
Cascading Verification:
An Integrated Method for Domain-Specific Model

Checking

by

Fokion Zervoudakis

Submitted for the degree of Doctor of Philosophy at

University College London

February 2014

I, Fokion Zervoudakis, confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, I confirm that this has been indicated
in the thesis.

2

Abstract

Model checking is an established formal method for verifying the desired behavioral prop-
erties of system models. But popular model checkers tend to support low-level modeling
languages that require intricate models to represent even the simplest systems. Mod-
eling complexity arises in part from the need to encode domain knowledge—including
domain objects and concepts, and their relationships—at relatively low levels of abstrac-
tion. We will demonstrate that, once formalized, domain knowledge can be reused to
enhance the abstraction level of model and property specifications, and the effectiveness
of probabilistic model checking.

This thesis describes a novel method for domain-specific model checking called cas-
cading verification. The method uses composite reasoning over high-level system specifi-
cations and formalized domain knowledge to synthesize both low-level system models and
the behavioral properties that need to be verified with respect to those models. In par-
ticular, model builders use a high-level domain-specific language (DSL) to encode system
specifications that can be analyzed with model checking. Domain knowledge is encoded
in the Web Ontology Language (OWL), the Semantic Web Rule Language (SWRL) and
Prolog, which are combined to overcome their individual limitations. Synthesized mod-
els and properties are analyzed with the probabilistic model checker PRISM. Cascading
verification is illustrated with a prototype system that verifies the correctness of un-
inhabited aerial vehicle (UAV) mission plans. An evaluation of this prototype reveals
non-trivial reductions in the size and complexity of input system specifications compared
to the artifacts synthesized for PRISM.

3

Acknowledgments

First and foremost, I would like to thank my supervisors, David S. Rosenblum and An-
thony Finkelstein, for their support during the past three years. I am indebted to David
for his help and patience; for providing me the freedom to pursue interesting research;
and for considering with me over long Skype calls the finer points of OWL-LP integration
in the context of domain-specific and probabilistic model checking. Anthony’s advice on
authoring compelling narratives that clarify complex research, and his encouragement
and strategic guidance, have been invaluable for my development as a researcher.

I have been fortunate to visit the Nebraska Intelligent MoBile Unmanned Systems
(NIMBUS) Lab at the University of Nebraska-Lincoln (UNL). I would like to thank
Sebastian Elbaum, co-founder of NIMBUS, for working with me to focus the research in
this thesis, and for his contribution throughout my PhD.

I would also like to thank Emmanuel Letier for his insightful feedback during my first
and second year vivas. And I would like to thank faculty and staff at the Department
of Computer Science at University College London (UCL) for providing me with the
resources to develop this thesis. In particular, I would like to thank Dean Mohamedally,
Donald Lawrence, Graham Roberts, Jens Krinke, John Dowell, Mark Harman, Philip
Treleaven and Westley Weimer for numerous valuable conversations. Last but not least,
I have had the pleasure of working with talented colleagues including Jan Grochmalicki,
Michal Galas and Panagiotis Papakos at UCL, and Charlie Lucas at UNL.

Research for this thesis was sponsored by the European Office of Aerospace Research
& Development (EOARD), a detachment of the Air Force Office of Scientific Research
(AFOSR), under agreement number FA8655-10-1-3007. Any conclusions, findings, opin-
ions and recommendations expressed in this thesis are those of the author and do not
necessarily reflect the views of AFOSR or EOARD.

4

http://www.afosr.af.mil/

Contents

1 Introduction 12

1.1 Research Problem and Scope . 13

1.2 Thesis Contributions . 14

1.2.1 Cascading Verification . 14

1.2.2 Domain-Specific Modeling for the UAV Domain 15

1.2.3 Prototype Design and Implementation 16

1.2.4 Prototype Evaluation . 16

1.3 Thesis Outline . 17

2 Background 19

2.1 OWL+SWRL and Prolog . 19

2.2 Probabilistic Model Checking . 21

2.3 UAV Missions . 23

2.3.1 UAV Performance Specifications 23

2.3.2 UAV Mission Hierarchy . 27

2.3.3 DARPA Mission Scenario . 30

2.3.4 DRDC Mission Scenario . 32

2.4 Summary . 33

3 Method Overview 34

3.1 An Example Mission . 34

3.2 From Specification to Verification . 36

4 Domain Modeling 38

4.1 Semantic Modeling . 38

4.1.1 Building an OWL Ontology . 38

5

4.1.2 Modeling Tactical Missions . 42

4.1.3 Modeling Traffic Surveillance Missions 47

4.1.4 An Overview . 51

4.2 Rule-Based Modeling . 52

4.2.1 An Overview . 54

4.3 Behavioral Modeling . 54

4.3.1 Modeling Survivability . 56

4.3.2 Modeling Risk Acceptability . 58

4.3.3 Modeling Traffic Surveillance . 61

4.3.4 An Overview . 66

4.4 Related Work . 67

4.4.1 Integrating OWL and Prolog . 67

4.4.2 Modeling the UAV Domain . 68

4.5 Summary . 69

5 Cascading Verification 70

5.1 High-Level Specifications in YAML . 70

5.2 Verification with Semantic Reasoning . 72

5.3 Classification with Prolog . 74

5.4 Synthesized Models and Properties . 79

5.5 Implementation . 81

5.6 Related Work . 81

5.7 Summary . 82

6 Evaluation 84

6.1 Evaluation Methods and Metrics . 84

6.1.1 Abstraction . 84

6.1.2 Effectiveness . 86

6.1.3 Probabilistic Verification . 89

6.1.4 Proof of Correctness . 91

6.2 Threats to Validity . 91

6.2.1 Internal Validity . 93

6.2.2 Construct Validity . 94

6

6.2.3 External Validity . 95

6.3 Summary . 95

7 Conclusions and Future Work 96

7.1 Contributions . 96

7.2 Future Work . 97

7.2.1 Network-Centric Model Checking 98

7.2.2 Annotation-Guided Model Checking 98

References 109

A Threat Area Calculations 110

A.1 Establishing Threat Area Incursions . 110

A.2 Calculating Threat Area Durations . 111

A.2.1 Distance . 112

A.2.2 Speed . 112

A.2.3 Bearing . 113

A.2.4 Duration . 113

B Ontology 115

C Prolog Knowledge Base 124

D PRISM Templates 128

E DSL Schema 138

F Mission Verification Artifacts 140

7

List of Figures

2.1 A discrete-time Markov chain example . 22

2.2 Transition matrix and initial distribution vector examples 23

2.3 UAV autonomy hierarchy . 24

2.4 DARPA’s UAVForge mission scenario . 31

3.1 Method and prototype schematic . 34

3.2 A UAV mission example . 36

4.1 CEMO’s class hierarchy . 39

4.2 Transitive properties . 41

4.3 Inverse properties . 41

4.4 Tactical-CEMO’s class hierarchy . 43

4.5 Primitive classes . 44

4.6 Defined classes . 44

4.7 Asymmetric and irreflexive properties . 45

4.8 Traffic-CEMO’s class hierarchy . 48

5.1 Semantic verification . 73

5.2 Composite reasoning . 75

6.1 Mission 3g . 92

6.2 Mission 2d . 92

6.3 Mission simulation . 93

8

List of Tables

2.1 UAV performance specifications . 25

2.2 UAV performance specification categories 26

2.3 UAV classifications . 27

2.4 UAV mission hierarchy . 29

4.1 Asset survivability truth table . 57

4.2 Risk acceptability truth table . 60

5.1 Kinetic action classifications for DTMC and PCTL constructs 76

5.2 Kinetic action classifications for Mission A 79

6.1 Mission plan metric values . 85

6.2 Mission plan parameters . 94

9

Listings

3.1 YAML code for Mission A . 35

4.1 OWL code for class Asset . 39

4.2 OWL code for class Hummingbird . 40

4.3 OWL code for the object property hasPrecondition 40

4.4 OWL code for class TraversePathSegmentAction 41

4.5 OWL code for class PhotoSurveillanceAction 41

4.6 OWL code for class ThreatAreaWaypoint 43

4.7 OWL code for class ValidAsset . 44

4.8 OWL code for the object property hasSibling 45

4.9 OWL code for class HighVulnerabilityAsset 46

4.10 OWL code for class Vulnerability . 46

4.11 OWL code for the individual HighVulnerability 46

4.12 OWL code for class LowVulnerabilityAsset 47

4.13 OWL code for class FreewaySection . 48

4.14 OWL code for class LaneClassification 49

4.15 OWL code for class TwoLaneClassification 49

4.16 OWL code for class HighSpeedFreewaySection 50

4.17 OWL code for class LidarAction . 50

4.18 OWL code for class HighSpeedLidarAction 51

4.19 OWL code for class LowSpeedLidarAction 51

4.20 OWL code for class CrossCuttingKineticAction 52

4.21 OWL+SWRL code for rule CrossCuttingKineticAction 53

4.22 OWL+SWRL code for rule monitors . 53

4.23 Prolog code for rule terminal . 53

4.24 OWL code for the object property isPreconditionTo 54

10

4.25 DTMC template for asset modules . 55

4.26 PCTL template for action duration . 56

4.27 DTMC template for asset survivability . 57

4.28 PCTL template for asset survivability . 58

4.29 DTMC template for risk acceptability . 59

4.30 PCTL template for risk acceptability . 61

4.31 DTMC template for traffic surveillance . 63

4.32 PCTL template for traffic surveillance . 65

5.1 Partial schema definition for the YAML DSL 71

5.2 Schema definition for the DSL element Hummingbird 72

5.3 OWL code for the individual H1 . 73

5.4 OWL code for the individuals TPSA1 and TPSA2 73

5.5 Prolog code for rule terminal_constrained_observer 74

5.6 Prolog code for rule primary_asset . 77

5.7 OWL+SWRL code for class ObserverAsset 78

5.8 OWL+SWRL code for the object property observes 78

5.9 PRISM asset module code . 80

5.10 PRISM asset survivability code . 80

5.11 PRISM risk acceptability code . 80

5.12 PRISM mission property code . 81

6.1 Disjoint class statements specified in OWL 87

6.2 Existential restriction statements specified in OWL 88

6.3 Existential restrictions encompassed in Prolog rules 89

6.4 Data property statements specified in OWL 89

6.5 Data properties specified in OWL . 90

6.6 Object properties specified in OWL . 91

6.7 OWL code for class ThreatenedAsset . 91

11

Chapter 1

Introduction

The increasing complexity of uninhabited aerial vehicle (UAV) missions, which may in-
volve the execution of sophisticated (swarming) tactics by semi- or even fully-autonomous
UAVs, is overwhelming mission development personnel. The development process is sup-
ported technologically by advanced, academic and commercially-oriented, mission plan-
ning systems and simulation environments. Orbit Logic’s UAV Planner, for example, is
a commercial simulation environment that provides resource, and task order, definition
and management; manual and automated planning; and interactive visualizations [1]. In
the academic space, MissionLab from Georgia Tech is a tool for specifying and controlling
multi-agent missions [2]. Nowak et al. have developed a system named SWARMFARE,
which executes self-organizing swarm-based simulations to test search and destroy sce-
narios [3]. Multi-agent self-organization has also been used to model UAV swarms and
thereby facilitate solutions to problems of multi-objective optimization [4, 5].

Mission optimization constitutes a multi-objective problem because UAV missions
are characterized by multiple and conflicting properties that form complex, and poorly
understood, associations. The problem of multi-objective optimization has been studied
extensively with evolutionary algorithms [6]. With respect to UAV missions, evolu-
tionary algorithms are used to form robust UAV-based air-to-ground communication
networks [7], and to generate a set of optimized and coordinated flight routes for surveil-
lance missions [8]. The weight configurations that prioritize self-organizing rules in
SWARMFARE are evolved with a genetic algorithm [3]. Rosenberg et al. use a sim-
ulation environment to evaluate optimized air campaign mission plans generated by a
multi-objective evolutionary algorithm (MOEA) [9]. Pohl and Lamont use a MOEA to
optimize the concurrent routing of multiple UAVs to multiple targets [10].

The problem of UAV scheduling/routing has also been modeled as a minimum cost
network flow problem [11]; a traveling salesman problem; and a dynamic programming
problem [12]. Alver et al. implement a route planning algorithm based on the time-
oriented nearest neighbor heuristic [13]. Kamrani and Ayani use a special-purpose sim-
ulation tool named S2-Simulator to generate flight routes for the surveillance of moving
targets [14]. In other simulation-related research, Corner and Lamont use a parallel dis-
crete event simulation to explore emergence in UAV swarms [15]. Lian and Deshmukh
use Markov decision processes (MDPs) to model UAVs in a dynamic multi-agent system

12

Chapter 1. Introduction 1.1. Research Problem and Scope

where agents have to manage constraints, negotiate flight paths and avoid enemy posi-
tions in order to execute a set of goals [16]. Hamilton et al. emphasize the importance
of valid simulation models, and propose a testbed to empirically validate simulations
against historical data [17].

When integrated, planning and simulation software should ideally provide informa-
tion superiority and, ultimately, competitive advantage [18]. But these systems are
currently challenged by the size and complexity of the UAV domain [19, 20, 21]. The
state space of any given mission is potentially enormous. Mission correctness is contin-
gent on multiple factors including UAV flight trajectories, interoperability and conflict
resolution capabilities; and a dynamic environment that encompasses variable terrain,
unpredictable weather and moving targets. In this context, mission plans may contain
errors that compromise mission correctness. We propose to support mission developers
by analyzing UAV mission plans with software verification methods—and in particular,
probabilistic model checking—that can detect mission-critical errors before real-world
execution. To this end, the following thesis describes a novel method for domain-specific
model checking called cascading verification [22], and the application of that method to
the probabilistic verification of complex UAV mission plans.

1.1 Research Problem and Scope

Model checking is an established formal verification method whereby a model checker
systematically explores the state space of a system model to verify that each state satisfies
a set of desired behavioral properties [23].

Research in model checking has focused on enhancing the efficiency and scalability of
verification by employing partial order reduction, and by exploiting symmetries and other
state space properties. This research is important because it mitigates the complexity
of model checking algorithms, thereby enabling model builders to verify larger, more
elaborate models. But the complexity associated with model and property specification
has yet to be sufficiently addressed. Popular model checkers tend to support low-level
modeling languages that require intricate models to represent even the simplest systems.
For example, PROMELA, the modeling language used by the model checker Spin, is
essentially a dialect of the relatively low-level programming language C. Due to lack of
appropriate control structures, the modeling language used by the probabilistic model
checker PRISM forces model builders to pollute model components with variables that
act as counters. These variables are manipulated at runtime to achieve desirable control
flow from otherwise unordered commands.

Modeling complexity arises in part from the need to encode domain knowledge—
including domain objects and concepts, and their relationships—at relatively low levels
of abstraction. We will demonstrate that, once formalized, domain knowledge can be
reused to enhance the abstraction level of model and property specifications, and the
effectiveness of probabilistic model checking.

Leveraged appropriately, formal domain knowledge can decrease specification and

13

Chapter 1. Introduction 1.2. Thesis Contributions

verification costs. On the verification side, the model checking framework Bogor achieves
significant state space reductions in model checking of program code by exploiting char-
acteristics of the program code’s deployment platform [24]. On the specification side,
semantic model checking supplements model checking with semantic reasoning over do-
main knowledge encoded in the Web Ontology Language (OWL). Semantic model check-
ing has been used to verify Web services [25, 26]; Web service security requirements [27];
probabilistic Web services [28]; Web service interaction protocols [29]; and Web service
flow [30]. Additionally, multi-agent model checking has been used to verify OWL-S
process models [31].

OWL is a powerful knowledge representation formalism, but expressive and rea-
soning limitations constrain its utility in the context of semantic model checking; for
example, OWL cannot reason about triangular or self-referential relationships. As a
W3C-approved OWL extension, the Semantic Web Rule Language (SWRL) addresses
some of these limitations by integrating OWL with Horn-like rules. But OWL+SWRL
cannot reason effectively with negation. The logic programming (LP) language Prolog
can be used to overcome problems that are intractable in OWL+SWRL. Prolog, how-
ever, lacks several of the expressive features afforded by OWL including support for
equivalence and disjointness.

In summary, model checking is a prominent formal verification method. Contempo-
rary modeling languages induce modeling complexity, which is exacerbated by the need to
encode domain knowledge at relatively low levels of abstraction. Semantic model check-
ing uses semantic reasoning over domain knowledge encoded in OWL to supplement
model checking and thereby decrease specification costs. But expressive and reasoning
limitations constrain OWL and, by extension, the potential of semantic model checking.

1.2 Thesis Contributions

This thesis presents four research contributions. First, we describe a novel model check-
ing method that leverages domain knowledge to realize a non-trivial reduction in the
effort required to specify system models and behavioral properties. The method uses
a composite inference mechanism to reason about high-level system specifications and
thereby synthesize low-level PRISM code for probabilistic model checking.

