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STABILIZED FINITE ELEMENT METHODS FOR
NONSYMMETRIC, NONCOERCIVE, AND ILL-POSED PROBLEMS.

PART I: ELLIPTIC EQUATIONS∗
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Abstract. In this paper we propose a new method to stabilize nonsymmetric indefinite problems.
The idea is to solve a forward and an adjoint problem simultaneously using a suitable stabilized finite
element method. Both stabilization of the element residual and of the jumps of certain derivatives of
the discrete solution over element faces may be used. Under the assumption of well-posedness of the
partial differential equation and its associated adjoint problem we prove optimal error estimates in
H1 and L2 norms in an abstract framework. Some examples of problems that are neither symmetric
nor coercive but that enter the abstract framework are given. First we treat indefinite convection-
diffusion equations with nonsolenoidal transport velocity and either pure Dirichlet conditions or
pure Neumann conditions and then a Cauchy problem for the Helmholtz operator. Some numerical
illustrations are given.
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1. Introduction. The computation of indefinite elliptic problems often involves
certain conditions on the mesh size h for the system to be well-posed and for the
derivation of error estimates. The first results on this problem are due to Schatz
[19]. The conditions on the mesh parameter can be avoided if a stabilized finite ele-
ment method is used. Such methods have been proposed by Bramble, Lazarov, and
Pasciak [4] and Ku [16] or more recently the continuous interior penalty (CIP) method
for the Helmholtz equation suggested by Wu [21], and Zhu, Burman, and Wu [20].
The method proposed herein has some common features with both these methods
but appears to have a wider field of applicability. We may treat not only symmetric
indefinite problems such as the (real valued) Helmholtz equation but also nonsym-
metric indefinite problems such as convection-diffusion problems with nonsolenoidal
convection velocity or the Cauchy problem. The latter problem is known to be ill-
posed in general [1] and will mainly be explored numerically herein. For all these
cases we show that if the primal and adjoint problems admit a unique solution with
sufficient smoothness the proposed algorithm converges with optimal order. The case
of hyperbolic problems is treated in the companion paper [5].

The idea of this work is to assume ill-posedness of the discrete form of the PDE
and regularize it in the form of an optimization problem under constraints. Indeed
we seek to minimize the size of the stabilization operator under the constraint of the
discrete variational form. The regularization terms are then chosen from well-known
stabilized methods respecting certain design criteria given in an abstract analysis.
This leads to an extended method where simultaneously both a primal and a dual
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problem are solved but where the exact solution of the dual problem is always trivial.
The aim is to obtain a method where possible discrete nonuniqueness is alleviated by
discrete regularization, with a nonconsistency that can be controlled so that optimal
convergence for smooth solutions is obtained. The method is also a good candidate for
cases where the solution to the continuous problem is nonunique, but that is beyond
the scope of the present paper.

In spite of the lack of coercivity for the physical problem, the discrete problem
has partial coercivity on the stabilization operator. A consequence of this is that
depending on the kernel of the stabilization operator a unique discrete solution may
often be shown to exist independently of the underlying partial differential equation.
This can be helpful when exploring ill-posed problems numerically or when measure-
ment errors in the data may lead to an ill-posed problem, although the true problem
is well-posed.

An outline of the paper is as follows. In section 2 we propose an abstract method
and prove that the method will have optimal convergence under certain assumptions
on the bilinear form. Then in section 3 we discuss stabilized methods that satisfy
the assumptions of the abstract theory with particular focus on the Galerkin least
squares (GLS) method and the CIP method. Three examples of applications are given
in section 4, two different noncoercive transport problems in compressible flow fields
and one elliptic Cauchy problem. Finally in section 5 the accuracy and robustness of
the proposed method are shown by some computations of solutions to the problems
discussed in section 4. In particular we study the performance of the approach for
some different Cauchy problems of varying difficulty.

2. Abstract formulation. Let Ω be a polygonal/polyhedral subset of Rd, d =
2, 3. The boundary of Ω will be denoted ∂Ω and its normal n. For simplicity we will
reduce the scope to second order elliptic problems, but the methodology can readily
be extended to indefinite elliptic problems of any order, providing the operator has a
smoothing property. We will also describe the method mainly in the two-dimensional
case, only mentioning the dimension when the two- and three-dimensional cases differ.

We let V,W denote two subspaces of H1(Ω). The abstract weak formulation of
the continuous problem takes the following form: find u ∈ V such that

(2.1) a(u,w) = (f, w) ∀w ∈ W.

The formal adjoint of (2.1) reads: find z ∈ W such that

(2.2) a(v, z) = (g, v) ∀v ∈ V.

The bilinear form a(·, ·) : V ×W → R is assumed to be elliptic but neither symmetric
nor coercive. We denote the forward problem on strong form Lu = f and the adjoint
problem on strong form L∗z = g. Suitable boundary conditions are integrated either
in the spaces V,W or in the linear form.

We assume that both these problems are well-posed and that the geometry and
data are such that the smoothing property holds,

(2.3) |u|H2(Ω) ≤ ca,Ω‖f‖, |z|H2(Ω) ≤ ca,Ω‖g‖.

We will frequently use the notation a � b for a ≤ Cb with C a constant depending
only on the mesh geometry and physical parameters giving an order one contribution.
We will also use a ∼ b for a � b and b � a. Indexed constants cxy will depend on the
variables xy but can differ at each occurrence.
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The L2-scalar product over some X ⊂ R
d is denoted (·, ·)X and the associated

norm ‖ · ‖X , and the subscript is dropped whenever X = Ω. We will also use 〈·, ·〉Y
to denote the L2-scalar product over Y ⊂ R

d−1 and (·, ·)h the elementwise L2-norm
with the associated broken norm ‖ · ‖h.

Remark 2.1. The above regularity assumptions are necessary to ensure optimal
convergence for piecewise affine approximation spaces. If polynomial approximation
of order k is used we additionally need u ∈ Hk+1(Ω). If on the other hand the solution
is less regular the convergence order is reduced in the standard way and in some cases
the mesh constraints for well-posedness will be stronger. More precisely if u ∈ Hs(Ω)
and z ∈ Ht(Ω) with s, t ∈ (1, 2) the analysis below leads to estimates on the form

‖u− uh‖ � hs+t−2.

2.1. Finite element discretization. Let {Th}h denote a family of quasi-
uniform, shape regular triangulations Th := {K}, indexed by the maximum trian-
gle radius h := maxK∈Th

hK , hK := diam(K). The set of faces of the triangulation
will be denoted by F and Fint denotes the subset of interior faces. Now let Xk

h denote
the finite element space of continuous, piecewise polynomial functions on Th,

Xk
h := {vh ∈ H1(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th}.

Here Pk(K) denotes the space of polynomials of degree less than or equal to k on a
triangle K.

We let πL denote the standard L2-projection onto Xk
h and ih : C0(Ω̄) �→ Xk

h the
standard Lagrange interpolant. Recall that for any function u ∈ (V ∪W ) ∩Hk+1(Ω)
there holds

(2.4) ‖u− ihu‖ + h‖∇(u− ihu)‖ + h2‖D2(u− ihu)‖h ≤ cih
k+1|u|Hk+1(Ω)

and under our assumptions on the mesh, similarly for πL. We propose the following
finite element method for the approximation of (2.1): find uh, zh ∈ Vh×Wh such that

ah(uh, wh) + sa(zh, wh) = (f, wh),(2.5)

ah(vh, zh) − sp(uh, vh) = −sp(u,wh)

for all vh, wh ∈ Vh ×Wh. Note the appearance of sp(u,wh) in the right-hand side of
the second equation of (2.5). This means that only stabilizations for which sp(u,wh)
can be expressed using known data may be used. For residual-based stabilizations this
typically is the case, but also for so-called observers that stabilize the computation
using measured data. We will always assume that u is sufficiently regular so that
sp(u, ·) is well defined, i.e., the stabilization is strongly consistent. The analysis using
weak consistency of the stabilization is a straightforward modification.

The bilinear form ah(·, ·) is a discrete realization of a(·, ·), typically modified to
account for the effect of boundary conditions, since in general Vh �∈ V and Wh �∈ W .
The penalty operators sa(·, ·) and sp(·, ·) are symmetric stabilization operators and
associated with the adjoint and the primal equation, respectively.

The rationale of the formulation may be explained in an optimization framework.
Assume that we want to solve the problem: find uh ∈ Vh such that

ah(uh, wh) = (f, wh) ∀wh ∈Wh,

but that the system matrix corresponding to ah(uh, wh) has zero eigenvalues. The
discrete system is ill-posed. This often reflects some poor stability properties of the
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underlying continuous problem. The idea is to introduce a selection criterion for the
solution, in order to ensure discrete uniqueness, measured by some operator sp(uh, vh).
This can include both stabilization (regularization) terms and the fitting of the com-
puted solution to measurements. The formulation then is written as follows: find
uh, zh ∈ Vh ×Wh stationary point of the Lagrangian

(2.6) �L(uh, zh) :=
1

2
sp(uh − u, uh − u) − 1

2
sa(zh, zh) − ah(uh, zh) + (f, zh).

The saddle point structure of the Lagrangian has been enhanced by the addition of
the regularizing term − 1

2sa(zh, zh). We may readily verify that

∂ �L

∂uh
(vh) = sp(uh − u, vh) − ah(vh, zh)

and

∂ �L

∂zh
(wh) = −ah(uh, wh) − sa(zh, wh) + (f, wh).

It follows that (2.5) corresponds to the optimality conditions of (2.6).
Observe that the second equation of (2.5) is a finite element discretization of the

dual problem (2.2) with data g = 0. Hence the solution to approximate is z = 0.
The discrete function zh will most likely not be zero, since it is perturbed by the
stabilization operator acting on the solution uh, which in general does not coincide
with the stabilization acting on u.

We will assume that the following strong consistency properties hold. If u is the
solution of (2.1), then

(2.7) ah(u, ϕ) = (Lu, ϕ) ∀ ϕ ∈W +Wh,

and if z is the solution of (2.2), then

(2.8) ah(φ, z) = (φ,L∗z) ∀ φ ∈ V + Vh.

