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with RNA for the interaction with Pcf11
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ABSTRACT

In Saccharomyces cerevisiae, the cleavage/polyadenylation factor Pcf11 is an important regulatory factor required for recruiting
the polyadenylation machinery to the elongating RNA polymerase Il (RNAPII) and is necessary for correct transcriptional
termination. The interaction with RNAPII is mediated by a CTD-interacting domain (CID) located in the N-terminal region of
Pcf11 that binds in a phospho-dependent manner the heptad repeats in the RNAPII CTD. We have previously investigated this
protein—protein interaction. We examine here the interaction of the CID with different RNA sequences and look at the effect of
phosphopeptides derived from the CTD heptad repeats on the RNA—protein interaction. Our findings demonstrate that the CID
displays weak RNA-binding activity, but with some degree of sequence preference, the RNA—protein and peptide—protein
interfaces overlap and the CTD-derived phosphopeptides and RNA compete for the binding site. We propose that competition
between the protein—peptide and the protein—-RNA interaction is important mechanistically and required for the disengagement
of polyadenylation factors from RNAPII.
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INTRODUCTION

Coupling of transcription, 3’-end processing and polyade-
nylation is achieved by the direct association of several
effector complexes with RNA polymerase II (RNAPII)
(Howe 2002; Proudfoot et al. 2002) and provides a means
to coordinate transcriptional and post-transcriptional
events (Zorio and Bentley 2004). The assembly of the dif-
ferent complexes on the C-terminal domain (CTD) of
RNAPII can function by increasing the local concentration
of processing factors, by coupling the rate of transcription
with the assembly of specific RNA—protein complexes, and
by allosterically activating and inhibiting the same com-
plexes (Bentley 2005). While a number of recent studies
have significantly improved our knowledge of the interac-
tions that lie at the basis of the assembly of these complexes
(Fabrega et al. 2003; Meinhart and Cramer 2004; Zorio and
Bentley 2004; Meinhart et al. 2005), the physical basis for
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the disassembly of the elongation and mRNA-processing
complexes are still largely uncharted.

The Saccharomyces cerevisiae cleavage factor IA (CFIA) is
an essential component of the mRNA 3’-end processing
machinery. During transcription, this multisubunit com-
plex associates with the RNAPII elongation complex (Lica-
talosi et al. 2002; Kim et al. 2004a) and is required for
cleavage-site selection. Subsequently, CFIA recruits other
protein complexes, resulting in transcript cleavage and
polyadenylation (Chen and Moore 1992). CFIA consists
of the proteins Rnal4, Rnal5, Pcfl1, and Clpl (Gross and
Moore 2001a). Rnal5 and a CFIA-associated factor (Hrpl)
interact with sequence recognition elements present in the
3" UTR (Gross and Moore 2001b) and tether the CFIA
complex at the 3’ end of nascent mRNAs. Rnal4 is tightly
associated with Rnal5, and this interaction enhances Rnal5
binding to the nascent mRNA (Noble et al. 2004). In turn,
the Rnal4-Rnal5 complex interacts with sequences located
within the central region of Pcfl1 (Amrani et al. 1997a,b;
Sadowski et al. 2003). Pcf11 then couples CFIA to RNAPII
by the interaction of its N-terminal CTD interaction do-
main (CID) with serine 2-phosphorylated heptapeptide re-
peats of the RNAPII CTD (Barilla et al. 2001; Licatalosi et al.
2002; Sadowski et al. 2003).
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In a recent study, Zhang and coworkers (Zhang et al.
2005) identified a new RNA-binding activity in the Pcfl1l
CID and related this activity to CTD binding, proposing a
new model for the dismantling of the RNA polymerase II
elongation complex. We have previously investigated the
interaction between the Pcfll CID and a serine 2-phos-
phorylated peptide (PTSPSYSpPTSPSY) derived from the
CTD of RNAPII (Noble et al. 2005). Here, we explore the
RNA-binding capability of the CID and examine the rela-
tionship between binding to the CTD and binding to RNA.
Using NMR and SPR, we have analyzed this three-compo-
nent system in vitro and show that RNA and RNAPII CTD
are competitive ligands of Pcfll CID. We propose that
competition for the CID-binding site is an important con-
tributory factor to CFIA release from RNAPII after initial
deployment of CFIA onto the polyadenylation signals.

RESULTS AND DISCUSSION

RNA binding of Pcf11 CID

In order to investigate the interaction between RNA and
the CID from Pcfll, two ribo-oligonucleotides, GA-RNA
(GAGAGAGAGAGA) and CU-RNA (CUCUCUCUCUCU),
were prepared (Fig. 1A). These oligos were chosen to both
maximize sequence diversity and minimize the possibility of
the RNA to form secondary structures. The absence of imino
resonances in 1D NMR experiments recorded at physiologi-
cal pH and salt concentration confirmed that the ribo-oligo-
nucleotides do not form stable secondary structures (Fig.

