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Abstract

Microgrids are local energy providers which reduce energy expense and gas emissions by
utilising distributed energy resources (DERs) and are considered to be promising
alternatives to existing centralised systems. However, currently, problems exist concerning
their design and utilisation. This thesis investigates the optimal design and planning of

microgrids using mathematical programming methods.

First, a fair economic settlement scheme is considered for the participants of a microgrid. A
mathematical programming formulation is proposed involving the fair electricity transfer
price and unit capacity selection based on the Game-theory Nash bargaining approach. The
problem is first formulated as a mixed integer non-linear programming (MINLP) model,

and is then reformulated as a mixed integer linear programming (MILP) model.

Second, an MILP model is formulated for the optimal scheduling of energy consumption of
smart homes. DER operation and electricity consumption tasks are scheduled based on real-
time electricity pricing, electricity task time windows and forecasted renewable energy

output. A peak charge scheme is also adopted to reduce the peak demand from the grid.

Next, an MILP model is proposed to optimise the respective costs among multiple
customers in a smart building. It is based on the minimisation/maximisation optimisation
approach for the lexicographic minimax/maximin method, which guarantees a Pareto-
optimal solution. Consequently each customer will pay a fair energy cost based on their

respective energy consumption.

Finally, optimum electric vehicle (EV) battery operation scheduling and its related
degradation are addressed within smart homes. EV batteries can be used as electricity
storage for domestic appliances and provide vehicle to grid (V2G) services. However, they
increase the battery degradation and decrease the battery performance. Therefore the
objective is to minimise the total electricity cost and degradation cost while maintaining the

demand under the agreed threshold by scheduling the operation of EV batteries.
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Chapter 1 Introduction

Chapter 1 Introduction

Current energy system is dominated by centralised generation, with electricity distributed to
users through a macrogrid. Due to energy demand increase and the rise of global emissions
of greenhouse gases, the current centralised energy generation system is challenged and
needs to be restructured to meet the world’s growing electricity needs [1]. Microgrids are
emerging as an integral feature of the future power systems and are considered as a
promising alternative to centralised generation. As a localised energy providing system,
problems arise along with the processes of design and utilisation. This thesis aims to
address some key problems in the optimal design and operation planning of microgrid

through mathematical programming techniques.
1.1 Microgrid

Microgrid is a relatively small-scale localised energy network, which includes loads,
network control system and a set of distributed energy resources (DER), such as generators
and energy storage devices. A microgrid equipped with intelligent elements from smart
grids has been adopted to enable the widespread of DERs and demand response programs
in distribution systems [2], which is considered as future smart grid. Microgrids can be
applied for single consumer, such as sport stadium; community microgrid with multiple
consumers, such as campus; and utility microgrid with supply resources on utility side with
consumer interaction and utility objectives [3]. Remote off-grid systems and military

microgrids are also mentioned in [4]. In this thesis, the community microgrid is addressed.

Figure 1-1 shows a microgrid example for application at community level [5]; it has a
group of consumers, including residential buildings, factories and commercial building
which have their own energy loads. The local DERs are a wind generator, photovoltaic
(PV) panels and other generators to provide local electricity and energy storage systems for
energy storage. There is also macrogrid utility connection to buy electricity when there is
not enough electricity generated from local generators or to sell electricity back when there

is excess electricity generated. When there is an emergency, the macrogrid can be
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disconnected and the microgrid can work independently to provide electricity in the

‘islanded’ mode.

Figure 1-1 Microgrid example [5]

Microgrids have been developed for a number of reasons: they can provide better power
quality and reliability in case of blackout or other problems on the external network and
they also support voltage and reduce voltage dips [6]. They may have economic and
environmental benefits when emissions credits are considered because they can utilise more
low carbon energy sources such as wind and solar energy; and they are localised which
implies some transmission infrastructure and associated costs may be avoided.
Additionally, primary energy consumption could be reduced when combined heat and
power (CHP) technology is applied [7]. Moreover, microgrids could support the macrogrid
handling sensitive loads from DERs locally and integrate them for peak power consumption
time which alleviate or postpone current macrogrid upgrades and also reduce the central

generation reserve requirements [8, 9]. The microgrid can be designed according to
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customer’s respective interests, such as enhancing local reliability, reducing feeder losses
and uninterruptable power supply [10]. The microgrid is also one solution for energy
generation in remote areas without electricity service. Finally, microgrids also have the
inherent advantages of being interconnected via a local or private network, so the
participants can cooperate with each other thus increasing equipment utilisation and

providing yet more benefits.
1.1.1 Microgrid Concept

The microgrid concept has been popular and researched by many experts, especially in
U.S., E.U., Canada and Japan [8, 11]. It operates and fulfils the local energy demands
according to its own protocols and standards [12, 13]. However, the concepts proposed vary
and there is still no common concept for microgrids [14-18]. The U.S. Consortium for
Electric Reliability Technology Solutions (CERTS) has published a White Book [19] where

a microgrid is defined as follows:

“The Consortium for Electric Reliability Technology Solutions (CERTS)
MicroGrid concept assumes an aggregation of loads and microsources
operating as a single system providing both power and heat. The majority of
the microsources must be power electronic based to provide the required
flexibility to insure operation as a single aggregated system. This control
flexibility allows the CERTS MicroGrid to present itself to the bulk power
system as a single controlled unit that meets local needs for reliability and

security.”
While the U.S. Department of Energy (DOE) [20] defines microgrids as:

“a group of interconnected loads and distributed energy resources (DER) with
clearly defined electrical boundaries that acts as a single controllable entity
with respect to the grid and can connect and disconnect from the grid to enable

it to operate in both grid-connected or island mode.”

13



Chapter 1 Introduction

For the researchers apart from U.S., other aspects of microgrid are considered, Abu-Sharkh

et al. [21] describes microgrid simply as:

“a small-scale power supply network that is designed to provide power for a

small community.”
In the definition provided by Hatziargyriou et al. [8]:

“Microgrids are defined as low voltage or in some cases, e.g. Japan, as medium
voltage networks with distributed generation sources, together with storage
devices and controllable loads (e.g. water heaters, air conditioning) with total

installed capacity in the range of few kWs to couple of MWs.”
Zhang et al. [22] define microgrid as:

“a cluster of loads and relatively small energy sources operating as a single

controllable power network to supply the local energy needs.”
Also Funabashi and Yokoyama [23] describe it as:

“Microgrid is a small grid in which distributed generations and electric loads
are placed together and controlled efficiently in an integrated manner. It
contributes to utility grid’s load levelling by controlling power flow between
utility grid and Microgrid according to predetermined power flow pattern. Also,
it contributes to an efficient operation of distributed generations by operation

planning considering grid economics and energy efficiency.”
1.1.2 Microgrid Key Components

Microgrids usually consist of distributed energy resources, power conversion equipment,
communication system, controllers and energy management system to obtain flexible
energy management [24, 25]. The customer is another key component for microgrid to be

promoted and implemented [21].
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e DER involves distributed generator (DG) and distributed storage and provides
energy to meet energy demand.

e Controllers are necessary for microgrid to apply demands to DERs and control their
parameters, such as frequency, voltage and power quality [26].

e Power conversion equipment, such as voltage and current transformer, are utilised
to detect the microgrid running state. Also, the DERs produce DC or AC voltage
with different amplitude and frequency than grid, power electric converter interface
is necessary [27].

e Communication system is a medium to convey monitoring and control information
in microgrids. It is applied to interconnect different elements within the system and
ensures management and control [28, 29].

¢ Energy management system is used for data gathering and device control, state
estimate and reliability evaluation of the power system [30]. It also functions in
power prediction from renewable energy, load forecasting and power planning [31].
Major vendors for energy management system are summarised by [32].

e Customers, who may also be the suppliers, will affect technique selection, load
control and operation of microgrid from cost and efficiency concerns. Microgrid can
be deployed in demand response driven by customers [33]. The participation of
customers is the fundamental driver for smart grid [34] and strongly encourage the
engagement desired from the developers [35]. The customers function in user
interaction needs, behaviour change, community initiatives and resources

management [36].

Figure 1-2 illustrates the key components of microgrid, the solid line represents the

communication system information transfer.
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—>{ Energy Management System ‘
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‘ Power Converters‘
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Figure 1-2  Microgrid key components
1.1.3 Microgrid and DER

A microgrid consists of a variety of distributed energy resources, such as generators, energy
storage and energy demand itself. The capacity of the DER considered in microgrid is in
relatively small scale, but without universal agreement. It is mentioned as smaller than 100
kW by Huang et al. [37], and in [38] micro-generation is considered with even smaller
scale, less than 3 kW electrical and 30 kW thermal while standard EU definition of micro-
generation being up to 50 kW based on different residential scales. While authors of [39]
consider it smaller than 500 kW. Generally, the generators have a similar capacity size as

the loads within the microgrid, and they are located close to the end users [21].

The distributed generators applicable for a microgrid comprise emerging technologies, such
as CHP, wind generators, photovoltaic arrays, and also some well established generators,
such as synchronous generators driven by internal combustion engines or small hydro [17,
24, 40]. The advantage of high energy efficiency of CHP results from energy cogeneration.
Fossil fuel power sources CHP for microgrid are summarised in [21] and [41], which are

internal combustion engine, micro-turbine, sterling engine and fuel cell.

Due to the small generators usually used, a microgrid is not able to respond to sudden load
changes or disturbances rapidly. So, energy storage devices are essential for microgrid,

especially under the circumstances when intermittent generators and included, limited
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methods of energy generation are available or the microgrid works under islanded mode.
Electrical storage devices have several forms, including gravitational potential energy with
water reservoirs, batteries and flow batteries, super-capacitors, flywheels, superconducting
magnetic energy storage, compressed air energy storage, fuel cell and thermal energy
storage and use of traditional generation with inertia [42-44]. Among the available energy
storage technologies, batteries, fly-wheels and super-capacitors are particularly suitable for

microgrids [37].

Because of the characteristics of energy produced by renewable energy, the use of
microgrid to integrate DERs can obtain the optimal benefit. Especially when different types
of generators are available, they can compensate with each other while energy storage
provides energy stability and quality [45] which enable higher penetration of many types of
distributed generators [46]. Energy storage systems are also desirable to reshape the peak

demand and store energy at the time of surplus and reused later [47].
1.1.4 Existing Microgrids

Microgrids have been studied worldwide and testing systems have been established for
research. In the U.S., the CERTS testbed has been built near Columbus, Ohio and a battery
storage is also available. University of Wisconsin-Madison has an UW microgrid testbed
with a diesel driven generator [48]. There is a Smart Polygeneration Microgrid test-bed
facility in the Genoa University and it is located at Savona Campus teaching & research
facilities [49]. While in Canada, BC Hydro Boston Bar microgrid supplies power without
energy storage unit and Hydro Quebec Senneterre substation systems serves 3000
customers with islanding attempt in 2005 [50]. In Europe, Bronsbergen Holiday Park with
208 holiday homes in Netherland has a microgrid to provide electricity from 108 roof fitted
solar PVs and energy storage is also available as two battery banks [51]. A residential Am
Steinweg microgrid is built in Stutensee in German, and it is a test system with CHP and
PV as generators and a lead acid battery bank for energy storage. Another microgrid system
in German is DeMoTec test microgrid, which has two diesel gensets, a PV generator and a
wind generator and two battery units are also included [52] Italy has a CESI RICERCA
DER test microgrid equipped with a fly wheel and battery banks. The Kythnos islanded
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microgrid in Greece provides electricity for 12 houses with PVs, diesel generator set and
battery bank while the laboratory-scale microgrid system at National Technical University
of Athens consisting of two PV generators, one wind turbine and battery for energy storage
[52, 53]. In the UK, University of Manchester has a laboratory microgrid with a
synchronous generator and an induction motor coupled together as micro-source and a
flywheel as energy storage [54]. Microgrid projects are more popular in Japan, under
Energy and Industrial Technology Development Organisation (NEDO), Aichi microgrid,
Kyoto eco-energy project and Hachinohe project are established. Fuel cells, PV and
sodium-sulfur (NaS) battery are equipped in the Aichi microgrid [55]. Kyoto eco-energy
microgrid has gas engines, a molten carbonate fuel-cell (MCFC), two PV systems, a wind
turbine and lead-acid battery [56]. The Hachinohe microgrid includes a gas engine, several
PV systems, a wind farm and a battery storage. A test network is located at Akagi of the
Central Research Institute of Electric Power Industry, and no energy storage is included
[57]. One more microgrid from Japan is the Sendai microgrid with two gas engine
generators, one MCFC, PV and battery storage [58]. For China, there are a testbed
microgrid in Hefei University of Technology [59] and a demonstrative microgrid
implemented in Caoxi implemented by Grid Corporation of Shanghai [25]. A microgrid
pilot plant has been constructed in Korea Electro-technology Research Institute and it

includes PV, PV and wind hybrid, two diesel generators and battery energy storage system

[60].
1.2 Optimal Design and Planning for Microgrids

Studies on microgrids are generally classified into two groups: system design and operation
planning[61]. They are critical for the successful realisation of microgrid in real-time
applications [62]. System design is a long-term planning activity of microgrids, which
involves the selection and sizing of DERs with the objective of minimum cost,
environmental or energy security issues [63]. The design of DERs plays an important role
in order to maintain the reliability of the power grid, level of short-circuit current, power
flow and node voltage [64]. The selection technique is constrained by energy loads,
technology information, operation and maintenance cost, utility tariff from different tariff

schemes and weather conditions. The optimal capacity sizing tradeoffs between peak loads
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satisfaction and investment costs minimisation. Since energy demand fluctuates due to
uncertainty in human behaviours and ambient conditions, hourly energy demand profile
representing the dynamic nature of the problem is commonly applied to the design of

microgrids [65, 66].

On the other hand, with given DER capacity operation planning deals with optimal
microgrid planning over the short term, such as a day or week; and the time interval can be
one hour or even smaller. Microgrid planning includes the overall management of a
microgrid. It targets at obtaining an economically attractive performance under uncertainty
and disturbances due to the variability of renewable energy sources and the rapid change in
the power/heat demand. The optimal operation of microgrid includes two main functions,
supply side optimisation and demand side optimisation. For the supply side, energy
management decisions include the DER operations (production output, switch on/off status
or types of fuel) and electricity purchases or sales back to grid [67]. Generation scheduling
is defined as the scheduling of power production from generation units over certain time
horizon while satisfying technology and system constraints [68]. DER operation generation
schedule results in the cost savings under operational constraints of each DER over given
time periods [30]. Demand side management involves controlling the condition of the
energy system through demand modification, changing the shape of the load and optimising
the generation, delivery and end use processes[69, 70]. At the same time, demand side
management aggregates all energy-consuming devices and flexible loads can be
rescheduled. Demand side management benefits in peak reduction, load profile reshape and

overall cost and emission reductions.
1.3 Smart Grids and Microgrids

The ageing current electricity power infrastructure needs to be upgraded or transformed for
environmental concerns, energy conservation as well as to accommodate increasing energy
demands. Future electricity distribution system will be integrated, intelligent and better
known as smart grids, which include advanced digital meters, distribution automation,
communication systems and DERs. Central distributed and intermittent sources will all be

included [71]. Desired smart grid functionalities include self-healing, optimising asset
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utilisation and minimising operations and maintenance expenses [72]. In addition, a smart
grid needs to be dynamic and has constant bi-communication involving consumers’ own
decision on how to use energy [73]. Many national and international projects address the
smart grid concept, although there is still no agreed universal concept about it [74, 75].

Bracco et al. [49] present an overview of the smart grid projects around the world.

In a smart grid, bidirectional communication between the grid and consumers is available
for energy flow where smart meters and sensors are utilised [35, 76]. With the application
of energy management and two-way communication functions, energy consumption load
can be reshaped. There is possibility to shift the energy generation from peak demand base
to real-time demand need base [77]. Residential end-users will also play a more active role

as a co-provider rather than a passive role in balancing supply and demand [36].

Microgrid has various smart grid initiatives and is expected to be prototype for smart grid
because of its experimentation scalability and flexibility [2]. The small scale of microgrid
provides the convenience to adopt new technologies [78]. As a significant ingredient of the
future smart grid, microgrid is considered to enable widespread inclusion of renewable
resources, distributed storage and demand response programs in distribution [2]. Also, with
the help of Information and Communication Technologies (ICT), smart microgrids can be
connected to form a network to work collaboratively for the reliability and sustainability of
electrical services [79]. In [80], smart grid is referred to as a network of integrated
microgrids that can monitor and heal itself. Smart grids composing of several microgrids

are classified in [81].
1.4 Aim and Scope of This Thesis

A microgrid equipped with intelligent elements from smart grids has been adopted and
active control of small scale energy resources is included in such smart microgrid. Such
control has benefited from research attention in technical aspects [14-16], however, limited
studies are available for exploring the economic incentive of participants to become
involved in a microgrid. Therefore, this thesis aims at addressing this gap by considering

the consumer engagement and their interaction. The aim of this work is to develop
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frameworks based on mathematical programming techniques in order to integrate request

from individual customer into the optimal design and planning of microgrid.

The issues covered in this thesis and contributions of this work are: firstly, a fair economic
settlement scheme for participants in a microgrid is proposed. Electricity transfer price and
unit capacity selection are obtained under given customer energy demands and their
accepted equivalent annual cost upper bounds. Then, efficient energy consumption and
operation management of a smart building with microgrid is addressed, where customers
provide their energy consumption tasks and flexible time windows to minimise their total
energy cost and reduce the peak demand from grid. Thirdly, problem of fair cost
distribution among multiple smart homes sharing common microgrid is considered. Each
customer competes with other neighbours to obtain lowest energy bill under accepted cost
limits. Finally, as a special electricity consumption task in a smart home, electric vehicle
battery operation is considered. It is scheduled based on customer’s living habit, such as
travelling time and respective home energy demand, to optimise the battery usage while

considering the degradation effects.

1.5 Outline of the Thesis

The rest of the thesis is divided in five chapters:

In Chapter 2, the problem of fair electricity transfer price and unit capacity selection for
microgrid is addressed. A mixed integer non-linear programming (MINLP) model is
proposed based on the Game-theory Nash bargaining solution approach. Then a separable
programming approach is applied to reform the resulting mixed integer non-linear

programming model as a mixed integer linear programming (MILP) model.

In Chapter 3, the optimal scheduling of smart homes’ energy consumption is studied using
an MILP approach. In order to minimise a one-day forecasted energy consumption cost,
DER operation and electricity-consumption household tasks are scheduled based on real-
time electricity pricing, electricity task time windows and forecasted renewable energy

output.
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In Chapter 4, a mathematical model is proposed for the fair cost distribution among smart
homes with microgrid, which is based on the Lexicographic minimax method using an
MILP approach. It schedules DER operation, DER output sharing among smart homes and

electricity consumption household tasks.

In Chapter 5, the intensive use of battery in household and vehicle to grid (V2G)
applications is studied while an MILP model is proposed to provide the charging
scheduling for load shifting and cost minimisation together with minimising degradation
cost. Two boundaries for demand from grid are applied to guarantee the stability of the

grids.

Finally, Chapter 6 summarises the main contributions of the thesis and provides

recommendations for future work.
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Chapter 2 Fair Electricity Pricing and Capacity Design
in a Microgrid

As a localised energy network, microgrids are proposed to alleviate current macrogrid
demand burden and reduce emissions. The successful deployment of microgrids depends
heavily upon the DERs combination selection, capacity sizing and operation plan.
Microgrids can be considered as collaborative networks and cooperation amongst microgrid
participants can provide better economic outcome than being isolated from each other with
pure self interest. The participants in a microgrid can benefit from cooperation for
improved design and operation. Although a number of models have been developed for cost
minimisation of the whole microgrid, the cost to respective participants is usually not

considered.

In this chapter, an MILP model that optimises the respective cost distribution amongst

participants in a microgrid is proposed based on the game theoretical Nash method.
2.1 Introduction and Literature Review

A number of concepts have emerged in recent years in relation to deployment and control
of DERs, such as smart grids and microgrids. These concepts represent a significant
departure from the top-down and asset-intensive nature of current electricity systems, and
capitalise on the availability of new generation equipment and ICT systems to facilitate the
use of many small-scale energy resources to serve growing demands. Such technology can
provide economic benefits through avoidance of investment as demonstrated in upstream
infrastructure, security and reliability benefits through interconnection and coordinated
control, and environmental (and additional economic) benefits by using low carbon/low
pollutant generation and co-production of heat and power. The smart grid concept remains
only loosely defined at present based on specific focuses [74, 75]. However, active control
of small scale energy resources is most likely to be included. This work addresses the
economic incentive of customers by considering a fair economic settlement scheme for

participants in a microgrid.
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211 Unit Capacity Selection in Microgrids

Several studies have considered how to design the capacity of a microgrid system to
minimise the annual cost of meeting demand [7, 82, 83]. A computer program that
optimises the equipment arrangement of each building linked to a fuel cell network and the
path of the hot-water piping network under the cost minimisation objective has also been
developed [84]. Another work considering the optimal DER sizing and allocation problem
is given by [85]. Kumar et al. [86] propose an architecture of smart microgrid for
integration of renewable energy sources, and it focuses on the design, modelling and
operational analyses. Optimal plan and design of DER capacity in microgrid is also
provided by [87] based on the Chinese meteorological conditions, the authors also present
the allocation method of output power. Authors of [88] propose a generalised approach to
design generation capacity sizing and power quality evaluation for a microgrid in islanded
and grid connected modes, where PSCAD (Power System Computer Aided Design)
software is used for modelling. And in [89] generation design is addressed in islanded
mode along with the analysis of power reliability and voltage quality of the system. The
optimal configuration of DGs at different locations is obtained by applying
electromagnetism-like mechanism in [64]. Mizani and Yazdani [90] demonstrate the
optimal selection of DER in a grid connected microgrid together with optimal dispatch
strategies and they can reduce microgrid lifetime cost and emission on a campus. Proper
CHP-based DERs are deployed in the work of [91] and optimisation is done using particle
swarm optimisation (PSO) technique. Bando et al. [92] develop a methodology for the
designing of DER in microgrid with steam supply from a municipal waste incinerator, and
both primary energy consumption and CO, emissions have been reduced. A genetic
algorithm (GA)-based optimal design of microgrid is investigated under pool and hybrid
electricity market model in [93], and the optimal operation of the microgrid with DG unites
under deregulated energy environment is also presented. Sheikhi et al. [94] propose a
model to find the optimal size and operation of DERs with the consideration of electricity
and gas network. In [95] a methodology using PSO is also provided for the DERs location
and size selection to obtain the maximum loss reduction. Authors of [96] present a strategy

to obtain the optimal location of DER and reactive power injection by applying
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evolutionary optimisation methodology, where voltage stability of the system and the DG
penetration level are both improved. An rrthogonal array-GA hybrid method is applied to
optimise equipment capacity and the operational methods in [97]. Hawkes and Leach [65]
presented a linear programming cost minimisation model for the high level system design
and corresponding unit commitment of generators and storage devices within a microgrid.
Sensitivity analysis of total microgrid costs to variations in energy prices has been
implemented and the results indicate that a microgrid can offer a positive economic
proposition. This model provides both the optimised capacities of candidate technologies as
well as the optimised operating schedule. King and Morgan [98] perform a baseline
analysis estimating the economic benefits of microgrids. They found that it indicates a good
mix of customer types would result in better overall system efficiency and cost savings.
The problem is formulated as a nonlinear mixed integer optimisation problem with
evolutionary strategy. A MILP model for optimal DER design is presented in [99] at the
level of a small neighbourhood, which provides the microgrid configuration together with
the design of a heating pipeline network among nodes. Methodology for optimal DER
selection and capacity sizing is proposed in [100] for integrated microgrids. Strategic
deployment of DERs in a microgrid is presented by Basu [101] using differential

evolutionary algorithm.