Second, we use domain-specific software development to structure formal verification
for the UAV domain. Third, we implement a prototype system that exploits our method
to verify mission plans. Fourth, we evaluate our prototype to demonstrate the utility of
cascading verification in the context of a significant and novel application domain. The
following sections elaborate these contributions.

1.2.1 Cascading Verification

We have designed a novel method for domain-specific model checking called cascading
verification. Our method uses composite reasoning over high-level system specifications

14

Chapter 1. Introduction 1.2. Thesis Contributions

and formalized domain knowledge to synthesize both low-level system models and the
behavioral properties that need to be verified with respect to those models. In partic-
ular, model builders use a high-level domain-specific language (DSL) to encode system
specifications that can be analyzed with model checking. A compiler uses automated
reasoning to verify the consistency between each specification and domain knowledge
encoded in OWL+SWRL and Prolog, which are combined to overcome their individual
limitations. If consistency is deduced, then explicit and inferred domain knowledge is
used by the compiler to synthesize a discrete-time Markov chain (DTMC) model and
probabilistic computation tree logic (PCTL) properties from template code. PRISM sub-
sequently verifies the model against the properties. Thus, verification cascades through
several stages of reasoning and analysis.

Our method gains significant functionality from each of its constituent technolo-
gies. OWL supports expressive knowledge representation and efficient reasoning; SWRL
extends OWL with Horn-like rules that can model complex relational structures and
self-referential relationships; Prolog extends OWL+SWRL with the ability to reason ef-
fectively with negation; DTMC introduces the ability to formalize probabilistic behavior;
and PCTL supports the elegant expression of probabilistic properties.

Cascading verification is illustrated with a prototype system that verifies the cor-
rectness of UAV missions. We use the prototype to analyze 58 mission plans, which are
based on real-world mission scenarios developed independently by the Defense Advanced
Research Projects Agency (DARPA) [32] and the Defence Research and Development
Canada (DRDC) agency [33]. UAVs are contextualized by a particularly interesting and
important experimental domain. The stochastic nature of UAV missions led us to se-
lect probabilistic model checking, and in particular the popular tool PRISM [34], for the
verification of UAV mission plans.

As an implementation of cascading verification, our prototype realizes a non-trivial
reduction in the effort required to specify system models and behavioral properties. For
example, from 23 lines of YAML code comprising 92 tokens, cascading verification syn-
thesizes 104 lines of PRISM code comprising 744 tokens and three behavioral properties
(with our prototype, model builders encode mission specifications in a domain-specific
dialect of the human-readable YAML format [35]).

1.2.2 Domain-Specific Modeling for the UAV Domain

When compared with general-purpose programming languages, DSLs provide increased
expressivity and usability for software development in the context of specific applica-
tion domains [36]. A DSL is defined by concrete syntax and an abstract syntax meta-
model [37]. Abstract syntax specifies language concepts and their relationships, while
concrete syntax specifies the notation that represents those concepts. Domain-specific
modeling (DSM) is a model-driven software development process that uses DSLs to en-
code system aspects. Syntax-oriented DSM avoids the behavioral properties of DSL
models and metamodels. Several proposals attempt to specify these properties and

15

Chapter 1. Introduction 1.2. Thesis Contributions

thereby enable the verification of DSL-based systems with model checking and other
formal analysis techniques.

OWL supports the development of domain-specific languages and systems by repre-
senting knowledge in a manner that is unambiguous for humans and computers [38, 39].
For example, OWL can be used to formalize domain knowledge that constitutes the DSL
metamodel [39]. By encompassing OWL ontologies, cascading verification is a method
with the facility to support (probabilistic) model checking for DSL-based systems. In this
context, we exploit OWL to formalize a subset of the UAV domain. The resulting ontol-
ogy underpins, and thereby constrains and structures, the concrete syntax of a YAML
DSL. For each DSL-based mission specification, consistency between concrete syntax
and the abstract syntax metamodel is enforced by a compiler prior to the synthesis of
PRISM code.

Cascading verification encompasses a DSL to enhance the abstraction level of model
and property specifications. Model builders use this DSL to encode system specifications
for probabilistic model checking. If UAV mission specifications encoded with the YAML
DSL are also scheduled for real-world execution (via some process that is outside the
scope of our method), then our prototype implementation of cascading verification will in
essence be supporting DSM for the UAV domain. This observation implies a link between
mission and software development, thereby justifying to some extent our motivation to
analyze complex missions with software verification methods.

1.2.3 Prototype Design and Implementation

To investigate the feasibility of cascading verification, we designed and implemented a
prototype that uses our method to verify UAV missions. DSM structured the develop-
ment of 58 mission plans that underpin both our research effort and the evaluation of our
method and prototype. Mission plans are encoded with the concrete syntax of a bespoke
YAML DSL, which was established for this project. The abstract syntax metamodel of
that DSL forms part of a knowledge base that ultimately comprises semantic, rule-based
and behavioral models, and a set of behavioral properties. Models and properties, which
describe different aspects of the UAV domain, are encoded with OWL+SWRL, Prolog,
and PRISM DTMC and PCTL templates. The reasoning methods supported by OWL,
SWRL and Prolog are combined to form a composite inference mechanism that achieves
OWL-LP integration.

1.2.4 Prototype Evaluation

With the evaluation of our prototype, we aim to demonstrate the utility of cascading
verification in the context of a non-trivial application domain. To this end, the evaluation
is primarily concerned with abstraction and effectiveness. Abstraction is analyzed by
comparing the lines of code (LOC) and numbers of lexical tokens required to specify UAV
missions in YAML against the LOC and tokens that constitute synthesized PRISM code.
We analyze effectiveness by presenting errors that can only be effectively eliminated with

16

Chapter 1. Introduction 1.3. Thesis Outline

the automated synthesis of PRISM artifacts. We also consider the utility of the DTMC
and PCTL artifacts synthesized by our prototype. Finally, we discuss the portability of
cascading verification. While the evaluation presented in this thesis is preliminary, it is
also a substantive analysis supported by two case studies (involving tactical and traffic
surveillance missions) and 58 mission plans (involving mission characteristics borrowed
from DARPA and DRDC).

1.3 Thesis Outline

The remainder of this thesis is structured as follows.

Chapter 2 presents background material on the technologies—including OWL+SWRL,
Prolog, DTMC and PCTL—that constitute cascading verification. This chapter
also provides an overview of the UAV domain and complex UAV missions.

Chapter 3 presents a high-level overview of cascading verification. This chapter also speci-
fies Mission A, an example UAV mission that underpins the discussion in subsequent
chapters.

Chapter 4 describes how domain knowledge can be encoded in OWL+SWRL, Prolog, and
DTMC and PCTL templates. The application of these technologies is illustrated
with respect to a running example (Mission A) and two case studies.

Chapter 5 describes our prototype implementation of cascading verification for the UAV
domain by tracing verification from high-level system specifications, which are en-
coded in a domain-specific YAML dialect, to probabilistic model checking with
PRISM. This chapter also presents the technologies and implemented components
that constitute our prototype.

Chapter 6 evaluates the benefits afforded by our prototype, and the utility and portability
of cascading verification.

Chapter 7 summarizes our contributions to semantic model checking and discusses direc-
tions for future work.

Appendix A presents a framework of equations for establishing the occurrence, and cal-
culating the duration, of threat area incursions committed by UAVs.

Appendix B contains an ontology encoded in OWL+SWRL that formalizes a subset of
the UAV domain. This ontology encompasses both generic mission concepts and
specialized knowledge related to tactical and traffic surveillance missions.

Appendix C contains Prolog rules that augment the ontological domain knowledge en-
coded in OWL+SWRL.

Appendix D contains DTMC and PCTL templates encoded in the programming language
Ruby that formalize probabilistic behavioral knowledge.

Appendix E contains a schema definition for the YAML DSL presented in this thesis.

17

Chapter 1. Introduction 1.3. Thesis Outline

Appendix F contains verification artifacts—including system specifications encoded in
YAML, synthesized DTMC and PCTL artifacts, and PRISM output—for represen-
tative UAV mission plans.

Source code for the software presented in this thesis is available online at: https://

github.com/fokionzervoudakis/mission-verification-framework

18

https://github.com/fokionzervoudakis/mission-verification-framework
https://github.com/fokionzervoudakis/mission-verification-framework

Chapter 2

Background

The research problem outlined in Section 1.1 cannot be addressed with a single tech-
nology. Our solution was to develop a method that integrates OWL+SWRL, Prolog
and DTMC and PCTL. OWL was chosen because it is an established knowledge rep-
resentation formalism, and the ontology specification language recommended by the
W3C [40]. OWL limitations motivate several contending extensions including SWRL,
CARIN, AL-log, DL-safe rules, DL+log, and many others [41]. Hybrid knowledge
representation systems that integrate OWL+SWRL and Prolog have also been pro-
posed [42, 43, 44, 45, 46, 47, 48]. We chose to address OWL limitations with SWRL and
Prolog; the former is an OWL extension approved by the W3C, while the latter is one
of the most prominent logic-based knowledge representation languages.

Probabilistic model checking is supported by various software tools including Prob-
Verus and FMurϕ, which analyze DTMC models; ETMCC and MRMC (the successor
of ETMCC), which analyze DTMC and CTMC models; and LiQuor and Rapture, which
analyze MDP models [23]. But PRISM is, in our opinion, preferable because it sup-
ports both model types, thereby extending the potential of our method and prototype.
PRISM also supports PCTL, a formalism that can express a large class of properties in
an elegant manner.

The remainder of this chapter is structured as follows. Section 2.1 investigates the for-
mal logics underpinning OWL+SWRL and Prolog to determine the advantages and lim-
itations of each formalism, and their compatibility with each other. Section 2.2 presents
model checking, probabilistic model checking, and the DTMC and PCTL formalisms.
Section 2.3 provides an overview of the UAV domain and complex UAV missions with a
focus on UAV performance specifications, mission aspects and mission scenarios. This
chapter is summarized in Section 2.4.

2.1 OWL+SWRL and Prolog

Description logics (DLs) are a family of knowledge representation languages based on
first-order logic (FOL) that can be used to construct logically valid knowledge bases.
DLs describe a domain in terms of concepts or classes (specified as axioms in a TBox),
individuals (specified as assertions in an ABox) and properties or roles [40]. DL concepts

19

Chapter 2. Background 2.1. OWL+SWRL and Prolog

and individuals are roughly comparable to classes and objects, respectively, in object-
oriented programming, while roles are comparable to UML associations.

An interpretation I is a model of a TBox T and an ABox A iff I satisfies all axioms
and assertions in T and A, respectively. More formally, an interpretation I = (∆I , ·I)
comprises a non-empty set ∆I (the domain of I) and a function ·I that maps:

• every concept Ai to a subset AIi of ∆I (AIi ⊆ ∆I);

• every role Ri to a binary relation RIi over ∆I (RIi ⊆ ∆I ×∆I);

• and every individual ai to an element aIi of ∆I (aIi ∈ ∆I).

DLs support inferences that deduce the logical implications of ontological axioms
with respect to concept satisfiability, subsumption, equivalence and disjointness [49].
TBox-supported inference services can be formalized as follows:

• a concept C is satisfiable with respect to a TBox T iff there exists some model I
of T such that CI 6= ∅;

• C is subsumed by a concept B with respect to T iff CI ⊆ BI for all I of T ;

• C is equivalent to B with respect to T iff CI = BI for all I of T ;

• C is disjoint from B with respect to T iff CI ∩BI = ∅ for all I of T .

OWL is an ontology specification language based on the modern description logic
SHOIN (D) [40]. The OWL language structures, and thereby supports the automated
processing of, formalized knowledge. But OWL is constrained by the expressive and rea-
soning limitations inherent in SHOIN (D). For example, OWL can be used to model ob-
ject relations that form tree-like patterns, but not the triangular relationship that exists
between a child, the child’s father, and the father’s brother [41]; nor the self-referential
relationship that references an individual to itself [50]. SWRL addresses some of these
limitations by extending OWL with Horn-like rules [51]. But OWL+SWRL cannot rea-
son effectively with negation [41, 52]. Problems that are intractable in OWL+SWRL
can be addressed with the programming language Prolog [41, 53].

Prolog is based on a FOL subset, which is expressed with first-order Horn clauses
comprising facts, queries and rules. Unlike OWL+SWRL, Prolog can reason effec-
tively with negation. But Prolog is not without limitations: OWL can be translated
into formulas of a general FOL subset, but this subset overlaps only partially with
the FOL subset underpinning Prolog. Consequently, some OWL primitives cannot be
expressed efficiently in Prolog. For example, Prolog does not provide an equivalence
predicate; Prolog’s native syntax cannot encode the OWL primitives disjointWith and
differentIndividualFrom, which denote concept and individual disjointness, respec-
tively; and Prolog cannot encode the OWL primitive oneOf, which defines a concept by
enumerating all individuals belonging to that concept.

20

Chapter 2. Background 2.2. Probabilistic Model Checking

The decision to augment OWL+SWRL with Prolog is in part a consequence of Pro-
log’s ability to support negation as failure, an inference rule that deduces falsity from the
absence of truth. Negation as failure is related to the closed world assumption (CWA),
which presumes a statement to be false unless that statement is known to be true.
CWA is seemingly incompatible with the open world assumption (OWA) underpinning
OWL+SWRL [41]. Contrary to CWA, OWA presumes a statement to be true unless
that statement is known to be false. OWL+SWRL deficiencies with respect to negation
derive from OWA, which is closely related to FOL. As described in the preceding para-
graph, FOL underpins both OWL+SWRL and Prolog. The mechanism that enables
Prolog to support CWA reasoning in the context of FOL is beyond the scope of our
research.

This thesis does not propose a definitive or optimal OWL-LP integration frame-
work. Nor do we attempt to take sides in the ongoing debate regarding OWL-LP inte-
gration [41]. Our exclusive objective is to support domain-specific probabilistic model
checking by combining well established logic systems [41, 54]. We propose to achieve this
objective via loose integration, whereby DL and LP components are connected through
a minimal interface [55].

2.2 Probabilistic Model Checking

As an established formal verification method, model checking has been applied to the
analysis of hardware—including self-timed sequential circuits, a synchronous pipeline
circuit and a bus adapter—and software [23]. Software analysis with model checking
encompasses communication protocols including the ISDN User Part protocol, the IEEE
Futurebus+ standard and the Needham-Schroeder protocol; and safety-critical systems
including NASA’s Mars Pathfinder and Deep Space 1 spacecraft. Traditional model
checking is extended by probabilistic model checking, a method that verifies the behav-
ioral properties of systems affected by stochastic processes [23, 56]. The verification of
these probabilistic systems accommodates a flexible notion of correctness that contrasts
with the absolute correctness verified by traditional model checking [23].

In order to model stochastic processes, which may include message delays, failure
rates and other phenomena, finite-state transition systems are enriched with probabili-
ties. Markov chains are transition systems where the successor of each state is chosen
probabilistically and independently of preceding events (i.e., Markov chains are memo-
ryless). DTMCs are Markov chains that represent time in discrete time-steps. One of
several formal models for probabilistic model checking, a DTMC can be formalized as a
tupleM = (S,P, ιinit, AP, L) where:

• S is a countable set of states;

• P : S × S → [0, 1] is the transition probability function, such that for all states s:∑
s′∈S P(s, s′) = 1;

• ιinit : S → [0, 1] is the initial state distribution, such that
∑

s′∈S ιinit(s) = 1;

21

Chapter 2. Background 2.2. Probabilistic Model Checking

• and L : S → 2AP is a labeling function that maps each state to a subset of AP , a
set of atomic propositions that abstract key characteristics from modeled systems.

Figure 2.1 uses a directed graph, or digraph, to illustrate the (discrete-time) Markov
chain for a six-sided die simulated via a fair coin. Nodes and edges in the digraph
represent states and transitions between those states, respectively. Edges from states s
to s′ are labeled with transition probabilities in the interval [0, 1] if and only if P (s, s′) >

0. Reflexive edges indicate terminating states.

½

½

½

½

½

½

½

½

½

½

½

½

½

½

s9
1

s8
1

s7
1

s12
1

s11
1

s10
1

s0

s1

s2

s3

s4

s5

s6

Figure 2.1: The (discrete-time) Markov chain for a six-sided die simulated via a fair coin [23].

The DTMC in Figure 2.1 comprises an initial node s0—such that ιinit(s0) = 1 and
∀s 6= s0 : ιinit(s) = 0—and twelve states S = {s1, . . . , s12}. Six inner states {s1, . . . , s6}
and six terminating states {s7, . . . , s12} represent the tossing of a coin and possible die
outcomes, repsectively. A Markov chain path, which can be rendered as a directed path
in the underlying digraph, is a non-empty sequence of states π = s0 s1 s2 · · · ∈ Sω such
that ∀i ≥ 0 : P (si, si+1) > 0.

