
Planning with Effectively Propositional Logic

Juan Antonio Navarro-Pérez and Andrei Voronkov

The University of Manchester

Abstract. We present a fragment of predicate logic which allows the use
of equality and quantification but whose models are limited to finite Her-
brand interpretations. Formulae in this logic can be thought as syntactic
sugar on top of the Bernays-Schönfinkel fragment and can, therefore, still
be effectively grounded into a propositional representation. We motivate
the study of this logic by showing that practical problems from the area
of planning can be naturally and succinctly represented using the added
syntactic features. Moreover, from a theoretical point of view, we show
that this logic allows, when compared to the propositional approach, not
only more compact encodings but also exponentially shorter refutation
proofs.

1 Introduction

Planning has been the focus of attention of many researchers in the field of artifi-
cial intelligence, where it was originally conceived as a formalisation of deduction
processes [3]. Alternatively, the problem of finding a sequence of actions to reach,
from an initial state, a set of desired goals, has also been reduced to the problem
of finding a satisfying truth assignment for a propositional logic formula [5, 6].

In this paper we follow a similar approach but, instead of a propositional
encoding, we use a fragment of predicate logic which allows some limited use of
equality and quantification. This fragment, which we call finite domain predicate
logic, allows a much more succinct and natural representation of problems. The
size of the resulting formula is linear in the size of, for example, a STRIPS
description [2] of the original planning problem.

We show, moreover, that any formula in the proposed logic can be translated
to an equisatisfiable formula in the Bernays-Schönfinkel fragment of predicate
logic. Formulae in this fragment have an ∃∗∀∗ prefix when written in prenex
normal form and do not allow the use of function symbols. This makes their
Herbrand universe finite and, therefore, to test satisfiability one can effectively
replace a formula by all its propositional ground instances. This is why formulae
in this class are also referred to as effectively propositional (EPR), such as in
one of the categories of the CASC system competitions [9].

Another motivation for using this logic as a formalism to represent problems
is the fact that, as we show in this paper, not only descriptions can be much
more concise, but inference steps can also be exponentially more efficient than in
the propositional case. On the other hand, our encoding may also turn out to be
useful for propositional, SAT-based, approaches to planning. Indeed, it preserves

1



the structure of the original planning problem in the obtained effectively propo-
sitional formula and reduces the problem of finding an optimised propositional
encoding to the problem of finding an optimised propositional instantiation of
the EPR description. Thinking in this more general fragment of first order logic,
often allows one to find simplifications or alternative encodings that one might
miss if only focused in the propositional case.

Reasoning with effectively propositional theories is an relatively new area
of research, which seems to offer a language with a good compromise between
expressibility and complexity. There are many computer scientists currently de-
veloping ideas and procedures in order to more efficiently deal with this kind of
formulae. Unfortunately, there is also a lack of benchmarks for these researchers
to experiment and test their systems. An important contribution of this paper
is to aid filling in this gap by providing a new and rich source of problems with
close links to real-life applications.

Our paper is structured as follows: In Section 2 we introduce the syntax and
semantics of the finite domain predicate logic and show that it can be reduced to
the Bernays-Schönfinkel fragment of predicate logic. We also present an example
of a family of effectively propositional unsatisfiable formulae, whose refutation
proofs are exponentially shorter that those possible in the propositional setting.
Then in Section 3 we formally introduce the notions of planning to later give,
in Section 4, the encoding of planning problems in terms of our finite domain
predicate logic.

2 Finite domain predicate logic

In this section we introduce the finite domain predicate logic. It allows the use
of equality, evaluated under the unique name assumption, and quantification
over finite domains. We will also later show that formulae in this logic can be
reduced to the Bernays-Schönfinkel fragment of predicate logic. The added syn-
tactic sugar will be useful in later sections to describe our encodings of planning
problems more naturally.

Definition 1. The language of finite domain predicate logic consists of a set of
predicate symbols P, a finite set of constant symbols D, and a set of variables V.
Predicate symbols are, moreover, associated with a positive integer which we
call its arity. The set D is also referred to as the domain of the logic. A term is
either a variable or a constant symbol. A predicate atom is an expression of the
form p(t1, . . . , tn) where p ∈ P is a predicate symbol of arity n and each ti is a
term. An equality atom is an expression of the form t = t′ where both t and t′

are terms. An atom is either a predicate or an equality atom. A ground atom is
an atom all whose terms are constant symbols.