However, for all of these models, the objective function is to minimise the total cost of
capital and operation for the whole microgrid; the costs to respective participants are not
considered. This raises a problem that design and operation of the microgrid is based on the
mutual interest of all participants instead of the self-interest of each participant. This cost
minimisation approach could be improved, because there is the possibility that some
participants will not benefit from the microgrid, whilst others do benefit. Therefore, a fair

method for settlement between microgrid participants is essential.
2.1.2 Fair Settlement using Game Theory

Microgrids can be considered as collaborative networks. Microgrid participants may have
their own objectives and constraints which make them compete with other participants, but

they will also recognise they can be better off via cooperation. Cooperation among
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microgrid participants can provide better economic outcome than being isolated from each
other with pure self interest. Asset utilisation could be increased and the average capital
cost for each participant could also be decreased. A number of collaborative planning
schemes with different assumptions and different areas of application have been reviewed

in [102].

Game theory is a powerful tool for studying strategic decision making under cooperation
and conflict conditions [103]. It attempts to mathematically describe people’s rational
decision making behaviour under a competitive situation, where the players’ benefits
depend on their own choices as well as the choices of the other players. Nash [104] presents
the equilibrium point of finite games, where all players adopt the strategy which gives them
the best outcome given that they know their opponents’ strategy. In essence, Nash
equilibrium is defined as a profile of strategies such that each player’s strategy is an
optimal response to the other players’ strategies. Game theory has been applied in diverse
areas, such as anthropology, auction, biology, business, economics, management-labour
arbitration, politics and sports. Yang and Sirianni [105] set up a framework for sharing
regional carbon concentration under global carbon concentration cooperation. In the area of
energy economics, authors of [106] proposed a decision-making model for competitive
electric power generation between different subsystems in Brazil based on Nash-Cournot
equilibrium with the objective of maximising regional benefits. Using an agent-based
approach incorporated with game theory, Sueyoshi [107] investigates the learning speed of
traders and their strategic collaboration in a dynamic electricity market. In the area of
supply chain management, game theory is utilised to help understand and predict strategic
operational decisions. The work of [108] deals with energy management decision making
process problem with a hybrid methodology using fuzzy and game theory analytical
methods, where industry and environment are the competitors. Li et al. [109] build a single-
stage deterministic model based on game theory in the field of power engineering to
analyze the strategic interaction between the generation enterprises and transmission
enterprises. And in the work of [110], game theory is applied to model the planning of a
grid-connected hybrid power system, where both non-cooperative and cooperative game-

theoretic models are built. The players being considered there are wind generators, PV
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panels and storage batteries. There are two recent reviews on the application of game
theory in supply chain management, and both non-cooperative and cooperative games are
discussed [111, 112]. Authors of [113] reviewed some applications of cooperative game
theory to supply chain management with the focus on profit allocation and stability. Min et
al. [114] propose a competitive generation maintenance scheduling process to obtain an
optimal maintenance plan via a coordination procedure in electricity markets. Oliveira et al.
[115] derive the supply chain Nash equilibriums for the general structure of the interaction
between spot and futures markets, and the contract for differences and the two-part tariff. In
[116] a decision making tool is built by combining the use of the game theory optimisation
framework and a multi-objective optimisation MILP-based approach to optimise the supply
chain planning problem under cooperative and competitive multi-objective environments.
Authors of [117] propose a cooperative game approach to help the coordination issue
between manufacturers and retailers in supply chain using option contracts. An option
contract model is developed, taking the wholesale price mechanism as a benchmark. Leng
and Parlar [111] apply both the non-cooperative Nash and Stackelberg equilibrium, and
coordination with cost-sharing contracts, to achieve the maximum system-wide expected
profit. Nash equilibrium approach is used to deal with multi-objective integrated process

planning and scheduling in [118].

Game theory has been applied to find a ‘fair’ solution, although there are different
measures of fairness. Mathies and Gudergan [119] suggest the definition of fairness as the
reasonable, acceptable or just judgment of an outcome which the process used to arrive.
The fair solution suggests that all game participants can receive an acceptable or ‘fair’
portion of benefits. While in [120], fairness is considered as the maximisation of the benefit
of the worse-off individual. The fair solution suggests that all game participants can receive
an acceptable or ‘fair’ portion of benefits. As Leng and Zhu [121] discussed, an appropriate
side-payment ' contract can be developed to coordinate the participants in a network.
Various side-payment schemes to coordinate supply chains are reviewed, and a procedure
for such contract development is provided and applied. It has the assumption that all side-

payment contracts in the discussion are legally possible, while some of them could be

! Side-payment is defined as an additional monetary transfer to improve the chain-wide performance.
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illegal and will be prohibited in practice. Rosenhal [122] presents a cooperative game that
provides transfer prices for the intermediate products in the supply chain to allocate the net
profit in a fair manner. It applies when the market prices for the products are known and
when the values differ. In the work of [123], fairness is defined as facilities burden sharing.
A benchmark is set first, then the respective participant cost is compared with this
benchmark and the objective is to minimise the absolute deviation of the difference. In this
way, the sum of the unfairness is minimised, but the result shows the fair solutions sacrifice
one third on average in solution quality. The Nash bargaining framework from cooperative
game theory has been applied for ‘fair’ solution in different areas. It has been applied by
Yaiche et al. [124] for bandwidth allocation of services in high-speed networks. Ganji et al.
[125] develop a discrete stochastic dynamic Nash game model for reservoir operation and
water allocation with the assumption that the decision maker has sufficient information of
the random element of the game. Gjerdrum et al. [126] propose a methodology based on the
game theoretical bargaining concepts developed by Nash, which considers fair profit
sharing between two coordinating enterprises. The minimum profit of each participant is
achieved first, and a non-linear objective function is formed as the product of the
differences from the calculated and minimum benefit values. Ideally, the two enterprises
should have the same amount of benefit differences. Gjerdrum et al. [127] also presented a
model framework based on game theoretical Nash, which is applied to find the fair,
optimised profit distribution among participants of multi-enterprise supply chains. It is
formulated as a mixed integer non-linear programming model including a non-linear Nash-
type objective function. A separable programming approach is applied to convert the model
to mixed-integer linear programming form. The results indicate this method can produce

fairly distributed profits with low errors on solutions.

In this chapter, an MILP model is proposed to optimise the respective profits among
participants in a microgrid. It is based on the framework in [65] by utilising the game
theoretical Nash method regarding the fair distribution of costs [127]. A fair settlement
among microgrid participants is provided in order to guarantee each participant will pay
fair cost from cooperation. The problem is first formulated as an MINLP model; and it is

then tackled with a separable programming approach applying logarithmic differentiation
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and approximations of the variables in the objective function, thus leading to an MILP
model. The key decision variables include: intra-microgrid electricity transfer price, flow of

electricity transferred, unit allocation and capacities and resources utilised.
2.2 Problem Description

This work considers a general microgrid, which involves N different participant sites as
shown in Figure 2-1. They are different types of buildings, which can be dwellings, schools
and shops. The microgrid considered in this work is assumed to include an energy
management system, local controllers for each energy source and communications system
that can provide an optimal energy production schedule. Macrogrid is available to provide
electricity to the participant in the microgrid and extra electricity can also be sold back to

the macrogrid when it benefits.

} Macrogrid

Residential building

<]

® NI/‘
b =

£ L

] Electricity

Demand

7]
(2]
¥
°
=

e
Generator

Electricity
Demand
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Figure 2-1  Participants of a microgrid

The candidate technologies involved in this study only include CHP generators (with

different capacities and heat-to-power ratios), boilers, thermal storage and a macrogrid
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power connection; while excess electricity produced by each site can possibly be
transferred to other sites at a certain transfer price or sold to the macrogrid. Turn-key costs
of CHP generators are based on the CHP types as well as the capacity range. Non-
dispatchable generators are not considered in this study; because of the uncertainties caused

by weather conditions.

Energy production is modelled on specific sample days, which are classified from seasons
and weekday or weekend, weighting factors of day type are multiplied in the cost function
of each participant site. The microgrid and the macrogrid are interacted and constrained
through exporting or importing electricity. The assumptions made for each participant are

listed below:

e up to one CHP generator;

® up to one boiler;

® up to one thermal storage;

e a grid connection (allowing import and export of electricity during parallel
operating to the grid);

e 1o heat transfer is allowed between sites.

Administered transfer pricing is applied in the proposed model, where a ‘central manager’
in the microgrid decides the best solution for all participants utilising the Nash bargaining
model. No other negotiations exist after that. No information sharing among participants is
required while each participant must provide information to a central planner. Electricity
can be transferred among sites, and the total electricity transfer cost is determined by
transfer prices multiplied by the amount transferred. The cost is equal to the revenue gained

by the site where the electricity is transferred from.

The system adopts two key assumptions as each participant: i) provides its information to a
central planner and ii) accepts electricity transfer prices as determined by the central
planner over long term. Each participant needs to provide the following information to the

central planner:

e FElectricity and heat loads
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e Status quo point (i.e. cap on equivalent annual cost)
e Available distributed energy resources, such as CHP, boiler and thermal storage

e Range of allowed electricity transfer prices with the other participants.

The overall problem can be stated as follows:

Given (a) a time horizon split into a number of intervals (not necessary equal), (b) energy
demand at each site for each time interval, (c) gas and electricity costs from macrogrid, (d)
turn-key costs of candidate technologies, (e) efficiencies of candidate technologies, (f) heat-
to-power ratio of different CHP technologies, (g) ramp limits for CHP generators, (h)
charge and discharge rates for thermal storage, (1) fixed cost for microgrid components, (j)

weighting factor for day type and (k) range of available electricity transfer prices.

Determine (a) the maximum acceptable equivalent annual cost, (b) the candidate
technologies selected and their capacities, (c) energy resources consumed, (d) energy
production plan, (e) thermal energy storage plan, (f) transfer price level and (g) transferred

electricity plan.

In order to (a) find the multi-participant strategies which result in optimal, fair distribution

of the equivalent annualised cost and (b) fulfil the energy demand.

2.3 Mathematical Formulation

An MINLP model is formulated first for the microgrid planning problem concerning the
fair electricity transfer price and unit capacity selection and then an MILP model is
obtained by transforming the MINLP model with a separable programming approach. The
key decision variables included in the model are intra-microgrid electricity transfer price,
flow of electricity transferred, unit capacities and resources utilised. They are determined
by maximising the equivalent annualised cost (EAC) of all participants based on given
EAC upper bounds, subject to equipment capacity constraints, CHP ramp limit constraints,
energy demand constraints, CHP selection constraints, thermal storage constraints and

transfer price level constraints.
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2.3.1 Nomenclature

A list of the notation used in this model is provided as:

Indices

j time interval

k electricity transfer price levels available

[ CHP generator capacity level

q interval in EAC linearisation

s site

t sample day

Parameters

a’ lifetime of boiler (year)

a‘ lifetime of CHP (year)

a lifetime of thermal storage (year)

™ price of exported electricity to the grid (£/kWh)

! price of electricity imported from the grid (£/kWh)
c’ peak price of electricity imported from the grid (£/kWh)
c price of natural gas (£kWh)

c’ cost per unit output for thermal storage unit (£/kWh)
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cU
G

CL
Cl

DT

ss'k

FC

FT

GT

tjs

1js

9

CHP capacity upper limit at level / (kW)

CHP capacity lower limit at level [ (kW)

maximum discharge rate for thermal energy storage (kW)

k available electricity transfer price levels from site s to site s' (£/kW, h)

capital recovery factor of the boiler

capital recovery factor of CHP

capital recovery factor of the thermal storage

maximum charge rate for thermal energy storage (kW)

heat demand of day ¢ during time interval j at site s (kW)

electrical demand of day ¢ during time interval j at site s (kW)

number of linearisation intervals of objective function

fixed cost for microgrid components, shared by site s (£)

heat to power ratio for CHP generator at capacity level [

interest rate

ramp limit for CHP generator from capacity level [ (kW)

time duration of each time period j( &)

weight for day ¢ (reflection of number of days of this type per year)
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ss'

YU

EACY

Variables

upper bound of electricity transferred from site s to site s' (kW)

upper bound of electricity sent to site s (kW)

cost per kW, installed for CHP generator of / level (£/kW,)

cost per kW, installed for boiler (£/kW )

cost per kW i installed for thermal energy storage (£/ kW i)

centralised electricity generation efficiency

electrical efficiency of the CHP generator at level [

efficiency of boiler

turn around efficiency of thermal energy storage

parameter related to EAC (linearised FAC values of site s at interval g (£)

agreed electricity load limit from grid for site s (kW)

CO, emission factor of grid electricity

CO, emission factor of natural gas

linearised EAC values of site s at interval ¢ (£)

EAC upper bound value for site s (£)

installed capacity of thermal energy storage unit at site s (kW ,)1)
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c? installed thermal capacity of boiler at site s (kW,,)

CS installed electrical capacity of CHP from level [ at site s (kW,)

d, dumped heat on day ¢ at time j at site s (kW ;)

e, electricity transfer price from site s to site s' (£/kW,h)

E, electricity exported to the grid on day ¢ at time j from site s (kW,)

Ss heat received from the thermal storage on day ¢ at time j at site s (kW , )
8js heat sent to the thermal storage on day ¢ at time j at site s (kW )

1, electricity imported from the grid on day ¢ at time j for site s (kW,)

SUT.s heat stored in the thermal storage on day ¢ at time j at site s (kW ,h)

Uy output of CHP on day 7 at time j at site s from level [ (kW,)

X output of boiler on day ¢ at time j at site s (kW )

Viss' electricity transferred on day ¢ at time j from site s to site s' (kW,)

Y sk linearised electricity transferred amount, during day ¢, time j from site s to site
s', at k transfer price level (kW)

) objective value (£)

A linearisation factor, these are SOS2 (Special Order Sets of Type 2) special

sq

ordered variables [128], where only two adjacent A, can be non-zero.
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i extra electricity load from grid over the agreed threshold for day ¢ time

interval j at site s

ACC, annual capital cost of site s (£)

CE total CO, emissions (kg)

EAC, equivalent annual cost of site s (£)
EC, electricity cost of site s(£)

OPC, operation cost of site s(£)

PR total primary energy resources (kWh)
TEC, transferred electricity cost of site s (£)

Binary variables

X ;s 1 if electricity is imported from the grid or bought from other sites, on day ¢ at
time j, at site s, 0 otherwise

X 1 if between site s and site s', transfer price level & is selected, O otherwise

X§ 1 if for site s CHP capacity level [ is selected; O otherwise

2.3.2 Objective Function

Common approach of optimising the design of a microgrid is simply to minimise the total

cost of all participants as shown in Eq.2-1.

¢ =Y EAC, Eq.2-1
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where EAC, is the equivalent annual cost of site s, which includes the annualised capital

cost and operation cost of each candidate technology, cost from transferred electricity

within the microgrid, electricity cost from macrogrid and fixed cost for microgrid
components. EAC is the upper bound of EAC for site s, which is obtained based on the

macrogrid scenario when there is no local DER, and all electricity is bought from grid and
all heat is obtained from boilers. No electricity transfer among sites is allowed. The formula

for EAC, is:

EAC, = ACCT™ + ACC? + ACC™™
+O0PC™ +OPC? + OPCT™ Vs Eq. 2-2
+TEC . +EC +P,

where P, is the fixed cost for microgrid components from each site s. Details of each term

is provided in Table 2-1.
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Table 2-1 Description of EAC, components

Respective term calculation Description

cup e Annual capital cost of CHP
ACCI™ =3 (qF°Cy)
1

generator
A CC? =4 FBCf Annual capital cost of boiler
ACC™S = }FT old Annual capital cost of thermal
storage

cup N c Operation cost of CHP generator
OPC;™ = ZC WTu,, /mn
1,s,0
B N B i ;
OPC? = ZC WT,x, 17 Operation cost of boiler
t.j
THS _ T Operati t of th 1 st
orPC!™ = ZC VV,Tj s peration cost of thermal storage
t.j

Transferred electricity cost within
TECs = ZW/tTjes's ytjs's - Z u/tjvjess'ytjss'

~ ~ microgrid
t,],8 t,],8

Electricity cost from macrogrid

tjs tjs

EC,=> c'WT I, -> c"WTE
t,j t.j

However, the total cost minimisation approach may result in an unfair cost distribution
among participants. It would be possible to ultimately undermine the microgrid concept
because it does not attract some participants to join the microgrid. Each single participant

requires their own minimum EAC, and they will bargain for their own benefits. The

performance of the whole microgrid is desired while the respective reward among
participants is still guaranteed. It requires an approach that produces a fair costs distribution
subject to similar overall performance. Game theory provides a tool for fair sharing among
players. The Nash bargaining solution [104] is applied, which maximises the product of the
deviations of the given EAC upper bound of each participant by the status quo cost levels.
The objective function is given as Eq. 2-3. It obtains a Pareto optimal (within a pre-

specified margin) solution for all participating partners [127]. Each EAC, yields minimum

value while trying to achieve the maximum objective value in Eq. 2-3, which guarantees

both individual benefits and overall performance.
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Max ¢ = H (EACY —EAC)) Eq. 2-3

2.3.3 Capacity Constraints

The output from the CHP generators and boilers over any period on any day at each

participant site cannot exceed their installed unit capacities:

utjsl_C5 <0 Vt’j,sal Eq. 2-4

x, —C’<0 Vi, j,s Eq. 2-5

tjs s

At any time on any day at each participant site, heat stored in the thermal storage cannot
exceed the installed capacity of the thermal storage unit.
ST

tjs

<C! Vt, j,s Eq. 2-6

2.3.4 Ramp Limit Constraints

Degradation of CHP performance with time can affect significantly the economics of
ownership [129, 130]. In order to avoid generator damage and unit degradation, CHP
generator outputs between two adjacent time intervals are constraint to change within a

range. These ‘ramp limits’ for each CHP generator capacity level are given as:

—R <u U <R Vt, j,s,l Eq. 2-7

tj+lLs,l

Thermal storage charge and discharge rates are the rates at which heat is added to or
removed from thermal storage. It depends on the characteristics of specific thermal storage

equipment, the charge and discharge rates are limited by constraints Eq. 2-8 and 2-9:

Thermal storage:

S S D' Vvt j,s Eq. 2-8
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gtjs S GT VI7 j,S Eq. 2'9

2.3.5 Energy Demand Constraints

For each time interval, electricity demand equals the sum of electricity outputs of the CHP
generator, electricity transferred from other sites and electricity imported from the grid

minus the electricity transferred to other sites and electricity exported to the macrogrid.

Z  + Z Vs = Z Vs Hlj=E s = Ly, V1, j,s Eq. 2-10
) s' s'

Since heat transfer between sites is not allowed, the heat demand equals the sum of heat
output of the CHP generators, boilers and heat discharged from the thermal storage minus
the heat sent to the thermal storage. The heat generated from CHP generators is calculated

by multiplying the electricity output with the heat-to-power ratio Q, of each type of CHP

generator. The heat balance is:

ZQ,MW + [y = &y + X, = Hy, Vi, j,s Eq. 2-11
1

It should be noted that in some models, heat venting is not allowed because of
environmental concerns or specifics of the site and engineering options. However, if heat

dumping is unconstraint, Eq. 2-11 can simply be modified to:

Z Oty + [y — 8ys + %, = Hy +d,, Vi, j,s Eq. 2-11a
1

2.3.6 CHP Constraints

As assumed, for each site at most one CHP generator can be selected from different

capacity levels.

> Xg<1 Vs Eq. 2-12
1
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Turn-key cost of CHP generator depends on the capacity size which has different heat-to-
power ratio, so the turn-key cost per kW is considered as the same under certain capacity
range. If a CHP generator is selected for one site, its capacity should be within the capacity
range for the selected capacity interval; otherwise it has a capacity of 0, which means it is

not selected.
Cfh'XxS<C,<Ccx§ Vs, 1 Eq. 2-13
2.3.7 Thermal Storage Constraints

For each site at each time interval, energy stored in the thermal storage is the sum of the
energy stored from the previous time period and the energy charged into the storage minus
the energy discharged from the storage. Heat would be lost with efficiency during the

charging and discharging processes. For example with thermal storage turn-around

. . T . . .
efficiency 77", during any period when amount of heat Tv, is sent to the thermal storage,

tjs
only TjnTvm will be charged, and the rest being lost. On the other hand during the

discharging process, in order to send 7z, of heat to the site, T/ n' z,. of heat is sent.

ijs

Si =S i, +Tn" g, —T:In" f V1, j,s Eq.2-14

ijs

In order to guarantee no heat is accumulated day to day, the thermal storage has an initial
storage state at the beginning of each sample day, and at the end of day, the thermal storage

must return to its initial value.
Slos =Sl Vt,s Eq. 2-15
2.3.8 Transfer Price Levels

There is a non-linear term in the electricity transfer cost, TEC, , given in Table 2-1. In order

to convert the non-linear model to an exact linear equivalent, the following formulation is

applied. There are k discrete transfer price levels available for electricity transferred
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between sites, defined via the parameter e ., . To determine the price level e, the binary

ss'?

decision variable X ., is multiplied by e ., and summed over all transfer price levels:

ess' = ZESS'](XSS']{ VS,S' Eq. 2'16
k

At most one transfer price level can be chosen:

> X <1 Vs, s' Eq. 2-17
k

The same electricity transfer prices of each pair of sites are assumed between the two

transfer directions.

X =X, Vs, s' Eq. 2-18

ss'k
2.3.9 Electricity Transfer Amount

The amount of electricity transferred y,.is the sum of amounts transferred at each transfer

price level k:

Yy = DY s V1, j, 5,8 Eq. 2-19
k

The upper bound for the amount of electricity transferred from site s to site s' is

introduced, which guarantees Y, ., cannot be more than YY . No electricity can be

transferred at that level if the transfer price level k is not selected, as Zjn,k =0.

Yk SYUX Vi, 5,5,k Eq. 2-20

Electricity is forbidden to be sold from one site to another site or the macrogrid before it

fulfils its own demand. Equally, any site cannot buy electricity from other sites and sell it to

the grid simultaneously. The binary variable X tjx is introduced in order to ensure that the

42



Chapter 2 Fair Electricity Pricing and Capacity Design in a Microgrid

above two conditions are satisfied by using the two constraints below, where Y" is the

upper bound of electricity sent to site s .

D Ve H L SYIX Vi, js Eq. 2-21

D Vi T E Y= X"5) V1, j,s Eq.2-22

Term ey, in transferred electricity cost TEC, is formulated as ZESS,,CYW.,( , which is
k

linear.

2.3.10 A Separable Programming Approach

The objective function Eq. 2-3 is non-linear and a separable programming approach is
applied to tackle the non-linear problem. The non-linear objective function can be
expressed as a sum of functions involving only one variable via the separable programming

approach.

The separable technique is briefly described as: a continuous strictly convex function in one

variable, f(x), can be approximated over an interval as a piecewise linear function f (x,)
using m grid points, the approximation is given by Eq. 2-23 to 2-25. Variables A_are
special ordered variables, and only two adjacent ﬂq can be non-zero. Constraints 2-24, 2-25

and the convexity requirement guarantee that two adjacent nodes take non-zero values.