For a given DTMC, the transition probability function P and the initial distribution
ιinit can be represented, respectively, by a transition matrix (P(s, s′))s∈S and an initial
distribution vector (ιinit(s))s∈S . The matrix specifies for each state s ∈ S the probability
P(s, s′) of transitioning from s to s′ in a discrete time-step. The vector specifies for each
state s ∈ S the probability ιinit(s) that the system evolution begins in s. Figure 2.2
provides a partial transition matrix and a partial initial distribution vector for the DTMC
in Figure 2.1.

Probabilistic model checking can be used to verify both quantitative and qualitative
DTMC properties. The former constrain probabilities to specific thresholds, while the

22

Chapter 2. Background 2.3. UAV Missions

P =

s0
s1
s2
s3
s4
...

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 · · ·

0 1
2

1
2 0 0 0 0 0 0 0 · · ·

0 0 0 1
2

1
2 0 0 0 0 0 · · ·

0 0 0 0 0 1
2

1
2 0 0 0 · · ·

0 1
2 0 0 0 0 0 1

2 0 0 · · ·
0 0 0 0 0 0 0 0 1

2
1
2 · · ·

...
...

...
...

...
...

...
...

...
...

. . .

ιinit =

s0
s1
s2
s3
s4
...

1
0
0
0
0
...

Figure 2.2: The partial transition matrix and partial initial distribution vector for a six-sided
die simulated via a fair coin, as illustrated in Figure 2.1.

latter associate desirable and undesirable behavior with probabilities of one and zero,
respectively. PCTL is an extension of the branching-time computation tree logic (CTL),
and a prominent formalism for expressing probabilistic properties. PCTL supports the
probabilistic operator PJ(ϕ), where ϕ specifies a constraint over the set of paths that
constitute a Markov chain, and J specifies a closed interval between one and zero that
bounds the probability of satisfying ϕ.

2.3 UAV Missions

UAVs, or uninhabited aerial systems (UASs), are aircraft capable of either autonomous or
remote controlled flight. Primarily oriented toward (dull, dirty and dangerous) military
missions, UAVs are increasingly relied upon to perform agricultural, scientific, industrial
and law-enforcement tasks over civilian airspace [57, 58, 59].

The UAV domain exhibits complexity at different levels of granularity. UAVs in-
corporate sophisticated payloads, multiple sensors and increasing computational power.
These capabilities could, in time, enable UAV swarms to execute complex multi-task mis-
sions with reduced human supervision [60]. Figure 2.3 illustrates various levels of UAV
autonomy, ranging from remotely guided drones to fully autonomous swarms, which cor-
respond to levels of automation originally proposed by Sheridan and Verplank [3]. For
any given mission, autonomous UAVs may be required to execute tasks synchronously
and in real-time; with local, incomplete and/or noisy knowledge; and in the context of
a dynamic environment [61]. These factors combine to form a complex stochastic state
space that motivates the probabilistic verification of UAV mission plans.

This section provides a concise overview of what is an expansive application domain.
Chapter 4 explores a subset of that domain in greater detail.

2.3.1 UAV Performance Specifications

UAVs can be classified with respect to their performance specifications, and the mission
requirements that those specifications are meant to address [63]. UAV performance
specifications include the following:

23

Chapter 2. Background 2.3. UAV Missions

1955 1965 1975 1985 1995 2005 2015 2025

1

2

3

4

5

6

7

8

9

10

autonomous control levels

remotely guided

real-time health/diagnosis

adaptive to failures and flight conditions

onboard route replan

group coordination

group tactical replan

group tactical goals

distributed control

group strategic goals

fully autonomous swarms

Figure 2.3: A hierarchy of UAV autonomy levels [33, 62].

• ceiling (measured in meters), “an aircraft’s maximum pressure height” [64];

• cost ;

• endurance (hours), “the length of time an aircraft can stay in the air without
refueling” [64];

• engine type;

• payload (kilograms), “the load carried by an aircraft” [64];

• power (kilowatt), “the propulsive power needed to produce thrust” [64];

• range (kilometers), “the maximum distance an aircraft can fly on a given amount
of fuel” [64];

• speed (kilometers per hour);

• weight (kilograms);

• wing loading (kg/m2), “the weight of an aircraft per unit wing area” [64];

• wing span (meters), “a measurement from the tip of one wing to the tip of the
other wing” [64].

Table 2.1 lists the performance specifications for various active (at the time of writing)
military- and commercial-grade UAVs [63, 65, 66, 67]. The range of values encompassed

24

Chapter 2. Background 2.3. UAV Missions

U
A
V

m
an

uf
ac
tu
re
r

ce
ili
ng

en
du

ra
nc
e

pa
yl
oa
d

ra
ng

e
sp
ee
d

w
ei
gh
t

w
in
g
lo
ad
in
g

w
in
g
sp
an

(m
)

(h
r)

(k
g)

(k
m
)

(k
m
/h

)
(k
g)

(k
g/

m
2
)

(m
)

B
Q
M
-1
47

D
ra
go

n
B
A
I
A
er
os
ys
te
m
s

3,
04

8
3

11
14
8

16
0

41
22

2

C
re
ce
re
lle

SA
G
E
M

3,
35

3
6

35
59

24
6

12
0

9
3

H
er
on

(M
ac
ha

tz
-1
)

Is
ra
el

A
er
os
pa

ce
In
du

st
ri
es

10
,0
00

40
22

7
3,
30

0
20

7
1,
08

7
70

17

Lu
na

X
-2
00

0
E
M
T

P
en
zb

er
g

4,
00

0
4

10
80

16
0

40
40

4

M
Q
-1

P
re
da

to
r

G
en
er
al

A
to
m
ic
s

7,
92

0
20

60
0

74
0

21
7

1,
02

0
89

15

M
Q
-8

F
ir
e
Sc
ou

t
N
or
th
ro
p
G
ru
m
m
an

6,
09

6
6

90
40
0

23
1

1,
15

9
69

9

M
Q
-9

R
ea
pe

r
G
en
er
al

A
to
m
ic
s

15
,2
00

24
3,
00

0
1,
50

0
40

5
4,
50

0
83

20

R
Q
-2

P
io
ne
er

A
A
I
C
or
po

ra
ti
on

4,
57

2
5

64
37
3

17
5

12
5

34
5

R
Q
-4

G
lo
ba

lH
aw

k
N
or
th
ro
p
G
ru
m
m
an

20
,0
00

30
90

0
22

,0
00

63
6

11
,6
00

19
9

35

R
Q
-7

Sh
ad

ow
A
A
I
C
or
po

ra
ti
on

4,
27

0
5

75
12
5

20
4

14
9

79
4

R
Q
-1
1
R
av
en

A
er
oV

ir
on

m
en
t

4,
26

7
4

17
10
0

20
4

84
57

3

R
Q
-1
4
D
ra
go

n
E
ye

A
er
oV

ir
on

m
en
t

30
5

1
0

5
65

2
5

1

R
Q
-1
5
N
ep
tu
ne

D
R
S
T
ec
hn

ol
og

ie
s

2,
44

0
4

10
75

15
6

36
74

2

A
R
.D

ro
ne

1.
0

P
ar
ro
t

6–
50

0.
2

0
0.
05

–0
.3
35

18
0.
38

–0
.4
2

n/
a

n/
a

Fa
lc
on

8
A
sc
T
ec

2,
50

0
0.
27

–0
.3

0.
5

0.
15

10
.8
–5

4
0.
8

n/
a

n/
a

X
6

D
ra
ga

nfl
y

2,
43

8
n/

a
0.
5

n/
a

50
1

n/
a

n/
a

T
ab

le
2.

1:
P
er
fo
rm

an
ce

sp
ec
ifi
ca
ti
on

s
fo
r
va
ri
ou

s
m
ili
ta
ry
-a

nd
co
m
m
er
ci
al
-g
ra
de

U
A
V
s
(t
op

an
d
bo

tt
om

,r
es
pe

ct
iv
el
y)

in
cl
ud

in
g
th
e
es
ta
bl
is
he

d
M
Q
-1

P
re
da

to
r

an
d
M
Q
-9

R
ea
pe

r
fr
om

G
en
er
al

A
to
m
ic
s;

an
d
th
e
M
Q
-8

F
ir
e
Sc
ou

t
he
lic
op

te
r
fr
om

N
or
th
ro
p
G
ru
m
m
an

.

25

Chapter 2. Background 2.3. UAV Missions

specification category range UAV

ceiling (m)
low <1000 RQ-14 Dragon Eye

medium 1000–10,000 MQ-1 Predator

high >10,000 RQ-4 Global Hawk

endurance (hr)
low <5 RQ-14 Dragon Eye

medium 5–24 MQ-1 Predator

high >24 RQ-4 Global Hawk

range (km)
low <100 RQ-14 Dragon Eye

medium 100–1500 MQ-1 Predator

high >1500 RQ-4 Global Hawk

weight (kg)

micro <5 RQ-14 Dragon Eye

light 5–50 RQ-15 Neptune

medium 50–200 RQ-11 Raven

heavy 200–2000 MQ-1 Predator

super heavy >2000 RQ-4 Global Hawk

wing loading (kg/m2)
low <50 RQ-14 Dragon Eye

medium 50–100 MQ-1 Predator

high >100 RQ-4 Global Hawk

Table 2.2: Performance specification categories with their respective ranges, and illustrative
UAV classifications.

by each performance specification can be divided into categories [63]. Table 2.2 uses
these categories to classify a subset of the UAVs listed in Table 2.1.

UAVs can also be classified with respect to the following mission aspects, which
categorize mission requirements.

• Aerial delivery and resupply requires UAVs to supply special forces teams covertly
and precisely with small quantities of cargo including batteries, water and leaflets
for psychological operations [62].

• Combat requires highly maneuverable unmanned combat aerial vehicles (UCAVs)
to engage in both air-to-air and air-to-surface combat [63].

• Intelligence, surveillance, target acquisition and reconnaissance (ISTAR) requires
UAVs to enhance situational awareness by collecting battlefield information.

• Multi-purpose requires UAVs to conduct armed reconnaissance against critical and
perishable targets.

• Radar and communication relay requires airborne communication nodes (ACNs) to
ensure information superiority by extending and enhancing tactical intra-theater
communications [62].

26

Chapter 2. Background 2.3. UAV Missions

• Vertical take-off and landing (VTOL) requires UAVs to generate sufficient down-
ward thrust to takeoff, hover and land within very limited space.

The performance specification categories that classify each UAV address a particular
set of mission aspects [63]. For example, the MQ-1 Predator is classified as a medium
altitude (1000–10,000 meters), medium endurance (5–24 hours), medium range (100–
400 km) and heavy weight (200–2000 kg) UAV. These classifications determine the
Predator to be highly-desirable for ISTAR and multi-purpose missions, and unsuitable
for all remaining mission aspects. Table 2.3 classifies the military-grade UAVs listed in
Table 2.1 with a rating scale of zero to four, where zero indicates the inability of a UAV
to perform a specific mission aspect; and values in the range of one to four indicate
the degree of compatibility, from lowest to highest, respectively, between performance
specifications that parameterize UAVs and the performance specifications required by
mission aspects.

delivery UCAV ISTAR multi-purpose ACN

BQM-147 Dragon 0 0 0 0 0

Crecerelle 0 0 0 0 0

Heron (Machatz-1) 0 0 3 0 0

Luna X-2000 0 0 1 0 0

MQ-1 Predator 0 0 3 4 0

MQ-8 Fire Scout 0 0 0 0 2

MQ-9 Reaper 0 0 0 0 0

RQ-2 Pioneer 0 0 1.5 0 0

RQ-4 Global Hawk 0 0 4 0 0

RQ-7 Shadow 0 0 1.5 0 0

RQ-11 Raven 0 0 0 0 0

RQ-14 Dragon Eye 0 0 1 0 0

RQ-15 Neptune 0 0 1 0 0

Table 2.3: UAV classifications with respect to the degree of compatibility between performance
specifications that parameterize UAVs and the performance specifications required by (abbrevi-
ated) mission aspects. Compatibility is rated with a scale of zero to four, where zero indicates
the inability of a UAV to perform a specific mission aspect.

2.3.2 UAV Mission Hierarchy

We distinguish mission aspect from mission; the former is a conceptualization of related
mission requirements, the latter a structured collection of interrelated tasks. Table 2.4
presents a tabular hierarchy of military and commercial UAV missions [68]. High-level
missions, which correspond partially to the mission aspects presented in Section 2.3.1,
include the following:

27

Chapter 2. Background 2.3. UAV Missions

• communication, the relay of voice and data between units, and from units to a
higher command;

• drones, the imitation of fighter aircraft or other objects for the purposes of training
or (enemy) deception;

• extraction, the removal (including search and rescue) of personnel and cargo from
a specified target;

• insertion, the delivery of lethal and non-lethal payloads (for example, emergency
supplies) to a specified target;

• intelligence, the accumulation, analysis and dissemination of enemy, terrain and
weather information in areas of interest or operation;

• reconnaissance, the exploration or inspection of a specific area for the purpose of
information gathering;

• surveillance, the (often clandestine) monitoring of behavior and activities;

• transport, the movement or transfer of personnel and cargo between two locations.

Table 2.4 divides the intelligence, surveillance, and reconnaissance (ISR) mission
space, which is itself a subset of the ISTAR mission aspect, into intelligence/reconnais-
sance and surveillance missions. When considered from a different perspective, airborne
ISR missions can also be divided into mutually exclusive mission segments including
standoff, which requires ISR platforms to respect the sovereign airspace of other nations;
over flight, which authorizes ISR platforms to perform low-risk violations of sovereign
airspace, with or without consent from the nation whose airspace is being violated; and
denied, which exposes ISR platforms to a potentially hostile airspace [62].

UAV missions in general can be divided into planning, management, and re-planning
segments to identify functions that will be assumed by human operators [68]. For exam-
ple, drone mission segments comprise the following tasks:

• mission planning, the use of 1) a scheduling mechanism to plan health and sta-
tus reports, 2) threat area and no-fly zone information to designate the area of
deployment, and 3) a decision support mechanism to designate loiter locations;

• mission management, the use of indicators to monitor the health, status and
progress of a UAV;

• mission re-planning, the use of path planning to re-designate deployment areas.

Given these tasks, drone missions require human operators to supervise path plan-
ning, and to monitor the health and status of UAVs. Transport missions extend drone
missions by requiring operators to monitor the health and status of passengers. Inser-
tion missions, which are more demanding, require operators to supervise path planning;

28

Chapter 2. Background 2.3. UAV Missions

level 1 level 2 level 3

drones

decoy

target practice

communication

extraction

insertion

electronic warfare

electronic attack

electronic protection

payload delivery

lethal

non-lethal

intelligence/reconnaissance

BDA

mapping

target acquisition

dynamic target

static target

target designation

transport

cargo

passengers

surveillance

geospatial surveillance

dynamic target

static target

listening

NBC sensing

Table 2.4: A tabular UAV mission hierarchy, which includes battle damage assessment (BDA)
and nuclear, biological and chemical (NBC) sensing missions.

monitor the health and status of the UAV; monitor the status of weapons; identify tar-
gets; allocate and schedule resources; and negotiate with, and notify, other stakeholders.
Nehme et al. provide a comprehensive discussion on UAV missions, and the function of
human operators with respect to those missions [68].

We have presented UAV missions from multiple perspectives, which support the
analysis of mission scenarios at different levels of granularity (from high-level mission
objectives with tactical and political implications to low-level tasks performed by human

29

Chapter 2. Background 2.3. UAV Missions

operators). Section 2.3.3 and Section 2.3.4 introduce two illustrative mission scenarios.

2.3.3 DARPA Mission Scenario

UAVForge was a collaborative initiative by DARPA and the Space and Naval Warfare
Systems Center Atlantic (SSC Atlantic) [32]. The aim of the initiative was to crowd-
source the design and development of a remotely operated micro-UAV that could be
transported in a rucksack by a single person traveling on foot. Submitted UAVs were
evaluated in the context of a mission scenario, which involved the observation of sus-
picious activities occurring in the vicinity of two nondescript urban buildings. Total
mission time did not exceed five and a half hours including three hours for the observa-
tion task. UAVs were required to demonstrate the following capabilities:

• vertical take-off(s) from, and landing(s) to, different stationary locations;

• safe flight within an altitude window of 5–1000 feet, with up to 15 mile per hour
winds and 40–100°F temperatures;

• point-to-point navigation within 500 feet of defined flight corridors;

• operation within an assigned airspace and avoidance of defined no-fly zones;

• (preferably autonomous) avoidance of static and (potentially) dynamic obstacles—
including buildings, water towers, and trees—during approach into an observation
area;

• landing in an area similar to a rooftop structure containing heating, ventilation,
and air conditioning (HVAC) equipment, communications gear, satellite dishes and
poles;

• identification of a vantage point—up to 2.0 miles beyond line-of-sight from the
starting location—from which to conduct the observation task

• observation by landing on, adhering to, hanging over, and/or hovering above or
below physical structures;

• real-time transmission of images or video depicting static and mobile items of
interest located up to 100 feet from the observing UAV;

• data link frequency management and data transmission in compliance with rules
and authorized frequencies stipulated, respectively, by the Academy of Model Aero-
nautics (AMA) and the U.S. Federal Communications Commission (FCC).