As a consequence the following Galerkin orthogonalities hold:

(2.9) ah(u− uh, vh) = sa(zh, vh) and ah(wh, z − zh) = sp(u− uh, wh).

The bilinear forms sa(·, ·), sp(·, ·) are symmetric, positive semidefinite, weakly consis-
tent stabilization operators. The seminorms on Vh and Wh associated to the stabi-
lization are defined by

|xh|Sy := sy(xh, xh)
1
2 , y = a, p.

The rationale of this formulation is that the following partial coercivity is obtained
by taking wh = zh and vh = uh:

(2.10) |zh|2Sa
+ |uh|2Sp

= (f, zh) − sp(u, uh).

We assume that there are interpolation operators πV : V → Vh and πW :
W →Wh, satisfying (2.4) and also that the following continuity relations hold for all
v, w, y ∈ H2(Ω) and for all vh, xh ∈Wh:

(2.11) ah(v − πV v, xh) ≤ ‖v − πV v‖+(ca|xh|Sa + ε(h)‖xh‖)
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and

(2.12) ah(v−vh, y−πW y) ≤ ‖y−πW y‖∗(ca‖v−πV v‖L+ca|vh−πV v|Sp+ε(h)‖v−vh‖).

We have introduced the notation ‖ · ‖+, ‖ · ‖∗ and ‖ · ‖L for seminorms to be defined.
These norms, and those induced by the stabilization operators, will be assumed to
satisfy the approximation estimates

(2.13)

‖v − πV v‖L + ‖v − πV v‖+ + |v − πV v|Sp ≤ ca,γh
k|v|Hk+1(Ω) ∀v ∈ V ∩Hk+1(Ω),

‖w − πWw‖∗ + |w − πWw|Sa ≤ ca,γh
k|w|Hk+1(Ω) ∀w ∈ W ∩Hk+1(Ω)(2.14)

and the additional upper bounds

(2.15)

|πWw|Sa ≤ ca,γh|w|H2(Ω) ∀w ∈W ∩H2(Ω), |πV v|Sp ≤ ca,γh|v|H2(Ω) ∀v ∈ V ∩H2(Ω).

Here ca,γ depends on the form a(·, ·) and a stabilization parameter γ.

2.2. Convergence analysis for the abstract method. We first prove that
the stabilization seminorm of the discrete error is bounded by one term that converges
to zero at an optimal rate and another nonessential perturbation that can be made
small.

Lemma 2.2. Assume that that the solution of (2.1) is smooth and that the forms
of (2.5) and the operators πV , πW are such that (2.9), (2.11), and (2.13) are satisfied.
Then for uh, zh solution of (2.5) there holds

|πV u− uh|Sp + |πW z − zh|Sa � ca,γ,εh
k|u|Hk+1(Ω) + ε(h)‖zh‖,

where ca,γ,ε = ca,γ(1+c2a)
1
2 with ca and ca,γ defined by (2.11) and (2.13), respectively.

Similarly, if sp(u,w + wh) = 0, for all w ∈W and wh ∈Wh, there holds

|uh|Sp + |zh|Sa � (ca,γ + ca,γ,ε)h
k|u|Hk+1(Ω) + ε(h)‖zh‖.

Proof. Let ξh = πV u− uh and ζh = πW z − zh. By definition (2.5) there holds

|ξh|2Sp
+|ζh|2Sa

= sp(ξh, ξh)+sa(ζh, ζh) = ah(ξh, ζh)+sa(ζh, ζh)−ah(ξh, ζh)+sp(ξh, ξh).

Using now the Galerkin orthogonality of ah(·, ·), (2.9), we have

|ξh|2Sp
+ |ζh|2Sa

= ah(πV u− u, ζh) + sa(πW z, ζh) − ah(ξh, πW z − z) + sp(πV u− u, ξh).

Observing that z = πW z = 0 this reduces to

|ξh|2Sp
+ |ζh|2Sa

= ah(πV u− u, ζh) + sp(πV u− u, ξh).

We conclude by applying the continuity (2.11)

|ξh|2Sp
+ |ζh|2Sa

≤ ‖u− πV u‖+(ca|ζh|Sa + ε(h)‖zh‖) + |u− πV u|Sp |ξh|Sp

followed by an arithmetic-geometric inequality and the approximability (2.13)

|ξh|2Sp
+ |ζh|2Sa

≤ (c2a + 1)‖u− πV u‖2+ + ε(h)2‖zh‖2 + |u− πV u|2Sp

≤ c2a,γ(1 + c2a)h2k|u|2Hk+1(Ω) + ε(h)2‖zh‖2.
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The second result follows by adding and subtracting πV u, observing that here πW z =
0, applying a triangle inequality and then (2.13) on |πV u|Sp = |πV u− u|Sp .

We may now prove the main result which is optimal convergence in the L2 and
the H1 norms.

Theorem 2.3. Assume that (2.1) and (2.2) are well-posed with exact solutions
u and z satisfying (2.3). Assume that the forms of (2.5) and the operators πV , πW
are such that (2.9)–(2.15) are satisfied and that h is so small that

(2.16) ca,γ,Ω,h ε(h) ≤ 1

6
,

where ca,γ,Ω depends on the constants of the inequalities (2.3) and (2.13)–(2.15). Then
(2.5) admits a unique discrete solution uh, zh that satisfies

‖u− uh‖ + h‖∇(u− uh)‖ + ‖zh‖ ≤ Ca,Ω,γh
k+1|u|Hk+1(Ω)

and in particular

(2.17) ‖u− uh‖ + h‖∇(u− uh)‖ + ‖zh‖ ≤ Ca,Ω,γh
2‖f‖.

Proof. Let ϕ be the solution of (2.2) with g = u− uh and ψ the solution of (2.1)
with f = zh. By (2.3) there holds

‖ϕ‖H2(Ω) ≤ ca,Ω‖u− uh‖ and ‖ψ‖H2(Ω) ≤ ca,Ω‖zh‖.

By definition of the primal and dual problems and by (2.7), (2.8), (2.9), (2.11), and
(2.12) there holds

‖u− uh‖2 + ‖zh‖2 = (u− uh,L∗ϕ) + (Lψ, zh) = ah(u− uh, ϕ) + ah(ψ, zh)

= ah(u− uh, ϕ− πWϕ) + sa(zh, πWϕ)

+ ah(ψ − πV ψ, zh) − sp(u − uh, πV ψ)

≤ (ca‖u− πV u‖L + ca|uh − πV u|Sp + ε(h)‖u− uh‖)‖ϕ− πWϕ‖∗
+ (ca|zh|Sa + ε(h)‖zh‖)‖ψ − πV ψ‖+
+ |zh|Sa |πWϕ|Sa + |uh − u|Sp |πV ψ|Sp .

First we observe that by (2.13), (2.14), and (2.3)

ε(h)‖u− uh‖‖ϕ− πWϕ‖∗ + ε(h)‖zh‖‖ψ − πV ψ‖+
≤ ca,γ,Ωh(ε(h)‖u− uh‖2 + ε(h)‖zh‖2).

Then by Lemma 2.2 and the upper bounds (2.15) we have

|zh|Sa |πWϕ|Sa + |uh − u|Sp |πV ψ|Sp

� ((ca,γ + ca,γ,ε)h
k|u|Hk+1(Ω) + ε(h)‖zh‖)ca,γ,Ωh(‖u− uh‖ + ‖zh‖).

Using the two previous bounds and an arithmetic-geometric inequality we have

(1 − 3ca,γ,Ωhε(h))(‖u− uh‖2 + ‖zh‖2) ≤ Ca,γh
k+1|u|Hk+1(Ω)(|ϕ|H2(Ω) + |ψ|H2(Ω)).

Using (2.3), the result for the L2-norm follows provided h satisfies (2.16). The result
for the H1-norm follows using a global inverse inequality on the discrete error and
then the L2-norm error estimate.

‖∇(u− uh)‖ ≤ ‖∇(u− πV u)‖ + ‖∇(πV u− uh)‖ � hk|u|Hk+1(Ω) + h−1‖πV u− uh‖.
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The existence of a unique solution to (2.5) is a consequence of (2.17). Well-posedness
of (2.1) means that f = 0 implies u = 0, but then by (2.17) uh = zh = 0, which shows
that the matrix is invertible.

The optimal convergence of the stabilization terms follows.
Corollary 2.4. Under the assumptions of Lemma 2.2 and Theorem 2.3 there

holds

|πV u− uh|Sp + |πW z − zh|Sa � cs,εh
k|u|Hk+1(Ω) +O(hk+1).

Proof. The proof is an immediate consequence of Lemma 2.2 and
Theorem 2.3.

Remark 2.5. The need to control a low order contribution of the dual solution
zh above usually comes from oscillation of data, either in the form of stabilization
terms that do not account for oscillation within the element or error in the numerical
quadrature.

In case a G̊ardings inequality holds for (2.5) and sa(·, ·) ≡ sp(·, ·) the H1-error
can be recovered without using inverse inequalities as stated below.

Corollary 2.6. Assume that for the bilinear form a(·, ·) there exists λ ∈ R such
that

‖∇vh‖2 − λ‖vh‖2 � ah(vh, vh) + sp(vh, vh)

and that sa(·, ·) ≡ sp(·, ·). Then

‖∇(u− uh)‖ � hk|u|Hk+1(Ω).

Proof. The proof is similar to the proof of Lemma 2.2 and therefore is only
sketched. Let ξh := πV u− uh. It follows by the G̊ardings inequality that

‖∇ξh‖2 � ah(ξh, ξh) + λ‖ξh‖2 + sp(ξh, ξh).

Using Galerkin orthogonality we have

ah(ξh, ξh) = ah(πV u− u, ξh) + sa(zh, ξh)

and the rest follows as in Lemma 2.2 by (2.11), (2.13), and using the known conver-
gences of Lemma 2.2 and Theorem 2.3.

3. Stabilization methods. To fix the ideas let L be a second order elliptic
operator on conservation form,

(3.1) Lu := −μΔu+ ∇ · (βu) + cu.

