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Defects in the IFT-B Component IFT172 Cause
Jeune and Mainzer-Saldino Syndromes in Humans
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Intraflagellar transport (IFT) depends on two evolutionarily conserved modules, subcomplexes A (IFT-A) and B (IFT-B), to drive ciliary

assembly and maintenance. All six IFT-A components and their motor protein, DYNC2H1, have been linked to human skeletal ciliopa-

thies, including asphyxiating thoracic dystrophy (ATD; also known as Jeune syndrome), Sensenbrenner syndrome, andMainzer-Saldino

syndrome (MZSDS). Conversely, the 14 subunits in the IFT-B module, with the exception of IFT80, have unknown roles in human

disease. To identify additional IFT-B components defective in ciliopathies, we independently performed different mutation analyses:

candidate-based sequencing of all IFT-B-encoding genes in 1,467 individuals with a nephronophthisis-related ciliopathy or whole-

exome resequencing in 63 individuals with ATD. We thereby detected biallelic mutations in the IFT-B-encoding gene IFT172 in 12 fam-

ilies. All affected individuals displayed abnormalities of the thorax and/or long bones, as well as renal, hepatic, or retinal involvement,

consistent with the diagnosis of ATD or MZSDS. Additionally, cerebellar aplasia or hypoplasia characteristic of Joubert syndrome was

present in 2 out of 12 families. Fibroblasts from affected individuals showed disturbed ciliary composition, suggesting alteration of ciliary

transport and signaling. Knockdown of ift172 in zebrafish recapitulated the human phenotype and demonstrated a genetic interaction

between ift172 and ift80. In summary, we have identified defects in IFT172 as a cause of complex ATD andMZSDS. Our findings link the

group of skeletal ciliopathies to an additional IFT-B component, IFT172, similar to what has been shown for IFT-A.
Cilia are hair-like structures that project from the surface of

most mammalian cells and are involved in diverse

signaling pathways. Mutations in genes encoding ciliary
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proteins lead to ‘‘ciliopathies,’’ a collection of complex

developmental disorders of multiple organ systems.1–3

Although there is broad clinical overlap, ciliopathies
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have been divided into subgroups on the basis of their

predominant clinical phenotype and major organ involve-

ment; nephronophthisis-related ciliopathies (NPHP-RCs)

and skeletal ciliopathies are such examples. Whereas by

definition NPHP-RCs show cystic renal degeneration,2

skeletal ciliopathies primarily manifest with a bone-related

phenotype, such as polydactyly (e.g., in short-rib-polydac-

tyly syndromes [SRPSs; MIM 263510] and Ellis-van-Cre-

veld syndrome [EVC; MIM 225500]), thoracic dystrophy

(e.g., in SRPSs and asphyxiating thoracic dystrophy

[ATD], also known as Jeune syndrome [MIM 208500]),

phalangeal cone-shaped epiphysis (e.g., in Mainzer-

Saldino syndrome [MZSDS; MIM 266920]), or dolicho-

cephaly and hypodontia and/or microdontia (e.g., in

cranioectodermal dysplasia [CED], also known as Sense-

nbrenner syndrome [MIM 218330]).4 Whereas proteins

associated with NPHP-RCs mainly function at the

ciliary transition zone,5 most proteins associated with

skeletal ciliopathies have been shown to participate in

intraflagellar transport (IFT). IFT is an evolutionarily

conserved kinesin- and dynein-mediated bidirectional

trafficking system essential for cilium assembly and main-

tenance and is facilitated by two major subcomplexes, A

(IFT-A) and B (IFT-B). Ciliary proteins found to be defective

in skeletal disorders currently encompass the following

four main subgroups: (1) all six subunits of IFT-A6–11 and

its motor protein, DYNC2H1,12 whose defects have been

shown to disrupt retrograde transport and cause IFT

protein accumulation at the ciliary tip; (2) NEK1, a

serine-threonine kinase involved in cell-cycle control and

ciliogenesis;13 (3) EVC and EVC2, both located at the

basal body as positive regulators of sonic hedgehog

signaling;14,15 and (4) IFT80 (intraflagellar transport 80

homolog [Chlamydomonas]), one of 14 subunits of IFT-B,

which is involved in anterograde IFT. Although all six

IFT-A components are implicated in skeletal ciliopathies,

none of the IFT-B components have been shown to play

a role in human disease to date; the only exception is

IFT80, encoded by IFT80 (MIM 611263), the first gene

identified as causing ATD when mutated.16 Given the

fact that IFT-B is critical for ciliogenesis in mice,17,18 we

sought to elucidate whether additional IFT-B proteins are

defective in individuals with ciliopathies, particularly

skeletal ciliopathies.

To identify additional genes mutated in ciliopathies, we

applied targeted candidate-gene sequencing and whole-

exome capture with next-generation sequencing (also

known as whole-exome resequencing [WER]) to a large

multicenter cohort of 1,530 individuals with ciliopathies.

