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Abstract

An array of signals regulating the early stages of postnatal subventricular zone (SVZ) neurogenesis has been identified, but
much less is known regarding the molecules controlling late stages. Here, we investigated the function of the activity-
dependent and morphogenic microRNA miR-132 on the synaptic integration and survival of olfactory bulb (OB) neurons
born in the neonatal SVZ. In situ hybridization revealed that miR-132 expression occurs at the onset of synaptic integration
in the OB. Using in vivo electroporation we found that sequestration of miR-132 using a sponge-based strategy led to a
reduced dendritic complexity and spine density while overexpression had the opposite effects. These effects were mirrored
with respective changes in the frequency of GABAergic and glutamatergic synaptic inputs reflecting altered synaptic
integration. In addition, timely directed overexpression of miR-132 at the onset of synaptic integration using an inducible
approach led to a significant increase in the survival of newborn neurons. These data suggest that miR-132 forms the basis
of a structural plasticity program seen in SVZ-OB postnatal neurogenesis. miR-132 overexpression in transplanted neurons
may thus hold promise for enhancing neuronal survival and improving the outcome of transplant therapies.
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Introduction

The adult SVZ is one of two neurogenic zones that persist in the

adult brain of all mammalian species examined including humans

[1,2] (for review see [3]). The SVZ is the largest neurogenic zone

and is located along the wall of the lateral ventricle beneath a layer

of ependymal cells. This neurogenic region contains several cell

types, including neural progenitor cells, intermediate progenitors,

and neuroblasts. Neuroblasts migrate along a rostral migratory

stream (RMS) to the olfactory bulb (OB) where they mature and

synaptically integrate as interneurons. Identifying the molecular

signals controlling the different steps of neurogenesis from neuron

production to synaptic integration and survival is critical for future

therapeutic strategies aimed at promoting endogenous repair and

improving the success of neural transplants. A whole symphony of

intracellular and extracellular signals that affect the early stages of

neurogenesis (i.e. proliferation, fate commitment, and migration)

has been identified [4,5]. However, much less is known regarding

the intracellular molecules controlling the late stages of neurogen-

esis (i.e. dendrite development, synaptic integration and survival)

[4].

The cAMP response element binding protein (CREB) is a long

studied transcription factor that is important for the survival and

dendritic arborization of newborn OB neurons [6]. CREB

controls the expression of many molecules including an activity-

dependent microRNA (miR) miR-132 [7]. microRNAs are short,

non-coding, single-stranded RNA molecules approximately 19–23

nucleotides in length that regulate gene expression by binding to

complementary elements in the untranslated regions of target

mRNAs and inhibiting protein synthesis [8–10]. Intriguingly, the

CREB-dependent miR-132 has been shown to control the

development of dendrites and spines, and synaptic integration in

cultured hippocampal neurons and newborn hippocampal neu-

rons [7,11–16]. More specifically, it was reported that knockout of

the miR-212/132 locus using conditional transgenic mice or

knockdown of miR-132 using viral vectors led to reduced dendritic

complexity and spine density, respectively, in newborn neurons of

the adult hippocampal neurogenic zone [14,16]. The dendritic

effect was shown to be preferentially due to miR-132 loss.

We thus set out to investigate whether miR-132 acts in the late

stages of SVZ neurogenesis using both sequestration and

overexpression strategies in vivo. Using in situ hybridization we
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found that miR-132 expression mirrors that reported for CREB

[6] and occurs at the onset of synaptic integration. Sequestration

of miR-132 in newborn neurons led to a reduced dendritic

complexity and spine density while overexpression had the

opposite effect. In addition, timely directed overexpression at the

onset of synaptic integration using an inducible approach led to a

significant increase in the survival of newborn neurons. These data

suggest that the CREB-regulated miRNA miR-132 forms the basis

of a structural plasticity program seen in SVZ postnatal

neurogenesis.

Results

Newborn neurons progressively express miR-132 at the
onset of synaptic integration

To examine whether newborn neurons along the SVZ-OB axis

express miR-132, we performed in situ hybridization in postnatal

(P) 21 sagittal sections (Figure 1). We also examined the

expression of microRNAs miR-1, which is present at very low

levels in the central nervous system (CNS) and miR-9, which is

enriched in developing neural regions [17]. Co-staining for the

nuclear marker TOPRO-3 highlighted the SVZ, RMS, and OB

due to the high cell density (Figure 1A). miR-132 was not

expressed in the SVZ or proximal RMS, but was present in the

RMS of the OB (RMSOB) and in the granule cell layer (GCL,

Figure 1B and 1E). miR-132 expression intensity was lower than

that of miR-9 but above miR-1 (Figure 1B–G). Similarly, miR-

132 was expressed at a lower level than miR-9 in the hippocampal

CA1 and CA3 fields and the granule cell layer of the dentate gyrus

(Figure S1). Quantitative RT-PCR (qRT-PCR) for miR-132

from microdissected SVZ, RMSOB and GCL confirmed that miR-

132 expression significantly increased along the SVZ-OB axis and

was 5.5-fold higher in the GCL compared to the SVZ

(Figure 1H).

miR-132 knockdown and sequestration truncates
dendritic development leading to synaptic input
deprivation

We first examined whether miR-132 function on dendritic

morphogenesis was conserved in newborn OB neurons using an in

vitro assay. To knock down miR-132, we used locked nucleic acid

(LNA) oligonucleotides against miR-132 (LNA132) and a scram-

bled sequence (LNASCR) in cultured OB neurons. Neurons

transfected with LNA132 for 7 days (from day 7 to 14) had

significantly less complex and shorter dendrites than LNASCR

transfected neurons (p,0.05, data not shown).

