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We report on a non-interferometric technique enabling dark-field imaging by using incoherent

illumination and two achromatic optical elements. The simultaneous retrieval of absorption and

differential phase images in the hard X-ray regime is also provided. We show that three projection

images are sufficient to separate three signals: absorption, differential phase, and scattering. The

method is highly efficient, also in terms of the dose delivered to the sample, flexible, robust against

environmental vibrations, and scalable. It can be easily implemented in laboratories and translated

into commercial systems, lending itself to a wide range of applications. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4861855]

Hard X-ray imaging is an invaluable tool in medical, bi-

ological, and materials sciences. Enhanced sensitivity can be

obtained by means of phase-contrast imaging techniques,1–10

especially when the samples exhibit weak absorption.5 An

increasing interest has been recorded recently in the so called

multi-modal imaging applications.11–13 Here we show a non-

interferometric and incoherent phase-contrast imaging tech-

nique based on the edge-illumination principle which, in

addition to absorption and refraction,14,15 enables also the

ultra-small-angle scattering retrieval by means of a pair of

apertured masks and a rotating anode X-ray tube. The tech-

nique does not require spatial or temporal coherence,16,17

and it is robust against environmental vibrations and thermal

stress. The optical elements are achromatic, and the full

spectrum is exploited for generating signal at all wave-

lengths, over which the detector integrates. In our set-up, the

coherence length is about 0.5 lm, much smaller than the

pitch of about 67 lm of the pre-sample mask, and a large

energy spread DE= �E � 0:7� 0:317 is typically employed.

As we will show in the following, three projection images

are sufficient to simultaneously retrieve three quantitative

representations of the sample: absorption, differential phase,

and (ultra-small-angle) scattering. This last channel, also

referred to as dark-field, has been linked to the microscopic

structure of the sample on sub-pixel scale lengths, thus yield-

ing complementary information, and methods have been pre-

viously demonstrated for measuring it by means of analyser-

based and X-ray Talbot imaging.9,18–22

The edge illumination principle was first developed at

the Elettra synchrotron in Italy in the late nineties.23 Edge

illumination enables the detection of the phase shift,

imparted to an X-ray beam traversing a sample, by means of

a simple set-up composed of two absorbing slits and a detec-

tor. Coded-aperture systems enable its translation to area

imaging using conventional rotating anode X-ray tubes.14,24

Our experimental set-up is composed as follows. A first se-

ries of apertures b1 with period p1 is placed before the sam-

ple (pre-sample mask) and a second series, with aperture b2

and period p2, is placed in front of the detector (detector

mask). The detector pitch p3 matches the projected masks’

pitches, such that a one-to-one relationship exists between

each aperture and the pixel columns of the detector (Fig. 1).

Apertures oriented in the y direction result in sensitivity

along x; hence, we deal with a one-dimensional problem in

x. The pixels can be considered independent one from the

other, as long as the angular spectrum of the beam is limited

to hl < 2p2=zod � 400 lrad (zod is the sample-to-detector dis-

tance). It was previously shown16,25,26 that geometrical

optics can provide a sufficiently accurate description when

conventional laboratory sources are used. By using geometri-

cal optics, we were able to obtain analytical inversion formu-

lae for the three representations of the sample. Let us

consider B1ðxÞ ¼ ð1=Gb1Þrectðx=Gb1Þ as the detector-plane

image of the pre-sample aperture that would be produced by

a point source, where rect(x) is the rectangular function

defined as 1 for �1=2 < x < 1=2 and 0 elsewhere, and G is

the geometrical magnification. With a finite source, the

image of the pre-sample aperture is given by B1 � S, where *

denotes convolution and S is the source distribution pro-

jected on the detector plane. The detector pixel integrates

this intensity distribution between the limits defined by the

detector mask aperture B2¼ rect(x/b2). This leads to the illu-

mination function Lð�xÞ � ðB1 � S � B2Þð�xÞ that describes

how the detected intensity changes as a function of the rela-

tive displacement �x between pre-sample and detector masks.

