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We  investigate  the  performance  of  the  HemeLB  lattice-Boltzmann  simulator  for  cerebrovascular  blood
flow,  aimed  at  providing  timely  and  clinically  relevant  assistance  to neurosurgeons.  HemeLB  is  optimised
for  sparse  geometries,  supports  interactive  use,  and  scales  well  to 32,768  cores  for  problems  with  ∼81
million  lattice  sites.  We obtain  a maximum  performance  of 29.5  billion  site  updates  per  second,  with  only
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an  11%  slowdown  for highly  sparse  problems  (5%  fluid  fraction).  We  present  steering  and  visualisation
performance  measurements  and provide  a model  which  allows  users  to predict  the  performance,  thereby
determining  how  to  run simulations  with  maximum  accuracy  within  time  constraints.
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. Introduction

Recent progress in imaging and computing technologies has
esulted in an increased adoption of computational methods in the
ife sciences. Using modern imaging methods, we are now able to
can the geometry of individual vessels within patients and map
ut potential sites for vascular malformations such as intracranial
neurysms. Likewise, recent increases in computational capacity
nd algorithmic improvements in simulation environments allow
s to simulate blood flow in great detail. The HemeLB lattice-
oltzmann application [1] aims to combine these two develop-
ents, thereby allowing medical scans to be used as input for blood

ow simulations. It also enables clinicians to run such simulations
n real-time, providing runtime visualisation feedback as well as the
bility to steer the simulation and its visualisation [2]. One princi-
al long-term goal for HemeLB is to act as a production toolkit that
rovides both timely and clinically relevant assistance to surgeons.
o achieve this we must not only perform extensive validation and
esting for accuracy, reliability, usability and performance, but also
nsure that the legal environment and the medical and computa-
ional infrastructure are made ready for such use cases [4].
In this work we investigate the performance aspects of
he HemeLB environment, taking into account the core lattice-
oltzmann (LB) simulation code and the visualisation and steering

∗ Corresponding author.
E-mail addresses: djgroennl@gmail.com, d.groen@ucl.ac.uk (D. Groen).

877-7503/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jocs.2013.03.002
facilities. We  present performance measurements from a large
number of runs using both sparse and non-sparse geometries
and the overheads introduced by visualisation and steering. Med-
ical doctors treating patients with intracranial aneurysms are
frequently confronted with very short time scales for decision-
making. For HemeLB to be useful in such environments, it is
therefore not only essential that the code simulates close to real-
time, but also that the length of a simulation can be reliably
predicted in advance. We demonstrate that it is possible to accu-
rately characterise CPU and network performance at low core
counts and integrate this information into a model that predicts
performance for arbitrary problem sizes and core counts.

1.1. Overview of HemeLB

HemeLB is a massively parallel lattice-Boltzmann simulation
framework that allows interactive use, eventually in a medical envi-
ronment. Segmented angiographic data from patients can be read
in by the HemeLB Setup Tool, which allows the user to indicate the
geometric domain to be simulated using a graphical user interface.
The geometry is then discretised into a regular grid, which is used
to run HemeLB simulations. The core HemeLB code, written in C++,
consists of a parallelised lattice-Boltzmann application which is
optimised for sparse geometries such as vascular networks by use of

indirect addressing. We  precompute the addresses of neighbouring
points within a single one-dimensional array instead of requir-
ing that the points be stored in a dense, three-dimensional array.
HemeLB also constructs a load-balanced domain decomposition

dx.doi.org/10.1016/j.jocs.2013.03.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:djgroennl@gmail.com
mailto:d.groen@ucl.ac.uk
dx.doi.org/10.1016/j.jocs.2013.03.002
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ig. 1. Graphical overview of the bifurcation geometry in the HemeLB Setup Too
omains. Inlets are shown by green planes, outlets by red planes. (For interpretatio
f  the article.)

t runtime, allowing the user to run simulations at varying core
ounts with the same simulation domain data. HemeLB is highly
calable due to a well-optimised communication strategy and the
ocality of interactions and communications in the parallelised
attice-Boltzmann algorithm. The File I/O operations are done in
arallel using MPI-IO by a group of reading processes, which can be
djusted in size using a compile-time parameter.

The HemeLB Steering Client is a light-weight tool that allows
sers to connect remotely to their HemeLB simulation, receive
eal-time visual feedback and modify parameters of the simulation
t runtime. Here, the visualisations are generated on-site within
emeLB, using a hand-written ray-tracing kernel [2]. In our work
e run HemeLB with the steering server code enabled. As a result,

ne core is reserved for steering purposes, whether or not a client
s connected, and is thereby excluded from the LB calculations.

HemeLB relies on ParMETIS version 4.0.2 [4] to perform its
omain decomposition. It constructs an initial guess using a
asic graph growing partitioning algorithm (see [1] for details),
hich it then passes to ParMETIS for optimisation using the

arMETIS V3 PartKway() function. Constructing the initial guess
equires less than a second of runtime in all cases, but the ParMETIS
ptimisation typically adds between 5 and 30 s to the initialisa-
ion time. We  discuss several technical aspects and performance
mplications of our decomposition routine in Section 3.1.