To next examine the effect of miR-132 loss-of-function on

dendritic morphogenesis in vivo, we used a sequestration vector

called ‘‘sponge’’ [8,18]. Expression of mRNA constructs contain-

ing multiple (1–20) miR-132 binding sites with central mismatches

in the 39UTR of a pCAG-GFP vector (132-SP) is expected to

sequester miR-132 resulting in loss-of-function and GFP expres-

sion (Figure 2A). Control sponges (noted SCR-SP) contained a

similar number of random sites that are not known to bind any

microRNA. The efficiency of these sponge constructs was

validated in vitro using a red fluorescent protein (RFP)-based

miR-132 sensor. This vector encodes RFP containing miR-132

target sites in its 39UTR (Figure 2B). Each sponge vector was

transfected together with the sensor in cultured Neuro-2a cells.

The 132-SP vector de-repressed RFP expression while SCR-SP

did not (Figure 2C).

Figure 1. miR-132 is expressed in newborn SVZ neurons at the onset of synaptic integration. (A–D) In situ hybridization images of miR-
132 with TOPRO-3 (red) overlay (red, A), miR-132 (B), miR-1 (C), and miR-9 (D) in a sagittal section containing the SVZ, RMS and OB. (E–G) Higher
magnification of miR-132, miR-1 and miR-9 images in the granule cell layer (GCL). Scale bars: 100 mm (A–D) and 30 mm (E–F). The image in (E) comes
from the boxed region in (A). (H) Bar graphs of miR-132 qRT-PCR fold changes in the RMSOB and GCL compared to the SVZ.
doi:10.1371/journal.pone.0038174.g001
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To selectively express the sponge-based vectors into newborn

OB neurons, we used neonatal electroporation into SVZ neural

progenitor cells lining the lateral ventricle [19–21]. These neural

progenitor cells generate neurons that migrate to the OB via the

RMS and are synaptically mature by ,4 weeks after birth [22].

The sponge vectors were electroporated at P0–P1 resulting in

labeling of neuroblasts born during the first week post-electropo-

ration (wpe) because of a progressive dilution of the plasmid

following successive cell division (Figure 2D). At 4–6 wpe, the

dendritic morphology, spine density, and synaptic inputs of GFP+

neurons were assessed in the GCL of the OB using NeuroLucida

reconstruction and patch clamp recordings, respectively

(Figure 3).

Newborn neurons expressing 132-SP displayed a significant

decrease in their dendritic complexity and length compared to

neurons containing SCR-SP vector at 6 wpe (p,0.01, unpaired t-

test, n = 22 versus 25 neurons in control, N = 4 OB each,

Figure 3A–C). The total length was significantly reduced by

,13% (p,0.05, Figure 3D). Sequestering miR-132 significantly

decreased spine density by 21% (p,0.0001, N = 3 OB each,

Figure 3E and F).

Decreased dendritic length and spine density led us to predict

that the frequency of GABAergic and glutamatergic synaptic

inputs should be reduced. In the absence of glutamatergic

blockers, synaptic currents recorded in the whole cell configuration

were identified as GABAergic by their slow decay kinetics (6–

40 ms) and their sensitivity to a GABAA receptor antagonist,

bicuculline (10 mM) (n = 8, data not shown). The frequency of

spontaneous GABAergic postsynaptic synaptic currents (GABAA

PSCs) at 4–6 wpe was decreased by 24% in 132-SP-expressing

neurons, but this was not significant (p = 0.28, SCR-SP:

20.4560.14, n = 18, N = 6, vs. 132-SP: 0.3460.10 Hz, n = 16,

N = 5, Figure 3G). The amplitude of PSCs was not significantly

different (SCR-SP: 269.166.2 pA, n = 18, vs. 132-SP:

270.569.6 pA, n = 16, data not shown). Excitatory postsynaptic

currents (EPSCs) were recorded in the presence of a GABAA

receptor blocker (20 mM picrotoxin) otherwise EPSCs were

partially masked by GABAergic activity. miR-132 sequestration

led to a significant decrease in the frequency and amplitude of

EPSCs compared to control (n = 11 cells each, N = 4, Figure 3H–
I). Collectively, these data show that miR-132 acquisition at the

onset of synaptic integration is important for newborn neuron

dendritic morphogenesis and proper synaptic integration.

miR-132 overexpression promotes dendritic
morphogenesis and synaptic integration in vivo

In situ hybridization data show that miR-132 expression levels

are lower than that of miR-9 suggesting that miR-132 levels are

not saturated. We thus examined whether overexpression of miR-

132 would have opposite effects to those of miR-132 sequestration.