FO=D"4f(x) Eq. 2-23
g=1

> 2,=1 Eq. 2-24

q=1

2,20 Vq Eq. 2-25
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The objective function of this study, Eq. 2-3, is non-linear, being the product of the benefit
over given upper bound of each site. The objective function can be rewritten via

logarithmic differentiation as:

Ing=>"In(EAC! - EAC,) Eq. 2-26

Using the separable programming approach, the objective function is converted to Eq. 2-27,

where EAC is the value of EAC interval q. The convexity properties hold, since
ln(EACf —EAqu) is maximised and is strictly concave (equivalent to minimisation of a

convex function) and EAC,, is linear and therefore convex.

The final formulation is therefore:

max ¢ = 2i “, A, Eq. 2-27

s g=l1

where (3 =ln¢g

Y EAC A, =ACCT + ACC? + ACCI™
g=1

+0PC™ +0OPCP +OPC™ + EC, + P, Vs Eq.2-28

+ zthT/'Es'sst'stjk_ ZVVtT/Ess'sts'tjk

1,j.s'k 1),k

YA, =1 Vs Eq. 2-29
g=1
A >0 Vs, q Eq. 2-30

sq

where 4 are parameters given by u,, = In(EAC! - EAC,), EAC,, are taken according to

the upper bounds EAC! and the minimum cost by minimising EAC, of each site. Terms

in Eq. 2-28, ACC, OPC and EC are given as before by Table 2-1. The mathematical
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program described in Eq.2-27 through 2-30 should be solved subject to the constraints in
Eq. 2-4 t02-22, Eq. 2-27 being the linear approximation to Eq. 2-3.

2.3.11  CO, Emissions and Primary Energy Resources

CO, emissions are calculated based on CO, emission factors of electricity from grid and
natural gas consumption as in Eq. 2-31. Total CO, emissions are composed of emissions of

electricity from grid and natural gas consumed by CHP generators and boilers.

CE=Y p*W, T1, +p°(> WTuyln +> WTx,/n®) Eq. 2-31

1,j.s t,jil.s 1,j.s

Primary energy resource consumption is calculated according to the efficiencies of
centralised electricity generation, CHP and boiler. The total primary energy consumed
sums up primary energy consumption from energy generation from grid and local CHPs

and boilers.

PR=>W, Tl In+ Y WTw,/n +> WTx,/n* Eq. 2-32

[
1,j.s t,jl.s 1,j.s

2.4 Case Study

The MILP model is implemented on a case study of a microgrid with five local sites: a
school, a hotel, a restaurant, an office building and a residential building. All the buildings
are built to PassiveHaus standards according to information provided by the developers of
[131]. CPLEX 12.3.0.0 in GAMS 23.7 [128] on a PC with an Intel Core 2 Duo, 2.99 GHz
CPU and 3.25GB of RAM is used. The model involves 7,307 equations with 5,682
continuous and 440 discrete variables. Basic technical parameters and energy demands are
given first. Then microgrid is considered as a whole unit, global EAC savings compared
with current energy providing system, macrogrid scenario, are analysed based on gas price,
electricity buying price and selling prices. Under given fixed gas price and electricity
buying and selling prices, EAC upper bounds of participants are determined based on the

macrogrid scenario cost and energy demand pattern. Later, the minimised global EAC is
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obtained under fixed transfer prices. EAC savings of respective participants then indicate
the possibility of unfair benefits distribution. Fair microgrid settlement is achieved by
applying the Game theory Nash approach and the solution includes the intra electricity
transfer price and quantity, unit capacity and operation planning. Finally, peak demand

charge scheme is applied in the fair settlement solution.

241 Basic Technical Parameters and Costs of Microgrid Candidate
Technologies

The parameters for the candidate technologies are presented in Table 2-2, with CHP, boiler

and thermal energy storage.

Table 2-2 Technical parameters and costs of microgrid candidate technologies [65]

Technology Turn-key Operating cost Electrical Overall Lifetime F
cost (£/kW) (£/kWh) efficiency efficiency (year)
CHP - 0.027 - 0.9 [131] 15 0.147
Boiler 40 0.027 - 0.8 15 0.147
Thermal 20 0.001 0.98 - 25 0.128
storage

Turn-key costs consist of the costs from investment, installation, foundations and main
connections. CHP turn-key cost and electrical efficiency vary from different the capacity
sizes, while the overall efficiency (electrical and heat efficiency) is assumed as 90%.
Operating costs for CHP generators and boilers are as only the fuel cost. For the fuel tariff,
the gas price is 2.7 p /kWh and electricity bought from the grid is 13 p /kWh; while the
microgrid can sell electricity back to the macrogrid at 1 p /kWh. The operating cost of
thermal storage is the equipment maintenance cost. The capital recovery factor (F) is

calculated from Eq. 2-33:

r(l+r)”

_ Eq.2-33
(1+r) -1 a
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where a is the lifetime of given candidate equipment (see Table 2-2) and r is the interest
rate. In the case study, 12% interest rate is applied. The electricity transfer prices can be

selected from values between 3 p/kWh to 10 p/ kWh .

The CHP capacity levels are determined from the energy demand profile and turn-key costs
are given based on the different capacity levels in Table 2-3; the smallest acceptable CHP
capacity is 3 kW, . The average turn-key costs for each kW, decrease when the CHP
capacities increase. CHP generators smaller than 3 kW, are not considered because of the

relative high turn-key cost. The turn-key costs selected here are listed according to [132],

while the electrical efficiency is obtained from [131].

Table 2-3 CHP turn-key cost and electrical efficiency [131, 132]

Range (kW,) Turn-key costs (£/kW,) Electrical efficiency Heat to power ratio

3-5 1,900 0.25 2.60
6-10 1,230 0.27 2.33
11-15 1,165 0.28 221
16-20 1,120 0.29 2.10
21-25 1,080 0.295 2.05
26-50 1,050 0.30 2.00

2.4.2 Energy Demand Profiles
The consumption profiles have been defined with 18 different periods in total: 6 periods per
day for 3 representative days per year (120 winter days, 153 mid-season days and 92

summer days in total). The periods are shown in Table 2-4 and the weighting factor W
represents the number of days for each day type, e.g. sample day in winter, the weighting

factor is 120. Basic statistics for the energy demand profiles are provided in Table 2-5.
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Table 2-4 Time periods

Period Hours in the day
1 7.00am-9.00am
9.00am-12.00pm
12.00pm-1.00.pm
1.00pm-6.00pm
6.00pm-10.00pm
10.00pm-7.00am

AN L AW

Table 2-5 Statistics of investigated energy demand profile [131]

School Hotel Restaurant Office Residential Total
building

Annual heat demand (KW, i) 149000 184000 8460 8220 111,000 461,000
th
Annual electricity demand (KW j1) ~ 50.000 66,000 90,000 23,400 68,000 297,400

Peak heat demand (kW,,) 42.1 65.6 25 2.8 67.4 -

1

Peak electricity demand (kW,) 10.7 11.6 17.7 4.1 18.6 -

Electricity and heat demand profiles for a winter day are shown in Figure 2-2 and Figure
2-3; the energy profiles present the constant energy demand density during each respective
time period [131]. The five sites have different energy pattern from their respective
function. The school has energy consumption hours primarily during day time; the
restaurant has electricity peak hours during lunch time and dinner time; the residential
building has the energy peak hour during the evening, when most people return home. The
hotel and office building are commercial buildings, which have relatively flat energy
consumption during the working hours. These different energy consumption patterns
provide possibilities for the five sites to cooperate with each other and benefit within the

microgrid.
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Figure 2-2  Electricity demand (winter day) [131]
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Figure 2-3  Heat demand (winter day) [131]
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243 Global Microgrid EAC Savings with Gas Price, Electricity
Buying and Selling Prices

Compared with macrogrid scenario, EAC decreases by utilising a microgrid. Effects on
total EAC savings from gas price, electricity buying and selling prices are analysed. The
objective is to minimise the total EAC of the five participants in the microgrid as Eq. 2-1.
The constraints are listed in Table 2-6, where active equations for other sections in this

work are also listed.

Table 2-6 Model summaries

Sections Objective function Constraints
4.3 Global microgrid EAC savings 2-1 2-2,4 1022
4.4 EAC upper bounds 2-1 2-2,5,10, 11
4.5 Global minimum microgrid EAC 2-1 2-2,41t022
4.6 Game theory for fair settlement 2-27 2-4 to 22, 28 to 30
4.7 Fair settlement under peak demand charge 2-27 2-4 to 22, 28 to 30, 34 to 35

It is expected that as gas price increases EAC savings will decrease, since the electricity
price difference increases between electricity generated from CHP and the electricity
buying from macrogrid. When electricity buying price increases, EAC savings will increase
because electricity generated from CHP is cheaper. While electricity selling price increases,
EAC savings will increase and CHP will be promoted since it can produce electricity with
lower expense. To analyse the impact of gas price, electricity buying and selling prices on
microgrid equipment capacity selection and EAC savings, different combinations of these
prices are implemented. Gas price varies from 2 to 10 p/kWh, electricity buying price
varies from 10 to 15 p/kWh and electricity selling price varies from 1 to 10 p/kWh. These
value ranges are assumed based on the case study in this chapter and common energy tariff
range. The EAC savings compared with the macrogrid scenario are shown in Figure 2-4
based on the three prices, where X axis is gas price, Y axis is electricity buying price and Z
axis is electricity selling price. No microgrid network cost is considered and the EAC
savings are presented with coloured dots, the hot colour (red) represents high EAC saving

values while cold colour (blue) represents low values. The highest EAC saving is £17,400,
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when gas price is 2 p/kWh, electricity buying price is 15 p/kWh and electricity selling
price is 10 p/kWh . The lowest EAC savings are zeros when gas price and electricity buying
price are both 10 p/kWh under all electricity selling prices. As shown in Figure 2-4, the
increase of electricity selling price does not influence much on the FAC savings, which is
indicated by the colour difference and the size of the dots in the figure. EAC savings mainly

depend on gas price and electricity buying price.
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Figure 2-4  EAC savings as a function of gas, electricity buying and selling prices

To illustrate how the gas price influences the EAC savings, electricity buying price is
bounded to 13 p/kWh which is adopted in this case study as given in 2.4.1. EAC savings
from microgrid scenario are only influenced by gas price and electricity selling price, which

1s presented in Figure 2-5.
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Figure 2-5 EAC savings as a function of gas and electricity selling prices to grid

No microgrid network cost is considered in the saving calculations. As shown in the figure,
gas price plays an important role in EFAC savings, as gas price increases from 2 to 10
p/kWh , the EAC savings decrease from £13,000 to £2,300. Although savings are always
positive, when microgrid network or service cost is considered, negative savings would
appear. Also, when the saving is not obvious over current macrogrid scenario energy
providing system, it is difficult to promote the microgrid system to potential customers. For
the electricity selling price, as expected there is an increasing trend for the EAC savings,
but it does not influence EAC savings as much as gas price does. Although the high
electricity selling price will promote the selection of local CHP due to the revenue from
selling electricity to grid, two main factors constrain bigger size CHP selection and EAC
savings. Most importantly, excess heat from each participant cannot be transferred to other
sites or other heat sinks except its own local thermal storage, so CHP cannot generate more
electricity to sell to grid or other participants after it reaches its own heat demand.
Secondly, the capital cost of CHP is relative expensive, the selling revenue cannot cover the

capital cost if bigger capacity is selected.
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EAC savings as a function of electricity buying and selling prices is shown in Figure 2-6,

and gas price is fixed as 3 p/kWh.

EAC total savings (£)

"2
Electricity selling price (P’kWh)
Electricity buying price (P/kWWh) 15

Figure 2-6  EAC savings as a function of electricity buying and selling prices

As the electricity buying prices increase from 10 p/kWh to 15 p/kWh, EAC savings increase
from £800 to £10,000. The increase of electricity selling price to grid also tends to increase
the EAC savings with relative minor effect. By increasing electricity selling price from 1 to

10 p/kWh, the EAC savings increase by about £500 for all electricity buying price cases.

By fixing electricity selling price at 1 p/kWh, EAC savings are shown in Figure 2-7 as a
function of gas price and electricity buying price. EAC savings increase when gas price
decreases and electricity price increases. Gas price and electricity price have similar
influences on EAC savings. When electricity buying prices increase from 10 to 15 p/kWh,
EAC savings increase by an average of £8,380 for all gas prices, which is about £1,400 for
each 1 p/kWh electricity buying price increase. When gas price decreases from 10 to 2
p/kWh , EAC savings increase an average of £9,930 for all electricity selling price, which is
about £1,100 for each 1 p/kWh gas price decrease. Total EAC savings from microgrid is

heavily dependent on the prices of gas and electricity buying from grid.
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Figure 2-7  EAC savings as a function of gas and electricity buying prices

244 EAC Upper Bounds

For the case study, the gas price is 2.7 p/kWh and the price of electricity bought from the
grid is 13 p/kWh ; the microgrid can sell electricity back to the macrogrid at 1 p/kWh . The

EAC upper bounds, FAC”, are determined according to the macrogrid scenario cost of

each site, electricity demand is satisfied from grid and heat demand is fulfilled only by

boilers. By minimising the sum of EAC, under the macrogrid scenario (i.e. minimise Eq.

2-1 subject to Eq. 2-2, 2-5, and 2-10 to 11)), the optimal results are shown in Table 2-7.

Table 2-7 Optimal results of macrogrid scenario

School Hotel  Restaurant Office Residential Total
building
EAC %) 11,789 15,183 12,000 3,336 12,998 55,296
Boiler(kWy,) 42.1 65.6 2.5 2.8 67.4 -
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In order to promote the implementation of microgrids, the maximum EAC” spending is

assigned to each participant according to their macrogrid scenario EAC, as well as their
energy consumption style (heat to power ratio). Microgrid participants will not spend more
than the assigned EAC” . Compared with the restaurant and residential building, the school
and hotel have higher heat-to-power ratios. Therefore, because no heat is allowed to be
transferred between sites, the school and hotel could have more surplus electricity to sell to
other participants. So, the upper bounds of school and hotel are assigned as 85% of their
macrogrid scenario costs. Restaurant and residential building have upper bound of 90% of
the macrogrid scenario costs. The office has relatively small EAC, so the upper bound is the

same as the current macrogrid cost. For the EAC , values, they are set £1 smaller than

EACY values to guarantee FACY — EAC,,is positive, which is required for calculating the

logarithmic values. Then in the microgrid case, CHP and thermal storage are available to be
selected and electricity transfer among sites is allowed. EAC, of each site is minimised to
obtain the lower bound values, with microgrid network fixed cost as £17,000 over 20 years
given by [65]. The piecewise EAC, values are determined based on the range of the upper
bounds and the lower bounds, differences between the two bounds are spread equally

among given intervals over each site. EAC values of upper bound and lower bound are

shown in Table 2-8 and linearised values over 17 breakpoints are presented in Figure 2-8.

Table 2-8 Values of EAC!,EAC,, and EAC

g max, s

School Hotel Restaurant Office Residential building Total

EACY (£) 10,021 12,906 10,800 3,336 11,698 48,761
EAC,, (£) 10,020 12,905 10,799 3,335 11,697 48,756
EACSW,‘lx (£) 7570 9370 6,060 1,560 7,650 32,210
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Figure 2-8  EAC linearised values

2.4.5 Global Minimum Microgrid EAC

If the objective is only to minimise the total EAC of the five sites in Eq. 2-1, subject to
Eq.2-4 to 2-22 and Eq. 2-28 to 2-30, there is no guarantee that all sites will benefit. Prices
for electricity transfer between sites are fixed first to show how much each site can save

when only the total minimum FEAC is considered. Electricity transfer prices are taken as 3-

10 p/ kW,h, and the optimal results are shown in Table 2-9.
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Table 2-9 Optimum EAC results without Game theory

Transfer price p/kWh School (£) Hotel Restaurant Office Residential Total (£)
(€9) ®) (€9) building (£)
3 9,620 12,039 10,148 3,035 10,834 45,675
4 9,471 11,896 11,051 3,035 10,221 45,675
5 9,306 11,600 11,466 2,639 10,664 45,675
6 9,101 11,493 11,499 2,949 10,633 45,675
7 8,975 11,254 11,458 3,206 10,782 45,675
8 8,824 10,998 11,735 3,054 11,065 45,675
9 8,661 10,794 11,878 3,389 10,954 45,675
10 8,480 10,654 11,983 3,439 11,120 45,675

In an integrated microgrid system, the intra electricity transfer price does not affect the total
EAC, because within the microgrid, revenue from selling electricity to one participant
means cost of buying electricity for the other participant. However, electricity transferred
amount and transfer prices influence EAC of respective participant. The savings compared

with given upper bounds are shown in Figure 2-9.

——School -=—Hotel - Restaurant —« Office —» Residential building

DAOO |
1600 -

«

23

2 800

>

o

(/)]

(&) 0 T T T T T e S —
o 3 5 6 7 8 9 10

Transfer price (p/kWh)

Figure 2-9  EAC savings of each microgrid participant without Game theory
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The total saving through microgrid of the five sites is £3,086 and it is about 6.33% of the
upper bounds. However, for each participant the saving is not distributed fairly. The
benefits of each participant would vary quite differently on the fixed electricity transfer
price cases, although the total saving of the whole microgrid is the same. For the restaurant,
it almost always sacrifices and receives negative savings which happens to the office for
two transfer price cases as well. That is because the objective is to minimise the total EAC,
respective benefit is not considered, there is possibility that some participants could
sacrifice their benefits to achieve the mutual benefit. The negative values come from the
microgrid network sharing. The restaurant and office have relative low heat demand and
high electricity demand and the capital cost for small CHP is high, they constrain the two
sites from selecting CHP generator and they can only buy electricity from the grid or other
sites and generate heat from their own boilers. Their benefits depend on the electricity
transfer price and transferred amount. When electricity transfer price is high, the restaurant
or office may not benefit from participating the microgrid scheme if only the total EAC is
minimised. A fair settlement system among microgrid participants should be developed to

guarantee that benefits are shared in a fair manner. This is done in the following section.
2.4.6 Application of Game Theory for Fair Settlement

When the Game theory Nash approach is applied, with the upper bounds obtained in 2.4.4,
the objective function Eq. 2-27 is maximised subject to Eq.2-4 to 2-22 and Eq. 2-28 to 2-
30. For the case study, when the number of linearisation pieces is over 17, the objective
values stabilise. Increasing the number of linearisation pieces beyond this does not
significantly affect the objective values. The optimal results from 17 linearisation pieces are

shown in Table 2-10.
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Table 2-10 Optimum results with Game theory

School Hotel Restaurant  Office Residential Total

building
EAC ) 9,408 12,242 10,207 2,669 11,149 45,675
Savings (£) 613 664 593 667 549 3,086
CHP (kWe) 16.0 16.0 0 0 8.0
Boiler (kW;,) 8.5 32.0 25 2.8 487
Thermal Storage (kWy,h) 0 108.6 0 0 50.1

The total EAC is £45,675, the savings are about 17.4% compared to the macrogrid costs of
£55,296. Based on the given upper bounds, the total saving through transferring electricity

among the five sites is £3,086, which is 6.33% of the total cost. Values of macrogrid
EAC, , upper bound EAC! and optimal EAC, of each microgrid participant are presented
in Figure 2-10. The solution implies that all microgrid participants will benefit in EAC

savings by a fair amount.

B Macrogrid EAC  ® EAC upper bound 0O Optimal EAC

EAC (*1000£)

School Hotel Restaurant Office Residential
building

Figure 2-10 EAC values of each microgrid participant
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The saving is fairly distributed by selecting appropriate technologies, their capacity,

amounts of electricity transferred and transfer price. The electricity transfer prices can be

selected from 3 p/ kW,h to 10 p/ kW,h. The optimal transfer prices and amount of electricity

transferred during one year are shown in Table 2-11.

Table 2-11 Transfer price between sites and annual transferred amount

Transfer price

Sites (Pence/ kW,h) Annual transferred amount (kW,h)

School, Restaurant 7 2,352
School, Office 3 9,308

School, Residential building 6 5,103

Hotel, Office 3 20,337

Hotel, Residential building 3 1,833
Residential building, School 6 394

Residential building, Restaurant 4 1,314
Residential building, Office 5 644

The optimal result from selecting transfer prices with game theory obtains the objective
value of ¢3 as 32.10 and in a CPU time of 10.6s. There is no CHP generator selected for

office and restaurant. The main reason is that their heat-to-power demand ratios and peak
demands are relatively low compared to other sites, so no CHP generators can be selected
which could save money. These units receive electricity from school, hotel, residential
building or the macrogrid when needed. There is no electricity transferred between hotel

and residential building.

To satisfy the annual microgrid electricity demand, 122.6MWh electricity is bought from
macrogrid, which is 41.4% of the microgrid annual power demand. CHP generators provide
177.3MWh electricity to the microgrid, of which 2.6MWh electricity is sold to the
macrogrid. The total amount of electricity transferred between participants is 41.3MWh,
which is 13.9% of the total annual demand. Figure 2-11 presents these electricity flows
(where ‘CHP local site consumption is the electricity generated by a CHP unit while that

electricity is consumed at the site where that CHP is located).
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Figure 2-11 Contributions to microgrid electricity demand

Although CO, emissions are not considered in the objective function, they are reduced due
to CHP utilisation. CO, emissions are calculated based on the carbon dioxide emission
factors for UK energy use, which are 0.422 kgCOykWh and 0.194 kgCOykWh for
electricity and gas respectively [131]. For the macrogrid scenario, the total CO, emissions
from electricity and gas consumption is 237.4 tonnes, whereas in the microgrid scenario the
total CO, emissions are 192.2 tonnes. There is 19.0% emission savings by utilising CHP in
microgrid. Primary energy resource consumption is calculated from Eq. 2-32 based on UK
centralised electricity generation efficiency of 35% [133]. Heat generation is based on an
energy efficiency of 82%. Under the macrogrid scenario total primary energy consumption
is 1,425MWh, while with microgrid utilisation the primary energy resources consumption is

reduced to 1,067MWh, a 25.1% decrease.

Next, we study the scenario where heat dumping is allowed (i.e. replacing Eq. 2-11 by Eq.

2-11a). In this case the CHP capacity of the school increases to 21.0 kW, and no boiler is
required. Thermal storage of the residential building decreases slightly to 49.2 kW, h. All

the other sites have the same capacity selections as shown in Table 2-10. Overall, CHP

generators produce 286.7MWh electricity, which is 61.7% more than that from the no heat
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dumping scenario. Figure 2-12 presents the contributions to microgrid electricity demand,
in total 95% of electricity demand is provided by CHP generators and 44% of electricity
demand is fulfilled through intra electricity transfer. There is 3.7MWh electricity being sold
back to the macrogrid. The total EAC of the microgrid is £41,842, which is reduced by
8.4% when compared with the case of not allowing heat waste. However, it results in high

heat dumping (212.2 MW, h), which is 46.0% of the total heat demand. It should also be

noted that the primary energy consumption is 1,110.2MWh and CO, emissions are 215.5

tonnes, representing increase of 4.0% and 12.1%, respectively.

Intra transfer
CHP local site electricity
i 44%
consumption
51%

Imported
electricity
5%

Figure 2-12  Contributions to microgrid electricity demand under heat dumping
2.4.7 Fair Settlement under Peak Demand Charge

Macrogrid electricity consumption peak reduction is also desired to avoid the need for high
capacity in the macrogrid-microgrid connection (thus avoiding charges levied by the
System Operator for consumption at times of macrogrid peak). One way to achieve this is
to increase the grid tariff rate for the high electricity load periods, and therefore motivate
consumers to redistribute or reduce their electricity consumption [134]. In order to reflect

this within our approach, additional mathematical constraints Eq. 2-34 and Eq. 2-35 have
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been introduced. It is assumed that if electricity load from grid (for each time interval) is

below a given threshold x,, then the normal electricity price will be applied. However,
when electricity load from grid is over the threshold value ( x| ), then the surplus amount

will be charged at a higher rate. Electricity cost term, EC,, should be redefined as follows:

:tjs 2 Itjs - Ks Vl‘, j’ s (Eq- 2'34)

Vs (Eq. 2-35)

ijs

EC, =Y c'WT I, +Y (c"-c"WTE, > c"WTE
t,j tj t,j

Below the threshold, the electricity price is still 13 p/kWh while the peak demand charge is
nearly 50% more expensive (here, 20 p/kWh). The electricity threshold load from the grid is
set to 5 kW for all sites involved. Under this peak charge scheme, the macrogrid scenario

costs are higher than that from the constant price case. The game theory Nash approach is
applied under the new EACY values®. The corresponding EAC, values together with

capacities selected for CHPs, boilers and thermal storages are given in Table 2-12.