HemeLB uses a coalesced asynchronous communication strat-
gy to optimise its scalability [5]. This system bundles all
ommunications for each iteration (e.g., exchanges required for the
B algorithm, steering and visualisations) into a single batch of non-
locking communication messages, one for each data exchange of
on-zero size between a pair of processes in each direction. As a
esult, each iteration of HemeLB’s core loop has only one MPI Wait
ynchronisation point, minimising the latency overhead of HemeLB
imulations. Communication of variable length data is spread over
wo iterations, the sizes being transferred during the first iteration
hile the actual exchange takes place during the second one.

The coalesced communication system is also used for the
hased broadcast and reduce operations which are required for

he visualisation and steering functionality. Here HemeLB arranges
he processes into an n-tree and, for broadcasts, sends data from
ne level of the tree to the level below over successive iterations.
or reductions, data is sent up one level of the tree over successive
used this geometry to generate the Bifurcation and Large Bifurcation simulation
e references to color in this figure legend, the reader is referred to the web version

iterations. Hence, both operations can take O(log(p)) iterations, for p
cores. In this approach HemeLB does require some additional mem-
ory for communication buffers. Additionally, the responsiveness of
the steering is constrained, as data arriving in the top-most node
takes O(log(p)) iterations to be spread to all nodes.

1.2. Related work

A large number of researchers have investigated the perfor-
mance aspects of various LB simulation codes over the past decade.
These investigations have been done without real-time visualisa-
tion or steering enabled, and frequently use non-sparse geometries.
We  present a performance analysis of both sparse geometries and
interactive usage modes in this work. Pohl et al. [6] compared
the performance of LB codes across three supercomputer architec-
tures, and concluded that the network and memory performance
(bandwidth and latency) are dominant components in establish-
ing a high LB calculation performance. Geller et al. [7] compared
the performance of an LB code with that of several finite element
and finite volume solvers, and deduced that LB offers superior effi-
ciency in flow problems with small Mach numbers. Williams et al.
[8] presented a hierarchical autotuning model for parallel lattice-
Boltzmann, and report a performance increase of more than a factor
3 in their simulations. Several groups have considered the per-
formance of LB solvers on general-purpose graphics processing
unit (GPGPU) architectures. In these studies, they introduced a
number of improvements, such as non-uniform grids [9], more effi-
cient memory management strategies [10,11] and LB codes which
run across multiple GPUs [12–14]. Other performance investiga-
tions include a comparison between different LB implementations
[15], hybrid parallelisations for multi-core architectures in general
[16,9,17] and performance analysis of LB codes on Cell processors
[18–20].

A few studies within the physiological domain are of special
relevance to this work. These include a performance analysis of
a blood-flow LB solver using a range of sparse and non-sparse
geometries [21] and a performance prediction model for lattice-

Boltzmann solvers [22,23]. This performance prediction model can
be applied largely to our HemeLB application, although HemeLB
uses a different decomposition technique and performs real-
time rendering and visualisation tasks during the LB simulations.
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performance of 29.5 billion site updates per second (SUPS). The per-
formance obtained at 8192 cores for the medium-sized bifurcation
corresponds to 419 timesteps per second, or 646 times slower than
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ig. 2. Graphical overview of the network geometry in the HemeLB Setup Tool. We u
omains.

azzeo and Coveney [1] studied the scalability of an earlier ver-
ion of HemeLB. However, the current performance characteristics
f HemeLB are substantially enhanced due to numerous subsequent
dvances in the code, amongst others: an improved hierarchi-
al, compressed file format; the use of ParMETIS to ensure good
oad-balance; the coalesced communication patterns to reduce the
verhead of rendering; use of compile-time polymorphism to avoid
irtual function calls in inner loops.

. Performance analysis

We  benchmarked HemeLB using simulation domains based on
hree distinct geometries, a vascular network (see Fig. 2, used to
enerate three simulation domains), a bifurcation of vessels (see
ig. 1, used to generate two simulation domains) and a cylinder.
oth the network and the bifurcation geometries are sections of
n intracranial vasculature model that has been constructed from
ultiple rotational angiography scans of a patient with an intracra-

ial aneurysm treated at the U.K. National Hospital for Neurology
nd Neurosurgery. The third and least sparse geometry is an artifi-
ially created cylinder. We  present an overview of the simulation
omains we generated and use in our runs in Table 1. We  also
rovide a brief description of the sparseness of each generated
imulation domain. Our runs were impulsively started, applying

 pressure gradient across the simulation domain, using Nash in-
utlet conditions (Nash et al., in preparation).
.1. Performance of LB computations

We  have run blood flow simulations using the simulation
omains listed in Table 1 using up to 32,768 cores on the HECToR

able 1
verview of the simulation domains used in our experiments. The percentage of the

imulated box that consists of active fluid sites is given by the fluid fraction. Non-
ctive fluid sites do not count towards the number of lattice sites in the simulation.