For studying miR-132 gain-of-function, a plasmid encoding miR-

132 under the control of a U6 promoter and a RFP under the

cytomegalovirus early enhancer element and chicken b-actin

(CAG) promoter was electroporated into SVZ cells at P1. A vector

containing a non-coding, scrambled sequence was used as control

(SCR-132) in littermate mice. Effective miR-132 overexpression

with the miR vector was validated by quantitative (q) RT-PCR in

vivo and the RFP-based miR-sensor in vitro. The qRT-PCR levels

of miR-132 were 4.5-fold higher in the ipsilateral OB containing

Figure 2. Validation of the specificity of miR-132 sponge vectors and experimental diagram. (A) Schematic of vectors encoding GFP
containing 20 tandem, miR-132-binding sites in its 39UTR (orange bars) to ‘‘sponge’’ out miR-132 (132-SP) and a control vector encoding mutant GFP
containing 20 random sites in its 39UTR (SCR9-SP). (B) Schematic of a sensor vector encoding RFP containing perfectly complementary miR-132
binding sites (blue bars). (C) Confocal images of Neuro-2A cells transfected with the sensor vector and SCR-SP or 132-SP. Scale bar: 70 mm. (D)
Diagram of our experimental paradigm. DNA constructs were introduced into the lateral ventricle of P0–P1 pups for electroporation into neural
progenitor cells. 4–6 weeks post-electroporation, fluorescently tagged, synaptically integrated newborn neurons were analyzed.
doi:10.1371/journal.pone.0038174.g002
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Figure 3. miR-132 sequestration in vivo truncates dendritic development leading to synaptic input deprivation. (A and B)
Representative reconstructions of SCR-SP- (A) and 132-SP-expressing (B, green) newborn neurons at 6 wpe in the GCL. (C and D) Plots of the
summed dendritic length (C) and bar graphs of the total dendritic length (D) of SCR-SP-(black) and 132-SP-expressing (B, green) newborn neurons
(n = 22 and 25 neurons, respectively). (E) Confocal images of spines in fluorescent neurons containing: SCR-132 (black) or 132-SP (green). (F)
Comparison of normalized spine density. N = 3 mice for each condition. (G) Bar graph of the mean frequency of GABAA PSCs in SCR-SP (black) and
132-SP (green) neurons (n = 18 and 16 neurons, respectively). (H) Representative examples of EPSCs in neurons containing SCR-SP and 132-SP. Scale
bar: 10 pA/30 s. (I and J) Bar graphs of the mean amplitude (I) and frequency (J) in neurons containing SCR-SP (black, n = 11 cells) and 132-SP (green,
n = 11 cells). Scale bar in A–B: 50 mm; in E: 10 mm.
doi:10.1371/journal.pone.0038174.g003
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RFP+ neurons compared to the contralateral OB (p,0.005,

Figure S2A and B). Transfection of the miR-132-encoding

vector (without a CAG-RFP sequence) together with the RFP

sensor and a cyan fluorescent protein (CFP)-encoding reporter

vector silenced RFP expression (Figure S2C and D). At 8 wpe

the dendritic morphology, and at 4–6 wpe the spine density and

the GABAergic synaptic inputs of GFP+ neurons were assessed in

the GCL (Figure 4).

At 8 wpe, newborn neurons overexpressing miR-132 displayed

a significant increase in the dendritic complexity and length

Figure 4. miR-132 overexpression promotes dendritic morphogenesis and synaptic integration in vivo. (A and B) Representative
reconstructions of SCR-132 (A) and miR-132-expressing (B, red) newborn neurons at 8 wpe in the GCL. (B) Plots of the summed dendritic length of
SCR-132-(black) and miR-132 expressing (B, red) newborn neurons (n = 38 and 55 neurons, respectively). (C) Bar graphs of the percentage (%) of
control for the total dendritic length of miR-132 overexpressing neurons (red). A break in the Y-axis was inserted between 5 and 60 mm. ). (D)
Confocal images of spines in fluorescent neurons containing: SCR-132 (black) or miR-132 (red). (E) Bar graphs of the normalized spine density. N = 3
mice for each condition. (F) Representative traces of GABAergic postsynaptic synaptic currents (PSCs) in SCR-132- and miR-132-containing neurons.
(G and H) Bar graphs of the frequency (E) and amplitude (F) of GABAergic PSCs in SCR-132- and miR-132-containing neurons (n = 10 black and 15
red, respectively). Scale bar: 100 pA/500 ms in F.
doi:10.1371/journal.pone.0038174.g004
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compared to neurons containing a control vector (p,0.01,

Figure 4A and B). The total length was increased by ,35%

(p,0.001, red, Figure 4C), which was in the opposite direction

compared to the miR-132 sponge (213%, green in Figure 3D). At

6 wpe, miR-132 overexpression increased spine density by 44%

(N = 3 each, p,0.0001, Figure 4D and E). Consistent with

increased dendritic complexity and length, the frequency of

spontaneous GABAergic PSCs at 4–6 wpe was significantly

increased by 124% in miR-132 overexpressor containing neurons

compared to neurons containing a control vector (p,0.05, n = 10

neurons, N = 3 with miR-132 and n = 15 neurons, N = 4 with

control, Figure 4F and G). GABAergic current amplitude tended

to be larger but the change was not significant (p = 0.1,

Figure 4H).