Table 2-12 Peak demand charge scheme with game theory

School Hotel Restaurant Office Residential building Total

Macrogrid EAC 13,100 17,354 15,309 3,336 14,975 64,074

EACSU €) 11,135 14,751 13,013 3,336 12,729 54,963

EACS ®) 9,578 13,069 11,289 2,413 11,143 47,492

EACK savings (£) 1,557 1,682 1,724 923 1,586 7,471
K. (kW) 5 5 5 5 5 -
CHP (kW,) 21.0 21.0 0 0 11.0 -
Boiler(kWy,) 0 22.6 2.5 2.8 43.1 -
Thermal Storage (kW,,h) 704 70.0 0 0 46.8 -

% The upper bounds are still set as 85% macrogrid costs for school and hotel, 90% macrogrid costs for
restaurant and residential building, and 100% macrogrid costs for the office.
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When there is demand charge for the peak load, the EAC values and microgrid operations
are quite different compared with those of the ‘constant’ case (shown in Table 2-10). More
specifically, due to the higher upper bounds being used, higher CHP capacities are finally
selected for school, hotel and residential building. Overall, the savings achieved are 25.9%
when compared with the macrogrid scenario. Figure 2-13 presents the electricity demands
of the five sites under the macrogrid and microgrid scenarios when peak demand charge is
applied. It should be mentioned that the grey bars represent the annual grid electricity
supply within the given threshold 5 kW , while the white bars show the annual grid

electricity provision over the 5 kW threshold value.
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Figure 2-13  Grid electricity supply under macrogrid and microgrid case under peak

demand charge

In the macrogrid scenario, all electricity is bought from the grid and the total imported
electricity is 297.4MWh, while in the microgrid scenario it can be noted that 112.3MWh is
imported from the grid. This reduction on grid electricity supply is achieved by increased
CHP electricity generation within the microgrid thus avoiding or reducing significantly
peak demand charge for many sites. More specifically, the annual grid electricity supplies
charged at peak price for macrogrid and microgrids scenarios is 129.7MWh and 15.0MWh,

respectively. This indicates that the electricity peak charge scheme will promote the
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application of microgrid and increase CHP capacity selection and operation in the

microgrid.
24.8 Fair Settlement with lower CHP overall efficiency

In this case study presented, the overall efficiency of CHP is considered as 90% according
the assumption given in [131]. However, the overall efficiency of CHP is presented as 80%
in [65]. In order to analyze the effect of the overall efficiency over the fair settlement of a
microgrid, the presented model applied in 2.4.6 is implemented with 80% overall efficiency
of CHP while the electrical efficiencies keep the same as given in Table 2-3. The optimal

design under this assumption is provided in Table 2-13.

Table 2-13 Optimal design with 80% CHP overall efficiency

School Hotel Restaurant Office  Residential Total

building
EACY € 10,021 12,906 10,800 3,336 11,698 48,761
7,841 10,103 7,790 1,520 8,795 36,049
EACWmax (€3]

EAC (%) 9,439 12,260 10,198 2,730 11,109 45,736

EAC. savings (£) 582 646 602 606 589 3,025
CHP (kW,) 16.9 16.0 0 0 11.0 -
Boiler(kWy,) 12.4 37.5 2.5 2.8 46.9 -
Thermal Storage (kW,h) 0 104.8 0 0 49.0 -

Compared with the optimum results presented in Table 2-9 and Table 2-10, the EAC!

values keep the same while the lower bounds are higher except office based on this lower
CHP overall efficiency. Since the electrical efficiencies keep the same while the heat
efficiencies drops, CHP capacities are increased for school, hotel and residential building
because of their relative high heat demands. Also boiler capacities of school and hotel are
bigger to cover the heat supply loss caused by the lower CHP heat efficiency. However, the
total EAC savings are almost the same, which is only 2% decrease. Again the EAC costs of

the five participants are fairly distributed based on the given upper bounds. So the overall
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efficiency decrease affects the fair settlement of a microgrid but has minor effect on the

EAC savings.
24.9 Fair Settlement with Alternative CHP Specs

In the proposed model, it assumes that only one CHP technology is available while the
capital cost decreases with the capacity size. Without modifying current equations, the
model can be applied for selecting from multiple alternative CHP technologies, such as
internal combustion engine (ICE), Stirling engine (SE), solid oxide fuel cell (SOFC) and
proton exchange membrane fuel cell (PEMFC). The above four different micro-CHP
technologies are considered. Basic technical characteristics and specific capital cost of each

of these candidate technologies are described in Table 2-14.

Table 2-14 Specifications of CHP candidate technologies [135]

Technology Range (kWe) Turn-key costs (£/kWe) Electrical efficiency Heat to Lifetime

power (Year)
ratio
SE 5-10 1,980 0.25 2.80 15
PEM 0-5 2,981 0.45 1.11 25
SOFC 0-5 5,520 0.50 0.9 25
ICE 10-50 866 0.40 1.25 15

By replacing the candidate technology with the capacity level, the optimum results are
presented in Table 2-15.With candidate CHP technologies, ICEs are selected for school,
hotel and residential building because of its low capital cost among others. PEM is assigned
to restaurant as it is cheaper than SOFC within the same capacity range. Although PEM is
expensive, it is still beneficial than buying electricity from other participants and macrogrid
and generating heat solely from its own boiler. Since ICE has much lower capital cost than
given in Table 2-3, EAC savings are much higher while they are still fairly distributed.
More candidate CHP technologies or technologies with more capacity ranges can be easily

added to the model.
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Table 2-15 Optimal design with candidate CHP technologies

School Hotel Restaurant Office  Residential Total

building
EACY () 10,021 12,906 10,800 3,336 11,698 48,761
4,969 6,668 4,613 1,495 6,408 24,153
EACS,qmax €3)
EAC (£) 7,724 10,826 8,738 1,495 9,576 38,359
EAC. savings (£) 2,297 2,080 2,062 1,841 2,122 10,402
CHP (kW,) ICE ICE PEM 0.6 - ICE 16.1 -
14.4 20.0
Boiler(kWy,) 24.1 40.7 1.6 2.8 472 -
Thermal Storage (kWy,h) 0 117.8 1.12 0 33.8 -

2.5 Conclusions

An MINLP model has been developed to provide a fair settlement system among microgrid
participants with the Game theory Nash approach. It has been solved in MILP form based
on a separable programming approach. The costs of all participants are minimised by
determining the fair intra-microgrid electricity transfer price, flow of electricity between

sites, unit capacities and unit commitment.

The proposed model has been implemented on a case study with five local sites: a school, a
hotel, a restaurant, an office building and a residential building. Total FAC savings as a
function of gas price, electricity buying and selling price is analysed and total EAC savings
is heavily dependent on gas price and electricity selling price. Electricity selling price
influences on the total EAC savings with minor effect because heat cannot be transferred to
other participants and thermal sinks except its own thermal storage. The result of the case
study has indicated that the method proposed provides a promising approach to microgrid
planning with fairly distributed benefits. The participants’ cooperative action provides
better economic outcome for the microgrid, with 17.4% savings compared with the ‘no
microgrid’ case. Also, the costs of installing a microgrid have been fairly distributed among

participants. CHP has been selected in the case study for three microgrid participants, and
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these systems provide the majority of the microgrid’s electricity needs. Furthermore, CO,
emissions and primary energy consumption has been decreased by 19% and 25%
respectively through CHP utilisation. While a peak demand charge scheme is included,
CHP capacity in the microgrid has been increased and microgrid is promoted. CHP
technologies play an important role in promoting microgrid and primary energy saving
because of their high efficiency. However, their high capital costs are obstacles to be

adopted by participants with relative low energy demands.

When there are more participants in the microgrid, the total and individual savings could be
increased, but this depends on the energy consumption patterns of the participants in the
microgrid group. There would be more benefits if the energy consumption patterns (heat-
to-power ratio) and peak hours of each participant are very different from each other. And
the participants can obtain higher income by selling electricity to other participants than
selling to the grid. Game theory provides the necessary tool to carry out the fair settlement

among participants, although the total saving in the fairly distributed case could be smaller.
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Chapter 3 Optimal Energy Consumption Scheduling
and Operation Management of Smart Homes Microgrid

In the previous chapter, optimal microgrid design and operation are obtained for the fair
cost distribution amongst participants in a microgrid over long term consideration. In this
chapter, it addressed the scheduling and overall management of smart homes with a
common microgrid over short term under given microgrid design. Most energy-consuming
household tasks are not enforced to be performed at specific times but rather within a
preferred time period. If these flexible tasks can be coordinated among multiple homes so
that they do not all occur at the same time yet still satisfy customers’ requirements, the

energy cost and power peak demand could be reduced.

In this chapter, we aim to develop an MILP model to minimise the total one-day-ahead
expense of a smart building’s energy consumption, including operation and energy costs.
Both electricity load and DERs operation are scheduled. Peak demand charge scheme is

also adopted to reduce the peak demand from grid.
3.1 Introduction and Literature Review

In this section, work related to operation planning of microgrids and energy consumption in

smart buildings is reviewed.
3.1.1 Operation Planning in Microgrid

As mentioned in Chapter 2, the optimal planning of microgrids has attracted much attention
over the last few years. Besides the microgrid design, microgrid operation planning over
the short term is another branch addressed by many researchers. Bagherian and Tafreshi
[136] present energy management systems and optimal scheduling of microgrid. The
optimal decisions, including the use of generators for power and heat production, storage
system scheduling, proper load management and local grid power selling and purchasing
for next day, are determined by maximising the profit. A generalised formulation to

determine the optimal strategy and cost optimisation scheme for a microgrid is shown in
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[137], accounting for emission cost, start-up costs, operation cost and maintenance costs.
Optimal economic operation scheduling of a microgrid in an isolated load area is obtained
by MILP model in [138], and a Virtual Power Producer (VPP) is used to operate the
generation units optimally and the methodology is applied to a real microgrid case study. A
short-term DER management methodology in smart grids is presented by [139], which
involves as short as five minutes ahead scheduling and the previously obtained schedule is
rescheduled accordingly. GA approach is used for optimisation. Obara et al. [140]
investigate the operational planning of an independent microgrid with tidal power
generators, solid oxide fuel cells (SOFCs) and PV. That microgrid supplies heat and
electricity to the surrounding towns and harbour facilities. A probabilistic energy
management system is proposed by Mohammadi et al. [141] to optimise the operation of
the microgrid based on an efficient Point Estimate Method. The authors in [142] propose an
intelligent energy management system to optimise the operation of DERs in a CHP-based
microgrid over a 24-hour time interval with a modified bacterial foraging optimisation
algorithm. Both operation cost and emissions are minimised. Local energy management is
provided by [143] for a building integrated microgrid, which considers grid time-of-use
tariffs, grid access limits, storage capacity, load and PV power shedding. An optimal
operation of a CHP-based microgrid is presented in the work of [144], where DER resource
scheduling with demand response programs over a day-head period is determined by
minimising the total cost and emissions. Baziar and Kavousi-Fard [145] investigate the
optimal operation management of DER in a renewable microgrid for a 24-hour time
interval, and it considers the uncertainties from load demand forecasting error, grid bid
changes and non-dispatchable generator output power variations. Marzband et al. [146]
propose an operational architecture for real time operation of an islanded microgrid, and
day ahead scheduling and real time scheduling are both considered. Chaotic quantum
genetic algorithm is applied for the environmental economic dispatch problem for DERs in
a smart microgrid [147]. Operation planning of an independent microgrid is obtained from
the genetic algorithm, where solar cell, heat pumps, fuel cells and water electrolysers are
applied. An MILP framework is presented for the energy production planning problem to
minimise the total cost, and heat interchange within subgroups of overall microgrid is also

proposed in [148].
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3.1.2 Energy Consumption in Smart Buildings

The energy consumption by buildings represents 30-40% of the world’s primary energy
consumption [149], and the proportion of energy use in building is 39% in the UK [150].
Smart planning of energy supply to buildings is important to conserve energy and protect
the environment. Basic actions to improve energy efficiency in commercial buildings in
operation are presented in [151]. Domestic energy consumption depends on the dwelling
physical properties, such as location, design and construction, as well as appliances’
efficiency and occupants’ behaviour. By changing the living behaviour itself, there can be
10-30% energy consumption reduction [152]. More importantly, the liberalisation of
electricity markets results in electricity hourly or half-hourly prices and real-time electricity
prices encourage consumers to get involved in searching for optimal power consumption

patterns to reduce their energy costs [153].

The work of this chapter considers a smart residential building with its own microgrid,
DER and automation system. Smart building is becoming more attractive and viable in the
building industry while meeting both desires of comfort and energy savings. The idea of the
smart home originated from the concept of home automation, which provides some
common benefits to the end users, including lower energy costs, provision of comfort,
security and home-based health care and assistance to elderly or disabled users [154]. Smart
homes with automation operations are becoming capable along with the technology
development, where heating or lighting can be controlled according to the presence of
customers [155]. PSO algorithm is applied to the load balancing problem in smart homes in
[77], where the optimal distribution of energy resources is determined by an adapted
version of the Binary PSO. A method based on LP techniques is proposed for economic
evaluation of microgrids from the consumer’s point of view in [156]. Operation of
distributed generators and energy storage systems are optimised and power interruption
costs together with additional expenses to construct the microgrid itself are involved. Some
work has also been done to achieve the energy conservation and management perspectives.
A multi-agent system for energy resource scheduling of an islanded power system with
microgrid is proposed by [157], with an objective to manage the resources efficiently and

obtain the minimum operation cost while satisfying the internal demand. A dynamic
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decision model is presented in [158] to optimise energy flows in a green building with a
hybrid energy system, which involves different renewable energy sources. A fuzzy
controller is developed and the Human Machine Interface (HMI) is integrated with building
energy management systems to improve the indoor environmental conditions with
minimum energy needs [159]. While in [160], an MILP model is developed for scheduling
operations in microgrids connected to the national grid to analyse potential policies. A
linear diversity constraint is introduced to maintain diversity in the generation of electricity
from multiple resources on the production schedule. An energy management and warning
system for resident has been proposed for energy saving in [161], which monitors the
power usage and warns the users when the power usage is getting close to the monthly
prescribed energy usage levels. The electric power dispatch optimisation problem is solved
by the genetic algorithm approach by [162], the proposed model determines the optimum
operation of a microgrid for residential application under environmental and economic
concerns. However, these scheduling optimisation models only consider operation

scheduling based on given energy profile rather than scheduling the energy demand.

Scheduling tasks subject to limited resources is a well known problem in many areas of the
process industry and other fields, but there are differences when considering the scheduling
of electrical appliances. Different time representations and mathematical models for
process scheduling problems are summarised in [163]. Four time representations are
presented with strengthened formulations which are compared in different scheduling
problems. While short-term and medium-term scheduling of a large-scale industrial
continuous plant is addressed in [164]. A systematic framework is proposed there and
applied to an industrial continuous plant to utilise the main units efficiently. Maravelias and
Sung [165] review the integration of production planning and scheduling, while key
concepts and advantages/disadvantages of different modelling methods are presented. Sun
and Huang [166] reviewed energy optimisation methods for energy management in smart
homes, such as fuzzy logic, neural networks and evolutionary approaches. Hybrid
intelligent control systems for generating control rules is recommended for further study
and works considering scheduling of appliance operation time are also included. An MILP

based smart residential appliance scheduling framework is proposed in [167], where
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electricity is solely bought from grid and the tariff is known 24 hours in advance. Another
work for scheduling the operation of smart appliances is presented by [168], where the
savings from energy is maximised by shifting domestic loads with real-time pricing. A
peak-load shaving online scheduling framework is proposed by [169], and the power
consumption scheduling is developed in a systematic manner by introducing a generic

appliance model.

Scheduling of both energy generation and loads has been studied for single smart home in
recent work. The operation of an electrical demand-side management system is presented
by [170], where deferrable and no-deferrable tasks commanded by the user are scheduled
for one day of a house with PV generation. Kriett and Salani [171] propose a generic MILP
model to minimise the operating cost of both electrical and thermal supply and demand in a
residential microgrid. A home energy comfort management system is designed by [172],
which helps end users to control and manage residential energy and enable the users to set
savings goals. The authors of [173] propose an energy management system based on action
dependent heuristic dynamic programming in a smart home. Muratori et al. [174] present a
model to simulate the electricity demand of a single household, and total consumption from
cold appliances, heating, ventilation, air condition and other activities is considered. A real-
time price-based demand response management application is presented by [175] for
residential appliances in a single house to determine the optimal operation in the next 5-
minute time interval by considering future electricity price uncertainties, stochastic
optimisation and robust optimisation approaches have been applied. An optimal and
automatic residential load commitment framework is proposed by [176] to minimise
household payment, which determines on/off status of appliances, charging/discharging of
battery storage and plug-in hybrid electric vehicles. Derin and Ferrante [177] develop a
model that considers both operation scheduling and electricity consumption tasks order
scheduling. But their results indicate relatively high computation time, over 35 minutes, to
schedule only three electricity consumption tasks. And Finn et al. [178] investigate the
demand side management when renewable energy is applied by shifting the timing of a

domestic dishwasher electrical demand in response to pricing and wind availability.

73



Chapter 3 Optimal Energy Consumption Scheduling and Operation Management of Smart
Homes Microgrid

This chapter extends the scope of single smart home energy management by considering a
smart building composed of multiple smart homes. An MILP model is proposed to
minimise the total one-day-ahead expense of a smart building’s energy consumption,
including operation and energy costs. Both the operations of the DERs and the domestic
appliances with their specific energy consumption profiles are scheduled. The scheduling is
based on real-time electricity prices at each time interval, renewable energy output forecast,
subject to the constraints at the earliest starting time and latest ending time for each
appliance provided by the consumers. Peak demand charge scheme is also applied to reduce

the peak electricity demand from grid.
3.2 Problem Description

In this work, a smart building with a number of smart homes is considered. Example of

such smart building is shown in Figure 3-1.

Wind turbines
Grid o =
e | | h 1 Domestic appliances
4 ) A
TT1ITI [T’””E
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I

Smart homes
management

Elec‘srlcalcars/D I:I

CHP generator

Electrical storage Boiler Thermal storage

Figure 3-1 Example of smart building
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It is assumed to have its own microgrid to provide energy locally, which includes some
DERs, such as CHP generator, boiler, wind generator, thermal storage and electrical
storage. All homes in the building share common microgrid DERs. It also has a grid
connection to obtain electricity during power demand peak hours or sell electricity to the
grid when there is surplus electricity generation. The building is assumed to have an energy
management system, local controllers for each DER and communication system to
distribute the energy consumption scheme. Since the model presented in this work only
provides the optimal scheduling for one day, equipment capacity selection is not considered
here, and all the equipment capacities are given. The real-time electricity price profile from
the grid is known and varies within a day. Peak demand charge for the over consumed
electricity from the grid is given. It is also assumed that weather forecast can provide 24
hour wind speed data. Heat demand of the whole building is given while the electricity

demand depends on the operation of domestic appliances.

Generally, each home has a number of domestic appliances, such as dishwasher, washing
machine and oven. They are flexible under different time window, earliest starting time and
latest finishing time, such as shown in Table 3-1. If their operations can be scheduled based

on their time windows, both energy cost and peak demand from grid can be reduced.
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Table 3-1 Electricity consumption for different electrical tasks [179]

Task Power Earliest starting Latest finishing Time window Duration
(kW) time (hour) time (hour) length (hour) (hour)

Dishwasher - 9 17 8 2

Washing machine - 9 12 3 1.5
Spin dryer 2.5 13 18 5 1

Cooker hob 3 8 9 1 0.5

Cooker oven 5 18 19 1 0.5

Microwave 1.7 8 9 1 0.5
Interior lighting 0.84 18 24 6 6
Laptop 0.1 18 24 6 2
Desktop 0.3 18 24 6 3

Vacuum cleaner 1.2 9 17 8 0.5

Fridge 0.3 0 24 - 24
Electrical car 3.5 18 8 14 3

The overall problem can be stated as follows:

Given (a) a time horizon split into a number of equal intervals, (b) heat demand of the
whole building, (c) equipment capacities, (d) efficiencies of technologies, (e) maintenance
cost of all equipment, (f) heat-to-power ratio of CHP generator, (g) charge and discharge
limit rates for thermal/electrical storage, (h) gas price, real-time electricity prices from grid
and peak demand charge price for any over-threshold amount, (i) peak demand threshold
from grid, (j) wind speed, (k) earliest starting and latest finishing times, (I) task capacity

profiles, (m) task duration.

Determine (a) energy production plan, (b) task starting time, (c) thermal/electrical storage

plan, (d) electricity bought from grid, (e) electricity sold to grid.

So as to minimise daily operation and energy cost.
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3.3 Mathematical Formulation

The smart homes power consumption scheduling problem is formulated as an MILP model.
The daily power consumption tasks are scheduled based on their given operation time
windows, which is defined as the time period between the earliest starting time and latest
finishing time of each task. The objective is to minimise the daily power cost and reduce
the power consumption peak from grid. The time domain is modelled in a discrete form
with intervals of equal length. The key model decision variables include equipment
operation, resources utilised and task starting time. These are determined by minimising the
daily energy and operation cost of all homes subject to equipment capacity constraints,
energy demand constraints, electrical/thermal storage constraints and task operation time

window.

3.3.1 Nomenclature

The notation used in the MILP model is given below, the superscript is used to indicate

equipment and the subscript is used for indices:

Indices

i task
J home in the smart building

t time interval

0 task operation period

Parameters

A wind generator blade area (mz)

ct cost per unit input (maintenance) for electrical storage unit (£/kWh,)
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CB

CC

CE

CT

CW

DE

H,

electricity buying price from grid at time interval ¢ (£/kWh,)

wind generator maintenance cost (£/kWh,)

constant power consumption capacity of task i (kW,)

power consumption capacity of task i at operation period 6 (kW,)

boiler capacity (kW)

CHP generator capacity (kW,)

electrical storage capacity (kWh,)

thermal storage capacity (kWhy;,)

wind generator capacity (kW,)

electrical storage discharge limit (kW,)

electrical storage charge limit (kW,)

heat demand at time interval ¢ (kW)

difference between peak and base electricity demand price from grid (£/kWh,)

processing time of task i of home j

CHP heat-to-power ratio

latest finishing time of task i of home j

earliest starting time of task i of home j
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v, wind speed at time interval ¢ (m/s)

y e nominal wind speed (m/s)

yersm cut-in wind speed (m/s)

vt cut-out wind speed (m/s)

w, output from wind generator at time interval ¢ (kW,)

0 time interval duration (hour)
p air density (kg/m’)

n° CHP generator electrical efficiency

n* electrical storage charge/discharge efficiency

n" wind generator power coefficient

K agreed electricity peak demand threshold from grid (kW,)
Variables

E, electricity exported to the grid at time interval t (kW,)

f thermal storage discharge rate at time interval ¢ (kWy,)

8, thermal storage charge rate at time interval # (kW)

I, electricity imported from the grid at time interval ¢ (kW,)
S initial state of electrical storage (kWh,)
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ST initial state of thermal storage (kWh,)

SF electricity in storage at time interval ¢t (kWh,)

Y heat in storage at time interval 7 (kWh,)

u, electricity output from CHP generator at time interval ¢ (kW,)

X, heat output from boiler at time interval ¢ (kW)

Y, electrical storage discharge rate at time interval # (kW,)

Z, electrical storage charge rate at time interval ¢ (kW)

) daily electricity cost of a home (£)

9 extra electricity load from grid over the agreed threshold x at time interal ¢ (kW,)

Binary Variables

X 1 if task i of home j starts at time interval ¢, O otherwise

3.3.2 Capacity Constraints

The output from each equipment should not exceed its designed capacity,

CHP generator:

u <C° YVt Eq. 3-1
Boiler:

x, <C”? vt Eq. 3-2
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Electrical storage:

sk<c* YVt Eq. 3-3
Thermal storage:

sh<c’ Vit Eq. 34

3.3.3 Energy Storage Constraints

Electricity stored in the electrical storage at time t is equal to the amount stored at t —1 plus
the electricity charged minus the electricity discharged. Electricity would be lost during the

charging and discharging process, for example during any period when amount of

electricity &, is sent to the electrical storage, only d7°z, will be charged, and the rest
being lost, where 77" is turn-around efficiency of electrical storage. Meanwhile, during the

discharging process, in order to send &y, of electricity to the user, &y, /n” of electricity is

needed.