Here μ ∈ R
+, β ∈ [C2(Ω)]2 is a nonsolenoidal velocity vectorfield and c ∈ C1(Ω).

Formally, the corresponding bilinear form is written

(3.2) a(u, v) := (μ∇u,∇v) + (∇ · (βu) + cu, v), u, v ∈ H1(Ω).

The continuities (2.11) and (2.12) suggest the following design criteria on the stabi-
lization operators:

inf
wh∈Vh

‖h(Lvh − wh)‖2h + ‖h 1
2μ

1
2 �∇vh · nF �‖2Fint

� sp(vh, vh),(3.3)

inf
wh∈Vh

‖h(L∗xh − wh)‖2h + ‖h 1
2μ

1
2 �∇xh · nF �‖2Fint

� sa(xh, xh)(3.4)
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at least up to a nonessential low order perturbation. If we neglect terms due to
boundary conditions we may apply an integration by parts in the left-hand side of
(2.11), leading to

ah(v − πV v, xh) = 〈u− πV v, �μ∇xh · nF �〉Fint
+ (v − πV v,L∗xh)h.

Using a suitable weighting in h and applying the Cauchy–Schwarz inequality justifies
(3.4). The function wh may be included provided the interpolant πV has suitable
orthogonality properties. It can be noted that one may also construct the interpolant
with orthognality properties on the element faces, so that the influence of the gradi-
ent jump term may be reduced; we will not pursue this possibility herein. The choice
wh = 0 in the first term in the left-hand side of (3.3) results in a least squares term on
the (homogeneous) residual over the element. It follows that the stabilization relies
on two mechanisms: L2-control of the element residual and L2-control of the gradi-
ent jumps over element edges. If higher order differential equations are considered,
jumps of higher derivatives must be added. The design criterion (3.3)–(3.4) makes
it straightforward to adapt the analysis below to a range of stabilization methods,
such as GLS, orthogonal subscales, CIP, or discontinuous Galerkin methods. For the
discontinuous Galerkin method the penalty must act on the jump of uh itself and on
the jump of the normal gradient. In all cases, however, the jumps of the gradient
must be penalized, or an equivalent stabilization operator introduced. It therefore
seems natural to consider two stabilizations in more detail, first the GLS stabilization
combined with gradient penalty and then a CIP stabilization purely based on penalty
on jumps of derivatives of the approximate solution. We introduce the stabilization
operators

(3.5) sp(uh, vh) := sp,GLS(uh, vh) + scip(uh, vh)

and

(3.6) sa(zh, wh) := sa,GLS(zh, wh) + scip(uh, vh),

where

sp,GLS(uh, vh) := (γGLSh
2Luh,Lvh)h,

sa,GLS(zh, wh) := (γGLSh
2L∗zh,L∗wh)h,

and

(3.7) scip(uh, vh) :=
∑

F∈Fint

∫
F

(hF γ1,F �∇uh� · �∇vh� + h3F γ2,F �Δuh��Δvh�) dx.

Here �Δuh�|F denote the Laplacian, over the face F . Note that for smooth u,
scip(u, vh) = 0 and hence sp(u, vh) = sp,GLS(u, vh) = (f, γGLSh

2Lvh)h, showing that
sp(u, vh) is known. The abstract analysis typically holds for the parameter choices
γGLS > 0, γ1,F > 0, γ2,F = 0 or γGLS = 0, γ1,F > 0, γ2,F > 0. Note that the matrix
stencil for finite element methods remains the same for both approaches, and therefore
the CIP method seems more appealing in this context. Eliminating the GLS term also
reduces the computational effort since the same stabilization is used for the primal
and adjoint solution. If on the other hand a C1-continuous approximation space is
used, the jumps of the gradients may be omitted and the GLS stabilization might
prove competitive, since integrations on the faces may then be avoided. Below we will
only consider the case where Vh = Wh := Xk

h or some subset thereof, which will then
be defined in each case.
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3.1. GLS stabilization. The GLS method is one of the most popular stabilized
methods. To fix the ideas we will assume that problems (2.1) and (2.2) are subject to
homogeneous Dirichlet conditions and well-posed, with f ∈ L2(Ω). For the reader’s
convenience we detail the Lagrangian (2.6) in this particular case,

�L(uh, zh) :=
1

2
‖τ 1

2 (Luh − f)‖2h +
1

2
scip(uh, uh)(3.8)

− 1

2
‖τ 1

2L∗zh‖2h − 1

2
scip(zh, zh) − a(uh, zh) + (f, zh).

We let Vh = Wh := Xk
h ∩ H1

0 (Ω). The optimality conditions are then written as
follows: find uh, zh ∈ Vh ×Wh

a(uh, wh) + sa(zh, wh) = (f, wh),(3.9)

a(vh, zh) − sp(uh, vh) = −sp(u, vh) = −(f, τLvh)h

for all vh, wh ∈ Vh × Wh. Here γGLSh
2 =: τ > 0 and γ1,F ∼ μ, γ2,F = 0. We

assume that the physical parameters are all order unity for simplicity. Observe the
nonstandard structure of the stabilization terms and that the formulation is consistent
for u the exact solution of (2.1) and z = 0. We will now prove that the assumptions
of Proposition 2.2 and Theorem 2.3 are satisfied for formulation (3.9).

We define the following seminorms:

(3.10) ‖v‖+ := ‖v‖∗ := ‖τ− 1
2 v‖ + ‖μ 1

2 h−
1
2 v‖Fint

and

‖v‖L := |x|Sp := ‖τ 1
2Lx‖h + scip(x, x)

1
2 and |x|Sa := ‖τ 1

2L∗x‖h + scip(x, x)
1
2 ,

defined for x ∈ H2(Ω) + Vh. Let πV and πW be defined by the Lagrange interpolator
ih (or any other H2-stable interpolation operator that satisfies boundary conditions),
and note that by (2.4) we readily deduce the approximation results for smooth enough
functions u

‖u−πV u‖++‖u−πV u‖L+|u−πV u|Sp +‖u−πWu‖∗+|u−πWu|Sa ≤ ca,γh
k|u|Hk+1(Ω)

and, by H2-stability of the interpolation operator,

|πV v|Sp ≤ cγ,ah‖v‖H2(Ω), |πWw|Sa ≤ cγ,ah‖w‖H2(Ω) ∀v, w ∈ H2(Ω).

This shows that (2.13) and (2.14) hold. It then only remains to show the continuities
(2.11) and (2.12). First we show the inequality (2.11) For the second order elliptic
problem we note that after an integration by parts and Cauchy–Schwarz inequality,

ah(v − πV v, xh) =
∑

F∈Fint

〈u− πV u, �μ∇xh · nF �〉F + (u− πV u,L∗xh)h

≤ ‖u− πV u‖+|xh|Sa .

Similarly, to prove (2.12) we integrate by parts in the opposite direction in the second
order operator and obtain

ah(u− uh, y − πW y) =
∑

K∈Th

(L(u− uh), y − πW y)K

+
∑

F∈Fint

〈�μ∇uh · nF �, y − πW y〉F

×‖y − πW y‖∗(‖u− πV u‖L + |uh − πV u|Sp).
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Remark 3.1. Note that for the GLS method ε(h) = 0 in (2.11) and (2.12). This
follows from the fact that the whole residual is considered in the stabilization term.
This nice feature, however, holds only under exact quadrature. When the integrals
are approximated, the quadrature error may give rise to oscillation terms from data
that introduces a nonzero contribution to ε(h).

Remark 3.2. Since the exact adjoint solution is zero for the problems considered
here one can use simplified forms of the adjoint stabilization, without sacrificing con-
sistency. Observe however that the simplest form obtained by taking sa(·, ·) to be the
H1-scalar product, does not satisfy (2.15) and hence does not allow for optimal error
estimates.

3.2. CIP. Since in this case we must account for possible oscillation of the phys-
ical coefficients we postpone the detailed analysis to the examples below and here only
discuss the general principle. In this case we use γGLS = 0, γ1,F > 0, γ2,F > 0 in the
general expressions for the stabilization (3.5) and (3.6). The parameters γi,F , i = 1, 2,
are stabilization coefficients, the form of which will be problem specific and will be
given for each problem below. The key observation is that the following discrete
approximation result holds for suitably chosen γi,F in scip(·, ·) (see [6, 7]):

(3.11) ‖h 1
2 (βh · ∇uh − Iosβh · ∇uh)‖2 +

∑
K

‖hμ(Δuh − IosΔuh)‖2 ≤ scip(uh, uh).

Here βh is some piecewise affine interpolant of the velocity vector field β and Ios is the
quasi-interpolation operator defined in each node of the mesh as a straight average of
the function values from simplices sharing that node (see [7]). For example,

(IosΔuh)(xi) = N−1
i

∑
{K:xi∈K}

Δuh(xi)|K

with Ni := card{K : xi ∈ K}. Using (3.11) one may prove that

(3.12) inf
vh∈Vh

‖h(Luh − vh)‖h � scip(uh, uh)
1
2 + ε(h)‖uh‖.

It immediately follows that (3.3) and (3.4) are satisfied. We will leave the discussion
of (2.11)–(2.14) and (3.12) to the applications below, giving the explicit form for ε(h)
for each case. Here we instead proceed with an abstract analysis, assuming that all
physical parameters are of order O(1). We choose πV and πW as the L2-projection
in order to exploit orthogonality to “filter” the element residual. Let ‖ · ‖+ and ‖ · ‖∗
have the same definition as in the GLS case and define

(3.13) ‖u‖L := ‖hLu‖h + ‖h 1
2μ

1
2 �∇u · nF �‖Fint + ε(h)‖u‖.

