles which were initially present on this individual 

following receipt of a handshake (and prior to giving one) could be approximated.  The 

data was then compared to the corresponding data from the sample taken from 

individual ‘B’ following the next handshake, during which some particles had been 

transferred away (table 5.37). 

 

 

Despite some between-run variation of the number of particles that were ‘lost’ from 

the individual during the second transfer, and despite the variation in the initial 

average particle sizes across the three runs, the change in average particle size 

 
Run 1 Run 2 Run 3 

 

GSRs 
originally 

on 
individual 

GSRs 
remaining 

on 
individual 

GSRs 
originally 

on 
individual 

GSRs 
remaining 

on 
individual 

GSRs 
originally 

on 
individual 

GSRs 
remaining 

on 
individual 

0-0.99µm 14 10 11 6 0 0 

1-2.99µm 13 6 22 12 6 4 

3-4.99µm 8 6 4 2 5 1 

5-9.99µm 5 2 9 5 6 1 

10-29.99µm 3 1 5 4 3 3 

30-99.99µm 1 1 0 0 1 0 

100+µm 0 0 0 0 0 0 

Total Number 
of Particles 

44 26 51 29 21 9 

Average 
Particle Size 

(µm) 
5.45 3.9 4.5 5.45 7.85 6.56 

Largest Particle 
(µm) 

35.47 35.47 29.39 29.39 49.19 16.11 

Table 5.37 Pre and post transfer particles per size category on the first 

handshake recipient for runs one, two and three of scenario four 
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following a transfer was fairly small - increasing or decreasing by between 1µm and 

1.5µm.  This confirms that the particles which transferred during the tertiary transfers 

were representative of those initially on the donor surface.  Moreover, rather than 

involving just small or large particles, the transfers generally involved a full range of 

particle sizes.  It should be noted, however, that the changes in average particle size 

here were greater than those observed following the secondary transfers from the 

shooter (see section 5.4.1a).  This slight departure was likely to have been a function of 

the higher efficiency of these transfers compared with the previous transfers and of 

the smaller numbers of particles involved, which in turn would have meant that the 

movement of one or two particles of a certain size would have altered the average 

particle size.  In the first two runs of the experiment, the largest particle was not 

transferred when hands were shaken, yet the particle measuring 49.19µm in run three 

was transferred.  

Proportional pre- and post-transfer particle size distribution data are provided in table 

5.38 and are displayed in figures 5.27-5.29 for each run in turn.   

 

  Run 1 Run 2 Run 3 

  

GSRs 
originally 

on 
individual 

GSRs 
remaining 

on 
individual 

GSRs 
originally 

on 
individual 

GSRs 
remaining 

on 
individual 

GSRs 
originally 

on 
individual 

GSRs 
remaining 

on 
individual 

0-0.99µm 31.81% 38.46% 21.57% 20.69% 0.00% 0.00% 

1-2.99µm 29.55% 23.08% 43.14% 41.38% 28.57% 44.44% 

3-4.99µm 18.18% 23.08% 7.84% 6.90% 23.81% 11.11% 

5-9.99µm 11.36% 7.69% 17.65% 17.24% 28.57% 11.11% 

10-29.99µm 6.82% 3.85% 9.80% 13.79% 14.29% 33.33% 

30-99.99µm 2.27% 3.85% 0.00% 0.00% 4.76% 0.00% 

100+µm 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Table 5.38 Pre and post transfer percentage of particles per size category on 

the first handshake recipient for runs one, two and three of scenario four 
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Figure 5.27 Pre and post transfer percentage of particles per size category on 

the first handshake recipient for run one of scenario four 

 

 

 

 

Figure 5.28 Pre and post transfer percentage of particles per size category on 

the first handshake recipient for run two of scenario four 
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Given what has been revealed through examination of the data in table 5.36, it is 

unsurprising that the distribution of particles among the size categories on the 

individual was, largely unchanged before and after the tertiary transfer in each of the 

three runs.  A ‘loss’, or donation, of particles resulting from a handshake did not 

significantly alter the proportional distribution of particles that were recoverable from 

the second individual in the chain.  Proportions of particles were generally maintained, 

confirming that the number of particles transferred from each size category was 

representative of the initial proportion in that category.  Run three, in some respects, 

did depart slightly from this trend, although so few particles (nine) remained that it is 

sufficient to note that most categories which were populated initially, remained 

populated following the transfer.  On the other hand, proportionally, the pre- and 

post- data for runs one and two are strikingly similar.  This is despite transfers of 

around 41% and 43% of the original particles, respectively. 
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Figure 5.29 Pre and post transfer percentage of particles per size category on 

the first handshake recipient for run three of scenario four 
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5.5 Observations 

In this section, an account will be provided of some of the observations that were 

made during the analysis.  In particular, a number of notable observations were made 

regarding particle morphologies, shapes and forms. 

5.5.1 Particle shape and morphology   

INCAGSR produced a small image of each particle of each feature it identified.  

However, these images were of insufficient resolution to clearly observe particle 

shapes and forms.  To supplement the particle size analysis presented in section 5.3 a 

manual survey of a number of samples was carried out in order to identify whether the 

particle shapes and forms reported in the literature were present.  In light of the 

findings presented by Brozek-Mucha (2011) (see section 3.4.4a), this survey was also 

carried out to determine whether particle shapes and forms may have been 

responsible for some of the variation in particle counts that was discussed in section 

5.2.   

The majority of particles measured <3µm and appeared as small fragments small 

spheres, or grain-like specks under the SEM.  Owing to the limitations of the 

equipment under the settings required for GSR analysis and detection, imaging and 

closer inspection of individual features was limited to the larger particles (>c.10µm) 

encountered during the analysis.  Six samples, including both shooters and transfer 

recipients, which had yielded notable quantities of larger particles were selected for 

this further survey (see table 5.39).   

 

 

 

 

 

The appearance, morphology and structure of GSR particles produced by different 

ammunition have been well studied in the literature (see section 3.2.2, Meng and 

Scenario/run Sample stub 

Scenario one run 1 Shooter 

Scenario one run 2 Shooter  

Scenario three run 1 Shooter, post transfer 

Scenario three run 1 Secondary transfer recipient 

Scenario three run 3  Secondary transfer recipient 

Scenario four run 1 Shooter, post-transfer 

Table 5.39 Samples selected for particle morphology survey 
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Caddy 1997, Brozek-Mucha 2007 and Collins et al 2003, for example).  However, the 

novelty of the observations made here is that a number of them relate to GSR particles 

that underwent secondary transfer.  These observations also represent an account of 

the GSR particles deposited on the shooter when 9mm Luger 95 grain jacketed soft 

point 9P1 ammunition (manufactured by FEDERAL Ammunition) is fired from a SIG 

Sauer P226.  In establishing the similarity of particle morphologies observed here to 

those relating to other types of ammunition, the applicability of the experimental 

findings to other firing scenarios is demonstrated. 

Basu (1982) distinguished GSR particle shapes and morphologies according to a 

number of categories, namely; ‘regular spheroids’, ‘nodular spheroids’ and ‘irregular 

spheroids’.  In a similar manner, when examining larger particles during the present 

investigation, recurrent particle shapes were noted.  It became clear that, among the 

larger (c.10µm and above) particles, several labels were appropriate for describing the 

particle shapes which were commonly encountered, namely; ‘spheres’, ‘irregular 

spheres’ and irregular ‘shard-like’ forms, or ‘plates’ (the latter acknowledged by 

Brozek-Mucha 2007, p.400). 

Spheroid GSR particles, measuring from a few micrometres to >10µm, were observed 

during the analysis phase of this study.  Examples of this ‘classic’ shape were found on 

samples taken from the shooter, as well as those taken from the transfer subjects.  

Instances of much smaller (sub-micrometre and 1-2µm in diameter) were encountered 

but proved difficult to image.  However, by no means were GSR particles characterised 

by this ‘spheroid’ shape.  It could be argued that the ‘classic’ image of a GSR particle 

photographed using an SEM is perhaps slightly misleading in that it does not reflect the 

array of different shapes and sizes of GSR particle that might be deposited during a 

firearm discharge.  Images of a selection of particles that exhibited a ‘spheroid’ shape 

are included in figure 5.30. 

 

 

 

 



285 

 

 

 

 

 

 

 

 

 

 

 

 

 

A number of particles were encountered which could be labelled ‘irregular’ spheres.  

These particles exhibited much more ‘layered’, ‘pitted’, or ‘clustered’ irregular 

surfaces, and an elongated, irregular, or ‘broken’ shape which departed somewhat 

Figure 5.30 Spherical GSR particles detected during the sample analysis 
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from the regular spheres pictured in figure 5.30.   The degree and nature of the 

‘irregularity’ varied greatly (figure 5.31) and particles varied in size.  They were found 

not only among the particles that were recovered from the shooters, but also on 

samples that were taken from transfer subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Upon closer examination of the surface of one of the particles in figure 5.29 at a higher 

magnification, the surface texture was revealed in more detail.  Interestingly, small 

Figure 5.31 Irregular spherical GSR particles detected during the sample analysis 
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(<1µm) spheres were found fused to the surface alongside more angular, ‘flint-like’ 

forms (figure 5.32). 

 

 

 

 

 

 

 

 

In contrast to the morphological features exhibited by the particles described thus far, 

a number of particles were found that were characterised by oblong shapes, the 

outline of which was angular and irregular.  Some of these particles appeared so 

angular that they resembled shards of glass and were therefore deemed appropriately 

categorised as angular ‘shard’ forms or ‘plates’ (figure 5.33). 

 

 

 

 

 

 

 

 

A large particle detected on one of the handshake recipients in scenario three 

exhibited both spheroid and angular features (figure 5.34).  It featured a spheroid-like 

‘bulge’ in the centre and extended out either side with angular features at the ends.  

Closer examination of its surface texture revealed it to be peppered with small spheres 

that were adhered to it.  Notably, this was an example of a very large particle 

Figure 5.33 ‘Shard’ and ‘plate’ GSR particles detected during the sample 

analysis 

 

 

 

 

 

Figure 5.32 An irregular GSR particle and its surface texture composed of sub-

micrometre particles and ‘flint-like’ forms 
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produced during the firearm discharge that was secondarily transferred to the 

recipient of a handshake from the shooter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.2 Concentrations of particles and their effect on particle 

counts   

There were cases when a concentration of large particles in one or more fields 

contributed significantly to the particle count for that sample, and also to the 

proportion of those particles that fell into the larger categories.  For example, in the 

first run of scenario four, 45 particles in the 30-99.99 category and five particles 

measuring >100µm were recovered from the shooter following the transfers.  On 

Figure 5.34 Large elongated GSR particle with surface spheres detected during 

the sample analysis 
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closer inspection of this sample, it was found that these particles included a number 

from the same field.  Figures 5.35 and 5.36 depict concentrations and it is clear that, 

while separations are visible between the fragments, the angular shapes fit together to 

form what was once one larger piece of material.  The degree of separation between 

particles varied in each case.  During the analysis, it was decided that where there was 

clear separation between the fragments, the particles would be treated as separate 

entities.  This decision was made as it was not clear whether the ‘shattering’ or 

‘cracking’ that was evident had occurred during its formation, as the particle was 

deposited, after it had been deposited, or during sampling.  Despite the accelerating 

voltage being set to 20kV, it is suggested that the ‘cracking’ was not caused by the 

proximity of the electron beam to the feature as initially the magnification was not 

high enough (200X) to cause interference with the material which, being composed of 

heavy metals, was not volatile. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 5.35 Concentrations of large GSR particles exhibiting cracks and fissures  
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The aggregations of particles shown in figures 5.33 did not only contribute to the 

counts of particles in the larger size categories, but also contributed significantly to the 

number of smaller particles present on the relevant sample.  On closer inspection, it 

was clear that the concentration of material also included many smaller, satellite and 

fragmented particles that were associated with the larger particles.  Several examples 

are shown on the image in figure 5.37. 

 

 

 

 

 

 

 

 

 

 

The agglomerations of GSR particles shown in figures 5.35 and 5.36 were recovered 

from the sample which was taken from the shooter in run one of scenario four.  

Therefore, these structures had remained adhered at the donor surface in this 

Figure 5.36 Concentrations of large GSR particles exhibiting cracks and fissures  

 

 

 

 

 

Figure 5.37 Concentration of large GSR particles showing small, satellite GSR particles 
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condition during the handshake and were not entirely transferred from donor to 

recipient.  It is not possible to say whether particles that were recovered from the 

transfer recipient included a contribution from these agglomerations, although the 

results in section 5.4.2b suggest that very few, if any, large particles underwent 

transfer thus suggesting that these structures resisted transfer.  While such 

agglomerations of particles were encountered relatively infrequently, their presence 

on some samples did contribute significantly to both the particle count and to the 

numbers of large particles detected on that particular sample.  It also meant that a 

relatively large number of (large) particles in the sample were located in one field, or in 

two or more fields when there was more than one aggregation of particles or where an 

aggregation was spread across multiple fields.  The implications of this for the analysis 

and interpretation of samples in casework will be discussed in chapter six. 
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Chapter 6 A discussion of the experimental 

findings  

6.1 Outline 

Following the preceding chapter that reported the results of the experimental phase of 

the thesis, this chapter discusses the findings in the context of the research questions 

set out in section 3.755.  The findings of the research are considered with reference to 

the literature on trace evidence and the dynamics of GSR.  In addition, the relevance of 

GSR transfer mechanisms are considered with respect to the various stages of the 

forensic investigation (set out in 2.2.1), in order to demonstrate the practical 

ramifications of the experimental findings for forensic casework.  A particular 

emphasis is placed on the interpretative issues that are posed by the findings and this 

provides a basis for chapter seven, which explores the possibility of reasoning about 

GSR transfer problems using a Bayesian approach.  This present chapter also includes 

an assessment of the method of sample analysis used for the study, for both casework 

and research purposes.  

6.2 GSR and evidence dynamics 

The findings of the experimental study and subsequent analysis represent an 

important contribution to our understanding of the behaviour and transfer properties 

of GSR and to the body of literature on evidence dynamics.  It is this body of literature 

and these experimental findings which are referred to when interpreting the presence 

of trace evidence, in this case GSR, through the assessment of a pair of interpretative 

propositions (see section 2.2.2).  With reference to the research questions that were 

set out in section 3.7, this section considers the ways in which the experimental 

findings inform and update our understanding of GSR.   

6.2.1 GSR particles 

Prior to a consideration of the ways in which the findings from this study inform our 

understanding of their dynamics, it is important to consider the contribution that the 

                                                           
55 A selection of the points in this chapter are presented in French et al (2013), see Appendix II 



293 

 

results presented in chapter five make to our understanding the characteristics of GSR 

particles.  During the analysis process, 4070 particles were detected and analysed and 

thus, the data that were produced provide an opportunity to make a number of 

observations, particularly regarding particle sizes and forms. 

Particle shapes included those which could be described as regular and spherical, as 

well as those which were much more ’irregular’, in accordance with Basu (1982) and 

Brozek-Mucha (2007), among others (see section 3.2.2).  Particles resisted rigid 

categorisation under shape descriptors or labels, owing to the plethora of particle 

shapes and to the prevalence of small fragments of material.  Nevertheless, certain 

particle shapes were frequently observed and these captured the distinction between 

smooth spheroids and more irregular particles and accounted for the existence of 

‘flint-like’ or ‘plate-like’ features (see section 5.5.1).  A number of different surface 

features were noted including cracking, nodular spheres and smooth surfaces and a 

further study could examine the formation of these features or their impact on the 

transfer and persistence properties of GSR.  In accordance with Wright and Trimpe 

(2006) and a number of other sources (Brozek-Mucha 2009, Wolten and Nesbitt 1980, 

Basu 1982 and Lindsay et al 2011a), terms such as condensed”, “rounded”, “fused” 

could be employed to describe the form of many of the particles that were 

encountered, while the presence of “angular” and “cracked” forms was also noted.  In 

agreement with Basu (1982), “peeled”, cracked and cratered surface textures with 

cavities and holes were identified.  In conclusion, to define GSR as consisting 

exclusively of smooth, spheroid particles will serve to underplay the heterogeneity of 

particle shapes and forms.  While the majority of particles did measure under 10µm 

(akin to Meng and Caddy 1997, for example) and a significant proportion of these were 

spherical, not all particles conformed.  Particularly in situations that involve manual 

analysis and detection, failing to acknowledge the myriad forms that GSR particles can 

take could, conceivably, result in particles being overlooked.  

The 4070 particles that were detected and analysed across all experimental sample 

stubs were sorted into classes according to their size (see tables 5.8, 5.9 and figure 

5.2).  Regarding the particles produced under the conditions simulated during the 

experimental work, particle sizes were heavily skewed towards the smaller particle 

sizes (<10µm).    Of all particles that were detected, 90.8% measured under 10µm and 
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this is a finding that aligns with the observations of various studies, including Basu 

(1982) Nesbitt et al (1976), Brozek-Mucha (2011), Trimpe (2011), Thornton (1994), 

Zeichner (2012), Zeichner (2003), Meng and Caddy (1997), Wolten et al (1977) and 

Lindsay et al (2011), that have all reported that the majority of GSR particles can be 

expected to measure in the order of between 1µm and 10µm.  The modal class of 

particle was 1-2.99µm and the mean particle size was 4.9µm, statistics which, again, 

align with the literature on GSR particles which was presented in section 3.2.2, 

although the mean particle size was slightly higher than the 2.6µm reported by Halim 

et al (2010) for 9mm ammunition from a semi-automatic pistol.  In accordance with 

Andrasko and Maehly (1977), Basu (1982), Christopher et al (2013), particles 

measuring in excess of 15, 20, 30 and 40µm were recovered following the firearm 

discharges and simulated transfers.  Notably, a number of very large GSR particles 

were recovered during the experiments and while the possibility of observing these 

larger particles has been acknowledged, reports of their detection are not widespread.  

This can perhaps be explained by the relative absence of catalogues of large numbers 

of GSR particles such as the one produced during this study, in which only 10 particles 

measuring >100µm were detected among over 4000 particles – a figure which 

represents only 0.25% of the total particle count.  The detection of particles of this size 

is an important observation that informs our understanding of the profile of GSR 

particles.  It should be acknowledged that the particle size data relate to the firing of 

9mm Luger 95 grain jacketed soft point 9P1 ammunition (manufactured by FEDERAL 

Ammunition) from a SIG Sauer P226 9mm self-loading pistol and the profile of particle 

sizes is likely to differ for alternative firearm-ammunition combinations.  Nevertheless, 

these results represent an indicator of the trends to be expected in firings involving 

ammunition and firearm types that are analogous to those that were employed in this 

study.    

The detection of conglomerates, or concentrations, of GSR particles was also 

documented in chapter five (section 5.5.2).  The sample analysis highlighted how, on 

occasions, large clusters of GSR particles were deposited and were subsequently 

recovered during sampling.  These clusters, when present, contributed significantly to 

the particle count for the sample in question and in particular, to the number of large 

(>10µm) GSR particles.  In addition, the clusters were often associated with many 
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smaller GSR particles.  It was noted that in a number of instances many of the particles 

in these clusters, while visibly separate, appeared to have once been associated as one 

or more larger pieces of material.   

These findings resonate with the observations of Brozek-Mucha (2011, p.975) who 

identified ‘fragmented solid particles’ on the hands of shooters following test firings.  

The ‘fragments’ or ‘sections’ in some cases appeared to exhibit a ‘physical match’ with 

one another that enabled them to be assigned to a single, larger particle (figure 6.1).  

According to Brozek-Mucha (2011) the presence of such particles among a population 

of deposited GSR will contribute to the recoverable particle count and to the variation 

between the counts which result from different firings.  Additionally, in a previous 

study, Brozek-Mucha (2007) recovered ‘plate’ and branched GSR structures from the 

inside of a discharged cartridge (figure 6.2).  Similar plate structures were detected 

during the analysis and were presented in section 5.5.1, suggesting perhaps, that 

contact with the loading chamber and other parts of the firearm resulted in particles 

that were formed in the cartridge being deposited on the shooter.   

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 ‘Fragmented solid particle’ detected by Brozek-Mucha (2011, p.975) 
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Neither sampling nor beam proximity were deemed likely to have caused the apparent 

‘cracking’, ‘shattering’ or ‘dissociation’ of material.  It is suggested that these clusters 

may owe their appearance to the modification of GSR particles that can occur on 

impact with a surface (see, for example, Burnett 1989), but it is more likely that the 

cracking occurred along fissures during the rapid cooling of material following its 

formation under high temperatures (Nag and Sinha 1992, see section 3.2.1).  This 

observation, therefore informs our understanding of the GSR formation and deposition 

process and is perhaps further evidence of GSR particles that have an appearance 

consistent with rapid cooling (Wright and Trimpe 2006).    

An additional finding regarding the dynamics of GSR which was not anticipated 

concerned the persistence of GSR during hand-washing regarding GSR.  It was 

identified that two control samples that were taken following hand-washing intended 

to remove all GSR prior to the start of the experiment (section 5.2).  One and five 

particles were recovered from these samples.  This finding resonates with previous 

findings regarding the persistence of GSR that were reported in section 3.4.4b, 

particularly Andrasko and Maehly (1977) who reported the resistance of two GSR 

particles to thorough washing.  It should be acknowledged that control samples 

confirmed that thorough hand-washing was successful in removing large quantities of 

deposited GSR in the vast majority of cases, corroborating (Andrasko and Maehly 

Figure 6.2 ‘Plate’ structures detected by Brozek-Mucha (2007, p.402) 
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1977, Nesbitt et al 1976).  Thus, while GSR particles can persist on hands during 

thorough hand-washing, they do so infrequently.       

6.2.2 Secondary transfer    

Establishing whether the potential exists for GSR to undergo secondary transfer 

following its initial deposition is central to the aim of this piece of experimental 

research.  Such transfers would mean that individuals other than the shooter could 

acquire GSR following its deposition.  Furthermore, the nature of these transfer 

mechanisms and the quantities of material involved were also of interest.  Research 

questions one and three asked (section 3.7): 

 Can GSR particles undergo secondary transfer from a discharged firearm to 

the hands of an individual who was not present at the scene of a firearm 

discharge but who handled the firearm afterwards? 

 Can GSR particles undergo secondary transfer from the hands of a shooter 

to those of an individual who was not present at the scene of a firearm 

discharge? 