We consider the following as primitive connectives of the logic: falsity (⊥),
negation (¬φ), conjunction (φ∧ψ) and quantification (∀X ∈ C. φ); where φ and
ψ are formulae, X a variable and C ⊆ D a set of constant symbols. Duals of

2



these operators and additional connectives can be introduced as abbreviations:

> ≡ ¬⊥ ∃X ∈ C. φ ≡ ¬(∀X ∈ C.¬φ)
φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ) φ→ ψ ≡ ¬φ ∨ ψ

The standard notion of free and bound variables with respect to the scope of
quantifiers also applies here. A closed formula is a formula with no free variables.
We will often use X to denote a sequence of variables X1, . . . , Xn whose length
is specified in the context where it is used. This allows, for example, to write
∃X̄ ∈ Cn. φ instead of the longer expression ∃X1 ∈ C . . .∃Xn ∈ C. φ. Similarly
we will write X = Y as a shorthand for

∧n
i=1Xi = Yi.

A substitution is a function σ that maps variables to terms, and behaves like
the identity function almost everywhere. We denote by φσ the result of applying a
substitution σ to a formula φ, i.e. the formula obtained after uniformly replacing
every free variable X in φ with the term Xσ. We also say that φ′ is an instance
of φ if there is a substitution σ such that φ′ = φσ; and that σ is an unifier of
the formulae φ and φ′ if φσ = φ′σ. A substitution is often denoted by explicitly
enumerating its mappings, e.g.: {X1 → t1, . . . , Xn → tn}.

A Herbrand interpretation is a set of ground predicate atoms. The notion of
whether a Herbrand interpretation I is a model of a closed formula φ, denoted
by I |= φ, is defined as follows:

I 6|= ⊥
I |= p(c̄) iff p(c̄) ∈ I,
I |= c = c′ iff c coincides with c′,
I |= ¬φ iff I 6|= φ,
I |= φ ∧ ψ iff I |= φ and I |= ψ,
I |= ∀X ∈ C. φ iff I |= φ {X → c} for every constant c ∈ C,

where c̄ denotes a tuple of constant symbols of the length equal to the arity of p.
When we we speak about models of non-closed formulae, we assume the free
variables of these formulae to be implicitly universally quantified. A formula is
said to be satisfiable if it has at least one model. �

In the sequel we assume to deal with a logic having a fixed domain D. For
example, all formulae may only use constants from D. Observe that equality is
evaluated syntactically with respect to the constant symbol names, i.e. using the
unique name assumption, and does not depend on the interpretation I. We will
now show how this restricted kind of equality can be removed from formulae
while preserving its satisfiability status.

We will also call formulae constraints and assume that a finite set of con-
straints represents the conjunction of all its elements. A clause is a simple dis-
junction of literals, that is, atoms or their negations. A formula is said to be
in clause normal form if it is a conjunction of clauses. Although we do not al-
ways write sets of constraints in clause normal form, they can often be easily
rewritten in such form using simple logical identities (e.g. changing implication
for disjunction).

3



Definition 2. Let C = {c1, . . . ck} be a set of constant symbols. We introduce
the fresh new predicate symbols succC , less, inC , and eq and define the set of
constraints OrdC using these symbols as follows:

succC(c1, c2) ∧ · · · ∧ succC(ck−1, ck)
succC(X,Y )→ inC(X) ∧ inC(Y )

also the set of constraints EQ is defined as:

succD(X,Y )→ less(X,Y )
less(X,Y ) ∧ less(Y, Z)→ less(X,Z)
less(X,Y )→¬eq(X,Y ) ∧ ¬eq(Y,X)
eq(X,X)

The intuition behind the set OrdC is to enumerate all constant symbols in
the set C by providing a predicate succC that allows one to iterate over them.
The intended meaning of inC(X) is to represent that X ∈ C. Note that OrdC
defines only the positive polarity of the predicate symbols succC , less and inC .
In other words, if c ∈ C then the predicate inC(c) should be true in models of
OrdC , but the converse does not necessarily have to hold.

When we use this construction to enumerate all the elements in the domain,
i.e. OrdD, then the set EQ defines an additional predicate eq(X,Y ) that can be
used to replace the built-in equality X = Y .