Figure 2.4 illustrates the UAVForge mission scenario, which underpins, and thereby
lends credibility to, the 58 UAV mission plans developed for this project. These plans
in turn support the development and evaluation of our method and prototype.

30

Chapter 2. Background 2.3. UAV Missions

F
ig

u
re

2.
4:

A
n
ill
us
tr
at
io
n
of

D
A
R
PA

’s
U
A
V
Fo

rg
e
m
is
si
on

sc
en
ar
io

[3
2]
.

31

Chapter 2. Background 2.3. UAV Missions

2.3.4 DRDC Mission Scenario

The DRDC produces mission scenarios to further knowledge on the intersection of
UAV/UCAV devices and intelligent adaptive interfaces (IAIs), which are technologies for
enhancing performance in complex socio-technical environments such as multi-UAV op-
erations [69, 70]. Mission scenarios employ a suite of UAV platforms—including medium
altitude long endurance (MALE) UAVs (for example, the MQ-1 Predator1), VTOL Tac-
tical UAVs (VTUAVs), and mini UAVs—to evaluate the impact of IAI constructs on
operations within the UAV domain in Canada [33]. We will focus on a mission sce-
nario involving a fishery patrol (FISHPAT) and a counter-drug operation (CD OP),
which are representative of domestic ISR missions undertaken by Canadian Forces in
peacetime (additional domestic operations include disaster recovery, homeland security,
long-duration law enforcement surveillance, and search and rescue).

The CD OP is coordinated from the Maritime Forces Atlantic (MARLANT) Head-
quarters at Canadian Forces Base (CFB) Halifax with support from HMCS Winnipeg. A
ship of interest (SOI) is initially tracked by US Customs aircraft and a US Coast Guard
vessel. In conjunction with this activity, HMCS Montreal, which carries four VTUAVs,
is conducting a FISHPAT approximately 180 nautical miles south of Burin in Newfound-
land; and HMCS Kingston, which carries two mini UAVs, is conducting a coastal patrol
150 nautical miles southwest of Burin. Mission correctness is complicated by several
factors. Tasked assets operate remotely and at great distances from their home bases.
Extended transit times and accurate, timely intelligence reports are therefore critical to
mission planning, and asset positioning and availability. In addition, the area of opera-
tion (AOO) experiences weather conditions—including frequent and extensive fog, low
cloud cover and precipitation—that limit the utility of electro-optical (EO) and infrared
(IR) sensors.

A timeline of major mission events is divided into seven segments, which are deemed
conducive to IAI experimentation. These segments identify periods of excessive operator
workload resulting from “the simultaneous receipt of sensor data . . . [transmitted by]
multiple UAVs; dynamic re-tasking of UAVs; transfer of UAV control between agencies;
and concurrent control of multiple UAVs.” [33] Mission segments include the following
(all times are Eastern Standard):

0210–0232 hrs: HMCS Montreal and Viper 01 (a MALE UAV) are re-tasked from a
FISHPAT and a training exercise, respectively, to the CD OP. Viper 01 is vectored
into position by a mission control element (MCE) located at CFB Greenwood.
Alpha 51, a manned patrol aircraft, is also re-tasked from a training exercise in
order to track the SOI.

0325–0702 hrs: HMCS Montreal maintains simultaneous control of two VTUAVs
(Bingo 61 and Bingo 62) and receives synthetic aperture radar (SAR) imagery from
Viper 01.

1In contrast to Youngson et al., Arjomandi classifies the MQ-1 Predator as a medium endurance
UAV (see Table 2.2).

32

Chapter 2. Background 2.4. Summary

0750–0812 hrs: Ship board and airborne MCEs—for example, HMCS Kingston and
Alpha 52, respectively—execute multiple UAV payload (i.e., EO, IR, and SAR)
control transfers.

1110–1140 hrs: Alpha 52 controls, dynamically re-tasks and monitors sensor data from
two UAVs (Mike 91 and Mike 92) while receiving SAR imagery from Viper 01. This
involves Alpha 52 launching Mike 91, and assuming control of Mike 92 from HMCS
Kingston.

1200–1432 hrs: HMCS Montreal controls and monitors sensor data from three UAVs
(Bingo 63, Bingo 64 and Mike 92) while receiving SAR imagery from Viper 01. This
involves HMCS Montreal launching Bingo 64 to replace Bingo 63, and assuming
control of Mike 92 from Alpha 52.

1440–1525 hrs: Alpha 52, HMCS Kingston and HMCS Montreal transfer control of
UAVs in conjunction with the surveillance of multiple targets.

1620–1700 hrs: UAV sensor operations and frequency of reporting accelerate in re-
sponse to an increased operational tempo.

As with UAVForge, the DRDC scenario underpins mission plans that in turn support
the development and evaluation of our method and prototype.

2.4 Summary

This chapter presents background material on the technologies that constitute cascading
verification. We also provide a broad, concise overview of the UAV domain to contextu-
alize, and convey the inherent complexity of, UAV missions. Some of the information in
this overview is never exploited by our work; for example, our prototype implementation
of cascading verification does not incorporate the performance specifications and mission
hierarchy presented in Section 2.3.1 and Section 2.3.2, respectively. But this information
is nevertheless pertinent because it has informed our research and development efforts.
The scope of our prototype with respect to its application domain will be elaborated in
subsequent chapters.

33

Chapter 3

Method Overview

Figure 3.1 illustrates a high-level, domain-agnostic schematic of our method and proto-
type. Domain experts, who are the method’s primary stakeholders, use OWL to define
domain concepts and their relationships; SWRL and Prolog to define rules; and PRISM’s
modeling and property specification languages to define, respectively, DTMC and PCTL
templates. Model builders, who are also primary stakeholders, use a high-level DSL to
encode system specifications for model checking. We note that domain knowledge is
formalized once and subsequently reused to support the verification of multiple system
specifications.

compiler
CVC

system specification
DSL script

behavioral
properties

PRISM PCTL

behavioral
model

PRISM DTMC

model
checker
PRISM

results

formal domain
OWL+SWRL ontology,

Prolog rule base,
PRISM templates

pre-
processor

Figure 3.1: A high-level, domain-agnostic schematic of our method and prototype. Rectan-
gular and oval shapes represent data and processes, respectively; and bold and normal text
distinguishes method from prototype, respectively.

3.1 An Example Mission

With our prototype, model builders use a domain-specific YAML dialect to encode mis-
sion plans comprising UAV assets and the action workflows assigned to those assets. The
YAML code in Listing 3.1 specifies Mission A, an example mission that is representative
of the 58 mission plans developed for this project.

Mission A, which is illustrated in Figure 3.2, comprises two Hummingbird assets
(lines 24–28 in Listing 3.1); a single photo surveillance action (lines 19–22), which is a
type of sensor action; and four path segment traversal actions (lines 2–18), which are
kinetic actions. A path segment traversal action instructs the executing UAV to traverse

34

Chapter 3. Method Overview 3.1. An Example Mission

Listing 3.1: YAML code for Mission A
1 Action:
2 TraversePathSegmentAction:
3 - id: TPSA1
4 duration: 60
5 coordinates: [-118.27017 , 34.04572 ,
6 -118.27279 , 34.04284]
7 - id: TPSA2
8 duration: 60
9 coordinates: [-118.2739 , 34.03928]

10 preconditions: [TPSA1 , TPSA3]
11 - id: TPSA3
12 duration: 60
13 coordinates: [-118.26482 , 34.03332 ,
14 -118.27383 , 34.03824]
15 - id: TPSA4
16 duration: 60
17 coordinates: [-118.28204 , 34.0376]
18 preconditions: [TPSA3]
19 PhotoSurveillanceAction:
20 - id: PSA5
21 duration: 50
22 preconditions: [TPSA3]
23 Asset:
24 Hummingbird:
25 - id: H1
26 actions: [TPSA1 , TPSA2]
27 - id: H2
28 actions: [TPSA3 , TPSA4 , PSA5]

a path between two waypoints. For each such action, the latitudes and longitudes of the
delineating waypoints are stored in an array and indexed in succession; in other words,
the latitude of waypoint one is followed by the longitude of waypoint one, which is in
turn followed by the latitude of waypoint two, etc. We note that the end coordinates of
an action a constitute the start coordinates of an action b if a precedes b, and both a
and b are assigned to the same asset; for example, the end coordinates of action TPSA1

(line 6) constitute the implied start coordinates of action TPSA2, which succeeds TPSA1
in the sequence of kinetic actions assigned to asset H1 (line 26).

With the exception of asset endurance, mission concepts specified in Listing 3.1
correspond directly to the elements illustrated in Figure 3.2. Asset endurance can be
optionally omitted from mission specifications, and was therefore omitted for assets H1
and H2 in Mission A, because the default endurance for Hummingbird assets is specified
in an OWL+SWRL ontology, which will be presented in Chapter 4. The following
section describes the mechanism that integrates mission specifications with ontological
knowledge.

35

Chapter 3. Method Overview 3.2. From Specification to Verification

H1

TPSA1

endurance=120

duration=60

duration=60TPSA2

H2

TPSA3

endurance=120

duration=60

duration=60TPSA4

duration=50PSA5

start

Figure 3.2: An illustration of Mission A, with red arrows representing action dependencies and
horizontal lines representing the passage of time. Color coded circles delineate the operation and
execution of assets and actions, respectively, and group actions and the assets to which those
actions are assigned.

3.2 From Specification to Verification

For any given mission specification, a cascading verification compiler (CVC) synthesizes
both the DTMC and PCTL artifacts corresponding to that specification. Artifacts are
synthesized as follows:

1. Mission specifications encoded in YAML are transformed by the CVC into ABox
assertions. During this preprocessing phase, the CVC uses geographic coordi-
nates from mission specifications, and data (pertaining to operational environ-
ments) from external sources, to perform geodetic calculations.1 The equations
that support these calculations are hard-coded in the CVC; for example, the com-
piler comprises geodesic equations that establish the occurrence, and calculate the
duration, of threat area incursions committed by UAVs (these equations will be
presented in Appendix A). Geographic information resulting from preprocessing is
integrated with the generated ABox.

2. We use Pellet, a sound and complete semantic reasoner [71], to verify the generated
ABox against the TBox defined by domain experts. In doing so, the reasoner en-
sures that mission constructs encoded in YAML are consistent with OWL+SWRL
axioms. Inconsistencies between TBox and ABox signify an invalid mission spec-
ification, which causes the compilation process to terminate with an error. If

1Geodetics is a branch of applied mathematics that deals with the size and shape of the Earth.

36

Chapter 3. Method Overview 3.2. From Specification to Verification

consistency is deduced, then the reasoner proceeds to generate inferences from ex-
plicitly encoded domain knowledge; for example, if geodetic calculations establish
the occurrence of a threat area incursion, then the asset committing that incursion
is inferred to be a threatened asset.

3. Inferred ontological knowledge is transformed by the CVC into Prolog facts. The
compiler for SWI-Prolog—an open source implementation of Prolog [72]—inputs
the generated fact-base, and the Prolog rule-base defined by domain experts, and
proceeds to generate inferences; for example, the last kinetic action in an action
workflow is inferred to be a default terminal action. The CVC uses Prolog infer-
ences, in conjunction with explicit and inferred ontological knowledge, to synthesize
DTMC and PCTL artifacts from predefined templates.

PRISM inputs the synthesized artifacts, verifies the system model against its desired
behavioral properties, and returns logical and probabilistic results from the verification.
If the results are deemed acceptable by the model builder(s), then the mission can be
scheduled for real-world execution (via some process that is outside the scope of our
method).

In summary, cascading verification is a formal method that abstracts model checking
for specific application domains. For a given domain of interest, experts in that domain
implement a bespoke CVC once; and model builders use the implemented CVC to easily
verify multiple system specifications.

We proceed to elaborate a subset of the UAV domain, which encompasses the con-
cepts that constitute Mission A.

37

Chapter 4

Domain Modeling

This chapter describes the process of encoding domain knowledge in OWL+SWRL, Pro-
log, and DTMC and PCTL templates. The application of these technologies is illustrated
with respect to the UAV domain and, in particular, Mission A, the example mission pre-
sented in Section 3.1.

The remainder of this chapter is structured as follows. Section 4.1 uses OWL to
formalize a subset of the UAV domain. The discussion is contextualized by case studies
involving tactical and traffic surveillance missions, which are presented in Section 4.1.2
and Section 4.1.3, respectively. Section 4.2 uses SWRL to integrate complex relational
structures into OWL, and Prolog to encode knowledge that can support effective reason-
ing with negation. Section 4.3 uses DTMC and PCTL formalisms to encode, respectively,
probabilistic behavior and properties. DTMC and PCTL code is abstracted and pre-
sented in templates that support the synthesis of PRISM artifacts. Section 4.4 and
Section 4.5 present related work and a summary of this chapter, respectively.

4.1 Semantic Modeling

With cascading verification, domain experts use OWL+SWRL ontologies to formally
define domain concepts and their relationships. For our prototype, we have developed a
complex missions ontology (CEMO) that formalizes a subset of the UAV domain. Do-
main concepts are integrated into a modular ontology architecture that supports flexible
development and reuse [73, 74]. The ontology development process utilized prominent
Semantic Web technologies including the Protégé ontology editor, the Pellet reasoner
and the Semantic Web Stack, which comprises OWL+SWRL.

4.1.1 Building an OWL Ontology

Figure 4.1 illustrates CEMO’s class hierarchy, where each OWL class represents a group-
ing of individuals with similar characteristics [75]. Five classes—Action, Area, Asset,
Mission and Waypoint—inherit directly from the built-in OWL class Thing, which rep-
resents the set of all individuals. (The built-in OWL class Nothing represents the empty
set.) These concepts are accessible to all ontology modules that extend CEMO.

38

Chapter 4. Domain Modeling 4.1. Semantic Modeling

Figure 4.1: CEMO’s class hierarchy as presented by the Protégé ontology editor.

The OWL code in Listing 4.1 uses Manchester OWL syntax—a human-friendly on-
tology representation language [76]—to formally defines class Asset, which is comprised
in Mission A. Lines 2–5 specify four OWL properties, which are constructs for describing
relationships. In particular, an OWL property with specified domain and range links
individuals from the domain to individuals or data values from the range. The two main
OWL property types are object properties and datatype properties. The former describe
relationships between two individuals while the latter describe relationships between
individuals and data values.

Listing 4.1: OWL code for class Asset

1 Class: Asset

2 SubClassOf: hasAction some KineticAction ,

3 hasCostValue some xsd:integer ,

4 hasEnduranceInSeconds some xsd:integer ,

5 hasSpeedInKilometersPerHour some xsd:integer

Lines 1 and 2 in Listing 4.1 specify that every member of class Asset (the domain)
must be associated with a member of class KineticAction (the range) via an instance
of the object property hasAction. (For brevity, the reminder of this thesis will refer
to property instances simply as properties.) Members of class Asset are also associated
with datatype properties describing asset cost, endurance and speed (lines 3–5).

Class Asset is extended by class NamedAsset, which is in turn extended by classes
ARDrone and Hummingbird. The latter classes represent quadcopter UAVs manufac-
tured by Parrot USA and Ascending Technologies, respectively, that have informed our
research. The OWL code in Listing 4.2 formally defines class Hummingbird, which is
comprised in Mission A.

Lines 3–5 in Listing 4.2 associate members of class Hummingbird with three datatype
properties—hasCostValue, hasEnduranceInSeconds and hasSpeedInKilometersPer-

Hour. These properties are inherited from classes NamedAsset and, ultimately, Asset.
Unlike class Asset, the ranges of the datatype properties that parameterize members of

39

http://ardrone2.parrot.com/usa/
http://www.asctec.de/

Chapter 4. Domain Modeling 4.1. Semantic Modeling

Listing 4.2: OWL code for class Hummingbird
1 Class: Hummingbird
2 SubClassOf: NamedAsset ,
3 hasCostValue some xsd:integer[>= 5000],
4 hasEnduranceInSeconds some xsd:integer[<= 120],
5 hasSpeedInKilometersPerHour some xsd:integer[<= 50]
6 DisjointWith: ARDrone

class Hummingbird restrict possible data values. Line 6 specifies that classes ARDrone and
Hummingbird constitute disjoint sets of individuals. Consequently, and appropriately, a
member of class ARDrone cannot also be a member of class Hummingbird.