Written informed consent was obtained from all indi-

viduals enrolled in this study and approved by the institu-

tional review boards at the University of Michigan, the

University College London Institute of Child Health (in

partnership with the Great Ormond Street NHS Hospital

Trust), Paris Descartes University, University of British

Columbia, University of Queensland, University of

Birmingham, and Duke University Medical Center. The
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diagnosis of NPHP-RCs and/or ATD was based on pub-

lished clinical criteria.19 Mutation analysis was performed

by three different approaches in five independent cohorts

of individuals with NPHP-RCs or skeletal ciliopathies. In 12

families, we identified a total of 14 individuals who had

biallelic mutations in IFT172 (intraflagellar transport 172

homolog [Chlamydomonas], also known as SLB, selective

LIM binding factor homolog [RefSeq accession number

NM_015662.1, MIM 607386]) and who shared a pheno-

type including skeletal abnormalities, nephronophthisis

(NPHP), and liver and eye involvement, consistent with

the diagnosis of complex ATD or MZSDS (Table 1). When-

ever available, we obtained parental DNA to show segrega-

tion of a recessive trait by Sanger sequencing (Figure S1,

available online, and Table 1).

First, we performed a candidate-gene screening of all 14

genes encoding IFT-B complex proteins (Table S1) in 1,056

affected individuals with NPHP-RCs by applying a recently

developed mutation-analysis method of microfluidic

array-based multiplex PCR and consecutive barcoded

next-generation sequencing (NGS).20 As a result, we

detected seven individuals with recessive IFT172 muta-

tions in five families. Three individuals from two families

were homozygous for missense mutations (A3189-21,

c.886C>T [p.Arg296Trp]; A2052-21 and A2052-22,

c.4630C>T [p.Arg1544Cys]). Another four individuals

from three families were compound heterozygous for

a truncating and a missense mutation (A3215-21,

c.2716C>T [p.Gln906*] and c.4607T>C [p.Leu1536Pro];

F108-21, c.3228þ1G>A and c.4607T>C [p.Leu1536Pro];

A3037-21 and A3037-22, c.4925_4928delGAGA

[p.Arg1642Lysfs*32] and c.5179T>C [p.Cys1727Arg]). All

detected missense residues were highly conserved

throughout evolution (Table 1). Most affected individuals

exhibited NPHP with progressive renal insufficiency in

childhood and reached end-stage renal disease (ESRD) by

20 years of age. Three subjects (A3215-21, A2052-21, and

A2052-22) showed thoracic dystrophy with chronic respi-

ratory distress, necessitating intermittent mechanical

ventilation (Figure 1A). All three presented with the

clinical characteristics of ATD: thoracic dystrophy with

a trident acetabular roof and shortening of the long

bones (Figure 1 and Table 1). The affected siblings from

family A2052, as well as three other individuals (A3037-

21, A3037-22, and F108-21), displayed phalangeal cone-

shaped epiphysis, a hallmark of MZSDS (Figure 1G), in

addition to liver fibrosis and retinal dystrophy. Interest-

ingly, both siblings from family A2052 also exhibited cere-

bellar vermis hypoplasia, representing an exceedingly rare

co-occurrence of ATD, MZSDS, and Joubert syndrome

(JBTS [MIM 213300]).21 Three of the individuals with

MZSDS (A3037-21, A3037-22, and F108-21) also presented

with obesity and impaired glucose tolerance, suggesting

a phenotypic overlap with Bardet-Biedl syndrome (BBS

[MIM 209900]) (Table 1). Mutations in genes most

frequently associated with NPHP (NPHP1–NPHP13) had

been previously excluded in all affected individuals.22
er 7, 2013



Table 1. IFT172 Mutations in 14 Individuals from 12 Families Affected by Skeletal Ciliopathies, ATD and MZSDS

Individuala
Ethnic
Origin

Nucleotide
Mutationb

Deduced Protein
Alteration

Exon or Intron
(Zygosity,
Segregation)

Amino Acid
Evolutionary
Conservation

PolyPhen-2
(HumVar)

Mutation
Taster

Parental
Consan-
guinity

Clinical
Diagnosis

Skeletal
Features

Renal
Disease
(ESRD)

Other Clinical
Features

NPH2218 Hungarian c.432delA p.Lys144Asnfs*15 6 (het, p) - - - no ATD, JBTS TD, SS,
SLB

NPHP (6 years) RD, LF, OMA, CVH, ID,
obesity

c.4161G>Ac p.Arg1387Serfs*7 38 (het, m) - - -

A3189-21 Pakistani c.886C>Td p.Arg296Trp 9 (hom) D. melanogaster 0.967 DC yes MZSDS SS NPHP (9 years) RD, ID, died at 12 years

UCL-87 Turkish c.1232T>A p.Ile411Asn 13 (hom)
(het, p/m)

D. melanogaster 0.890 DC yes ATD TD, TA,
PD (feet)

none (�) LF, died at 18 months

UCL-107 Turkish c.1232T>A p.Ile411Asn 13 (hom) D. melanogaster 0.890 DC yes ATD TD, TA none (�) LF, died at 3 months

NPH2161 French c.1390_1395del
GATATT

p.Asp464_Ile465
del

14 (het) D. melanogaster
and D. rerio

- - ND MZSDS BD NPHP (34 years) RD, cholestasis

c.5179T>Ce p.Cys1727Arg 48 (het) D. rerio 0.648 DC

B1 Belgian c.1671_1672dupAG p.Val558Glufs*12 16 (het, p) - - - no ATD TD, TA,
PSCE,
BD, PD

none (�) RD, ID

c.5179T>Ce p.Cys1727Arg 48 (het, m) D. rerio 0.648 DC

SKDP-44.3 British c.2158delC p.Arg720Valfs*28 21 (het, m) - - - no ATD TD, TA,
SS, BD

mild structural
abnormalities

RD, cholestasis, OMA,
ID, obesity

c.5179T>Ce p.Cys1727Arg 48 (het, p) D. rerio 0.648 DC

A3215-21 South
American

c.2716C>T p.Gln906* 25 (het, m) - - - no ATD TD, SS,
GV

NPHP
(12 years),
RTX (13 years)