Then we proceed similarly as for GLS, but we use the orthogonality of the L2-
projection, ignoring here the contribution from boundary terms. It then follows using
the orthogonality of the projection that formally

ah(v − πV v, xh) =
∑

F∈Fint

〈u− πV u, �μ∇xh · nF �〉F + (u− πV u,L∗xh − wh)h

≤ ‖u− πV u‖+(|xh|Sa + ε(h)‖xh‖).
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Similarly, to prove (2.12) we integrate by parts in the opposite direction in the second
order operator and use the L2-orthogonality to obtain

ah(u− uh, y − πW y) =
∑

K∈Th

(L(u − uh), y − πW y)K

+
∑

F∈Fint

〈�μ∇uh · nF �, y − πW y〉F

=
∑

K∈Th

(L(u − πV u) + L(πV u− uh) − wh, y − πW y)K

+
∑

F∈Fint

〈�μ∇uh · nF �, y − πW y〉F

≤ ‖y − πW y‖∗(‖hL(u− πV u)‖h
+ |πV u− uh|Sp + ε(h)‖πV u− uh‖)

≤ ‖y − πW y‖∗(‖u− πV u‖L + |uh − πV u|Sp + ε(h)‖u− uh‖).

The last inequality follows by adding and subtracting u in the last norm in the right-
hand side to obtain ε(h)‖πV u−u+u−uh‖. This term is then split using a triangular
inequality and the approximation error integrated in the ‖ · ‖L term. To use the
L2-projection in this fashion we must impose the boundary conditions weakly so that
the boundary degrees of freedom are included in Vh. For the GLS method one has
the choice between weak and strong imposition of boundary condition. In the next
section we will discuss how weakly imposed boundary conditions are included in the
formulation (2.5).

3.3. Imposition of boundary conditions. To impose boundary conditions
weakly in this framework we propose a Nitsche-type method. However, our formula-
tion differs from the standard Nitsche boundary conditions in several ways:

• Both Dirichlet and Neumann conditions are imposed using a penalty.
• There is no lower bound of the parameter for the imposition of Dirichlet-type

boundary conditions. This is related to the fact that the method never uses
the coercivity of ah(·, ·).

• Nitsche-type boundary terms are added to ah(·, ·) in order to ensure con-
sistency and adjoint consistency, but the penalty is added to the operators
sp(·, ·) and sa(·, ·), allowing for a different boundary penalty for the primal
and the adjoint. As we shall see below for some problems this is the only way
to make the Nitsche formulation consistent.

If the primal and the dual problems have a Dirchlet boundary condition on ΓD this
is imposed by

ah(uh, vh) := a(uh, vh) − 〈μ∇uh · n, vh〉ΓD
− 〈μ∇vh · n, uh〉ΓD

,

where a(·, ·) is defined by (3.2) and by adding the boundary penalty term

(3.14)

∫
ΓD

γDμh
−1uhvh ds

to sp(·, ·) and sa(·, ·) with γD > 0. In the nonhomogeneous case the suitable data is
added to the right-hand side in the standard way. For Neumann conditions on ΓN in
both the primal and the adjoint problems, these are introduced in the standard way
in a(u, v) with a suitable modification of the right-hand side of (2.1). No modification
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is introduced in ah(·, ·) but the following penalty is added to sp(·, ·) and sa(·, ·) with
γN > 0:

(3.15)

∫
ΓN

γNh∇uh · n∇vh · n ds.

If the boundary conditions for u are nonhomogeneous the usual data contributions
are introduced in the right-hand side −sp(u,wh).

As mentioned in the introduction the seminorm | · |S can be a norm in certain
situations so that the partial coercivity (2.10) implies the well-posedness of the linear
system (2.5). In the following proposition we discuss some basic sufficient conditions
for the matrix to be invertible in the case of piecewise affine approximation spaces.
For particular cases other geometric arguments may prove fruitful, as we shall see in
the second example below.

Proposition 3.3. The kernel of the linear system defined by (2.5) with the
stabilization (3.7) has dimension at most 2(d+ 1) for k = 1. The system (2.5) admits
a unique solution if the boundary conditions satisfy one of the following conditions:

1. two nonparallel polygon sides one subject to Dirichlet boundary conditions,
2. two nonorthogonal polygon sides one subject to a Dirichlet boundary condition

and the other to a Neumann condition imposed using (3.15),
3. d nonparallel polygon sides subject to Neumann conditions imposed using

(3.15) and either 1 �∈ Vh or there exists vh, wh ∈ Vh such that ah(1, vh) �= 0
and ah(wh, 1) �= 0.

Proof. It is immediate from (2.10) that the kernel of the system matrix of (2.5)
cannot be larger than the sum of the dimensions of the kernels of sp(·, ·) and sa(·, ·).
For scip(·, ·) and k = 1 the kernel is identified as [P1(Ω)]2 with dimension 2(d+ 1).

To prove well-posedness of the linear system it is enough to prove uniqueness; we
assume that f = 0 and prove that then uh ≡ zh ≡ 0.

If the Dirichlet boundary condition is imposed on a boundary, then the gradient
must be zero in the tangential direction to this boundary; since the tangents of two
boundaries span R

d we conclude that f = 0 in (2.5) implies uh = 0 due to (2.10) and
similarly zh = 0 and the matrix is invertible.

In the second case, the function is zero on the Dirichlet boundary and the gradient
is zero in the tangential directions of the Dirichlet boundary condition, eliminating d
elements in the kernel. The penalty on the Neumann boundary, being nonorthogonal
to the Dirichlet boundary, cancels the remaining free gradient. The same argument
leads to both uh = 0 and zh = 0.

For the third case we observe that the term (3.15) acting on d nonparallel polygon
sides implies that ∇uh = 0 and well-posedness is then immediate by the remaining
conditions.

Remark 3.4. Observe that Proposition 3.3 holds for any bilinear form a(·, ·), even
strongly degenerate ones.

4. Applications. We will now give three examples of problems that enter the
abstract framework. The first two problems we introduce below have well-posed pri-
mal and adjoint problems so that the above theory applies. For each method we will
propose a formulation and prove that the relations (2.7), (2.8) hold. We only consider
the CIP method in the examples below. In the first example we detail the dependence
of physical parameters in all norms and coefficients and choose stabilization parame-
ters to allow for high Péclet number flows. Due to the use of the duality argument,
however, the present analysis is restricted to the case of moderate Péclet numbers.
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In the later examples we assume that all physical parameters are unity and do not
track the dependence. As suggested above we take πV ≡ πW ≡ πL. In each case
we will detail the form of ε(h). In the last case, the elliptic Cauchy problem, the
stability properties of the problem strongly depend on the geometry of the problem
and the assumption of well-posedness does not hold in general. We will nevertheless
propose a method that satisfies the assumptions of the general theory and then study
its performance numerically.

4.1. Nonsymmetric indefinite elliptic problems. Our first examples con-
sist of a convection-diffusion-reaction problem with nonsolenoidal velocity field, as is
the case for reactive transport in compressible flow. We first consider the case of
homogeneous Dirichlet conditions where the analysis of [19] applies. Then we con-
sider the case where failure of the coercivity is due also to the boundary condition;
here we study a convection-diffusion equation with homogeneous Neumann boundary
conditions. We will detail only how the analysis of this case differs from the Dirichlet
case. For a detailed analysis of the well-posedness of the continuous problems we
refer to [10, 12] and for a finite element analysis in the case of homogeneous Neumann
conditions to [8]. Recent work on numerical methods for these problems has focused
on finite volume methods [11, 9] or hybrid finite element/finite volume methods [15].

4.1.1. Reactive transport in compressible flow: Dirichlet conditions. In
combustion problems, for example, it is important to accurately compute the trans-
port of the reacting species in the compressible flow. We suggest a scalar model
problem of convection-diffusion type with a linear reaction term cu, where the reac-
tion can have arbitrary sign:

Lu = f in Ω,(4.1)

u = 0 on ∂Ω.

The dual adjoint takes the form

L∗z := −μΔz − β · ∇z + cz = g in Ω,(4.2)

z = 0 on ∂Ω.

The variational formulation (2.1) is obtained by taking V = W := H1
0 (Ω) and a(·, ·)

defined by (3.2). We assume that f, g ∈ L2(Ω), that both (4.1) and (4.2) are well-
posed in H1

0 (Ω) by the Fredholm alternative, and that the smoothing property (2.3)
holds. See [10] for an analysis of existence and uniqueness under weaker regularity
assumptions on β and c with c ≥ 0. The below analysis can also be carried out
assuming less regularity, but the constraints on the mesh size for the error estimate
to hold will be stronger. Recall that the constants in the estimate (2.3) also de-
pend on the regularity of the coefficients. The discrete form of the bilinear form is
given by

(4.3) ah(uh, vh) := a(uh, vh)−〈∇uh · n, vh〉∂Ω−〈∇vh · n, uh〉∂Ω−〈(β · n)−uh, vh〉∂Ω ,

where (β ·n)± := 1
2 (β ·n±|β ·n|). We define the approximation spaces Vh = Wh := Xk

h .
The stabilization is chosen as

(4.4) sp(uh, vh) := scip(uh, vh) + s−bc(uh, vh)

and

(4.5) sa(zh, vh) := scip(zh, vh) + s+bc(zh, vh),
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where γ1,F ∼ (μ+‖βh ·nF ‖∞,FhF ) and γ2,F ∼ μ in (3.7) with βh the nodal interpolant
of β and

(4.6) s±bc(xh, vh) :=
〈
μh−1 xh, vh

〉
∂Ω

+ 〈|(β · n)±|xh, vh〉∂Ω .

If only the low Péclet regime is considered the second term of (4.6) is always dominated
by the first and may therefore be omitted.

Proposition 4.1 (existence of discrete solutions). Let k = 1. Then the for-
mulation (2.5) with the bilinear form (4.3) and the stabilization (4.4)–(4.5) admits a
unique solution uh ∈ Vh.

Proof. The proof is immediate by Proposition 3.3.
It is well known that the bilinear form (4.3) satisfies the consistency relations

(2.7) and (2.8) and that the stabilization (4.4)–(4.5) satisfies the upper bounds (2.13),
(2.14), and (2.15). Now we define the norms by

‖v‖+ := ‖v‖∗ := ‖μ 1
2h−

1
2 v‖2Fint

+ ‖(ζPe + h−1)v‖ + ‖h 1
2μ

1
2∇v‖∂Ω + ‖β

1
2∞v‖∂Ω.