During a mission, assets execute actions that may be associated with other actions
via preconditions. An action a is a precondition to an action b if the end of a must
precede the beginning of b in the sequence of actions that constitute an action workflow.
Mission A comprises three preconditions (lines 10, 18 and 22 in Listing 3.1), where each
precondition relates actions assigned to the same asset. A fourth precondition (line 10)
associates action TPSA2 with action TPSA3, thereby coupling the behavior of the assets to
which those actions are assigned (H1 and H2, respectively). CEMO encodes preconditions
with the object property hasPrecondition, which is formally defined in Listing 4.3.

Listing 4.3: OWL code for the object property hasPrecondition

1 ObjectProperty: hasPrecondition

2 Characteristics: Transitive

3 Domain: Action

4 Range: Action

5 InverseOf: isPreconditionTo

Line 2 in Listing 4.3 declares the object property hasPrecondition to be transitive.
Transitivity is one of several property characteristics that can be used to qualify object
properties. Given transitivity, if an action a is related via hasPrecondition to an ac-
tion b, and b is related to an action c via the same property, then we can infer that a is re-
lated via hasPrecondition to c. In addition, hasPrecondition is inverted by the object
property isPreconditionTo (line 5). The inverse relation between hasPrecondition

and isPreconditionTo implies that if an action a is related via hasPrecondition to
an action b, then b is related to a via isPreconditionTo. Figure 4.2 and Figure 4.3
illustrate transitivity and inversion, respectively.

Because preconditions associate actions with other actions, class Action consti-
tutes both the domain and range of the object property hasPrecondition (lines 3
and 4, respectively, in Listing 4.3). Class Action is extended by class KineticAction,
whose members are associated with a data property describing action duration. Class
KineticAction is in turn extended by classes HoverAction and TraversePathSegment-

Action. The OWL code in Listing 4.4 formally defines class TraversePathSegment-

Action, which is comprised in Mission A. Lines 3–4 in Listing 4.4 specify that every

40

Chapter 4. Domain Modeling 4.1. Semantic Modeling

hasPrecondition

hasPrecondition

hasPrecondition

A

B

C

Figure 4.2: An example of the transitive property characteristic that qualifies the object
property hasPrecondition. The dashed line represents an inferred relationship.

hasPrecondition

isPreconditionTo

A

B

Figure 4.3: An example of inversion with respect to the object properties hasPrecondition
and isPreconditionTo. The dashed line represents an inferred relationship.

member of class TraversePathSegmentAction must be associated via the object prop-
erties hasStartPoint and hasEndpoint with Waypoint individuals that designate the
geographical start points and endpoints, respectively, of path segment traversal actions
(hover actions are also designated geographically by waypoints).

Listing 4.4: OWL code for class TraversePathSegmentAction

1 Class: TraversePathSegmentAction

2 SubClassOf: KineticAction ,

3 hasStartPoint some Waypoint ,

4 hasEndpoint some Waypoint

5 DisjointWith: HoverAction

Class Action is also extended by class SensorAction, which is in turn extended by
class PhotoSurveillanceAction. The OWL code in Listing 4.5 formally defines class
PhotoSurveillanceAction, which is comprised in Mission A.

Listing 4.5: OWL code for class PhotoSurveillanceAction

1 Class: PhotoSurveillanceAction

2 SubClassOf: SensorAction ,

3 hasDurationInSeconds some xsd:integer ,

4 hasPrecondition only Action

The preceding code contains the keywords some (line 3) and only (line 4), which
represent, respectively, existential and universal restrictions in OWL. With regard to
object properties:

41

Chapter 4. Domain Modeling 4.1. Semantic Modeling

• Existential restrictions describe classes of individuals that must participate in at
least one relationship, along a specified property, with individuals that are members
of a specified class [77].

• Universal restrictions describe classes of individuals that may, and can only, partic-
ipate in relationships along a specified property with individuals that are members
of a specified class.

Existential and universal restrictions, which can also be applied to datatype proper-
ties, are denoted in predicate logic by the existential (∃) and universal (∀) quantifiers,
respectively.

4.1.2 Modeling Tactical Missions

During tactical missions, assets may be required to commit threat area incursions,
thereby compelling mission developers to consider the impact of asset survivability on
the probability of mission success. The United States Department of Defense (USDOD)
defines survivability as “the capability of a system . . . to avoid or withstand a man-made
hostile environment without suffering an abortive impairment in its ability to accomplish
its designated mission.” [78] To accommodate tactical mission requirements, we have de-
veloped a complex tactical missions ontology (Tactical-CEMO) that extends CEMO.

Figure 4.4 illustrates Tactical-CEMO’s multiple inheritance class hierarchy; for ex-
ample, class DirectThreatAreaHoverAction extends classes HoverAction and Threat-

AreaAction. Classes describing tactical missions are highlighted in bold and thereby
differentiate from classes encoded in CEMO. Used exclusively to support automated
reasoning, tactical concepts are not available to mission developers via the YAML DSL.

We define class ThreatArea in Tactical-CEMO and specify that any waypoint related
to a threat area be inferred, by Pellet or other semantic reasoners, a member of class
ThreatAreaWaypoint. (The geographic information that relates waypoints to threat
areas is determined by the CVC during preprocessing, as described in Chapter 3.) To
enable the inference of class membership, class ThreatAreaWaypoint must be defined
by domain experts using necessary and sufficient conditions [77]. We contrast necessary
and sufficient conditions with necessary conditions, which describe all classes encoded
in CEMO (as described in Section 4.1.1). These classes are known as primitive, and
cannot be used to infer class membership. For example, because class Asset is described
using only necessary conditions, an individual that is a member of class Asset must
satisfy those conditions. However, class membership cannot be inferred for any (random)
individual that satisfies the conditions describing class Asset. Figure 4.5 illustrates the
type of reasoning supported by necessary conditions.

Unlike primitive classes, a defined class, which is a class comprising necessary and
sufficient conditions, can be used to infer class membership. For example, because class
ThreatAreaWaypoint is defined using necessary and sufficient conditions, class mem-
bership can be inferred for any (random) individual that satisfies those conditions. As

42

Chapter 4. Domain Modeling 4.1. Semantic Modeling

Figure 4.4: Tactical-CEMO’s multiple inheritance class hierarchy as presented by the Protégé
ontology editor.

with primitive classes, the conditions comprised by class ThreatAreaWaypoint must be
satisfied by its members. In other words, class ThreatAreaWaypoint is defined using
conditions that are necessary for, and sufficient to infer, class membership. Figure 4.6
illustrates the type of reasoning supported by necessary and sufficient conditions. The
OWL code in Listing 4.6 formally defines class ThreatAreaWaypoint, with the keyword
EquivalentTo establishing necessary and sufficient conditions for that class.

Listing 4.6: OWL code for class ThreatAreaWaypoint

1 Class: ThreatAreaWaypoint

2 EquivalentTo: Waypoint

3 and (isWaypointOf some ThreatArea)

Since members of class Waypoint are associated with HoverAction and Traverse-

PathSegmentAction individuals (see Section 4.1.1), we specify that any kinetic action
related to a threat area waypoint be inferred a member of class ThreatAreaAction. We
assert the qualitative difference between threat area actions that initiate or prolong an in-
cursion and threat area actions that terminate an incursion, and specify that the former
be inferred members of class DirectThreatAreaAction. We further assert the qual-
itative difference between direct threat area actions (DTAAs) that execute exclusively,

43

Chapter 4. Domain Modeling 4.1. Semantic Modeling

conditionNamedClass

condition

condition

condition

condition

Necessary Conditions

implies

Figure 4.5: Necessary conditions, which describe primitive classes, cannot be used to infer class
membership [77]. Contrast with Figure 4.6, which illustrates inference underpinned by necessary
and sufficient conditions.

conditionNamedClass

condition

condition

condition

condition

Necessary and Sufficient Conditions

implies

Figure 4.6: Necessary and sufficient conditions, which are comprised by defined classes, can
be used to infer class membership [77]. Contrast with Figure 4.5, which illustrates inference
underpinned by necessary conditions.

thereby endangering an asset seemingly without purpose, and those DTAAs that execute
concurrently with one or more sensor actions. Given these assertions, we specify that
assets with at least one assigned DTAA be inferred members of class ThreatenedAsset.
We also specify that a threatened asset with assigned DTAAs be inferred a member of
class ValidAsset, if at least one of those DTAAs executes concurrently with at least one
sensor action assigned to the same asset. The OWL code in Listing 4.7 formally defines
class ValidAsset.

Listing 4.7: OWL code for class ValidAsset

1 Class: ValidAsset

2 EquivalentTo: ThreatenedAsset

3 and (hasAction some

4 (SensorAction

5 and (hasSibling some DirectThreatAreaAction)))

The preceding code contains a nested class expression that is disambiguated with
parentheses. This class expression can be understood as follows: A member of class
ValidAsset is equivalent to a threatened asset associated, via the object property
hasAction, to a member of class SensorAction that is in turn associated, via the object
property hasSibling, to a member of class DirectThreatAreaAction. The OWL code
in Listing 4.8 formally defines hasSibling.

Lines 2 and 3 in Listing 4.8 qualify the object property hasSibling with the asym-
metric and irreflexive property characteristics, respectively (the transitive property char-

44

Chapter 4. Domain Modeling 4.1. Semantic Modeling

Listing 4.8: OWL code for the object property hasSibling

1 ObjectProperty: hasSibling
2 Characteristics: Asymmetric ,
3 Irreflexive
4 Domain: SensorAction
5 Range: KineticAction

acteristic was introduced in Section 4.1.1). Because hasSibling is asymmetric1, if an
action a is related via hasSibling to an action b, then b cannot be related to a via the
same property. Because hasSibling is irreflexive, if an action a is related via hasSibling
to an action b, then a and b cannot be the same action. Figure 4.7 illustrates the asym-
metric and irreflexive property characteristics that qualify hasSibling.

C hasSibling

hasSibling

hasSibling

A

B

Figure 4.7: An example of the asymmetric (left) and irreflexive (right) property characteristics
that qualify the object property hasSibling. The dashed lines represent inferred relationships.

Classes ThreatenedAsset and ValidAsset provide an initial mission verification
mechanism in the context of our method. Specifically, a mission specification is incon-
sistent if it contains threatened assets that are not also valid assets. Once the validity
of threatened assets has been inferred, the CVC synthesizes DTMC models that enable
PRISM to compute the probability of survival for those assets. Accordingly, synthesized
models encompass probabilities describing the vulnerability of real-world assets. The
USDOD defines vulnerability as “the characteristic of a system that causes it to suf-
fer a definite degradation . . . [resulting from exposure] to a defined level of effects in a
man-made hostile environment.” [78] Vulnerability probabilities are derived from classes
HighVulnerabilityAsset and LowVulnerabilityAsset, which extend class Asset. The
OWL code in Listing 4.9 formally defines class HighVulnerabilityAsset.

Similar to class Hummingbird, the ranges of the datatype properties that parameterize
members of class HighVulnerabilityAsset, including hasCostValue and hasSpeedIn-

KilometersPerHour (lines 3 and 4, respectively, in Listing 4.9), restrict possible datatype
values. The datatype property hasEnduranceInSeconds, which is inherited from class
Asset (line 2), is not calibrated in a similar manner. The decision to calibrate two of the
three inherited datatype properties implies that the calibrated properties are more likely
to impact asset vulnerability. We note that, unlike class Hummingbird, the datatype
properties in Listing 4.9 establish necessary and sufficient conditions (lines 1–4), and

1While potentially counterintuitive, an asymmetric sibling relationship is nevertheless consistent in
the context of our domain model.

45

Chapter 4. Domain Modeling 4.1. Semantic Modeling

Listing 4.9: OWL code for class HighVulnerabilityAsset
1 Class: HighVulnerabilityAsset
2 EquivalentTo: Asset
3 and (hasCostValue some xsd:integer[<= 1000])
4 and (hasSpeedInKilometersPerHour some xsd:integer[<= 20])
5 SubClassOf:
6 hasRiskAcceptabilityFactor value HighRiskAcceptabilityFactor ,
7 hasVulnerability value HighVulnerability
8 DisjointWith: LowVulnerabilityAsset

thereby support the inference of membership for class HighVulnerabilityAsset.

Lines 6 and 7 in Listing 4.9 use the keyword value to declare hasValue restrictions,
which describe classes of individuals that must participate in at least one relationship,
along a specified property, with a specific individual [77]. In particular, line 6 specifies
that every member of class HighVulnerabilityAsset must be associated with the indi-
vidual HighRiskAcceptabilityFactor via the object property hasRiskAcceptability-

Factor (the concept of risk acceptability will be elaborated in Section 4.3.2). Line 7
specifies that every member of class HighVulnerabilityAsset must be associated with
the individual HighVulnerability via the object property hasVulnerability. The in-
dividuals HighRiskAcceptabilityFactor and HighVulnerability belong, respectively,
to the enumerated classes RiskAcceptabilityFactor and Vulnerability, which extend
the generic class DomainConcept. An enumerated class is defined by listing precisely the
individuals that are members of that class. The OWL code in Listing 4.10 formally
defines class Vulnerability.

Listing 4.10: OWL code for class Vulnerability

1 Class: Vulnerability

2 EquivalentTo: DomainConcept

3 and ({ HighVulnerability , LowVulnerability })

4 DisjointWith: RiskAcceptabilityFactor

Line 3 in Listing 4.10 specifies two individuals—HighVulnerability and LowVul-

nerability—that constitute class Vulnerability. The OWL code in Listing 4.11 for-
mally defines the individual HighVulnerability, which is associated with a datatype
property describing a double-precision number (line 3). The value of this number is used
by the CVC to calculate probabilities that are ultimately integrated into DTMC models
representing high vulnerability assets. These modules enable PRISM to compute the
probability of survival for high vulnerability assets during threat area incursions. The
synthesis process will be elaborated in Section 4.3.

Listing 4.11: OWL code for the individual HighVulnerability

1 Individual: HighVulnerability

2 Types: Vulnerability

3 Facts: hasDoubleValue 0.1

46

Chapter 4. Domain Modeling 4.1. Semantic Modeling

The double-precision number encapsulated by the individual HighVulnerability
is the raison d’être for that individual’s existence in our ontology. In other words,
because datatype properties link classes to data ranges (for example, class Hummingbird)
and individuals to data values, we were compelled to create classes of individuals that
could encapsulate risk acceptability and asset vulnerability values. And because the
number of individuals per class was finite, enumeration enabled us to explicitly declare
the completeness of those classes, and thereby create a finite set of risk acceptability and
asset vulnerability grades.

The preceding discussion regarding class HighVulnerabilityAsset applies equally
to class LowVulnerabilityAsset, which is formally defined in Listing 4.12. Datatype
and object property ranges differentiate the two classes.

Listing 4.12: OWL code for class LowVulnerabilityAsset

1 Class: LowVulnerabilityAsset

2 EquivalentTo: Asset

3 and (hasCostValue some xsd:integer[>= 3000])

4 and (hasSpeedInKilometersPerHour some xsd:integer[<= 60])

5 SubClassOf:

6 hasRiskAcceptabilityFactor value LowRiskAcceptabilityFactor

7 hasVulnerability value LowVulnerability ,

8 DisjointWith: HighVulnerabilityAsset

4.1.3 Modeling Traffic Surveillance Missions

Having investigated tactical missions comprising threat area incursions, we considered
a second case study involving traffic surveillance missions. In this scenario, which is
conceptually similar to work presented by Heintz et al. [59], deployed UAVs are required
to monitor freeway traffic and notify subscribers if traffic speeds exceed minimum and
nominal thresholds. To accommodate traffic surveillance mission requirements, we have
developed a complex traffic surveillance missions ontology (Traffic-CEMO) that extends
CEMO.

Figure 4.8 illustrates Traffic-CEMO’s class hierarchy. Classes describing traffic sur-
veillance missions are highlighted in bold, and thereby differentiate from classes encoded
in CEMO. Also highlighted in bold are classes defined in CEMO that have been declared
disjoint from classes defined in Traffic-CEMO. Used mainly to support automated rea-
soning, traffic surveillance concepts are generally not available to mission developers via
the YAML DSL. Concepts available to mission developers will be highlighted in the
analysis that follows.

We define class FreewaySection in Traffic-CEMO and specify that two-lane freeway
sections with high access ramp frequency be inferred, by Pellet or other semantic reason-
ers, members of FreewaySection subclass LowSpeedFreewaySection. We also specify
that three-lane freeway sections with low access ramp frequency be inferred members
of FreewaySection subclass HighSpeedFreewaySection. These inferred relationships

47

Chapter 4. Domain Modeling 4.1. Semantic Modeling

Figure 4.8: Traffic-CEMO’s class hierarchy as presented by the Protégé ontology editor.

formalize the correlation between off-ramp over-saturation and freeway bottlenecks that
disrupt traffic discharge rates [79]. The OWL code in Listing 4.13 formally defines class
FreewaySection.