The results of the experiments provide unequivocal evidence that GSR particles can 

undergo secondary transfer from their original site of deposition (see, for example, 

table 5.6).  These transfers, as demonstrated by the results of experimental scenarios 

two and three, can result when the hand of an individual makes contact with the hand 

of a person who has recently discharged a gun, via a handshake.  Additionally, 

secondary transfer can also result when an individual takes hold of a recently 

discharged firearm.  Crucially, these conclusions are based on the results of 

experiments in which the recipients of the secondary transfers were not present at the 

scene of the original shooting – the ramifications of this observation will be discussed 

in section 6.4.  Moreover, owing to the control measures that were put in place 

(outlined in 4.2.4) and to the results from the control samples56, it can be concluded 

that the presence of GSR on the secondary transfer recipient can be attributed to the 

transfer mechanisms that were simulated.  Thus, Research Questions One and Three 

                                                           
56 In the vast majority of cases, these control samples confirmed the absence of any material that 
had persisted hand-washing.  However, as described in section 5.2 (and throughout Chapter Five), 
contamination was encountered in a very small number of cases.  In these cases, the contribution of 
contamination to the overall particle count was negligible.  Therefore, its impact on the results and 
on the validity of any conclusions that are made is also limited. 
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have been answered.  That GSR particle evidence was found to undergo secondary 

transfer in the manner described suggests that other forms of trace physical evidence 

may behave in a similar manner.   

The finding that GSR can be secondarily transferred via interpersonal (hand-to-hand) 

contacts is a novel one in the literature.  Transfer in a similar manner has been 

reported with respect to other types of trace evidence (see, for example, Lowe et al 

(2002) and Lowe et al (2003) for LCN DNA and French et al (2012) for trace 

particulates) and it might thus have been hypothesised that GSR could also behave in 

this manner.  Furthermore, that GSR can be transferred by such contacts has been 

inferred by several contributions that state that contact with surfaces bearing GSR can 

result in transfer.  However, until now, the possibility of the transfer of GSR via hand-

to-hand contact has not been experimentally confirmed, nor has it been quantified in 

any experimental setting.  The principal finding of experimental scenario two, that GSR 

can be secondarily transferred via contact with a recently discharged firearm is one 

that corroborates the observations made by Basu et al (1997) and Cetó et al (2012).  

Moreover, the counts that were recovered are similar to some of those reported by 

Basu et al (1997) that resulted from simulated contact with the trigger and rear of a 

fired revolver, (see section 3.5).  Akin to the Cetó et al (2012) and Basu et al (1997) 

studies, GSR particles counts resulting from contact with the firearm were 

distinguishable from those recovered from shooters in the experimental setting of this 

piece of research.  However, in the Basu et al (1997) study, in line with the principles of 

evidence transfer (see section 2.3.1), much greater levels of transfer from the firearm 

to the handler were effected by increased pressure of the contact or by rubbing and 

brushing the hands on the cylinder/barrel of the revolver.  These transfers resulted in 

greater levels of GSR on the transfer subject when compared to shooters – something 

that was not observed during the experimental simulations in scenario two. 

The quantities of particles that were involved in both types of secondary transfer 

simulated during the experimental phase of this thesis varied from run to run.  This 

variation was a result of the differing quantities of GSR that were available for transfer 

from the hands of the shooter or the outside of the firearm, which in turn, was the 

result of the tendency for the quantity of GSR produced by a firearm discharge to vary 

from firing to firing (Matricardi and Kilty 1977, Jalanti et al 1999, Schütz et al 2001, 
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Lindsay et al 2011a, Brozek-Mucha 2011).  Goray et al (2012) previously observed 

inherent variability involved in multi-step transfers, albeit with regard to DNA.  

Meanwhile, referring to the theories of trace evidence transfer that were outlined in 

section 2.3.1, variable GSR transfer may have been in part attributable to variations in 

the pressure of the contacts (handshakes) between runs (see, for example, Pounds and 

Smalldon 1975a and Robertson et al 1982).  In addition, the adhesive properties of the 

hands of the different transfer subjects (owing to the degree of sweat for example) 

and the effect of these properties on the efficiency of sampling may also have 

contributed to the variations in the quantity of transferred material (see Brozek-Mucha 

2011).  Large ‘fragmented’ particles of the sort described by Brozek-Mucha (2011) and 

recovered from shooters during this study (see sections 5.5.2 and 6.2.1) were not 

recovered from transfer subjects and therefore, did not contribute to between-run 

variations in the number of particles recovered from the transfer subjects.  

The GSR counts that were determined for the samples taken during these experiments 

relate to transfers and depositions that occurred under a specific set of circumstances 

and experimental conditions.  The results should not be used to infer that these 

specific counts are indicative of those that can be expected in all scenarios with regard 

to GSR.  Rather, they are indicative of the extent of transfer that may be expected in 

conditions which are analogous to the experimental conditions or, at the very least, 

indicative that secondary transfers of GSR might conceivably be observed in alternative 

circumstances.  Importantly, however, steps were taken to approximate real-world 

casework scenarios that enhance the applicability of the findings to real-world 

scenarios (see section 4.2.5).  The quantities of particles involved in the transfers 

suggest that forms of contact other than handshakes or grasping the firearm, perhaps 

fleeting hand-to-hand contact, would also be effective in initiating a secondary 

transfer. 

With regard to the interpersonal (hand-to-hand) transfers, it is significant that GSR 

particles were transferred in all six runs; in no case did a handshake fail to result in the 

transfer of particles.  An average of 60-61 particles were transferred while a maximum 

of 129 particles (29.93% of initial particles) and a minimum of 21 particles (9.5% of 

initial particles) were found to have undergone a secondary transfer.  Meanwhile, in 

the three transfers that resulted from handling the discharged firearm, variable 
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quantities of GSR were again involved with a maximum of 86 particles and a minimum 

of 14 particles recovered from the transfer subject.  However, the relatively small 

number of experimental runs means that it is not possible to suggest that these results 

indicate that the interpersonal contacts resulted in the transfer of more particles than 

when the subject made contact with the discharged firearm.  However, like the hand-

to-hand secondary transfers it is notable that no contact with the firearm failed to 

initiate the transfer of GSR particles.  In practice, the quantity of material that is 

secondarily transferred will be influenced by factors such as the force of contact and 

the nature of the donor and recipient surfaces (see section 2.3.1, 2.3.3 and 3.4.4).  It is 

conceivable that the amount of transferrable material that is available from the 

regions of a firearm that a secondary handler may touch might be less than that which 

may be found on the hands of the shooter, owing to the fact that the hands of the 

shooter ‘intercepted’ much of the material that could have otherwise been deposited 

on the handle and trigger regions.  Further research could confirm this.  

Of paramount importance in the context of the GSR evidence dynamics literature, and 

with regard to the interpretative implications that will be explored in section 6.4, is 

that the amount of particles involved in the secondary transfers tended to be 

considerable.  For example, the 86 particles transferred by handling a firearm in run 

one of scenario two and the 129 that were particles transferred via a handshake during 

run three of scenario three appear to run counter to the findings of previous 

investigations into contamination via the secondary transfer of GSR that cite the 

possibility and extent of secondary transfers as being minimal (Gialamas et al 1995 and 

Berk et al 2007).  However, it must be noted that these studies are concerned with 

contamination during arrest and suspect processing, via secondary transfer from 

officers and police facilities and do not consider the potential for transfer in the period 

between deposition (firing) and suspect arrest/sample collection.  So, while the 

potential for contamination during and after collection via secondary transfer has been 

found to be minimal by previous studies, the findings of this study indicate that 

secondary transfer to hands following a shooting, and prior to collection, is highly 

possible if contacts have been made.  Moreover, in settings analogous to those in this 

study, these transfers can involve considerable quantities of GSR particles.  By 

extension, if a surface bears sufficient GSR then it may also represent a willing donor 
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source and a source of contamination via secondary transfer.  The investigative 

implications of this will be discussed in section 6.3. 

It must be acknowledged, however, that the transfers that were staged during the 

experiments represent an “extreme” case, in which the contact between the test 

subject and shooter/firearm was made in the immediate aftermath of the firearm 

discharge.  This was discussed in section 4.2.2.  Consequently, in the absence of a 

significant window for the decay of material, the population of GSR on the donor 

surface will have been largely undisturbed.  In such conditions, any transfer that takes 

place can be expected to involve larger quantities of trace material than one that took 

place one hour after a firearm discharge, for instance.  However, when it is considered 

that an average of 60-61 particles and a maximum of 129 particles were transferred 

from on hand to another in scenario three, it is reasonable to suggest that even given a 

delay between initial deposition and secondary contact (that would, in turn, reduce 

the amount of GSR available for transfer), a detectable transfer can be expected.  

Despite the generally lower levels of transfer (86, 18 and 14 particles), the same can be 

said of the possibility of a secondary transfer following the handling of a discharged 

firearm after some delay.  Taking into account the timeframes of trace evidence and 

GSR longevity that have been reported and that were outlined in section 2.3.2 and 

3.4.4b, respectively, it would be reasonable suggest that after a few hours (in the 

absence of any firearm cleaning or hand-washing etc.), contact with a shooter or 

discharged firearm could result in the secondary transfer of a detectable number of 

particles. 

In section 5.4.1a, estimates of the efficiency of the hand-to-hand secondary transfers 

were made.  The most efficient secondary transfer involved a little fewer than 30% of 

particles being transferred from the shooter to the handshake recipient and on 

average this figure was around 13%.  Given that between 21 and 129 particles were 

transferred during the secondary transfers, it seems reasonable to predict that a 

measurable tertiary transfer could be expected if a subsequent transfer was made.  

This was confirmed by the results of scenario four and will be discussed in section 

6.2.3. 

Addressing research questions one and three also involved a consideration of the sizes 

of the particles that were secondarily transferred.  From the particle size data that 
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were presented in chapter five a number of observations can be made.  It is important 

to re-emphasise that the particle size data (as well as the GSR counts) concern the GSR 

that was produced during the particular scenarios, under the specific conditions set 

out in chapter four and using the specific firearm-ammunition combination.  Thus, the 

extent to which the data can represent an expected dataset following firings in 

different scenarios and under alternative conditions will be limited to some extent.  

However, the particle size data can be used to inform our understanding of the 

dynamics of GSR with respect to the sizes of particles and to provide an indication of 

what trends can be expected in a different scenario.  Meanwhile, conclusions about 

the tendency for certain sizes of particles to undergo transfer must be made carefully, 

owing to the limited number of experimental runs, despite the large number of 

particles that were analysed.    

A comprehensive review of the sizes of particles that are involved in secondary 

transfers has not previously been undertaken and thus, the trends with that have been 

identified here are as part of an exploratory investigation.  Further study, which is 

enabled by the employment of an automated particle search capability, is needed to 

examine the reproducibility of these observations.  At this stage, preliminary trends 

and observations, as indicated by the data, are documented. 

With regard to the interpersonal (hand-to–hand) transfers, the data that were 

presented in chapter five clearly demonstrate that, with reference to the overall 

particle population, a full range of different sized particles underwent secondary 

transfer.  In other words, all particles that are deposited on the shooter during a 

firearm discharge, from extremely small sub-micrometre to very large (>100µm) 

particles, can conceivably be transferred if the shooter shakes hands with second 

individual.  Interpersonal secondary transfers of GSR are by no means limited to small 

particles.  That very large (>100µm) particles were recovered from a secondary 

transfer recipient represents a novel observation regarding our knowledge of GSR 

evidence dynamics; one which has not been reported in the published literature.  This 

is also a significant finding for our understanding of secondary transfer in the trace 

evidence literature more generally as it confirms that secondary transfers are not 

limited to the movement of smaller particulates. 
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In chapter five, particle size distributions for each sample were produced by sorting 

particles into size categories.  Notably, when compared to the distributions for the 

‘initial’ populations of GSR that were deposited on the shooters, the size distributions 

of the particles recovered from the handshake recipients were very similar (see tables 

5.14 and 5.20).  This confirmed that not only did a full range of particles undergo 

secondary transfer, but also that the resulting populations of GSR particles were 

representative of the initial population of GSR that was deposited on the shooters, 

notwithstanding small amounts of between-run variation.  That representative groups 

of GSR particles were transferred to the handshake recipients was confirmed by 

examining the particle size distributions of reciprocal transfer samples; donor and 

recipient, following the completion of the transfer (see section 5.4.1b).  This was 

confirmed by the particle size data for the donor surface before and after the transfer, 

which exhibited the preservation of the proportional distribution of particles among 

the size categories (section 5.4.1c).  In sum, in conditions analogous to those simulated 

in the experiments, secondary transfer is highly possible and can involve considerable 

number of particles, large particles, and a population of particles which is 

representative of that initially deposited on the shooter.   

The data indicate that the average size of particle recovered from a shooter and an 

individual who has acquired GSR via an interpersonal transfer from the shooter may be 

expected to be similar, assuming that material has not been subject to a significant 

degree of decay.  Meanwhile, mean particle sizes for reciprocal recipient and donor 

surfaces, following the secondary transfers were similar in some cases.  However, the 

transfer of an unrepresentative proportion of large particles has the potential to limit 

this similarity. 

It has been reported by Andrasko and Maehly (1977) that the larger (>10µm) GSR 

particles in a population will dissociate most quickly from a surface and that after a few 

hours, smaller (<3µm) particles tend to remain.  As a result, the average particle size of 

a recoverable population of GSR on a subject will alter over time, while the distribution 

of particles among the size categories will become skewed towards the smaller size 

categories.  It is likely, at this point, that the particle size data (particularly the particle 

size distributions) for a sample taken from a shooter and from a secondary transfer 

recipient would not appear to correspond.  This would be attributable to varying 
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influences on the persistence of material and owing also to the loss of the small 

number of large particles that were present on the secondary transfer recipient, while 

at least some large particles may be expected to remain on the shooter.  

Noteworthy observations were also made from the particle size data for the samples 

taken from the subjects who handled the discharged firearms.  Interestingly, in 

comparison to the samples taken from the interpersonal transfer recipients and from 

the shooters following the initial deposition, particularly particle size distributions 

were less consistent from run to run when a discharged firearm was handled by a 

subject.  Moreover, there were some differences between the particle size data for 

these samples and those taken from the shooter and from the interpersonal transfer 

recipients.  For example, the average particle sizes for these runs differed from those 

calculated for shooters and handshake recipients.  Furthermore, fewer particles were 

recovered that fell into the largest size categories and the size of the largest particles 

encountered tended to be smaller.  However, owing to the fact that the subject 

handling the firearm would have come into contact with the same areas as the shooter 

when the gun was being fired, it is unlikely that the initial starting population of GSR 

that was borne by the firearm would have differed greatly from that which deposited 

on the shooter.  Rather, any discrepancy is likely to be owing to the small numbers of 

particles that were involved in the secondary transfers from firearm to handler.  

Alternatively, this could be a function of the different retentive properties of the 

surface of the firearm in comparison to the hands of the shooter, according to theories 

of transfer and persistence as outlined in section 2.3, which could be investigated 

through further experimentation.  Indeed, it would be profitable to examine the sizes 

of particles that are deposited on the firearm during a discharge and also the effect of 

handling a firearm on the population of particles that remains adhered to the firearm, 

using the approach that was employed with regard to hand-to-hand transfers in 

section 5.4.   

Despite the relative absence of the very largest particles on the firearm-to-hand 

secondary transfer samples in these experimental runs, the results do indicate that a 

secondary transfer initiated by handling a firearm does not involve, for example, 

exclusively small particles.  Rather, particles measuring >10µm (20.35µm, 41.44µm and 

18.03µm, for example) were found to undergo transfer by this means, in addition to 
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sub-micrometre particles and those measuring between 1µm and 10µm.  This 

represents a novel observation in the GSR literature. 

6.2.3 Tertiary transfer    

Research Question Two was concerned with further transfers: 

 Can particles of GSR undergo multiple transfers (i.e. tertiary) from the 

hands of a shooter to another surface and then be transferred to 

subsequent surfaces which were not present at the scene of a firearm 

discharge?   

As predicted by the results of scenario three (section 5.2.3), the results of scenario four 

(section 5.2.4) confirmed that GSR particles that have initially been deposited and 

subsequently secondarily transferred can undergo a tertiary transfer via another 

handshake.  Again, this represents a novel observation with regard to GSR dynamics, 

having not been experimentally determined, and until now could only be inferred from 

statements regarding the possibility of acquiring particles from a surface which bears 

GSR.  The possibility of tertiary transfers of trace evidence is acknowledged by 

Gaudette and Tessarolo (1987) and has been confirmed experimentally by Taupin 

(1996) and French et al (2012) with regard to hair and fibres and to trace particulates, 

respectively, but not to GSR until now.  That GSR particle evidence was found to 

undergo tertiary transfer in the manner described suggests that other forms of trace 

physical evidence may behave in a similar manner.  The quantities of particles involved 

in the transfers also suggest that forms of contact other than handshakes may also be 

effective in initiating a tertiary transfer.   

It is very significant that all simulated contacts resulted in the tertiary transfer of GSR 

particles.  Importantly, the quantities of GSR that were detectable after the tertiary 

transfers were not negligible.  Rather, the 18, 22 and 12 particles that were transferred 

in the three runs (representing transfers of 40.91%, 43.14% and 57.14% of particles, 

respectively) were significantly higher than quantities of particles that may be 

considered ‘trace’ quantities, such as between one and three particles.  In the same 

way as explained with regard to the results from scenario three, the tertiary transfers 

represent an “extreme” case in which secondary contacts were made straight after the 

initial deposition and subsequently, tertiary contacts were made without delay.  
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Notwithstanding the fact that this meant the maximum quantities were available at 

the donor surfaces, the quantities involved in the transfers are, again, suggestive that 

further detectable transfers from the tertiary recipient may be possible.  Indeed, the 

tertiary transfers were more efficient than those that took place between shooters and 

the first handshake recipients.  In section 5.4.2a, it was calculated that 40.91%, 43.14% 

and 57.14% of GSR particles were transferred from the secondary recipient to the third 

subject, representing a notable increase in efficiency compared to the secondary 

transfer events (note that these quantities represented 2.60%, 4.76% and 5.43% of the 

initially deposited GSR populations).  These more efficient transfers in the third stage 

of the transfer chain appear to suggest that subsequent transfer would be possible if 

sufficient particles were present.  If these subsequent transfers were similar in 

efficiency to the tertiary transfers, the recoverable particles along a transfer chain 

would exponentially decrease and trend towards zero, echoing the two-stage pattern 

of decrease observed by French et al (2012) along transfer chains. 

The particle size data for the samples taken from the tertiary transfer recipients 

exhibited a number of noteworthy features.  Analysis of the data revealed that, owing 

to the relatively few particles involved in these transfers, the possibility of larger 

particles being present on the sample was lower.  These larger particles, it was 

demonstrated, had tended to remain either at the shooter or at the first transfer 

recipient, rather than be deposited for a third time.  The resulting particle size 

distributions for these samples resembled those for the samples taken from shooters 

and interpersonal secondary transfer recipients and were representative of the same 

initial populations of GSR particles, apart from a relative absence of particles in the 

larger size categories.  As a result, average particle sizes and the sizes of the largest 

particles encountered on samples of GSR transferred in this way may be expected to 

be lower.  However, in one of the runs, a particle was recovered from the recipient 

after a tertiary transfer that measured 49.19µm.  Owing to the low number of particles 

that were transferred as a result of this particular contact, the large particle had the 

effect of inflating the mean particle size and demonstrated how, when only a few 

particles are transferred, the movement of one or two particles of a particular size may 

have a great impact on the particle size data generated for that sample.  In addition, 
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this effect was shown to contribute to between-run variance in terms of the 

replication of particle size distributions and mean particle sizes.  

It is important to stress that the very large in particle in question had, first, been 

deposited on the shooter during the firearm discharge before being secondarily 

transferred via a handshake to a second subject and finally, this particle had 

undergone a tertiary transfer via a handshake with a third individual.  This particle was 

larger than almost 99% of the 4070 particles that were encountered across all of the 

experiments.  Demonstrating that it is possible for large GSR particles to be recovered 

from the recipient is a novel finding and one that enhances our understanding of GSR 

evidence dynamics.  It is also a noteworthy observation in the context of the trace 

evidence literature and in particular, that portion of it which is concerned with 

multiple transfer mechanisms (see, for example, Goray et al 2010, French et al 2012 

and Gaudette and Tessarolo 1987).  These observations give rise to a number of 

potential interpretative ramifications that will be explored in section 6.4.3.   

It is certainly the case that further analyses of GSR evidence dynamics with a focus on 

the sizes of particles, which assess the reproducibility of the findings that have been 

made here, will enhance our understanding of these dynamics.  Concurrently, such 

research will assist in exploring the evidential value of transferred GSR particles of 

different sizes and the interpretative implications that are involved.   

6.2.4 Deposition mechanisms    

Research Question Four asked: 

 Can GSR particles be deposited on a bystander who was in the vicinity of a 

firearm discharge? 

As stated in section 3.7, while to some extent a positive answer to this question has 

been provided to this question by previous studies (Lindsay et al 2011a, for instance), 

this question was addressed using the same methods and procedures that were 

employed during the other firings.  Consequently, the quantities of any deposited 

particles could be directly compared to the quantities of GSR particles that were 

deposited or transferred via other mechanisms and thus, Research Question Five could 

be addressed. 
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The quantity of GSR particles that was deposited on the hands of the individual 

standing one metre behind the shooter during the firing of five rounds was similar 

across the three runs.  Counts of 18, 22, 12 particles were recovered and despite the 

limited number of runs, it could be reasonable to suggest that slightly fewer GSR 

particles were deposited on the bystanders compared to those that were transferred 

via a direct contact with the shooter.  The results from this study indicate that 

deposition on the bystanders in this case was less likely to result in the deposition of 

considerable (>50) quantities of GSR particles.  Notwithstanding this, the quantities 

recovered were significantly higher than a ‘trace’ quantity of, for example, one or two 

particles.  The results are very similar to those reported by Lindsay et al (2011a) who 

found that between 0 and 27 particles were recoverable from the bystanders in their 

experiments, irrespective of their orientation in relation to the firearm discharge.  It is 

notable that in each run GSR particles were deposited on the bystander, unlike the 

firings reported in the Lindsay et al (2011a) study which in some cases failed to deposit 

detectable GSR on the bystander. 

The Lindsay et al (2011a) study found that in some firings, similar quantities of GSR 

were recoverable from shooters and bystanders, owing to the variability in quantities 

of GSR which were deposited.  On the contrary, the findings of the experiments in this 

study revealed markedly divergent levels of deposition on shooters and bystanders.  In 

accordance with previous findings from experimental research, the quantity of GSR 

that was produced by the firearm discharges and deposited on the shooter varied 

greatly from firing to firing (Matricardi and Kilty 1977, Jalanti et al 1999, Schütz et al 

2001, Lindsay et al 2011a, Brozek-Mucha 2011).  It is likely that some of this variation 

may have been attributable to an accumulation of GSR from previous firings as a result 

of the ‘memory effect’ (Rijnders et al 2010, Basu et al 1997, López-López 2013, Charles 

et al 2011), although the change in levels of deposition in the present study was not 

simply one of an increasing trend with successive runs, meaning that other variables 

were influential.  A maximum of 834 particles and a minimum of 206 were deposited 

on the shooter, while the average count was 429 particles.  Owing to the consistency 

of the sampling strategy (see section 4.2.3) it is reasonable to assume that a sampling 

bias did not contribute to this variation.  In all runs, the quantity of GSR that was 

recovered from the shooter was a great deal higher than that which was deposited on 
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the bystanders (an average of 429 particles were recovered from shooters compared 

to 28 from bystanders).  The relative consistency in deposition on the bystanders 

contrasts strongly with the variability in levels of GSR that were deposited on the 

shooter between firings.  In most cases the quantity of GSR that was deposited on the 

shooter was significantly greater than that which was transferred by any of the other 

mechanisms being investigated.  However, owing to the high degree of variation 

between firings, in some cases the difference between secondarily transferred counts 

and the more conservative depositions on the shooter was not quite so great, although 

even the lowest counts recovered from the shooter were still somewhat higher.  