Theorem 1. Let φ be a closed formula, and let φeq be the formula obtained by
replacing all equality atoms t = t′ in φ with eq(t, t′). The pair of formulae φ and
OrdD ∧ EQ ∧ φeq are equisatisfiable.

Proof. The result follows from the fact that, if an interpretation I is a model
of the formula OrdD ∧ EQ then i < j implies I |= less(ci, cj) and, using the rest
of the constraints in EQ, we have I |= eq(ci, cj) iff i = j iff ci = cj (from the
unique name assumption). �

Also note that, since quantification is done with respect to a fixed finite
set of constant symbols, a quantified subformula ∀X ∈ C. φ(X) can actually
be unfolded into the conjunction

∧
c∈C φ {X → c}. Although naively unfolding

quantifiers this way could produce an exponential blow-up in the size of the for-
mula, we now show an alternative approach that only incurs in a linear increase.
It follows the style of structural clause form translations as proposed by Plaisted
and Greenbaum [7].

In order to simplify the exposition, and avoid dealing with the polarity of
subformulae, we assume that formulae are first put in negation normal form. This
can be easily achieved by pushing negation inwards and replacing implications
with disjunctions. The resulting logic formulae can therefore use any of the
connectives: ⊥,>,∧,∨,∀,∃; and negation is restricted to the front of atoms only.

Definition 3. Let Γ be a set of constraints. The set Γ ea is defined as the result
of iterating the following procedure to remove all explicit quantifiers in Γ

4



– If there is a subformula ψ = ∀X ∈ C. φ(X,Y ), where X,Y are all the free
variables in φ and C = {c1, . . . , cd}, then replace the subformula ψ with the
atom forallψ(Y ) and add the constraint:

inC(X) ∧ forallψ(Y )→ φ(X,Y )

– Similarly, replace a subformula of the form ψ = ∃X ∈ C. φ(X,Y ) with the
atom existsψ(Y ) and add the constraints:

existsψ(Y )→ findψ(c0, Y )
findψ(X,Y )→ φ(X,Y ) ∨ xfindψ(X,Y )
succC(X,Z) ∧ xfindψ(X,Y )→ findψ(Z, Y )
xfindψ(cd, Y )→⊥

The set of constraints OrdC is also appended to Γ ea for each set C originally
appearing in a quantifier. �

Theorem 2. The sets of constraints Γ and Γ ea are equisatisfiable.

Proof. The argument is similar to the one used in structural clause form trans-
lations where subformulae are replaced by fresh new atoms and constraints are
added to give a meaning to those atoms.

In particular it can be shown that if I |= ψea ∧ forallψ(Y ) for a given inter-
pretation I, then I |= ∀X ∈ C.ψ and, for the converse, that if I |= ∀X ∈ C.ψ
then one can always find an interpretation I ′ such that I ′ |= ψea ∧ forallψ(Y ).
And analogously for the existential quantifier. �

Using the previous two results, it is then possible to eliminate equality and
quantifiers from finite domain predicate formulae thus leaving formulae in the
Bernays-Schönfinkel fragment. Moreover, the resulting formula is of linear size
with respect to the original input. Additionally, these results complement the
translation of Plaisted and Greenbaum [7] allowing one to write arbitrary finite
domain predicate formulae in clause normal form. In the following we will then
freely use equality and finite quantification knowing that they do not add any
complexity to the logic.

2.1 Compact proofs

In order to further motivate the use of Bernays-Schönfinkel formulae as a formal
language to represent problems, we prove in this section that reasoning within
this fragment can also be exponentially more efficient than in propositional logic.
This shows that the language not only provides means for creating more compact
encodings, but that the actual solving time could also be reduced by the use of
this approach.

We consider, in particular, proofs using the resolution inference system which
operates on sets of clauses. It consists of two inference rules: resolution and
factoring. We refer to the work of Bachmair and Ganzinger [1] for the definitions.

5



Given a set of clauses Γ , a proof of φ from Γ is a sequence of clauses
φ1, . . . , φl = φ such that each φi is either an instance of a clause in Γ or the
result of applying resolution to two previous clauses. If one can obtain a proof of
the empty clause from Γ , then the set Γ is unsatisfiable and the proof is known
as a refutation of Γ . A propositional proof is a proof where all the clauses in the
sequence are ground.

The following example shows that there is a family of sets of clauses Γm with
respective unsatisfiability proofs Φm, where the shortest propositional refutation
of Γm is exponentially larger than Φm.