With the sample in place, the intensity Ið�xÞ recorded by the

detector pixel can be written as

Ið�xÞ
I0

¼ B1 � S � O � B2ð Þð�x � DxRÞt; (1)a)Author to whom correspondence should be addressed. Electronic mail:

m.endrizzi@ucl.ac.uk
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an by exchanging the order of convolutions one obtains

Ið�xÞ
I0

¼ O � Lð Þð�x � DxRÞt; (2)

where I0 is the beam intensity passing through the pre-sample

aperture and t is the fraction of intensity transmitted through

the sample. The detector aperture B2 appears shifted by

�DxR ¼ zodDhR with respect to the beam as a consequence of

the local deflection of the beam by an angle DhR, caused by

the sample-induced refraction. This angle is directly propor-

tional to the gradient of the phase shift Uðx; yÞ induced by the

sample, DhR ¼ ðk=2pÞð@Uðx; yÞ=@xÞ;3,27 where k is the radia-

tion wavelength. The function O(x) describes the scattering

(beam broadening) introduced by the sample. This broadening

was observed in early experiments with analyser crystals at

synchrotrons.18–20 This effect was also theoretically described,

modelled and numerically simulated for various phase-contrast

imaging techniques,28–31 and put in relation with sub-pixel

scale inhomogeneities of the sample. We aim to measure this

same broadening effect with our laboratory set-up by using

incoherent radiation with a large energy spread. Assuming that

L and O can be expressed as a linear combination of Gaussian

functions, LðxÞ ¼
PN

n¼1ðAn=
ffiffiffiffiffiffiffiffiffiffi
2pr2

n

p
Þexp½�ðx� lnÞ2=2r2

n�
and OðxÞ ¼

PM
m¼1ðAm=

ffiffiffiffiffiffiffiffiffiffiffi
2pr2

m

p
Þexp½�ðx� lmÞ2=2r2

m�, Eq.

(2) can be written in the following form:

IðxÞ
I0

¼ t
X

m

X
n

Amnexp �ðx� lmnÞ2

2r2
mn

" #
; (3)

with lmn ¼ lm þ ln; r2
mn ¼ r2

m þ r2
n and Amn ¼ AmAn

ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

mn

p
Þ. In the case N¼ 1 and M¼ 1 (the number of

terms in the sums describing L(x) and O(x)), let us consider

three images acquired with relative displacement of the

masks of x1¼ –x3 and x2¼ 0. Using Eq. (3), the following

system can be written:

Ii ¼ t
AMNffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

MN

p exp �ðxi � DxRÞ2

2r2
MN

" #
; i ¼ 1; 2; 3; (4)

that can be analytically solved for t, DxR and r2
M

t ¼ 2x1

AMN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

Dþ C

r
I2 exp

1

24

ðD� CÞ2

Dþ C

" #

DxR ¼
x1

2

D� C

Dþ C

r2
M ¼

2x2
1

Dþ C
� r2

N;

8>>>>>>>>>><
>>>>>>>>>>:

(5)

where C ¼ �2 lnðI1=I2Þ and D ¼ �2 lnðI3=I2Þ. This allows

to separate the contributions to I1, I2 and I3 coming from

absorption, refraction and scattering in the sample. For sim-

plicity’s sake we are limiting Eq. (3) to the case N,M¼ 1;

this provides a good approximation for L when extended

sources are used and a Gaussian distribution of the scatter-

ing, although approximate, has been widely used in the liter-

ature.22 However, if a more complex description must be

used, the problem can be tackled by using a larger number of

terms in Eq. (3).