Collectively, these data show that miR-132 overexpression in

newborn neurons enhances dendrite development resulting in

stronger synaptic integration. These data also suggest that

endogenous miR-132 expression is not saturated and can be

increased enhancing synaptic integration of newborn neurons.

miR-132 overexpression during synaptic integration
promotes long-term neuronal survival

At 5–6 weeks after birth, half of the newborn neurons die

through apoptosis [22]. Considering that miR-132 overexpression

enhances synaptic integration of newborn neurons, we hypothe-

sized that such manipulation during synaptic integration would

promote long-term survival of miR-132-overexpressing neurons.

An opposite effect is expected with miR-132 sequestration. The

density of RFP+ neurons was thus assessed at 6 wpe in the OB

under the two miR-132 experimental conditions. miR-132

sequestration had no effect on GCL cell density (n = 9 mice each,

data not shown). Unexpectedly, miR-132 overexpression led to a

significant 34% decrease in the number of miR-132-overexpress-

ing neurons in the GCL compared to control (p,0.01, Figure
S3A). There was no difference in the density of RFP+ cells in the

SVZ at 8 days post-electroporation (dpe) and 6 wpe (data not

shown), suggesting that the electroporation efficiency was identical

between the two experimental conditions. Considering that miR-

132 was overexpressed ectopically in neuroblasts at the time of

their birth, we speculated that this premature overexpression

triggered apoptosis. Indeed, there was a significant 8-fold increase

in the density of miR-132-overexpressing neuroblasts that were

positive for activated caspase-3 compared to control neuroblasts in

the RMSOB at 8 dpe (p,0.05, Figure S3B and E). This latter

effect presumably reflected a premature maturation of neuroblasts

in the RMS leading to apoptosis in the absence of proper survival

cues.

To circumvent cell death, we used an inducible Cre-Lox based

plasmid vector to overexpress miR-132 at a time matching its

physiological acquisition. The vector, called pSico (i.e. plasmid for

stable RNA interference conditional [23]) contains a U6 promoter

followed by LoxP sites around a CMV promoter driving GFP

acting as a Stop sequence prior to the miR-132- or the SCR-132

sequence. Following co-electroporation of pSico and a vector

encoding ERT2CreERT2 (and a RFP-encoding reporter vector),

subcutaneous tamoxifen applications are expected to allow timed

miR-132 expression in pSico-containing neurons. Based on the in

situ data in Figure 1, neurons express miR-132 at the time of entry

in the OB, which occurs at ,7–10 dpe. Tamoxifen was thus

administered at P7. Two injections led to the loss of GFP in RFP+

neurons suggesting that the Stop sequence was properly excised

(n = 5 animals, data not shown). In the absence of ERT2CreERT2

co-electroporation, RFP+ cells were GFP+ (n = 3 animals, data not

shown).

The efficiency of this strategy was validated using qRT-PCR for

miR-132 from ipsi- and contra-lateral OB 5 weeks following

tamoxifen injection (Figure 5A). At 6 wpe (i.e. 5 weeks post-

tamoxifen), pSico132-neurons displayed significantly enhanced

dendritic complexity and length (p,0.01, n = 47 control and 51

pSico132, N = 4 and 5, Figure 5B and C) and increased

frequency of GABAA PSCs compared to pSicoSCR-neurons

(p,0.01, n = 13 control and 15 pSico, N = 4 each, Figure 5D).

Importantly, there was a significant 33% increase in the number of

pSico132-neurons that integrated in the OB compared to

pSicoSCR-neurons (p,0.05, Figure 5E–G).

Collectively, these data strongly suggest that miR-132 expres-

sion at the entry into a synaptic network enhances synaptic

integration and long-term survival of newborn neurons.

Discussion

Here, we show that miR-132 is involved in the morphological

development and synaptic integration of neurons arising from the

neonatal neurogenic SVZ. In addition, timed overexpression of

miR-132 in newborn neurons at the onset of synaptic integration

significantly enhanced the strength of their connections and their

long-term survival. Since expression of miR-132 is activity-

dependent, these findings suggest that miR-132 may function as

an intrinsic effector of activity-dependent processes in newborn

neurons, coupling incoming information and environmental cues

to synaptic integration.

Data from in situ hybridizations and qRT-PCR indicate that

newborn neurons express miR-132 at the onset of radial migration

in the OB, which coincides with their synaptic integration.

Regarding miR-9, its level was higher than miR-132 all along the

SVZ-RMS axis suggesting that it plays an important role in

regulating postnatal neurogenesis. In fact, miR-9 has been shown

to regulate neurogenesis in the mouse telencephalon, and in

particular cell proliferation and differentiation [24]. The role of

miR-9 on SVZ neurogenesis remains to be explored. Here, finding

miR-132 expression at the onset of synaptic integration is in

agreement with the reported expression of CREB, which controls

miR-132 expression [6,7]. The levels of mature miR-132

transcript are not basally high in neurons, including newborn

SVZ-OB neurons. This finding fits with the activity-dependence of

pre-miR-132 transcript and miR-132 expression [25,26] and our

data showing that miR-132 levels are not saturated.