Theorem 3. There is a sequence of sets of clauses S1, S2, . . . of increasing sizes
such that each Si has a refutation of a size quadratic in i and the shortest propo-
sitional refutation of Si has a size exponential in i.

Proof. In the set Si we will use two constants: 0 and 1 and a single predicate
symbol s of arity i. We will denote by 0̄, 1̄, x̄ etc. sequences of constants 0, 1
and variables, respectively, whose length will be clear from the context. The set
Si consists of the following clauses:

s(0̄). (1)

i clauses of the form:
¬s(x̄, 0, 1̄) ∨ s(x̄, 1, 0̄). (2)

The clause
¬s(1̄). (3)

This set of clauses is unsatisfiable and its size is quadratic in i.
Note that every ground atom is of the form s(b̄), where b̄ is a sequence of bits

representing a number between 0 and 2i − 1 written in binary notation. For a
number n such that 0 ≤ n < 2i let us denote by n the sequence of bits denoting
this number. Then (1) asserts s(0) and (3) asserts ¬s(2i − 1), while the ground
instances of clauses in (2) assert ¬s(n) ∨ s(n+ 1). Using this observation it is
not hard to argue that every unsatisfiable set of ground instances of clauses in
Si contains all ground instances of (2), and so all propositional refutations of
this set have a size exponential in i.

Let us show that Si has a non-ground refutation of a quadratic size. To
this end, we will show, by induction on the length of a non empty sequence of
constants 1̄, resolution proofs of the clauses

¬s(x̄, 0̄) ∨ s(x̄, 1̄), (4)

having a number of steps linear in the length of 1̄.
When the length is 1, then (4) is an instance of (2). When the length is

greater than 1, we can assume, by induction, that there is such a refutation of a
clause

¬s(x̄, y, 0̄) ∨ s(x̄, y, 1̄). (5)

6



From this and (2) we can derive by a resolution inference the clause

¬s(x̄, 0, 0̄) ∨ s(x̄, 1, 0̄).

From this and (5) we can derive by a resolution inference the clause

¬s(x̄, 0, 0̄) ∨ s(x̄, 1, 1̄).

and we are done.
This implies that there is a resolution proof of the clause

¬s(0̄) ∨ s(1̄)

having a number of steps linear in i, and hence a refutation having a number of
steps linear in i. Moreover, the size of each clause in the refutation is linear in i,
so the size of the refutation is quadratic in i. �

3 Planning

In this section we formally introduce several notions and concepts related to
planning. We first introduce the notion of a planning domain where applicable
actions, their preconditions and consequences, are described. We then proceed to
define what a planning problem and its solutions are. Our formalism corresponds
to STRIPS style planning as introduced by Fikes and Nilsson [2].

Definition 4. The language of a planning domain consists of a triple of finite
sets of symbols (O,F ,A) which are respectively called object, fluent and action
symbols. Fluent and action symbols have, moreover, an associated natural num-
ber which we call the arity of the symbol. If f is a fluent symbol of arity m, then
an expression of the form f(t1, . . . , tm), where each ti is either a variable or an
object symbol, is called a fluent.

An action is a triple (αreq, αadd, αdel) where α = a(X1, . . . , Xn), for an action
symbol a ∈ A of arity n, is the signature of the action. Each element in the
triple is a set of fluents of the form f(t1, . . . , tm) where each ti is either an object
symbol or a variable Xj with 1 ≤ j ≤ n. We say that these are the fluents
that, respectively, the action requires, adds and deletes when it is executed. A
planning domain Dom is simply a set of actions and its size, denoted |Dom|, is
defined as the number of symbols occurring in the description of all its actions.

An action instance α′ = ασ, where σ is any substitution, corresponds to the
triple of sets of fluent instances (α′req, α′add, α

′
del), where α′req = αreqσ, etc. �

Example 1. We will consider as a running example for this section, a planning
domain in the context of logistics. This domain has, among others, an action
load-truck that takes three parameters: a packageX1 to load, a truckX2 where to
load the package, and a location X3 where the loading takes place. The definition
of such an action would probably look like:

7



load-truck(X1, X2, X3)
Req: at(X1, X3), at(X2, X3)
Del: at(X1, X3)
Add: in(X1, X2)

where at and in are binary fluent symbols. In words, the load-truck action requires
both the package, represented by the variable X1, and the truck, represented by
X2, to be at the same location, represented by X3. The action removes the
package from the location and places it, instead, in the truck. A ground instance
of this action, say load-truck(pk3,w238,man), would load the particular package
pk3 into the truck with license plate w238 when both items are in Manchester
(man).