The images shown in Fig. 2 were acquired with an

amorphous Selenium flat panel (Anrad SMAM) with pixel

pitch p3¼ 85 lm. The source was a rotating anode, Mo tar-

get X-ray tube (Rigaku MM007) operated at 35 kV/25mA

and with spot size 75 lm. The masks were manufactured to

our design by Creatv Microtech (Potomac, MD) and

aligned using a stack of Newport (ILS150, MFA and

SR50) and Kohzu (SA07A-RM) stages. The pre-sample

mask pitch and aperture were p1¼ 66.8 lm and b1¼ 12 lm;

for the detector mask, they were p2¼ 83.5 lm and

b2¼ 20 lm. For the two offset frames, the masks misalign-

ment x1¼ 12 lm was used (Eq. (4)). The gold thickness was

approximately 30 lm on a graphite substrate, field of view

4.8� 4.8 cm. The source to detector distance was 2 m and

the object to detector distance zod¼ 40 cm, for a geometri-

cal magnification factor G¼ 1.25. This parameters were

chosen as a trade off between the sensitivity of the system

and the dose delivered to the sample.32 The acrylic cylin-

ders had a diameter of 3 mm and a density of 1.2 g/cm3.

The breast tissue sample was approximately 2 cm thick and

fixed in formalin. It was obtained from mastectomy after

informed consent; the study was approved by the local ethi-

cal regulatory bodies. A filtration of 30 lm of Mo was

used in this case. Entrance doses were measured with a

calibrated ionization chamber and with TLDs obtaining

compatible results within 10%.

As a preliminary demonstration, the extracted images for

acrylic cylinders and a paper step wedge are shown in Figs.

2(a)–2(c). In the transmission image (Fig. 2(a)), the three cyl-

inders appear with the same contrast, regardless of their spa-

tial orientation. The refraction image (Fig. 2(b)) shows a

strong differential phase contrast for the two vertical cylinders

while the horizontal one has a weak signal, except at its verti-

cal edge where the cylinder itself terminates. The presence of

the microscopic structure of paper is linked to the signal in the

scattering image (Fig. 2(c)). The acrylic, which has negligible

density variations at the sub-pixel scale, vanishes. The inten-

sity profiles, along the lines highlighted in Figs. 2(a)–2(c), are

plotted in the (g) panel (please refer to the supplemental mate-

rial33 for discussion about the efficacy of the method). As an

example of a relevant application, the images of a breast tissue

FIG. 1. Beam distribution for a single aperture: the presence of the sample

results in an attenuated, shifted, and broadened intensity distribution.
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sample are also presented: Fig. 2(d) transmission, Fig. 2(e)

refraction, and Fig. 2(f) scattering. This sample contains a sig-

nificant number of calcifications, the contrast inversion of

which can clearly be observed by comparing transmission and

scattering images. The images were obtained with a surface

entrance dose of 12 mGy; although this value appears compat-

ible with the limits imposed by clinical practice,34 the thick-

ness of the sample has to be taken into account in order to

estimate the mean glandular dose that would be required with

a full-size breast. With the same photon statistics at the detec-

tor and assuming a 4 cm, 50%–50% glandular-adipose breast

tissue composition,32 the estimated mean glandular dose

would be about 6 mGy.

In summary, we showed how hard X-ray dark-field

imaging can be efficiently performed using a set of two

cheap, low-aspect-ratio masks and a rotating anode X-ray

tube. The technique uses incoherent illumination and oper-

ates with broadband radiation with all wavelengths posi-

tively contributing to the image formation. The set-up was

realized with standard laboratory instrumentation and it is

scalable to larger fields of view. In a commercial device, the

second mask could be directly coupled with the detector and

the alignment of only one mask would be required. This can

be automated35 yielding even more robustness; we are cur-

rently observing vibrations of the experimental set-up of few

microns,36 without this preventing a high image quality.

Similar systems have been used at higher energies,37 and the

imaging method proposed here can be straightforwardly

applied also with such setups. The ability to span over a

wide range of energies gives the method the flexibility

required to be useful in a number of different fields. This is

of interest for many applications as, for example, security

screening,38 non-destructive testing,39 cartilage imaging,13,40

and mammography:11,41,42 for this last example, we showed

experimental images of a breast specimen. Extension to

three-dimensional imaging is currently under development

in our group. We believe that the robustness of the method

and its flexibility to efficiently target specific applications

should provide the underpinning technology for mainstream

implementations of phase-contrast X-ray imaging.
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EP/G004250/1, EP/I022562/1, and EP/I021884/1). M.E. and
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