Our results demonstrate a role for miR-132 in the late stages of

SVZ neurogenesis. Another micro-RNA miR-124 had been

reported to regulate an early stage of SVZ neurogenesis (fate

commitment) [27]. Here, miR-132 overexpression increased

morphological complexity, the total dendritic length, spine density,

and the frequency of GABAergic postsynaptic currents. Dendritic

morphology was the only parameter analyzed at 8 wpe, but a

similar increase in dendritogenesis is expected at 6 wpe

considering the marked effect on the frequency of GABAergic

synaptic activity. By contrast, miR-132 sequestration decreased

morphological complexity, dendritic length, spine density, and the

frequency of glutamatergic synaptic currents at 4–6 wpe. Although

not significant, there was a trend of decreasing frequency of

GABAergic currents by sequestration of miR-132. This may be

secondary to the fact that overexpression causes a 35% increase in

dendritic length, but there was only a 13% decrease by

sequestration. These findings are in agreement with previous

reports in vitro and in vivo. miR-132 knockdown or overexpression

decreased and increased morphological complexity and spine

density, respectively [7,11–16]. We have not identified a miR-132

target regulating dendritic morphogenesis, but a previous study

miR-132 Control of SVZ Neurogenesis
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reported p250GAP as a miR-132 target that mediated its effect on

dendritic plasticity [15]. Sponging miR-132 did not result in any

significant change in long-term survival of newborn neurons again

presumably because the effect of the sponge was mild on neuronal

morphology and synaptic activity. miR-132 overexpression in

newborn neurons at birth does not increase the number of

integrating cells or their long-term survival, but rather induces

apoptosis. The simplest explanation is that improperly timed or

extended overexpression of miR-132 and thus synaptic integra-

tion-related genes is toxic for neurons, and the increase in

programmed cell death that we see may be explained as an

‘‘excitotoxic’’ effect of prolonged miR-132 overexpression. To

circumvent this problem, we designed an inducible miR-132

vector allowing timed expression of miR-132 at the time of

synaptic integration. This powerful strategy revealed that such

overexpression of miR-132 led to the acquisition of more complex

dendritic tree, more synaptic connections cumulating in enhanced

long-term survival.

Collectively, our findings show that miR-132 orchestrates a

structural plasticity program during SVZ neurogenesis in vivo. For

the first time, our data show a bidirectional role for miR-132 in

regulating dendritic morphogenesis and synaptic physiology using

novel strategies in vivo. Importantly, using an inducible Cre-Lox

strategy, which can be applied to other systems, we show that

miR-132 overexpression during a critical period of synaptic

integration enhanced long-term survival of newborn neurons. This

finding raises the possibility that inducible miR-132 expression in

transplanted neurons using selective promoter driving Cre may be

used to enhance neuronal survival and transplant efficiency.

Materials and Methods

Mice
Animal protocols were approved by the Yale University

Institutional Animal Care and Use Committee. All experiments

were performed in P0 to P56 CD1 mice (Charles River

Laboratories, MA).

microRNA in situ hybridization
Mice were deeply anesthetized via isoflurane inhalation and

transcardially perfused with saline followed by 4% paraformalde-

hyde (both ice-cold). Brain tissue was dissected out, equilibrated in

30% sucrose, then embedded in OCT (Tissue Tek) and frozen in

liquid nitrogen-cooled isopentane. 10 mm thick serial cryosections

were cut in the sagittal plane on a Leica CM3050S cryomicro-

tome, mounted on Superfrost Plus slides and stored at 220uC until

hybridization could begin. In situ hybridization was carried out as

outlined previously with a few modifications [28]. Slide-mounted

sections were air-dried, then re-fixed in 4% paraformaldehyde for

10 minutes at room temperature. Following rinsing in DEPC-

treated PBS slides were acetylated in acetylation solution (590 ml

DEPC water, 8 ml triethanolamine, 1050 ml 37% HCl and 1.5 ml

Figure 5. miR-132 overexpression at synaptic integration promotes long-term neuronal survival. (A) qRT-PCR of miR-132 fold-change
normalized to control RNA U6 from the ipsilateral bulbs containing pSico132-expressing neurons (red) and from the contralateral bulbs (black) at 5
weeks post-tamoxifen (wpt) injections given 2 wpe (N = 5 mice each). (B and C) Plots of the summed dendrite length (B) and bar graphs of the total
dendritic length (C) of pSicoSCR (n = 47) and pSico132-containing neurons (n = 51) at 5 wpt injections given at 7 dpe (i.e. 6 wpe). (D) Bar graphs of the
frequency of GABAergic PSCs in pSicoSCR- and pSico132-containing neurons at 5 wpt (n = 13 black and 15 red, respectively). (G) Sample images
illustrating the density of pSicoSCR and pSico132 neurons in OB coronal sections. (H and I) Bar graphs of absolute (H) and normalized (I) RFP+ (i.e.
pSicoSCR, black and pSico132, red) neuron density in the GCL (N = 8 and 9 mice, 3–4 images per mouse, respectively). Scale bar: 100 mm.
doi:10.1371/journal.pone.0038174.g005
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acetic anhydride) for 10 minutes with gentle agitation, and then