Name # of lattice sites Fluid fraction

Bifurcation 19,808,107 11%
Cylinder 15,607,040 65%
Network 18,836,545 5.1%
Large Bifurcation 81,132,544 11%
Large Network 44,650,496 5.1%
Small Network 77,182 5.1%
is geometry to generate the Network, Large Network and Small Network simulation

Phase 3 supercomputer at EPCC in Edinburgh, United Kingdom. The
HECToR machine is a Cray XE6 with 90,112 cores (2.3GHz AMD
Opteron 6276), and has a peak performance of 9.2 GFLOP/s per
core. Our simulations were done using a 15-directional lattice-
Boltzmann kernel (D3Q15), the Lattice Bhatnagar–Gross–Krook
[24] model with simple bounce-back boundary conditions and a
fixed physical viscosity of 0.004 Pa s. We  present the scalability
results for all simulation domains in Fig. 3. We  find that the small
network simulation domain scales near-linearly up to 128 cores,
despite consisting of only 77,182 lattice sites. All of the medium-
sized simulation domains (Bifurcation, Cylinder and Network) scale
linearly to 8192 cores. However, the communication overhead and
load imbalance reduce the performance on higher core counts.
The two  largest simulation domains (Large Bifurcation and Large
Network) show linear scaling from 512 cores up to 16,384 cores,
and significant speedup to 32,768 cores, achieving a maximum
100
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Fig. 3. Lattice site updates per second (SUPS) as a function of the number of cores
used for simulations run on the HECToR Cray XE6 machine. We run simulations
using each of the six simulation domains (Cylinder, Network, Bifurcation, Large
Bifurcation, Large Network and Small Network).
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from runs including any form of snapshot or image writing over three executions,

a maximum measured overhead of ∼6.5 s. We  also again observe
some jitter in our results, for example in the 1024 core simula-
tion that rendered one image every 50 steps, which we attribute
to fluctuations in the file system performance of the machine.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5  10  20  50  100  200ov
er

he
ad

 r
el

at
iv

e 
to

 th
e 

si
m

ul
at

io
n 

tim
e 

w
ith

ou
t r

en
de

rin
g 

[s
]

number of LB steps per rendered image

bifurcation, 512 cores
bifurcation, 1024 cores
bifurcation, 2048 cores
performance model fit

Fig. 6. Overhead in seconds relative to the simulation time without images rendered
as  a function of the number of LB steps per image rendered and written. The simu-
lation with 0 images rendered took 31.4, 16.1 and 7.81 s on respectively 512, 1024
ig. 4. Site updates per second (SUPS) per core averaged over all cores used in the
imulation (excluding the one used for steering) as a function of the number of sites
er  core, for six LB problems.

eal-time for a maximum timestep as limited by incompressibility
onstraints. The maximum timestep here is estimated by the need
o keep the Mach number below 0.05, using a typical blood veloc-
ty for vessels of this size of 25 cm/s. At this rate, it takes HemeLB
53 s to simulate one heartbeat with a resolution of around 100 lat-
ice points across a vessel diameter. We  present the performance
n SUPS per core as a function of the number of sites per core in
ig. 4, demonstrating that the SUPS per core is largely independent
f other factors.

.2. Visualisation performance

One of the features that sets HemeLB apart from many other
B codes is its ability to perform in situ rendering of the geome-
ry at runtime [2], using a parallelised ray-tracing algorithm. The
ommunication needs of the ray-tracing algorithm have been com-
ined with those of the main simulation algorithm, through the
oalesced communication strategy, massively improving the scal-
ng when rendering frames. The images rendered by HemeLB can
ither be stored on disk for future reference or they can be for-
arded as a streaming visualisation to the steering client. In this

ection we present several simulations where we assess the over-
ead introduced by rendering images, as well as that introduced by
riting snapshots of the simulation data. These snapshots store the
ydrodynamic variables at each lattice point, recording all infor-
ation of physical relevance which is useful for visualisation and

ost-processing. File I/O operations are done in HemeLB using a
ubset of all processes, the reading group. Within this work, we
dopted a reading group size of 32 processes, or the number of
rocesses used by HemeLB, whichever was smaller. We  have run
our types of simulations using the Bifurcation simulation domain,
ne with snapshots and image-rendering disabled, one where we
rite snapshots to disk (10 snapshots per 1000 time steps, with

ach snapshot being 604 MB  in size), one where we  render and
rite images to disk (10 rendered images per 1000 time steps,
ith each image being 180kB in size) and one with both snapshots

nd images enabled. We  have carried out the tests using 256, 512,
024 and 2048 cores. We  present our results in Fig. 5. Here the
verhead for rendering and writing images is marginal, and adds
o more than a few percent to the execution time in most cases.
imulations which have snapshot writing enabled are both con-

iderably slower and have more variable performance, due to the
igh disk activity involved with snapshot writing. When snapshot
riting is enabled, the overhead caused by image rendering is dif-
cult to observe, as the standard deviation bars of the performance
and  included a standard deviation error bar with each data point. (For interpretation
of  the references to color in this figure legend, the reader is referred to the web
version of the article.)

measurements with and without images overlap. When the simula-
tion writes 10 snapshots over 1000 LB steps, we observe an increase
in the wall-clock time of ∼24 s.