ID

c.4607T>C p.Leu1536Pro 42 (het, p) C. reinhardtii 0.807 DC

F108-21 German c.3228þ1G>A 50 splice site 29 (het, m) - - - no MZSDS PCSE, BD NPHP (11 years) RD, LF, IGT, obesity

c.4607T>C p.Leu1536Pro 42 (het, p) C. reinhardtii 0.807 DC

SKDP-165.3 Singaporean
and
Malaysian

c.3907C>T p.Arg1303* 35 (het, p) - - - no ATD TD, TA,
PD, SLB

early cystic
dysplasia

LF, VSD,
hydrocephalus, died
by induced abortionc.4630C>T p.Arg1544Cys 42 (het, m) D. melanogaster 0.991 DC

A2052-21 and
A2052-22

Filipino c.4630C>T p.Arg1544Cys 42 (hom)
(het, p/m)

D. melanogaster 0.991 DC yes ATD, MZSDS,
JBTS

TD, TA,
PCSE, BD

NPHP (2 years),
RTX (4 years)

RD, LF, OMA, CVH, ID

A3037-21 and
A3037-22

European
American

c.4925_4928del
GAGA

p.Arg1642Lysfs*32 46 (het, p) - - - no MZSDS PCSE, BD NPHP (20 years) RD, LF, obesity

c.5179T>Ce p.Cys1727Arg 48 (het, m) D. rerio 0.648 DC

Abbreviations are as follows: BD, brachydactyly; ESRD, end-stage renal disease; CVH, cerebellar vermis hypoplasia; DC, predicted to be ‘‘disease causing’’; GV, genu valgum; het, heterozygous; hom, homozygous; ID, in-
tellectual disability; IGT, impaired glucose tolerance; ATD, asphyxiating thoracic dystrophy; JBTS, Joubert syndrome; LF, liver fibrosis; m, maternal; MZSDS, Mainzer-Saldino syndrome; ND, no data; NPHP, nephronophthisis;
OMA, ocular motor apraxia; p, paternal; PD, polydactyly; PCSE, phalangeal cone-shaped epiphysis; RD, retinal degeneration; RTX, renal transplantation; SLB, short long bone; SS, short stature; TA, trident acetabulum; TD,
thoracic dystrophy (small bell-shaped thorax); and VSD, ventriculoseptal defect.
aIn sibling cases, clinical information refers to the underlined individual.
bcDNA mutations are numbered according to human cDNA RefSeq NM_015662.1 (IFT172); þ1 corresponds to the A of the ATG start translation codon.
cThis variant abrogates the 30 splice site (Figure S2). It is in 1000 Genomes (its minor allele frequency is not annotated), but not in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project Exome
Variant Server (EVS).
dNHLBI EVS (n ¼ 6,503 control subjects): T/T ¼ 0; T/C ¼ 1; C/C ¼ 6,502.
eNHLBI EVS (n ¼ 6,503 control subjects): C/C ¼ 0; C/T ¼ 1; T/T ¼ 6,502.

T
h
e
A
m
e
rica

n
Jo
u
rn
a
l
o
f
H
u
m
a
n
G
e
n
e
tics

9
3
,
9
1
5
–
9
2
5
,
N
o
ve
m
b
e
r
7
,
2
0
1
3

9
1
7



Figure 1. Clinical Characteristics of Individuals with Recessive Mutations in IFT172
(A) A chest X-ray of individual A3215-21 shows a narrowed, bell-shaped thorax and short ribs. Note the tracheostomy for ventilation.
(B) A hip X-ray of individual UCL-87 demonstrates a trident acetabular roof with spurs (white arrowheads).
(C) Postaxial polydactyly of the feet in individual UCL-87.
(D) A chest X-ray of individual UCL-107 shows a narrowed, bell-shaped thorax.
(E) Obesity and short stature of individual NPH2218 at 10 years of age.
(F) Renal histology of individual NPH2218 exhibits dilated tubules, disruption of the tubular basement membrane, and extensive
interstitial fibrosis.
(G) A hand X-ray of individual A3037-21 shows brachydactyly with cone-shaped epiphysis of the middle phalanges.
(H) A babygram of individual SKDP-165.3 shows a turricephaly-like skull shape, absent nasal bone, postaxial tetramelic hexadactyly,
shortened and curved long bones, short ribs, mild platyspondyly, and spur-like projections of the acetabular roof.
(I) A trident acetabular roof with spurs (white arrowheads) in individual UCL-107.
(J) Cranial MRI depicts partial agenesis of the cerebellar vermis in individual NPH2218.
(K) Brachydactyly of individual NPH2218.
(L) Narrow thorax of individual UCL-107.
Similarly, we conducted bidirectional Sanger sequencing