Here ζPe := (β
1
2∞h−

1
2 +μ

1
2 h−1 + c

1
2∞) with β∞ = ‖β‖L∞(Ω) and c∞ := ‖c‖L∞(Ω). Also

define

‖v‖L := ‖μ 1
2 hΔv‖h + ‖β− 1

2∞ h
1
2β · ∇v‖ + ‖c

1
2∞v‖ + ‖μ 1

2 h
1
2 �∇v · nF �‖Fint

+ ‖(μ
1
2h−

1
2 + β

1
2∞)v‖∂Ω + ε(h)‖v‖.

It is straightforward to show that

‖u− πV u‖+ + ‖u− πWu‖∗ � (ζPe + h−1)hk+1|u|Hk+1(Ω)

and (for simplicity with ε(h) = 0)

‖u− πV u‖L � ζPeh
k+1|u|Hk+1(Ω).

It then only remains to prove the continuities (2.11) and (2.12) to conclude that
Theorem 2.3 holds.

Proposition 4.2. The bilinear form (4.3) satisfies the continuities (2.11) and
(2.12) with

ε(h) ∼ h2(|β|W 2,∞ + |c|W 1,∞).

Proof. First we consider (2.11). After an integration by parts in a(·, ·) we have

ah(u− πV u, xh) =
∑

F∈Fint

〈u− πV u, �μ∇xh · nF �〉F + (u − πV u,L∗xh)h

− 〈u− πV u, (β · n)+xh〉∂Ω = I + II + III.

Considering I−III we find using the Cauchy–Schwarz inequality

I + III ≤ ‖u− πV u‖+|xh|Sa .

For II, using the discrete interpolation results (3.11), the discrete commutator prop-
erty (see [2]), and the standard approximation followed by an inverse inequality in
the last term,

II = (u − πV u,−ihβ · ∇xh + Ios(ihβh · ∇xh) − μΔxh + IosμΔxh)h

+ (u− πV u, cxh − ih(cxh)) + (u− πV u, (β − ihβ) · ∇xh)

≤ ‖u− πV u‖+(cos|xh|Sa + cih
2(|β|W 2,∞ + |c|W 1,∞)‖xh‖).
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The second continuity follows in a similar fashion,

ah(u− uh, y − πW y) = (L(u − uh), y − πW y)h +
∑

F∈Fint

〈�μ∇uh · nF �, y − πW y〉F

+ 〈(β · n)−uh, y − πW y〉∂Ω + 〈uh, μ∇(y − πW y) · n〉∂Ω
= I + II + III + IV.

Considering first the term I we get, with ξh = πV u− uh,

I = (L(u − πV u) + Lξh, y − πW y)

� ‖y − πW y‖∗(‖u− πV u‖L + |ξh|Sp + h2(|β|W 2,∞(Ω) + |c|W 1,∞(Ω))‖u− uh‖),

where we used once again the inequalities

(μΔξh + βh∇ξh, y − πW y) ≤ cos|ξh|Sp‖y − πW y‖∗,
((β − ihβ) · ∇ξh, y − πW y) � h2|β|W 2,∞(‖u− πV u‖ + ‖u− uh‖)‖y − πW y‖∗

and, by the discrete commutator property,

((∇ · β + c)ξh, y − πW y)

= ((∇ · β + c)ξh − ih((∇ · β + c)ξh), y − πW y)

� h2(|β|W 2,∞ + |c|W 1,∞)(‖u− πV u‖ + ‖u− uh‖)‖y − πW y‖∗.

For the second, third, and fourth terms we have using the Cauchy–Schwarz inequality,
adding and subtracting πV u and recalling the form of the boundary penalty term,

II + III + IV �
(
‖μ 1

2 h
1
2 �∇uh · nF �‖Fint

+ ‖
(
μ

1
2h−

1
2 + |(β · n)−|

1
2

)
uh‖∂Ω

)
‖y − πW y‖∗

≤ (‖u− πV u‖L + |πV u− uh|Sp)‖y − πW y‖∗.

We conclude that the claim holds with ε(h) ∼ h2(|β|W 2,∞ + |c|W 1,∞).

Remark 4.3. Note that if the physical parameters are constant, then the analy-
sis holds without restrictions on the mesh size in contrast to the standard Galerkin
analysis of [19]. In this case, for k = 1 the estimate takes the simple form

‖u− uh‖ � ca,Ωζ
2
Peh

4|u|H2(Ω).

Assuming that β∞ ∼ O(1), c∞ = 0 we get

‖u− uh‖ � ca,Ω

(
1

h
+

μ

h2

)
h4|u|H2(Ω).

Here the constant ca,Ω typically is proportional to some negative power of μ, making
the estimate valid only for moderate Péclet numbers. If we assume that ca,Ω = O(μ−1)

we see that the quasi-optimal convergence of order h
3
2 is obtained when h

3
2 < μ. A

more precise estimate for the hyperbolic regime, showing that the estimate cannot
degenerate further even for vanishing μ, is the subject of the second part of this
work [5].



STABILIZED FEM FOR NONCOERCIVE PROBLEMS A2767

4.1.2. Transport in compressible flow: Pure Neumann conditions. We
will now consider the convection-diffusion equation with homogeneous Neumann con-
ditions. The main difficulty in this problem compared to the previous one is that due
to the homogeneous Neumann condition, the primal and dual problems have different
boundary conditions. The nonsolenoidal β imposes special compatibility conditions
on g leading to complications in the finite element analysis and additional stability
issues for the discrete solution. For this example we will assume that all physical
parameters are order one. After presenting the problem and the method we propose,
we first show that the discrete problem is well-posed for all mesh sizes when piece-
wise affine approximation is used. Then we prove that the assumptions of Lemma
2.2 and Theorem 2.3 are satisfied. Optimal error estimates for the problem similar
to that above are obtained after accounting for some minor modifications needed to
accomodate the compatibility conditions particular to this problem. The problem
reads

−Δu+ ∇ · (βu) = f in Ω,(4.7)

−∇u · n+ β · nu = 0 on ∂Ω.

The dual adjoint problem is formally written

−Δz − β · ∇z = g in Ω,(4.8)

−∇z · n = 0 on ∂Ω.

We assume that the following compatibility conditions hold:

(4.9)

∫
Ω

f dx = 0,

∫
Ω

gm dx = 0,

where m ∈ H2(Ω), m > 0, is the unique solution to the homogeneous form of the
primal problem

−Δm+ ∇ · (βm) = 0 in Ω,(4.10)

−∇m · n+ β · nm = 0 on ∂Ω

under the additional constraint

|Ω|−1

∫
Ω

m dx = 1.

Then the problems (4.7) and (4.8) are both well-posed by the Fredholm alternative.
Since we assume that the regularity estimate (2.3) holds, m ∈ C0(Ω̄) and supx∈Ωm =:
M ∈ R

+ and since m > 0 we may introduce mmin := infΩ m > 0 (see [8]).
The problem is cast in the form (2.1) by setting V := H1(Ω) ∩ L2

0(Ω), where
L2
0(Ω) denotes the set of functions with global average zero, and by taking

a(u, v) := (∇u,∇v) − (u, β · ∇v).

The finite element method (2.5) is obtained by setting Vh = Wh := Xk
h ∩ L2

0(Ω),

(4.11) ah(uh, vh) := a(uh, vh),

and the stabilization operators

(4.12) sx(·, ·) := scip(·, ·) + sbc,x(·, ·) with x = a, p.



A2768 ERIK BURMAN

scip(·, ·) is given by (3.7) with γi,F := 1, i = 1, 2. The boundary operators finally are
defined by

sbc,p(uh, vh) :=

∫
Ω

h(∇uh · n− β · nuh)(∇vh · n− β · nvh) ds

for k ≥ 2 and

sbc,p(uh, vh) :=

∫
Ω

h(∇uh · n− (ihβ) · nuh)(∇vh · n− (ihβ) · nvh) ds

for k = 1, and sbc,a(·, ·) finally is given by (3.15), with γN ∼ 1. The boundary sta-
bilization operator sbc,p(·, ·) for k = 1 is only weakly consistent. It is straightforward
to show that the inconsistency introduced by replacing β by ihβ is compatible with
(2.13). We omit the details here, but similar arguments are used below to prove the
continuity (2.12).

Proposition 4.4 (existence of discrete solution). Assume k = 1 in the definition
of Vh. Then there exists a unique solution uh to the discrete problem (2.5).

Proof. As before we assume f = 0 and observe that

sp(uh, uh) + sa(zh, zh) = 0.

This implies zh, uh ∈ P1(Ω). Since ‖∇zh · n‖∂Ω = 0 and zh has zero average, we
conclude that zh = 0. For uh there holds

‖∇uh · n+ (ihβ · n)uh‖∂Ω = 0.

Since ∇uh · n is constant on every polyhedral side Γ of Ω, so is (ihβ · n)uh. But since
(ihβ · n)uh|Γ ∈ P2(Γ) we conclude that both ihβ and uh must be constant. Since this
is true for all faces Γ of Ω, uh is a constant globally. We conclude by recalling that
zero average was imposed on the approximation space.

In case k ≥ 2, we let the norms ‖ · ‖+, ‖ · ‖∗ be defined by (3.10) and ‖ · ‖L by

‖v‖L := ‖Lv‖h + ‖h 1
2 �∇v · nF �‖Fint + ‖h 1

2∇v · n‖∂Ω + β∞‖h 1
2 v‖∂Ω.

When k = 1 we let the norm ‖ · ‖+ be defined by (3.10) but define

‖v‖∗ := ‖h−1v‖ + ‖h− 1
2 v‖F + ε(h)‖v‖∂Ω

and, assuming h < 1,

‖v‖L := ‖Lv‖h + ‖h 1
2 �∇v · nF �‖Fint + ‖h 1

2∇v · n‖∂Ω + (1 + β∞)‖v‖∂Ω + ε(h)‖v‖.