We have also run several simulations of 1000 LB steps where we
render and write an image to disk every 5–200 LB steps. The results
for these runs (which were done using 1024 and 2048 cores) are
given in Fig. 6. Without rendering the simulations took 31.4, 16.1
and 7.81 s on 512, 1024 and 2048 cores respectively. We  observe an
overhead of less than 2 s per 1000 LB steps if we  render and write
no more than 10 images during that period. However, the perfor-
mance deteriorates somewhat when we  write more images, with
and 2048 cores. We averaged the measurement of the runs over three executions.
Error bars are the resulting standard deviations. The prediction of our performance
model, presented in Section 3.3, is given by the thick solid red curve. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of the article.)
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Table 2
Performance impact of running HemeLB with a connected steering client, simulating
the Cylinder simulation domain using 1024 and 2048 cores. Here the mode is the
method of running HemeLB, which can be without client (none), with the client used
only for image streaming (images) or with the client used both for image streaming
and steering the HemeLB simulation (both).

p Mode Frame-rate (1/s) MSUPS per
core

Mean LB
steps per
image

Requested Achieved

1024 None – – 1.39 –
1024  Both 2.0 2.0 1.28 41.5
1024 Images 2.0 2.1 1.25 39.3
1024 Both 5.0 4.4 1.11 16.5
1024 Images 5.0 4.8 1.02 13.8
1024 Both Max  5.9 0.84 11.3
1024 Images Max  8.2 0.76 6.0
2048  None – – 1.46 –
2048  Images 2.0 2.1 1.26 77.2
2048 Both 2.0 2.2 1.32 78.6
2048 Both 5.0 4.6 1.15 32.2
2048 Images 5.0 4.8 0.99 26.9
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Table 3
Technical specifications of 12 LB simulations in our code comparison. We  provide the
name of the LB application used in the first column (including the source), followed
by  respectively the architecture used for the simulations and the number of cores
used for the run.

Name Architecture (peak
GFLOPS/ core)

Cores

HemeLB (Cylinder) AMD  Opteron 6276 (9.2) 4096
HemeLB (Network) AMD  Opteron 6276 (9.2) 32
HemeLB (Large Network) AMD Opteron 6276 (9.2) 512
LB3Dv7 (Shamardin p.c.) AMD Opteron 6276 (9.2) 32
LB3Dv7-3phase (Shamardin p.c.) AMD  Opteron 6276 (9.2) 128
LBMHD [8] AMD  Opteron 1356 (9.2) 8192
LBMHD [8] AMD  Opteron 6172 (8.4) 49,152
LUDWIG [14] AMD  Opteron 6276 (9.2) 384
Palabos [27] AMD  Opteron 8356 (9.2) 4
HYPO4D (Groen p.c.) BlueGene/P (3.4) 512
LBMHD [8] BlueGene/P (3.4) 8196
Palabos [27] BlueGene/P (3.4) 256
MUPHY [28] BlueGene/L (2.8) 32
OpenLB [17] Intel Xeon X5355 (10.64) 8
2048 Images Max  9.5 0.59 8.0
2048  Both Max  10.6 0.66 8.1

endering one image per 5 LB steps using 2048 cores corresponds to
 frame rate of about 13.6 frames/s, more than sufficient for smooth
isualisations of the simulations in real time.

.3. Steering performance

The previous subsection isolates the performance impact of the
isualisation and rendering, with images written to disk. Here we
tudy the performance impact of the HemeLB steering component,
sing the Cylinder simulation domain, where images are streamed
ver the network to a client. In this case, HemeLB produces images
s described in Section 2.2, optionally limited by a maximum frame-
ate per second. We  also look at the performance impact of sending
teering messages from the client to the HemeLB steering compo-
ent. In order to obtain reproducible data, the steering client is set
p with a scripted set of simulated user actions (orbiting the view
oint for image rendering). These results are presented in Table 2

nd in Fig. 7 and were produced with the steering client running
n the HECToR login node. For a frame-rate of 4.6 frames/s, which
s usable for scientific steering, with bidirectional communication
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ig. 7. Performance impact of running HemeLB with a connected steering client. We
how results for 1024 and 2048 cores without steering client (plotted at frame-rate
ero), with the client used only for image streaming (images) and with the client
sed both for image streaming and steering the HemeLB simulation (both).
Palabos [27] Intel Xeon X5550 (10.64) 4
HemeLB (Bifurcation, Sect 4.2) Xeon E5-2680 (21.6) 128

between client and server, corresponding to 32 LB steps per ren-
dered image, we  observe an overhead of 28%.