of the coding exons and intron-exon boundaries of all 14

IFT-B-encoding genes in another cohort of 296 individuals

with ciliopathies. We thereby identified compound-

heterozygous changes in IFT172: the previously identified

missense mutation c.5179T>C (p.Cys1727Arg) and

a frameshifting 2 bp deletion, c.1671_1672dupAG

(p.Val558Glufs*12), in a Belgian female with ATD (B1,

Table 1 and Figure S1). Notably, her initial symptoms

were bilateral postaxial polydactyly of the hands at birth

and night blindness at 5 years of age. Subsequent clinical

evaluation revealed a mildly hypoplastic left thoracic

cage, rhizomelic shortening of the limbs with brachydac-

tyly, short phalanges, and a trident acetabulum. Ultraso-
918 The American Journal of Human Genetics 93, 915–925, Novemb
nography at the time of ascertainment revealed no signif-

icant abnormalities in the kidneys, liver, or pancreas.23

Second, by applying exon-enriched NGS of 1,209 ciliary

candidate genes, including those encoding all 14 IFT-B

components (‘‘ciliome sequencing’’),11 in another 115

individuals with NPHP-RCs, we found two individuals

with compound-heterozygous IFT172 mutations. Indivi-

dual NPH2218 carried two truncating mutations, a frame-

shift mutation in exon 6 (c.432delA [p.Lys144Asnfs*15]),

and a nucleotide change that affected the first base of

exon 38 and thus abrogated the acceptor splice site and

led to a truncated protein (c.4161G>A [p.Arg1387Serfs*7])

(Figure S2). This individual exhibited a severe phenotype

with shortened long bones, resulting in severe dwarfism,
er 7, 2013



obesity, brachydactyly, and NPHP with early-onset ESRD

(Figures 1E, 1F, and 1K). Additionally, he also presented

with liver failure, retinal degeneration, severe intellectual

disability, oculomotor apraxia, and partial agenesis of the

cerebellar vermis, consistent with JBTS (Figure 1J). In

contrast, individual NPH2161 displayed a milder pheno-

type evoking MZSDS as a result of late-onset retinitis

pigmentosa, NPHP with adult-onset ESRD (at 34 years),

cholestasis, and short hands. This individual carried a

missense allele (c.5179T>C [p.Cys1727Arg], conserved to

D. rerio) and an in-frame deletion (c.1390_1395delGATATT

[p.Asp464_Ile465del], conserved to D. rerio and

D. melanogaster).

Third, WER was independently performed in two sepa-

rate ATD cohorts, one from the United Kingdom and one

from Australia. In the United Kingdom cohort, we per-

formed WER in 56 individuals with the clinical diagnosis

of ATD. We thereby identified a homozygous missense

mutation in IFT172 (c.1232T>A [p.Ile411Asn], conserved

to D. melanogaster) in an individual of consanguineous

Turkish descent (UCL-87). Parallel sequencing of 60 more

ATD cases with the use of a NGS gene-panel approach

revealed the same mutation in a second individual of

consanguineous Turkish descent (UCL-107). In addition

to showing characteristic ATD features, such as a bell-

shaped narrow thorax with short ribs, handlebar clavicles,

and a trident acetabulum (Figures 1B, 1D, 1I, and 1L),

both individuals displayed hepatosplenomegaly, dilated

intrahepatic bile ducts, and liver failure similarly to the

previously detected individuals (F108-21, A3037-21, and

A2052-21). In contrast to most of the described subjects,

UCL-87 additionally presented with postaxial polydactyly

of the feet (Figure 1C). Renal disease was not reported

in either of them. However, because both individuals

died within the first 18 months of life as a result of

respiratory (UCL-107)24 or liver (UCL-87) failure, renal

involvement could not be completely excluded or might

have developed later in life. WER variant analysis was per-

formed as previously described.25 In UCL-87, the above

mutation was one out of three remaining homozygous

missense variants found in three different genes. Only

two variants, the one in IFT172 and one in ERCC6, were

located on a long homozygosity stretch corresponding

to parental consanguinity.26 ERCC6 is known to cause

Cockayne syndrome type B (MIM 133540), a recessive

UV-sensitive nucleotide-excision-repair disorder character-

ized by neurological and sensory impairment, cachectic

dwarfism, and photosensitivity.27 Therefore, considering

the individual’s phenotype and taking the evolutionary

conservation of both missense variants into account,

IFT172 remained the most likely disease-associated candi-

date (Table S2).

In the Australian cohort, we performed WER in seven

individuals with ATD and identified two individuals with

compound-heterozygous mutations in IFT172 (SKDP-

165.3 and SKDP-44.3). SKDP-165.3 carried a truncating

mutation (c.3907C>T [p.Arg1303*]) and a missense
The American
mutation (c.4630C>T [p.Arg1544Cys], conserved to

D. melanogaster). SKDP-44.3 carried a single-base frame-

shift deletion (c.2158delC [p.Arg720Valfs*28]) and a mis-

sense mutation (c.5179T>C [p.Cys1727Arg], conserved

to D. rerio). Internal WER data of 993 unrelated control

individuals did not demonstrate any other person with

compound-heterozygous mutations in IFT172. An

ultrasound scan of SKDP-165.3 at 16 weeks of gestation

demonstrated a facial cleft with an absent nasal bone,

hydrocephalus, cardiac malformation, tetramelic poly-

dactyly, short long bones, and echogenic kidneys; the

pregnancy was terminated at this stage. Postmortem exam-

ination demonstrated intrauterine growth restriction, a

turricephaly-like skull shape, upper-lip paramedian cleft

extending into the palate, hypoplasia of the nasal bridge

and nose, postaxial hexadactyly of all four limbs, hydro-

cephalus, possible brain heterotopia, a ventriculoseptal

defect, bilateral adrenal hypoplasia, prominent hepatic

ductal plates, and early renal cystic dysplasia (Table 1).