Despite the relatively small number of runs, some observations may be made about 

the sizes of particles that were deposited on the shooters and bystanders.  These 

observations inform our understanding of the transfer/deposition properties of GSR 

evidence and highlight the potential relationships between the size of GSR particles 

and their dynamics.  This relationship could be the focus of future research projects.  

Taking into account the samples that were taken from the hands of the shooters after 

firing, the results suggest that from firing to firing, the size profile of the population of 

particles that is recoverable well replicated.  While the specific data (mean particle 

size, percentage of large particles, etc.) will vary according to conditions and to the 

firearm-ammunition combination that is employed, the results indicate that where 

these conditions are maintained, the profile will be maintained from run to run.  For 

example, in most of the runs, the average particle size was between 4µm and 5µm, 

with only one notable departure (run seven, see table 5.13), while in all runs the modal 

class of particle was 1-2.99µm.  The data indicate that the distribution of particles 

amongst size categories can be expected to be well replicated between firings and that 

large (>10µm, >30µm and even >100µm) GSR particles may be deposited on the hands 

of the shooter.  This corroborates previous reports in the GSR literature (see section 

6.2.1).  The particle size data for the samples taken from the shooters provide the 

point of comparison for the data derived for the other transfer and deposition 

mechanisms. 

With regard to the GSR particles that were deposited on the bystanders, it is 

reasonable to conclude that larger particles do not to become airborne and deposit on 

a bystander one metre from the firing.  The largest particles recovered from the 
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bystanders after the first two firings measured 7.47µm 12.90µm respectively and 

although a particle measuring 32.35µm was deposited on the bystander in the third 

firing, proportionally fewer particles in the larger size categories were present on 

bystanders than on the shooters.  The presence of the larger particle in the third firing 

served to contribute to a fairly high average particle size (7.27µm) of those particles 

that were recovered from that particular bystander.  That the presence of one or two 

larger articles among a relatively small population of GSR particles (in this case, 28 

particles) can impact the mean particle size dramatically was an observation made 

several times during this study.  When considering smaller quantities of particles, the 

inclusion of a small number of particles in one instance can result in large variations in 

mean particle sizes between firings and this underscores the importance of 

considering the distribution of particles among size classes.  Notably, the modal class 

of particles was the same for the bystanders as the shooters, suggesting that the 

smaller particles that are deposited on the hands of the shooter from the muzzle-blast 

and breeches are also thrust backwards, behind the shooter following the firearm 

discharge. 

6.3 Implications for the forensic investigation  

The importance of demonstrating the utility and applicability of research in forensic 

science is a central theme of this thesis and one that was introduced in chapter one.  

According to Mnookin et al (2011), a central tenet of an effective research culture in 

the forensic sciences is the undertaking of methodologically sound research that 

informs forensic practice, and the conclusions and testimonies that are made by 

forensic scientists.  Accordingly, this section outlines the implications of the findings of 

the experimental phase of this thesis for the collection, analysis, interpretation and 

presentation of GSR evidence.  In addition, this discussion will consider the 

ramifications of the findings for future experimental research into GSR, while 

considering the research questions that could be addressed when doing so.  

 

6.3.1 The collection of GSR samples 
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The results of the experiments that were carried out have a number of ramifications 

for the collection stage of an investigation involving GSR, and for the practices and 

protocols that are employed as part of this process.  Clearly, owing to the 

reconstructive and probative value that secondarily transferred quantities of GSR 

might be found to hold, the collection of samples from secondary transfer subjects is 

recommended.  In a situation where a group of individuals might be implicated in a 

shooting or when claims are made regarding the identity of a shooter, for instance, 

sampling from as many individuals who may have been implicated as possible is 

recommended.  Moreover, this sampling should be carried out as soon as practically 

possible and could also involve handled surfaces and objects.  The expedience of 

sampling, ideally at the scene, will ensure that potentially crucial evidence is captured 

and that it is not ‘lost’ via decay, nor further disseminated by successive transfers.  

While all of the samples that may be collected may not all, ultimately, be subject to 

analysis, this approach does ensure that it is not necessary to return to sampling sites 

that may become important later in the investigation, by which time material may 

have been lost or degraded and the window for evidence recovery lost.  Conceivably, 

the evidential and reconstructive value of a quantifiable presence of GSR, or even its 

absence, on one or more suspects who were sampled in connection with a firearms 

offence is great.  The potential exists to use such samples to make inferences about 

the likely method of deposition and to assess activity level propositions regarding 

multiple individuals.  This will be developed as a point of discussion in 6.4 and revisited 

in chapter seven. 

Unlike previous studies, such as those undertaken by Gialamas et al (1995) and 

Berk et al (2007) ‘contamination’ was not the object of study in these experiments.  

However, the propensity of significant quantities of GSR to undergo secondary and 

tertiary transfer, or for GSR to be deposited in the vicinity of a firearm discharge, 

has ramifications for the collection of evidence and hints at the possibility of 

contamination via secondary transfer.  For example, if the hands of a suspect who 

had recently discharged a firearm were held during arrest, perhaps to restrain, a 

transfer of material could take place from the suspect to the officer.  This would 

result in the ‘loss’ of evidence from the suspect and conceivably, could also mean 

that the officer was now a potential donor of GSR particles to other surfaces 

including further suspects who might be detained at the same scene or 
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subsequently.  If multiple suspects are being apprehended, measures could be 

taken to reduce the opportunities for unwanted transfer.  For example, a one-

suspect-per-officer policy would limit the possibility of transferring GSR between 

offenders, via officers. 

Meanwhile, the seizure and packaging of exhibits, particularly firearms and spent 

cartridges represent opportunities for secondary transfer and contamination.  For 

example, if a responding officer chooses to seize or handle a firearm in some way at a 

scene, a secondary transfer could take place that would result in a ‘loss’ of GSR from 

the exhibit and also in a population of GSR on the hands of the officer.  These particles 

could, in turn, be transferred to further surfaces and could potentially represent a 

source of contamination.  While these issues are likely to be guarded against by scene 

examiners who may arrive at the scene, first responding officers might be less aware of 

the forensic implications of their actions.  Thus, when responding to an incident or 

attending a scene where a firearm may be recovered, officers should be made aware 

of the need to avoid handling exhibits and in instances that involve handling surfaces 

should be followed by thorough hand-washing.   

Owing to the potential for multiple transfer, and also to the possibility of fallout from 

GSR that has been ejected during the firearm discharge, officers should be mindful of 

the dangers of contamination when entering a scene and  should take precautions 

against any further transfer once they have left the scene.  Charles and Geusens (2012) 

identified an elevated, if still slight, contamination risk posed by firearms officers when 

making contact with a suspect.  The findings of the present study are suggestive of the 

presence of GSR on the hands of officers who regularly handle and discharge firearms 

and who come into contact with suspects who have done so.  Thus, they may 

represent a source of secondary transfer and contamination.  The suggestion of further 

research that addresses this issue is reserved for chapter eight. 

The results of the experiments, which demonstrated the propensity of GSR particles to 

undergo transfer upon contact, point to the importance of ensuring that packaging 

procedures and solutions maintain the integrity of exhibits and samples and prevent 

the loss or addition of GSR.  The sealed SEM sample tubes that were used in the 

experimental work in this thesis serve to prevent the possibility of cross-contamination 

and can be easily labelled.  However, packaging a firearm in a manner that does not 
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result in the transfer of GSR to the inside of the packaging conceivably poses a 

problem.  Further research might assess the extent and implications of transfer during 

packaging and storage, as well as exploring potential solutions to this issue.  Owing to 

the effects of decay from hands, and of the risk of a suspect transferring GSR to 

surrounding surfaces, it is advisable to sample the hands at the scene.  This is 

reinforced by the fact that bagging of hands, which is intended to arrest further 

transfer and the loss of evidence, has been shown to effect the transfer of GSR to the 

inside of the bag (Wolten 1979c).  A cautionary note that must be stressed when 

sampling at the scene is that, particularly if sampling soon after a shooting, is that the 

sampling site should, if practicable, be established at a sufficient distance from the 

discharge site so as to avoid the effects of GSR ‘fallout’ (Fojtášek and Kmječ 2005) – in 

a similar manner to the experimental set-up in this thesis.   

Conceivably, opportunities for contamination through secondary transfer mechanisms 

also exist in the period following their collection and prior to their analysis in the 

laboratory.  Chains of custody, secure, sealed containment and the careful handling of 

samples are of central importance in restricting the loss of GSR from, or the addition of 

particles to, a sample that has been taken from a suspect or other surface.  

Maintaining a ‘GSR-clean’ laboratory and cleaning equipment (stub grippers and 

tweezers, for instance) are essential if the opportunities for post-collection 

contamination are to be restricted and in line with various authors (see Wright and 

Trimpe 2006 and section 3.5), regular control sampling of surfaces in the laboratory 

will assist in monitoring and inhibiting any contamination risks.  This is particularly 

important if the evidential value of trace quantities of GSR, as identified during this 

thesis, is to be demonstrated effectively.  While the risk of contamination within the 

law enforcement and laboratory environments and the policies that are aimed at 

limiting it are, to some extent, beyond the remit of this piece of research, the 

propensity of GSR particles to undergo transfer reinforces the need to safeguard 

against opportunities for contamination.  In the manner described in section 3.5 (see 

also Wright and Trimpe 2006) establishing areas in which personnel associated with 

handling firearms cannot enter is an example of a policy that can be effective in 

curtailing any potential for contamination.  In conclusion strategies and procedures for 

the collection, packaging and processing of GSR should be informed by the findings of 
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this research, both in terms of identifying and targeting sampling sites to maximise 

evidential value and in managing the risks of contamination.    

The findings of the experiments, and particularly the results of the control samples, 

may inform the collection procedures and control measures used in future 

experimental studies involving GSR, as well as informing forensic protocol in casework.  

While in the vast majority of cases the measures outlined in 4.2.4 were effective in 

ensuring that hands were free of GSR prior to the commencement of each experiment, 

there were a very small number of cases in which small quantities of particles resisted 

attempts at controlling them.  In agreement with Andrasko and Maehly (1977) and 

Wolten and Nesbitt (1980), this finding suggests that some GSR particles may persist 

through thorough hand-washing or be redistributed during the washing process (see 

section 6.2.1).  Extremely thorough hand-washing, perhaps with the addition of 

disposable sponges for instance, that is overseen by the researcher is recommended 

for future studies, along with control sampling as per this piece of experimental 

research.  These observations should also be heeded when scene examiners, 

responding officers and firearms officers have left a scene.  Thorough hand washing 

will assist in restricting the potential for contamination from one scene to another and 

control sampling can offer the possibility of demonstrating the effectiveness of this.  It 

is important that studies, where necessary, explicitly consider any degree of 

contamination in a manner akin to Lindsay et al (2011a) and to the approach taken 

during the presentation and analysis of results in chapter five of this thesis.   

6.3.2 The analysis of GSR samples 

The findings of the experimental work and the observations that were discussed in 

chapter five point to a number of practical considerations for the process of sample 

analysis in an investigation involving GSR.  Moreover, the process of carrying out 

analysis using SEM-EDX coupled with an automated detection software package has 

enabled an assessment to be made of the suitability of this approach to analysing 

multiple samples in order to generate particle counts.  The assessment will not only 

inform the application of this approach in casework scenarios, but also its employment 

in similar research projects that seek to understand trace evidence dynamics through 

the detection and quantification of GSR.   
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Importantly, the step-by step guides to setting up and running the analytical system 

and filtering and verifying results provided in chapter four, serve as a guide to using 

such a system in future research projects that involve the GSR analysis.  As argued in 

sections 3.3.2 and 4.3 however, an automated approach to GSR detection using the 

SEM is not necessarily a straightforward one.  Rather, the ‘system’ (i.e. the coupling of 

the operating system, the software, the SEM and the detector) is extremely sensitive 

to variations in its set-up and calibration.  Inconsistency in the set-up and operating 

conditions will affect the performance, and therefore, the outputs of the system.  The 

accurate quantification of the presence of GSR on a sample in research and casework 

settings demands a meticulous approach to setting up and calibrating the SEM-EDX 

and automated system.  Regular testing of the equipment of the equipment is also 

advised (Brozek-Mucha 2011, Niewoehner et al 2005 and 2008, section 4.3). 

A number of issues that were encountered during the analysis stages of this study 

centred on the state and performance of the SEM filament.  This importance of 

filament performance was introduced in section 4.3 in the account of the methods and 

procedures, but owing to the fact that this issue emerged as one of great significance 

during the analysis, it is appropriate that it is further explored here. 

The stage of a filament in its lifetime (‘bedding in’, normal, ‘burning out’ and ‘burnt 

out’) affected the performance of the SEM and crucially, the brightness of the 

backscattered image.  In turn, this affected the process of calibrating brightness levels 

against the standard (the process of which was described in 4.3.4).  In practice, this 

necessitated the manual adjustment of the brightness levels to achieve the correct 

peak heights for the Cobalt, Gold and Rhodium points on the standard.  This was 

routinely fairly straightforward and levels tended to require slight manipulation 

between analysis runs, owing to variations in ambient conditions and SEM and 

filament performance.  However, a new filament would result in a very bright image 

that required much adjustment in order to achieve suitable levels of brightness.   

Meanwhile, a filament that was approaching the end of its lifetime, the brightness of 

the image tended to fluctuate and this instability tended to inhibit the pursuit of 

suitable levels of peaks on the graph.  Accordingly, when this was the case, the peaks 

tended to ‘move’ and rise/fall when attempting to calibrate.  When these fluctuations 

were experienced, the filament would normally fail within a few minutes, but 
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occasionally, it would fail during the analysis.  The risk of this happening, or of varying 

filament performance affecting the brightness of the image during the analysis, meant 

that purely unattended analysis, while possible, was not always desirable.  Rather, it 

was necessary to maintain some degree of supervision of the system to ensure that if a 

filament blew, or if the backscattered image became bright and as a result a large 

number of environmental features were unnecessarily subjected to time- consuming 

elemental analysis, the operator could address the issue.  If not, a sample run could be 

left incomplete or alternatively, could take significantly longer to complete than 

anticipated, owing to the number of environmental features that fulfilled the 

brightness threshold.  These ramifications could potentially serve to undermine some 

of the reasons for employing an automated system in the first instance, namely, time-

efficient analysis and stability in the conditions for analysis and thus, repeatability of 

results.  It is recommended, therefore, that any analysis project using an automated 

approach is designed so that analysis runs, where practicable, can be manually 

overseen.  Furthermore, when carrying out analysis for casework or research purposes, 

the forensic scientist or researcher should be mindful of the effect that the condition 

of the filament can have on the performance of the system and the accuracy and 

efficiency of feature search and detection. 

Filament degradation is a generic practical problem that is encountered during all SEM 

work.  That filaments are consumable and that their condition can affect the 

performance of the machine are widely acknowledged, particularly in SEM operation 

guides (see, for example Dunlap and Adaskaveg 1997 and section 4.3.3b).  Accordingly, 

a number of sources document the common reasons for filament failure and the steps 

which can be taken to increase filament longevity; operating at low accelerating 

voltages, increasing accelerating voltage slowly and limiting the switching on/off of the 

beam (see for example, Chapman 1999).  These measures were taken during the 

analysis of the samples in this thesis and are recommended for use in casework and 

research investigations, in order to minimise the effects of the problems described 

above.  However, GSR analysis using INCAGSR (and other automated search and 

detection packages) requires the use of a fairly high accelerating voltage (20kV).  This 

inherently reduces the lifetime of the filament.  As mentioned in section 4.3.3b, during 

this experimental project, as supply of filaments was sourced to account for this and 
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the process of replacement and re-setting the system could be carried out without 

delay.  In casework and research, this is also advisable if unnecessary delays in 

generating results are to be avoided.  However, a caveat must be added here.  

Filaments (in addition to operator time) are expensive and potentially, the cost 

implications of their regular replacement could, in some circumstances, curtail the 

potential to submit multiple samples for analysis in the manner described in 6.3.1.  The 

cost implications are likely to be easily justifiable in the investigation of a firearms 

offence.  However, the costs that would be incurred when carrying out research 

projects that involve the automated analysis of multiple GSR samples, in the same 

manner as this thesis, may serve to stymie the potential for their undertaking.  This is a 

particularly pertinent issue in light of the wider funding and economic context of 

forensic science research that was outlined in chapter one (section 1.2.2).  To this end, 

it is anticipated that the demonstration of the practical utility of research projects 

involving automated analysis of GSR will be more crucial than ever and that, in line 

with the discussion in 1.2.  Research projects and studies should be designed with this 

in mind.  Field emission guns (see section 4.3.1) provide an alternative mechanism of 

beam generation which avoids the problems associated with the heating of a tungsten 

filament.  Therefore, their use for GSR analysis in casework and research settings is 

recommended.   

The automated analysis of samples remains a time consuming process.  

Notwithstanding the intricate set-up and post-run processing procedures (described at 

length in 4.3), the analysis ‘run’ of a single sample was found to require in excess of six 

to eight hours in cases where the sample was highly populated with both 

environmental and GSR particles.  Moreover in these cases, the post-run filtering, 

processing and verification procedures (that were outlined in 4.3.5) tended to be 

extremely time-consuming.  To some extent, some of the problems that represented 

drawbacks for a manual approach to detection using SEM-EDX, namely, the time-

consuming nature of the process, are not fully resolved by an automated capability 

even given increased computer processing power.  While using the most modern 

detector would speed up the acquisition of elemental profiles for individual features 

and thus, would reduce the overall time taken, the process remains a potentially 

protracted one.  Crucially, however, the length of time taken for analysis, certainly in 
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the context of this thesis, is of secondary importance.  Automated detection and 

analysis offers the provision of accurate, fully verifiable and repeatable results and GSR 

particle counts.  The significance of this possibility for research and casework purposes 

is illustrated in this chapter in terms of the research questions that can be answered 

and the probative value that may be unlocked for GSR evidence.   

Measures that might speed up the analysis process, and thus reduce the cost of 

sample analysis, are desirable, provided they maintain the level of accuracy and 

repeatability.  To this end, it was considered that the comprehensive particle dataset 

created during this study represented an opportunity to revisit the possibility of a 

reduction in the search area of a sample when analysing it to quantify the presence of 

GSR.  This issue was originally discussed in section 3.3.2. 

With regard to the aims of the analysis that was carried out as part of this thesis, i.e. 

the generation of accurate quantification of the presence of GSR, the following 

research questions were identified: 

To what extent is it possible to reduce the sample search area and achieve accurate, 

repeatable estimates of GSR particle counts? 

In order to answer this question, the INCAGSR outputs for a number of samples were 

selected.  These data were used in their raw form, as if they had just been imported 

into Excel not yet subjected to the processing and filtering that yielded the ‘clean’ data 

and counts that were reported in the previous chapter.  The method was as follows: 

1) A list of random numbers was generated in Excel  

2) Four samples were chosen at random for the test 

3) The list of random numbers was pasted alongside a list of the fields that were 

analysed for a particular randomly selected sample (i.e. 1-335) 

4) A percentage reduction in the field search area was chosen and a number of fields 

representing this percentage were selected from the top of the sheet 

5) The ‘dirty’ particle dataset for a chosen sample was opened 
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6) All of the data pertaining to fields not on the list were deleted, as if only the 

randomly selected fields had been analysed in the first instance 

7) The new list was compared to the ‘clean’ dataset for the fully analysed sample and 

any instances where particles had been merged/deleted were corrected 

8) The list was cleaned so that only GSR particles remained  

9) The number of GSR particles was scaled up accordingly to form a ‘new’ count 

10) The ‘new’ particle count was compared to the original count 

The resulting dataset was analogous to that which would have been produced if, 

during the ‘Area Layout’ stage of the set-up (see section 4.3.4b), the search area had 

been set to ‘X %’ of fields that were to be selected randomly by INCAGSR – a setting 

which it is possible to select.  A ‘random’ selection of fields would be more appropriate 

than a set block or line of adjoining fields because the former allows each field the 

same chance of being selected.  In the latter case it could be that sampling was biased 

towards a region of the stub that came into contact with a cluster of particles or which 

was pressed onto a particularly GSR-rich area of the sample surface.  In this case, there 

would be a risk that the sample was unrepresentative of the sample as a whole.  The 

results of this supplementary study are provided in table 6.1: 

 

Test 
Sample 

 

Percentage 

search area 

Particle 

count 

in search 

area 

Scaled-up 

particle 

count 

Full search 

area ‘true’ 

particle 

count 

Percentage 

difference of 

scaled up from 

full search 

1 
Scenario 1, 

run 1 
50% 112 224 207 

+8% (17 

particles) 

2 
Scenario 1, 

run 1  
25% 52 208 207 

+0.5% (1 

particle) 

3 
Scenario 1, 

run 1 
10% 22 220 207 

+6% (13 

particles) 

4 
Scenario 2, 

run 3 
50% 7 14 14 0% 

5 
Scenario 2, 

run 3 
25% 3 12 14 

-14% (2 

particles) 
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Table 6.1 Results of the supplementary study of the effects of reducing the 

sample search area 

 

 

 

The results displayed in table 6.1 demonstrate that the effect of reducing the sample 

search area can have a variable impact on the difference between the particle count 

that is generated and the ‘true’ particle count.  The variation of this impact can be 

attributed to several factors including the size of the reduction in the search area, the 

size of the ‘true’ particle count and the effects of the random selection of fields.  50%, 

25%, and 10% search areas were chosen as these would result in a significant 

reduction in the time needed for analysis, in a way that a 75%, 80% or 90% reduction 

would not.   