SF=SF +ontz, —&,/n" Vvt Eq. 3-5

t

The electrical storage has an initial storage state at the beginning of each sample day. At the
end of each day, the electrical storage must return to its initial value, so as to avoid net
accumulation. The initial storage state value is optimised through the model to decide the
best initial state for one day utilisation. Otherwise, the initial state can be obtained from the
previous day and at the end of the day, the electrical storage must return to be over certain

lower limit to protect the equipment.
Se=8F=8" Eq. 3-6

The rates of discharge or charge of electricity cannot exceed the electrical storage discharge
and charge limits defined by the battery manufacturer, in order to prevent excessive

discharge/charge rates that would damage the battery or reduce its capacity:
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y, < DF V1 Eq.3-7
z, <C* Vit Eq. 3-8

Heat stored in the thermal storage at time 7 is equal to the amount stored at r — 1 plus the
heat charged minus the heat discharged. The heat loss during the heat storage process is
represented in the same way as shown for the electrical storage.

St=S' +én"g -&/In 4 Eq. 3-9

t

Stored heat must return to the initial state at the end of the day so that no heat is
accumulated over one day. The initial storage state value is also optimised through the

model.
Sg = STT =357 Eq. 3-10

The rates of discharge and charge of heat cannot exceed the thermal storage discharge and

charge limits based on the type of storage medium, mass and latent heat of the material:

f,<D" Vi Eq. 3-11
g, <G’ Vi Eq. 3-12

3.34 Wind Generator Output

The electricity output from the wind generators is calculated from the wind power
generation equation, based on the wind blade area, wind speed and wind generator
efficiency. The power output is constrained by both cut-in speed and cut-out speed in the
model. The cut-in speed is the minimum wind speed at which the wind turbine will
generate its designated rated power. While the cut-out speed is wind speed at which the
wind generator would be shut down for the safety reasons in order to protect the wind

turbine from damage [180].
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05 Wmin ’Vno 3 \v/l, cht—in SV SvcuH)ut
w,={ A" ming,, V") z Eq. 313

0 Vit v, SV and v, 2V

3.3.5 Energy Balances

In each time interval, the total electricity consumption is the sum of the power consumption
capacities from all tasks of all homes. The electricity consumed during each time period is
supplied by the wind generator, CHP generator, electricity received from the electrical
storage and grid, minus electricity sent to the electrical storage and grid. If the power
consumption capacity of task 7 is constant, then the electricity balance can be represented as
Eq. 3-14. But the power consumption capacity of some tasks varies over the operation time
intervals, e.g. washing machine has different capacity profiles over washing and spinning
processes. Eq. 3-14a is more appropriate for such case, in which the electricity consumption

is summed over the task operation periods 6.

Y CX=wHu+y,+1,—z,—R, vt Eq. 3-14
joi

P;-1
ZZ Z CoXjrg=witu+y +1,—-z,—-E, Vit Eq. 3-14a
i i 6=0

The heat consumed during each time period is equal to heat supplied by the CHP generator,

boiler, heat received from the thermal storage, minus heat sent to the thermal storage.
H =Qu +x +f—g, Vit Eq. 3-15
3.3.6 Starting Time and Finishing Time

The operation time of each task must be within the given time window. The starting time of
each task cannot be earlier than the given earliest starting time, and must finish before the
latest finishing time. For each task from each home, it has to be started once.

>X, =1 V)i Eq. 3-16

Jjit
N F
Tji St<Tj; =Pj;
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3.3.7 Peak Demand Charge

There is also a desire to reduce the electricity peak demand from the grid to avoid the need
for high capacity in the macrogrid-microgrid connection (and to avoid charges levied by the
System Operator for consumption at times of macrogrid peak). One way to achieve this is
to increase the grid tariff rate for the high electricity load periods, and thus motivating
consumers to redistribute or reduce their electricity consumption [134]. In order to reflect
this, in our approach, an extra constraint, Eq. 3-17, is introduced in the model. For each
time interval, when electricity load from grid is below the agreed threshold X', the normal
electricity price is applied. But when electricity load from grid is over the agreed threshold

k , the additional amount, ¥, over threshold value, is charged with an extra rate.

&1 -k vt Eq. 3-17

3.3.8 Objective Function

The objective function is to minimise the total daily electricity cost, which includes: the
operation and maintenance cost of the CHP generator, wind generator, boiler, electrical
storage and thermal storage; the cost of electricity purchased from the grid; the revenue
from electricity sold to the grid. Since the equipment capacities are fixed, their capital costs
are independent of the schedule and are therefore not considered. If only the real-time

pricing is applied, the total cost is calculated as in Eq. 3-18a.
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¢=> u,In° CHP operation cost
t
+ z oaw, wind turbine maintenance cost
t

+> &Vx In® boiler operation cost
t

+ Zt: &ty electrical storage maintenance cost Eq. 3-18a
+ Z &’ f thermal storage maintenance cost

+ Z &all electricity buying cost from grid

- Z,: &E“R[ revenue from electricity selling to grid

When peak demand charge scheme is applied, the total daily cost is calculated as in Eq. 3-
18b. Below the threshold, the electricity price follows the real-time electricity price but
when the demand is over the threshold extra cost is assigned to the additional electricity

amount.
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¢=> u,In° CHP operation cost
t
+ z oaw, wind turbine maintenance cost
t

+> &Vx In® boiler operation cost
t

+ Zt: &ty electrical storage maintenance cost Eq. 3-18b
+ Z &’ f thermal storage maintenance cost

+ Z &:[I I, electricity buying cost from grid

+ Z wYy, peak demand extra charge from grid

- Zt: &E“R, revenue from electricity selling to grid

3.4 lllustrative Examples

In this work, the proposed MILP model for energy consumption scheduling is applied to
two numerical examples: (i) a smart building of 30 homes with same living habits and (ii) a

smart building of 90 homes with different living habits.

3.4.1 Example 1: Smart Building of 30 Homes with Same Living
Habits

Example 1 considers a smart building system with 30 homes with the following DERs, and
their capacities are obtained according to the total energy demand while the technical

parameters and costs are obtained from [65].
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e one CHP generator with a capacity of 20 kW, and electrical efficiency of 35%. Heat
to power ratio is assumed to be equal to 1.3, and natural gas cost is 2.7 p/kWh;

¢ one wind farm with a capacity of 10 kW, and a maintenance cost of 0.5 p/kWh,;

e one boiler with capacity of 120 kW, and natural gas cost is 2.7 p/kWh;

e one electrical storage unit with a capacity of 10 kW,h, charge/discharge efficiency
of 95%, discharge limit and charge limit are both 10 kW,, and the maintenance cost
is 0.5 p/kWhy;

e one thermal storage unit with a capacity of 20 kW;,h; charge/discharge efficiency of
98%, discharge limit and charge limit are both 20 kW, and the maintenance cost is
0.1 p/kWhy;

® a grid connection (allowing import and export of electricity when operating parallel
to grid); the real-time electricity price at different times is collected from Balancing
Mechanism Reporting System [181] as shown in Figure 3-2. When electricity
demand from grid is over 30 kW,, an extra cost of 5 p/kWh, is charged to the
additional electricity. Electricity may also be sold to the grid with 1 p/kWh,;
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Figure 3-2  Electricity tariff (3rd March, 2011) [181]

Each time interval considered is half an hour. So, there are 48 time intervals in total for a

single day. The total heat demand profile is generated for a building with floor area of
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2,500m” on a sample winter day using CHP Sizer Version 2 Software [182]. For the
electricity demand, each home has 12 basic tasks that consume electricity as shown in
Table 3-1. These tasks are available to be scheduled according to the given earliest starting
time, latest finishing time, their respective duration and power requirements [179]. All
tasks, except the dishwasher and washing machine, have constant power consumption rates
given in the table. The electrical profiles for dish washer and washing machine are shown
in Figure 3-3. Also it is assumed that all homes have the same living habits and every task

has to be performed once a day.

—— Dishwasher — — Washing machine

Electrical capacity (kW)

Time (Hour)

Figure 3-3  Electricity utilisation profiles of dishwasher and washing machine

There are 10 identical wind generators in the wind farm, with a power coefficient of 45%
[180]. The blade diameter is 1.6 m and the wind speed is generated from a Weibull
distribution using MATLAB with a mean velocity of 7 m/s. The cut-in and cut-out wind
speeds are assumed to be 5 m/s and 25 m/s, respectively, and the nominal wind speed is
taken as 12 m/s. The wind generators do not produce any power when the wind speed is
under the cut-in speed or above the cut-out speed. When the wind speed is above the

nominal wind speed, the power output is at the maximum output, which is equal to the
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output produced at the nominal wind speed. Between cut-in and cut-out nominal wind

speed, the wind generator power output varies according to Eq. 3-13.

3.4.2 Example 2: Smart Building of 90 Homes with Different Living
Habits

Example 2 considers a smart building with 90 homes and it has the same distributed energy
resources as those in Example 1, but with tripled equipment capacities, and heat demand
and peak demand threshold from grid are also tripled. There are still 12 electrical tasks for
each home, and task processing duration, time window length and power consumption rate
are the same as those in Example 1. The main difference is that the 90 homes have different
living habits. The earliest starting time for each task of each home is generated randomly
based on the modified hourly operation probability distribution as given in [183]. Only the
operation hours with a probability higher than 5% are selected and then the hourly
operation possibility is redistributed accordingly. The modified earliest starting time hourly
probability distribution for the 12 electrical consumption tasks is presented in Figure 3-4,
where y axis represents the probability percentage. Some tasks have the same hourly

probability distribution, so only one distribution plot is presented for each type of tasks.
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Figure 3-4  Earliest starting time hourly probability distribution for electrical

consumption tasks [183]
3.5 Computational Results

Two pricing schemes have been applied for both examples above, which are real-time price
scheme and peak demand price schemes. For the real-time price scheme, the objective is to
minimise the total daily cost under real-time electricity prices as shown in Eq. 3-18a,
subject to Eq. 3-1 to 3-13, Eq. 3-14a to 16. While for the peak demand price scheme, the
objective is to minimise the total daily cost together with the extra cost charged for over
consumed electricity from the grid as described by Eq. 3-18b, subject to Eq. 3-1 to 3-13, 3-
14a to 3-17.

For each pricing scheme, four scenarios are considered, which are (a) macrogrid earliest
starting time, (b) macrogrid optimised scheduling, (c) microgrid earliest starting time and

(d) microgrid optimised scheduling. Abbreviations are used to indicate the combinations of
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pricing scheme and scenario, e.g. RMO? is short for real-time price scheme macrogrid
optimised scheduling scenario while PmE represents peak demand price scheme microgrid

earliest starting time scenario.

In the macrogrid scenarios (a, b), electricity is solely bought from grid and heat is produced
only by boiler. There is no other DER to provide electricity or heat to the building. For the
microgrid scenarios (c, d), DERs are available to provide local electricity and heat. The
earliest starting scenario (a scheduling heuristic) means all the domestic electricity
appliances are turned on at their given earliest starting time, which is similar to common
living habits. For example, the washing machine would be turned on as soon as people
want to do some washing, most likely when leaving home for work in the morning. When
task operation within time window is allowed in the optimised scheduling scenario, the
domestic tasks operation order as well as the equipment operation time could be scheduled
in order to minimise the total cost (Eq. 3-18a or 18b). Tasks, such as interior lighting and
fridge, have fixed electricity consumption time period and have no other alternatives. Tasks
with flexible operation time can be scattered as much as possible to avoid electricity
consumption peak and utilise electricity generated from local generators as much as
possible. Also, when electricity is cheaper from grid, it will be imported from the grid
instead of being generated from generators which could also be stored in the battery for

later use.

The developed MILP model is implemented using CPLEX 12.4.0.1 in GAMS 23.9'[128]
on a PC with an Intel Core 2 Duo, 2.99 GHz CPU and 3.25GB of RAM. The model
statistics of the microgrid optimised scheduling scenarios under the two pricing schemes
are presented in Table 3-2 for both examples, where numbers of continuous equations,
continuous and discrete variables and CPU time taken are presented. With an optimality

gap as 0.1%, even in Example 2, scheduling scenarios RmO and PmO require 0.8 CUP s

3 Format ‘xyz’ is used for abbreviation, where ‘x’ represents real-time price scheme (R) or
peak demand price scheme (P); ‘y’ represents macrogrid (M) or microgrid (m) and ‘z’

represents earliest starting time (E) or optimised scheduling (O).

4
www.gams.com
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and 1.3 CPU s , respectively, for the scheduling. It is evident that the proposed MILP
model is able to offer significant cost savings and peak demand savings with very modest

computational difficulties for smart buildings with the same living habit or different ones.

Table 3-2 Model statistics

Example Scenario Continuous equations Continuous variables Discrete variables CPU (s)

1 RmO 1,178 17,814 17,280 0.2
PmO 1,226 17,862 17,280 0.3
2 RmO 1,898 52,374 51,840 0.8
PmO 1,946 52,422 51,840 1.3
3.5.1 Example 1:Real-Time Price and Peak Demand Price Schemes

The planning horizon for both examples is from 8 am in a day to 8 am on the next morning.
The optimal electricity balance and total daily cost resulting from Example 1 under the real-
time price scheme is shown in Figure 3-5 and Figure 3-6. Under the RMO scenario, the
tasks are scheduled based on the real-time electricity pricing. Tasks are preferred to be
performed when electricity price is low, e.g. during night time. The total cost is reduced
from £154 in the RME scenario to £137 in the RMO scenario. The electricity demand from
the grid is scattered while the peak demand from the grid is decreased from 301 kW in
RME scenario to 186 kW in the RMO scenario. Under the real-time price scheme for the
RmE and RmO scenarios, the electrical storage is used to store electricity when there is an
excess; it is mainly for utilising the wind generator output more efficiently. There is no
excess electricity sold to the utility grid in Example 1. The total cost is reduced to £123 in
the RmO scenario. With the earliest starting time scenarios, the peak hours are mainly
during the evening when occupants are back from work. In the RmO scenario, the peak
demand from the grid is decreased from 270 kW in the RmE scenario to 153 kW in the
RmO scenario, and the electricity demand is flatter in RmO than RmE. During the day,
about 30% of the total electricity and 18% of total heat are produced from the CHP in the
RmE scenario and 45% of electricity and 27% of heat are produced from the CHP in the

RmO scenario.
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Figure 3-5 30 homes: Macrogrid electricity balance and total cost under real-time

price scheme
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Figure 3-6 30 homes: Microgrid electricity balance and total cost under real-time

price scheme

94



Chapter 3 Optimal Energy Consumption Scheduling and Operation Management of Smart
Homes Microgrid

The optimal electricity balance and total one day cost resulting from Example 1 under peak
demand price scheme is shown in Figure 3-7 and Figure 3-8. When extra cost is charged for

the over consumed electricity from grid, the peak demand is reduced through optimisation.

Under the PMO scenario, the tasks are scattered according to real-time prices and peak
demand extra charge. The total cost for PME scenario is £186 while it decreases to £157
when optimised scheduling is applied in the PMO scenario. The peak demand from grid is
reduced to 184 kW. There are still peaks in the early morning and evening which cannot be
avoided, mainly because of the inflexible time window requirement for specific tasks. It
happens even in the PmO scenario although the demand pattern is smoother. Under
microgrid scenarios, the total cost is £165 in the PmE scenario, which is further reduced to
£127 in the PmO scenario. The peak demand from the grid is reduced from 270 kW in the
PmE scenario to 121 kW in the PmO scenario. The demand pattern in the PmO scenario is

smoother than that in the PmE scenario.
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Figure 3-7 30 homes: Macrogrid electricity balance and total cost under peak

demand price scheme
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Figure 3-8 30 homes: Microgrid electricity balance and total cost under peak

demand price scheme

The comparison between the real-time price scheme and peak demand price scheme of

Example 1 is presented in Table 3-3. It is clearly shown that by applying the optimised
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scheduling scenarios, the total cost is always lower than that of the earliest starting time
scenarios. When peak demand extra cost is considered, although the total cost under each
scenario is higher than that of the real-time price scheme, the total peak demand over the
whole day is quite different. It can be seen from Figure 3-5(b) and Figure 3-7(b), the
electricity demand over the day is flatter in Figure 3-7(b). The total peak demand over the
threshold has been reduced from 586 kWh in RMO scenario to 350 kWh in PMO scenario,
satisfying the aim of the peak demand schemes to reduce the peak demand from the grid. It
indicates that even without microgrid, the task starting time scheduling can help in peak
demand reduction and cost savings. When microgrid is applied, more savings can be
achieved and peak demand from grid can be reduced further by obtaining electricity from
local DERs. By utilising microgrid and the peak demand price scheme, the total cost is the
lowest while highest peak demand from the grid is reduced to 121 kW in PmO scenario
(which is 153 kW in the RmO scenario). The total peak demand over the threshold of 30 kW
in PmO scenario is 67 kWh, which represents about 6% of the total electricity demand

(1,056 kWh).

Table 3-3 Results of Example 1 under two pricing schemes

Total cost (£) Peak demand Total peak CHP production  Peak demand over
from grid (kW) demand (kWh) (kWh) total demand
RME 154 301 640 0 61%
RMO 137 186 586 0 55%
RmE 142 270 475 322 45%
RmO 123 153 252 480 24%
PME 186 301 640 0 61%
PMO 157 184 350 0 33%
PmE 165 270 473 322 45%
PmO 127 121 67 480 6%

The heat balances for microgrid scenarios are shown in Figure 3-9 and Figure 3-10. Since
all the heat in the macrogrid scenarios is provided by the boiler and heat demand profile is
the same under all scenarios, the heat balance for those macrogrid scenarios are not

presented. Under the microgrid earliest starting time scenarios, the heat output from CHP
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varies, while under the microgrid optimal scheduling scenarios, the heat output from CHP

is constant and CHP operates at its full capacity.
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Figure 3-9 30 homes: heat balance for microgrid real-time price scenarios
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Figure 3-10 30 homes: heat balance for microgrid peak demand price scenarios
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3.5.2 Example 2:Real-Time Price and Peak Demand Price Schemes

The optimal electricity balance and total daily day cost resulting from Example 2 under
real-time price scheme are shown in Figure 3-11 and Figure 3-12. Under the RMO
scenario, all tasks are scheduled based on the real-time electricity price to obtain minimum
daily energy cost. The total cost is reduced to £409 in the RMO scenario, which is 12% cost
savings. As shown in Figure 3-11(b), task starting times are shifted to mid-night when
electricity price is low. The electricity demand from the grid is scattered and the peak
demand is decreased from 424 kW in the RME scenario to 363 kW in the RMO scenario.
Under the RmE and RmO scenarios, equipment operation time from each technique is
scheduled accordingly to minimise the total operation cost. When time window is allowed,
tasks with flexible operation time are scattered as much as possible as in Example 1. The
power consumption peak periods are shifted to the early morning when the electricity
buying price is cheaper. The total cost is £354 in the RmO scenario. The electrical storage
is used to store electricity. There is no excess electricity sold to the utility grid in Example
2. This is mainly due to the small CHP capacity and cannot provide extra electricity. Also,
the electricity selling price to the grid is relative low. The boiler capacity can fulfil the peak
heat demand, but when the heat demand is over the boiler capacity and the electricity
demand is low, it is possible to sell electricity to grid from the microgrid. In that case, CHP
generator has to provide more electricity than needed to cover the increased heat demand.
The excess electricity can be stored in battery for later use or sold to the grid. However,
when electrical storage is full, export to the grid is the only option although the selling price
is low. In the RmE and RmO scenarios, the total costs are £409 and £354, respectively. The
electricity peak demand from the grid is decreased from 358 kW in the RmE scenario to 283
kW in the RmO scenario. During the day, about 37% of the total electricity and 22% of total
heat are produced from the CHP in the RmE scenario and 44% of electricity and 26% of
total heat are produced from the CHP in the RmO scenario. The total electricity demand of

the smart building is 3,169 kWh.
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Figure 3-11 90 homes: Macrogrid electricity balance and total cost under real-time

price scheme
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Figure 3-12 90 homes: Microgrid electricity balance and total cost under real-time

price scheme
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The optimal electricity balance and total daily cost resulting from Example 2 under the
peak demand price scheme are shown in Figure 3-13 and Figure 3-14. When the extra cost
is charged for the over consumed electricity from the grid, the peak demand is reduced
through task scheduling. The total costs are £546 and £474 for the PME scenario and PMO
scenario. Under the PMO scenario, the peak demand from grid is reduced to 340 kW
compared to the PME scenario. The energy consumption peaks are in the mid-night instead
of the evening in this scenario. Since there is no DER to provide electricity, the tasks are
scattered as much as possible to reduce the peak demand extra charge over the threshold at
90 kW. Under microgrid scenarios, PmE scenario and PmO scenario, the total costs are both
lower than that from the macrogrid scenarios, which are £454 and £378, respectively. Also
the peak demand from grid is reduced from 358 kW in the PmE scenario to 250 kW in the

PmO scenario. The PmO scenario has the flattest electricity demand.
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Figure 3-13 90 homes: Macrogrid electricity balance and total cost under peak

demand price scheme
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The comparison between the real-time and peak demand price schemes of Example 2 is
presented in Table 3-4. Similarly to Example 1, the total cost is always lower for the
optimised scheduling scenarios than that of the earliest starting time scenarios. The total
cost under each scenario from peak price scheme is higher than that of the real-time price
scheme. As expected, the peak demand schemes reduce the peak demand from the grid.
The highest peak demand in the PMO scenario is smaller than that from the RMO scenario,
and the total daily peak demand has also been reduced. The electricity demand over the day
in Figure 3-13(b) is flatter than that shown in Figure 3-11(b). The total peak demand over
the threshold has been reduced from 1,566 kWh in the RMO scenario to 1,191 kWh in the
PMO scenario. The task starting time optimal scheduling can reduce peak demand and
achieve higher cost savings. Microgrid provides local electricity by utilising DERs, which
further reduce the peak demand from the grid and obtain more savings. By applying
microgrid and the peak demand price scheme in the PmO scenario, the total cost is the
lowest and the peak demand from the grid is reduced to 250 kW (from 283 kW in the RmO
scenario). Total peak demand from the grid over the threshold 90 kW in the PmO scenario
is reduced to 360 kWh, which is 11% of the total electricity demand.