A B

1A). However, when the RNAs were mixed with a 1:1 ratio,
two closely grouped sets of peaks were observed, correspond-
ing to the quasidegenerate resonances of the alternate AU
and GC base pairs in the RNA duplex (Fig. 1A).

The interaction of the RNAs with the Pcfll CID was
examined by recording "’N-'"H TROSY spectra of '°N *H-
labeled Pcf11-CID (Pcfl1; residues 1-142) at increasing con-
centrations of (1) GA-RNA, (2) CU-RNA, and (3) GA/CU-
RNA duplex. Addition of GA-RNA up to an RNA:protein
ratio of 1:1 resulted in selective chemical-shift changes in the
protein spectrum (Fig. 1B). The residues affected cluster in
four groups (Fig. 2). The first and by far largest of these
clusters comprises T20, F21, N22, and S23 in the loop
between helices 1 and 2, and K54, Q59, and L61 between
helices 3 and 4. An isolated residue, S69, located in the
phosphopeptide binding site is also significantly affected by
RNA binding. Further changes are observed in three residues
located within the first two turns of helix 7 (D98, T101, and
R102) and in the last two residues of the protein. Globally,
these changes define a binding site that spans the top third of
the concave face of the protein and includes the ridge sepa-
rating it from the convex surface. Similar, but more limited
changes were observed upon addition of CU-RNA and GA/
CU-RNA. The relatively small changes observed in all three
titrations indicate that no major structural rearrangement
(e.g., significant movement or distortion of the helices or
intercalation of aromatic rings) accompanies the binding and
the (very fast) exchange regime of the resonances suggests
that the binding is weak.

In a complementary set of experiments, the CID-RNA
interaction was examined using surface
plasmon resonance (SPR). Here, 3’-bio-
tinylated RNA molecules (GA-RNA,
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CU-RNA, and GA/CU-RNA) were im-
mobilized onto the surface of streptavi-
din-coated sensor chips, and increasing
concentrations of Pcfl1-CID were then
applied to each RNA in order to assess
the binding. A signal change was ob-
served for all three RNAs, although at
the same analyte concentration, GA-
RNA retained twice as much Pcf11-CID
as the GA/CU-RNA or CU-RNA (Fig.
3A). Thus, the rank order of the RNA-
binding preference of the Pcf11-CID is
consistent between the NMR and the
SPR experiments. Inspection of the asso-
ciative and dissociative phases of the SPR
response indicates that the CID-RNA
interaction is characterized by a fast on-
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FIGURE 1. (A) RNA oligonucleotides used in this study and their 1D "H NMR spectra (imino
region). (B) Superimposition of a representative region of the HSQC spectra of Pcf11-CID free

(blue) and bound to the GA-rich oligonucleotide (red).
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and-off rate, in agreement with the tran-
sience indicated by the fast exchange
seen by NMR. Weak binding is also evi-
dent from the trend of the SPR signal
obtained at increasing protein concen-
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FIGURE 2. Ribbon representation of Pcfl1 CID (magenta) in com-
plex with the CTD-derived peptide (Meinhart and Cramer 2004). The
peptide residues are shown in yellow and phosphoserine 2 is high-
lighted in orange. The CID residues whose resonances are most
affected during the titration with GA-RNA are displayed using a
CPK render (green). The binding sites of the CTD-peptide and of
the RNA partially overlap.

trations (Fig. 3B). Although the data were fitted to a single-
site binding equation, the plots are close to linear over the
concentration range used, with no indication of a break-
point. Taken together, these data confirm that the CID
only weakly interacts with RNA with an estimated Ky in
the range of 10~* to 10 °M. Interestingly, this places the
affinity of the CID for RNA in the same range as the affinity
reported for the CID—phosphopeptide interaction (Noble et
al. 2005).

Our NMR and SPR data are in agreement with a recent
report that the Pcf11 CID is capable of RNA binding (Zhang
et al. 2005). Although some sequence specificity is apparent,
the affinity is weak and it is unlikely that the CID-RNA
interaction provides a stable association in the absence of
other protein—RNA interactions. Interestingly, the CID does
not show a priori preference for single-stranded or double-
stranded RNA; the interaction of the protein with the CU-
RNA results in smaller chemical-shift changes and SPR signal
than the interaction with the duplex. However, the differ-
ences observed between the binding to the polypyrimidine
and polypurine RNAs indicate that a degree of sequence
preference does exist. Although it is possible that a specific
high-affinity CID target sequence is still unidentified, our
data show that Pcfl1 would bind to purine-rich sequences
within an mRNA molecule already associated with Rnal5,
Hrpl, and other 3’-end processing factors.