Listing 4.13: OWL code for class FreewaySection

1 Class: FreewaySection

2 SubClassOf: Road ,

3 approachesMinimumSpeed some xsd:double ,

4 exceedsMinimumSpeed some xsd:double ,

5 exceedsNominalSpeed some xsd:double ,

6 hasLaneClassification some LaneClassification ,

7 hasRampFrequency some RampFrequency

Line 3 in Listing 4.13 associates members of class FreewaySection with the datatype
property approachesMinimumSpeed, which describes the potential for minimum traffic
speeds to be approached during the operation of freeway sections. The datatype proper-
ties exceedsMinimumSpeed (line 4) and exceedsNominalSpeed (line 5) likewise describe
the potential for minimum and nominal traffic speeds, respectively, to be exceeded dur-
ing the operation of freeway sections. Lines 6 and 7 specify that every member of class
FreewaySection must be associated, via the object properties hasLaneClassification
and hasRampFrequency, with members of classes LaneClassification and RampFre-

48

Chapter 4. Domain Modeling 4.1. Semantic Modeling

quency, respectively. These classes extend class ValuePartition, which represents the
value partition design pattern [77].

We use value partitions to describe the concepts of lane classification and on/off ramp
frequency, and to restrict the range of possible values for those concepts to an exhaustive
list of mutually exclusive choices. For example, class LaneClassification restricts the
range of the object property hasLaneClassification to classes TwoLaneClassifica-

tion and ThreeLaneClassification. The OWL code in Listing 4.14 formally defines
class LaneClassification.

Listing 4.14: OWL code for class LaneClassification

1 Class: LaneClassification

2 EquivalentTo: TwoLaneClassification

3 or ThreeLaneClassification

4 SubClassOf: ValuePartition

5 DisjointWith: RampFrequency

Lines 1–3 in Listing 4.14 specify a covering axiom. This type of axiom comprises
a set of classes that cover a common superclass by virtue of their union; for exam-
ple, LaneClassification subtypes TwoLaneClassification and ThreeLaneClassifi-

cation form a union (lines 2 and 3) that covers their common superclass. We note
that the union of classes TwoLaneClassification and ThreeLaneClassification es-
tablishes necessary and sufficient conditions for class LaneClassification (necessary
and sufficient conditions were described in Section 4.1.2). The OWL code in Listing 4.15
formally defines class TwoLaneClassification.

Listing 4.15: OWL code for class TwoLaneClassification

1 Class: TwoLaneClassification

2 SubClassOf: LaneClassification

3 DisjointWith: ThreeLaneClassification

Line 3 in Listing 4.15 specifies that classes TwoLaneClassification and ThreeLane-

Classification constitute disjoint sets of individuals. Because class LaneClassifica-
tion is covered by the union of its two subclasses, and because those subclasses are
disjoint, a member of class LaneClassification must also be a member of either
TwoLaneClassification or ThreeLaneClassification. As with enumeration, which
was described in Section 4.1.2, value partitions enabled us to create a finite set of pos-
sible values (in this case, lane classification and ramp frequency grades). The value
partitions that describe lane classification and ramp frequency are used to parameterize
FreewaySection subtypes including classes LowSpeedFreewaySection and HighSpeed-

FreewaySection. The OWL code in Listing 4.16 formally defines the latter class.

Lines 1–4 in Listing 4.16 use value partitions to establish necessary and sufficient con-
ditions, and thereby support the inference of membership for class HighSpeedFreeway-
Section. Unlike class FreewaySection, the ranges of the datatype properties that pa-
rameterize members of class HighSpeedFreewaySection (lines 5–7) restrict possible data

49

Chapter 4. Domain Modeling 4.1. Semantic Modeling

Listing 4.16: OWL code for class HighSpeedFreewaySection
1 Class: HighSpeedFreewaySection
2 EquivalentTo: FreewaySection
3 and (hasLaneClassification some ThreeLaneClassification)
4 and (hasRampFrequency some LowRampFrequency)
5 SubClassOf: approachesMinimumSpeed some xsd:double[>= 0.2],
6 exceedsMinimumSpeed some xsd:double[>= 0.9],
7 exceedsNominalSpeed some xsd:double[>= 0.5]
8 DisjointWith: LowSpeedFreewaySection

values. These data values specify probabilities for traffic speed fluctuations during the
operation of high-speed freeway sections. Traffic speed fluctuations affect the optimal
surveillance of freeway traffic by airborne light detection and ranging (LIDAR) systems.

LIDAR is an optical remote sensing technology that can observe targets from a dis-
tance of 15 kilometers (in air) with sub-millimeter resolution [80]. The integration of
LIDAR systems into rotary wing UAV platforms could enable, for example, a single hov-
ering UAV with a five kilometer altitude ceiling to monitor traffic over an area spanning
approximately 630 square kilometers. In the context of an urban environment, LIDAR-
equipped UAVs offer a flexible and optimizable alternative to land-based cameras for the
simultaneous surveillance of multiple freeway sections. The OWL code in Listing 4.17
models the concept of LIDAR systems by formally defining class LidarAction as a sensor
action subtype.

Listing 4.17: OWL code for class LidarAction

1 Class: LidarAction

2 SubClassOf: SensorAction ,

3 hasIntervalInSeconds some xsd:integer ,

4 hasIntervalCalibrationFactor some IntervalCalibrationFactor ,

5 isConcurrentWith some HoverAction

6 DisjointWith: PhotoSurveillanceAction

The object property hasIntervalCalibrationFactor (line 4 in Listing 4.17) links
LIDAR actions with the individuals HighIntervalCalibrationFactor and LowInter-

valCalibrationFactor, which constitute the enumerated class IntervalCalibration-
Factor. Members of class IntervalCalibrationFactor are associated with a datatype
property describing an integer. The value of this integer, which is ultimately integrated
into DTMC models that simulate LIDAR actions, calibrates intervals between LIDAR
readings. LIDAR intervals are specified by mission developers with a construct from our
DSL; the interval type that verifies mission plans is specified by the datatype property
hasIntervalInSeconds (line 5). Every member of class LidarAction is also associated,
via the object property isConcurrentWith (line 3), with a HoverAction individual. This
relationship is specified by mission developers via the YAML DSL.

Class LidarAction is extended by class HighSpeedLidarAction, which is formally
defined by the OWL code in Listing 4.18. LidarAction subtype individuals are associ-

50

Chapter 4. Domain Modeling 4.1. Semantic Modeling

ated with members of class HighSpeedFreewaySection via the object property monitors

(line 3). Given the necessary and sufficient conditions established in Listing 4.18 (lines 1–
3), LIDAR actions that monitor high-speed freeway sections are inferred members of
class HighSpeedLidarAction. Thus FreewaySection subtypes support inferences that
determine the classification of LidarAction individuals. The object property monitors,
which encompasses the concurrency relationship specified by mission developers, will be
elaborated in Section 4.2.

Listing 4.18: OWL code for class HighSpeedLidarAction

1 Class: HighSpeedLidarAction

2 EquivalentTo: LidarAction

3 and (monitors some HighSpeedFreewaySection)

4 SubClassOf: hasIntervalCalibrationFactor value

HighIntervalCalibrationFactor

5 DisjointWith: LowSpeedLidarAction

Line 4 in Listing 4.18 links HighSpeedLidarAction individuals with a high interval
calibration factor, which is integrated into DTMC models representing high-speed LIDAR
actions. Thus LidarAction classifications support the synthesis of DTMC artifacts
that model the behavior of LIDAR action individuals. The discussion regarding class
HighSpeedLidarAction applies equally to class LowSpeedLidarAction, which is formally
defined in Listing 4.19. Object property ranges differentiate the two classes.

Listing 4.19: OWL code for class LowSpeedLidarAction

1 Class: LowSpeedLidarAction

2 EquivalentTo: LidarAction

3 and (monitors some LowSpeedFreewaySection)

4 SubClassOf: hasIntervalCalibrationFactor value

LowIntervalCalibrationFactor

5 DisjointWith: HighSpeedLidarAction

Appendix B presents CEMO, Tactical-CEMO and Traffic-CEMO in their entirety.

4.1.4 An Overview

Section 4.1 exploits OWL to formalize a subset of the UAV domain. With respect to
the OWL constructs presented in Section 2.1: Listing 4.6 uses the equivalence predicate
EquivalentTo to establish necessary and sufficient conditions for class ThreatArea-

Waypoint. Listing 4.2 uses the primitive DisjointWith to specify that classes ARDrone
and Hummingbird constitute disjoint sets. And Listing 4.10 uses enumeration to de-
scribe class Vulnerability. These and other OWL-based modeling methods described
throughout Section 4.1 support the expressive representation of knowledge by domain
experts.

51

Chapter 4. Domain Modeling 4.2. Rule-Based Modeling

OWL also supports the efficient reasoning afforded by Pellet. Two strands of rea-
soning are particularly compelling because they span multiple classes and relation-
ships. Tactical-CEMO comprises the inferred concepts DirectThreatAreaAction and
ValidAsset; these concepts support the synthesis or PRISM code from templates, which
will be presented in Section 4.3.1 and Section 4.3.2. Traffic-CEMO also comprises inferred
concepts including HighSpeedFreewaySection and HighSpeedLidarAction, which sup-
port the synthesis of PRISM code from templates presented in Section 4.3.3. The OWL-
based inferences described throughout Section 4.1 enable the CVC to generate low-level
system models and their desired behavioral properties from high-level system specifica-
tions encoded by model builders.

4.2 Rule-Based Modeling

OWL is a powerful knowledge representation formalism, but expressive and reasoning
limitations constrain its utility; for example, OWL cannot model cross-cutting actions.
We consider an action a to be cross-cutting if a is a precondition to an action b, and b
is assigned to an asset that is different from the asset to which a is assigned. By this
definition, action TPSA3 in Mission A is a cross-cutting kinetic action. The OWL code
in Listing 4.20 presents an incomplete definition of class CrossCuttingKineticAction.

Listing 4.20: OWL code for class CrossCuttingKineticAction

1 Class: CrossCuttingKineticAction

2 EquivalentTo: KineticAction

3 and (isActionOf some Asset)

4 and (hasPrecondition some

5 (Action

6 and (isActionOf some Asset)))

The definition in Listing 4.20 is lacking because the asset in line 3 cannot be differenti-
ated from the asset in line 6. The SWRL code in Listing 4.21 uses the built-in OWL prop-
erty differentFrom to appropriately define class CrossCuttingKineticAction (ques-
tion mark prefixes denote variables). The OWL code in line 1 provides a rudimentary
definition for the CrossCuttingKineticAction concept, which is augmented by the rule
in lines 3–12.

The SWRL rule in Listing 4.21 augments the definition of an OWL class. Listing 4.22
uses a SWRL rule to augment the OWL object property monitors, which supports infer-
ences described in Section 4.1.3. Lines 1–5 formally define monitors as an asymmetric
and irreflexive object property with domain and range the classes LidarAction and
FreewaySection, respectively (similar definitions have been introduced throughout this
chapter). Line 14 specifies that a LIDAR action ?l (defined in line 10) monitors a freeway
section ?f (defined in line 8) if the hover action ?h (defined in line 9) that executes con-
currently with ?l (as specified in line 13) is associated with a waypoint ?w (as specified
in line 11) that also delineates ?f (as specified in line 12).

52

Chapter 4. Domain Modeling 4.2. Rule-Based Modeling

Listing 4.21: OWL+SWRL code for rule CrossCuttingKineticAction
1 Class: CrossCuttingKineticAction
2
3 Rule:
4 KineticAction (?a),
5 KineticAction (?b),
6 Asset(?x),
7 Asset(?y),
8 hasAction (?x, ?a),
9 hasAction (?y, ?b),

10 hasPrecondition (?b, ?a),
11 DifferentFrom (?x, ?y)
12 -> CrossCuttingKineticAction (?a)

Listing 4.22: OWL+SWRL code for rule monitors

1 ObjectProperty: monitors

2 Characteristics: Asymmetric ,

3 Irreflexive

4 Domain: LidarAction

5 Range: FreewaySection

6
7 Rule:

8 FreewaySection (?f),

9 HoverAction (?h),

10 LidarAction (?l),

11 hasWaypoint (?f, ?w),

12 hasWaypoint (?h, ?w),

13 isConcurrentWith (?l, ?h)

14 -> monitors (?l, ?f)

SWRL rules extend the expressive power of OWL; but like OWL, SWRL cannot
reason effectively with negation. Rules that must reason with negation are therefore
encoded in Prolog. Domain knowledge is negated during the ontology development
process if Pellet reasoning with respect to that knowledge is deemed unattainable. The
Prolog code in Listing 4.23 formally defines rule terminal, which comprises three negated
atoms (an atom is the basic building block of a Prolog rule). Rule terminal encapsulates
both explicit and inferred ontological knowledge; explicit knowledge is encoded with the
atom has_action (line 2), while the three negated atoms (lines 3–5) encode knowledge
inferred by Pellet.

Listing 4.23: Prolog code for rule terminal

1 terminal(X) :-

2 has_action(A, X),

3 not(is_precondition_to(X, _)),

4 not(single_action_asset(A)),

5 not(zero_action_asset(A)).

53

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

The transition of inferred knowledge from OWL to Prolog can be illustrated with
the atom is_precondition_to (line 3 in Listing 4.23). The OWL code in Listing 4.24
formally defines the object property isPreconditionTo, a relationship that inverts the
object property hasPrecondition. This inversion constitutes a Pellet inference (as de-
scribed in Section 4.1).

Listing 4.24: OWL code for the object property isPreconditionTo

1 ObjectProperty: isPreconditionTo

2 InverseOf: hasPrecondition

3 ...

Mission A comprises several instances of the DSL construct preconditions (lines 10,
18 and 22 in Listing 3.1). The CVC transforms knowledge contained in this construct into
knowledge encoded as property hasPrecondition. Knowledge inferred by Pellet with re-
spect to hasPrecondition, via the inverted property isPreconditionTo, is transformed
by the CVC into knowledge encoded with the atom is_precondition_to, which in turn
supports SWI-Prolog inferences.

Appendix B and Appendix C present, respectively, the SWRL and Prolog rule-bases
in their entirety.

4.2.1 An Overview

Section 4.2 exploits SWRL to overcome OWL limitations and encode complex relational
structures. SWRL rules in Listing 4.21 and Listing 4.22 augment class CrossCutting-
KineticAction and the object property monitors, respectively. The inferred concept
CrossCuttingKineticAction supports PRISM code synthesis via a process that will
be described in Chapter 5. In conjunction with several inferred concepts, including
HighSpeedFreewaySection and HighSpeedLidarAction, the object property monitors

supports the synthesis of PRISM code from templates, which will be presented in Sec-
tion 4.3.3.

Prolog is used to overcome OWL+SWRL limitations and encode knowledge that
can support effective reasoning with negation. Listing 4.23 and Listing 4.24 illustrate
composite FOL reasoning, which is reasoning supported by multiple and integrated FOL-
based systems, with the transition of inferred knowledge from OWL to Prolog. The
process that leverages composite reasoning to synthesize PRISM code will be described
in Chapter 5.

4.3 Behavioral Modeling

OWL+SWRL and Prolog are appropriate formalisms for encoding semantic and rule-
based knowledge. Likewise, the state-based PRISM modeling language is an appropriate
formalism for encoding behavioral knowledge as DTMC models. The PRISM language
can thus form the basis for reusable DTMC templates.

54

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

The code in Listing 4.25 uses string interpolation, which is denoted by the code
snippet #{ ... }, to encapsulate parameters in the context of a DTMC template for
asset modules. The module is a fundamental PRISM language construct. The asset
module template encodes knowledge that describes the behavior of the Asset concept
encoded in CEMO.

Listing 4.25: DTMC template for asset modules

1 module #{asset.class }#{ asset.id}

2 e#{ asset.id} : [0..#{ asset.endurance }] init #{asset.endurance };

3 FOR action IN asset.kinetic_actions DO

4 [#{action.type}] e#{ asset.id}>0 & d#{ action.id}>0

5 -> (e#{asset.id}'=e#{asset.id}-1);

6 END

7 [#{asset.last_action.type}] e#{ asset.id}=0 | d#{asset.last_action.id}=0

8 -> true;

9 endmodule

A module definition contains variables and commands. Asset module states are
stored in variable e#{asset.id} (lines 2, 4, 5 and 7 in Listing 4.25), which represents
asset endurance. Line 2 declares e#{asset.id} to be an integer variable with range
[0..#{asset.endurance}]. The upper limit for the range is derived from asset.en-

durance, which also initializes e#{asset.id} (as denoted by the keyword init).