The size of such definition is 16 (1 action symbol + 4 fluent symbols + 11
variable occurrences). We can imagine that the planning domain also contains
other actions to unload the truck and drive it from one location to another; as
well as more object symbols to identify different packages, trucks and locations.

Definition 5. Let α and β be two distinct ground actions. We say that α
interferes with β, if the action α deletes fluents that are either required or added
by β (i.e. αdel ∩ (βreq ∪ βadd) 6= ∅). We say that a pair of ground actions is
intefereing if one of them interferes with the other. �

Example 2. The ground action load-truck(pk3,w238,man) interferes with the
other ground action load-truck(pk3, y659,man) since the former deletes the flu-
ent at(pk3,man) while the later requires it. Note that this is how, implicitly, the
functionality of the fluent at is preserved, i.e. no object is allowed to end up at
two different places simultaneously.

Definition 6. Given a set of ground fluents S and a set of ground actions A,
we say that A is executable in S and produces S′, denoted by S A−→ S′, if:

– A does not contain interfering actions,
– Areq ⊆ S,
– S′ = S \Adel ∪Aadd.

where Areq =
⋃
α∈A αreq, etc. �

Definition 7. A planning problem is given as a pair I,G of sets of ground
fluents, respectively known as the initial and goal states of the problem.

A solution plan for the problem is a sequence A1, . . . ,Ak of sets of ground
actions such that the sequence S1

A1−−→ S2
A2−−→ · · · Ak−−→ Sk+1 holds, the set I = S1

and G ⊆ Sk+1. �

The kind of plans just defined are often known as plans with parallel actions.
The semantics of such plans is that, at each step, the actions in a set Ai can be ex-
ecuted in any order (even simultaneously) while still reaching the same outcome.
In our example one could simultaneously execute both load-truck(pk3,w238,man)
and load-truck(pk4,w238,man) in order to load both packages pk3 and pk4 into

8



the truck w238. Alternatively, a linear plan is a plan where each Ai is a single-
ton. Trivially, any plan with parallel actions can be converted into a linear plan
just by sequencing parallel actions into an arbitrary order, e.g. first load package
pk3, then load pk4.

4 Encoding of planning problems

In this section we will consider an encoding of planning problems into finite
domain predicate logic. Given a planning domain and a bound k, we construct
a set of constraints Γk whose models correspond to plans of length k. Linear
plans of shorter lengths (< k) can also be encoded by allowing the use of a nop
action that does nothing or, in plans with parallel actions, having steps where
no action is executed (i.e. an empty Ai).

Although fluents and actions were already defined as atoms in predicate logic,
these predicate symbols will now play the role of constant symbols so that we
can quantify over them in our encoding. For example, if f(Y ) is a fluent in a
planning domain then the predicate holds(f, Y , T ) will be used to denote the
fact that an instance of the fluent f(Y ) holds at a step T of the plan.

Note that this sort of encoding requires, however, all fluents (resp. actions)
to have the same arity. This can be easily achieved by padding actions with
additional variables (which will be unused in its fluents), and padding fluents in
actions with some dummy constant symbol o ∈ D.

We will split the encoding of a planning domain into four groups of clauses.
The first group Boundk specifies the length of the plans to be considered, the sec-
ond group ActDom encodes the definitions of actions, the third ProbI,G encodes
the initial and goal states of a particular problem instance, and the fourth and
last one FrameDom encodes the frame conditions. Frame conditions are the ones
responsible to state that all fluents whose status is not changed by the actions
executed must remain unmodified. We will, actually, show two different encod-
ings for frame conditions which can be used to obtain plans which are either
linear or with parallel actions.

In the following we will use A, B as variables that stand for actions and
F as a variable to represent a fluent. Also T is a variable that represents the
current step in the plan, and U the next step. A number of constant symbols
{s0, . . . , sk} ⊂ D are used to denote the actual steps in the plan.

Definition 8. Given a positive number k, the set Boundk is simply defined as
the set containing next(si, si+1) for every i ≤ 0 < k. �

This simple set with a size of O(k) is used to define an order among steps in
the plan and to determine, from each step, which is the next one. The following
set encodes the actions available in the domain.