2.4. Performance comparison with other codes

In this section we  compare the performance of HemeLB with
performance measurements of other LB codes as found in the lit-
erature. We  gathered the number of million lattice site updates
per second (MSUPS), the standard measure of LB performance,
reported for other implementations. HemeLB is strongly optimised
for efficiently handling sparse geometries while most codes are
not, making like-for-like comparison difficult. The other applica-
tions may not be capable of simulating even moderate complexity
domains, such as a cylinder, at all or only at the cost of allocating
memory to non-fluid sites. Additionally, the directional resolution
affects the number of calculations and memory accesses required
per site update, as well as the presence of other special features,
such as the additional presence of a D3Q15 magnetic field dis-
tribution model in LBMHD [8]. One particular example is LB3D
[25] version 7, which calculates a number of additional forces,
and is strongly optimised for multi-phase flow at the expense of
single-phase flow performance. For LB3D we therefore included
measurements for both single-phase and multi-phase flow perfor-
mance.

We  provide the LB performance configurations and results for
several well-known LB codes in Tables 3 and 4. The MSUPS per core
results here are obtained by dividing the total number of lattice
site updates by the product of time spent on LB iterations and the
number of cores. From each literature source, we picked the result
from the run that showed the best MSUPS per core while running
on at least one full processor. In the case of HemeLB we picked the
best result from the non-sparse Cylinder, as well as from the very
sparse Network and Large Network simulation domains, which are
the only measurements in the tables using sparse geometries.

When we  examine bulk flow only, the MSUPS per core perfor-
mance of HemeLB is comparable with that achieved with LBMHD
(although LBMHD calculates in 27 directions and HemeLB in 15),
and about half of that achieved with Palabos on similar AMD
Opteron architectures. The performance of HemeLB, however, is
almost entirely preserved when using a very sparse simulation

domain as HemeLB does not allocate memory or computational
effort for non-active lattice sites, which are by definition common in
sparse geometries. LBMHD has no known optimisations for sparse
geometries while Palabos features a partial optimisation using the
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Table  4
Performance comparison of 12 LB simulations in our code comparison. We provide the name of the LB application used in the first column, followed by the number of lattice
sites  for each run, the directionality, and the obtained performance per core. We give the per core calculation performance in millions of site updates per second (MSUPS).
In  the case of LBMHD we  assumed 1300 FLOPs per lattice operation, as mentioned in Williams et al. [19,8]. Runs that use a sparse simulation domain are marked with an
asterisk. Three-phase flow runs requires considerably more FLOPs per site update than single-phase flow runs. Here, the OpenLB run used a data set with a fluid fraction of
0.145. The Palabos run on the Opteron relied on shared memory and multi-threading, and did not use MPI.

Name # of lattice sites Directional resolution MSUPS per core

HemeLB (Cylinder) 15,607,040 D3Q15 1.41
HemeLB* (Network) 18,836,545 D3Q15 1.20
HemeLB* (Large Network) 44,650,496 D3Q15 1.19
LB3Dv7  16,777,216 D3Q19 0.30
LB3Dv7 (3-phase flow) 56,623,104 D3Q19 0.084
LBMHD (w/  magnetism) 6,115,295,232 D3Q27 ∼1.42
LBMHD (w/  magnetism) 28,311,552,000 D3Q27 ∼1.15
LUDWIG 339,738,624 D3Q19 ∼3.0
Palabos  (shared memory) 64,481,201 D3Q19 2.55
HYPO4D 452,984,832 D3Q19 0.273
LBMHD 1,811,939,328 D3Q27 ∼0.5
Palabos 1,003,003,001 D3Q19 0.891
LUDWIG 16,777,214 D3Q19 0.087
MUPHY 262,144 D3Q19 0.529
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preserve the predictive power of the performance model, we  have
instead measured the communication volume for the three types
of simulation domains across a range of core counts. After having
performed the measurements, we  fitted the data to a function of
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Fig. 8. Maximum number of neighbours as a function of the core count. Here we
OpenLB* 1,060,000 

Palabos 64,481,201 

HemeLB* (Bifurcation) 19,808,107 

ulti-block method [26], of which we found no performance data
sing sparse geometries in the literature. The multi-block method

s relatively inefficient because it allocates memory to some of the
on-fluid sites and uses data structures that grow in complexity
hen off-lattice geometries are modelled more accurately. When

 code is not designed for sparse geometries, additional optimi-
ations (e.g., cache lookahead) are simpler to implement, hence
he performance of a code which supports sparse geometries may
ot match that of codes which exploit such optimisations. Many
f the benchmarks for other LB codes were performed on non-
pteron architectures, making it difficult if not impossible to do

 one-on-one comparison. We  nevertheless include these results
or reference in the lower part of Table 3.

. Modelling the performance of HemeLB

.1. Parameter extraction

Before we are able to construct and apply the performance
odel, we need to extract a number of parameters specific to
emeLB. These parameters include the maximum neighbour count,

he communication volume and the calculation and communica-
ion load imbalance.