For the projection operators πV and πW we once again choose the L2-projection.
Proposition 4.5. The bilinear form (4.11) satisfies the continuities (2.11) and

(2.12) with

ε(h) ∼ h2|β|W 2,∞(Ω).

Proof. As before we integrate by parts in ah(·, ·) to obtain

ah(u− πV u, xh) =
∑

F∈Fint

〈u− πV u, �∇xh · nF �〉F + (u − πV u,L∗xh)h

+ 〈u− πV u,∇xh · n〉∂Ω = I + II + III.



STABILIZED FEM FOR NONCOERCIVE PROBLEMS A2769

The treatment of terms I and II is identical to the Dirichlet case. Term III is bounded
using the Cauchy–Schwarz inequality, recalling that the Neumann condition is penal-
ized in sa(·, ·),

III ≤ ‖u− πV u‖+|xh|Sa .

The second continuity follows in a similar fashion. We write

ah(u− uh, y − πW y) =
∑

K∈Th

(L(u − uh), y − πW y)K

+
∑

F∈Fint

〈�∇uh · nF �, y − πW y〉F

− 〈∇uh · n− (β · n)uh, y − πW y〉∂Ω
= I + II + III

and observe that the treatment of terms I and II is analogous with the Dirichlet case.
For term III, when k ≥ 2 we recall that ∇uh · n− (β · n)uh is penalized in sp(·, ·) and
we may conclude as before using a Cauchy–Schwarz inequality

III � ‖u− πV u‖∗(|uh − πV u|Sp + ‖u− πV u‖L).

For the case k = 1 we must take care to handle the lack of consistency. Therefore we
add and subtract ihβ and use the boundary condition on u to get

III = 〈∇(uh − u) · n− (ihβ · n)(uh − u), y − πW y〉∂Ω
+ 〈(ihβ − β) · n(uh − u), y − πW y〉∂Ω .

First we add and subtract πV u so that u − uh = u − πV u + ξh, ξh := πV u − uh
and split the scalar products with Cauchy–Schwarz inequality. For the first term we
immediately have

〈∇(uh − u) · n− (ihβ · n)(uh − u), y − πW y〉∂Ω
≤‖y − πW y‖∗(‖u− πV u‖L + |ξh|Sp).

For the πV u− u part of the second term we observe that

〈(ihβ − β) · n(πV u− u), y − πW y〉∂Ω � ‖y − πW y‖∂Ωh2|β|W 2,∞(Ω)‖πV u− u‖∂Ω.

Applying an elementwise trace inequality in the ξh part of the second term, we have

〈(ihβ − β) · n ξh, y − πW y〉∂Ω � ‖y − πW y‖∂Ω‖ihβ − β‖L∞(∂Ω)h
− 1

2 ‖ξh‖.

Then we use the definition of the norms, in particular that ‖h− 1
2 (y − πW y)‖∂Ω ≤

‖y − πW y‖∗, to obtain

III � ‖y − πW y‖∗(‖u− πV u‖L + |ξh|Sp + h2|β|W 2,∞‖ξh‖).

Using the triangular inequality ‖ξh + u− u‖ ≤ ‖πV u− u‖ + ‖u− uh‖, we obtain

III � ‖y − πW y‖∗(‖u− πV u‖L + |ξh|Sp + ε(h)‖u− uh‖)

with ε ∼ h2|β|W 2,∞(Ω). The proof is complete.



A2770 ERIK BURMAN

Remark 4.6. It is straightforward to verify that Lemma 2.2 holds. The assump-
tions of Theorem 2.3, however, still are not satisfied since we want to use the solutions
of the problems L∗ϕ = u − uh and Lψ = zh, but the solution ϕ will in general not
exist since u−uh does not satisfy the second compatibility condition of (4.9). Instead
we will use m, the solution of (4.10) as weight, as suggested in [8], and solve the
well-posed problem

L∗ϕ = (u− uh)/m.

We may then write

‖(u− uh)m− 1
2 ‖2 + ‖zh‖2 = (u − uh,L∗ϕ) + (Lψ, zh)

and proceed as in Theorem 2.3, now using the stability estimate

|ϕ|H2(Ω) ≤ ca,Ω‖(u− uh)m−1‖ ≤ ca,Ω/m
1
2

min‖(u− uh)m−1/2‖

to obtain

‖(u− uh)m− 1
2 ‖ + ‖zh‖ � hk+1|u|Hk+1(Ω).

For an estimate in the unweighted L2-norm we observe that

M− 1
2 ‖u− uh‖ ≤ ‖(u− uh)m− 1

2 ‖.

Convergence follows by Lemma 2.2 and the modified Theorem 2.3. Observe that the
constants in ε(h) now depend on the (unknown) minimum value of m.

Remark 4.7. In practice the zero average condition can be imposed using
Lagrange multipliers. The above analysis holds for that case after minor modifi-
cations.

4.2. The Cauchy problem. We consider the case of a Helmholtz-type problem
where both the solution itself and its normal gradient are specified on one portion of
the domain and the other portion is free. We let ΓV and ΓW be connected subsets
of ∂Ω such that ∂Ω := Γ̄V ∪ Γ̄W and ΓV ∩ ΓW = ∅. We will consider the problem,
κ ∈ R,

−Δu+ κu = f in Ω,(4.13)

∇u · n = u = 0 on ΓV ,

with dual problem

−Δz + κz = g in Ω,(4.14)

∇z · n = z = 0 on ΓW .

The weak formulations (2.1) and (2.2) are obtained by setting

V := {v ∈ H1(Ω) : v|ΓV = 0}

and

W := {v ∈ H1(Ω) : v|ΓW = 0}
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and defining

a(u, v) := (∇u,∇v) + κ(u, v) ∀u ∈ V, v ∈W.

Note that both symmetry and the G̊ardings inequality fail in this case because the
functions in the bilinear form have to be taken in different spaces and hence the choice
v = u is prohibited.

To design a suitable discrete formulation (2.5) for this problem we generalize the
ideas of the Nitsche-type weak imposition of boundary condition. Observe that in this
case boundary conditions imposed using a penalty in the standard fashion cannot be
consistent for both the primal and the adjoint problem, since the primal and dual
solutions are zero on different parts of the boundary. It is therefore important in
this case that two stabilization operators are used, one for the primal and one for
the adjoint. We define the approximation spaces Vh = Wh := Xk

h . We propose the
bilinear form

(4.15) ah(uh, vh) := (∇uh,∇vh) + κ(uh, vh) − 〈∇vh · n, uh〉ΓV
− 〈∇uh · n, vh〉ΓW

and for the stabilization we use

(4.16) sx(uh, vh) := scip(uh, vh) + sbc,x(uh, vh), x = a, p,

where scip(·, ·) is given by (3.7), with γF,i ∼ 1, i = 1, 2, and

sbc,x(uh, vh) :=

∫
X

(h−1uh vh + h∇uh · n∇vh · n) ds,

where X = ΓV for x = p and X = ΓW for x = a. If some part of the boundary is
equipped with Dirichlet or Neumann boundary conditions this is imposed as described
in section 3.3.

Proposition 4.8 (existence of discrete solution for k = 1). Define (2.5) by the
bilinear forms (4.15) and (4.16). Let k = 1 in Vh. Then there exists a unique solution
(uh, zh) ∈ [Vh]2 to (2.5).

Proof. Let f = 0. By (2.10) there holds, uh, zh ∈ P1(Ω) and uh|ΓV = ∇uh ·n|ΓV =
0 as well as zh|ΓW = ∇zh ·n|ΓW = 0, by which we conclude that the matrix is invertible
using case 2 of Proposition 3.3.

For the error analysis we once again choose the interpolants πV and πW to be the
standard L2-projection πL. We will now prove that the assumptions (2.7)–(2.8) and
(2.11)–(2.12) are satisfied.

Lemma 4.9 (consistency of bilinear form). The bilinear form (4.15) satisfies
(2.7) and (2.8).

Proof. By an integration by parts we see that for u solution of (4.13)

(−Δu+ κu, v + vh) = (∇u,∇(v + vh)) + (κu, v + vh)

− 〈∇u · n, v + vh〉ΓW︸ ︷︷ ︸
since ∇u·n=0 on ΓV

−〈∇(v + vh) · n, u〉ΓV︸ ︷︷ ︸
since u=0 on ΓV

= ah(u, v + vh).

Similarly for z solution of (4.14) consistency follows by observing that

(v + vh,−Δz) = (∇(v + vh),∇z) − 〈∇z · n, v + vh〉ΓV︸ ︷︷ ︸
since ∇z·n=0 on ΓW

−〈∇(v + vh) · n, z〉ΓW︸ ︷︷ ︸
since z=0 on ΓW

.
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We define the norms ‖ · ‖+ and ‖ · ‖∗ by

‖v‖+ := ‖h− 1
2 v‖Fint + ‖h−1v‖ + ‖h− 1

2 v‖ΓW + ‖h 1
2∇v · n‖ΓW ,

‖v‖∗ := ‖h− 1
2 v‖Fint + ‖h−1v‖ + ‖h− 1

2 v‖ΓV + ‖h 1
2∇v · n‖ΓV ,

and

‖v‖L := ‖hLv‖h + ‖h 1
2 �∇v · nF �‖Fint + ‖h− 1

2 v‖ΓV + ‖h 1
2∇v · n‖ΓV .

It is straightforward to show (2.13) and (2.14).
Proposition 4.10. For ah(·, ·) defined by (4.15), the continuities (2.11) and

(2.12) hold with ε(h) = 0.
Proof. We proceed as before using an integration by parts in (4.15) to obtain

ah(v − πV v, xh) =
∑

F∈Fint

〈v − πV v, �∇xh · nF �〉F + (v − πV v,−Δxh + κxh)h

+ 〈v − πV v,∇xh · n〉ΓW
− 〈∇(v − πV v) · n, xh〉ΓW

= I + II + III + IV.

The first sum I is upper bounded as before using the Cauchy–Schwarz inequality, and
for the second sum, we use the orthogonality of the L2-projection, (v−πV v, κxh) = 0,
and the discrete interpolation inequality (3.11) leading to

I + II � ‖u− πV u‖+|xh|Sa .