In some cases, whether reducing the search area by 50%, 75% or 90%, the difference 

between the estimated and ‘true’ particle counts was minimal.  For example, in Test 4, 

when the search area was reduced by 50%, the scaled up particle matched the ‘true’ 

count, while in Tests 2 and 9 when the search areas were reduced to 25% and 10% 

respectively, the estimated and ‘true’ counts were markedly similar.  The most 

6 
Scenario 2, 

run 3 
10% 3 30 14 

+114% (16 

particles) 

7 
Scenario 5, 

run 2 
50% 17 34 36 -6% (2 particles) 

8 
Scenario 5, 

run 2 
25% 5 20 36 

-44% (16 

particles) 

9 
Scenario 5, 

run 2 
10% 3 30 36 -7% (6 particles) 

10 

Scenario 4, 

run 1, from 

shooter 

50% 299 598 647 
-8% (49 

particles) 

11 

Scenario 4, 

run 1, from 

shooter 

25% 152 608 647 
-6% (39 

particles) 

12 

Scenario 4, 

run 1, from 

shooter 

10% 76 760 647 
+17% (113 

particles) 

13 
Scenario 4, 

run 3 Control 
50% 2 4 5 

-20% (1 

particle) 

14 
Scenario 4, 

run 3 Control 
25% 1 4 5 

-20% (1 

particle) 

15 
Scenario 4, 

run 3 Control 
10% 0 0 5 

-100% (5 

particles) 
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extreme divergences between counts in terms of the percentage 

over/underestimation were observed when 25% or 10% of the sample area was 

searched (see Tests 6 and 8).  As well as the effects of random selection of fields, the 

size of the ‘true’ GSR count influences the potential to generate a good estimate 

through the use of a reduced search area.  For example, it is more plausible that the 

random selection will under represent the true particle count when there is a relatively 

low ‘true’ count, as in Tests 6 and 8, especially when only 25% or 10% of the sample 

area is searched.  Larger populations (as in Tests 1, 2, 3, 10, 11 and 12) tended to be 

estimated well, as the overlooking of a few particles and fields did not have a serious 

impact on the estimated count and its similarity to the ‘true’ count.  Notably, Tests 10, 

11 and 12 were carried out using a sample that had a large contribution from a few 

highly populated fields containing clusters of separate particles (see section 5.5.2).  In 

such cases, the inclusion or exclusion of these fields when randomly sampling has the 

potential to dramatically influence the accuracy of the scaled-up count.  As a caveat, it 

should be noted that the tests in this investigation were carried out with the benefit of 

knowing the ‘true’ particle count and thus enabling the assessment of the method.  

Clearly, this would not be the case if the method was employed routinely. 

If a sample has a very small (‘trace’) GSR count, say two or three particles, then there is 

a high risk that a reduction in the search area could generate a false-negative result, 

particularly if the sample area is reduced to 10% or 25 % of the sample.  The 

interpretative ramifications of this may be severe given that an inference could be 

made from a negative result that a subject had not been in contact with a surface 

bearing GSR or had not in the presence of a firearm discharge.  The generation of a 

false-negative becomes statistically less likely as the quantity of GSR particles on the 

sample is increased.  However, when high numbers of GSR particles are present, but 

especially when medium and low quantities have been collected, there is a significant 

possibility that, owing to the variables outlined, the scaled-up GSR count could serve to 

underestimate the ‘true’ GSR count.  The degree of this underestimation could 

conceivably have ramifications for the process of interpreting GSR evidence.  With 

reference to the interpretative process outlined in 2.2.1, underestimation of the count 

may lead to a misguided assessment of the probability of observing a given quantity of 

evidence given that the prosecution and defence propositions were true.  Ultimately, 
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this could manifest itself into the making of inaccurate inferences regarding the 

activity of a suspect and the mechanism of GSR deposition, of which the consequences 

could be serious.   

On the one hand, reducing the search area does not carry with it the potential for a 

false-positive detection of GSR presence, given that all particles that could be detected 

will be captured by a complete search.  Conversely, as demonstrated by the data in 

Table 6.1, there is the possibility that the ‘true’ GSR count is overestimated.  In the 

same manner described for an underestimation of the GSR count, the consequences of 

inflating the GSR count for interpretation and inference-making are demonstrably 

concerning.  Particularly if the degree of overestimation was high, the probability that 

the quantity of evidence aligns with a proposition of firearm discharge may also be 

overestimated.  

The degree of under/overestimation is likely to be generally limited but, owing to 

chance and to the uneven distribution of particles on a sample in some cases, a major 

discrepancy could arise and result in a sample with a ‘medium’ sized GSR population 

(say, 40 particles) being deemed a ‘low’ quantity of GSR (8 particles, for example) or, of 

course, vice versa.  In summary, the methodological decisions that are made during 

sample analysis in casework (and research), and the errors that might be associated 

with them, will have a bearing on the interpretation of evidence.  This resonates with 

the assertion that the interpretation process is an iterative one and that it spans, and 

should underpin all stages of an investigation (see Cook et al 1998a) and section 2.2.2). 

During research projects (such as this thesis, for instance) and the investigation of 

casework scenarios that require precise, verifiable and repeatable quantification of the 

presence of GSR, a reduction in the search area is not justifiable.  This conclusion 

echoes Owens (1990) who argues that using statistical methods in order to limit the 

necessary search area is, owing to the potential for false-negative results in particular, 

inherently risky.  Other research and casework scenarios may involve verifying the 

accuracy of a precise particle count, confirming GSR presence, pre-screening for GSR,  

or estimating whether the population of particles may be ‘high’, ‘medium’ or ‘low’.  In 

these cases, a reduction in search area could be justified.  However, the use of a 

confidence interval or error rate would be advisable in such cases.  If a simple 

confirmation of GSR presence was required, then a search could be halted on finding 
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the first GSR particle, yet difficulties will arise when considering the point at which it is 

appropriate to conclude that a sample has tested negative for GSR?  According to 

Owens (1990) this cannot be concluded with confidence when a portion of the sample 

is not searched.  An alternative option for reducing the length of time taken to analyse 

a sample would be to propose the use of smaller adhesive surfaces on the SEM stubs.  

While this would reduce the search area without the need to ‘scale-up’ the count, the 

use of ½ inch stubs is something of a standard collection method in research and 

casework and departing from this would engender problems when attempting to 

compare counts from different cases and published experimental studies.  

Notwithstanding this, a smaller adhesive surface would be likely to become saturated 

with material more readily and would increase the risk of leaving uncollected GSR on 

the surface being sampled. 

In both research and casework settings, if there is a low population of GSR on a sample 

then the duration of the analysis should not be prohibitively long.  Meanwhile, carbon 

coating and effective setting up of the brightness levels and thresholds will limit 

unnecessary contributions to the analysis time from extraneous environmental 

particles.  While reducing the search area in certain cases can be a useful tool, its 

potential impact on the accuracy of results should curtail its application in casework, 

particularly due to the fact that the accuracy of any results are likely to be the subject 

of scrutiny if admitted to a courtroom.  In keeping with the model of case assessment 

outlined by Cook et al (1998a), the type and extent of analysis and forensic 

examination will depend on the questions that are asked of the GSR evidence.  For 

example, a confirmation of positive GSR presence could involve a cursory examination 

yet, as GSR evidence is likely to be associated with the most serious offences (see 

section 1.3), casework investigations will require accurate measures that maximise the 

weight that can be assigned to a particular item of evidence.  Notwithstanding the 

influence on the GSR count that is produced, the effect of reducing the search area and 

scaling up the result would potentially compromise the ability of the examiner to 

interpret particle size data.  Size data, in addition to particle counts, elemental analysis 

(via SEM-EDX and/or complementary methods, see Christopher et al 2013, Nakai et al 

2009) and surface analysis could assist in discriminating sources of GSR.  As will be 

discussed later in this chapter, the distribution of particles among size categories can 
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be of potential value, while the presence of one or two large particles may also be 

informative.  These individual particles may remain undetected if the sample area is 

reduced.  Consequently, any attempt to utilise particle size data will necessitate a 

search of the entire sample stub.  Finally, consideration of the entire particle 

population is necessary when identifying the source of GSR-like material and assessing 

the potential contribution made by environmental or occupational sources of particles 

which are similar to GSR (Wolten et al 1979b and Garofano et al 1999).  Reducing the 

search area, therefore, should be undertaken with caution and justified in terms of the 

aims of the analysis. 

6.4 The interpretation of GSR evidence 

In demonstrating the practical utility and investigative implications of the findings of 

the experimental work, it is arguably in the interpretation of GSR evidence that the 

most significant issues can be raised.  Therefore, discussion of the ramifications for the 

interpretation process has been afforded a section in its own right.  This discussion 

considers the ways in which our updated understanding of GSR dynamics may impinge 

upon, assist and complicate the framing and assessment of interpretative propositions 

with regard to GSR evidence.  In section 3.4.1 the possibility of using GSR to infer the 

identity of the shooter was discussed.  In essence, the results of the experimental 

research provide an account of some of the nuances that maybe involved in this 

process. 

6.4.1 The presence of GSR 

Of primary importance for the interpretation of GSR evidence is that the results clearly 

demonstrate that the presence of GSR on the hands of an individual does not 

necessarily mean that the individual discharged a firearm.  Rather, the material may 

have been acquired via a hand-to hand contact with a shooter, through holding a 

recently discharged firearm, or by being in close proximity to a firearm discharge.  The 

experiments also confirmed that GSR may even be acquired through hand-to-hand 

contact within individual who, themselves, had made hand-to-hand contact with a 

shooter; thus, via a tertiary transfer.  Such possible mechanisms of transfer will need 

to be incorporated into the propositions that are formulated and addressed when 

interpreting GSR evidence.  That the presence of GSR on hands will not necessarily 
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indicate that the individual discharged a firearm is well established (see sections 3.4 

and 3.5 and Matricardi and Kilty 1977 and Lindsay et al 2011a, for example).  However, 

to date the mechanisms of deposition and transfer have not been studied in a 

systematic fashion with a view to producing a dataset that can inform the process of 

interpretation and distinguishing between mechanisms of transfer.  In light of the 

results, it is possible to say that rather than indicating that an individual fired a gun, 

small to medium quantities of GSR recovered from the hands of a suspect may in fact 

point to an alternative means of exposure to GSR.  The fact that GSR particles can be 

readily transferred in the immediate aftermath of a firearm discharge by the various 

means described should be acknowledged when attempting to interpret the presence 

of GSR evidence and when setting about reconstructing an incident involving a firearm. 

Without acknowledging the potential for the transfer and deposition mechanisms that 

have been studied during this piece of experimental work, the possibility exists for 

misinterpretation.  For example, GSR particles that have been transferred to or 

deposited on an associate, accomplice or unconnected individual could be wrongfully 

inferred as having been deposited on the hands as that individual discharged a firearm.  

Subsequently, this misinterpretation could lead to a misidentification and ultimately, 

incriminate an innocent individual while potentially leaving a perpetrator at large.  

Thus, when formulating propositions about the activities that may have led to the 

acquisition of GSR the possibility of innocent, or rather indirect/non-firing exposure to 

GSR must be incorporated, in addition to possibilities of for example, exposure to GSR-

like materials from environmental and occupational sources.  A suitable pair of 

propositions may consider on the one hand, the probability of observing GSR evidence 

given that the individual discharged a firearm, while an alternative (defence) 

proposition may consider the probability of observing GSR particles given that the 

suspect did not fire a gun, or more specifically, given that the suspect was standing in 

proximity, or shook hands with a shooter.  The probability of the second proposition, 

as demonstrated by the results, is not negligible in some circumstances and further 

study of its assessment is warranted.    

6.4.2 GSR particle counts 

chapter five presented GSR counts that were derived by analysing samples taken from 

the hands of participants who were exposed to GSR in a variety of ways.  These counts 
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may be used to assist in distinguishing different mechanisms of GSR deposition as they 

providing an indication of the quantities of GSR that can be ‘expected’ quantities given 

different scenarios.  Despite the measures taken to approximate real-world scenarios 

and to ensure the validity of the findings (see section 4.2.5), applying the results to the 

interpretation of GSR in casework contexts involves some inherent limitations.  Rather 

than being repeated throughout the discussion, these caveats are now stated 

explicitly.   

It must be stressed at this stage that, as described in section 6.2.2, the counts 

produced in this study represent an “extreme” case in which transfers and contacts 

were made in the immediate aftermath of a firearm discharge, with no opportunity for 

substantive particle decay.  Moreover, there was only a very short delay between the 

simulated contact and the collection of evidence.  As a result, without the influence of 

any considerable evidence decay, the maximum possible quantity of GSR was 

transferred and subsequently collected.  Consequently, these counts may be higher 

than the analogous real-world casework situation in which some GSR may have 

decayed owing, in particular, to a delay between the transfer and the suspect being 

apprehended and sampled.  Thus, the results are indicative of the differences that can 

exist between GSR counts that have resulted from different transfer mechanisms.  In a 

real casework scenario, the persistence of material and the timeframes involved will 

have to be incorporated and this will be discussed.  Rather than being limited in their 

applicability to casework scenarios, the results serve to illustrate the interpretation 

issue that may arise due to multiple transfers.  Indeed, every casework situation is 

unique, with its own ‘framework of circumstances’ (Cook et al 1998b, p.234) in which 

interpretations are made and thus, as with all experimental research, extrapolation 

from the results should be undertaken with caution.  Notwithstanding this, the aim of 

this discussion is not to consider how the findings might impact evidence 

interpretation in a specific scenario but rather, the interpretative nuances that 

implicate the formulation and assessment of propositions about GSR evidence are 

considered more generally.  It is also acknowledged that in the experiments five 

rounds of 9mm Luger 95 grain jacketed soft point 9P1 ammunition (manufactured by 

FEDERAL Ammunition) were fired using a SIG Sauer P226 9mm self-loading pistol were 

fired and again, while this may not be analogous to a specific casework scenario, 
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mimicking a specific scenario was not the intention.  Rather, when making 

observations regarding GSR interpretation and developing a model for the process, the 

need for case-specific research and data is stressed.  Issues regarding the applicability 

of experimental data were raised in sections 1.2.1 and 4.2.5 (see also Mnookin et al 

2011).  A case-by-case approach to GSR identification has been recommended (see 

section 3.2.3 and Dalby et al 2010).  The findings of this thesis suggest that this 

approach may be extended to include transfer and persistence issues. 

If a quantity ‘X’ of GSR was recovered from a suspect, a pair of Level II propositions 

may be formulated that would consider, first, the probability of observing that 

quantity given that the suspect fired a gun and secondly, the probability of observing 

that amount of GSR given some other means of GSR deposition (secondary transfer, 

proximity deposition, etc.).  Assuming that very little time had passed between the 

deposition and collection of the evidence, the results of the experimental work suggest 

that the presence of several hundred particles would be much more likely given that 

the suspect had fired a gun than if particles had been acquired by some other means.  

The mean number of particles deposited on the hands of the shooter in experimental 

scenario one was 429, whereas the number of particles acquired by subjects in other 

experimental scenarios tended to be below 100.  However, the variability in the 

amount of GSR that was initially deposited on the shooter (between 206 and 834 

particles - a range of 628 particles) means that if the GSR count was at the lower end of 

this range, then there is an increased probability that this quantity could be observed 

given an alternative means of deposition.  This is because similar quantities of particles 

can undergo secondary transfer, as demonstrated by the results of scenario three in 

which as many as 129 particles were transferred via a handshake.  In this manner, it is 

possible to formulate and assess competing activity level propositions about GSR 

evidence that reflect explanations for the presence of GSR put forward by the 

prosecution and defence.  Concurrently, claims of secondary transfer or GSR 

acquisition by other means can be corroborated or refuted and ultimately, this will 

assist in the reconstruction of an incident.  However, uncertainty is inherent when 

inferring the cause of GSR presence and the assessment of competing propositions is 

necessarily a probabilistic one.  Accordingly, chapter seven will explore an approach to 

interpreting GSR evidence using Bayesian Networks.  Further variables would also need 
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to be incorporated into the assessment and it is argued in chapter seven that a 

Bayesian Networks approach can facilitate this.   

If a smaller quantity of GSR (30 particles, for example) was recovered from a suspect, 

once more, a prosecution proposition may involve consideration of the probability of 

observing that quantity of evidence given that the suspect had fired a gun.  On the 

other hand, consideration of a defence proposition might require the assessment of 

the probability of observing that the suspect did not fire a gun and this might, in turn, 

consider the probability of observing such a quantity if a secondary transfer of some 

sort had taken place, or if the individual had been in the proximity of a firearm 

discharge.  In this case, according to the experimental data, the probability of 

observing 30 particles given that a mechanism other than discharging a firearm was 

responsible for their presence is considerable.  For example, exactly 30 particles were 

transferred from a shooter to a second individual via a handshake in one of the runs of 

scenario three and similar counts were yielded from samples taken from subjects who 

had handled a firearm, who had been in the proximity of a firearm discharge, and even 

from those who had acquired GSR through a tertiary transfer.  Meanwhile, 

notwithstanding their variability from firing to firing, the GSR counts recovered from 

the shooters following firearm discharge tended to be much higher than 30 particles; 

the lowest was 206 and as many as 834 particles were recovered.  Thus, the expected 

quantity of GSR if the suspect had fired a gun would be significantly higher and the 

probability of only recovering 30 particles from a suspect who had fired a gun might in 

fact be fairly low.   

As described previously, the figures considered here relate to a very specific scenario 

in which five shots were fired from a specific firearm, using one ammunition type and 

in an indoor environment.  Therefore, the counts cannot be directly extrapolated to 

other scenarios or contacts with different variables which would need to be 

incorporated into the assessment.  Nevertheless, they do serve to demonstrate the 

impact of the existence of secondary transfer and deposition mechanisms on the 

interpretation of GSR evidence and the way in which case-specific data could be used 

to assess the likelihood of these alternative means of deposition. 

Clearly, cases in which there has been little or no opportunity for GSR to decay from 

hands, either between deposition and transfer or between transfer and collection, will 
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be few.  Therefore, when interpreting GSR evidence, the timeframes of GSR longevity 

and the persistence of GSR on hands must be incorporated.  The importance of 

incorporating persistence into the assessment of inferences about trace evidence at 

the activity level is highlighted by Cook et al (1998b).  Without information regarding 

the timeframes involved, the results of the experiments indicate that it could be 

possible to wrongly infer that 50 GSR particles, for example, that were recovered from 

a suspect were the result of a deposition from firing a gun that had been subject to 

decay over a few hours, when in fact their presence was the result of a recent 

secondary transfer.  Equally, the reverse wrongful inference could be made.  While the 

expected GSR counts for these alternative mechanisms will vary from case to case, the 

hypothetical example demonstrates the importance of acknowledging the timeframes 

involved and therefore, incorporating the effects of persistence.  Evett et al (2000) also 

identify the salience of timeframes in formulating Level II propositions, the 

interpretation of which will be considered by time.  The authors note that the role of 

the scientist is to consider the probability of the evidence given the timeframe of the 

alleged activity, rather than to offer an opinion of the likely timing of the activity.  In 

the case of GSR, the scientist will need to draw on expertise regarding the transfer and 

persistence of GSR.  The evidence will therefore be interpreted under competing 

propositions with reference to experimental work on the deposition of GSR on a 

shooter during firing, on the propensity of GSR to undergo transfer or to be deposited 

in the vicinity of a shooter and on the persistence of GSR in different settings (see the 

experimental data presented in chapter five, sections 3.4.4 and 3.5 and Jalanti et al 

1999, for example).   

Timeframes will necessarily be case-specific but their interpretation may be informed 

by the findings of experimental studies concerned with the dynamics of GSR.  Case-

specific research that might address a particular transfer or persistence issue or 

variable may also be referred to, and these studies should approximate the context of 

the case while being informed by the methods and experimental design used in studies 

such as the present one .   

Evett et al (2000) (as well as Cook et al 1998b) maintain that the propositions that are 

formulated will be bound by the circumstantial framework of the case and in 

particular, the explanation for the evidence that is provided by the defendant.  It has 
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been assumed thus far that the source of GSR has not been disputed – that the 

particles recovered in the hypothetical examples are accepted to emanate from a 

firearm discharge and not from some other environmental or occupational source.  

Meanwhile, the examples have assumed that the explanation offered by the suspect 

and the defence will have included, for example, being in the proximity of a firearm 

discharge, or coming into contact with a shooter or a recently discharged firearm.  This 

is distinct from having denied being in the presence of a discharge or making contact 

with a surface bearing GSR.  In this case, the scientist would need to consider the 

background rate of GSR – i.e. the probability of an individual having GSR on their 

person if they have not come into contact with firearms (see for example, section 3.5 

and Lindsay et al 2011b, Mann and Espinoza 1993, Kotrlý and Turková 2010 and Wright 

and Trimpe 2006).  Clearly, the quantity of GSR will be important in this case and the 

presence of several hundred particles, for instance, would be very unlikely to have 

been acquired from background contamination from a non-firearm environment.  The 

data that are presented in chapter five represent a resource with which the forensic 

scientist may be equipped when interpreting the GSR evidence under propositions that 

consider the probability of different mechanisms of GSR, particularly in cases where 

secondary transfer or deposition is put forward as an explanation by the suspect 

In multiple suspect cases, the comparison of GSR particle counts taken from different 

suspects conceivably provides a means to assist in making inferences about the roles 

of different individuals in a firearms offence.  For example, consider an example in 

which two suspects had been seen leaving the scene of a shooting and were 

subsequently apprehended.  A gun was recovered from one of the suspects and both 

were sampled for the presence of GSR.  Both claimed the other suspect was the 

shooter and that they merely took the gun from the other suspect and left the scene.  

A comparison of the GSR counts here may contribute to the accurate reconstruction of 

events and experimental data such as those presented in section 5.2 for the level of 

deposition on the hands of a firearm handler and a shooter could be used to support 

an inference regarding the identity of the shooter.  The experimental results indicate 

that, in settings and conditions analogous to those simulated, shooters may be 

distinguishable from subjects who have acquired GSR by other means.   
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The experimental results also indicated that GSR counts may be used to make 

inferences about the identity of donor and recipient surfaces.  However, the results 

also showed that in some cases the quantity of GSR left at the donor site could be very 

similar to, or possibly less than, that which was transferred to the recipient following a 

contact, thus providing the potential for misinterpretation.  The consideration of 

multiple suspects and samples is more complex, particularly given that other variables 

or items of evidence that relate to one or more of the suspects may come to light and 

the incorporation of this information can be complicated.  Chapter seven will explore 

the potential for the use of Bayesian Networks to assist in making inferences from GSR 

evidence when faced with a number of interacting variables and considerations (Dawid 

and Evett 1997, Evett et al 2002).  It will do so with reference to examples involving 

alternative means of GSR transfer/deposition.  

6.4.3 GSR particle size data 

A number of observations were made in section 6.2 regarding the trends and patterns 

that were observed when the particle size data were analysed.  Accordingly, a number 

of insights into the dynamics of GSR were made, with particular reference to the 

distribution among size classes and the manner in which these distributions appeared 

to vary, or to be well replicated, according to the mechanism of deposition.  It should 

be re-emphasised that the conclusions made from the particle size data are tentative.  

While it was possible to unequivocally confirm that GSR particles can undergo 

secondary and tertiary transfer from the results of the experiments, our ability to infer 

the repeatability of trends regarding the sizes of particles that underwent transfer is 

less certain, due to the complex nature of GSR formation and deposition.  This is also 

owing to the relatively small number of repeat runs of each experiment and to 

conclude that, for example, certain sizes of particle are less likely to be deposited or 

transferred via certain mechanisms will require further study.  Furthermore, the 

particle size data relate to the firing of five rounds from a particular 

firearm/ammunition combination, in a particular setting and therefore, the numerical 

results may not be directly transferrable to other settings.  Nevertheless, measures 

were taken to simulate real-world scenarios and the results pointed to a number of 

novel findings regarding the dynamics of GSR evidence, which point to a number of 

interpretative implications if particle size data were to be incorporated into the 
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formulation and assessment of interpretative propositions.  The examination of the 

particle size data for samples containing GSR has the potential to unlock probative 

potential that has received limited attention to date.  However, from the relatively 

small scale of the analysis that has been carried out during this piece of research, it is 

evident that the nuances of this kind or interpretation are manifold.   