Definition 9. Given a planning domain Dom, the domain definition ActDom is
the set that contains, for each action in the domain, the constraints:

9



reqs(a,X, f, Y σ) for each f(Y )σ required by a(X)
dels(a,X, f, Y σ) for each f(Y )σ deleted by a(X)
adds(a,X, f, Y σ) for each f(Y )σ added by a(X)

together with the following three constraints that make actions have their cor-
responding preconditions and effects:

reqs(A,X,F, Y ) ∧ ¬holds(F, Y , T )→¬executes(A,X, T )
next(T,U) ∧ adds(A,X,F, Y ) ∧ executes(A,X, T )→ holds(F, Y , U)
next(T,U) ∧ dels(A,X,F, Y ) ∧ executes(A,X, T )→¬holds(F, Y , U)

Example 3. In our running example, the action load-truck would be encoded as:

reqs(load-truck, X1, X2, X3, at, X1, X3)
reqs(load-truck, X1, X2, X3, at, X2, X3)
dels(load-truck, X1, X2, X3, at, X1, X3)
adds(load-truck, X1, X2, X3, in, X1, X2)

Similar constraints are added for other actions in the domain. The last few
constraints of ActDom would ensure that an action is not executed when one of
its requirements does not hold or, if the action is executed, that fluents are added
or deleted accordingly. It is also easy to see that ActDom has a size of O(|Dom|).

We now move to the encoding of a problem instance using the set of con-
straints ProbI,G. Typically, in propositional encodings of a planning problem,
one has to completely specify the initial state I stating, for every ground fluent,
whether f(c̄) or ¬f(c̄) should hold. To avoid this, we define a special action
setup that adds all the ground fluents to be true at the initial state and does not
require or delete anything. Quantifying over all fluents it is easy to express that
“initially nothing holds” and then make the setup action execute at the step zero
of the plan, the frame conditions will then ensure that everything not added by
setup remains false.

Definition 10. Given a planning problem defined by an initial state I and
goals G, the encoding of the problem instance ProbI,G is defined as the set of
constraints:

¬holds(F, Y , s0)
adds(setup, X, f, c̄) for every f(c̄) in I
executes(setup, ō, s0)
next(T,U)→¬executes(setup, X, U)
holds(f, c̄, sk) for every f(c̄) in G

where ō simply represents the sequence o, . . . , o of dummy constant symbols of
the required length. �

Example 4. Suppose that initially we have two packages in Manchester, a truck
in London, and our goal is to get the packages to Edinburgh. This corresponds to
I = {at(pk3,man), at(pk4,man), at(w238, lon)}, G = {at(pk3, edn), at(pk4, edn)}
and would be encoded in the component ProbI,G as:

10



¬holds(F, Y1, Y2, s0)
adds(setup, X1, X2, X3, at, pk3,man)
adds(setup, X1, X2, X3, at, pk4,man)
adds(setup, X1, X2, X3, at,w238, lon)
executes(setup, o, o, o, s0)
next(T,U)→¬executes(setup, X1, X2, X3, U)
holds(at, pk3, edn, sk)
holds(at, pk4, edn, sk)

The first constraint makes all fluents false at time s0, then we have the definition
of the setup action. A pair of constraints follow that make setup to execute at the
first state, and only at that state. Finally we specify that the goals should hold at
the final state sk. Note again that we do not have to specify where packages are
not, such as ¬at(pk3, lon), or that the truck is empty (because there is nothing
in it).

We finally proceed to describe the rules that actually encode the frame con-
ditions and, at the same time, to disallow the execution of interfering actions.
The following sections consider two alternatives that correspond to plans that
are either linear or with parallel actions.

4.1 Linear plans

One possibility is to allow only one action to execute at a time, and the frame
conditions can be directly expressed stating that the truth value of fluents not
added or deleted by an action do not change. Moreover, in order to allow plans
whose length is shorter than the bound k, a nop action that does nothing should
be added to the definition of the planning domain.