washed in DEPC-PBS once for 5 minutes without agitation. Next,

slides were treated with Proteinase K (5 mg/ml in DEPC-PBS) for

5 minutes. Slides were washed twice in DEPC-PBS again and then

prehybridized by pipetting 700 ml prehybridization solution (50%

formamide, 56 SSC, 56 Denhardt’s, 200 mg/ml yeast RNA,

500 mg/ml salmon sperm DNA, 0.4 g Roche blocking reagent and

1.75 ml DEPC water) onto sections and covering with parafilm for

4–8 hours at room temperature. For hybridization 1 ml of 25 mM

digoixigenin (DIG) or fluorescein isothiocyanate (FITC) double-

labeled LNA probe was added to 1000 mL hybridization buffer

(same as prehybdrization buffer but with 500 ml 10% CHAPS,

100 ml 20% Tween and 1.15 ml DEPC water). Probes were

denatured at 80uC for 5 minutes and then kept on ice. 150 ml of

the hybridization buffer and probe was applied to the tissue

sections. Sections were then cover-slipped with RNAse-free plastic

coverslips and gently rocked for 12–16 hours at 50–60uC (,20uC
below the predicted melting temperature (Tm) of probe:miRNA)

in a humidified chamber. Following hybridization, coverslips were

removed in pre-warmed 56 SSC at 60uC. Slides were then

washed in warm 0.26SSC for 1 hour at 60uC, followed by buffer

B1 (0.1 M Tris pH 7.5/0.15 M NaCl) for 10 minutes at room

temperature. Sections were then blocked in 10% fetal calf serum

made up in B1 buffer for 1 hour at room temperature and probed

with anti-DIG/FITC antibodies conjugated to alkaline phospha-

tase (Southern Biotech) at a 1:2000 dilution overnight at 4uC.

Following incubation with primary antibodies slides were washed

in B1 buffer thrice and then equilibrated in buffer B3 (0.1 M Tris

pH 9.5/0.1 M NaCl/50 mM MgCl2) for 10 minutes. Developer

solution (100 mg/ml NBT, 50 mg/ml BCIP, 24 mg/ml levamisol

and 10% Tween in B3) was then added to the tissue for ,4 hours

at room temperature. The color reaction was stopped with washes

in PBT, and sections were then incubated with DNA dye TO-

PRO-3 iodide (Invitrogen) for 10 minutes. Following final washing

steps slides were mounted in Aquamount and visualized using

confocal microscopy.

qRT-PCR
RNA enriched in small RNAs was isolated from tissue samples

and cultured cells using the miRVana RNA extraction kit

(Ambion). Mature miRNA expression was assayed using Applied

Biosystems’ individual TaqMan microRNA assays that include

primers for both the reverse transcription and real-time PCR

reactions. These reactions were carried out according to protocols

provided by the vendor. Briefly, 15 ml reverse transcription

reactions consisted of 10 ng total RNA, 16 TaqMan miRNA

reverse transcription primer, 1.0 mM of each dNTP, 50.0 U

MuLV Reverse Transcriptase, 16 Reverse Transcription Buffer,

0.25 U/ml RNase Inhibitor and nuclease-free water. Reverse

transcription reactions were incubated at 16uC for 30 min, 42uC
for 30 min, and 85uC for 5 min. Real-time PCR reactions were

performed on an Applied Biosystems 7900HT SDS platform.

PCR reactions were carried out in triplicate for each sample. 10 ml

PCR reactions consisted of 16 TaqMan Universal Master Mix,

No AmpErase UNG, 16 TaqMan miRNA assay mix, 1.33 ml

reverse-transcribed cDNA and nuclease-free water. PCR reactions

were incubated at 95uC for 10 min, followed by 40 cycles of 95uC
for 15 sec, and 60uC for 1 min (a standard protocol offered within

SDS software). miRNA relative quantities (RQ) were determined

using the DCt method and the small RNA U6 (RNU6B) was used

as an endogenous control.

LNA and Vectors
LNA for miR-132 were purchased from Exiqon. For sponge

experiments, imperfect miR-132 binding sites were repeated up to

20 times in the 39UTR of a pCAG-GFP vector (called 132-SP).

The control vector repeated this strategy with a scrambled binding

site (SCR) not known to correspond to any known miR (SCR-SP).

For miR overexpression experiments, a mature miR-132 express-

ing sequence was inserted downstream from the U6 RNA

promoter and into a vector co-expressing RFP downstream from

a CAG, thus yielding pCAG-RFP::U6-miR-132 (noted miR-132

vector). A scrambled sequence (SCR) was used to generate the

control non-coding vector pCAG-RFP::U6-SCR-132. For induc-

ible overexpression, the Cre-Lox conditional vector, pSico

(Addgene, M. Jacks) was used to place the miR-encoding sequence

behind the floxed-GFP cassette. The pSico plasmids were co-

injected with the tamoxifen-inducible Cre-recombinase expression

vector pCAG-ERT2CreERT2 (Addgene, C. Cepko) as well as a

pCAG-tdTomato (noted RFP) vector that was constructed using

the pCMV-tdTomato vector from Clontech. Upon inducing
ERT2CreERT2-recombinase activity with tamoxifen, the EGFP

cassette would recombine out and place the miR-encoding region

directly downstream from the U6 RNA promoter (pSico132). The

control vector repeated this strategy with a scrambled (SCR)

sequence (pSicoSCR). A miR-132 sensor vector was constructed by

introducing miR-132 binding sites into the dual-fluorescent GFP-

reporter/mRFP-sensor (a kind gift from Dr. De Pietri Tonelli,

Neuroscience and Brain Technologies, Italy [29]), after removing

the GFP-encoding sequence and placing the RFP-sensor down-

stream from CAG.