Table 3-4 Results of Example 2 under two pricing scheme

Total cost (£) Peak demand Total peak CHP production Peak demand over
from grid (kW) demand (kKWh) (kWh) total demand
RME 464 424 1,646 0 52%
RMO 409 363 1,566 0 49%
RmE 409 358 902 1,183 28%
RmO 354 283 738 1,393 23%
PME 546 424 1,646 0 52%
PMO 474 340 1,191 0 38%
PmE 454 358 880 1,183 28%
PmO 378 250 360 1,401 11%

The heat balances for microgrid scenarios are shown in Figure 3-15 and Figure 3-16. Under

the earliest starting time scenarios, the heat output from CHP varies, while under the
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optimal scheduling scenarios, the heat output from CHP is constant except from the

beginning of the day and CHP almost operates at its full capacity.
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Figure 3-15 90 homes: heat balance for microgrid real-time price scenarios
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Figure 3-16 90 homes: heat balance for microgrid peak demand price scenarios
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3.5.3 Comparison between Example 1 and Example 2

By comparing with the scenarios where all tasks start at their earliest possible starting time,
there are obvious savings through task starting time scheduling in both examples under the
two pricing schemes. Compared with the earliest starting time scenarios, the cost savings
and total peak demand savings from the grid between earliest starting scenario by
scheduling task starting time are presented in Table 3-5 under different scenarios. With the
real-time price scheme, both examples have similar cost savings, while under the peak
demand scheme, Example 1 demonstrates more cost savings. Example 2 considers 90
homes with different living habits and with different earliest starting time for flexible tasks.
So as expected, its average power peak is lower than that from the same living habits
assumed in Example 1, since the tasks are scattered even without scheduling. As shown in
Table 3-5, under all scenarios Example 1 has higher peak demand savings percentage from
the grid. In both examples, when microgrid is utilised, the lowest cost saving is 13% while
the lowest peak demand saving is 18%. Microgrid application is an important alternative
solution for cost and peak demand reductions. There are peak demand savings even only
real-time price scheme is applied as shown in Table 3-5. However, the peak demands are
accidentally reduced there resulting from task starting time optimised scheduling based on
electricity real-time price. When peak demand price scheme is applied, the total peak
demands from grid are minimised from objective function, which are reduced by 86% and
59% in the peak demand price scheme microgrid scenarios for Examples 1 and 2,

respectively.
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Table 3-5 Comparison between earliest starting time and optimised scheduling

scenarios

Example Scenario Costsavings Total peak demand savings

1 RM(E-O) 11% 9%
Rm(E-O) 13% 47%
PM(E-O) 16% 45%
Pm(E-O) 23% 86%

2 RM(E-O) 12% 5%
Rm(E-O) 13% 18%
PM(E-O) 13% 28%
Pm(E-O) 17% 59%

3.54 Scheduling with summer electricity tariff and heat demand

Heat demand of a winter day is considered in the case study to illustrate the scheduling of
domestic electrical tasks and DER operations for smart homes. However, the scheduling
would vary if it is a summer day with different electricity tariff profile. In this subsection,
the same domestic tasks in the two examples are scheduled with summer heat demand and
electricity tariff. The selected summer electricity price is presented in Figure 3-17 and heat

demands for the two examples are shown in Figure 3-18.
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Figure 3-17 Electricity tariff (25th July, 2013) [181]
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Figure 3-18 Heat demands of 30 and 90 homes in a summer day [182]

The results of Example 1 and Example 2 under summer electricity tariff and heat demand
are presented in Table 3-6 and Table 3-7. Compared with Table 3-3 and Table 3-4, the total
costs in the two examples are both lower under each scenario as the heat demand in
summer is lower. But there are still obvious cost savings and peak demand reductions by
optimising the starting times of domestic electric tasks and DER operation over flexible
time window. Less electricity is produced from CHP in summer since its corresponding

heat generation cannot be fully consumed by smart homes with lower heat demand.
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Table 3-6 Results of Example 1 under summer electricity tariff and heat demand

Total cost (£) Peak demand Total peak CHP production  Peak demand over
from grid (kW) demand (kKWh) (kWh) total demand
RME 99 301 640 0 61%
RMO 87 184 586 0 55%
RmE 82 301 491 300 47%
RmO 69 174 290 415 27%
PME 131 301 640 0 61%
PMO 109 184 381 0 36%
PmE 106 301 473 301 45%
PmO 75 154 77 415 7%

Table 3-7 Results of Example 2 under summer electricity tariff and heat demand

Total cost (£) Peak demand Total peak CHP production  Peak demand over
from grid (kW) demand (KWh) (kWh) total demand
RME 273 424 1646 0 52%
RMO 255 407 1533 0 48%
RmE 220 424 1044 1004 33%
RmO 199 369 794 1207 25%
PME 355 424 1646 0 52%
PMO 319 340 1227 0 39%
PmE 269 424 953 1005 30%
PmO 219 296 251 1206 8%

Table 3-8 presents the comparison between the earliest starting time and optimised
scheduling scenarios. Compared with Table 3-5, cost savings and peak demand reductions
of Example 1 are still higher than those of Example 2. In Example 1, cost savings are
slightly higher while peak demand savings are slight lower for the sample summer day than
the sample winter day. In Example 2, the cost savings are lower except scenario Pm(E-O),
while the total peak demand savings are higher except scenario PM(E-O) for the sample

summer day than the sample winter day.
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Table 3-8 Comparison between earliest starting time and optimised scheduling

scenarios with summer electricity tariff and heat demand

Example Scenario Costsavings Total peak demand savings

1 RM(E-O) 12% 8%
Rm(E-O) 16% 41%
PM(E-O) 17% 40%
Pm(E-O) 29% 84%

2 RM(E-O) 7% 7%
Rm(E-O) 10% 24%
PM(E-O) 10% 25%
Pm(E-O) 19% 74%

3.5.5 Scheduling with wider time window

Domestic electrical tasks in Table 3-1 are scheduled within the earliest starting time and the
latest finishing time. If this time window could be wider, higher cost savings and peak
demand reductions can be obtained. In this subsection, the latest finishing time is extended
by 2 hours where applicable in the two examples to analyse its impact on the optimal
results. The results of the two examples with 2 hours wider time window are shown in
Table 3-9 and Table 3-10. As expected, total costs have been reduced further in the optimal
results in the two examples. However, total peak demand reductions are not reduced further
simultaneously. Since peak demand reduction is not included in the objective function in
real-time pricing scheme scenarios, the peak demands are just accidentally reduced
resulting from task scheduling with real-time electricity price as shown in Table 3-3 and
Table 3-4. Although the time window has been extended by 2 hours, peak demand
reductions are lower in the two examples compared with those without time window
extension. On the other hand, peak demand reductions are involved under the peak demand
price scheme scenarios by charging peak demand penalty. However, peak demand
reduction only happens under the PmO scenario in Example 1. So although time window
has been extended, the cost saving objective overcomes the peak demand reduction aspect
by moving peak demand to the time periods with lower real-time prices (even with the

penalty). CHP productions are the same under all microgrid scenarios in both examples.
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Table 3-9 Results of Example 1 with 2 hours wider time window

Total cost (£) Peak demand Total peak CHP production  Peak demand over
from grid (kW) demand (kKWh) (kWh) total demand
RME 154 301 640 0 61%
RMO 129 186 589 0 56%
RmE 142 301 475 322 45%
RmO 117 174 271 480 26%
PME 186 301 640 0 61%
PMO 150 165 382 0 36%
PmE 165 301 473 322 45%
PmO 119 64 6 480 1%

Table 3-10 Results of Example 2 with 2 hours wider time window

Total cost (£) Peak demand Total peak CHP production  Peak demand over
from grid (kW) demand (KWh) (kWh) total demand
RME 464 424 1646 0 52%
RMO 394 467 1779 0 56%
RmE 409 424 902 1183 29%
RmO 348 405 928 1400 29%
PME 546 424 1646 0 52%
PMO 467 386 1291 0 41%
PmE 454 424 880 1183 28%
PmO 375 358 380 1401 12%

The comparison between the two examples is shown in Table 3-11. Both cost savings and
peak demand reductions of Example 1 are still higher than those of Example 2 as shown in
Table 3-5. Compared with the earliest starting time scenarios, more cost savings have been
obtained. Example 1 always has higher peak demand savings than Example 2 while there

are even negative peak demand savings under real-time price scenarios.
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Table 3-11 Comparison between earliest starting time and optimised scheduling

scenarios with 2 hours wider time window

Example Scenario Costsavings Total peak demand savings

1 RM(E-O) 16% 8%
Rm(E-O) 18% 43%
PM(E-O) 19% 40%
Pm(E-O) 28% 99%

2 RM(E-O) 15% -8%
Rm(E-O) 15% -3%
PM(E-O) 14% 22%
Pm(E-O) 17% 57%

3.6 Concluding Remarks

An MILP model has been proposed for energy consumption and operation management in
a smart building with multiple smart homes. It has been applied to two examples, 30 homes
with same living habit and 90 homes with different living habits for a winter day. Twelve
domestic electrical tasks and equipment operations have been scheduled based on given
time windows, real-time half-hourly grid electricity prices and peak demand extra charge to
minimise the total energy cost and electricity peak demand from grid. Significant cost
savings and peak demand reduction have been achieved in both examples. The proposed
model has also been applied with summer electricity tariff and heat demand, obvious cost
savings and peak demand reduction can still be obtained. With more flexible time window,
it could reduce total cost further while peak demand saving would not be reduced

simultaneously.

The power output from the wind generator varies according to the weather conditions. The
proposed MILP scheduling model has used the power generated by wind generators when
available, providing further savings for the customers. Under the optimised scheduling
scenario, the CHP generator has been used more efficiently and provided heat more steadily
than under the earliest starting time scenario. When the peak demand price scheme is
applied, the highest peak demand from the grid and total peak demand over the threshold

has been significantly reduced. This power demand reduction has the benefit of releasing
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the burden on the central grid and reducing the expense of upgrading the current grid

infrastructure to fulfil increasing energy demand.

In Chapter 4, this proposed model is extended to deal with the respective cost minimisation

among multiple homes sharing common DERs.
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Chapter 4 Cost Distribution among Multiple Smart
Homes

The total daily cost of a smart building with several smart homes is minimised by
scheduling electricity demand and DERs operation as described in chapter 3. However,
when local DERs cannot fulfil the whole demand, in order to determine their respective

lowest cost, smart homes will compete with each other to obtain energy from local DERs.

In this chapter, a mathematical programming formulation is presented for the cost
distribution among multiple smart homes with microgrid. The model is based on the
lexicographic minimax method using an MILP approach. The forecasted daily expense for
each smart home is minimised on fairness. Besides the scheduling of electricity demand

and DERs operation, DERs output sharing among smart homes is also planned.
4.1 Introduction and Literature Review

All energy management work mentioned in Chapter 3 considers either single smart home or
a number of smart homes as a whole customer, where only the total energy cost is
considered in the objective functions. Practically, DERs are located in a building and
shared by all the residents within the building [184]. Due to the different living habits of
residents and domestic appliances in homes, the energy tasks and task operation times vary
from home to home. Each smart home pays its own energy bill according to their respective
energy consumption. There is a desire for them to achieve their own benefits by scheduling
their energy task operation time. However, the DERs, which provide cheaper energy,
cannot fully supply the demand for each home all the time. In essence, the smart homes will
compete with other homes for the cheaper energy generated from DERs during peak
demand hours. So the concern of this chapter is how to distribute the costs fairly among

multiple smart homes with common DERSs in microgrid under competition situation.

Smart homes sharing the common DERs in a building can be considered as collaborative
networks. Each smart home has its own cost concern and competes with other participants

for energy resources, but they can achieve more benefits via cooperation. Concept of
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fairness and fair settlement with Game theory have been reviewed in section 2.1.2. In this
chapter, lexicographic minimax method is applied for the fair cost distribution of the smart
homes with microgrid. Every player is treated equally and impartially. The fairness concept
is a refinement of the Pareto optimality in the lexicographic minimax method which has
been investigated and applied in several areas, such as, bandwidth allocation in computer

networks, facility location problems and resource allocation.

Lexicographic minimax originates from the subset selection of optimal strategies from the
optimal minimax strategy through the exploit of the opponent optimality mistakes [185]
and Erkut et al. [186] stated that lexicographic minimax solution is known in the game
theory as the nucleolus of a matrix game. Klein et al. [187] develop a lexicographic
minimax algorithm to deal with multi-period resource allocation problem. The location
problem is addressed in [188] and the distribution of travel distances among the service
recipients is considered as an important issue. He develops a concept of the lexicographic
minimax solution, which is a refinement of the standard minimax approach. The
lexicographic minimax solution concept for fair allocation is applied to locate water rights
for the demand sites in the Aral Sea region in the work of [189] and the problem is solved
by an iterative algorithm. Wang et al. [190] adopt the lexicographic minimax fairness
concept and develop the lexicographic minimax water shortage ratios approach for
modelling water allocation under public water rights regime. Lexicographic minimax
algorithm is applied for a sensor nodes placement technique by the authors of [185]. Erkut
et al. [186] apply the lexicographic minimax approach to find a fair non-dominated solution
to the location allocation problem for municipal solid waste management at the regional
level in North Greece. The lexicographic minimax method is used in [191] to tackle the

multi-objective optimisation problem of global supply chains in the process industry.

In this chapter, an MILP model is proposed to obtain fair cost distribution amongst
participants in a smart building. It is based on the minimisation optimisation approach for
the lexicographic minimax method proposed by Erkut et al. [186] which guarantees a
Pareto-optimal solution. A fair cost distribution amongst smart homes is provided and each

participant will pay a fair energy cost based on their respective energy consumption. The
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key decision variables include: DER operation plan, equipment output sharing plan, task

starting time, and energy resources utilisation.
4.2 Problem Description

In the work of this chapter, multiple homes in a smart building are considered rather than
considering total energy demand presented in Chapter 3. There is a microgrid to provide
local energy to the smart homes. DERs, such as CHP generator, boiler, thermal or electrical
storage, are shared by the smart homes. Grid connection is available all the time to provide
electricity when there is no sufficient energy generated from local DERs. Surplus electricity
generated over the local demand can be sold back to the grid. Each smart home has its own
energy (heat and electricity) demands, which depend on the household types and living
habits. Heat demand for each home is given based on types of household. While the
electricity demand of each home depends on its own daily domestic appliance tasks, which
are assumed to be flexible. Typical flexible tasks include dishwasher, washing machine and
spin dryer. Thus, the electricity demand profile depends on the operation time of domestic
appliances. It is assumed that the smart building has local controllers for each DER and
communication system to distribute the energy consumption scheme. In this work,
equipment capacities are all given and only operation or maintenance costs are considered.
Electricity real-time price is forecasted and given one day in advance. The energy cost for
each smart home is calculated based on their respective energy consumption rate. Since
energy with lower price provided by DER cannot fulfil demands for all smart homes all the
time, the smart homes need to compete with each other for the energy generated from
DERs to minimise their own energy cost. Also since electricity tariff varies over time, the
electrical tasks tend to be operated in low tariff periods within the given task operation time

window.
The overall problem can be stated as follows:

Given are (a) a time horizon split into a number of equal intervals, (b) heat demand of each
smart home, (c) equipment capacities, (d) efficiencies of technologies, (€) maintenance cost

of all equipment, (f) heat-to-power ratio of CHP generator, (g) charge and discharge limit
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rates for thermal/electrical storage, (h) gas price, real-time electricity prices from grid, (i)

earliest starting and latest finishing times, (j) task capacity profiles, (k) task duration,

Determine (a) energy production plan, (b) equipment output sharing plan, (c) task starting
time, (d) thermal/electrical storage plan, (e) electricity bought from grid, (f) electricity sold

to grid,

So as to find the multi-participant strategies which result in optimal fair cost distribution

among smart homes.

4.3 Mathematical Formulation

The smart homes power consumption scheduling problem is formulated as an MILP model.
The daily power consumption tasks are scheduled based on their given operation time
windows, which is defined as the time period between the earliest starting time and latest
finishing time of each task. The objective is to minimise the daily power cost of each home.
The time domain is modelled in a discrete form with intervals of equal length. The key
model decision variables include equipment operation, equipment output sharing, resources
utilised and task starting time. These are determined by minimising the daily energy cost of
each home subject to equipment capacity constraints, energy demand constraints,

electrical/thermal storage constraints and task operation time window.

4.3.1 Nomenclature

Most notations in Chapter 3 are used in this chapter as well, while modified and new
notations are given below, the superscript is used to indicate equipment and the subscript is

used for indices:

Indices

J smart home in the smart building
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Parameters

H, heat demand of smart home j at time ¢ (kWy;,)
P, processing time of task i of home j

ij latest finishing time of task i of home j

Tﬁ earliest starting time of task i of home j

Continuous Variables

electricity exported to the grid of smart home j at time ¢ (kW,)

thermal storage discharge rate of smart home j at time ¢ (kWy,)

thermal storage charge rate of smart home j at time ¢ (kWy,)

electricity imported from the grid of smart home j at time ¢ (kW,)

total electricity in electrical storage at time ¢ (kWh,)

electricity in electrical storage of smart home j at time ¢ (kWh,)

total heat in thermal storage at time ¢ (kWhy;,)

heat in thermal storage of smart home j at time ¢ (kWhy;,)

electricity output from CHP generator of smart home j at time ¢ (kW,)

heat output from boiler of smart home j at time ¢ (kW)
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Vi electrical storage discharge rate of smart home j at time ¢ (kW,)

Z electrical storage charge rate of smart home j at time ¢ (kW,)

jt

Binary Variables

X 1 if task i of home j starts at time ¢, O otherwise

X 1 if electricity is bought from grid by home j at time ¢, 0 otherwise
X /’f 1 if electrical storage is charged by home j at time ¢z, 0 otherwise
X /Tt 1 if thermal storage is charged by home j at time 7, 0 otherwise

Next, the constraints involved in the proposed mathematical model are described:

4.3.2 Capacity Constraint

The output from each equipment should not exceed its designed capacity. Since all the

equipments are shared by the customers, the outputs utilised by all customer are

summarised.

CHP generator:

> u,<Ce Vi Eq. 4-1
i

Boiler:

> x,<C? Vi Eq. 4-2
j
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Electrical storage:

> st<ct Vi1 Eq. 4-3
J

Thermal storage:

> si<ct Vi1 Eq. 4-4
J

4.3.3 Energy Storage Constraints

There is a central electrical storage for the whole building. Each home can send or receive
electricity/heat from the battery, but the charging or discharging amount from battery for
each home is recorded. No electricity can be obtained from the battery unless electricity has
been stored before from that home. It can be considered as each home has its own sub-
battery, but the capacity for each home is flexible and the total capacity of the battery for
the whole building is provided. Electricity stored in the electrical storage at time ¢ is equal
to the amount stored at # —1 plus the electricity charged minus the electricity discharged.

Electricity would be lost during the charging and discharging process, for example during

any period when amount of electricity dz,, is sent to the electrical storage, only on'z ;o will

be charged, and the rest being lost, where 7° is turn-around efficiency of electrical storage.

Meanwhile, during the discharging process, in order to send dy, of electricity to the user,

&, /n" of electricity is needed.

St :Sft71+§77Ezj,—§yj,/77E Vj,t Eq. 4-5

Jt

The discharged amount cannot exceed the storage amount from the previous time interval.
E E .

Sz, /n Vj,t Eq. 4-6

Charge and discharge of electricity cannot happen at the same time for each home:
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2, SMX; V).t Eq. 4-7
Yy, SM(A-X}) V).t Eq. 4-8

At each time interval, the electrical storage is the total storage amount over all sub-batteries

in the building.

SF=>s" Vi Eq.4-9
J

The electrical storage has an initial storage state at the beginning of each sample day. At the
end of each day, the electrical storage must return to its initial value, so as to avoid net
accumulation. The initial storage state value is optimised through the model to decide the
best initial state for one day utilisation. Otherwise, the initial state can be obtained from the
previous day and at the end of the day, the electrical storage must return to be over certain

lower limit to protect the equipment.
ST =5"=8" Eq. 4-10

The rates of discharge or charge of electricity cannot exceed the electrical storage discharge
and charge limits defined by the battery manufacturer, in order to prevent excessive

discharge/charge rates that would damage the battery or reduce its capacity:

D>y, <D* Vi Eq.4-11
J
> z,<C* Vi Eq. 4-12
J

Similarly, the smart building has a central thermal storage which can be taken as the sum of
the sub-thermal storages from each home. Heat stored in the thermal storage at time 7 is
equal to the amount stored at ¢ — 1 plus the heat charged minus the heat discharged. The

heat loss during the heat storage process is represented in the same way as shown for the
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electrical storage. At each time interval, the thermal storage is the total storage amount over

all sub-thermal storage in the building.
S, =S, . +mg,~d,/In Y jt Eq. 4-13
The discharged amount cannot exceed the storage amount from the previous time interval.

Sa2d, I Vit Eq. 4-14

At each time interval, the thermal storage is the total storage amount over all sub-thermal

storage in the building.

sT=>s" Vi Eq. 4-15
J

Stored heat must return to the initial state at the end of the day so that no heat is
accumulated over one day. The initial storage state value is also optimised through the

model.
SOTT = SfT =57 Eq. 4-16

The rates of discharge and charge of heat cannot exceed the thermal storage discharge and

charge limits based on the type of storage medium, mass and latent heat of the material:

. [ <D’ Vi Eq. 4-17
J

> g, <G" \: Eq. 4-18
J

Charge and discharge of heat cannot happen at the same time for each home:

g, SMX; V).t Eq. 4-19

fi<Ma-X") Vit Eq. 4-20
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4.3.4 Energy Balances

The electricity consumed during each time period is supplied by the CHP generator,
electricity received from the electrical storage and grid, minus electricity sent to the
electrical storage and grid. The power consumption capacity of some tasks varies over the
operation time intervals, e.g. washing machine has different capacity profiles over washing
and spinning processes. The electricity consumption is summed over the task operation

periods 6.

P,;-1

z Z CoXjrg=w,+u,+y, +1,—-z,-E, Vj,t Eq. 4-21
i 0

Buying and selling of electricity from/to the grid cannot happen at the same time for each

home:
G .
Ij, < MXJ., Vj,t Eq. 4-22
G .
EjtSM(l—Xﬁ) Vj,t Eq. 4-23

The heat consumed during each time period is equal to heat supplied by the CHP generator,

boiler, heat received from the thermal storage, minus heat sent to the thermal storage.
Hjt:Quﬁ+xﬁ+fﬁ—gﬁ Vj, t Eq. 4-24
4.3.5 Starting Time and Finishing time

The operation time of each task must be within the given time window. The starting time of
each task cannot be earlier than the given earliest starting time, and must finish before the

latest finishing time. Each task of each home has to be started once.

HjtzQuj;+Xj,+fj,_gj, VJ,Z Eq-4'25
2. X =1 Vi Eq. 4-26
Tj<t<T} -P;
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4.3.6 Daily Cost

The total daily electricity cost includes: the operation and maintenance cost of the CHP
generator, boiler, electrical storage and thermal storage; the cost of electricity purchased
from the grid; the revenue from electricity sold to the grid. If the real-time pricing is

applied, the total cost is calculated as in Eq. 4-27.