Hypothetically, a situation could arise in which a sample that was taken from a suspect 

and analysed was found to contain a number of large (>100µm) particles by the 

scientist.  When assessing the likelihood of observing large GSR particles given 

alternative hypotheses about the method of deposition, it might be assumed that the 

probability of finding these large particles as a result of secondary exposure to GSR is 

low.  Therefore, the inference might be made that the presence of large GSR particles 

on a sample taken from a suspect is indicative of them having fired a gun.  On the 

contrary, the experimental findings have demonstrated that there is a considerable 

likelihood that large particles may be recovered from an individual given that they 

have had contact with a shooter, or even from the recipient of a contact with an 

individual who themselves had previously made contact with a shooter.  As described 

with regard to the particle counts, the influence of persistence and decay would need 

to be incorporated into the interpretation of particle sizes, particularly as it is known 

that larger particles tend to decay from a surface most rapidly, leaving only the smaller 

particles at the surface (Andrasko and Maehly 1977).  In a casework scenario in which 

there was a degree of uncertainty regarding the timeframe involved, and without an 

appreciation of the possibility that large particles may be secondarily transferred, then 

conceivably, a sample taken from a secondary transfer recipient could be 

misinterpreted as being indicative of a deposition on a shooter from a firearm 

discharge that has been subject to decay over a period of time.     

The experimental work has demonstrated that while considerable quantities of GSR 

that might be expected on the hands of a shooter can be recovered from secondary 

transfer recipients, similarities may also exist in terms of the particle size data 

pertaining to the two sampling sites.  When a full range of GSR particles is recovered, 

from sub-micrometre to very large features (>100µm), the experimental results have 

shown that primary deposition from a firearm discharge is not the only means by 

which a population of particles representing the overall particle population may have 
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been deposited on the hands of a subject.  Rather, samples that are representative of 

the same initial population of GSR produced by the firearm, in terms of the mean 

particle sizes and the distribution of particles among size categories, can be recovered 

from secondary and tertiary transfer recipients, and also from firearm handlers.  It is 

possible that a secondary transfer recipient may even yield larger particles than those 

that might be recovered from a shooter.  As a consequence, the capacity to 

differentiate between primary deposition and secondary transfer mechanisms via the 

sizes of particles involved might prove to be extremely challenging.  

The particle measuring 32.35µm that was recovered from an individual who was 

standing one metre behind the firearm discharge highlights another potential source 

of misinterpretation.  It could be assumed that large particles would be more likely to 

be recovered if the suspect had fired a gun, rather than if they had been some distance 

from the discharge.  This experimental work has suggested that while lower quantities 

of particles might be recovered if the suspect was a bystander, the possibility exists 

that large particles do have the capacity to become airborne and be deposited on an 

individual in proximity.  The results suggest that there may be interpretative potential, 

despite variability between firings, in the observation that large particles may be less 

likely to be deposited on bystanders with increasing distance from the discharge.  This 

was indicated by the results of the experiments.  However, the relationship between 

particle size and distance from the discharge has previously been shown to be a 

complex one by Brozek-Mucha (2009) and further research is warranted which is 

aimed at enhancing our understanding of this relationship and elucidating the 

interpretative and reconstructive utility it may hold. 

The presence of a concentration of a number of large particles on a sample, in what 

were termed conglomerates in section 5.5.2, could inform the interpretation of GSR 

evidence that is recovered from a suspect.  These concentrations were found in a small 

number of cases during the experimental phase of this thesis.  Notably, they were 

found on a sample that was recovered from a shooter.  Such concentrations were not 

recovered from participants who had acquired GSR via any of the other mechanisms 

the recipient of GSR.  Moreover, these concentrations remained at the shooter 

following a handshake and appeared to resist transfer (see section 5.5.2).  This may be 

attributable to the presence of the concentration on a part of the hand which did not 
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make contact with the recipient hand during the handshake.  In any case, the efficiency 

of the transfers suggests that if contact was made, one would not expect the entire 

conglomerate to undergo transfer.  Thus, conglomerates may be more likely to be 

recovered from shooters.  This finding may suggest that the likelihood of observing 

such large clusters of large particles may be low given that the suspect was the 

recipient of a secondary transfer or had acquired material via a deposition from the 

firearm while standing some distance from the discharge.  Further experimental results 

are required to determine if this hypothesis is valid, and whether it might apply to, for 

example different firearm and ammunition types.  While they were not observed on 

samples taken from subjects who handled a firearm following discharge, these 

conglomerates could conceivably be deposited on the surface of the firearm as well as 

on the hands of the shooter.  Further study could confirm whether this is possible and, 

as a result, whether the presence of concentrations of large particles could be used to 

infer that a suspect made contact with the firearm either during or after the firing.  In 

short, further study of conglomerate particles, their dynamics, and their evidential 

value is warranted.          

The possibility of differentiating between a donor and recipient following a transfer is 

complicated by the fact that the particle size data relating to the material that remains 

at the donor can be expected to be very similar to that relating to the received 

material.  To this end, it could be possible to infer from such similarities that two 

surfaces have come into contact (that the GSR comes from the same source or 

population) and in this way, provide support for claims of secondary acquisition.  

Perhaps this may also assist in instances where a suspect might deny having fired a gun 

or having come into contact with another suspect who did.  The detection of particles 

representative of the population of particles that is produced and deposited by a 

firearm, under conditions relevant to the case at hand, may serve to refute that claim.  

Once again, the persistence of material and the temporal circumstances of the case 

will need to be incorporated into such an assessment 

Reconstructing transfers by using particle size data to assist in making inferences about 

the method of deposition will necessarily involve the comparison and interpretation of 

multiple samples and reinforces the need to sample from all suspects who may have 

been present, or who could potentially have acquired GSR evidence by some means 
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(see section 6.3.1).  Central to ensuring that the necessary samples are collected is the 

implementation of sampling strategies and procedures underpinned by an 

understanding of the mechanisms of transfer and deposition explored in this study 

(see section 6.3.1).  The interpretation of evidence from multiple suspects or 

individuals is inherently complex.  It will be argued in chapter seven that making 

inferences at the activity level while weighing a number of variables and empirical data 

in a logical, transparent manner can be assisted by an approach to interpretation 

based on Bayesian Networks, with the assistance of Bayesian decision support tools.    

6.5 The presentation of GSR evidence 

The findings of the experimental and analytical work have been discussed with regard 

to their contribution to the literature on the dynamics of GSR evidence.  This chapter 

has also considered the ways in which the research might inform, impact upon, and be 

incorporated into the various stages of a forensic investigation.  There are also 

ramifications of this piece of research for the presentation and reporting of evidence in 

investigations which, in some sense, involve the multiple transfer of GSR or which 

asses the possibility of secondary exposure to GSR evidence. 

An investigation that involves the assessment of the likelihood of observing GSR 

evidence ‘X’ given alternative means of transfer/deposition will necessarily involve 

references to appropriate published experimental work and studies.  As recommended 

by Linacre (2013) (and outlined in section 1.2.1) an effective report of such an 

assessment and of the inferences that have been made as a result, will demonstrate 

the way in which the conclusions are supported and underpinned by robust, published 

empirical and theoretical research on the subject.  Evidently, there must also be a 

distinction, as has been stressed throughout this chapter, between ‘reading-off’ results 

produced in specific contexts and being informed, perhaps in combination with case-

specific research, by the results and findings of specific studies.  Articulation of the 

reasons for applying research findings to a given scenario, and demonstrating the 

validity of doing so, are also important.       

While contamination may result from secondary transfer mechanisms, care needs to 

be taken when using the word “contamination” to describe the acquisition of GSR (and 

other trace evidence) by secondary transfer or passive exposure.  The term 
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“contamination” may serve to invoke the belief that the evidence is in some way 

compromised.  While contamination of GSR evidence could conceivably occur through 

sampling, during suspect processing or subsequently, in the laboratory, in a situation in 

which a suspect has handled a firearm, this individual has acquired GSR via a secondary 

transfer mechanism rather than as a result of “contamination”.  Thus, making this 

distinction clear will involve the correct use of terminology and explicit explanation of 

the proposed mechanisms of transfer.  Reporting and justifying inferences made about 

the likely avenue of GSR deposition may be assisted by diagrams or visualisations of 

transfer or contact scenarios (as recommended by French et al 2012).  In this way, 

accounting for the presence of GSR on a number of suspects could be explained with 

reference to a visual, diagrammatic reconstruction of events and transfers. 

In section 6.4 it was concluded that formulating and assessing propositions regarding 

the GSR evidence and the identification of the shooter should account for the 

possibility of deposition or transfer via a mechanism other than firearm discharge.  In 

formulating a pair of propositions to reflect this, the psychological concept of 

unpacking should be acknowledged.  Van Boven and Epley (2003) indicate that 

decisions and beliefs can be influenced by the extent to which the detail contained 

within discrete options is ‘unpacked’.  Thus, the forensic scientist must be mindful of 

the persuasive impact of articulating alternative means of GSR transfer and deposition 

when unpacking a defence proposition regarding the deposition of GSR.  Indeed, 

Tenney et al (2009) have demonstrated the impact the effect of introducing alternative 

suspects and plausible alternative stories on the likelihood of a not guilty verdict in a 

legal context.      

Chapter seven will consider the potential for an interpretative framework based on 

Bayesian Networks to assist in the interpretation of GSR evidence.  Section 7.4 

incorporates the novel empirical findings regarding GSR transfer and deposition into 

graphical structures to explore the potential to reason about mechanisms of transfer.  

The presentation of results and inferences based on this approach to interpretation 

involves a number of contemporary issues, especially in light of recent legal judgments 

in England and Wales.  A discussion of the presentation of inferences made using 

Bayesian reasoning in this context is presented in section 7.5.  
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Chapter 7 The interpretation of GSR evidence 

using Bayesian Networks  

7.1 Outline 

Chapter six considered the contribution of the experimental findings from this study to 

the body of literature on evidence dynamics.  The implications for forensic 

investigations involving GSR evidence were discussed, with a particular emphasis on 

the incorporation of these findings in the formulation and assessment of interpretative 

propositions about mechanisms of GSR deposition and transfer.  This chapter develops 

this discussion by exploring a Bayesian Network (BN) approach to evaluating GSR 

evidence under propositions about its transfer and deposition.  Thus, this chapter is 

concerned with further addressing Research Question Six which was set out in section 

3.7.  It also contributes to the research into models and data for GSR interpretation 

using Bayesian approaches which is called for by Romolo and Margot (2001).  Through 

the use of illustrative scenarios it will be demonstrated that a BN framework, which 

incorporates data of the genre presented in chapter five, provides a means of weighing 

multiple pieces of evidence to make inferences about GSR and the activities that led to 

its deposition and transfer.  A Bayesian decision support tool, AgenaRisk, will be 

employed in this chapter.  While primarily concerned with GSR evidence, the 

discussion in this chapter is intended to resonate with the interpretation of trace 

forensic evidence more generally and to contribute to the growing literature on the 

Bayesian interpretation of forensic evidence.  The discussion will also be situated 

within the context of recent legal judgments and contemporary debates concerning 

the probabilistic assessment of forensic evidence and will consider the future of 

probabilistic reasoning in casework and legal contexts.   

7.2 Bayesian Networks 

Bayesian Networks are graphical structures that represent causal dependencies and 

probabilistic relationships between variables.  A Bayesian Network consists of nodes 

representing variables of interest, directed arrows that represent dependencies which 

often correspond to causal relations between the variables, and probability 

assignments (Taroni et al 2006, Taroni et al 2004, Pearl and Russell 2003, Fenton and 
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Neil 2012).  Conditional probabilities quantify the nature and strength of these links 

and render it possible to use the graph as an inferential tool57.  Importantly, an 

absence of empirical data does not inhibit the use of a graphical approach.  Indeed, 

representing dependencies between variables and inferring the effect of a change to 

one node on the probability of an event or hypothesis (even though this change will 

not be quantified) is possible (Lagnado 2011).  Reasoning about causal relations and 

interactions in this way is useful for a variety of problems, including those in the legal 

and forensic domains. 

Bayesian Networks exhibit a number of central features.  First, and crucially, a 

Bayesian Network captures the way in which prior beliefs about the probability of 

some variable or event are updated by observations and evidence.  The capacity to use 

a Bayesian Network to calculate ‘the effect of knowing the truth of one proposition or 

piece of evidence on the plausibility of others’ is noted by Garbolino and Taroni (2002, 

p.149).  Secondly, these network structures can accommodate a number of variables 

and can capture the interrelatedness of a number of different types of evidence.  

Bayesian Networks also offer the capacity to examine the effects of different 

observations and combinations of observations on prior beliefs.  Bayesian Networks 

have been widely applied in a variety of domains to assist in reasoning under 

conditions of uncertainty (Biedermann et al 2005a, Cowell et al 1999, Jensen 2001). 

7.2.1 Bayesian Network Tools 

A number of Bayesian decision support tools are commercially available.  These 

software packages enable the construction of networks and the modeling of 

probabilistic relationships of increasing complexity.  In this way, it is not only possible 

to visualise the causal dependencies, but also to calculate the probabilities of certain 

outcomes given certain conditions.  To articulate these Bayesian calculations by hand 

can be a very arduous process, particularly if the problem is complex and incorporates 

a number of interrelated variables.  The decision support tool performs these 

calculations, derived from Bayes’ theorem “behind the scenes” using data on prior 

                                                           
57

 Suitable examples are provided for different domains in the tutorials and resources provided with 

licenses for AgenaRisk (AgenaRisk 2013)  
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beliefs and probabilities which are entered into the node probability tables (NPTs).  

Thus, the network becomes an inferential tool through which it is possible to reason 

about a problem and to calculate conditional probabilities.  AgenaRisk (AgenaRisk 

2013) was chosen to carry out this study of the interpretation of GSR, owing to the 

capacity of this software to model continuous variables and in light of previous work 

that has employed AgenaRisk when considering the evaluation of forensic and legal 

evidence (see, for example, Lagnado et al 2013, Fenton et al 2013, Fenton and Neil 

2012).     

7.2.2 Bayesian Networks and forensic evidence 

Section 2.2.2 surveyed the process of interpreting forensic evidence.  It outlined the 

process of assessing evidence under a pair of competing propositions that reflect on 

the one hand, the prosecution stance and on the other, the defence stance (Cook et al 

1998a).  Assessing the probability of observing a given pattern, quantity or type of 

evidence, given that first, the prosecution allegation is true and secondly, that the 

defence allegation is true can involve the incorporation of many variables.  For 

example, knowledge about the background rates of the trace evidence and 

information relating to the transfer and persistence properties of the material will 

need to be incorporated.  Accordingly, data from published experimental studies will 

need to be referred to during the assessment.  Meanwhile, information about the 

reliability and error rates of an analysis technique, or data on the level of 

contamination might also need to be considered.  The weighing of a number of 

variables also takes place at the pre-assessment stage when the expectations of an 

examination are determined by considering, for example, the quantity of evidence that 

might be expected if a certain proposition was true (Cook et al 1998a).   

Evidently, even in a relatively simple assessment, representing the interpretation 

problem and modelling dependencies can be challenging.  In order to make inferences 

and to reason about the probabilities the forensic scientist is concerned with, the 

problem must be formalised in some way.  As a result, a number of contributors have 

proposed the use of Bayesian Networks as a solution to representing, formalising and 

reasoning about forensic science problems and dealing with uncertainty (Garbolino 

and Taroni 2002, Taroni et al 2004, 2006, Fenton and Neil 2012).  This approach is 
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advocated for forensic interpretation problems that involve multiple variables (Aitken 

and Gammerman 1989).   

Accordingly, work has followed which is concerned with the application of graphical 

methods to evaluating scientific evidence (Taroni et al 2004).  Puch and Smith (2002), 

for example, have demonstrated the application of a Bayesian Network system in the 

pre-assessment and assessment of fibre evidence.  The authors demonstrate how the 

system can be used to train an examiner to reason about uncertainties regarding fibre 

transfer and retrieval via the BN.  Biedermann et al (2005a, 2005b) explore the use of 

Bayesian Networks in the forensic investigation of fire incidents, while Lee et al (2009) 

investigate the representation of bodies of digital forensic evidence in a BN 

framework, citing the capacity to delineate causal relations as a particular advantage 

of this approach.  Furthermore, the use of a Bayesian Network methodology in the 

evaluation of glass evidence is reported by Zadora (2009). 

Considerations of the probabilistic assessment of forensic evidence are not limited to 

research into the use of Bayesian Networks.  The calculation of the likelihood ratio 

with regard to evidence under competing hypotheses is commonplace in both 

research and casework settings.  The likelihood ratio is calculated by the formula 

below: 

   

 

The probative value of the evidence is calculated according to the rules below, in a way 

that quantifies the impact of evidence on our prior beliefs: 

LR > 1 : Support for the prosecution hypothesis  

LR < 1 : Support for the defence hypothesis 

LR = 1 : Evidence (E) has no probative value 

The level of support, or otherwise, for the hypothesis can be expressed numerically but 

is often converted to a verbal scale.  The merits and problems associated with this 

approach will be articulated in section 7.5.  Examples of work that considers the 

interpretation of forensic evidence using the likelihood approach include Morrison et 

al (2011) for forensic voice comparison, Zadora and Ramos (2010) for glass evidence, 

Probability of Evidence (E)|Prosecution Hypothesis (Hp) 

Probability of Evidence|Defence Hypothesis (Hd) 
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and Taroni et al (2012) for comparative handwriting examination.  The use of a 

likelihood ratio approach is well established in the field of DNA identification and when 

interpreting from a database search (Stockmarr 1999, Beecham and Weir 2011)58.  It is 

worth noting that much research into the assessment of forensic evidence is focused 

upon source level uncertainty, rather than considering how the evidence may have 

been deposited at a scene or on a suspect.    

While embodying the principles of a Bayesian inference model, the calculation of the 

likelihood ratio will be afforded less attention in this chapter in favour of a focus on 

attempts to incorporate multiple variables and pieces of evidence in Bayesian Network 

structures.  It is important, however, to recognise the synergies that exist between the 

calculation of the likelihood ratio and the use of a Bayesian Network for reasoning and 

updating.  Indeed, it is possible to perform the likelihood ratio calculated from the 

updated Bayesian Network.  Crucially, a graphical approach permits the incorporation 

of variables and sources of uncertainty that would otherwise render the development 

of a likelihood ratio formula extremely complex (Biedermann et al 2009). 

Bayesian Networks are compatible with, and can facilitate, the model of interpretation 

which was set out in section 2.2.2.  The incorporation of multiple variables and the 

management of uncertainty are inherent in the processes of assessing the likelihood of 

evidence under competing propositions and determining what evidence would be 

expected in certain scenarios.  Furthermore, Evett et al (2000) explain that 

propositions may need to be reviewed or evidence re-assessed in light of changes in 

the ‘framework of circumstances’.  Bayesian Networks are ideally suited to 

accommodate such changes.  New nodes can be added should new evidence come to 

light, hypothesis nodes can be modified to capture a new explanation that is offered 

by the suspect and data from experimental work that is carried out to resolve a 

particular issue can be readily incorporated.  Thus, graphical approaches facilitate 

reasoning in a ‘flexible and interactive’ manner (Biedermann et al 2009, p.26, Jensen 

2001, Pourret et al 2008). 

                                                           
58 The degree to which it is valid to make a distinction between the probabilistic assessment of DNA 
evidence and the probabilistic assessment of other types of forensic evidence is the source of 
debate and will be discussed in section 7.5.   
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A Bayesian Network may also be used to capture the forensic evidence in the wider 

context of a case.  In complex cases involving multiple suspects, witnesses and 

different items of evidence, a BN approach can assist in representing the dependencies 

in the case and the manner in which elements “fit” together.  In this way, central items 

of evidence can be identified and the accuracy and reliability of, for example, witness 

testimonies can be elucidated.  A demonstration of the use of a graphical approach to 

capture the way in which legal judgments are made has been carried out by Lagnado 

et al (2013) and Fenton et al (2013).  Lagnado et al (2013) propose a framework for 

evidential reasoning in a legal context using causal idioms.  These “building blocks” can 

be used used to capture the relations between complex bodies of evidence in legal 

cases, and serve to assist the process of reasoning and evidence evaluation (Fenton et 

al 2013). This framework is also useful for reasoning about forensic evidence and in 

situating forensic evidence within the context of other aspects of the case.  

7.2.3 The Bayesian interpretation of GSR evidence 

Before exploring the way in which the experimental findings from this thesis may be 

incorporated into the interpretation of GSR evidence through Bayesian Networks, it is 

useful to survey some recent work that has been concerned with the probabilistic 

assessment of GSR.  Through casework examples, Gauriot et al (2013) explored the 

possibilities and challenges associated with the probabilistic quantification of GSR 

evidence using Bayesian Networks.  The authors present a BN that they used to 

generate posterior probabilities from recovered quantities of GSR.  Data from test 

firings involving the discharge of a single shot from a .38 revolver were incorporated 

into the BN and variables such as the level of background contamination (high, 

medium and low) and the number of shots fired were also included.  Through the use 

of two casework scenarios, the authors demonstrate the challenges associated with 

discriminating between a shooter and other individuals who may have been involved 

in some other capacity.  The inferences that could be made were found to alter 

significantly with minor changes to parameters and assumptions.  This is an important 

finding in itself.  Echoing Dalby et al (2010) and Romolo and Margot (2001), Gauriot et 

al (2013) advocate a case-by-case approach to interpreting GSR data and note that 

likelihood calculation requires experimentation under the same conditions as those 

involved in the investigation at hand.  The authors argue that even with representative 
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data, the possibility of making probabilistic claims is made difficult by contamination 

issues such as the prior exposure of a suspect to GSR.  It could be countered, however, 

that weighing these factors in a BN framework can assist in realising the impact of 

assumptions about prior exposure to GSR in an auditable, transparent and logical 

manner.  This is preferable to a situation in which the assumptions underlying the 

opinion proffered by the scientist are not made explicit.  The authors call for caution 

when using a statistical approach to make quantitative claims about GSR evidence. 

Cardinetti et al (2006) argue that GSR evidence should be assessed and evaluated using 

likelihood ratios.  The authors generated estimates of the GSR counts that might be 

expected to be recovered from shooters in two different firing scenarios at various 

intervals following the discharge of a firearm.    An estimate of the expected GSR 

presence on police officers who had not recently handled a firearm was made for 

comparison.  These scenario-specific data were used in the calculation of a likelihood 

ratio when assessing GSR counts under two competing propositions; (1) that the 

suspect shot a firearm and (2) that the suspect did not shoot a firearm.   