Other skeletal changes included shortened and curved

long bones, relatively short ribs, mild platyspondyly, and

spur-like projections of the acetabular roof (Figure 1H).

ATD was considered the most likely diagnosis. WER was

performed as previously described.25 Given parental non-

consanguinity, compound heterozygosity was thought

the most likely form of inheritance. Seven genes carried

two or more novel (absent from public databases) or rare

(minor allele frequency < 0.001) nonsynonymous SNPs,

small insertions, or exon or splice-site deletions predicted

to be damaging.

Two of these genes (IFT172 and STXBP5L) were repre-

sented in the cilia proteome and had appropriate familial

segregation of variants; however, only IFT172 had two

variants that were in highly conserved regions and had a

deleterious effect predicted by PolyPhen-2, SIFT, and

MutationTaster. Thus, IFT172 was considered the most

likely candidate (Tables S3 and S4).

SKDP-44.3, the last individual of the Australian cohort,

had neonatal respiratory distress. Poor vision was noted

from the age of 6 weeks, leading to the diagnosis of retinal

dystrophy. Speech was delayed, and brain MRI revealed

mild ventriculomegaly. Frequent and severe chest infec-

tions led to a skeletal survey, which showed narrowing of

the thorax and resulted in a diagnosis of ATD. This indivi-

dual was also noted to have mild renal structural

abnormalities, obesity, marked rhizomelic shortening,

and brachydactyly. WER data for SKDP-44.3 was similarly

filtered; after Sanger sequencing for appropriate segrega-

tion within the family, only IFT172 remained as a possible

candidate gene (Tables S3 and S4).

IFT172 encodes IFT172, a 1,749-residue protein (the

largest of all known IFT proteins) containing 9 N-terminal

WD-40, 1 LIM, and 14 C-terminal TPR (tetratricopeptide

repeat) domains. The detected mutations lead to protein

changes in both principal domain structures and have a

slight predominance toward the C-terminal end, which

neighbors the loci of two extensively studied animal
Journal of Human Genetics 93, 915–925, November 7, 2013 919
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Figure 2. Biallelic IFT172 Mutations, Deduced Impact at Protein Level, and Subcellular Localization of WT IFT172
(A) Exon structure of human IFT172 cDNA. The positions of the start codon (ATG) and stop codon (TGA) are indicated.
(B) Domain structure of IFT172, which contains 9 WD-40 repeats (WD), located N-terminal to 14 tetratricopeptide repeats (TPR) and 1
LIM domain. For the mutations detected, black arrows indicate positions in relation to exons and protein domains. Family numbers are
underlined. Abbreviations are as follows: H, homozygous; and h, heterozygous. IFT172 animal mutantswim (mouse, p.Leu1564Pro) and
fla11 (C. reinhardtii, p.Leu1615Pro) are indicated by red arrows. Note the proximity of the detected missense changes p.Leu1536Pro and
p.Arg1544Cys to the wim locus at position Leu1564.
(C) A partial protein alignment of IFT172 shows evolutionary conservation of the identified missense changes (p.Arg296Trp,
p.Ile411Asn, p.Leu1536Pro, p.Arg1544Cys, and p.Cys1727Arg).
(D) Antibody staining (polyclonal rabbit antibody, Abcam, 1:100) of WT IFT172 in human control fibroblasts shows axonemal and peri-
centriolar localization in comparison to acetylated tubulin (anti-acetylated alpha tubulin, mousemonoclonal antibody, Abcam, 1:1000).
(E and F) Localization of humanWT IFT172 constructs, once with anN-terminal GFP tag (E) and once with a C-terminal GFP tag (F), after
transfection of a 48 hr serum-starved NIH 3T3 cell line. Immunofluorescence on a confocal microscope (Zeiss, LSM 720) confirmed
axonemal localization with enrichment at the ciliary base upon overexpression.
mutants, the wimple mouse (wim)17 and the thermosensi-

tive Chlamydomonas fla1128 (Figures 2A and 2B). Interest-

ingly, although both mutants represent missense changes

(p.Leu1564Pro for wim and p.Leu1615Pro for fla11), they

result in severe phenotypes and, in the case of wim, embry-

onic lethality.17

In accordance with previously reported human muta-

tions of genes encoding the IFT-A or IFT-B complex, most
920 The American Journal of Human Genetics 93, 915–925, Novemb
affected individuals carried one highly conserved missense