.1.1. Characterising maximum neighbour count
Each process within HemeLB (except for the steering process)

odels a subsection of the simulation domain, and exchanges infor-
ation with its neighbours. Here we characterise the maximum

eighbour count (kmax), which is an approximation of the maxi-
um  number of neighbours a process has in a given simulation.
To obtain the neighbour counts of each process, we have run

he initialisation routine of HemeLB (without any simulation time
teps) using 4–16,384 cores. The number of neighbours is depend-
nt not only on core count but also on the geometry of the
imulation domain, which makes it non-trivial to fully approximate
t in the performance model. Instead, we choose to model close
o a worst-case decomposition scenario, selecting the simulation
omain with the highest neighbour count, and using the measured
alues there to determine kmax for any simulation domain. Because

arMETIS does not guarantee a reproducible decomposition, simu-
ations may  vary in neighbour counts for a given problem on a given
umber of cores. We  therefore have repeated each measurement
hree times.
D3Q19 ∼0.4
D3Q19 7.87
D3Q15 3.49

We present our measurements of the maximum neighbour
count as a function of the core count in Fig. 8. We  find that the
maximum neighbour count for the network geometry ranges from
7 on 8 cores, up to as high as 94 on 16,384 cores. Based on this data,
we created a logarithmic fit, approximating kmax as:

kmax = log P

log 1.127
. (1)

3.1.2. Characterising communication volume
To model the communication performance of HemeLB we also

need information on the amount of data communicated between
processes at each step. As the domain decomposition in HemeLB
is done at runtime [1], we can only know the exact communi-
cation data volume after we have launched the simulation. To
selected and fitted our model to the Network simulation domain, which has the high-
est neighbour count due to its sparseness. We ran 3 decomposition routines for each
core count included in the figure, plotting the highest neighbour count separately for
each  instance. The neighbour count approximation used in our performance model
is  given by the dotted line.
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ber of sites over all cores in the same run. HemeLB is optimised
for calculation load balance and we find an imbalance of less than
1.04 for most core counts. However, the calculation load imbal-
ed, blue and black dashed lines. Error bars show one standard deviation for the
istribution across cores. (For interpretation of the references to color in this figure

egend, the reader is referred to the web version of the article.)

he form axb to gain an approximate estimate while keeping the
odel relatively straightforward. We  present our measurements of

he communication volume and our fits for the cylindrical geome-
ries in Fig. 9, for the bifurcation geometries in Fig. 10, and for the
etwork geometries in Fig. 11. Here we find that the communi-
ation volume can differ by as much as a factor four between the
omain types, making separate fits necessary for each type. We
rovide the exact formulation for each of the three fits in Table 6.

nterestingly, these scale with less than (N/P)2/3 as one would
xpect with, for example, a decomposition into cubes. At large
/P, i.e., few processes, the sparseness implies that large parts of

he single-process volumes are bordered by boundary sites, rather
han lattice sites residing on neighbouring processes. We there-
ore observe a scaling of less than (N/P)2/3. In the limit of small
N/P), the measured communication volume does converge to the
unction S = 250 × (N/P)2/3 when the number of sites per process
ecomes lower, and the number of cores used higher in the sim-

lations. Because the process-specific volumes are smaller here,
he sparseness of the domain has a smaller effect on the measured
maximum) neighbour count.
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ig. 10. As in Fig. 9 but for the Bifurcation geometry (using the Bifurcation simula-
ion  domain).
Fig. 11. As in Fig. 9 but for the network geometry (using the network simulation
domain).

3.1.3. Characterising load imbalances
When using sparse geometries, individual processes within

HemeLB contain subsets of the simulated system with heteroge-
neous shapes and sizes. These differences result in two  types of
load imbalance during the parallel LB calculation: a calculation
load imbalance and a communication load imbalance. To obtain a
platform-independent measure of the load imbalance in HemeLB,
we choose not to include timing results in this procedure. Instead,
we examine the number of lattice sites on each core to determine
the calculation imbalance and the number of bytes sent by each
process to determine the communication imbalance. Both metrics
are reproducible on different platforms when using the same ver-
sion of ParMETIS (4.0.2), although some variations may occur due
to the stochastic nature of the ParMETIS decomposition technique.

In Fig. 12 we show the measured calculation load imbalance for
three geometries as a function of the core count. We  determine
this calculation load imbalance by dividing the maximum number
of lattice sites on any core within this run by the average num-
ance is higher for both very low and very high core counts. This
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Table 5
List of constant values used in our performance model. The � value was measured
using a ping test between nodes on HECToR. The � value was taken by dividing the
MPI  point-to-point bandwidth specification on the HECToR website [29] (at least 5
GB/s) by the number of cores per node (32).

Constant name Value

� 1.57 × 106 SUPS per core (calc only)
�  2.5 × 10−5[s]
� 160 MB/s per core
�calc 1.04
�comm 1.5
Omonitoring 0.06

Table 6
List of fitting functions used in our performance model. Here the total number of
lattice sites is given by N and the number of cores used by p.