9, = Z&Nujt la CHP operation cost

+> &x,/n®  boiler operation cost
t

+ Z &'y, electrical storage maintenance cost Vj Eq. 4-27
+ Z&T fj[ thermal storage maintenance cost

+ Z o'l i electricity buying cost from grid

_ Z &EXEjt revenue from electricity selling to grid

4.4 Lexicographic Minimax Approach to Find a Fair Solution

In a smart building, each home has its own objective to minimise its own daily cost, and the
objective of this problem is to minimise the total cost subject to fair cost distribution among

homes. The lexicographic minimax approach is applied, which is described in this section.

When all the objectives are equally important, a fair solution tends to have close solution
values among objective function values. Lexicographic minimax method is proposed to

obtain such a solution. A lexicographic minimax problem is defined as follows:

lexmin{©( §,(x))} Eq. 4-28

xeX
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where @;(x) is vector of the objective value under fairness scenario for each home and

xe X c R" is a n-dimensional vector of decision variables, X is the decision space defined
by Eq. (4-27) and ® : R’ — R’ maps orders of the component of vectors in a non-
decreasing order. With a given vector e=(e...e;) , O(e)=(6(e),....,0,(e)) , where
6,(e)€ {e,,....e, } is the jth component in vector ©(e) and 6(e)>...26,(e). Then in the
lexicographic minimax problem, the objective values are minimised in the decreasing order

of the objective values, which means the highest objective value is minimised first, then the

second and so on. Resulting from the principles of Pareto-optimality, we have:

Theorem 1. The optimal solution of the lexicographic minimax problem in Eq. 4-28,

x*e X , is Pareto-optimal.

The lexicographic minimax problem in Eq. 4-28 is then transformed into a lexicographic

minimisation problem in the following theorem in Erkut et al. [186].

Theorem 2. x*e X is an optimal solution of problem Eq. 4-28 if and only if it is the

optimal solution of the optimisation problem:

J

J J
lex min{(4, + Y d, ;. A, %2%, Ay +%Zd,j)
J=1 Jj=1

J=1

ixe X, A, +d, 20,.d,20,n,j=1..J}. Eq. 4-29

nj

The model in Eq. 4-29 is developed by optimising the weighted summation of the

objectives iteratively and implementing the dual formulations of the models. Iterative
algorithm [186] is applied to find the fair solution, let ¥, be the optimal objective value

obtained at iteration n. At iteration n, we solve the following MILP model:
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J
Min y, = 4, +lZdnj
nj=1
s.t. A, +td,; 29, Vj,n'=1,..,n
/1”,+l2dn.j <y, Vn'=1l..,n-1 Eq. 4-30
n

d, 20 Vj,n'=1,..,n

Thus, the solution procedure of the iterative algorithm for the lexicographic minimisation

problem is given as follows:

1. Initialise n=1
2. Solve model in Eq. 4-30 subject to Eq. 4-1 to 4-27
3. If n<J let n=n+1Go to step 2 ; If n=J stop

Fairness is defined as the relative cost based on the pre-determined cost boundaries from

each home, maximum and minimum energy cost, ¢ and ¢;" :

A= ¢j_¢;nin

3 p— — Eq. 4-31
! ¢,~ —¢_,-

where ¢ and ¢f’j“ are obtained by:

1. Without using any DERs, electricity is solely bought from grid, heat is generated

only from boiler and all tasks start at the earliest starting time, energy cost from

max

each smart home is taken as the maximum energy cost ¢;™ .
2. With DERs available, minimise ¢, in Eq. 4-27 for each home j to obtain the

minimum energy cost from each smart home ¢;“m .
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Based of the normalised fairness definition, each smart home wants to minimise its own

min

cost and narrow the difference between the minimum cost ¢, . The solution is to be

obtained by solving iterative minimisation problem Eq. 4-30 subject to constraints Eq. 4-1

to 4-27.
4.5 lllustrative Examples

The proposed MILP model for fair cost distribution among smart homes is applied for two
numerical examples where a microgrid is available to provide energy locally. Example 1

has 10 smart homes while Example 2 has 50 smart homes.
4.5.1 Example 1: 10 Smart Homes

The common DERs shared by the 10 smart homes in Example 1 are given as following,
where the capacities are obtained from the energy profiles while the technical parameters

and costs are obtained from [65]:

e one CHP generator with a capacity of 4 kW, and electrical efficiency of 35%. Heat
to power ratio is assumed to be 1.3, and natural gas cost of 2.7 p/kWh;

® one boiler with capacity of 24 kW, and natural gas cost of 2.7 p/kWh;

® one electrical storage unit with a capacity of 4 kW,h, charge/discharge efficiency of
95%, both discharge limit and charge limit of 4 kW,, and the maintenance cost of
0.5 p/kWhy;

® one thermal storage unit with a capacity of 6 kWyh; charge/discharge efficiency of
98%, both discharge limit and charge limit of 6 kW, and the maintenance cost of
0.1 p/kWhy;

e a grid connection (electricity import and export are available when operating
parallel to grid); the real-time electricity price from half-hour time interval is
collected from Balancing Mechanism Reporting System [181] as shown in Figure

3-2; when electricity is sold back to the grid, it is 1 p/kWh,
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The heat demand is generated from the Community’s Heating Demand Profile Generator

developed by the University of Strathclyde [192]. It is assumed the 10 smart homes are

from a flat building built during 1998-2002 and there are 3 types of occupancy, which are

listed in Table 4-1. Smart home 4,5,6 are top/ground flats while other homes are mid flats.

The sample day is taken as a spring day, the heat demands of the 10 smart homes are shown

in Figure 4-1.

Table 4-1 Household occupancy types [192]

Type 3

Type 1 Type 2
Household A household that at lest A household that all
type one member has a part members are working
time job during the on a full time scheme

morning session.

A household that there is one
or more pensioners, disabled

persons or unemployed

Unoccupied 9:00 - 13:00 9:00 - 18:00 N/A
Period
Smart homes 1,4,7,10 2,5,8 3,6,9
——Home 1
E —=—Home 2
x —+—Home 3
'ccs Home 4
g —*—Home 5
% ——Home 6
] ——Home 7
:'E —— Home 8
Home 9
Home 10

08:00 11:00 14:00 17:00 20:00 23:00 02:00 05:00 08:00

Time (Hour)

Figure 4-1 Heat demands of 10 smart homes in spring

There are 12 electrical appliances considered to be scheduled in smart homes, which are the

same as in Chapter 3 shown in Table 3-1. All tasks, except the dishwasher and washing
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machine, have constant power consumption rates during operation, while the electrical

profiles for dish washer and washing machine are shown in Figure 3-3.

The earliest starting time for each task of each home is generated randomly based on the
modified hourly operation probability distribution given in [183]. It should be noted that
not all the tasks need to be operated for each home, so the tasks need to be implemented in

Example 1 are assumed as shown in Table 2-1.

Table 4-2 Electrical task of each smart home

Home Tasks

1 1-12

2 1-6
3 7-12
4 1-8
5 4-12
6 1-12
7 1-4,9-12
8 1-4, 6-10
9 1-12
10 5-8,10-12

The power demand of each smart home under earliest starting time baseline is presented in

Figure 4-2.
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Figure 4-2  Electricity demand of 10 smart homes in spring under earliest starting

time

The earliest starting time of each task from each smart home is given in Table 4-3 and the

time window length is presented in Table 4-4.

Table 4-3 Electrical task earliest starting time in hour

Home 1 2 3 4 5 6 7 8 9 10
1 Dishwasher 12 11 - 13 - 18 14 16 11 -
2 Washing machine 16 14 - 11 - 22 22 20 16 -
3 Spin dryer 19 17 - 14 - 25 25 23 19 -
4 Cooker hob 15 10 - 13 10 14 18 11 10 -
5 Cooker oven 1 15 - 20 13 13 - - 19 20
6 Microwave 21 13 - 20 12 17 - 18 20 10
7  Interior lighting 18 - 20 20 22 19 - 17 20 21
8 Laptop 9 - 17 17 19 21 - 18 19 19
9 Desktop 17 - 16 - 14 19 20 22 20 -
10 Vacuumcleaner 18 - 19 - 20 16 22 21 21 21
11 Fridge 1 - 1 - 1 1 1 - 1 1
12 Electrical car 21 - 20 - 19 18 17 - 21 19
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Table 4-4 Electrical task time window length in hour

Home 1 2 3 4 5 6 7 8 10
1 Dishwasher 8§ 75 - 65 - 55 5 45 4 -
2 Washing machine 3 2.5 - 3 - 3 25 25 25 -
3 Spin dryer 5 45 - 35 - 25 25 2 15 -
4 Cooker hob 1 15 - 25 3 35 55 45 5 -
5 Cooker oven 1 15 - 25 3 35 - 45 5 55
6 Microwave 1 15 - 25 3 3 - 2 15 1
7 Interior lighting 6 - 6 6 6 6 - 6 6 6
8 Laptop 6 - 55 35 5 6 - 45 5 55
9 Desktop 6 - 4 - 55 6 5 35 45 -
10 Vacuum cleaner 8 - 45 - 55 6 65 7 75 8
11 Fridge 24 - 24 - 24 24 24 - 24 24
12 Electrical car 10 - 7 - 4 8§ 85 - 95 10

The total energy demand of the 10 smart homes under earliest starting time is given in

Figure 4-3.
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Figure 4-3  Total energy demand of 10 smart homes in spring under earliest

starting time
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4.5.2 Example 2: 50 Smart Homes with Different Types of
Household

Example 2 has 50 smart homes in a smart building and has the same DERs as in Example 1
while the capacities are 5 times of those in Example 1. There are 9 homes as Top/Ground
(TG) flats and 41 as Middle (M) flats. It is assumed that the 9 TG homes include 3 homes
from each type of occupancy from Table 4-1, and the 41 M homes have 14 homes from
type 1, 14 homes from type 2 and 13 homes from type 3. Typical heat demands in winter
(Jan 1" —Apr 1*") for each type (T1, T2 and T3) of homes are given in Figure 4-4. The rest
of homes have similar demand patterns while time windows have been shifted slightly or

multiplied with numbers around 1.

E —~ TGT1
s -+ TGT3
& MT1
T e MT2
P e MT3
I

0 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr1rr01r1rr 1 11T 1 1T T TT1
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Figure 4-4  Heat demands of typical homes in winter

Households have been further classified into detail types by [192] as given in Table 4-5 for
electricity demand generation, and the number of different types of household are listed.
The national ownership of the electrical appliances is applied in this numerical example and
the usage pattern and probability of occurrence vary among different detail types of
household. And the ownership of electrical car is assumed to be 50% for the example
building household. In Example 2, the occurrence of each task and the earliest starting time
are generated randomly based on the given probabilities from different households. The

operation time window length is generated randomly but the latest ending time is
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guaranteed to be before the end of the time horizon. Total electricity and heat demands for

a winter day are shown in Figure 4-5.

Table 4-5 Detail types of household

Detail type of household No. of household
Single adult 12
Single Pensioner Adult 8
Two adults 10

Two adults with children

8
Two pensioners 2
Two adults and at least 1 pensioner 5

5

Three adults
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Figure 4-5  Total energy demand of 50 smart homes in winter under earliest

starting time
4.6 Computational Results

Computational results are presented in this section, in which the computational
environment is given first and the results from the two illustrative examples are presented.

Detail optimal results of each smart home from Example 1 are provided in tables and
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figures, while only total optimal cost and energy balances are presented for Example 2

because of the big number of smart homes involved.
4.6.1 Computational Environment

Lexicographic minimax method is applied for the fair cost distribution problem in the two
numerical examples. The DER operation and electrical tasks starting time are both
scheduled. The scheduling horizon for both examples is from 8 am in the morning until 8

am on the next day.

The developed MILP model is implemented using CPLEX 12.4.0.1 in GAMS 23.9 [128]
on a PC with an Intel Core 2 Duo, 2.99 GHz CUP and 3.25GB of RAM. The model
statistics of the two examples are presented in Table 4-6, where numbers of equations,
continuous and discrete variables and average CPU time of each iterative run are presented.
For the two examples, the optimality gap is 1%. It is evident that the proposed MILP model
is able to provide fair cost distribution among smart homes in both numerical examples

with modest computational difficulties.

Table 4-6 Model statistics

Example Equations Continuous Discrete Average CPU (s) Min. Max.
variables variables per iteration CPU(s) CPU(s)
1 8,285 12,040 5,712 24 11 61
2 39,904 57,712 25,824 73 29 322

4.6.2 Example 1 Results

If only total cost of the 10 homes is minimised as the model presented in Chapter 3, the cost
of each home is given in Table 4-7. The upper bound of the cost of each smart home is
achieved based on the case when all heat is generated from boiler and electricity is solely
bought from grid. Also all tasks start at their earliest starting time. The cost lower bound of
each smart home is obtained from minimising energy cost of each single smart home where

microgrid is available. Values of both the two bounds are listed in the table.
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Table 4-7 Cost of each home from minimising total cost and fairness concern

Home Max (£) Min (£) Cost(£) Objective values Fair cost(f) Optimal objective values

1 2.95 1.95 2.07 0.12 2.08 0.1335
2 1.14 0.84 0.95 0.37 0.88 0.1335
3 2.06 1.55 1.60 0.10 1.62 0.1335
4 1.81 1.22 1.33 0.19 1.30 0.1335
5 2.53 1.73 1.91 0.23 1.84 0.1335
6 3.54 2.1 2.24 0.10 229 0.1337
7 2.81 1.56 1.62 0.05 1.73 0.1335
8 1.57 1.01 1.13 0.21 1.08 0.1335
9 292 1.98 2.15 0.18 2.11 0.1335
10 2.38 1.56 1.59 0.04 1.67 0.1335
Total 23.71 15.50 16.58 - 16.60 -

When only the total cost is minimised without considering the fair cost distribution, the
minimum total cost is £16.58. Since cost from respective home is not considered, the cost is
distributed without fairness concern as shown. The obtained cost from each home is
compared under the proposed fairness concept, which is presented in the table. The total
cost is distributed unfairly among homes, as the normalised objectives range from 0.04 to

0.37.

The optimal results from lexicographic minimax approach under the fairness concern are
also presented in Table 4-7. The total cost is £16.60, which is very close to the minimum
total value £16.58. The costs are fairly distributed according to the contribution from each
home. The optimal objective values are the same as 0.1335 except minor difference from
home 6. In total there is 30% savings for the whole smart building compared with the upper

bound of total cost.

Figure 4-6 presents the optimal electricity demand of each home under task starting time
scheduling. Compared with Figure 4-5, the electricity demands are shifted to the night time
where the tariff is lower. The tasks are scheduled based on the real-time electricity pricing

and given task operation time window.
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Figure 4-6  Optimal electricity demands of Example 1

The total electricity balance of the 10 homes is shown in Figure 4-7. CHP is providing
constant maximum output 4 kW most of the time except during night time where heat
demand is low, electrical storage is charged when tariff is low and discharged when it is
high. Compared with the total electricity demand in Figure 4-3., the peaks of the total
power demand have been moved to the night time instead of evening. Also the peak
demand has been reduced from 39 kW to 32 kW. As defined in the model, each single
home, electricity can not be charged and discharged at the same time. In this example, total
electricity is charged and discharged at different time intervals here. However, based on the
given assumption on how the electrical storage is used for homes, there is possibility that
the total charge and discharge of electricity can occur simultaneously. The change and
discharge from the electrical storage system for each home are not the same as the real total
amount charge and discharge to the electrical storage in practice. Most likely, only the
amount of usage is counted in the system as deposit money in a bank and then cost is
calculated based on the total usage over the day. The electrical storage is shared in such
way because of the different energy demand patterns among homes. Homes store the
electricity obtained from CHP in the electrical storage when its electricity demand is low

while heat demand is high. The stored electricity is discharged when the home has high
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electricity demand. For the thermal storage, the charge and discharge follow similar

behaviour. There is no electricity sold back to the grid in the example.
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Figure 4-7  Electricity balance of Example 1 under fairness concern

Figure 4-8 presents the heat balances of the 10 homes under fairness concern. CHP
becomes the main heat provider for the smart homes, while the remaining demand is
supplied by the boiler. Thermal storage is used quite frequently in this example. As seen
from the figure, for some hours thermal storage charge and discharge happens at the same
time. It is because the thermal storage works as bank system for heat deposit for the 10

homes as discussed earlier for the electricity balance part.
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Figure 4-8  Heat balance of Example 1 under fairness concern

4.6.3 Example 2 Results

The optimal results of Example 2 are given in Table 4-8, where the total upper bound cost
is £133.27 and total lower bound cost is £95.88. The minimum total cost without
considering fair cost distribution is £101.06. In this example, the objective value of
respective home varies within the range of 0.1388 to 0.1398 which is very narrow. The
average of the objectives is 0.1394 and the standard deviation is 0.000228. In this work,
lexicographic minimax approach is applied to find a fair solution under the condition that
all the objectives are equally important. As expected, close solution values among objective
function values are obtained in the two examples. The total cost is very close to the
minimum total cost without fairness concern. The total savings is 24% which is obvious

cost savings compared with the upper bound cost.
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Table 4-8 Optimal results of Example 2

Objective value 0.1388 to 0.1398
Average of objective values 0.1394
Standard deviation of objective values 0.000228
Total cost (£) 101.10
Total savings (£) 32.17
Percentage 24%

Figure 4-9 and Figure 4-10 present the optimal energy balances of Example 2. As in
Example 1, CHP is again providing energy constantly except several hours at the end of the
time horizon. But based on the given tasks operation time window, Example 2 can only
move the electricity peak hour from 20 o’clock to about midnight. Electrical tasks cannot
be spread over night as done in Example 1. So, although heat demand ratio is high during
winter time than spring time, CHP still does not generate energy at full capacity during the
last few time periods. Fair cost distributions result from the electrical task operation time
scheduling from each home as well as their competition for the cheap energy generated
from CHP and usage of energy storages. No electricity is sold back to the grid again.
Electrical storage is not used as much as thermal storage. As can be seen from the two
examples, when CHP is utilised the heat to electricity ratio of the energy demand
determines the equipment operation. The time window length results from living habits
affect the task scheduling, equipment operation and final cost savings. Also if there are
varieties of different living styles and more flexible tasks, the total savings can be further

increased.
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Figure 4-9  Electricity balance of Example 2 under fairness concern
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Figure 4-10 Heat balance of Example 2 under fairness concern

4.7 Concluding Remarks

An MILP model has been proposed for fair cost distribution among multiple smart homes
in a building with a microgrid, using a lexicographic minimax optimisation approach. Two

examples of 10 homes for a spring day and 50 homes for a winter day have been studied.
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Twelve domestic electrical tasks and equipment operation have been scheduled based on
given time window, real-time half-hourly grid electricity prices and given objective

fairness. Significant cost savings have been obtained for the two numerical examples.

More importantly, this work focuses on the energy cost of each smart home as a
cooperation participant in a building with a common microgrid. By applying lexicographic
minimax approach, close solutions among objective functions have been obtained.
However, the fair cost distribution depends heavily on the objective fairness definition.
Different fairness criteria should be selected accordingly based on participants’ preferences.
Under certain circumstances, priorities should be assigned to some participants for

particular reasons, such as poverty or location.

When the domestic task scheduling is implemented in real life, it could also affect people’s
behaviour and longer time windows are preferred to obtain more cost savings. CHP
technology is generating cheap energy in the two examples and smart homes are competing
with each other to obtain more energy from CHP rather than buying electricity from grid
and getting heat from boiler. More DERs, such as wind generator, solar panel and heat
pumps, can easily be added to the model to achieve higher cost savings or reduce gas

emissions.
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Chapter 5 Optimal Scheduling of Electric Vehicle
Battery Usage with Degradation

In the previous two chapters, electric vehicles (EVs) are considered as household electricity
consumption appliances and batteries can only be charged at home and discharged for
transport utilisation. As energy storage devices, batteries of EV are suggested to be used for
domestic utilisation and providing ‘vehicle-to-grid’ (V2G) service when applicable.
However, the increase usage of battery results in increasing the battery degradation and

decreasing the battery performance.

In this chapter, an MILP model is proposed to minimise the total electricity cost and battery
degradation cost and try to maintain the demand under pre-specified threshold by
scheduling the charge and discharge operations of EV battery while satisfying the electrical

demands of EV and household power consumption.
5.1 Introduction and Literature Review

Plug-in hybrid electric vehicles (HEVs) and battery electric vehicles (BEVs) have been
popular during the past decade due to the decrease in greenhouse gases and operation cost.
They are potentially important to transform the transport sector towards sustainability by
utilising a more diverse set of power sources from centralised electric power plants rather
than petroleum [193]. Battery of electric EVs is suggested to be used for off-vehicle use,
which provides V2G service. The benefits include peak load shifting and providing
distributed grid-connected storage as a reserve against unexpected outages [194], as well as
other ancillary services to the electricity network, where the peaks can be reduced and load
can be levelled [195]. During peak power demand time, there is high potential of exporting
electricity back to the grid and the distribution system needs to be upgraded for the
bidirectional power flow [196]. Mean while, the broad usage of EVs results in a significant
increase of load from grid which challenges the current power grid. They can impact the
distribution grid through aspects of driving patterns, charging characteristics, charge timing
and vehicle penetration [197]. EV faces two challenges: high cost from battery and battery

charging to the utility grid interconnection [198]. Battery cost represent one-third of the EV
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cost, although by reusing the partially worn out batteries shows a promising potential to
promote EV economically [193], battery costs must drop significantly to obtain high

market penetration [199].

Electric vehicle charging should be managed and coordinated to avoid power losses and
lowering power quality and prolong the EV life time. The EV cycle life is defined as the
number of complete charge-discharge cycles that the battery can perform before its nominal
capacity falls below 80% of its initial rated capacity [200]. Huang et al. [201] integrate the
realistic zoned characteristics with detailed residential model to anticipate the local
distribution level effects of EVs on residential households. The work of [202] indicates EV
charging can be added to planned demand side management schemes in the V2G concept.
Binary PSO is applied for the scheduling of EV battery storage in a parking lot for V2G
usage in [203], and the optimal scheduling of selling and buying times is provided to a fleet
of vehicles. PHEVs are integrated into a smart building for energy and comfort
management by Wang et al. [204], and the building become more economical and more
reliable. In [205] a price-based demand response algorithm is proposed for EV charging
schedules construction with day-ahead, given electricity price and trip schedule. Sheikhi et
al. [206] optimise the start time of charging and the duration to obtain peak load shaving
and minimum cost with a stochastic EV charging method. Ahn et al. [207] present an
optimal decentralised charging control algorithm for EVs connected to smart grid to shift
load with the objective of minimising electricity generation costs and emissions. Concept of
real-time scheduling techniques for EV charging is proposed in [208] which minimises the
impact of the power grid while guarantees the individual charging requirement. In [209],
the authors examine how to implement demand side management to optimise the charging
cycles of an EV and obtain the maximum financial savings with maximum renewable
energy consumed and reduce both peak load demand and demand from thermal generation
plants. The optimal EV battery charging scheduling is presented in [210] to achieve peak
shaving and flat load profile for residential energy consumption. Sortomme and El-
Sharkawi [211] develop a V2G algorithm to optimise energy and ancillary services, load
regulation and spinning services, to maximise aggregator and customer profits and peak

load reductions are also obtained. EV charging and discharging problem is addressed by He
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et al. [212], and they formulate a globally optimal scheduling scheme and a locally optimal
scheduling scheme to handle the problem of large population and random arrivals of EVs.
A decentralised and a centralised charging strategies are both presented by Han et al. [213],
and current state of charge (SOC), battery capacity, connecting time and electricity grid
constraints are considered. Ota et al. [214] address smart charging control in an
autonomous distributed V2G control scheme. Balancing control is applied to manage the

battery SOC.