Asset behavior is formalized with two or more commands, where each command
assumes the form:

[action] guard→ P (update1) : update1 + . . .+ P (updaten) : updaten;

A command becomes enabled for execution when its guard is satisfied by a specific
model state; for example, lines 4 and 5 in Listing 4.25 specify a command that becomes
enabled when action duration, which is denoted by variable d#{action.id}, and asset
endurance exceed zero. Commands encompass one or more updates, where each update
transitions a module, with a given probability, from one state to the next. A probability
of one is assumed, and can therefore be omitted, for commands with single updates.
Each command may be labeled with an action, which forces two or more modules to
transition states simultaneously (i.e., to synchronize).

Lines 3 and 6 in Listing 4.25 use meta-code, which is highlighted with yellow back-
ground, to define a for loop. The form assumed by each for loop is

FOR var IN collection DO body END

where var denotes a variable and collection denotes a collection of objects. Each asset
module command generated by the for loop in Listing 4.25 represents the execution of
a kinetic action. The true keyword in the last command (line 8) denotes the end of

55

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

execution for a specific module. This type of command prevents deadlocks that are
inconsequential to mission correctness from terminating the verification process with an
error.

Arguments for the parameters in Listing 4.25 are derived from explicit and inferred
domain knowledge. Specifically, arguments for asset.class (line 1) and asset.id

(lines 1, 2, 4, 5 and 7) are derived from mission plans; arguments for asset.endurance
(line 2) are derived from explicit domain knowledge encoded in CEMO; and arguments
for action.type (line 4), asset.last_action.type (line 7) and asset.last_action.id

(line 7) are derived from knowledge inferred by Pellet and the Prolog compiler (via a
process that will be described in Chapter 5). Listing 4.25 uses blue text to highlight
parameters that receive as arguments domain-specific knowledge encoded by domain
experts and derived from inferences. Purple text highlights parameters that receive as
arguments mission-specific knowledge encoded by mission developers and also derived
from inferences. This color coding scheme will be used for the remainder of Chapter 4.

Mission properties are encoded in PRISM’s property specification language, which
subsumes several probabilistic temporal logics including PCTL, CSL and LTL. The
code in Listing 4.26 formally defines a mission property template. This generic prop-
erty queries the probability that an action with identifier action.id will deplete its
duration—as denoted by the assertion d#{action.id}=0—and thereby complete its exe-
cution. An ellipsis indicates the potential for synthesized properties to comprise multiple
assertions. Arguments for the parameter action.id are derived from knowledge inferred
by Pellet and the Prolog compiler (via a process that will be described in Chapter 5).

Listing 4.26: PCTL template for action duration

1 P=? [F d#{action.id}=0 ...]

4.3.1 Modeling Survivability

Asset module commands comprise single updates that omit probabilities. The code in
Listing 4.27 formally defines a template for asset survivability modules, which contain
commands with multiple updates. Survivability modules enable PRISM to calculate the
probability of survival for ValidAsset individuals with respect to the threat area actions
executed by each asset (valid assets were described in Section 4.1.2). Module states are
stored in the boolean variable a#{asset.id}d (defined in line 9 and used in lines 11–
14), which represents the destruction of the asset with identifier asset.id. Command
updates transition survivability modules from one state to the next. The probability of
execution for each update is derived from the parameter asset.vulnerability (lines 12
and 13). Current vulnerability values are arbitrary, and should eventually be calculated
from real-world data related to asset capabilities, terrain types and weather conditions.

Lines 1 and 6 in Listing 4.27 use meta-code to define a for loop that generates one
formula with identifier actn#{action.id}_tai (defined in line 4 and used in lines 11
and 14) per each action assigned to the asset in the loop header (the formula is a PRISM

56

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

Listing 4.27: DTMC template for asset survivability

1 FOR action IN asset.threat_area_actions DO
2 const int start #{action.id} = #{action.start};
3 const int finish #{action.id} = #{action.finish};
4 formula actn#{action.id}_tai = d#{action.id}>finish #{action.id} &
5 d#{action.id}<=start #{action.id};
6 END
7
8 module #{asset.class}#{asset.id}_Survivability
9 a#{asset.id}d : bool init false;

10 FOR action IN asset.threat_area_actions DO
11 [#{action.type}] !a#{asset.id}d & actn#{action.id}_tai
12 -> #{1-asset.vulnerability}:(a#{asset.id}d'=false) +
13 #{asset.vulnerability}:(a#{asset.id}d'=true);
14 [#{action.type}] a#{asset.id}d | !actn#{action.id}_tai
15 -> true;
16 END
17 endmodule

language construct used to avoid code duplication). Each formula specifies an overlap
between the prosecution of a threat area incursion and the execution of a threat area
action with identifier action.id (threat area actions were described in Section 4.1.2).
This overlap is delineated by variables start#{action.id} and finish#{action.id}

(defined in lines 2 and 3, respectively), which are assigned geographic information cal-
culated by the CVC during preprocessing (as described in Chapter 3).

The constructs a#{asset.id}d and actn#{action.id}_tai combine to form logical
expressions, including a logical conjunction and disjunction (lines 11 and 14, respec-
tively), that constitute the guards in the asset survivability module. When these ex-
pressions are considered in union, their logical truth values, which are highlighted in
Table 4.1, clarify asset behavior and susceptibility during threat area incursions. Specif-
ically, a valid asset exists in one of the following disjoint states:

• not destroyed and prosecuting a threat area incursion, whereby the logical con-
junction is true;

• destroyed, as a consequence of prosecuting a threat area incursion, or not prose-
cuting a threat area incursion, whereby the logical disjunction is true.

d tai !d ∧ tai d∨!tai

true true false true

true false false true

false true true false

false false false true

Table 4.1: A truth table for asset survivability guards, with variables a#{asset.id}d and
actn#{action.id}_tai in Listing 4.27 represented by variables d and tai, respectively.

57

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

Arguments for the parameters in Listing 4.27 are derived from explicit and inferred
domain knowledge. Specifically, arguments for action.id (lines 4, 5, 11 and 14),
asset.class (line 8) and asset.id (lines 8, 9 and 11–14) are derived from mission
plans; arguments for asset.vulnerability (lines 12 and 13) are derived from knowl-
edge inferred by Pellet; arguments for action.start (line 2), action.finish (line 3)
are derived from geodetic calculations and knowledge inferred by Pellet; and arguments
for action.type (lines 11 and 14) are derived from knowledge inferred by Pellet and the
Prolog compiler.

The generic property in Listing 4.28 queries the probability that an asset with identi-
fier asset.id will not be destroyed during its prosecution of threat area incursions. This
mission property makes explicit the intuitive correlation between asset survivability and
mission correctness.

Listing 4.28: PCTL template for asset survivability

1 P=? [F !a#{asset.id}d ...]

4.3.2 Modeling Risk Acceptability

We assert that, during threat area incursions, mission correctness is contingent on asset
survivability and risk acceptability. As described in Section 4.1.2, a threat area action
that initiates or prolongs an incursion is inferred a member of class DirectThreat-

AreaAction. This inference triggers the synthesis of PRISM code that calculates a
risk acceptability factor (RAF) for the threat area incursion comprising the inferred
DTAA. Each RAF value quantifies the risk for a specific threat area incursion, with
RAF values of zero and one indicating high- and low-risk incursions, respectively. A
RAF numerator represents the duration of concurrent execution between sensor actions
and DTAAs during a threat area incursion; the denominator represents the aggregate
duration of DTAA executions during that incursion.

The code in Listing 4.29 formally defines a template that enables PRISM to calculate
risk acceptability with respect to the threat area incursions prosecuted by a ValidAsset

individual. For a given asset, RAF values quantifying the incursions prosecuted by that
asset are aggregated by the formula with identifier raf#{asset.id} (line 39). Numer-
ator and denominator for this formula are derived, respectively, from the constructs
sad#{asset.id} and tkad#{asset.id}.

Listing 4.29 uses a sensor action counter module (lines 16–37) to calculate the du-
ration of concurrent execution between sensor actions and DTAAs during threat area
incursions prosecuted by an asset with identifier asset.id. Module states are stored in
variable sad#{asset.id} (defined in line 17 and used in lines 26, 27 and 39), which is
incremented by command updates. Lines 18 and 36 use meta-code to define an outer
for loop that generates two commands per each DTAA assigned to the asset in the loop
header. Guards for these commands encapsulate the constructs actn#{action.id}_tai
and r#{sensor_action.id}.

58

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

Listing 4.29: DTMC template for risk acceptability

1 FOR action IN asset.direct_threat_area_actions DO
2 const int start #{action.id} = #{action.start};
3 const int finish #{action.id} = #{action.finish};
4 formula actn#{action.id}_tai = d#{action.id}>finish #{action.id} &
5 d#{action.id}<=start #{action.id};
6 formula duration #{action.id} = start#{action.id} - finish #{action.id};
7 END
8
9 formula tkad#{asset.id} =

10 FOR action IN asset.direct_threat_area_actions DO
11 duration #{action.id}
12 + IF action != asset.direct_threat_area_actions.last
13 ; IF action == asset.direct_threat_area_actions.last
14 END
15
16 module SensorActionCounter #{asset.id}
17 sad#{asset.id} : [0.. tkad#{asset.id}] init 0;
18 FOR action IN asset.direct_threat_area_actions DO
19 [#{action.type}] actn#{action.id}_tai &
20 (
21 FOR sensor_action IN asset.sensor_actions DO
22 r#{sensor_action.id}
23 | IF sensor_action != asset.sensor_actions.last
24 END
25) &
26 sad#{asset.id}<tkad#{asset.id}
27 -> (sad#{asset.id}'=sad#{asset.id}+1);
28 [#{action.type}] !actn#{action.id}_tai |
29 !(
30 FOR sensor_action IN asset.sensor_actions DO
31 r#{sensor_action.id}
32 | IF sensor_action != asset.sensor_actions.last
33 END
34)
35 -> true;
36 END
37 endmodule
38
39 formula raf#{asset.id} = sad#{asset.id} / tkad#{asset.id};

The formula identifier actn#{action.id}_tai in Listing 4.29 (defined in line 4 and
used in lines 19 and 28) represents the execution of a kinetic action during the prosecution
of a threat area incursion. In the context of a sensor action counter module, the scope of
formula actn#{action.id}_tai is limited by the outer for loop. Specifically, the outer
loop generates only those identifiers associated with the execution of DTAAs (as dictated
by the loop header), which constitute a subset of threat area actions assigned to the asset
in the loop header.

Variable r#{sensor_action.id} (lines 22 and 31 in Listing 4.29) couples the be-
havior of each sensor action counter module to the state of a sensor action module
representing the execution of a sensor action with identifier action.id. Each counter
module command is associated with a for loop (lines 21–24 and 30–33) that generates

59

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

one such variable per each sensor action assigned to the asset in the loop header. Two
or more variables form a logical disjunction with operands generated by an if statement
(lines 23 and 32). The form assumed by each if statement is

code IF expression

where the code is executed if (and only if) the expression evaluates to something other
than false or nil.

The constructs actn#{action.id}_tai and r#{sensor_action.id} combine to form
logical expressions, including a logical conjunction and disjunction (lines 19–25 and 28–
34, respectively, in Listing 4.29), that constitute the guards in the sensor action counter
module. When these expressions are considered in union, their logical truth values, which
are highlighted in Table 4.2, clarify the conditions that increment variable sad#{as-

set.id}. Specifically, and in accordance with its specification as described above, the
RAF numerator is incremented during the prosecution of a threat area incursion, and
the concurrent execution of a direct threat area action and at least one sensor action,
whereby the logical conjunction is true. The execution of the update in the second
command prevents inconsequential deadlocks (as described in Section 4.3), whereby the
logical disjunction is true. We note that the expression in line 26 prevents variable
sad#{asset.id} from exceeding its upper limit. This expression, which is required by
the PRISM language, does not alter the essence of the logical truth values presented in
Table 4.2.

tai r tai ∧ r !tai∨!r

true true true false

true false false true

false true false true

false false false true

Table 4.2: A truth table for sensor action counter guards, with variables
actn#{action.id}_tai and r#{sensor_action.id} in Listing 4.29 represented by vari-
ables tai and r, respectively. Variable r may also subsume a logical disjunction comprising two
or more instances of variable r#{sensor_action.id}.

Lines 1 and 7 in Listing 4.29 use meta-code to define a for loop that generates
one formula with identifier duration#{action.id} (line 6) per each action assigned
to the asset in the loop header. Each formula uses variables start#{action.id} and
finish#{action.id} (lines 2 and 3, respectively) to calculate the duration of overlap
between the execution of a DTAA with identifier action.id and the prosecution of a
threat area incursion by the asset to which that DTAA is assigned. Given its function as
the RAF denominator, the formula identifier tkad#{asset.id} represents the aggregate
duration of DTAA executions during incursions prosecuted by the asset with identifier
asset.id. Formula tkad#{asset.id} (lines 9–14) comprises a for loop that increments

60

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

the RAF denominator by generating the formula identifier duration#{action.id} as
an addition operand once per each action executed by the asset in the loop header.

RAF values resulting from the execution of synthesized PRISM code are verified
against a RAF threshold value, which is specified in Tactical-CEMO and integrated
by the CVC into synthesized mission properties. The generic property in Listing 4.30
queries the probability that the specified RAF value exceeds 60 percent. This threshold
is encapsulated by the individual LowRiskAcceptabilityFactor, which belongs to the
enumerated class RiskAcceptabilityFactor described in Section 4.1.2. Current thresh-
old values are arbitrary, and should eventually be calculated from real-world data related
to operational assessments.

Listing 4.30: PCTL template for risk acceptability
1 P=? [F raf#{asset.id}>0.6 ...]

Arguments for the parameters in Listing 4.29 are derived from explicit and inferred
domain knowledge. Specifically, arguments for action.id (lines 2–6, 11, 19 and 28),
asset.id (lines 9, 16, 17, 26, 27 and 39) and sensor_action.id (lines 22 and 31) are
derived from mission plans; arguments for action.start (line 2), action.finish (line 3)
are derived from geodetic calculations and knowledge inferred by Pellet; and arguments
for action.type (lines 19 and 28) are derived from knowledge inferred by Pellet and the
Prolog compiler.

4.3.3 Modeling Traffic Surveillance

Section 4.1.3 describes a case study whereby LIDAR-equipped UAVs monitor freeway
traffic and notify subscribers if traffic speed exceeds specified thresholds. Traffic speed
fluctuations in turn affect the optimal surveillance of freeway traffic by monitoring assets.
Specifically, when traffic speed descends below the nominal speed threshold, and thereby
approaches the minimum speed threshold, of a freeway section fs, the sample rate of
the LIDAR action la monitoring fs is increased by a factor equal to the calibration
value associated with the conjunction of la and fs. Increased LIDAR sample rates afford
fine-grained traffic control (via some process that is outside the scope of our method),
which is assumed to be an appropriate mechanism for mitigating traffic congestion and
bottlenecks.

Conversely, when traffic speed ascends above the nominal speed threshold, and is
thereby distanced from the minimum speed threshold, of freeway section fs, the sample
rate of la is decreased by a factor equal to the calibration value associated with the
conjunction of la and fs. Decreased LIDAR sample rates afford coarse-grained traffic
control, which is assumed to be acceptable during periods of decreased freeway traffic.
LIDAR calibration can thus optimize the surveillance of multiple freeway sections by a
single UAV.

In this context, we consider the following mission scenario:

61

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

1. Traffic speed exceeds the nominal speed threshold of freeway section fs.

2. The system optimizes its surveillance operation by decreasing the sample rate of la
with respect to fs.

3. Subsequently, and during what is now a prolonged la interval, traffic speed descends
rapidly below the minimum speed threshold of fs.

Steps 2 and 3 in this scenario highlight potentially conflicting mission requirements. The
system must achieve optimized performance with limited resources. Concurrently, to
manage freeway traffic in real-time, the system must disseminate timely (and potentially
low-latency) information from ISR assets to human and software traffic control agents.
The latter requirement could presumably be compromised if la remains inactive for a
considerable period of time following the occurrence of step 3.

Listing 4.31 formally defines a template that enables PRISM to quantify probabilis-
tically the correlation between decreased LIDAR sample rates and increased latency in
the dissemination of information related to traffic speed fluctuations. Lines 27 and 41
use meta-code to define a for loop that generates one freeway section module with iden-
tifier FreewaySection#{section.id} (line 28) per each freeway section assigned to the
asset in the loop header (freeway sections are assigned to specific assets via inferences
supported by the object property monitors, which was described in Section 4.1.3 and
Section 4.2). Freeway section modules enable PRISM to simulate traffic speed fluctua-
tions for high- and low-speed freeways. Module states representing disjoint traffic speed
intervals are stored in variable spd#{section.id} (defined in line 29 and used in lines 14,
19 and 30–39). Three intervals describe minimum (denoted by the integer 0), nominal
(1) and greater than nominal (2) traffic speeds.

Command updates transition freeway section modules from one state to the next
as follows: The first command derives the probability of transitioning from minimum
to nominal speed via the parameter section.exceeds_minimum_speed (line 32 in List-
ing 4.31). The negation of this parameter determines the probability of maintaining
minimum speed (line 31).