LNA transfection in primary neurons and Neuro-2a cells
Olfactory bulbs from P0–P1 pups were dissected out and placed

in chilled Hibernate-E (Brainbits) supplemented with 2% B-27

(Invitrogen) and 0.5 mM GlutaMAX (Gibco). Tissue was disso-

ciated by incubating in papain and with mechanical trituration as

indicated in the Neural Tissue Dissociation Kit (Miltenyi Biotec).

The cell suspension was then separated on a density gradient using

OptiPrep (density 1.32). The neuronal fraction was collected,

washed, and re-pelleted in Hibernate-E/B-27/GlutaMAX. The

Neuro-2a mouse neuroblastoma cell line (American Type Culture

Collection) was routinely propagated in tissue culture treated

polystyrene multi-well plates or flasks (BD Falcon). For both

primary neurons and Neuro-2a cells, the medium consisted of

Dulbecco’s Modified Eagle Medium (Invitrogen) supplemented

with 10% heat-inactivated fetal calf serum and penicillin-

streptomycin at 100 U/l and 100 mg/l each (Gibco). Cells were

maintained at 37uC and 5% CO2. For LNA and miR

overexpression assays, LipofectAMINE 2000 (Gibco) was used to

transfect expression vectors according to the manufacturer’s

instructions. Transfection efficiency was verified by examining

the green fluorescence of LNA or the fluorescence from other

vectors (see above). For Neuro2A cells, cells were examined 96 hrs

post-transfection.

Immunohistochemistry
6–8 weeks following electroporation, mice were deeply anes-

thetized via isoflurane inhalation and transcardially perfused with

saline followed by 4% paraformaldehyde. Brain tissue was

dissected out, equilibrated in 30% sucrose, then embedded in

OCT (Tissue Tek) and sectioned into 100 mm-thick serial

cryosections on a freezing sliding microtome in the coronal plane.

Sections were stored in antifreeze (500 ml 0.1 M Tris-buffered

saline, 300 ml ethylene glycol, 300 g sucrose, 10 g polyvinylpyr-

rolidone and distilled H2O to a volume of 1 L) at 220uC until
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immunostaining could begin. Slices were washed several times in

phosphate buffered saline (PBS), then incubated in blocking buffer

(2% horse serum, 1% bovine serum albumin, 0.1% Triton-X,

0.1% Tween-20 in PBS) for 1 hour at room temperature. Slices

were then incubated in blocking buffer containing the following

antibodies at 4uC overnight: rabbit anti-RFP (1:500, Rockland

Immunochemicals), rat anti-RFP (1:500, Chromotek), and chicken

anti-GFP (1:500, Abcam), rabbit anti-activated caspase 3 (1:500,

Cell signaling). After several washes the next day slices were

incubated with an appropriate secondary antibody (Alexa Fluor

dye conjugates at 1:1000, Invitrogen; and Cyanine and DyLight

dye conjugates at 1:500, Jackson ImmunoResearch) for 1 hour at

room temperature. Sections were then washed again several times,

incubated in the DNA dye TOPRO-3 iodide and mounted in

Prolong Gold antifade reagent (Invitrogen). Images were acquired

using an Olympus Fluoview 1000 confocal microscope (optical

section step size 2 mm with a 206 objective, numerical aperture

0.75, and 0.5–1 mm with a 606oil immersion objective, numerical

aperture 1.40).

Neonatal in vivo electroporation
Plasmids (2–5 mg/ml) were diluted in PBS containing 0.1% fast

green as a tracer. 0.5–1 ml of plasmid solution was injected into the

lateral ventricles of cold-anesthetized neonatal pups, using a pulled

glass pipette beveled to a diameter of less than 50 mm. After

plasmid injection using manual pressure, tweezer-type electrodes

(model 520, BTX) were placed on the heads of the P0–P2 pups

and 4 square-pulses of 50 ms duration with 950 ms intervals at

135 V were applied using a pulse ECM830 BTX generator. Pups

were recovered with gentle heat and reunited with the mother.

Morphometry
Plasmid-expressing OB granule neurons of the superficial GCL

were identified in coronal sections using RFP fluorescence.

Similarly in vitro, LNA-expressing neurons were identified using

green fluorescence. Complete neurons in confocal z-stacks

acquired at 206 were traced using the NeuroLucida and

NeuroExplorer morphometry software (MicroBrightField). Sholl

analyses were blindly carried out using dendrite length as a

measure of morphological complexity. Confocal z-stacks from 3

different square fields of view were taken from each OB section,

and this was done for 3 different OB sections in a randomly

selected series from each animal. At least 3 animals were analyzed

per condition.