allele in transwith a functional null nonsense or frameshift

allele (Figures 2B and 2C). Accordingly, the observed phe-

notypes of the subjects in this study, especially the pheno-

type of SKDP-165.3, are reminiscent of the hypomorphic

avc1 mouse, which displays shortening of the long bones,

preaxial polydactyly, renal dysplasia, atrioventricular

septal defect, and hydrocephalus.29 Only NPH2218 carried
er 7, 2013



two truncating mutations, consequently associated with a

severe phenotype of multiple organ involvement, notably

malformations of the CNS. However, the homozygous

c.1232T>A (p.Ile411Asn) mutation of UCL-87 and UCL-

107 was also associated with a severe phenotype and early

death. This might be due to the substitution’s N-terminal

localization, given that the N terminus was recently shown

to be necessary for anterograde transport in Tetrahymena.30

However, health-care standards in the individuals’ respec-

tive countries have to be taken into account before a geno-

type-phenotype correlation can be considered. On the

other hand, SKDP-165.3 also demonstrated an extremely

severe phenotype; whether this would have been compat-

ible with postnatal life is unknown. This individual carried

one earlier truncatingmutation and the same C-terminally

located missense mutation as did family A2052. In conclu-

sion, even missense mutations can result in a severe

phenotype if located within a specific domain structure

of crucial protein function, as already demonstrated for

wim (Figures 2A and 2B).17

To investigate the subcellular localization of the wild-

type (WT) protein, we first performed immunofluores-

cence in primary human skin fibroblasts of healthy

controls. WT IFT172 localized to the axoneme and around

the base of the cilium (Figure 2D). Similar to endogenous

IFT172, N-terminally and C-terminally tagged constructs

localized to the ciliary axoneme upon overexpression (Fig-

ures 2E and 2F).

To evaluate the impact of the identified human muta-

tions on ciliogenesis, ciliary morphology, and composi-

tion, we examined cultured human fibroblasts from

affected individuals A2052-21, NPH2161, and NPH2218

and compared them to those of healthy controls. No sig-

nificant difference in the number of ciliated cells was

observed between mutants and controls. Cilia from

mutant fibroblasts were not shortened but unexpectedly

appeared longer than those of the controls (Figure 3A).

Similarly, we found that cilia from the remaining kidney

tubules of individual NPH2218 also appeared longer

(Figure S3). We next assessed the ciliary composition in

the three human fibroblast cell lines (A2052-21,

NPH2161, and NPH2218) and observed a partial loss of

the IFT-A protein IFT140 along the cilium, accompanied

by an accumulation of IFT140 at the basal body

(Figure 3B). Interestingly, we also observed a significant

decrease in adenylyl cyclase III (ACIII) staining along the

axonemes of all three human fibroblast cell lines

(Figure 3C). Reduced ciliary ACIII can result in defective

cyclic AMP (cAMP) signaling and consequent reduction

of the activity of protein kinase A (PKA), a negative regu-

lator of mammalian Sonic hedgehog signaling. Indeed,

we observed an abnormal accumulation of the catalytic

subunits of PKA (PKAc) at the base of the cilium in affected

individuals’ fibroblasts that were treated with the adeny-

late cyclase activator forskolin (Figure S4), suggesting

altered cAMP-PKA signaling. Together, these results indi-

cate that fibroblasts from affected individuals exhibit an
The American
altered ciliary composition and potentially lead to defects

in ciliary trafficking and cilia-mediated signaling.

To recapitulate the human phenotype and investigate

defective IFT172 in vivo, we performed zebrafish knock-

downwith twomorpholino oligonucleotides (MOs) target-

ing the exon 1-intron 1 and intron 1-exon 2 splice sites.

Both MOs led to a similar phenotype comparable to that

of the previously described ift172 zebrafish mutants,31,32

displayingventral body-axis curvature, formationof kidney

cysts, otolithdefects, andhydrocephalus (Figure 4BandFig-

ures S5C and S5E). In addition, morphants exhibited carti-

lage defects, demonstrated by Alcian-blue staining of the

craniofacial skeleton (Figure4B). Furthermore, uponknock-

down of ift172 in a rhodopsin-GFP transgenic zebrafish

line, we were able to visualize the impact on retinal

rhodopsin expression. We thereby demonstrated that the

level of rhodopsin-GFP was lower in ift172 morphants

than in controls, suggesting retinal degeneration

(Figure S5A). Lastly, by scanning electron microscopy of

the olfactory placode, we observed ciliogenesis defects,

including shortened and truncated cilia, in ift172 mor-

phants compared to controls (Figure S5B). Ciliogenesis

defects with fewer and shorter cilia have been previously

described in ift172 mutant zebrafish embryos,33 as well as

in the ift172 mouse mutant wim.17 In contrast to these

observations, the fibroblasts from the three individuals

with IFT172mutationswerenormally ciliated. This discrep-

ancy might be due to the nature of the identified human

mutations, each carrying at least one hypomorphic allele

that might partially conserve IFT172 function and thus

result in an overall milder phenotype.

IFT80, a 777 amino acid protein, shows striking similar-

ities to IFT172. Both proteins are part of the peripheral,

non-core, IFT-B complex, feature multiple N-terminal

WD-40 domains, and are implicated in individuals with

ATD when defective.16 Therefore, we investigated whether

IFT172 and IFT80 interact genetically with each other.

When comparing the phenotypes of both zebrafish mor-

phants, we observed striking similarities with regard to

body-axis curvature, formation of kidney cysts, and

pattern of cartilage defects (Figures 4B–4F). Moreover, the

combined injection of subphenotypic doses of both ift80

(1.5 ng) and ift172 (1.5 ng) MOs resulted in the same

phenotype as did injection of a full dose (3 ng) of each

MO alone, indicating genetic interaction (Figures 4B–4F

and Figures S5C and S5G).