Definition 11. Given a planning domain Dom, the linear frame encoding of the
domain, denoted by LFrameDom, is the set containing, for each action symbol
a ∈ A and fluent f ∈ F , the constraint

next(T,U) ∧ executes(a,X, T ) ∧
∧
σ∈Ξa,f

Y 6= Y σ→
holds(f, Y , T )↔ holds(f, Y , U)

and the pair of constraints

∃A,X ∈ A×On. executes(A,X, T )
executes(A,X, T ) ∧ executes(B,Z, T )→A = B ∧X = Z

where the set Ξa,f contains all substitutions σ for which the fluent f(Y )σ is
either added or deleted by a(X). �

Example 5. In our example the linear frame conditions for the load-truck action
would be expressed as follows:

11



next(T,U) ∧ executes(load-truck, X1, X2, X3, T ) ∧
¬(Y1 = X1 ∧ Y2 = X3)→ holds(at, Y1, Y2, T )↔ holds(at, Y1, Y2, U)

next(T,U) ∧ executes(load-truck, X1, X2, X3, T ) ∧
¬(Y1 = X2 ∧ Y2 = X3)→ holds(in, Y1, Y2, T )↔ holds(in, Y1, Y2, U)

In words these constraints state that, except for the package X1 moved by the
action, all other objects remain at their same locations and in their same con-
tainers. The last few constraints of LFrameDom encode the fact that one, and
only one, ground action executes at any given time.

Note that this encoding requires |A| |F| constraints to represent the frame
conditions, where |A| (resp. |F|) denotes the number of action (resp. fluent)
symbols. Additionally, each fluent added or deleted by actions must appear rep-
resented as a substitution in the set Ξa,f for one of such constraints. Therefore
the set of constraints LFrameDom has a size of O(|A| |F|+ |Dom|).

4.2 Plans with parallel actions

Alternatively, several actions could be executed at once as long as they do not
interfere with each other. We consider an explanatory encoding following ideas
proposed by Haas [4], Schubert [8] and later applied in the propositional case by
Kautz et al. [6]; where it is expressed that, if a fluent changes its value from one
step to another, then one of the actions that modify it must have been executed.

Definition 12. Given a planning domain Dom, the parallel frame encoding of
the domain, denoted by PFrameDom, is the set containing, for each fluent f ∈ F ,
the constraints:

added(f, Y , T )→
∨

(a,σ)∈∆f
∃X ∈ On.(executes(a,X, T ) ∧ Y = Y σ)

deleted(f, Y , T )→
∨

(a,σ)∈∇f
∃X ∈ On.(executes(a,X, T ) ∧ Y = Y σ)

together with the three constraints

next(T,U) ∧ ¬holds(F, Y , T ) ∧ holds(F, Y , U)→ added(F, Y , T )
next(T,U) ∧ holds(F, Y , T ) ∧ ¬holds(F, Y , U)→ deleted(F, Y , T )
dels(A,X,F, Y ) ∧ reqs(B,Z, F, Y )∧

executes(A,X, T ) ∧ executes(B,Z, T )→A = B ∧X = Z

where the set ∆f (resp. ∇f ) contains the pair (a, σ) whenever the fluent f(Y )σ
is added (resp. deleted) by the action a(X). �

Example 6. In this case, the predicates added and deleted are defined for each
fluent. Consider for instance the following constraint that encodes the frame
conditions for the fluent at(Y1, Y2):

added(at, Y1, Y2, T )→
∃X ∈ O3.(executes(unload-truck, X) ∧ Y1 = X1 ∧ Y2 = X3)

∨ ∃X ∈ O3.(executes(drive-truck, X) ∧ Y1 = X1 ∧ Y2 = X3)

12



If a fluent at(Y1, Y2) is added at some state, then it must be the case that either
a package Y1 = X1 was unloaded at a location Y2 = X3 (from some truck X2)
or, similarly, a truck was driven to that location from another.

The last few constraints trigger the predicates added and deleted, whenever a
change in the truth value of a fluent occurs, in order to search for an explanation
of such change. The final constraint disables the execution of two actions when
one deletes a requirement of the other and, therefore, they are interfering. It is
also not possible to execute two actions such that one deletes the fluent added by
the other, a contradiction will occur in ActDom when both actions try to assign
contradictory values to the fluent.

Note that, in this case, the number of clauses in PFrameDom is linear with
respect to the number of fluent symbols in F . Moreover, the size of the clauses
only depends on the number of actions that could add or delete a given fluent.
Overall, PFrameDom has only a size of O(|Dom|) and does not directly depend
on the number of actions or fluents as in the previous case.