Biedermann et al (2009) developed this investigation by demonstrating the utility of 

Bayesian Networks in the probabilistic assessment of GSR, for both likelihood ratio 

calculation and during case pre-assessment.  The authors propose a BN framework to 

accommodate further sources of uncertainty when assessing GSR evidence through 

the use of a likelihood ratio, namely, the level of background and sample 

contamination, the relationship between the sampled GSR and the true particle count, 

and the performance of the analysis.  The consideration of these variables would make 

the calculation of a likelihood ratio very complex but the ‘flexibility and capacity’ of 

BNs to accommodate additional variables, as well as empirical and case-specific 

information is highlighted (ibid.34).  In an additional contribution, Biedermann et al 

(2011) explore a Bayesian approach to parameter estimation for inference-making 

using experimental GSR particle count data.  The capacity of a BN to cope with the 

complexity resulting from the consideration of multiple variables is cited by 

Biedermann and Taroni (2006a) during an exploration of the evaluation of firearm 

mark and GSR evidence.  The study focuses on the combination of these two types of 

evidence within a BN framework that captures the probabilistic relations between 

parameters and handles the various sources of uncertainty. 
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Charles and Nys (2010) chart an approach to reporting the results of GSR analysis 

which is underpinned by Bayesian principles.  This approach serves to eschew 

unscientific opinions by enabling the demonstration the value of GSR evidence to the 

‘client’, having accounted for the relevant theory and sources of uncertainty.  In an 

assessment of its benefits, Charles and Nys (2010) argue that the approach increases 

the transparency of the interpretation process.  The authors argue that databases on 

parameters assist in the formulation and reporting of the likelihood ratio and that 

case-specific experimentation can be incorporated, although at present, the relative 

paucity of empirical data represents a limitation.  It should be noted that bodies of 

hard numerical data are not necessarily required to profit from a BN approach.  

Rather, as Biedermann and Taroni (2006a, 2006b) argue, such an approach enables the 

scientist to reason about the parameters that may need to be incorporated during an 

evaluation.  Moreover, subjective beliefs can be revised and updated logically using 

this methodology.  Using a BN in this qualitative sense to carry out meaningful 

reasoning and to consider qualitative probabilistic relationships and causal relations 

between variables of interest aligns with Lagnado (2011). 

Charles and Nys (2010) identify the need for further research into the use of Bayesian 

Networks for GSR interpretation and also the importance of experimental data for 

estimating parameters of interest.  The results presented in chapter five of this thesis 

represent a dataset on the transfer and deposition of GSR via different mechanisms, 

under a specific set of conditions.  Thus, in a similar manner to a number of the 

aforementioned studies, these data can be used when reasoning about GSR evidence.  

Importantly, this represents a novel consideration of transfers and depositions of GSR 

within a Bayesian framework that is underpinned by empirical data.  Cardinetti et al 

(2006) and Biedermann et al (2009) explored the use of particle count data in 

calculating the likelihood ratio for a pair of propositions regarding whether or not the 

suspect fired a gun.  Crucially, when unpacked, it is revealed that in these examples the 

framing of the propositions was such that handling the discharged firearm and being in 

proximity to the firearm were included within the prosecution proposition, ‘Hp’.  

Therefore, no attempt was made to distinguish between the means of deposition; 

something that the findings of this thesis have suggested may be possible in certain 

contexts and that, potentially, could assist in determining the roles of suspects in the 
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reconstruction of a firearms incident.  Charles and Nys (2010) use an example to 

demonstrate how the incorporation of case-specific experimentation regarding an 

alternative mechanism of deposition (environmental contamination) may be useful 

when assessing GSR evidence in light of a defence proffered by the suspect.  The 

results of the experimental work in this thesis represent an opportunity to explore the 

use of a Bayesian Network approach to evaluating GSR evidence under competing 

hypotheses about the method of deposition.  The novel contribution of the following 

sections lies in the use of experimentally derived estimates of GSR transfer and 

deposition to carry out this exploration and to consider the potential interpretative 

impact of these under-researched transfer mechanisms.  

7.4 A Bayesian Network approach to interpreting GSR 

evidence on hands 

This section explores the possibility of distinguishing between deposition mechanisms 

using probabilistic reasoning (thus, further addressing Research Question Six (see 

section 3.7).  Using the experimental results and findings relating to GSR counts which 

were presented in chapter five and discussed in chapter six, this section will explore 

the evaluation of GSR evidence under competing hypotheses through a Bayesian 

Network approach.  In a similar fashion to previous research into the probabilistic 

assessment of scientific evidence (Gauriot et al 2013, Biedermann et al 2009 and 

Charles and Nys 2010, for example), this discussion will refer to hypothetical and real-

world forensic scenarios. 

The following discussion contributes to the body of work on the application of 

Bayesian reasoning to forensic interpretation.  Illustrating the way in which a Bayesian 

Network can provide a framework for reasoning about evidence, for combining items 

of evidence and for dealing with multiple suspects, will assist in furthering the case for 

this method of assessment.  The discussion will demonstrate the value of a BN 

approach for making inferences that are of value in the reconstruction of forensic 

events and in the elucidation of the value of evidence.  As will be discussed in section 

7.5, this intervention is particularly timely given a number of recent legal rulings in the 

England and Wales which have questioned the relationship between Bayes and the 

law.  The following sections demonstrate the manner in which the empirical findings of 
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experimental work in forensic science may be incorporated in reasoning about 

propositions and how multiple pieces of forensic evidence can be weighed logically.  

The investigation, with reference to forensic scenarios, further elucidates the 

interpretative and investigative nuances that were identified in section 6.4 in light of 

the experimental findings of this piece of research.  As a result, it also represents an 

example of the way that the interpretative ramifications of future experimental studies 

regarding trace evidence can be explored and considered.  Finally, while focusing 

primarily on the interpretation of GSR evidence, this section will inform the 

interpretation of trace physical evidence more generally and particularly, cases in 

which the assessment of a pair of activity level interpretative propositions involves the 

consideration of alternative means of transfer and deposition. 

7.4.1 A simple one suspect scenario 

The following causal diagram represents the interpretation of the presence of GSR on a 

suspect.  In this case, there is a piece of evidence (the GSR count) and a pair of 

mutually exclusive hypotheses about how it came to be recovered from the suspect, 

which are contained within a single node (figure 7.1)59. 

 

In a hypothetical scenario, a suspect was detained a short distance from the scene of a 

very recent shooting.  The hands of the suspect were subsequently sampled at the 

scene according to the procedure set out in 4.2.3.  Five shots had been heard by 
                                                           
59

 All analysis and graph building has been carried out using AgenaRisk (AgenaRisk 2013) 

Figure 7.1 Graph showing the causal relationship between the hypothesis and 

evidence for the one suspect case  
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witnesses and cartridges recovered from the scene indicated that 9mm Luger 

ammunition had been fired.  Thus, the results of the experiments produced during the 

present piece of research were of direct relevance.  In the hypothetical scenario, the 

laboratory result reported a positive result for GSR presence.  The suspect, when 

confronted with this fact, denied having fired the gun or having any previous contact 

with firearms.  A pair of mutually exclusive hypotheses might be formed; that the GSR 

was acquired through firing the gun, or that the GSR was acquired by some other 

means of transfer or deposition.  Note that the source of the GSR has already been 

confirmed in this example - it has been determined that the recovered particles did 

emanate from a firearm discharge rather than from an environmental or occupational 

source of GSR-like particles (see section 3.2.4).  Moreover, it has been concluded that 

the GSR particles are of an elemental composition that would be expected from the 

firing of 9mm Luger ammunition.  

In order to reason about the quantity of GSR and how it was deposited, it is necessary 

to consider the probability of observing that quantity of evidence under each 

hypothesis.  The results presented in chapter five can be referred to when making this 

assessment.  Based on the experimental data, three categories of GSR count were 

formed: Low (0-49), Medium (50-149) and High (150+).  It was noted in 7.2.3 that 

realising the utility of a Bayesian Network approach in reasoning about forensic 

evidence does not necessarily require hard, accurate numerical data (Biedermann and 

Taroni 2006a, 2006b, Lagnado 2011).  Rather, qualitative causal relationships may be 

used to carry out useful reasoning.   

For the purposes of this exploration, probabilities of observing these different 

quantities of GSR (‘Low’, ‘Medium’ and ‘High’) under the two competing hypotheses 

were qualitatively estimated from the experimental data.  The precise numerical 

probabilities are not the primary focus, but rather, are indicative of the probabilistic 

relationships suggested by the experimental data.  For instance, results suggest that 

the hands of the shooter may be expected to yield several hundred particles and that 

‘Low’ counts are very unlikely.  The experimental data also indicated that ‘Low’ and 

‘Medium’ GSR counts might be expected when sampling from individuals who have 

acquired GSR via a secondary or tertiary transfer, or via their proximity to a firearm 

discharge.  Meanwhile, ‘High’ quantities of GSR were not recovered from these 
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subjects and can, therefore, be considered relatively unlikely.  These probabilities also 

incorporate the possibility of background contamination, although research has shown 

this to be extremely low particularly when an individual has not recently come into 

contact with firearms (Kotrly and Turková 2010, Cardinetti et al 2006).  Illustrative 

conditional probabilities that were qualitatively estimated from the experimental data 

are displayed in the node probability table (7.1).   

 

 Shooter Other means of transfer/deposition 

Low (0-49) 0.05 0.6 

Medium (50-149) 0.15 0.3 

High (150+) 0.8 0.1 

 

 

The probabilities reflect the apparent tendency for several hundreds of particles to be 

deposited on the shooter during a firearm discharge under these conditions and also 

the not insignificant possibility that ‘Medium’ quantities of GSR may be expected to be 

involved in secondary transfer events.    Three scenarios were run in the simple BN to 

reflect cases where the laboratory result revealed a ‘Low’, ‘Medium’ and ‘High’ 

quantity of GSR.  The results for 

the three scenarios are 

displayed on the graph in figure 

7.2.  Note that the prior on 

each of the hypotheses 

was 0.5 as it is assumed there 

was no reason to consider one 

hypothesis to be more likely 

than the other. 

 

 

Table 7.1 Node Probability Table (NPT) for the one suspect case 
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The graph shows how the belief about the probability of the two hypotheses changes 

as a result of the evidence.  The potential significance of the experimental findings are 

made clear in this graph as when a ‘Medium’ quantity of GSR is recovered, on the basis 

of the data entered into this particular NPT, it is likely that this quantity of GSR was 

deposited by a means other than the firing of the gun. 

This framework offers the potential to think about the incorporation of other variables 

of interest.  For example, a further piece of evidence such as a witness testimony could 

be included and its effect on our belief about the hypothesis could be weighed into the 

assessment.  Moreover, the persistence and decay of material could be incorporated if 

the suspect was apprehended a few hours after the incident.  In this case, the data in 

the node probability table would be adjusted to reflect the loss of material over time.  

In accordance with previous studies (see, for example Brozek-Mucha 2011, Jalanti et al 

1999), the probability of observing ‘Low’ and ‘Medium’ quantities of GSR given that a 

suspect had fired a gun would be higher after a few hours, owing to the influence of 

decay.  Meanwhile, the NPT would reflect that if more than 150 particles were still 

Figure 7.2 Bayesian Network for the one suspect case showing updated beliefs 

for ‘High’, ‘Medium’ and ‘Low’ GSR counts 
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recoverable a few hours after the incident, there would be an increased probability 

that these had been deposited as the suspect discharged a gun. 

This framing of the problem is an effective basis on which to start thinking about the 

effect of certain variables on the recovered GSR count and also on our belief about the 

activities of the suspect.  However, modeling GSR counts in discrete categories is 

inadequate.  In its current state the graph is not sufficiently sensitive to examine the 

effects of small increases in the number of recovered particles on the resulting 

posterior probabilities.  Moreover, the effect of recovering 150 particles as opposed to 

149 means that the boundary between ‘Medium’ and ‘High’ has been crossed and our 

beliefs about the likely actions of the suspect shifts disproportionately.   It is suggested 

that discretization of a continuous variable such as the GSR particle count is 

unsuitable.   

Accordingly, the particles counts that were presented in section 5.2 and figure 5.3 

were used to approximate probability distributions for the two hypotheses using the 

continuous variable modeling capability in AgenaRisk.  Clearly, as a result of the 

relatively small number of runs (nine samples taken from the shooter for instance), the 

probability distributions that are presented are approximations only.  However, they 

are effective in demonstrating the possibility of incorporating a continuous variable 

into the BN and of using it to make inferences.  Using a distribution fit package, EasyFit 

5.5. (Mathwave 2013), a gamma distribution for the number of particles deposited on 

the shooter was created: Alpha = 3.955 and Beta = 108.47.  While the true distribution 

could not be determined with confidence owing to the limited number of data points, 

the gamma distribution was chosen for this illustration as it reflects the apparent 

concentration of counts around the mean (429 particles) and a tailing off towards the 

higher counts, with a relatively low possibility of recovering less than one hundred 

particles. 

The expected counts from the other means of deposition were calculated by 

combining the experimental counts for all non-shooting scenarios within the same 

statistical package.  The counts were assumed to be normally distributed about the 

mean (41.2) owing to the apparent clustering of counts around this mean and the 

limited possibility of observing extreme counts, as indicated by the experimental data.  

Therefore, for illustrative purposes, a normal distribution was fitted which was 
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truncated at the lower bound of zero particles.  Its variance was 1156.5.  It is stressed 

that these distributions, calculated from the set of experimental results, are estimates.  

Moreover, they are intended to reflect only the expected counts for firings and 

depositions in conditions analogous to those simulated for the experimental settings in 

this thesis. 

These distributions replaced the categorisations presented in figure 7.2 and table 7.1.  

They were entered as a ‘partitioned expression’ in the NPT; the gamma distribution 

representing the number of particles expected if the suspect had fired the gun and the 

truncated normal distribution representing the expected GSR count given some other 

means of deposition (incorporating secondary and tertiary transfer mechanisms and 

deposition on a bystander).  Some previous studies (see Gauriot et al 2013 and 

Biedermann et al 2009) have estimated expected GSR counts on the shooter using a 

Poisson distribution.  Gamma and (truncated) Normal distributions were used in this 

case as they fitted the values that might be expected in light of the data points 

produced by the experimental work.  Further data points may render an alternative 

distribution more suitable and the model could be modified to reflect this.  However, 

at this stage the purpose of the discussion is to illustrate the manner in which 

inferences can be made about the mechanism of GSR deposition by representing 

expected GSR counts using conditional probability distributions.  The new BN is 

displayed in figure 7.3. 
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When a value (observation) is entered for the GSR count, the new BN calculates the 

probability of observing the evidence given the two competing hypotheses.  It does so 

by computing the probability of observing the evidence under the two distributions of 

expected particle counts, which pertain to the two hypotheses.  Figures 7.4 - 7.8 

demonstrate the effect of entering a series of different observations for the particle 

count on the belief about the probability of the two hypotheses, again assuming that 

our prior belief meant that each hypothesis was initially equally likely.   

 

Figure 7.3 Bayesian Network for the one suspect case with expected GSR counts 

modelled using a partitioned expression 
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Figure 7.4 Updated Bayesian Network for the one suspect case, 15 GSR particles 

recovered 

Figure 7.5 Updated Bayesian Network for the one suspect case, 80 GSR particles 

recovered 
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Figure 7.6 Updated Bayesian Network for the one suspect case, 114 GSR 

particles recovered 

Figure 7.7 Updated Bayesian Network for the one suspect case, 149 GSR 

particles recovered 
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Compared to the original BN in figure 7.2, it is clear that modeling the GSR particle 

count as a continuous variable means that it is possible to capture the effect of subtle 

changes in the recovered particle count.  It should be re-emphasised that the 

distributions are estimates that have been generated from a very limited number of 

data points.  Indeed, they may not reflect the true shape and form of the population 

characteristics.  Moreover, as explained in chapter six, the data relate to a specific set 

of firing conditions, namely; five rounds of 9mm Luger 95 grain jacketed soft point 9P1 

ammunition (manufactured by FEDERAL Ammunition) fired from a SIG Sauer P226 

9mm self-loading pistol, with little or no decay of trace material.  Thus, the impact of 

values on beliefs about the competing hypotheses cannot be extrapolated to other 

scenarios with case-specific conditions and variables.  In these graphs our belief about 

the activity that gave rise to the presence of GSR on the suspect is only informed by 

one piece of evidence (a GSR count).  In reality, many inter-related pieces of evidence 

may be involved.  However, the example is intended to illustrate the way that the GSR 

particle count may be modelled as a continuous variable and be used to reason about 

Figure 7.8 Updated Bayesian Network for the one suspect case, 300 GSR 

particles recovered 
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the probability of alternative means of GSR deposition.  The simple BN may also be 

adjusted to capture further variables and/or pieces of evidence that may have a 

bearing on our beliefs about the competing hypotheses. 

Figures 7.4-7.8 serve to reinforce the potential significance of the experimental results.  

While it is widely acknowledged that the recovery of GSR from a suspect may not 

necessarily indicate that the suspect fired a gun (see section 3.4.), assessments of the 

quantities of GSR that may result from non-shooting mechanisms and transfers are 

conspicuous in their absence.  The Bayesian Networks presented in figures 7.4-7.8 

capture the interpretative ramifications of concluding that, in conditions analogous to 

the experimental setting, the probability of observing considerable quantities of GSR 

(15, 80 and 114 particles, for instance) is high.  Moreover, the probability that such 

quantities are observed given that a non-shooting mechanism resulted in the 

deposition is greater than the probability of observing that quantity given that the 

suspect fired the gun in some instances.  The graphs also reflect that higher quantities 

of GSR are expected from the shooter, but that these quantities will be observed very 

infrequently on a non-shooter.  It is stressed that these graphs reflect only the data 

derived during this thesis, but in doing so they re-emphasise the potential salience of 

the interpretative ramifications of the findings (originally discussed in section 6.4) 

The expected distributions could be adjusted to account for the influences of, for 

instance, persistence and contamination through the addition of further nodes (akin to 

Gauriot et al 201360).  Research into the persistence of GSR suggests that the half-life 

of a deposited quantity of GSR is approximately one hour (section 3.4.4b and Brozek-

Mucha 2011).  Thus, if the evidence was being assessed given a timeframe of one hour 

following the shooting, it is likely that the ‘overlap’ between the two expected 

distributions would be greater, potentially meaning that distinguishing between 

mechanisms of deposition may be more difficult in some cases.  However, as discussed 

in section 6.4, the recovery of several hundred particles from a non-shooter would be 

even more unlikely and further suggestive of a deposition by firing; our updated beliefs 

about the probability of the two hypotheses would reflect this. 

 

                                                           
60 Although the Gauriot et al (2013) study discretised many of the variables 
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7.4.2 A multi-suspect case 

Section 6.4 considered the potential for making inferences about the mechanism of 

deposition on the basis of GSR counts.  Accordingly, section 6.3.1 highlighted the 

reconstructive value of recovering multiple samples from suspects who may have been 

implicated in the transfer and deposition of GSR.  Such a sampling strategy, it was 

argued, should be underpinned by knowledge of potential transfer mechanisms and 

their extent and evidential utility.  However, the weighing of these multiple pieces of 

evidence may be complex, particularly within the context of a case with multiple lines 

of evidence and sources of uncertainty.  The capacity of Bayesian Networks to capture 

the relations between multiple pieces of evidence (as discussed in section 7.2) means 

that they are well suited to provide a method of reasoning and inference-making in 

multi-suspect cases involving GSR.  The example below is used to demonstrate this.  

The case used in this illustration of the use of a BN framework in a multi-suspect case 

has been adapted to permit the incorporation of data and findings from the present 

study.  The details of the original case, modified significantly to permit an exploration 

of the interpretation issues arising from the present study, are presented in: State of 

Ohio v. Christopher Latham (2011). 
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A BN that captures this problem must represent the GSR evidence relating to each 

suspect and the possibility that each suspect was either the shooter or a bystander.  

The BN needs to account for the change in our belief about the role, for example, of 

suspects B and C, once information has been entered which relates to Suspect A.  

Finally, as exactly one of these three suspects was the shooter, the graph will need to 

The Incident: 

 

Mr S, a delivery man, was making deliveries.  Having 

just made a delivery at an address, he noticed three 

hooded people on the corner.  The group approached Mr. S 

and one of them drew a pistol with the other individuals 

standing one metre behind him.  Mr S handed over the 

cash he had but believed the trigger was being squeezed 

so withdrew his torch and smacked the hand holding the 

gun.  The gun remained in the hand of the man and was 

discharged five times with at least one of the bullets 

narrowly missing the victim’s head.  At this point the 

three men ran around a nearby corner and the shooter 

fired two shots in the direction of Mr S.  The victim 

gave chase but had been injured during the struggle and 

gave up.  The victim phoned the police. 

 

Police arrived promptly and interviewed the victim and 

provided police with descriptions before a police dog 

picked up a scent from the crime scene and tracked it to 

an address on the same estate.  Upon entry to the house, 

police found three suspects (A, B and C).  A 9mm self-

loading pistol matching the description of the gun used 

in the robbery was found concealed in a drawer at the 

address.  All three suspects were brought onto the 

pavement for identification by the victim.  Mr S 

indicated he was very confident that A, B and C were the 

three individuals involved.   
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constrain the sum of the probabilities of each suspect being the shooter to one.  The 

basic structure of the BN is provided in figure 7.9.   

 

 

 

 

 

 

 

 

 

 

 

 

The ‘Shooter’ node has three states, ‘A’, ‘B’ and ‘C’.  The ‘Role’ nodes each have two 

states, ‘Shooter’ and ‘Bystander’.  The particle count evidence nodes are modelled 

continuously using a partitioned expression (in a similar manner to the examples in 

figures 7.3-7.8).  Because we know that the three suspects were the three individuals 

involved in the robbery (confirmed by the victim as well as the suspects themselves) 

and that we have no prior indication that any of the suspects was more likely to have 

been the shooter, the prior belief that each suspect was the shooter is 1/3.  In the 

‘Particles recovered’ nodes, the same distribution of expected particle counts for the 

shooter is used as that which was calculated for the experimental data and presented 

in figure 7.3.  The second part of the expression is represented by a truncated normal 

distribution, with a mean of 28 and a variance of 1000, which captures the expected 

values of particle counts that are recoverable from bystanders and accounts for the 

spread of values that might be expected given further test firings.  28 was the mean 

Figure 7.9 Bayesian network for the multi-suspect case 
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number of particles recovered from the bystanders during experimental scenario five 

and was deemed appropriate in light of the results reported by Lindsay et al (2011a), 

who observed similar numbers of particles on bystanders during their simulations.   It 

is important to note, once more, that these distributions are estimates that have been 

generated from a limited number of data points.  However, they are intended to 

demonstrate first, the potential significance of the findings for interpretation of GSR 

evidence and secondly, the way that case-specific data may be incorporated into a BN 

framework.  Third, the example serves to illustrate the utility of a BN approach when 

dealing with multiple-suspect cases involving GSR, or other trace evidence. 

Figure 7.10 represents the state of the graph before any observations are entered.  