In summary, we have identified mutations in IFT172 as

an additional cause of ATD and MZSDS in humans. In

contrast to ‘‘classical’’ ATD, which is due to mutated

IFT80 and DYNC2H1 and which typically manifests

without any extraskeletal symptoms,16,34 ATD in these

subjects with mutations in IFT172 is characterized by a

complex phenotype and is frequently associated with ex-

traskeletal involvement, notably NPHP, liver fibrosis,

retinal degeneration, obesity, and rarely, cerebellar vermis

hypoplasia (in A2052-21, A2052-22, and NPH2218).

None of the previously identified genes associated with
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Figure 3. Alteration of Ciliogenesis and Ciliary Composition in Human Mutant Fibroblasts
Control andmutant fibroblasts from individuals NPH2161, A2052-21, and NPH2218were starved for 48 hr for inducing ciliogenesis and
were fixed with MetOH.
(A) Staining of ARL13B (polyclonal rabbit antibody, Proteintech; 1:400), quantification of ciliated cells, and measurement of cilia length
with the use of Lucia G on Nikon DXM 1200 Software. Compared to controls, mutant fibroblasts displayed elongated cilia. The scale bar
represents 10 mm.
(B) Staining of acetylated-tubulin (mouse monoclonal antibody, Sigma Aldrich; 1:10,000), g-tubulin (goat polyclonal antibody, Santa
Cruz; 1:200), and IFT140 (polyclonal rabbit antibody, Proteintech; 1:100) showed a decrease in ciliary and an increase in basal body
IFT140 staining intensity in mutant fibroblasts compared to controls.
(C) Staining of adenylyl cyclase III (ACIII, rabbit polyclonal antibody, Santa Cruz; 1:100) showed a decrease in ciliary ACIII-staining in-
tensity in mutant fibroblasts compared to controls.
Images in (B) and (C) were recordedwith a Leica SP8 confocalmicroscope and analyzedwith ImageJ. All graphs show themean5 SEMof
at least three independent experiments. ‘‘ns’’ stands for not significant. *p< 0.05, **p< 0.01, and ***p< 0.001were calculated via Dunn’s
Multiple Comparison Test after the analysis of variance ANOVA test.
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Figure 4. Knockdown of ift172 and ift80 and Genetic Epistasis between ift172 and ift80 in Zebrafish
(A–C) When compared to the control (A), both ift172 (B) and ift80 (C) morphants displayed similar ciliopathy phenotypes, including
ventral body-axis curvature (first row), formation of renal cysts (red arrows, second row), and cartilage defects with hypoplasia of the
Meckel’s cartilage (mc) and widening of ceratohyal angle (cha), as shown by Alcian-blue staining (third and fourth row).
(D–E) Zebrafish injected with subphenotypic doses of either ift172 (D) or ift80 (E) MO appeared no different than the control (A).
(F) Similar to a full dose of each MO alone, combined injection of subphenotypic doses of ift172 MO and subphenotypic doses of ift80
MO resulted in body-axis curvature, formation of renal cysts, and cartilage defects.
ATD or MZSDS have been implicated in CNS dysplasia, un-

derlying the special role of IFT172 in mammalian brain

development as demonstrated by another ift172-null

mouse model (slb).35 Because of the significant overlap

between the phenotypic features and other forms of

NPHP-RC, we introduce the alias ‘‘NPHP17’’ for IFT172.

The most similar phenotype, however, results from reces-

sive mutations in IFT140 (MIM 266920), encoding one of

six IFT-A subunits. Defective IFT140 is a frequent cause of

MZSDS and ATD with multiple extraskeletal involve-

ments, including NPHP, retinal degeneration, and liver

anomalies.11,36 Consistently, IFT172 is the only IFT-B pro-

tein shown to interact with IFT140 in a series of pull-down

experiments in mice.37 In that context, we have demon-

strated here that mutations in IFT172 lead to partial delo-

calization of IFT140 in fibroblasts of affected individuals,

suggesting the necessity of functional IFT172 for sufficient

IFT140 to enter the cilium. Taken together with the

Chlamydomonas and Tetrahymena data on the importance

of IFT172 for the transition from anterograde to retrograde

transport and for the turnaround at the flagellar tip,28,30

our data strengthen the hypothesis that IFT172 is indeed

involved in an interaction between the two subcomplexes,

IFT-A and IFT-B. By characterization of IFT172 as an addi-

tional gene associated with ATD and as the second gene

identified to be associated with MZSDS in humans,11,36

we link a subset of peripheral IFT-B proteins, consisting

of IFT172 and IFT80, to a phenotype that was also

described in individuals with mutations in genes encoding

IFT-A proteins. We hereby provide a further piece to the

puzzle of correlating protein complexes to certain clinical

phenotypes.
The American
The BBSome was the first protein complex whose

members were defined as defective in a distinct ciliopathy

phenotype, BBS.38 Similarly, the majority of NPHP- and

JBTS-related proteins were mapped to four distinct protein

modules located around the ciliary transition zone.39 IFT-A

has only recently been linked to a variety of human ciliopa-

thies that specifically involve skeletal dysplasia. We have

now shown that defects in the second IFT-B component,

IFT172, also result in a well-defined group of ciliopathies

with skeletal involvement. We therefore hypothesize

that complete or partial loss of function of other IFT-B

members might equally either lead to a bone-related

disorder or turn out to be embryonically lethal.
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et al. (2011). NEK1 mutations cause short-rib polydactyly

syndrome type majewski. Am. J. Hum. Genet. 88, 106–114.