For the terms III and IV we note that by the definition of ‖ · ‖+ and | · |Sa there also
holds

III + IV ≤ ‖u− πV u‖+|xh|Sa .

This ends the proof of (2.11). The proof of (2.12) is similar. Using integration by
parts in the other direction we have

ah(u− uh, y − πW y) = (−Δ(u− uh) + κ(u− uh), y − πW y)h

+
∑

F∈Fint

〈�∇uh · nF �, y − πW y〉F + 〈u− uh,∇(y − πW y) · n〉ΓV

+ 〈∇(u− uh) · n, y − πW y〉ΓV
= I + II + III + IV.

Using the same arguments as before, adding and subtracting πV u in all the terms in
the left slot we have for the term I, using ξh = πV u− uh,

I = (−Δ(u− πV u) + κ(u− πV u), y − πW y)h − (Δξh − IosΔξh, y − πW y)h

� (‖u− πV u‖L + |ξh|Sp)‖y − πW y‖∗.

By the definition of the stabilization operator and the fact that u = ∇u ·n = 0 on ΓV

we may once again add and subtract πV u in the terms II and III to obtain

II + III + IV = 〈�∇uh · nF �, y − πW y〉Fint

− 〈uh,∇(y − πW y) · n〉ΓV
− 〈∇uh · n, y − πW y〉ΓV

≤ ‖y − πW y‖∗(‖u− πV u‖L + |ξh|Sp),

by which we conclude.
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Corollary 4.11. Assume that the problems (4.13) and (4.14) admit unique
solutions for which (2.3) holds. Then the conclusions of Theorem 2.3 hold for (2.5)
defined by Vh, (4.15), and (4.16).

Proof. In Lemma 4.9 we verified the consistencies (2.7) and (2.8). In Proposition
4.10 we verified the continuities (2.11) and (2.12). It is straightforward to verify that
(2.13)–(2.14) hold for πV = πW = πL and sp(·, ·), sa(·, ·) defined by (4.16) under the
assumptions on the mesh and the regularity assumptions on the solution.

Remark 4.12. Admittedly Corollary 4.11 is of purely academic interest since the
Cauchy problem under consideration in general is ill-posed, with very weak stability
properties. As we shall see in the numerical section the method nevertheless returns
useful approximations. An example of a sufficient condition for Theorem 2.3 to result
in a convergence estimate, if u is smooth, is that there exists M ∈ R

+ and s ∈ R,
with s > −k such that ‖ϕ−πV ϕ‖∗ ≤Mhs for all u−uh, with ϕ the solution of (2.2),
with g = u− uh. The expected convergence rate in that case would be

(4.17) ‖u− uh‖ �M
1
2h(k+s)/2|u|

1
2

Hk+1(Ω)
.

Unfortunately, no such stability estimates are known for the Cauchy problem and a
regularized adjoint would have to be considered. We refer to [3] for conditional stabil-
ity estimates for the problem (4.13) in general Lipschitz domains, leading to logarith-
mic estimates and to [13, 18] and [17] for other work on finite element methods on the
Cauchy problem and some stability results under special geometrical assumptions.

5. Numerical investigations. We will present numerical examples of conver-
gence for a smooth exact solution of the applications given above. For the computa-
tions we have used FreeFEM++ [14]. All problems will be set in Ω := (0, 1) × (0, 1).
We use unstructured meshes with 2N elements on each side, N = 3, . . . , 8, and draw-
ing on our previous experience of the CIP method we fix the stabilization parameters
to be γ1,F = 0.01 for piecewise affine approximation and γi,F = 0.001, i = 1, 2, for
piecewise quadratic approximation. The boundary penalty parameter is chosen to be
γbc = 10 for both cases and for both Dirichlet and Neumann penalty terms. Let us
remark that in particular for the ill-posed Cauchy problem, an optimal choice of the
stabilization parameter can have a big impact on the error on a fixed mesh but does
not appear to influence the convergence behavior. For each example we plot the error
quantities estimated in Lemma 2.2 and Theorem 2.3. When appropriate we indicate
the experimental convergence order in parentheses. We report the computational
mesh for N = 5 in the left plot of Figure 5.1.

5.1. Convection-diffusion problems. We consider an example given in [9],
where, in (4.1), the physical parameters are chosen as μ = 1, c = 0,

β := −100

(
x+ y
y − x

)

(see the right plot of Figure 5.1) and the exact solution is given by

(5.1) u(x, y) = 30x(1 − x)y(1 − y).

This function satisfies homogeneous Dirichlet boundary conditions and has ‖u‖ = 1.
Note that ‖β‖L∞ = 200 and ∇ · β = −200, making the problem strongly noncoercive
with a medium high Péclet number. The right-hand side is then chosen as Lu and in
the case of (nonhomogeneous) Neumann conditions, a suitable right-hand side is intro-
duced to make the boundary penalty term consistent. The optimal convergence rate
for the stabilizing terms given in Lemma 2.2 is verified in all the numerical examples.
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Fig. 5.1. Left: example of unstructured mesh, N = 5. Right: plot of the velocity vector field.

Table 5.1

Convergence orders of estimated quantities for the Dirichlet problem approximated using piece-
wise affine elements.

N ‖u− uh‖ ‖zh‖ |uh|Sp + |zh|Sa

3 0.038 (–) 0.024 0.57
4 0.012 (1.7) 0.0017 0.24
5 0.0024 (2.3) 0.00043 0.11
6 0.00043 (2.5) 0.00012 0.052
7 0.00010 (2.1) 2.5E-05 0.025
8 2.3E-05 (2.1) 5.3E-06 0.012

Table 5.2

Convergence orders of estimated quantities for the Dirichlet problem approximated using piece-
wise quadratic elements.

N ‖u− uh‖ ‖zh‖ |uh|Sp + |zh|Sa

3 0.0014 (–) 0.00041 0.024
4 0.00012 (3.5) 4.6E-05 0.0044
5 8.8E-06 (3.8) 4.6Ee-06 0.00081
6 8.0E-07 (3.5) 6.6E-07 0.00017
7 8.3E-08 (3.3) 8.2E-08 3.7E-05

5.1.1. Dirichlet boundary conditions. In Table 5.1 we show the result of
the computation when Dirichlet boundary conditions are applied and piecewise affine
approximation is used on a sequence of unstructured meshes. We observe that the
solution exhibits the preasymptotic convergence rate h

3
2 under one refinement before

achieving the full second order convergence rate in L2.

In Table 5.2 similar data for second order polynomials are presented. Here the
asymptotic regime with full convergence is obtained from the first refinement.

5.1.2. Neumann boundary conditions. We consider the same differential
operator but with (nonhomogeneous) Neumann boundary conditions. This is exactly
the problem considered in [9]. The average values of the approximate solutions have
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Table 5.3

Convergence orders of estimated quantities for the Neumann problem approximated using piece-
wise affine elements.

N ‖u− uh‖ ‖zh‖ |uh|Sp + |zh|Sa

3 0.028 (–) 0.028 (–) 0.82
4 0.0066 (2.1) 0.016 (0.8) 0.32
5 0.0016 (2.0) 0.0058 (1.5) 0.13
6 0.00039 (2.0) 0.0015 (2.0) 0.060
7 9.7E-05 (2.0) 0.00031 (2.3) 0.028
8 2.3E-05 (2.1) 6.5E-05 (2.3) 0.013

Table 5.4

Convergence orders of estimated quantities for the Neumann problem approximated using piece-
wise quadratic elements.

N ‖u− uh‖ ‖zh‖ |uh|Sp + |zh|Sa

3 0.00061 (–) 0.0020 (–) 0.030
4 6.6E-05 (3.2) 0.00040 (2.3) 0.0054
5 6.5E-06 (3.3) 2.5E-05 (4.0) 0.00099
6 7.1E-07 (3.2) 1.7E-06 (3.9) 0.00020
7 7.9E-08 (3.2) 1.4E-07 (3.6) 4.2E-05

been imposed using Lagrange multipliers. In Tables 5.3 and 5.4 we observe optimal
convergence rates once again as predicted by theory. Observe that in the case of
piecewise affine approximation the dual solution zh comes into the asymptotic regime
only on the finer meshes.

5.2. A Cauchy problem. Since we have no complete theory for the ill-posed
Cauchy problem we will proceed with a more thorough numerical investigation. First
we consider the Cauchy problem obtained by taking κ = 0 in (4.13). Then we consider
a Cauchy problem using the convection-diffusion operator of (4.7) in two different
boundary configurations. For all test cases we use the exact solution (5.1) and the
stabilization parameters given above. We present the data for the quantities estimated
in Lemma 2.2 and Theorem 2.3, but also the error in the total diffusive flux in the
discrete H−1/2(∂Ω) norm on the boundary.

‖∇(u− uh) · n‖2− 1
2 ,h,∂Ω

:=

∫
∂Ω

h(∇(u− uh) · n)2 ds.

5.2.1. Poisson’s equation. Here we consider the problem with κ = 0 in (4.13).
We impose the Cauchy data, i.e., both Dirichlet and Neumann data, on boundaries
x = 0, 0 < y < 1, and y = 1, 0 < x < 1. In Table 5.5 we show the obtained errors

Table 5.5

Convergence orders of estimated quantities for the Poisson Cauchy problem approximated using
piecewise affine elements.

N ‖u− uh‖ ‖zh‖ |uh|Sp + |zh|Sa ‖∇(u− uh) · n‖− 1
2
,h,∂Ω

3 0.070 (–) 0.59 (–) 2.0 (–) 2.7 (–)
4 0.074 (–) 0.42 (0.49) 0.79 (1.3) 1.3 (1.1)
5 0.037 (1.0) 0.30 (0.49) 0.30 (1.4) 0.75 (0.80)
6 0.029 (0.35) 0.26 (0.2) 0.13 (1.2) 0.51 (0.56)
7 0.024 (0.27) 0.20 (0.37) 0.054 (1.3) 0.33 (0.62)
8 0.020 (0.26) 0.16 (0.32) 0.022 (1.3) 0.21 (0.65)
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Table 5.6

Convergence orders of estimated quantities for the Poisson Cauchy problem approximated using
piecewise quadratic elements, γ = 0.001, γbc = 10.