RNA vs. CTD binding

Comparison of the (PTSPSYSpPTSPSY)-CID and RNA-
CID interaction surfaces reveals a significant overlap (Fig.

2). Such an overlap could facilitate a cooperative RNA—
CTD interaction when both ligands are bound to the CID.
Alternatively, competition between the two ligands for the
same site could take place. To investigate these two possi-
bilities, we evaluated the effect of increasing concentrations
of the phosphorylated CTD peptide on CID-RNA binding
by SPR. The experiments show that addition of the CTD
phosphopeptide reduces the binding of the CID to the
immobilized RNAs (Fig. 4), and that this reduction in
RNA binding is titratable with respect to the phospho-
peptide concentration. At the equivalence point, 50 pM
(PTSPSYSpPTSPSY) and 50 uM CID, the SPR signal mon-
itoring the CID—RNA interaction is reduced by ~30%. The
reduction in binding demonstrates that RNA and the CTD
compete for the CID interface rather than interact in an
additive or cooperative manner, and the moderate but
significant competition between the two ligands indicates
that the affinity of the CID for RNA and the CTD are of
comparable magnitude. Control experiments demonstrate
that the observed competitive effect is not due to a peptide—
RNA interaction resulting in displacement of the CID from
the RNA, as no peptide-RNA interaction was detectable
when a high concentration (200 uM) of the peptide alone
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FIGURE 3. Binding of the RNA oligos to Pcfl1 monitored by SPR.
(A) Overlap of three SPR curves obtained by the introduction of
Pcf11-CID to immobilized GA-RNA, CU-RNA, and GA/CU-RNA.
(B) The increase in response units resulting from each addition of
Pcf11-CID titration plotted against protein concentration. The curve
is the line of best fit using an expression for a 1:1 binding model.
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FIGURE 4. RNA and CTD peptide compete for binding to Pcfl1-
CID. Maximal intensity of the SPR-binding sensograms recorded for

Pcf11-CID interaction with GA-RNA, CU-RNA, and GA/CU-RNA are
plotted against increasing concentration of pSer2 peptide.

was introduced as the SPR analyte. Further, a shorter CTD-
derived peptide (YSpPTSPS) (Fig. 1) also phosphorylated
on Serine 2, which does not bind to the CID (Noble et al.
2005), does not compete with CID-RNA binding (data not
shown).

What is the function of the peptide-RNA competition?
Recent Chlp analyses have demonstrated that Pcfl1 and the
other CFIA factors are mostly associated with transcrib-
ing RNAPII that is located toward the 3" ends of genes and
around the polyadenylation site, concomitant with high
levels of CTD serine-2 phosphorylation (Ahn et al. 2004;
Kim et al. 2004a). Given that the interaction of Pcfl1 with
the CTD is strongly phosphoserine 2 dependent (Licatalosi
et al. 2002; Ahn et al. 2004; Meinhart and Cramer 2004;
Noble et al. 2005), the likelihood is that, upon transcription
through the polyadenylation signals, CFIA is coupled to
RNAPII through this CID—phosphoCTD interaction. The
competition we observe between the CTD peptide and
RNA suggests that the in vivo association between the CTD
and CFIA could be disrupted by RNA binding to the Pcfl1
CID, resulting in the disengagement of CFIA from the CTD.
Of course, RNA has to be available in order to compete for
the CID-binding site. This situation specifically arises at
polyadenylation signals, when the nascent RNA is bound
by CFIA at the positioning element by Rnal5, and at the
efficiency element by Hrpl (Gross and Moore 2001b). The
association of the nascent RNA with CFIA has the potential
to bring the 3" end of the transcript into proximity with the
CID and switch Pcf11 from CTD-bound to RNA-bound and
to release CFIA from RNAPIL The effectiveness of the
competition by RNA may be further enhanced as the poly-
merase moves downstream of the polyadenylation site
and the density of serine-2 phosphorylation in the CTD
decreases.

As well as its involvement in the cleavage and polyade-
nylation reaction, Pcfl1 is also required for correct tran-
scriptional termination to occur (Birse et al. 1998; Sadowski
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et al. 2003). Interestingly, mutations in the CID affect ter-
mination, while mutations elsewhere in the protein affect
cleavage/polyadenylation (Sadowski et al. 2003). In a recent
report, it has been suggested that a ternary Pcfl1-CID/
CTD/RNA interaction is directly responsible for Pcfl1 ter-
mination activity by dismantling transcription elongation
complexes (Zhang et al. 2005). Our data now reveal that
RNA competes effectively with the serine-2 phosphorylated
CTD for the Pcfl1-binding site. Intriguingly, an important
component of the “torpedo” model for transcriptional ter-
mination is that transcript cleavage and disengagement of
the polyadenylation factors occurs prior to recruitment of
another CID containing protein, Rtt103, and the associated
Rat1/Rail ribonuclease complex (Kim et al. 2004b). One
possibility is that the switch in Pcfll from CTD-bound to
RNA-bound is a prerequisite for the recruitment of Rtt103/
Ratl/Rail, and perhaps the association of Pcfl1 with tran-
scriptional termination is related to the subtleties of this
disengagement and exchange process.