Constant name Value

S 1898 × (N/P)0.482719 bytes per core per step
he value on the y-axis is the relative communication overhead caused by load
mbalance. These values are deterministic for a given core count and ParMETIS
ersion.

ontributes in part to the superlinear scaling of HemeLB at lower
ore counts in some cases, and reduces scalability when there are
ess than 2000 lattice sites per core. Based on these measurements,

e assume a calculation load imbalance (�calc) of 1.04 in our per-
ormance model. In Fig. 13 we present the communication load
mbalance, which we measure by dividing the maximum number
f bytes sent by a single core in the run by the average number
f bytes sent per core. All the communication measurements are
iven per step. We  observe a large and erratic imbalance in the
ommunication sizes. The ParMETIS domain distribution algorithm
o-optimises for both calculation load balance and communication
inimisation. However, these results suggest that it does not opti-
ise for communication balance. This communication imbalance

oes not strongly diminish the code performance unless the perfor-
ance is already dominated by communication. Within our model
e take an approximate average of our measurements, and assume

 communication load imbalance (�comm) of 1.5.

.2. LB calculations

To model the performance of the core LB simulator code we pro-
ose a time-complexity model which is loosely based on [22,23] but

argely simplified. We  use a range of parameters which we derived
n Section 3.1. In this model we approximate the overall time spent
o perform a single simulation step in HemeLB (Tstep), using

step = �calc × Tcalc + �comm × Tcomm

1.0 − Omonitoring
, (2)

here Tcalc is the average calculation time per core, (�calc) is the
alculation load imbalance constant, Tcomm is the communication
ime per core, �comm is the communication load imbalance constant
nd Omonitoring is the fraction of time spent on monitoring overhead.
hroughout our runs we found that ∼6% of the runtime is spent on
onitoring, so we define Omonitoring = 0.06. The average calculation

ime per core is given by

calc = (N/P)
�

(3)

ere, the total number of lattice sites is given by N and the number

f cores by p. We  define the SUPS per core � as a platform dependent
onstant for the HECToR machine in Table 5. We  measured � as an
verage from our HemeLB runs with 32 cores (1 node). The true
UPS capacity per core depends slightly on the number of sites per
cylinder

Sbifurcation 942.0 × (N/P)0.595517 bytes per core per step
Snetwork 1176 × (N/P)0.613449 bytes per core per step

core, but is in almost all cases within 20% of this average value. We
model the time spent on communications, Tcomm, using Table 6.

Tcomm = log2(P) × � + S<x>

�
, (4)

where � is the point-to-point latency of MPI  communications
between nodes in seconds, and � the average throughput capac-
ity per core in bytes. We  assume that the number of messages
exchanged per time step increases with the number of processes
and we  model this as log(P). The number of bytes sent out per core
per step (S<x>) is dependent on the geometry used as well as the
number of sites per core. We  have provided basic fits for three
geometry layouts with different sparsity (network, bifurcation and
cylinder) in Table 5. These fits are most accurate for simulations
that have between 5000 and 200,000 sites per core.

3.3. Visualisation

When image rendering and writing is enabled in HemeLB, some
overhead is introduced in the execution, and the new time per step
(Tstep vis) becomes

Tstep vis = Tstep + Timages, (5)

where Timages is the overhead for rendering and writing images.
Because our overhead measurements show a large variability,
we use a straightforward fit rather than a detailed sub-model to
approximate this overhead. Based on our measurements on 2048
cores, we  have derived an approximate fit of Timages = 21.6k−0.76,
with k being the number of LB steps per rendered image. We
provide a graphical overview of the approximation in Fig. 6.

4. Model validation

4.1. Validation on HECToR

We have applied our performance model to calculate the
theoretical execution times of the simulations we  presented in
Section 2.1. The predictions given by the model, as well as the mea-
surements presented earlier, can be found in Fig. 14 for the Cylinder,
Bifurcation and Large Bifurcation simulation domains and in Fig. 15
for the Network, Small Network and Large Network simulation

domains. The predictions from our model are generally in agree-
ment with our measurements, especially for the larger simulation
domains. However, the model does not reproduce the superlinear
speedup measured in the results. This is mainly because the model
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Table 7
List of constant values used in our performance model for SuperMUC. The � value
was measured using a ping test between nodes on SuperMUC. The � value was
taken by dividing the MPI point-to-point bandwidth specification on the SuperMUC
website [29] (at least 5 GB/s) by the number of cores per node (16).

Constant name Value

6

f  cores used for the Cylinder, Bifurcation and Large Bifurcation simulation domains.
hese validation runs were done using the HECToR supercomputer. Predictions by
ur  performance model are indicated by the dashed lines.

ssumes a constant calculation and communication load imbal-
nce, regardless of core count. In contract we measure relatively
arge calculation and communication load imbalances for runs on
ess than 32 cores (see Figs. 12 and 13). In this regime, the measured
oad imbalances are considerably higher than the ones assumed in
ur model, and the execution time is consequently slightly higher
han in our model predictions.