N ‖u− uh‖ ‖zh‖ |uh|Sp + |zh|Sa ‖∇(u− uh) · n‖− 1
2
,h,∂Ω

3 0.031 (–) 0.062 (–) 0.073 (–) 0.92 (–)
4 0.022 (0.49) 0.025 (1.3) 0.014 (2.4) 0.48 (0.94)
5 0.013 (0.76) 0.014 (0.84) 0.0025 (2.5) 0.24 (1.0)
6 0.0088 (0.56) 0.011 (0.35) 0.00047 (2.4) 0.13 (0.88)
7 0.0069 (0.35) 0.0067 (0.72) 8.8E-05 (2.8) 0.080 (0.70)

Fig. 5.2. Study of the L2-norm error under variation of the stabilization parameter. Circles:
affine elements; squares: quadratic elements.

when piecewise affine approximation is used and in Table 5.6 we show the results for
piecewise quadratic approximation.

First note that in both cases one observes the optimal convergence of the sta-
bilization terms predicted by Lemma 2.2. For the L2-norm of the error we observe
experimental convergence orders hα with typically α ∼ 0.25 for piecewise affine ap-
proximation and α ∼ 0.5 for quadratic approximation. Higher convergence orders
were obtained in both cases for the normal diffusive flux. In Figure 5.2, we present
a study of the L2-norm error under variation of the stabilization parameter. The
computations are made on one mesh, with 32 elements per side, and the Cauchy
problem is solved with k = 1, 2 and different values for γF,1 = γF,2 with γbc = 10
fixed. The level of 10% relative error is indicated by the horizontal dotted line. Ob-
serve that the robustness with respect to stabilization parameters is much better for
quadratic approximation. Indeed the 10% error level is met for all parameter values
γi,F ∈ [2.0E − 5, 1], whereas in the case of piecewise affine approximation one has
to take γ1,F ∈ [0.003, 0.05] approximately. Similar results for the boundary penalty
parameter not reported here showed that the method was even more robust under
perturbations of γbc. In the left plot of Figure 5.3 we present the contour plot of the
error u− uh and in the right we show the contour plot of zh. In both cases the error
is concentrated on the boundary where no boundary conditions are imposed.
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Fig. 5.3. Contour plots of the error u − uh (left plot) and the error in the dual variable zh
(right plot).

5.2.2. The noncoercive convection-diffusion equation. As a last example
we consider the Cauchy problem using the noncoercive convection-diffusion operator
(3.1). The stability of the problem depends strongly on where the boundary conditions
are imposed in relation to the inflow and outflow boundaries. To illustrate this we
propose two configurations. Recalling the right plot of Figure 5.1 we observe that the
flow enters along the boundaries y = 0, y = 1, and x = 1 and exits on the boundary
x = 0. Note that the strongest inflow takes place on y = 0 and x = 1, the flow being
close to parallel to the boundary in the right half of the segment y = 1. We propose
the two different Cauchy problem configurations:

Case 1. We impose Dirichlet and Neumann data on the two mixed boundaries
x = 0 and y = 1.

Case 2. We impose Dirichlet and Neumann data on the two inflow boundaries
y = 0 and x = 1.

In the first case the outflow portion or the inflow portion of every streamline is included
in the Cauchy boundary, whereas in the second case the main part of the inflow
boundary is included. This highlights two different difficulties for Cauchy problems
for the convection-diffusion operator. In Case 1 we must solve the problem backward
along the characteristics, essentially solving a backward heat equation, whereas in
Case 2 the crosswind diffusion must reconstruct missing boundary data.

In Tables 5.7–5.10, we report the results on the same sequence of unstructured
meshes used in the previous examples for piecewise affine and piecewise quadratic
approximations and the two problem configurations. First note that in all cases the
result of Lemma 2.2 holds as expected. Otherwise the method behaves very differently
in the two cases. For Case 1 we observe better convergence orders than in the case
of the pure Poisson problem, typically h

1
2 for affine elements and h for quadratic

elements in the L2-norm. Even higher orders are obtained for the global diffusive
flux in the discrete H− 1

2 norm. The dual variable zh on the other hand has very
poor convergence, although it is quite small on all meshes in the case of quadratic
approximation. Case 2 (control on main part of the inflow) is clearly much more
difficult. Convergence orders for both the affine case and the quadratic case are poor
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Table 5.7

Convergence orders of estimated quantities for the convection-diffusion Cauchy problem ap-
proximated using piecewise affine elements (Case 1).

N ‖u− uh‖ ‖zh‖ |uh|Sp + |zh|Sa ‖∇(u− uh) · n‖− 1
2
,h,∂Ω

3 0.032 (–) 0.044 (–) 1.6 (–) 0.35 (–)
4 0.010 (1.7) 0.020 (1.1) 0.61 (1.4) 0.13 (1.4)
5 0.0045 (1.2) 0.034 (–) 0.24 (1.3) 0.048 (1.4)
6 0.0035 (0.36) 0.052 (–) 0.10 (1.3) 0.018 (1.4)
7 0.0039 (–) 0.056 (–) 0.045 (1.2) 0.0074 (1.3)
8 0.0026 (0.58) 0.059 (–) 0.020 (1.2) 0.0031 (1.3)

Table 5.8

Convergence orders of estimated quantities for the convection-diffusion Cauchy problem ap-
proximated using piecewise affine elements (Case 2).

N ‖u− uh‖ ‖zh‖ |uh|Sp + |zh|Sa ‖∇(u− uh) · n‖− 1
2
,h,∂Ω

3 0.13 (–) 0.032 (–) 1.74 (–) 0.44 (–)
4 0.097 (0.42) 0.012 (1.4) 0.63 (1.5) 0.23 (0.94)
5 0.075 (0.37) 0.010 (0.26) 0.24 (1.4) 0.11 (1.1)
6 0.067 (0.16) 0.010 (–) 0.10 (1.3) 0.070 (0.65)
7 0.063 (0.089) 0.0097 (0.044) 0.043 (1.2) 0.047 (0.57)
8 0.056 (0.17) 0.0082 (0.24) 0.018 (1.3) 0.030 (0.65)

Table 5.9

Convergence orders of estimated quantities for the convection-diffusion Cauchy problem ap-
proximated using piecewise quadratic elements (Case 1).

N ‖u− uh‖ ‖zh‖ |uh|Sp + |zh|Sa ‖∇(u− uh) · n‖− 1
2
,h,∂Ω

3 0.0022 (–) 0.0037 (–) 0.096 (–) 0.033 (–)
4 0.00054 (2.0) 0.00089 (2.1) 0.020 (2.3) 0.0091 (1.9)
5 0.00024 (1.2) 0.0013 (–) 0.0041 (2.3) 0.0021 (2.1)
6 0.00012 (1.0) 0.00078 (0.74) 0.00096 (2.1) 0.00047 (2.2)
7 5.6E-05 (1.1) 0.00048 (0.70) 0.00022 (2.1) 0.00015 (1.6)

Table 5.10

Convergence orders of estimated quantities for the convection-diffusion Cauchy problem ap-
proximated using piecewise quadratic elements (Case 2).

N ‖u− uh‖ ‖zh‖ |uh|Sp + |zh|Sa ‖∇(u− uh) · n‖− 1
2
,h,∂Ω

3 0.020 (–) 0.0014 (–) 0.074 (–) 0.12 (–)
4 0.034 (–) 0.00028 (2.3) 0.013 (2.5) 0.11 (0.12)
5 0.026 (0.39) 0.00011 (1.4) 0.0025 (2.4) 0.065 (0.76)
6 0.024 (0.12) 8.3E-05 (0.4) 0.00046 (2.4) 0.043 (0.60)
7 0.023 (0.06) 3.6E-05 (1.2) 8.7E-05 (2.4) 0.029 (0.57)

(around ∼ h
1
5 ) and uneven. The diffusive fluxes on the boundary nevertheless still

converge approximately as h
1
2 in both cases. We conclude that the Cauchy convection-

diffusion problem is much less ill-posed if for each streamline either the inflow part or
the outflow part lies in the controlled zone. The fact that we in Case 2 control more
of the inflow boundary is unimportant compared to the fact that both the inflow and
the outflow are unknown in the boundary portion around the corner (0, 1).
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6. Concluding remarks. We have proposed a framework for the design of sta-
bilized finite element methods for noncoercive and nonsymmetric problems. The
fundamental idea is to use an optimization framework to select the discrete solution
on each mesh. This also opens new venues for inverse problems or boundary control
problems, where Tichonov regularization can be introduced in the form of a stabiliza-
tion operator with optimal weak consistency properties, eliminating the need to match
a penalty parameter and the mesh size to obtain optimal performance. The method
has some other interesting features. In particular for piecewise affine approximation
spaces the discrete solution can be shown to exist under very mild assumptions. Both
symmetric stabilization methods and the GLS methods are considered in the analy-
sis. Convergence of the method is obtained formally under abstract assumptions on
the bilinear form that are shown to hold for three nontrivial examples. The actual
performance of the method in practice depends crucially on the stability properties of
the underlying PDE and when these are unknown must be investigated numerically.
Sometimes observed convergence orders are unlikely to match those predicted in The-
orem 2.3 (except possibly for very small h), due to huge stability constants in the
bound (2.3) (cf. the Helmholtz equation for large wave numbers), or more generally
ill-posedness of the dual problem (cf. the Cauchy problem for Poisson’s equation).
Another problem that may arise when ill-conditioned problems are considered is poor
conditioning of the system matrix. Even in the case of piecewise affine approxima-
tion the stabilization corresponds to a very weak norm, and in case the underlying
problem is ill-posed this must be expected to show in the condition number. Clearly
preconditioners for the linear systems arising is an important open problem. Other
subjects for future work concern the inclusion of hyperbolic problems in the frame-
work (see [5]) and the application of the method to data assimilation and boundary
control.
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