Spine analysis was carried out on a series of sequentially

acquired coronal olfactory bulb slices, from 3 animals per

condition. Confocal z-stacks of dendritic segments in the external

plexiform layer were acquired at 606 with a 0.5 mm-step size,

blindly traced using NeuroLucida and NeuroExplorer morphom-

etry software.

Electrophysiology
Horizontal OB slices (300 mm) were prepared from anesthetized

(Nembutal 100 mg/kg, intraperitoneal) P28 to P42 mice using a

Leica VT1000S vibratome (Nussloch, Germany). An artificial CSF

(ACSF) dissection solution with reduced Ca2+ contained the

following (in mM): 124 NaCl, 2.6 KCl, 1.23 NaH2PO4, 3 MgSO4,

26 NaHCO3, 10 dextrose, and 1 CaCl2, equilibrated with 95%

O2/5% CO2 and chilled to 4uC during slicing. Brain slices were

incubated in a 30uC water-bath for 30 min and then maintained

at room temperature. During experiments, slices were superfused

with ACSF at room temperature that contained the following (in

mM): 124 NaCl, 3 KCl, 1.23 NaH2PO4, 1.2 MgSO4, 26

NaHCO3, 10 dextrose, and 2.5 CaCl2, equilibrated with 95%

O2/5% CO2. Whole-cell patch-clamp recordings were made from

fluorescent OB granule cells that contained the vector of interest.

Patch electrodes (5–7 MV resistance) contained the following for

recording GABAergic PSCs (in mM): 135 KCL, 1 NaCl, 10

HEPES, 0.2 EGTA, 2 MgATP, 0.2 NaGTP. For recording

EPSCs, the intracellular solution containing (in mM): 125

KGluconate, 10 KCl, 1 NaCl, 10 HEPES, 0.2 EGTA, 2 MgATP,

0.2 NaGTP. pH adjusted to 7.4 by KOH. Osmolarity was

adjusted to 280–290 mOsm using a Wescor 5500 vapor pressure

osmometer (Logan, UT). PSCs were analyzed using Synaptosoft’s

MiniAnalysis Program (Fort Lee, NJ). At least 10 minutes of

recordings were obtained for each neuron and the entirety of the

file was analyzed for events. The average amplitude and frequency

were obtained for each neuron and compared between test and

control conditions. The recordings of GABAergic synaptic

currents were performed without adding glutamatergic blockers

because they were easily detected from glutamatergic synaptic

currents. Glutamatergic synaptic currents were recorded in the

presence of the GABAA receptor blocker picrotoxin, otherwise

they were partially masked by the GABAergic activity.

Cell density measurement
For cell density measurements confocal z-stacks of serial,

coronal sections were acquired at 106 (numerical aperture 0.45).

ImageJ (NIH) was used to manually count cells in a given volume

to calculate cell density. All cells were counted in 3 different OB

sections in a randomly selected series from each animal. At least 3

animals were analyzed per condition.

Tamoxifen experiments
In the conditional overexpressor condition, tamoxifen was

subcutaneously delivered at 100 mg/g to pups 7 days following

electroporation, 2 injections, 4 hours apart.

Statistical analysis
Statistical significance was determined using the two-tailed

Student’s t test (p,0.05) unless otherwise noted. Data are

presented as mean 6 standard error of the mean (SEM).

Supporting Information

Figure S1 miR-132 is expressed in hippocampal neu-
rons. (A–D) In situ hybridization images of miR-132 with

TOPRO-3 (red) overlay (red, A), miR-132 (B), miR-1 (C), and

miR-9 (D) in a sagittal section containing the hippocampus. (E–G)

Higher magnification of miR-132, miR-1 and miR-9 images in the

dentate dyrus. Scale bars: 100 mm (A–D) and 30 mm (E–F).

(PDF)

Figure S2 Validation of the efficiency and specificity of
miR-132 overexpression vectors. (A) Diagram of the

ipsilateral (ipsi) OB containing RFP+ neurons and contralateral

(contra) OB. (B) qRT-PCR of miR-132 fold-change normalized to

control RNA U6 from the ipsilateral OB containing miR-132-

overexpressing neurons (red) and from the contralateral OB

(black, = 3 OB each). (C) Schematic of the miR-132 overexpres-

sion or scramble vectors (after RFP sequence removal), the RFP-

based sensor vector and the CFP reporter vector. (D) Confocal

images of Neuro-2A cells transfected with the sensor vector, the

CFP reporter vector and either SCR-132 or miR-132. Scale bars:

70 mm.

(PDF)

Figure S3 miR-132 overexpression in neuroblasts at
birth led to apoptosis. (A) Bar graphs of the RFP+ (i.e. SCR-
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132, black and miR-132, red) neuron density in the GCL at 6 wpe

(N = 3 mice each, 3–4 images analyzed per mouse). (B) Bar graphs

of the percentage of RFP+ neuron being activated Caspase 3-

positive (Casp3+) in the RMSOB at 8 dpe (N = 3 mice each,

respectively). (C–F) Sample images of Casp3 staining (green) with

TOPRO-3 (blue, C and E) and RFP staining (red) with TOPRO-3

(blue, D and F) in the RMSOB containing SCR-132 (C and D) and

miR-132 (E and F) -expressing newborn neurons. Scale bar:

100 mm.

(PDF)
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