.2. Validation on SuperMUC

To test whether our performance model holds when applied
o a different platform, we used a small part of an allocation
rranged by MAPPER on the SuperMUC supercomputer at the
eibniz-Rechenzentrum in Garching, Germany. SuperMUC is an
BM System x iDataPlex machine with 147,456 compute cores
nd a total peak performance of 3.185 PFLOP/s (21.6 GFLOP/s per
ore). Each node has 16 cores, consists of two Intel Xeon E5-2680
PUs, and is equipped with 32 GB of memory. The nodes are inter-

onnected with an Infiniband FDR10 network, which divides the
upercomputer into islands,  each of which contains 8192 cores. We
se this machine to run HemeLB simulations using the Bifurcation
imulation domain, and to compare our measurements to our
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ig. 15. As Fig. 14, but for the Network, Small Network and Large Network simula-
ion domains. These validation runs were done using the HECToR supercomputer.
� 4.2 × 10 SUPS per core (calc only)
�  1.83 × 10−4[s]
�  500 MB/s per core

model predictions. We  provide the list of constant values in Table 7.
The values of �calc, �comm and Omonitoring are the same as those
we used for HECToR, as these constants do not depend on the
underlying architecture. We  obtained a � value of 500 MB/s per
core through direct correspondence with LRZ, and measured a � of
1.83 × 10−4 s by running a ping job between two nodes within the
same island, and taking the average from 10 pings. As all small
jobs on SuperMUC tend to get scheduled on the same island, it
was unfortunately not possible to accurately measure the latency
between islands. We  obtained the value of � by running a very
short HemeLB simulation on one node and extracting the calcula-
tion rate per core, excluding any communications or other overhead
(4.2 × 106 SUPS).

We  present both our model predictions and our performance
measurements in Fig. 16. Here we find that our simulation runs
considerably faster on SuperMUC than on HECToR, achieving 3.49
MSUPS per core when using 128 cores, and 3.00 MSUPS per core
when using 2048 cores. Our performance model accurately pre-
dicts the runtime for simulations up to 4096 cores, and matches
the measured performance even more closely than in the HECToR
validation tests. We  have performed 2 runs using 8192 cores, one
using one island, and on distributed over two islands. Our perfor-
mance model predicts a time which is higher than the measured
time for the single-island run. This may  be because the ping test
we used over the Infiniband has given us a somewhat higher � than
the actual point-to-point latency of communications in the MPI
layer. Communications between islands experience much higher
latency and lower bandwidth (at a 4:1 ratio). As a result, the run
performed using two  islands is an order of magnitude slower than
the run using one island. Understanding the performance across
islands would require us to assess the latency and bandwidth char-

acteristics of the inter-island links (which would require a special
access mode), and incorporate these in a separate “inter-island” set
of the parameters � and �.
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. Discussion

We  have presented a range of performance measurements for
emeLB, covering the lattice Boltzmann simulation and the visual-

sation and steering functionalities. For the models studied here,
emeLB scales near-linearly up to 32,768 cores, even for highly

parse simulation domains such as vascular networks. The applica-
ion achieves close to maximum efficiency when using between
000 and 500,000 lattice sites per core. We have shown that
emeLB can render and write images once every 100 timesteps
ith an overhead of ∼10%, sharing streaming images and con-

rol with a steering client at 4.6 frames/s with a 28% overhead. We
ave demonstrated that it is possible to create a model which can
stimate the run time of HemeLB simulations in advance. In our
alidation tests, we find that the predictions are between 70% and
40% of the actual runtime for simulations with at least 5000 lat-
ice sites per core, and that our model remains largely accurate
hen applied to a different architecture (SuperMUC). We  believe

hat accurate runtime predictions will be useful in the long term
hen HemeLB is used in a clinical setting, as doctors will be able to

elect the simulation with the highest accuracy that still meets the
eadline for actual treatment.

To improve the accuracy of HemeLB simulations, as part of the
APPER project [30], we have developed an intercommunication

ayer that allows the code to exchange boundary information with
ther simulation codes [31]. These couplings allow us to incorpo-
ate phenomena that are not resolved in HemeLB itself, such as the
nteraction between the blood flow in the intracranial vasculature
nd that in the rest of the human body. The boundary exchanges
n these coupled simulations occur at high frequency and require
apid response times on both ends. The performance bottlenecks
e have identified allow us to take the necessary steps to ensure

n optimal performance for multiscale simulations using HemeLB.
The envisaged use-case for HemeLB, involving deployment

ithin a clinical setting, is made more difficult by typical queuing
nd scheduling policies for supercomputers. One important benefit
f supercomputing lies in enabling results to be produced in a
imely fashion. With typical scheduling policies, however, many
odes produce results only after a lengthy wait in a queuing
ystem, significantly reducing the value-added of the supercom-
uting resource relative to a long-running simulation on a smaller
achine. The value of supercomputing is particularly apparent
hen using interactive visualisation and steering [2], as this

nables complex simulations to be investigated on timescales
lose to those of human engagement. However, this form of
nteraction is not possible without an advance reservation facility,
nabling one to predict the time when one will be able to interact
ith the running simulation.

In particular, in the clinical context, patients and physi-
ians already interact within a complex resource availability and
cheduling environment. In this case, advance reservation will be
ecessary to make computing resources available concurrently
ith medical equipment, physicians, and patient needs. Further-
ore, when HemeLB is used in a clinical context, rapid access

o computing resources will become a safety-critical factor. This
equires not just advance reservation, but support for urgent com-
uting [4]. For the use cases we envisage for HemeLB, an urgent
omputing mechanism will need to be available on supercompu-
ing resources.
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