On the other hand, the increase of usage of battery results in increasing the battery
degradation and decreasing the battery performance [215]. These effects should be
considered to prolong the life-time of battery. Alan [216] proposes an aging model for
lithium ion batteries in EVs based on theoretical models of crack propagation. Optimised
partial EV charging method is presented in [217], which uses the next day vehicle usage
prediction to charge the battery and it shows both battery energy capacity lifetime and
power lifetime are prolonged. Cost of EV battery wear from V2G utilisation is analyzed by
Zhou et al. [200], and the correlation between the number of charge cycles and EV battery
wear 1s established. Authors of [218] present that the participation in V2G service
influences the battery capacity degradation as a function of number of cycles, operation
temperature, rates of charge and discharge, the depth of discharge (DOD) and total energy
withdrawn. Guenther et al. [219] study the EV battery aging, calendar aging and cycle
aging, under V2G scenario. Lyon et al. [220] investigate ‘smart charging’ policy for EV by
shifting charging times. A genetic optimisation algorithm is applied in [221] to optimise the
charging behaviour of a PHEV with battery aging concern based on cyclic and floating
aging components. EV charge is optimised for simultaneous reduction of energy cost and
battery degradation with a multi-objective GA over 24-hour drive cycle in the work of
[222]. While in [223], the charging pattern for a fleet of PHEVs is optimised with the
concern of both daily energy cost and battery degradation. Lunz et al. [224] show that
intelligent charging algorithms can reduce electricity consumption costs and decrease
battery depreciation for PHEV but demand peak is not considered. In the work of [225], EV
charge is optimised with battery degradation concerns, in which energy capacity fade and

power fade due to temperature, SOC and DOD are included.
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In this chapter, an MILP model is proposed to minimise the total electricity expense of a
residential area where EV battery 1s used as electricity storage when it arrives home as well
as providing V2G service. EV battery operation is scheduled based on the real-time
electricity (buying and selling) prices and electricity demand of each home in order to
reduce the peak demand and avoid peak demand charge penalty from grid. Also battery
degradation results from increased usage is considered, the battery degradation cost in
included in the model as a function of SOC level. The charging time is selected based on
the SOC besides electricity buying price from grid, to reduce the degradation cost which

helps prolong the battery life time.
5.2 Problem Description

In this work, the EV battery can be used for domestic appliances rather than being used
solely for transport. The battery can also provide V2G service when it benefits from buying
electricity at low price while selling electricity back to the grid at a higher price. The
charging time of EV batteries are scheduled to obtain minimum cost while limit the peak
load. For a small community or parking area where a number of electric vehicles are
located, batteries of electric vehicles are charged from the grid. It is assumed batteries can
only be charged when they are in such area. Vehicle trip information is available and the
battery storage status is provided to the model. The charging time is flexible over the given
time period under given real-time electricity tariff. To minimise the total electricity cost,
batteries are supposed to be charged during low tariff time periods. However, in that case,
high total electricity demand outages could occur at those time periods which will affect the
stability of the grids. In order to avoid such occasion, two demand boundaries from grid are
applied, i) power ceiling which cannot be exceeded and ii) peak demand threshold, where
high peak demand cost is charged over the electricity consumption above the agreed
consumption threshold. Then the charging time of different electric vehicles will be
scattered to maintain the demand under allowed charging rate and within given demand
bounds. Considering the intensive use of battery in household and V2G, an MILP model is
supposed to provide this charging scheduling for load shifting and cost minimisation

together with minimising degradation cost.
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The overall problem can be stated as follows:

Given are (a) a time horizon split into a number of equal intervals, (b) electricity demand of
each home, (c) charge and discharge limit rates for EVs, (d) real-time electricity prices
from grid and peak demand charge price to the over-threshold amount, (e) peak demand
threshold from grid, (f) total power ceiling, (g) EV transport demand, (h) EV battery

degradation cost based on SOC, (i) time intervals when EVs are home and away.

Determine (a) EV charge/discharge plan at home, (b) electricity bought from grid, (c)

electricity sold to grid.

So as to minimise the total electricity and degradation costs.

5.3 Mathematical Formulation

The EVs charging problem is formulated as an MILP model. The aim of the work is to
minimise the total electricity and degradation costs and try to maintain the demand under
agreed thresholds by scheduling the charge and discharge operation of EV batteries while
satisfying the electricity demands of EVs and household power consumption. The model
determines the electricity buying and selling schedule and the battery charge/discharge
schedule together with the rate at which they happen. Battery self-discharge and capacity

loss are not considered in this work.

5.3.1 Nomenclature

Indices

i EV battery/home

Jj SOC level

t time interval

t time intervals  when EV i is away from home
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h
it

t time intervals # when car i stays at home

Parameters

b. battery charge cost of level j (£/kWh)

c electricity selling price to the grid at time t (£kWh)
C nominal capacity of EV battery i (kWh)

D®  maximum EV battery discharge rate (kW)

G®  maximum EV battery charge rate (kW)

L electricity demand of home i at time interval ¢ (kW)

p extra peak demand charge over the agreed threshold (£/kWh)
S!  initial state of EV battery i (kWh)

V driving electricity demand of EV i at time interval ¢ (kWh)
SOC™  minimum SOC of EV battery (%)

SOC, SOC atlevel j (%)

) time interval duration (hour)
Y7, peak demand ceiling value (kW)
Variables

d. degradation cost of EV battery i at time ¢ (£)

it
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E electricity exported to the grid for home i at time ¢ (kW)
I, electricity bought from grid for home i at time 7 (kW)
electricity storage of EV battery i at time # (kWh)
Vi discharging rate of EV battery i at time ¢ (kW)
2z, charging rate of EV battery i at time ¢ (kW)
g extra electricity load from grid over the agreed threshold x at time 7 (kWe)
) total cost, objective value (£)
SOC, state of charge of EV battery i at time 7 (%)
SOCj,,  state of charge of EV battery i at time 7 from level j (%)
Binary Variables

W. 1 if EV battery i is charged at time ¢, 0 otherwise

it

Y, 1 if EV battery i is discharged at time ¢, O otherwise

it

Z.. 1 if EV battery i at time ¢ is at SOC status j level, 0 otherwise

itj

5.3.2 Charge and Discharge Constraints

In order to protect the battery, the rate of discharge or charge should be under discharge or

charge limit defined by the battery manufacture:

Y. £D"Y, Vi,t Eq.5-1
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2, <G"W, Vi, 1 Eq. 5-2
Charging and discharging cannot happen at the same time for each EV battery:

Y, +W, <1 Vi,t Eq.5-3

5.3.3 EV Battery Storage Constraints

Electricity stored in the electrical storage at time ¢ is equal to the amount stored at —/ plus

the electricity charged minus the electricity discharged. No electricity loss is considered

here.
Sy =S+ &, —, Vi, t>1 Eq. 5-4
S, =S +&, -, Vit =1 Eq.5-5

At the end of the time horizon, the storage should be equal to the initial state in order to

avoid net accumulation for the next time horizon.

S,=8,=8 Vi Eq. 5-6
5.3.4 Electricity Demand Constraints

Electrical car travel demand is provided by the EV battery:

o, =V, Vijtet, Eq. 5-7

When electrical car is at home, domestic electricity demand can be fulfilled by the EV

battery and/or power grid. Electricity can be sold to the grid or stored in the battery:
v, +1,=L,+z,—E, Vitet, Eq. 5-8

When EV is away from home, domestic demand can only be provided by the grid:
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I, =L Vi,tet, Eq. 5-9

it 123

When EV is away from home, there is no charging process:
7, =0 Vijtet, Eq. 5-10

5.3.5 SOC Constraints

SOC calculation is based on the nominal battery capacity, it is assumed to be constant,
although the capacity decreases with the battery aging. The electricity storage cannot
exceed the battery capacity. And at any time period, SOC must be greater than the

minimum SOC to protect the battery.

S0C, =S,1C, Vit Eq. 5-11
S,<C. Vit Eq.5-12
S0C, >S0C™ Vit Eq. 5-13

The SOC of battery can be classified to respective levels according to its value as shown in
the Table 5-1, and the battery charge amount depends on the selected level. If any level is

not selected, then no electricity is charged in that interval. Only one level can be selected.

Table 5-1 Battery cycle cost from different SOC

Level SOC Degradation cost per Degradation cost per kWh charged
cycle (£) (p/kWh)
1 20%-40% 0.61 32
2 40%-60% 0.41 2.8
3 60%-80% 0.24 2.5
4 80%-100% 0.14 3.0
SOC,z,, <S0Cj,,_, , <SOC;.Z, Vit, j Eq.5-14
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Y 50¢j, =Soc, Vit Eq. 5-15
J

2 Zy =1 Vit Eq. 5-16
J

5.3.6 Electricity Demand Threshold Constraints

When the total electricity demand is over the agreed threshold, peak demand charge applies.

Extra cost is charged over the amount that exceeds the threshold.

E2D1, -k vt Eq. 5-17

The electricity demand cannot exceed the maximum load of the household connection.

YI1,<u vt Eq. 5-18

5.3.7 Degradation Cost Constraints

When battery starts charging, degradation cost per cycle is counted based on the storage
status of the previous time interval. If battery is charged continuously, degradation cost is

only counted once at the beginning of the charging process.

d,2Y Z.b,—(1-W,+W,,_) Vi, Eq. 5-19
J

5.3.8 Objective Function

Objective function is to minimise the total cost, which includes the electricity cost from
grid, peak demand charge cost and degradation cost minus the electricity revenue from

selling electricity back to the grid.

it

cost =Y &/I,+Y &Ep+>.d, - &E, Eq. 5-20
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5.4 Case Study

In this work, 20 households in a residential area are involved and each household is

assumed to have an EV with a capacity of 24 kWh and which are full at the beginning of

the time horizon. A laminated lithium-ion battery pack from Nissan Leaf is used. The basic

information is provided in Table 5-2.

Table 5-2 Nissan Leaf battery pack specification [226]

Type Laminated lithium-ion battery
Cost $18,000
Life span Estimate over 10 years or Life cycle is over 2000
Running range 160 km
Total capacity 24 kWh
Charging capacity 33 kW
Power output Over 90 kW
Cathode material LiMn,O4 with LiNiO;
Anode material Graphite

MATLAB code is applied to generate the EV travelling energy demands and car arrival

times. The 20 car daily travelling demands are generated randomly from normal

distribution within the range of 2-18 kWh per day, which is presented in Figure 5-1.

Daily travel demand (kWh)

16

14 -
12 -

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
EV

Figure 5-1 EV daily travel demand
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Then, the hourly energy demand profile during EV travelling time is calculated by dividing
the total daily demands with the total travelling hours. Although most probably the car
travel only takes place during several separate time intervals within the total travelling time
rather than being continuous, the EV travelling demands are assumed to be evenly
distributed over the time horizon. The EV travelling demands distribution over travelling
time does not affect the household usage and electricity charging from the grid. For all the
houses, it is assumed that each of them has the same living habits during the five weekdays,
which means they have the same EV travelling demand and domestic electricity demand
over the five days. At the beginning of the 5 days, all batteries are assumed to be fully
charged. To protect the battery, the SOC cannot drop below 20% at any time. The total
travelling demand of the 20 EVs over the 5 days is 969 kWh.

It assumes all EVs start travelling from 8 am. In order to guarantee there is enough
charging time, the arrival time has to be before 2 am which is 6 hours before the start of
next travel. The car arrival times are generated based on the distribution of hourly
probability for lighting in [183]. The number of car arrival times during each hour for the

20 EVs is given in Figure 5-2.

4,

Number of occurence

0

08:00 12:00 16:00 20:00 00:00 04:00 08:00
Time (Hour)

Figure 5-2  Number of occurrence of EV arriving
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As soon as a car arrrives at home, it is assuemd to stay there until 8am net morning. Figure
5-3 shows the number of cars staying at home during each time interval for a single day,

and all the five days have the same pattern.

25 ~

20

15

10

Number of cars

5,

0 |
08:00 12:00 16:00 20:00 00:00 04:00 08:00
Time (Hour)

Figure 5-3  Number of EVs staying at home

The domestic electricity demand is assumed to be provided, which is obtained from UK
Energy Research Centre [227] as unrestricted domestic electricity user demand for a winter
weekday. Typical profile is given in Figure 5-4. Demand profile of each household is
generated by shifting this profile between +/- 4 hours. The total domestic demand of the 20
households for 5 days is 2,459 kWh.
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Figure 5-4  Unrestricted domestic electricity demand for winter weekday [227]

Real-time electricity prices for buying and selling are given in Figure 5-5, which are
obtained from [181] and 10 p/kWh is added to represent the possible transmission cost and
future tariff increase in 2020. Electricity tariff is higher during the day time and the peak
electricity price appears in the evening. It is assumed that the 5 weekdays have the same
daily electric tariff. If the demand from grid is over the agreed peak demand threshold, 10
p/kWh penalty applies and the total power ceiling is assigned as 100 kW.

—— Buying price —=— Selling price

~ 0.25 o
=
=
=
=]
o 0.2
L
s
>
o
Q2
w
0.1 T T T T T T T T T T T T T T T T T T T T T 1
08:00 12:00 16:00 20:00 00:00 04:0 08:00
Time (hour)

Figure 5-5  Electricity tariff (March 3rd , 2011) [181]
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By convention, the end of life is defined as 80% of the original capacity remaining. Figure
5-6 shows an example of cost of a cycle based on a battery per kWh by Depth of Discharge
(DOD) for Boston and Dallas [193]. The normalised cycle cost is higher in the hot region

than in the cold region.

04 |
- Dallas

0.35 | - Boston
03 |

0.25 |

02 |

0.15 |

USD/kWh Capacity

01 ¢

0.05 |
10 20 30 40 50 60 70 80 90 100
% DOD on battery in a given cycle

Figure 5-6  Normalised cost of cycling a battery to a given depth of discharge with a

$750 capital cost [193]

Figure 5-7 provides the average degradation cost associated with the electricity charged
into the battery which is converted based on the curve from Boston in Figure 5-6. It is
assumed that for each life cycle, when battery is charged, it is fully charged from given
DOD. It can be seen that the lowest average degradation cost appears at 60% SOC.
Although smaller DOD (high SOC) has lower cycle cost, but when the battery is charged,

the net electricity amount charged into the battery is also small.
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Figure 5-7  Degradation cost associated with the electricity charged

Battery replacement cost is estimated as $200/kWh in 2020 according to cost forecasts
found in [228]. So the degradation cost of a cycle based on different SOC levels is adjusted
and given in Table 5-1.

5.5 Computational Results

5.5.1 Business-as-Usual Results

Figure 5-8 presents the electricity balance under the business-as-usual scenario (BAU),
under which there is no intelligent charging and batteries from EVs are only used for travel
and they are charged immediately when they arrive home. Batteries are charged at full
charging rate, 3.3 kW and are fully charged by the end of each day. The total household
electricity demand is 2,459 kWh while the total car electricity demand is 969 kWh. The total
electricity cost is £715 and the peak demand from the grid occurs at 18 o’clock at 49 kW.
The peak demands occur in the evening where electricity tariff is high. The total

degradation cost is £34, which represents 4.5% of the total cost.
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Figure 5-8  Electricity balance under BAU scenario
5.5.2 Optimal Results without Degradation Costs

If no degradation cost is considered and EV batteries are allowed to be used for household
when they arrive home and can sell electricity back to the grid if it benefits, the optimal
results under different thresholds are given in Table 5-3. The MILP model includes
constraints Eq. 5-1 to 5-13, Eq. 5-17 and 5-18, while the objective function is Eq. 5-20
without the term of degradation cost. It is implemented using Gurobi 5.1.0 in GAMS 24.0
[128] on a PC with an Intel Core 2 Duo, 2.99 GHz CPU and 3.25GB of RAM. The model
includes 15,646 equations, 19,441 continuous variables and 3,815 discrete variables. There
1s no optimal gap. Optimum charge and discharge schedule is provided for the EV batteries
to minimise the total cost. Compared with BAU scenario, the cost saving is about 10%
under different thresholds, and the peak demand from grid has been reduced for thresholds
40 kW and 35 kW. Electricity charge over threshold is reduced under all cases. Amount of
electricity imported from grid is very similar, while exporting electricity to grid only
happens when there is no threshold and 40 kW cases and the amount is relatively small. But
EV batteries are used quite frequently to provide electricity for household application, over
a quarter of the household demands is supplied by EV batteries under all thresholds. The

computation time is quite fast under all conditions as shown in the table.
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Table 5-3 Optimal results under different thresholds without degradation cost

Threshold (kW) Without threshold 40 35 30
BAU cost 681 693 706 725
Optimal cost (£) 589 611 624 649
Cost savings (%) 14% 12% 12%  10%
Peak demand (kW) 81.3 40 35 77.9
Peak reduction (%) 39% 23% -41% 37%
BAU peak charge amount (kWh) 0 119 253 438
Peak charge amount (kWh) 0 0 0 156
Peak demand charge saving (%) - 100% 100% 64%
Imported electricity (kWh) 3,739 3,473 3,427 3,427
Exported electricity (kWh) 311 46 0 0
Battery charge (kWh) 1,928 1,765 1,712 1,693
Household battery usage (kWh) 648 750 744 724
Household usage ratio (%) 26% 31%  30% 29%
Computation time (s) 03 0.7 0.7 0.7

5.5.3 Optimal Results with Degradation Costs

When degradation cost is considered to prolong the life time and improve the performance
of the battery, the proposed MILP model will provide the optimum charge and discharge
schedule for the batteries to minimise the total cost. All equations listed are involved. The
model includes 41,886 equations, 41,041 continuous variables and 13,415 discrete
variables. The optimality gap is 5%. Table 5-4 summarises the optimum results under
different assigned peak demand thresholds. Because of the degradation cost, the total cost

under any case is higher than that in Table 5-3.
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Table 5-4 Optimal results under different thresholds with degradation cost

Threshold (kW) Without threshold 40 35 30
BAU cost (£) 715 727 740 759
Optimal cost (£) 642 656 668 694
Cost savings (%) 10% 10% 10% 9%
Degradation cost (£) 50 41 38 40
Peak demand (kW) 78 40 35 58
Peak reduction (%) 58% -19%  -29% 17%
BAU peak charge amount (kWh) 0 119 253 438
Peak charge amount (kWh) 0 0 0 103
Peak demand saving (%) - 100% 100% 76%
Imported electricity (kWh) 3,644 3,491 3,445 3,457
Exported electricity (kWh) 217 64 18 30
Battery charge (kWh) 1,608 1,326 1,206 1,137
Household battery usage (kWh) 422 293 218 138
Household usage ratio (%) 17% 12% 9% 6%
Computation time (s) 2,225 890 99 70

When there is no threshold assigned, only total cost is to be minimised while peak demand
effect is not considered. The total cost is £642 which is reduced by 10% compared with the
BAU scenario, however, the peak demand has increased by about 58% to 78 kW. In total 15
kWh of electricity is sold back to the grid through electric vehicle batteries. As the threshold
decreases from 40 kW to 30 kW, the total cost is slightly increased compared with the
unlimited threshold scenario because of the penalty on the peak demand charge. The peak
demands are within the assigned thresholds by shifting the charging time of the electric
vehicle batteries where the thresholds are set as 40 kW and 35 kW. Under these thresholds,
peak demands are below the BAU scenario. Compared with the BAU scenario, the cost
savings are still 10% while the peak demand reductions are obvious. When 30 kW is
applied, the peak demand is increased compared with the BAU scenario, however, the total
amount of demand over threshold are still reduced by 76%. Because of the charging
scheduling, batteries are charged mainly during periods with lower electricity tariff and the
total cost is still lower than that from BAU scenario. Electricity is only exported at very low

rate resulting from the low electricity selling price to the grid. Obviously when degradation
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cost is considered, EV batteries are used less frequently and about 10% of household
demand is provided by batteries in average. As the assigned peak demand threshold
decreases, the household battery usage also decreases to lower the power demand from grid.
If there is extra electricity provided by the battery, it is preferable to be supplied to the
household. Only small amount of electricity is exported the grid over different thresholds,
and the amount is expected to decrease along with thresholds decreasing. However, the
optimal gap is 5%, the trend is not obtained in this case study. Under different peak demand
thresholds, the computation time varies and decreases along with the threshold values. The

charging time is less flexible when the peak demand threshold decreases.

Table 5-5 presents the occurrence of battery charging from different levels if degradation
cost is ignored. Under the BAU scenarios, batteries are charged when it arrives home and
do not discharge at home, so the charging levels are fixed rather than being selected. Since
degradation cost is not considered, the charging process happens frequently during the 5
days, about 3 times per day for each battery. The charging occurs over the four given levels,
batteries are charged whenever the electricity tariff is low without considering the

degradation effect from SOC.

Table 5-5 Charging levels being selected without degradation cost

Charging level BAU Without threshold 40kW 35kW 30 kW

1 10 237 96 38 42
2 35 10 81 114 98
3 45 9 75 128 120
4 10 7 68 91 94
Total charging times 100 263 320 371 354

Table 5-6 presents the times of battery charging from different levels when degradation
cost is considered. Under all thresholds, battery is charged less frequently than that if
degradation cost is ignored. Each battery is charged about once per day. When there is no
peak demand threshold constraint, battery is used as much as possible for homes and export
electricity to grid. Batteries are charged most probably when it reaches the lower storage

limit 20%, and are charged together when electricity tariff is low. The cost savings by using
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batteries for household overcome the degradation cost. When thresholds are applied, the
batteries are charged less and they are charged mostly from level 2 where the average

degradation cost per kWh is relative low while still charge enough electricity for demand.

Table 5-6 Charging levels being selected with degradation cost

Charging level BAU Without threshold 40kW 35kW 30kW

1 10 62 22 12 19
2 35 23 61 59 53
3 45 10 10 23 24
4 10 5 5 11 8
Total charging times 100 100 98 105 104

5.5.4 Electricity Balances under Different Thresholds

Figure 5-9 shows the electricity balance over 5 days under different thresholds. Since each
home is assumed to have the same living habits over the 5 days, the demand patterns are
cycled. However, the charge and discharge rates and exported electricity are slightly
different from each other day. Because the batteries need to be fully charged at the end of
the time period, there is an obvious battery charge peak at the end of the time horizon.
Electricity is discharged for home use in the evening when electricity price is high. And it
is sold back to grid only once in each day. If no threshold is applied, the peak demand
cannot be guaranteed. When thresholds are applied, as threshold decreases, more night
periods are used for charging to scatter the charging demand to avoid the peak demand
penalty. Also less electricity is exported to the grid. Battery is mainly used for household to
balance the electricity demand from grid. However, when the threshold goes down to 30
kW, peak demand over assigned threshold appears as shown in the figure. The charging
scheduling tries to split demands over available time periods, but still has to break the
threshold to obtain minimum cost while fulfilling the demand. Since most EVs are not

available at homes, charge and discharge of batteries are limited in the morning.
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Figure 5-9  Optimum 5-day electricity balances
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In order to have a closer look at the electricity balance, Figure 5-10 shows day 1 electricity
balance under different thresholds. If no threshold is required, the highest peak demand
from grid occurs at 4 o’clock when electricity price is the lowest. However, the peak
demand is 78 kW, which is 58% increase from the BAU scenario. Batteries are discharged
for household usage in the evening when electricity tariff are high and discharged during
night when it is low. The batteries sell electricity back to the grid to achieve more benefits
in the evening around 18 o’clock. Since some households have higher electricity demand or
the cars have not arrived home yet, they still need to buy electricity from grid at these time
periods. However, for other households, they can sell electricity back to the grid after
reaching their own domestic electricity demand. That is why both imported electricity and
exported electricity appear in Figure 5-10. When thresholds are applied, the optimum
scheduli