14. Ruiz-Perez, V.L., Ide, S.E., Strom, T.M., Lorenz, B., Wilson, D.,

Woods, K., King, L., Francomano, C., Freisinger, P., Spranger,

S., et al. (2000). Mutations in a new gene in Ellis-van Creveld

syndrome and Weyers acrodental dysostosis. Nat. Genet. 24,

283–286.

15. Ruiz-Perez, V.L., Tompson, S.W., Blair, H.J., Espinoza-Valdez,

C., Lapunzina, P., Silva, E.O., Hamel, B., Gibbs, J.L., Young,

I.D., Wright, M.J., and Goodship, J.A. (2003). Mutations in

two nonhomologous genes in a head-to-head configuration

cause Ellis-van Creveld syndrome. Am. J. Hum. Genet. 72,

728–732.

16. Beales, P.L., Bland, E., Tobin, J.L., Bacchelli, C., Tuysuz, B., Hill,

J., Rix, S., Pearson, C.G., Kai, M., Hartley, J., et al. (2007).

IFT80, which encodes a conserved intraflagellar transport pro-

tein, is mutated in Jeune asphyxiating thoracic dystrophy.

Nat. Genet. 39, 727–729.

17. Huangfu, D., Liu, A., Rakeman, A.S., Murcia, N.S., Niswander,

L., and Anderson, K.V. (2003). Hedgehog signalling in the

mouse requires intraflagellar transport proteins. Nature 426,

83–87.
er 7, 2013

http://www.1000genomes.org/
http://faculty.washington.edu/browning/beagle/beagle_3.3.2_31Oct11.pdf
http://faculty.washington.edu/browning/beagle/beagle_3.3.2_31Oct11.pdf
http://www.illumina.com/software/genome_analyzer_software.ilmn
http://www.illumina.com/software/genome_analyzer_software.ilmn
http://www.ciliaproteome.org
http://www.completegenomics.com/public-data/
http://www.completegenomics.com/public-data/
http://bg.upf.edu/condel/home
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.exome.info
http://www.broadinstitute.org/gatk
http://www.bioconductor.org/packages/2.11/bioc/html/hapFabia.html
http://www.bioconductor.org/packages/2.11/bioc/html/hapFabia.html
http://www.biobase-international.com/product/hgmd
http://www.biobase-international.com/product/hgmd
http://www.proteinatlas.org/
http://www.homozygositymapper.org/HomozygosityMapper/
http://www.homozygositymapper.org/HomozygosityMapper/
http://www.mutationtaster.org/
http://evs.gs.washington.edu/EVS/
http://www.novocraft.com/main/page.php?s=novoalign
http://www.novocraft.com/main/page.php?s=novoalign
http://www.novocraft.com/main/page.php?s=novoalign
http://www.omim.org/
http://www.omim.org/
http://picard.sourceforge.net
http://genetics.bwh.harvard.edu/pph2/
http://snp.gs.washington.edu/SeattleSeqAnnotation137/
http://snp.gs.washington.edu/SeattleSeqAnnotation137/
http://sift.jcvi.org/
http://genome.ucsc.edu/
http://www.uk10k.org
http://www.uniprot.org/uniprot/


18. Murcia, N.S., Richards, W.G., Yoder, B.K., Mucenski, M.L.,

Dunlap, J.R., and Woychik, R.P. (2000). The Oak Ridge

Polycystic Kidney (orpk) disease gene is required for left-right

axis determination. Development 127, 2347–2355.

19. Chaki, M., Hoefele, J., Allen, S.J., Ramaswami, G., Janssen, S.,

Bergmann, C., Heckenlively, J.R., Otto, E.A., and Hildebrandt,

F. (2011). Genotype-phenotype correlation in 440 patients

with NPHP-related ciliopathies. Kidney Int. 80, 1239–1245.

20. Halbritter, J., Diaz, K., Chaki, M., Porath, J.D., Tarrier, B., Fu,

C., Innis, J.L., Allen, S.J., Lyons, R.H., Stefanidis, C.J., et al.

(2012). High-throughput mutation analysis in patients with

a nephronophthisis-associated ciliopathy applying multi-

plexed barcoded array-based PCR amplification and next-gen-

eration sequencing. J. Med. Genet. 49, 756–767.

21. Lehman, A.M., Eydoux, P., Doherty, D., Glass, I.A., Chitayat,

D., Chung, B.Y.H., Langlois, S., Yong, S.L., Lowry, R.B., Hilde-

brandt, F., and Trnka, P. (2010). Co-occurrence of Joubert syn-

drome and Jeune asphyxiating thoracic dystrophy. Am. J.

Med. Genet. A. 152A, 1411–1419.

22. Halbritter, J., Porath, J.D., Diaz, K.A., Braun, D.A., Kohl, S.,

Chaki, M., Allen, S.J., Soliman, N.A., Hildebrandt, F., and

Otto, E.A.; GPN Study Group. (2013). Identification of 99

novel mutations in a worldwide cohort of 1,056 patients

with a nephronophthisis-related ciliopathy. Hum. Genet.

132, 865–884.

23. Casteels, I., Demandt, E., and Legius, E. (2000). Visual loss as

the presenting sign of Jeune syndrome. Eur. J. Paediatr.

Neurol. 4, 243–247.
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