The prior belief is that all suspects are equally likely to have been the shooter and we 

know that there was exactly one shooter.  For each suspect, the probability that they 

were the shooter is 1/3 and the probability that they were a bystander is 2/3.    

Notably, the BN captures the rationale of proposition formation put forward by Cook 

et al (1998a,b), Cook et al (1999) and Evett et al (2000) that was presented in section 

2.2.2.  The framework of circumstances, which include the identification of the three 

individuals by the victim and the admission of presence by the suspects, have enabled 

the formulation of pairs of mutually exclusive Level II61 propositions about the method 

of deposition for each suspect.  The BN framework permits the dependencies between 

the assessments for each pair to be captured.     

 

 

                                                           
61 The overlap with Level III (offence) is apparent here as the firing of a gun is necessarily a criminal 
offence, as is involvement in an armed robbery.  In essence, via activity level assessments, we are 
inferring something about the type of offence that each suspect has committed 
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Figure 7.10 Bayesian Network for the multi-suspect case in prior state 
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In light of the findings presented in chapter five, in conditions analogous to those 

simulated in the experimental set-up, the probability of observing 320 GSR particles on 

a bystander can be considered to be very small.  Intuitively, taking into account the 

GSR evidence only, the probability that A was the shooter will increase markedly on 

entering 320 as the particle count for suspect A.  The updated BN reflects this intuitive 

conclusion and also accounts for the change in our beliefs about the roles of suspects B 

and C; the GSR evidence for suspect A strongly suggests this suspect was the shooter 

and consequently, it is now very likely that suspects B and C were bystanders (figure 

7.11).  

 

 

 

Sampling and Results [Scenario A]: 

 

Only one GSR testing kit was available, and the hands of 

suspect A were sampled. 

Sample analysis revealed 320 GSR particles    

Figure 7.11 Updated Bayesian Network for the multi-suspect case, 320 particles 

recovered from suspect A, Scenario A 
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When the observation is entered for suspect A in this scenario, it is interesting to note 

that the probability that suspect A was the shooter actually reduces (from 0.333... to 

0.184...) (figure 7.12).  This is because, as indicated by the findings of the experimental 

results, one would expect to recover several hundred particles from the hands of a 

shooter in conditions analogous to those simulated in the experimental set-up.  This 

observation serves to emphasise the importance of acknowledging alternative means 

of GSR deposition and also the possibility of considerable depositions by non-shooting 

mechanisms.  In this example, the presence of a considerable quantity of GSR on a 

suspect has actually served to reduce the possibility that the suspect were the shooter, 

while simultaneously raising the probability that one of the remaining suspects was the 

shooter.  It should be noted that the specific values relate to the present study and 

that the graphs are illustrative of the impact GSR may have on the inferences that are 

made in specific scenarios.      

Sampling and Results [Scenario B]: 

 

Only one GSR testing kit was available, and the hands of 

suspect A were sampled. 

Sample analysis revealed 100 GSR particles    

Figure 7.12 Updated Bayesian Network for the multi-suspect case, 100 particles 

recovered from suspect A, Scenario B 
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In this scenario, 100 particles were observed on the sample recovered from suspect A.  

When the 395 particles recovered from suspect B are entered, our beliefs about the 

roles of the suspects differ from the previous scenario.  Because we are much more 

likely to observe 395 particles on a shooter than on a bystander, the BN now indicates 

that suspect B was the most likely shooter (figure 7.13).  Importantly, we are now 

much more certain that the particles recovered from suspect A resulted from their 

presence in close proximity to the shooting.  The probability that suspect A was the 

shooter that was calculated for Scenario B (shown in figure 7.12) has been explained 

away, along with the probability that C was the shooter (despite entering no evidence 

for suspect C).  The value of collecting samples from multiple suspects when making 

inferences during the reconstruction of an incident is demonstrated.   

 

Sampling and Results [Scenario C]: 

 

Two GSR testing kits were available, and the hands of 

suspects A and B were sampled. 

Sample analysis revealed 100 GSR particles on suspect A 

Sample analysis revealed 395 particles on suspect B    

Figure 7.13 Updated Bayesian Network for the multi-suspect case, 100 particles 

recovered from suspect A and 395 particles recovered from suspect B, Scenario C 
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When 100 particles are entered for suspect A alongside 104 particles for suspect B, 

suspect C (from whom a sample was not recovered) becomes the most probable 

shooter, in contrast to Scenario C.  Compared to Scenario B, in which only the value of 

100 particles was entered for suspect A, the probability that C was the shooter 

increases slightly when 104 particles are entered from suspect B.  Concurrently, the 

probability the B was the shooter is reduced and there is a slight increase in the 

probability that A was the shooter (figure 7.14). 

 

 

 

 

Sampling and Results [Scenario D]: 

 

Two GSR testing kits were available, and the hands of 

suspects A and B were sampled. 

Sample analysis revealed 100 GSR particles on suspect A 

Sample analysis revealed 104 particles on suspect B    

Figure 7.14 Updated Bayesian Network for the multi-suspect case, 100 particles 

recovered from suspect A and 104 particles recovered from suspect B, Scenario D 



366 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

In contrast to Scenario D, the evidence entered for suspect B in this scenario means 

that the probability that this suspect was the shooter is dramatically reduced, with the 

GSR evidence suggesting that this suspect was one of the bystanders.  As a result, the 

probability that suspect A was the shooter increases slightly, despite the same GSR 

count (100 particles).  It is now most likely that suspect C was the shooter, despite the 

absence of a GSR sample from this suspect (figure 7.15).    

 

 

 

 

Sampling and Results [Scenario E]: 

 

Two GSR testing kits were available, and the hands of 

suspects A and B were sampled. 

Sample analysis revealed 100 GSR particles on suspect A 

Sample analysis revealed 12 particles on suspect B    

Figure 7.15 Updated Bayesian Network for the multi-suspect case, 100 particles 

recovered from suspect A and 12 particles recovered from suspect B, Scenario E 



367 

 

 

 

 

 

 

 

 

 

From the updated graph in Scenario E (figure 7.15), we would expect a sample taken 

from suspect C to yield several hundred GSR particles.  Unsurprisingly, when this is the 

case in Scenario F (figure 7.16), the results of the three samples are combined to 

suggest that suspect C was the shooter, while the other two suspects are very likely to 

have been bystanders. 

 

 

 

 

 
Sampling and Results [Scenario G]: 

 

The hands of suspects A, B and C were sampled. 

Sampling and Results [Scenario F]: 

 

The hands of suspects A, B and C were sampled. 

Sample analysis revealed 100 GSR particles on suspect A 

Sample analysis revealed 12 particles on suspect B   

Sample analysis revealed 470 particles on suspect C 

  

Figure 7.16 Updated Bayesian Network for the multi-suspect case, 100 particles 

recovered from suspect A, 12 particles recovered from suspect B and 470 

particles recovered from suspect C, Scenario F 
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In contrast to Scenario F, the particle count on the sample recovered from suspect C in 

Scenario G strongly indicates that this suspect was one of the bystanders.  Thus, a large 

amount of the belief we had about suspect C being the shooter in Scenario E (in which 

no evidence was entered for suspect C) has now been explained away by the GSR 

sample from this individual.  Accordingly, it is now very likely that suspect A was the 

shooter, despite the number of particles (100) being lower than we might expect in 

most cases given that an individual has discharged a firearm.  It is clear that the same 

GSR count pertaining to a suspect can be indicative of different mechanisms of 

deposition, depending on the particle counts obtained from other suspects.  

Therefore, this example serves to demonstrate the evidential and reconstructive utility 

of sampling the hands of suspects who may have acquired GSR through mechanisms 

other than discharging a firearm.  These additional samples can assist when making 

inferences regarding the identity of the shooter by reducing some of the uncertainty 

Figure 7.17 Updated Bayesian Network for multi-suspect case, 100 particles 

recovered from suspect A, 12 particles recovered from suspect B and 18 

particles recovered from suspect C, Scenario G 
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that is inherent in the interpretation process.  Moreover, a BN framework can be used 

to demonstrate how the results of these samples support the conclusions, which 

themselves are supported by empirical data on rates of GSR transfer and deposition.   

 

 

 

 

A BN can be used to combine forensic and non-forensic evidence.  To illustrate the 

capacity of a BN to incorporate multiple pieces of evidence and the possibility of using 

it to reason about the identity of the shooter given multiple sources of uncertainty, the 

BN will now be modified to include the identification of suspect A that was made by 

the victim.  The BN must capture the relationship between the identification and the 

true identity of the shooter.   

 

 

 

 

 

 

 

 

 

 

With reference to the idioms-based approach to network building and the notions of 

causal “building blocks” (Lagnado et al 2013, Fenton et al 2013), the reliability of a 

witness testimony or identification can be captured in a BN.  To illustrate this, it is 

The Incident – supplementary information: 

 

Suspects A and B were males and suspect C was female.  

The victim was sure a male was the shooter and 

identified suspect A. 

Figure 7.18 Bayesian Network for the multi-suspect case, including 

identification of suspect A by the victim 
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possible to consider the reliability of the identification given that the robbery took 

place when it was light, or when it was dark.  Intuitively, the identification would have 

been more reliable if it was light at the time of the incident than if it was dark and 

faces were obscured at the time.  Note that, even in the absence of any numerical 

data, structuring the problem in this manner is useful for representing the causal 

dependencies and relations in the case (see Biedermann and Taroni 2006a, 2006b, 

Lagnado 2011).  The NPT might also need to capture an increased possibility of 

misidentification of suspect A if suspect B was the shooter than if suspect C was the 

shooter, as the victim indicated that the shooter was male.  The new BN and NPT for 

these nodes are displayed in figure 7.19 and table 7.2.  Note that the probabilities are 

qualitative estimates that serve to illustrate the qualitative causal relationships and 

their interaction with other variables, rather than precise values derived from an 

empirical understanding of the accuracy of witness identifications.  

 

 

 

 

 

 

 

 

 

 

 

 

Shooter A shooter B shooter C shooter 

Figure 7.19 Bayesian Network for the multi-suspect case, including 

identification of suspect A by the victim 
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In the absence of a testimony from the victim, a particle count of 23 particles from 

suspect B means that it was highly likely that suspect B was a bystander (figure 7.20).  

At this point we have no means of distinguishing between A and C.   

Light  or Dark Dark Light Dark Light Dark Light 

A identified as 

shooter - NO 
0.4 0.2 0.6 0.8 0.8 0.9 

A identified as 

shooter - YES 
0.6 0.8 0.4 0.2 0.2 0.1 

Sampling and Results [Scenario H]: 

 

Only one GSR testing kit was available and the hands of 

suspect B were sampled. 

Sample analysis revealed 23 particles on suspect B. 

 

Table 7.2 Node Probability Table (NPT) for the identification node in the multi-

suspect case 

Figure 7.20 Bayesian Network for the multi-suspect case, 23 particles recovered 

from suspect B, Scenario H 
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When the information about the identification is entered (figure 7.21), suspect A is 

now much more likely to have been the shooter, while much of the probability that C 

was the shooter has been explained away as a result of the testimony of the victim.   

 

 

Intuitively, if the robbery was carried out at night in a poorly lit area, then the 

identification of suspect A could be considered somewhat less reliable.  The graph in 

figure 7.22 reflects this and the result is that less of the probability of C being the 

shooter is explained away, yet suspect A is still the most likely shooter.  Our belief 

about B remains largely unchanged, with only a negligible increase in our belief that he 

was the shooter.  This demonstrates the use of Bayesian Networks for revising beliefs 

upon the addition of new evidence and in light of changes to the framework of 

circumstances. 

Victim Testimony [Scenario H]: 

 

The victim identified suspect A as the shooter and it 

was light at the time of the robbery. 

 

Figure 7.21 Bayesian Network for the multi-suspect case, 23 particles recovered 

from suspect B, suspect A identified as the shooter and conditions were light 
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7.4.3 Summary 

Notwithstanding the limitations of the data used in the previous section, both in terms 

of the number of results and the scenario-specific nature of the counts themselves, the 

utility of a Bayesian Network approach in evaluating GSR evidence under competing 

hypotheses about the method of GSR deposition has been demonstrated.  Particularly 

in multi-suspect cases, the capacity of a BN to accommodate and incorporate multiple 

pieces of evidence is extremely useful.  While claims of generally applicability are not 

made with regard to the data used, a BN represents a suitable means to reason about 

GSR evidence given alternative activity level propositions.  The graphs presented relate 

to somewhat simplified examples, yet in accordance with Biedermann et al (2009), 

they offer the potential for further variables such as the persistence of material (given 

a case-specific timeframe), the number of shots, the error-rate of the analysis 

technique34, the extent of any contamination and whether one of the individuals 

washed their hands.  Reasoning about such sources of uncertainty within this causal 

framework, whether equipped with data or incorporating subjectivities and opinions, 

is desirable.  Indeed, with respect to the examples presented, the approach represents 

                                                           
34 Which, throughout the illustrative exploration in this chapter has been assumed to be 
unproblematic 

Figure 7.22 Bayesian Network for the multi-suspect case, 23 particles recovered 

from suspect B, suspect A identified as the shooter and conditions were dark 
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a transparent, auditable and logical method for making inferences about the identity 

of the shooter in which assumptions are made explicit and in which empirical findings 

can be logically incorporated.  This eschews approaches in which multiple GSR counts 

are weighed intuitively or in which statements are made regarding the “consistency” 

of the evidence with a certain hypothesis, with little demonstration of the way in 

which conclusions are underpinned by empirical and theoretical understanding.   

The multi-suspect case in 7.4.2 demonstrated the manner in which GSR evidence from 

one suspect may inform our belief about the role of another suspect, and how a BN 

structure can be designed to capture this relationship.  Further samples, it has been 

shown, have the potential to explain away prior beliefs about another suspect and can 

also reduce the potential for misinterpretation and misidentification of the shooter, 

thus underlining their value. While enabling the value of particle count evidence to be 

evaluated, structuring the case in this manner can also be useful in case pre-

assessment when considering parameters of interest, sources of uncertainty and 

valuable samples, and when estimating expected values prior to an examination (in 

accordance with the process of interpretation proposed by Cook et al (1998a).  The 

example, through the consideration of the witness testimony, also showed how 

multiple lines of evidence (forensic and non-forensic) can be incorporated, according 

to the framework for legal reasoning outlined by Lagnado et al (2013).  The example 

also effectively demonstrates the utility of a graphical approach when dealing with 

evidence from multiple suspects.  While the interpretation of GSR evidence may be 

complex in real cases, with many sources of uncertainty (Gauriot et al 2013), a 

Bayesian Network approach is well suited to representing and dealing with these 

complexities.   

Importantly, the final BN presented in figures 7.19-7.22 combines qualitative 

probabilities and values estimated from empirical data.  Through the incorporation of 

qualitative information regarding the identity of a suspect by a witness, the example 

demonstrates the capacity of a BN to be used to model dependencies that could be 

intuitively captured but which may be challenging to represent or weigh into the 

assessment in a transparent manner in the absence of a formal tool.  The example also 

demonstrates the way a BN can be employed in reasoning about legal problems using 
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qualitative estimates and knowledge, in the absence of, or in combination with, 

empirical data (Biedermann and Taroni 2006a, 2006b, Lagnado 2011).     

With regard to the experimental findings themselves, their incorporation within a 

probabilistic framework and their application to forensic scenarios serves to capture 

the potential interpretative ramifications they pose with regard to distinguishing 

methods of GSR deposition.  The possibility that, under certain conditions, 

considerable quantities of GSR particles may be deposited on hands by mechanisms 

other than shooting has been further demonstrated.  This possibility is likely to be 

underestimated without reference to empirical data such as those presented in 

chapter five.  The importance of achieving accurate particle counts when analysing GSR 

evidence is stressed once again.  Further empirical research into the relationship 

between particle sizes, which builds on the initial results and findings presented in 

chapter five, could also be incorporated into the BN so that two aspects of GSR 

evidence (particle counts and size data) might be evaluated under the competing 

propositions.  Incorporating the persistence and decay of material would also facilitate 

reasoning about the method of deposition given alternative timeframes. 

7.5 The use of Bayesian reasoning in forensic science: the 

legal context 

An exploration of the application of a Bayesian approach to reasoning about forensic 

evidence would not be complete without a consideration of the current status of the 

relationship between Bayes and the law.  Current debates stem from a number of 

recent legal judgments that have questioned the merits of Bayesian reasoning and 

effectively prohibited its use in legal settings in England and Wales.  The most recent 

debates and concerns centre on the judgment in the Court of Appeal in R. V. T (2010)35 

which has been interpreted by many as advocating the exclusion of Bayesian reasoning 

and statistical weighing of evidence in fields other than DNA evidence.  A number of 

subsequent discussions and commentaries have provided a critical response to the 

judgment (see for example, Berger et al 2011a, Robertson et al 2011, Fenton 2011,), 

which is widely considered to represent a backward step for evidence evaluation in 

legal contexts and a hindrance to the progress of various disciplines of forensic science.  

                                                           
35 The original judgment should be referred to for a full account  



376 

 

It is argued that the basis of this ruling can be traced to a series of fundamental 

misunderstandings about Bayesian and probabilistic concepts (Berger et al 2011a 

Robertson et al 2011, Fenton 2011)36.  The implication of the ruling is such that 

probabilistic assessments are eschewed in favour of less formal verbal indications of 

the level of consistency or support exhibited by evidence in relation to a hypothesis 

(Robertson et al 2011).  While there should be no doubt that underlying assumptions 

and references to empirical data must be disclosed, as implied by the judgment, this 

should not be a basis on which to outlaw the use of Bayesian reasoning.  Nor should 

the problems associated with the original evidence in R. V. T (2010) (Redmayne et al 

2011) or with the use of a verbal scale in expressing the value of evidence (Faigman et 

al 2011, Facey and Davis 2011, Berger et al 2011b) represent a reason for doing so.  

The distinction that was made between DNA evidence and other types of evidence 

may have been overstated in the judgment (Fenton 2011).  The incorporation of error 

rates, random match probabilities, contamination issues, diverging methods of profile 

generation and subjective probabilities, particularly with regard to Low Copy Number 

DNA, mean that the implied certainty of DNA identifications may have been 

overemphasised (Thompson et al 2003).  

One difficulty associated with presenting interpretations underpinned by probabilistic 

assessments is that, as shown throughout this chapter, forensic interpretation 

problems are rarely simple and often involve many items of evidence and sources of 

uncertainty.  As a result calculations can become extremely complex and it is here that 

Bayesian Network tools, approaches and concepts (which have been the focus of this 

chapter) represent a solution, particularly in visually representing the problem at hand 

(Fenton 2011, Fenton and Neil 2011, 2012).  Communicating the utility of Bayesian 

Networks for logically assessing complex problems involving multiple sources of 

uncertainty is a contemporary challenge.  As a result, research that demonstrates the 

application of Bayesian approaches to reasoning about forensic evidence in legal 

contexts has an important role to play.  In this sense, the application of Bayesian 

Networks to reasoning about GSR evidence under activity level propositions which has 

been presented in this chapter represents a timely contribution and one which 

confronts the legal status quo. 

                                                           
36 See Evett (1995) for a discussion of the transposed conditional 
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Establishing the place of Bayesian reasoning within legal contexts in England and Wales 

will necessitate an acceptance from legal communities that the data, subjectivities and 

prior assumptions which are incorporated into an assessment can be the subject of 

alteration and question, but also that the logical calculation of probability is 

underpinned by immutable laws (Fenton 2011).   According to Fenton and Neil (2011), 

the fundamental calculations which underpin Bayesian Network tools are logical and 

should be regarded in the same manner as the micro-level operations performed by an 

electronic calculator.  Communicating this message represents a second challenge and 

one which appears to be further complicated by the continued confusion regarding 

basic probabilistic concepts, as demonstrated recently in the judgment in Milton 

Keynes Borough Council v. Nulty & Ors (2013)37 and in the many fallacious statistical 

arguments that continue to be observed in legal contexts (Fenton 2011, Fenton and 

Neil 2011, 2012).  Bayesian Networks facilitate the logical assessment of the value of 

evidence in both case pre-assessment and courtroom settings.  Recognising the utility 

of Bayesian approaches to evaluating forensic evidence arguably offers forensic 

science with a means of addressing a number of the criticisms presented in reports by 

the NAS and the Law Commission (see chapter one).  Indeed, employing a logical 

approach to evidence interpretation which is underpinned by research findings from 

the empirical evidence base represents a departure from poorly founded claims of 

uniqueness or causality which have been so heavily criticised by the aforementioned 

reports.  The emphasis on incorporating empirical and expert support in the Bayesian 

interpretation of evidence resonates strongly with calls for a research culture in 

forensic science (see section 1.2 and Mnookin et al 2011).  This will be discussed in 

section 8.3. 

 

  

                                                           
37 See the discussion at http://understandinguncertainty.org/court-appeal-bans-bayesian-
probability-and-sherlock-holmes 

http://understandinguncertainty.org/court-appeal-bans-bayesian-probability-and-sherlock-holmes
http://understandinguncertainty.org/court-appeal-bans-bayesian-probability-and-sherlock-holmes
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Chapter 8 Conclusions 

8.1 Outline 

This chapter presents an evaluated summary of the research findings, with a particular 

emphasis on the contribution of the experimental findings to our understanding of the 

dynamics of GSR evidence and the implications of these for forensic investigations.  

The limitations of the findings are given consideration, before avenues for further 

work, which have been alluded to throughout the thesis, are discussed.  Section 8.3 

then discusses the broader significance of the research findings with reference to 

contemporary scientific and legal debates regarding forensic evidence and its 

interpretation. 

8.2 A summary of findings  

This piece of research was undertaken in order to investigate various means of GSR 

deposition to hands, including secondary transfers.  These mechanisms have, until 

now, received little attention in the published forensic science literature.  Transfer 

studies have tended to focus on contamination involving law enforcement (Gialamas 

et al 1995 and Berk et al 2007, for example), rather than transfers and depositions 

during the period between the discharge of the firearm and the collection of evidence.  

This piece of research was concerned with addressing this knowledge gap and 

considering the practical and interpretative implications of the experimental findings 

for forensic investigations.  A series of research questions was formulated in section 

3.7 to this end.  In order to address the interpretation of GSR evidence in light of the 

findings, the application of Bayesian Networks to reasoning about means of GSR 

transfer and deposition was explored.    

8.2.1 Evidence dynamics 

The results of the experimental scenarios which were presented in chapter five and 

the ensuing discussion of these findings in chapter six unequivocally identified the 

potential for considerable amounts of GSR to undergo secondary transfer to the hands 

of an individual.  Importantly, the participants from whom GSR was recovered were 
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not in the vicinity of the firearm discharge and either held a discharged firearm or 

shook hands with a shooter in the immediate aftermath of the firing.  Meanwhile, the 

possibility of recovering GSR particles from the hands of a bystander who was standing 

one metre behind the discharge was confirmed.  Finally, the findings highlighted the 

possibility of tertiary transfer of GSR particles to an individual via a handshake with 

another individual who had shaken hands with the shooter, following a firearm 

discharge.  That GSR can be transferred in this manner has not previously been 

reported in the published experimental literature. 