Interestingly, a recent study has unveiled a specific role
for protein—RNA interactions in human (Kaneko and Man-
ley 2005). The investigators have shown that human, but
not yeast, CTD has an RNA-binding activity, and that
this activity is localized in its noncanonical repeats. These
repeats show a loose specificity for ACCCACACC se-
quences, and the newly identified RNA—protein interaction
has been proposed to compete with essential protein—pro-
tein ones (Kaneko and Manley 2005). The RNA-binding
activity of the Pcfl1 CID and of the noncanonical repeats
of polymerase II CTD highlights the potential role of com-
petitive protein—protein and protein—RNA interactions in
the regulation of transcriptional elongation and mRNA
processing.

MATERIALS AND METHODS

Protein expression and purification

Pcf11-CID was prepared as previously described (Noble et al.
2005). In brief, the protein was expressed in the Escherichia coli
strain BL21 (DE3) as an N-terminal glutathione-S-transferase
fusion and purified from clarified crude cell extracts using immo-
bilized glutathione-affinity chromatography. This was combined
with on-column cleavage by PreScission protease (Amersham
Biosciences) to release Pcf11-CID and then gel-filtration chroma-
tography on Superdex 75 (Amersham Biosciences). The purity and
the monodispersity of preparations were monitored by ESI-MS
and SDS-PAGE. Protein concentration was determined from the
absorbance at 280 nm using a molar extinction coefficient of
15010 m ' em ™.

Peptides

PTSPSYSpPTSPSY and YSpPTSPS peptides were prepared using
standard solid-phase peptide synthesis, purified by reverse-phase
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HPLC and analyzed using ESI-MS (Dept of Biochemistry, Uni-
versity of Bristol). The concentration of the peptides was deter-
mined using UV absorbance spectroscopy exploiting the near-UV
absorbance of the tyrosine residues.

RNA

3’-Biotinylated and nonbiotinylated versions of the GAGAGAGA
GAGA and CUCUCUCUCUCU ribo-oligonucleotides were chem-
ically synthesized and gel purified (CureVac, GmbH). Concen-
trations were determined from the calculated molar extinction
coefficients.

Surface plasmon resonance

Experiments were performed at 25°C on a Biacore 2000 instru-
ment (Biacore). A GA/CU-RNA duplex, biotinylated on the GA
ribo-oligonucleotide, was prepared by annealing the GA oligonu-
cleotide with a 1.5 molar excess of nonbiotinylated CU-RNA. The
GA, CU, and GA/CURNA ribo-oligonucleotides were attached to
flow cells 2—4 of a SA sensor chip (Biacore) as described previously
(Noble et al. 2004). Pcf11-CID was dialyzed into 40 mM Tris-HCl
(pH 7.8), 50 mM NaCl, 5 mM MgCl,, 3 mM DTT, and 0.002%
Tween 20 (v/v). Typically, 25 nL of 6.25-200 uM Pcf11-CID
samples were injected across the chip in the same buffer at 30
pL/min. Signal increases as a function of protein concentration
were fitted to a single-site binding equation. For competition
experiments, 50 pM Pcfl1-CID was injected with or without
increasing concentrations of PTSPSYSpPTSPSY or YSpPTSPS pep-
tides. The effectiveness of peptide competition was determined from
a plot of the signal decrease as a function of peptide competitor
concentration.

Nuclear magnetic resonance

NMR spectra were recorded at 27°C on a Varian INOVA spectrom-
eter operating at 800 MHz ('H frequency). All experiments
described below were recorded in 10 mM Tris-HCI (pH 7.4) and
120 mM NaCl in a 90% H,0/10% D,O mixture. Water suppres-
sion was achieved by the WATERGATE pulse-sequence (Piotto
et al. 1992). 1D "H NMR experiments were recorded on 0.2 mM
samples of GA-RNA, CU-RNA, and GA/CU-RNA. 'H-"N
TROSY spectra (Pervushin et al. 1997) were recorded at each
step of titrations of ’N—?H-labeled 0.15 mM samples of Pcfl1-
CID with the three RNAs, up to a concentration ratio of 1:1.

All spectra were processed and zero filled to the next power of
two using the NMRPIPE program (Delaglio et al. 1995). Baseline
correction was applied when necessary. The spectral analysis was
performed using the Felix (Accelerys) and XEASY programs (Bar-
tels et al. 1995).
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