Theorem 4. Given a planning domain Dom, a problem I,G and a bound k, the
finite domain predicate formula Boundk ∧ ActDom ∧ ProbI,G ∧ FrameDom, where
FrameDom is either LFrameDom or PFrameDom, is satisfiable if and only if the
planning problem has a solution plan, respectively linear or with parallel actions,
of length ≤ k.

Proof. It can be shown that if an interpretation I is a model of the encoding,
then the plan where Ai = {a(c̄) | I |= executes(a, c̄, si)}, for 1 ≤ i ≤ k, is a valid
solution to the planning problem.

Conversely it can be shown that, if A1, . . . ,Ak′ is a solution plan (linear or
with parallel actions) with k′ < k, then an interpretation I can be built, giving
appropriate values to predicates, such that I is a model of the encoding. �

5 Conclusions

In this paper we have introduced the finite domain predicate logic, which corre-
sponds to a decidable fragment of first order logic with features such as equality
and finite quantification. Formulae in this logic are non-propositional, but its
models can be interpreted in a finite Herbrand universe. We also show that for-
mulae in this logic can be linearly translated to the Bernays-Schönfinkel class
of formulae, which also corresponds to the category of effectively propositional
problems of the CASC system competition [9].

The motivation for developing such a logic is that it enables us to suc-
cinctly and naturally encode problems from applications. In particular we show
how planning problems, including their frame conditions, can be easily encoded
within the proposed logic. Moreover, the size of the generated formula is linear
with respect to size of a standard description, e.g. in the STRIPS language, of
the original planning problem. This is in contrast with propositional encodings

13



where the size of the resulting formula is often exponential in the size of the
input.

Furthermore, we also show that reasoning with effectively propositional for-
mulae can be exponentially more efficient than in the propositional setting. We
show in particular a family of unsatisfiable formulae whose refutation proofs
using first order resolution can be exponentially shorter than any propositional
resolution proof. This serves to suggest that, in principle, the use of a finite
domain predicate encoding can be useful both to obtain more compact repre-
sentations of problems and to solve them more efficiently.

On the other hand, the ideas presented here might also turn out to be useful
for propositional SAT-based approaches. Since the problem of finding optimised
propositional encodings, including but not limited to planning, is reduced to
finding an appropriate instantiation of the obtained finite domain formula.

We think that our work is of great value to the automated reasoning commu-
nity since it can be useful to provide a new and relevant source of benchmarks
for developers of first order reasoners, particularly those geared towards the ef-
fectively propositional fragment.

As an immediate future work, we will be working on the implementation of
a tool able to read planning problems and domains in the STRIPS language
and then translate them into effectively propositional formulae in the TPTP
format. Another interesting issue left for future work, is to study how existing
reasoning approaches deal with this kind of formulae and tune them to solve
these problems in a more efficient way.

References

[1] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 26, pages 19–99. Elsevier Science, 2001.

[2] R.E. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3/4):189–208,
1971.

[3] C. Green. Application of theorem proving to problem solving. In Proceedings
of IJCAI-69, pages 219–239, Washington, D.C., 1969.

[4] A.R. Haas. The case for domain specific frame axioms. In F.M. Brown,
editor, The Frame Problem in Artificial Intelligence: Proceedings of the 1987
Workshop, pages 343–348, San Mateo Calif., 1987. Morgan Kaufmann Pub-
lishers, Inc.

[5] Henry Kautz and Bart Selman. Planning as satisfiability. In ECAI ’92:
Proceedings of the 10th European conference on Artificial intelligence, pages
359–363. John Wiley & Sons, Inc., 1992.

[6] Henry Kautz, David McAllester, and Bart Selman. Encoding plans in propo-
sitional logic. In Proc. of the Fifth International Conference on Principles
of Knowledge Representation and Reasoning (KR-96), Boston, MA, 1996.

[7] David A. Plaisted and Steven Greenbaum. A structure-preserving clause
form translation. J. Symb. Comput., 2(3):293–304, 1986. ISSN 0747-7171.

14



[8] L.K. Schubert. Monotonic solution of the frame problem in the situation
calculus: An efficient method for worlds with fully specified actions. In
H. Kyburg, R. Loui, and G. Carlson, editors, Knowledge Representation and
Defeasible Reasoning, pages 23–67. Kluwer, Dortrecht, 1990.

[9] G. Sutcliffe and C. Suttner. The state of CASC. AI Communications, 19(1):
35–48, 2006.

15