The number of particles transferred to, or deposited on, the hands of the subjects 

under the simulated conditions was considerable.  As many as 129 particles were 

transferred as a result of a secondary transfer via a handshake with a shooter.  As 

many as 22 GSR particles were recovered as a result of a tertiary transfer initiated by a 

chain of two handshakes.  Moreover, the efficiency of these tertiary transfers suggests 

that further handshakes could initiate further transfers of GSR.  Under conditions 

analogous to the experimental settings that were simulated, several hundred particles 

can be expected to be recoverable from the hands of the shooter.  No alternative 

mechanism of GSR transfer or deposition resulted in the presence of several hundred 

particles on a subject. 

With regard to the sizes of the particles recovered from the hands of subjects, some 

initial conclusions can be drawn.  The data suggest that, when transfers occur between 

shooters and subjects via handshakes, the resulting GSR populations are 

representative of one another in terms of the sizes of particle involved.  Meanwhile, 

large (>50µm, >100µm) GSR particles underwent secondary transfer.  This finding is 

significant in terms of our understanding of transfers of GSR, and for our 

understanding of multiple transfers of trace evidence in general.  The investigation of 

repeatable trends in the transfer and deposition of different sizes of GSR particles 

warrants further study that complements these initial insights (see section 8.2.5).   

8.2.2 The implications for forensic investigations involving GSR 

Section 6.3 considered the possible implications of the experimental findings for 

forensic investigations involving GSR evidence.  With regard to the collection of GSR 

evidence, the value of sampling from multiple suspects who may have acquired GSR 
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via one of a number of mechanisms was stressed.  A sampling strategy that is informed 

by knowledge of the possibility of various means of transfer and deposition has the 

capacity to assist in the reconstruction of a firearms incident.  That GSR may be readily 

transferred from a surface or deposited in the vicinity of a discharge poses 

contamination risks during a forensic investigation.  Conceivably, these could severely 

impinge on the capacity of the scientist to accurately interpret evidence.  Unchecked, 

these mechanisms could compromise the probative value of the evidence, or could 

even serve to falsely incriminate an individual.  Protocols and procedures that manage 

the risk of initiating transfers of GSR between suspects, perhaps via law enforcement 

officers, are advisable.  An awareness of the possibility of GSR transfer should also 

inform the experimental design of future research studies involving GSR.  

Opportunities for further research into these issues are discussed in section 8.2.5.     

With regard to the analysis and examination stage of the forensic investigation, this 

piece of research has exhibited the capacity of SEM-EDX, coupled with an automated 

search and detection package, to generate repeatable measures of the GSR population 

on a sample for reconstruction purposes.  Carrying out this analysis and achieving 

accurate results, however, involves a number of complex processes and procedures.  

The account of the set-up and analysis processes in section 4.3 represents a guide for 

employing a similar approach to analysis.  It was concluded, in agreement with Owens 

(1990), that reducing the search area in order to speed up the analysis gives rise to the 

potential for error in cases that necessitate precise GSR particle counts or a 

comprehensive catalogue of the sizes of particles.  In other cases, that demand an 

indication of GSR presence or an estimation/verification of the size of a GSR 

population, reducing the search area is conceivably a viable option.  

It is arguably in the interpretation of GSR evidence under competing propositions 

about its transfer and deposition that the research findings have most significance.  

The possible interpretative nuances were comprehensively discussed in section 6.4.  In 

summary, the research findings confirmed that the presence of GSR on the hands of a 

suspect, even in considerable quantities, may not necessarily support the inference 

that a suspect fired a gun.  Conceivably, if this is not fully acknowledged and 

incorporated into the assessment of (small quantities of) GSR evidence, the possibility 

of misinterpretation and false incrimination exists.  That GSR particles can undergo 
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tertiary transfer is an extremely significant finding with ramifications for the 

interpretation of trace amounts of physical particulate evidence recovered from a 

suspect.  Meanwhile, the extent of the secondary and tertiary transfers observed 

during this study suggests that the possibility of indirect transfer should be considered 

at the highest level during trace evidence interpretation.  It must be stressed that the 

findings of this study do not undermine the potential to establish links between 

suspects and forensic events through trace quantities of evidence.  Rather, the findings 

provide the means to accurately assess the possibility of indirect transfer when 

evaluating evidence under competing propositions, in the pursuit of reliable and 

empirically-supported interpretations. 

No mechanism of GSR transfer or deposition other than discharging the firearm 

resulted in the presence of several hundred particles on a subject. Incorporating the 

possibility of secondary transfer (and other mechanisms) into the assessment of GSR 

evidence will necessitate the incorporation of case-specific variables and the 

persistence of material in real cases.  As a result, the possibility of observing similar 

quantities of GSR on shooters and non-shooting suspects could, in theory, be more 

pronounced.  Bayesian Networks offer a means of capturing these variables in both a 

qualitative and a quantitative sense (see section 8.2.3).  

If an attempt is made to interpret the sizes of recovered particles, it should be 

acknowledged that the findings of this piece of research suggest that large (>50µm, 

>100µm) can be secondarily transferred.  Thus, the presence of large particles on the 

hands of a suspect may not necessarily support an inference that the suspect 

discharged a firearm.  Conceivably, the similarity of two samples in terms of the 

distribution of particle sizes may be used to support a hypothesis of contact between 

two surfaces.  In real-world cases, case-specific variables such as the timeframes of 

persistence and the retentive properties of substrates will need to be incorporated.  As 

stated in section 8.2.1, the findings with regard to the sizes of particles involved in 

transfer result from an initial exploration.  Further work aimed at understanding the 

dynamics of different sizes of particle will assist in realising further the interpretative 

utility of particle size data (see section 8.2.5). 
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8.2.3 A Bayesian Network approach to interpreting GSR 

Chapter seven demonstrated the utility of Bayesian Networks when reasoning and 

making inferences regarding GSR evidence, particularly when the means of transfer or 

deposition may be disputed.  Thus, the capacity of using this approach during the 

assessment of activity level propositions with regard to GSR (and other trace evidence) 

has been demonstrated.  The possibility of incorporating experimentally-derived 

empirical data within Bayesian Networks was explored.  The incorporation of empirical 

data on the transfer and deposition of GSR within a BN framework represents a novel 

contribution and one which demonstrated that a BN approach, coupled with empirical 

knowledge of parameters of transfer and persistence, can assist in making activity level 

interpretations with regard to trace particulate forensic evidence.  The significance of 

this will be discussed in section 8.3.  While the quantitative assessment of the transfer 

and deposition of GSR (and other) evidence may be challenging, Bayesian Networks 

provide a means of demonstrating the impact of different variables and assumptions, 

and can incorporate limited datasets and qualitative causal relationships to enable 

useful reasoning (Biedermann and Taroni 2006a, 2006b, Lagnado 2011).  Chapter 

seven also considered the findings in the context of ongoing debates regarding the use 

of Bayesian reasoning within legal settings in England and Wales.  Avenues for further 

research in this field are highlighted in 8.2.5.   

8.2.4 Limitations 

There are a number of limitations, or caveats, associated with the conclusions drawn 

from this piece of research which are acknowledged in this section.  The issue of 

validity and the process of applying research findings to real-world scenarios were 

introduced in section 4.2.5.  Accordingly, a number of the limitations that have been 

identified concern experimental design decisions and their impact on the translation of 

the research findings into investigative contexts.  The experimental results were 

produced under a specific set of experimental conditions, employing for example, a 

specific firearm-ammunition combination and involving five rounds of ammunition.  

These conditions remained constant across all runs of all experimental scenarios in the 

interest of formulating a coherent body of comparable data on the transfer and 

deposition of GSR.  However, as a result, the precise empirical results (particle counts, 
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for instance) only represent expected values in a scenario with analogous conditions.  

They cannot be considered predictive of the rates and patterns of transfer and 

deposition in alternative forensic scenarios.   

However, the aim of this piece of research was to investigate the potential for 

secondary transfer and other mechanisms to result in the presence of GSR on subjects 

who have not discharged a firearm.  In considering the potential investigative 

ramifications and nuances the findings may pose, the purpose was not to consider a 

specific forensic scenario but to consider the implications for interpreting GSR under 

competing propositions more generally.  Morgan and Bull (2007b) warn of the 

potential dangers associated with extrapolating from published empirical results when 

interpreting casework samples, owing to the plethora of case-specific variables and 

conditions that may need to be accounted for.  As a result, in concurrence with the 

approach to GSR analysis proposed by Dalby et al (2010), a case-by-case approach to 

GSR interpretation is advocated when assessing evidence under activity level, as well 

as source level propositions.  This piece of research has addressed a gap in our 

knowledge about the dynamics of GSR and the findings may inform the assessment of 

activity level considerations.  In establishing that concepts of multiple transfer and 

alternative means of deposition are applicable to GSR, the findings of this thesis 

highlight the utility of further case-specific research into these mechanisms, perhaps 

with reference to casework material (see section 8.2.5).  It was argued in chapter 

seven that incorporating the findings of this study during the interpretation of GSR 

evidence, along with case-specific information such as empirically determined 

estimates of the persistence of material, can be assisted by the use of Bayesian 

Networks.  

Throughout chapter six, acknowledgement was made of instances in which the 

number of experimental runs limited the potential to infer general trends.  

Notwithstanding this, a number of conclusions regarding the dynamics, nature and 

extent of transfers and depositions of GSR were drawn.  In addition, the potential 

ramifications for investigations involving GSR evidence were considered.  Avenues for 

further experimentation are documented in section 8.2.5. 

A potential source of error was acknowledged during the presentation of results in 

chapter five.  It was noted that two control samples indicated the presence of a very 
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low level of contamination on the hands of subjects prior to two experimental runs 

(see section 5.2 and table 5.1).  However, as described in section 5.2, the impact of this 

contamination on the results and on the conclusions that were drawn is likely to have 

been negligible.  That some particles had persisted on the hands despite thorough 

washing is a significant finding with potential ramifications for investigative and 

research protocol (see sections 6.2.1 and 6.3.1).     

8.2.5 Avenues for further research 

The findings of this research have highlighted a number of areas in which further 

research is warranted.  With regard to GSR, further work should be undertaken which 

is concerned with the dynamics and transfer and persistence properties under 

different conditions.  Arguably akin to many other forms of trace evidence, research 

efforts with regard to GSR have been primarily concerned with enhancing our ability to 

make rapid, accurate source level identifications of minute traces of GSR and 

distinguishing these from materials with environmental and occupational origins.  

While the value of such research is great, there is arguably a deficiency in the body of 

work concerned with issues of transfer, persistence and evidence dynamics, which 

have been the focus of this thesis.  Indeed, it is this body of work that is garnered in 

order to assess GSR evidence under competing activity level propositions about its 

method of deposition, and in order to make reliable inference about the activities of a 

suspect.  In a manner that complements the findings of this thesis, experimental 

research efforts that further investigate multiple transfers of GSR are warranted.  

These could perhaps address case-specific scenarios and variables such as alternative 

firearm-ammunition characteristics, varying contact mechanisms, varying sites of 

deposition (face, clothes, hair, etc.) and the effects of persistence.  Further 

investigation of the transfer and deposition properties of different sized GSR particles 

may also contribute to revealing the reconstructive potential of examining particle size 

data.  While the findings of this piece of research concern GSR, they highlight the 

possibility of similar transfer mechanisms with regard to alternative forms of trace 

evidence and the utility of investigating them.   

However, comprehensively addressing each context-specific variable that might impact 

rates of transfer and persistence in casework settings is clearly not possible.  Instead, 
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investment should be made in ensuring that theoretical concepts and frameworks 

regarding evidence dynamics are established which can be supplemented by case-

specific research.  Following the example set out in sections 6.3 and 6.4, it is 

paramount that future work considers the investigative implications of its findings and 

the interpretative nuances that might conceivably be posed.  Indeed, this is in 

accordance with the need to demonstrate the practical utility, value and relevance of 

research within a research culture in forensic science (Mnookin et al 2011, Linacre 

2013, see section 1.2.2).  This demonstration is also necessary if the funding for such 

research projects is to be secured. 

A further possible study could explore the risks of contamination via secondary 

transfer mechanisms, which were indicated by the experimental results and discussed 

in section 6.3.1.  In particular, studies that examine these secondary transfer 

possibilities and contamination risks among law enforcement officers including those 

within firearms units, in a U.K. context, are currently lacking.  Such work could inform 

forensic practices and protocols.  Meanwhile, with reference to the hierarchy of 

propositions that was outlined in section 2.2.2, a survey of the extent of background 

environmental contamination risks within a U.K. context would assist in the accurate 

interpretation of GSR under source and activity level propositions.  A survey of this 

kind would be a crucial resource when interpreting trace quantities of GSR which can, 

as this study has shown, be deposited through various mechanisms and which can be 

quantified analytically.  

The recovery of ‘large fragmented’ or conglomerate GSR particles (Brozek-Mucha 

2011, p.975) was documented in sections 5.5.2 and 6.2.1.  That their existence can 

serve to inflate the particle count that is recoverable from a shooter has been 

established (ibid.).  Concerted attempts to understand the formation and dynamics of 

these GSR structures could reveal further evidential value of GSR.  For example, if it 

was found that these structures resist transfer, their presence on the hands of a 

suspect may support an inference that the suspect discharged a firearm. 

Chapter seven demonstrated the value of Bayesian Networks when reasoning about 

forensic evidence, particularly in situations that involve multiple variables.  With 

regard to GSR evidence, future research might consider further the assessment of 

activity level propositions regarding the deposition of GSR.  As demonstrated in 
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chapter seven, when supplemented with (empirical) knowledge of the dynamics of 

GSR, this approach can assist in making inferences about the roles of suspects in a 

firearms incident.  Research might also consider further the combination of GSR 

evidence with other items of evidence in the wider context of specific legal cases.  

Such research, it is anticipated, will assist in addressing some of the current 

misunderstandings regarding the use of Bayesian approaches in legal contexts (section 

7.5) and demonstrate their capacity to aid in the logical assessment of the level of 

evidential support for competing hypotheses.  Finally, with regard to GSR, empirical 

understanding of the dynamics of GSR evidence might fruitfully be combined in 

Bayesian Networks with recent work that enhances our ability to make source level 

determinations of the origins of GSR evidence (see for example, Christopher et al 2013, 

Romolo et al 2013 and section 3.3), in order to formulate a multi-level framework for 

the assessment of GSR evidence.  

8.3 This thesis and the importance of empirical research 

in forensic science 

This piece of research has contributed to our understanding of the dynamics of GSR 

and considered the implications and opportunities for forensic practice and the 

interpretation of evidence.  Notwithstanding these important interventions, it is also 

possible to consider the wider significance of the study as a research project in forensic 

science.  Within the context of legal and scientific debates that have been presented 

throughout this thesis, this section considers the future of empirical research in 

forensic science. 

Linacre (2013) highlights the importance of empirical knowledge that can be cited in 

support of conclusions that are drawn regarding trace evidence (see section 1.2.1).  

Notably, the example which is proffered to demonstrate this concerns an activity level 

dispute about the likelihood of secondary transfer.  For Linacre (2013), the example 

encapsulates the synergy that should exist between research and practice in forensic 

science.  Determining the practical value of research for forensic science is identified as 

a central tenet of an effective research culture in forensic science (Mnookin et al 2011, 

Linacre 2013) and has underpinned the approach adopted in the writing of this thesis.  

Ensuring that empirical bodies of research exist which can underpin practices that are 
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adopted and conclusions that are made will strengthen the scientific basis of the 

outputs of forensic science and concurrently, address the concerns and issues that 

were conveyed by the NAS and the Law Commission in recent reports.  In the case of 

the present piece of research, the empirical findings may be cited in support of 

inferences that are made regarding the mechanism by which GSR was deposited on a 

suspect.    

This thesis argues that the account of evidence interpretation, and in particular, the 

‘hierarchy of propositions’ presented by Cook et al (1998a, 1998b, p.231, 1999) and 

Evett et al (2000) (see section 2.2.2), represent a means of ensuring bodies of empirical 

research exist which strengthen forensic practice.  Three levels of proposition exist 

(source, activity and offence) and within the bounds of the context of the case a pair of 

opposing propositions is formulated, under which the evidence is assessed.  The 

assessment should involve incorporating (empirical) knowledge regarding, for 

example, background rates of the material in question, or the transfer and persistence 

properties of the trace evidence.  It is this information that permits the accurate 

determination of the probability of observing a given quantity or pattern of evidence 

given prosecution and defence allegations.  Rather than being confined to the 

consideration of the results of an examination, or to the formulation of the forensic 

report, Cook et al (1998a) argue that the process of interpretation permeates every 

stage of the forensic investigation (see section 2.2.2).  The iterative interpretation 

process involves considering what might be expected from an examination given 

alternative propositions that have been formed within the context of a case.  This 

thesis has shown that consideration of indirect transfer mechanisms, for example, 

should underpin the evidence collection and sampling strategies that are employed.   

This thesis also argues that this conception of interpretation should be extended so 

that it underpins and guides the formulation of research questions and research design 

in forensic research spheres. 

Empirical research will address source or activity level issues.  Demonstrating which 

level of proposition a piece of research will help to address, and in what circumstances 

and case contexts, will ensure that the practical benefit and interpretative significance 

of the research is made clear.  Not only will this increase the likelihood of securing 

research funding, but in elucidating the value of the empirical research, it will serve to 
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establish the foundations of an effective research culture in forensic science that is 

being called for (Mnookin et al 2011, Bono et al 2011, Linacre 2013, Margot 2011).  

Concurrently, an empirical research base that is clear about the nature of the 

conclusions it can be used to support will directly address the apparent absence of a 

robust scientific basis in areas of forensic science which has been identified by the 

2009 NAS report (see also section 1.2 and The Law Commission 2009).  In addition, 

crucially, explicit consideration of the interpretative value of findings and 

acknowledgement of the limitations in terms of the contexts in which they can be 

applied will ensure that findings are not offered in support of conclusions that lie 

beyond the scope of the research.  These considerations are central to the existence of 

an effective research culture in forensic science according to Mnookin et al (2011). 

Identifying research questions and empirical knowledge gaps can be assisted by 

consideration of the hierarchy of propositions.  For example, in many domains of 

forensic science, including GSR analysis and interpretation, our ability to address 

source level considerations has been enhanced by the development of highly sensitive 

analytical methods.  However, our understanding of evidence dynamics, and therefore, 

our ability to assess activity level concerns are somewhat underdeveloped.  The 

synergy that should exist between casework and empirical research should not only 

involve the incorporation of empirical findings into casework assessments, but also the 

identification of empirical knowledge gaps during the assessment of propositions in 

casework which can feed into research design.  This will assist in deciding which level 

of proposition to address in research.  This synergy may be enhanced by collaborations 

between research and practitioner communities and references to previous casework 

in research design.  Research, therefore, should be carried out to meet case-specific 

demands but research may also be focused on conceptually establishing principles.  

Crucially, however, both will be informed by casework concerns.   

This thesis argues that the application of Bayesian Networks should be incorporated 

into this conception of research design.  The account of the process of evidence 

interpretation that was surveyed in section 2.2.2, after Cook et al (1998a) and others, 

is inherently underpinned by a Bayesian causal logic.  That the assessment of evidence 

under competing propositions in this way involves the calculation of the likelihood 

ratio is highlighted by Cook et al (1998a,b).  It was argued in chapter seven, however 
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that for complex problems involving a number of variables and qualitative probabilistic 

information, the scaling up of the likelihood ratio calculation becomes complex.  It was 

argued that Bayesian Networks, and the use of Bayesian Network tools, make it 

possible to incorporate various sources of (empirical) knowledge.  Thus, they are 

conceptually aligned to a probabilistic approach to interpretation and also represent a 

means of incorporating information from numerous empirical research efforts in the 

ultimate assessment of a pair of propositions.  Owing to their capacity to be updated 

according to the emergence of new evidence, other forms of evidence and changes 

regarding the framework of circumstances in a legal case, they can assist in realising 

practical benefit of empirical research.  Furthermore, this research project has 

demonstrated the utility of employing Bayesian Networks when assessing activity level 

propositions, particularly those which involve considerations of transfer and 

persistence.  It has also demonstrated the value of incorporating empirical data (on the 

transfer of GSR in this case) within a Bayesian framework for reasoning about activity 

level propositions.    

Considerations of the interpretative significance of research findings through the use 

of Bayesian Networks in a manner akin to this study and demonstrations of the 

capacity to incorporate empirical findings within Bayesian Networks are well-timed.  In 

eschewing unscientific opinions and ‘hunches’ (Mnookin et al 2011, p.742) and moving 

towards probabilistic assessment and empirically-grounded logical interpretations, the 

use of Bayesian Networks appears to address the legal and scientific criticisms 

highlighted in the NAS report.  This transition is embodied by this thesis and 

recognised by Bunch and Wevers (2013).  Meanwhile, such an approach challenges the 

status quo advocated by recent legal rulings (see section 7.5) in the pursuit of logically 

and scientifically robust interpretations of trace evidence. 

In demonstrating the existence of multiple transfer mechanisms of GSR and their 

potential investigative significance, this thesis espouses the connections between 

research and forensic practice which should underpin research design within the field 

of forensic science.  In light of the findings, the possibility of indirect transfer should be 

considered at the highest level during the interpretation of trace particulate evidence 

and its implications for crime reconstruction understood and incorporated into the 

interpretations made.  Furthermore, this process of interpretation and the inferences 
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that are made should be supported by an empirical understanding of the relevant 

parameters.  This thesis argues that the process of making inferences is inherently 

probabilistic and involves the incorporation of multiple sources of uncertainty.  The 

forensic community must recognise, therefore, that probabilistic approaches represent 

a valuable, and perhaps the preferred means of interpreting and presenting the value 

of evidence.  This recognition, coupled with an appetite for carrying out empirical 

research and establishing concepts and principles rooted in this evidence base, has the 

capacity to enable forensic outputs to become more scientifically robust, sound and 

logical interpretations of evidence, which are well placed to serve the legal process. 
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Appendix I List of experimental materials 

All materials provided by TAAB Laboratories Equipment Ltd, U.K.: 

https://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7005860122&zone=
https://www.scopus.com/authid/detail.url?origin=resultslist&authorId=55422972000&zone=
https://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7102576664&zone=


420 

 

 
Adhesive Carbon discs – C249/N 12mm Ø 

Disposable gloves - V050 Vinyl gloves 
 
SEM stub storage tubes - T350 Single SEM pin stub storage tube for ½” (12.5mm) stub 

SEM stubs - S081 ½” Pin type stub (with groove) 

Tweezers for removal of carbon discs – T096 Tweezer type AA – stainless steel 

Tweezers for stub handling - T137 Tweezer for ½” stub 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix II Research papers 

The first pages of the research papers are provided.  Please refer to full text versions: 
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Appendix III SEM-EDX analysis data 

Please refer to attached data CD below: 

 

 

 

 