The second command derives the probability of transitioning from nominal to min-
imum speed via the parameter section.approaches_minimum_speed (line 34 in List-
ing 4.31); the probability of transitioning from nominal to greater than nominal speed
is derived via the parameter section.exceeds_nominal_speed (line 36). The sum of
these parameters is negated to determine the probability of maintaining nominal speed
(line 35).

The third command derives the probability of maintaining greater than nominal speed
via the parameter section.exceeds_nominal_speed (line 39 in Listing 4.31). The nega-
tion of this parameter determines the probability of transitioning from greater than nom-
inal to nominal speed (line 38). Arguments for section.approaches_minimum_speed,
section.exceeds_minimum_speed and section.exceeds_nominal_speed are derived
via inferences from explicit domain knowledge encoded in CEMO (as described in Sec-

62

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

Listing 4.31: DTMC template for traffic surveillance

1 FOR action IN asset.lidar_actions DO
2 const int i#{ action.id} = #{ action.interval };
3 const int icf#{ action.id} = #{action.interval_calibration_factor};
4 formula ci#{ action.id} = nse#{ action.id}
5 ? i#{ action.id} * icf#{ action.id}
6 : i#{ action.id};
7
8 module LidarAction #{ action.id}
9 r#{ action.id} : [0..#{ action.concurrent_action.duration }] init 0;

10 nse#{ action.id} : bool init false;
11 [#{action.concurrent_action.type}]
12 mod(d#{ action.concurrent_action.id}, ci#{ action.id})=0 &
13 r#{ action.id}<#{ action.concurrent_action.duration} &
14 spd#{action.section.id}=2
15 -> (r#{ action.id}'=r#{ action.id}+1) & (nse#{ action.id}'=true);
16 [#{action.concurrent_action.type}]
17 mod(d#{ action.concurrent_action.id}, ci#{ action.id})=0 &
18 r#{ action.id}<#{ action.concurrent_action.duration} &
19 !spd#{action.section.id}=2
20 -> (r#{ action.id}'=r#{ action.id}+1) & (nse#{ action.id}'=false);
21 [#{action.concurrent_action.type}]
22 !mod(d#{ action.concurrent_action.id}, ci#{ action.id})=0
23 -> true;
24 endmodule
25 END
26
27 FOR section IN asset.freeway_sections DO
28 module FreewaySection #{ section.id}
29 spd#{ section.id} : [0..2] init 1;
30 [#{section.action.concurrent_action.type}] spd#{ section.id}=0
31 -> #{1-section.exceeds_minimum_speed}:(spd#{ section.id}'=0) +
32 #{section.exceeds_minimum_speed}:(spd#{ section.id}'=1);
33 [#{section.action.concurrent_action.type}] spd#{ section.id}=1
34 -> #{section.approaches_minimum_speed}:(spd#{ section.id}'=0) +
35 #{1-(section.exceeds_nominal_speed + section.approaches_minimum_speed)}:(

spd#{ section.id}'=1) +
36 #{section.exceeds_nominal_speed}:(spd#{ section.id}'=2);
37 [#{section.action.concurrent_action.type}] spd#{ section.id}=2
38 -> #{1-section.exceeds_nominal_speed}:(spd#{ section.id}'=1) +
39 #{section.exceeds_nominal_speed}:(spd#{ section.id}'=2);
40 endmodule
41 END

tion 4.1.3). Current probabilities are arbitrary, and should eventually be calculated from
real-world data related to freeway surveillance operations.

Lines 1 and 25 in Listing 4.31 use meta-code to define a for loop that generates
one LIDAR action module with identifier LidarAction#{action.id} (line 8) per each
LIDAR action assigned to the asset in the loop header. Module states are stored in
variables r#{action.id} (defined in line 9 and used in lines 13, 15, 18 and 20) and
nse#{action.id} (defined in line 10 and used in lines 4, 15 and 20). The former variable
represents LIDAR readings; for any given LIDAR action, the latter variable represents
a transition to greater than nominal traffic speed for the freeway section monitored by

63

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

that action.

Line 9 in Listing 4.31 declares r#{action.id} to be an integer variable with range
[0..#{action.concurrent_action.duration}]. This variable is incremented by up-
dates in two commands (lines 11–20), which represent the execution of LIDAR ac-
tions; a third command uses the true keyword (line 23) to represent execution inter-
vals. Each command is enabled, either primarily or exclusively, by a modulo operation
(lines 12, 17 and 22) between the constructs d#{action.concurrent_action.id} and
ci#{action.id}.

Variable d#{action.concurrent_action.id} (lines 12, 17 and 22 in Listing 4.31)
represents the duration of the hover action that executes concurrently with the LI-
DAR action represented by variable action; formula ci#{action.id} (lines 4–6) cali-
brates the sample rate of this LIDAR action with variables i#{action.id} (defined in
line 2 and used in lines 5 and 6) and icf#{action.id} (defined in line 3 and used
in line 5). Specifically, the LIDAR action interval i#{action.id} is calibrated by
the interval calibration factor icf#{action.id} (as described in Section 4.1.3) when
nse#{action.id}==true, i.e., when traffic speed exceeds the nominal speed threshold of
the freeway section monitored by the LIDAR action with identifier action.id. Variable
nse#{action.id} is updated, by the same commands that update r#{action.id}, when
variable spd#{section.id} transitions between values representing minimum/nominal
and greater than nominal traffic speeds. The commands that update variables r#{ac-
tion.id} and nse#{action.id} comprise expressions to prevent r#{action.id} from
exceeding its upper limit (lines 13 and 18). These expressions, which are required by the
PRISM language, do not alter the essence of the functionality afforded by LIDAR action
modules.

Listing 4.31 labels all commands with actions that synchronize the execution of
PRISM modules. Synchronization has been used throughout Section 4.3 to accurately
model tightly-coupled units of behavior including LIDAR actions and the freeway sec-
tions monitored by those actions. The relationship between modeling accuracy and
synchronization will be elaborated in Chapter 5.

Arguments for the parameters in Listing 4.31 are derived from explicit and inferred
domain knowledge. Specifically, arguments for action.id (lines 2–6, 8–10, 12, 13, 15,
17, 18, 20 and 22), action.interval (line 2), action.concurrent_action.duration
(lines 9, 13 and 18) and action.concurrent_action.id (lines 12, 17 and 22) are derived
from mission plans; arguments for action.interval_calibration_factor (line 3), ac-
tion.section.id (lines 14 and 19), section.exceeds_minimum_speed (lines 31 and 32),
section.approaches_minimum_speed (lines 34 and 35) and section.exceeds_nomi-

nal_speed (lines 35, 36, 38 and 39) are derived from knowledge inferred by Pellet;
arguments for action.concurrent_action.type (lines 11, 16 and 21) and section.ac-

tion.concurrent_action.type (lines 30, 33 and 37) are derived from knowledge in-
ferred by Pellet and the Prolog compiler; and arguments for section.id (lines 28–39)
are derived from explicit domain knowledge encoded in Traffic-CEMO.

Lines 1 and 5 in Listing 4.32 use meta-code to define a for loop that generates one

64

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

property per each LIDAR action assigned to the asset in the loop header. Each property
comprises a conjunction of three assertions, which verify the mission scenario described
in the beginning of this section and reproduced below.

1. According to the assertion in line 2, traffic speed exceeds the nominal speed thresh-
old of a freeway section that is monitored by the LIDAR action with identifier
action.id.

2. Given the assertion in line 2, the system optimizes its surveillance operation by
decreasing the sample rate of the monitoring LIDAR action.

3. The assertion in line 3 denotes that traffic speed descends below the minimum speed
threshold of the freeway section with identifier action.section.id; in conjunction,
the assertion in line 4 denotes that traffic speed decent occurs while the monitoring
LIDAR action is in the process of what is now a prolonged (as a consequence of
step 2) interval.

Listing 4.32: PCTL template for traffic surveillance

1 FOR action IN asset.lidar_actions DO

2 P=? [F nse#{ action.id} &

3 spd#{action.section.id}=0 &

4 !mod(d#{ action.concurrent_action.id}, ci#{ action.id})=0]

5 END

We note that the generic property encoded in Listing 4.32 is the raison d’être for
the existence of variable nse#{action.id}. The DTMC template in Listing 4.31 de-
clares and updates several occurrences of nse#{action.id}, which is used by the for-
mula ci#{action.id}. In this context, nse#{action.id} duplicates data stored in, and
could therefore be replaced by, variable spd#{section.id}. But the PCTL template
uses nse#{action.id} (as an assertion) to verify the sequence of steps that constitute
the traffic surveillance mission scenario. In particular, nse#{action.id} is used in con-
junction with the assertion spd#{action.section.id}=0 to verify that traffic speed
exceeds the nominal speed threshold, and subsequently descends below the minimum
speed threshold, of a specific freeway section.

The artifacts presented in this section enable PRISM to verify the occurrence of what
is presumably a compromising scenario for traffic surveillance missions. This scenario is
underpinned by three assertions, which signify failure of a LIDAR-based surveillance sys-
tem to disseminate traffic speed data in a timely manner. Two assertions (lines 3 and 4
in Listing 4.32) verify the occurrence of the scenario unless traffic speed decent and reac-
tion to that descent by the monitoring LIDAR action occur simultaneously (i.e., in the
same time-step). Future work could extend PRISM artifacts to verify the occurrence of
the scenario unless reaction to traffic speed decent by the monitoring LIDAR action oc-
curs within a specified timeframe, whereby, for example, reaction time after calibration
does not exceed reaction time before calibration. This type of analysis will probably

65

Chapter 4. Domain Modeling 4.3. Behavioral Modeling

afford more valuable and pertinent insight into the impact of the compromising scenario
on mission correctness. Future work could also develop models and properties to ana-
lyze the surveillance of multiple freeway sections by a single LIDAR action. Additional
limitations and potential for future work will be considered in Chapter 7.

These considerations do not diminish the utility of the current model: PRISM uses
artifacts that encode Mission 5b, one of the 58 mission plans supporting the evaluation
in Chapter 6, to verify the occurrence of the scenario described above with probabilities
of approximately 0.651 and 0.625 for high- and low-speed freeway sections, respectively.
PRISM verifies the occurrence of a similar scenario, but one that does not calibrate
LIDAR actions, with probabilities of approximately 0.468 and 0.525 for high- and low-
speed freeway sections, respectively. These results quantify the intuitive correlation
between decreased LIDAR sample rates and increased latency in the dissemination of
information related to traffic speed fluctuations. Latency resulting from calibration is
on average 1.391 and 1.19 times greater than latency sans calibration for high- and low-
speed freeway sections, respectively. Assessing the impact of increased latency on traffic
control and traffic discharge rates is beyond the scope of this thesis.

Appendix D presents DTMC and PCTL templates in their entirety. Output from
these templates, and additional probabilistic results, will be presented in Chapter 5.

4.3.4 An Overview

Section 4.3 exploits PRISM’s model and property specification languages to formally de-
fine DTMC and PCTL templates, respectively. PRISM templates support the synthesis
of system models and the behavioral properties that need to be verified with respect to
those models. The synthesis process receives data from a variety of heterogeneous sources
including system specifications; explicit knowledge formalized in CEMO, and Tactical-
and Traffic-CEMO; inferred knowledge derived exclusively from Pellet-based reasoning;
and inferred knowledge derived from composite, Pellet- and Prolog-based, reasoning. In-
ferences are generated from domain- and mission-specific knowledge encoded by domain
experts and mission developers, respectively.

Templates presented in Section 4.3.1 enable PRISM to calculate the probability of
survival for valid assets. Each valid asset executes one or more direct threat area actions
during the prosecution of a threat area incursion. PRISM quantifies the inherent risk for
each incursion with synthesized code from the templates presented in Section 4.3.2. The
synthesis of PRISM code from survivability and risk acceptability templates is supported,
in part, by the inferred concepts DirectThreatAreaAction and ValidAsset, which are
formalized in Tactical-CEMO.

Section 4.3.3 presents templates that enable PRISM to quantify the dynamic rela-
tionship between LIDAR actions and the freeway sections monitored by those actions.
The synthesis of PRISM code from traffic surveillance templates is supported, in part,
by the inferred concepts HighSpeedFreewaySection and HighSpeedLidarAction, and
the inferred object property monitors, which are formalized in Traffic-CEMO.

66

Chapter 4. Domain Modeling 4.4. Related Work

4.4 Related Work

The work presented thus far has been broadly concerned with the (loose) integration
of OWL+SWRL and Prolog, and with multi-dimensional, i.e., semantic, rule-based and
behavioral, modeling in the context of the UAV domain. The following sections describe
related work for each activity.

4.4.1 Integrating OWL and Prolog

Şensoy et al. integrate DL- and LP-based reasoning by embedding ontological terms—
including classes, properties and individuals—in logic programs; the interpretation of
ontological axioms is delegated to a semantic reasoner during the execution of those
programs [42]. The resulting method, which retains the expressivity of both OWL and
Prolog, has been used to support resource determination and allocation by intelligent
agents [81]. With respect to the UAV domain, the method has been used by de Mel et
al. to develop a solution for sensor assignment during ISTAR missions [82].

Matzner and Hitzler achieve DL-LP integration with a Prolog extension based on
any-world semantics that uses special atoms to query the DL-reasoner KAON2 [43].
Programs written in this language are transformed to standard LP programs encoded
in SWI-Prolog. Papadakis et al. transform OWL ontologies to SWI-Prolog code via
subject-predicate-object triplets [44]. Samuel et al. achieve a similar transformation—
from OWL+SWRL to Prolog—via a combination of XSLT templates and Prolog rules,
which are used to enforce OWL primitives [45]. With their work, Samuel et al. claim to
address OWL-LP integration issues related to, for example, class disjointness and enu-
meration that are considered unsolvable by Volz et al [53]. Obrst et al. use the resulting
method to rapidly integrate command-and-control (C2) systems with new sources of
information [83].

The algorithm presented by Zombori transforms a TBox encoded with the description
logic SHIQ to a set of first-order clauses [84]. Lukácsy and Szeredi incorporate this
algorithm into a reasoning system named DLog, which generates Prolog programs from
first-order clauses [46]. Extensions to DLog introduce optimization techniques including
partial evaluation, which avoids the execution of unary predicates with uninstantiated
arguments [85]; and parallel query execution [86].

Almendros-Jiménez uses Prolog as a query language for OWL [47]. Each query,
which is encoded as a Prolog goal, retrieves data and meta-data from a given ontology.
Conversely, Elenius uses OWL+SWRL to generate queries for XSB Prolog, an open
source implementation of the Prolog language [48]. Both approaches are limited to a
subset of OWL.

As mentioned in Chapter 2, this thesis does not claim a contribution to the state of
the art in OWL-LP integration. We have nevertheless developed a composite inference
mechanism that is distinct from related work. This mechanism is perhaps most com-
patible with the method presented by Şensoy et al. Similarities include the delineation

67

Chapter 4. Domain Modeling 4.4. Related Work

of OWL and Prolog with respect to the syntactic features and reasoning capabilities
afforded by each language. But our mechanism executes semantic and Prolog-based
reasoning in strict succession while Şensoy et al. interlace semantic reasoning with the
execution of Prolog programs. Related work that either transforms ontological axioms to
Prolog code [44, 45, 46], or uses ontological axioms to query Prolog (or vice versa) [47, 48],
is even further removed from our implementation of composite reasoning.

4.4.2 Modeling the UAV Domain

The technologies presented throughout this chapter have been used in related work to
model aspects of the UAV domain. De Mel et al. and Preece et al. describe ontologies
for UAV-based ISTAR missions [82, 87]. Schumann et al. use OWL to formalize civilian-
oriented UAV missions comprising a combination of three possible goals: loitering, path
traversal and search [88]. Valente et al. exploit OpenCyc, a general purpose knowledge
base, to create ontologies for military UAV missions [89]. Schlenoff and Messina have
developed a robot ontology that supports urban search and rescue (S&R) efforts by
the U.S. Department of Homeland Security (DHS). The ontology encodes concepts that
model aerial robots including high altitude loiter robots, ledge access robots and rooftop
payload drop robots [90].

In a more general context of robotics, Amigoni and Arrigoni Neri use an ontology to
achieve resource determination and allocation with respect to a multi-robot system and
its assigned tasks [91]. Chella et al. describe a spatial ontology that models robotic knowl-
edge regarding indoor office environments [92]. Ontologies are exploited by Schlenoff et
al. to enhance the navigation capabilities of autonomous vehicles [93]. Gavshin and
Shumik transform ontological knowledge into executable robot control code [94].

Bohn models search and destroy missions as a pursuer-evader game, where pursuing
UAVs attempt to locate evasive targets [95]. Model checking is subsequently used to gen-
erate strategies that are favorable for pursuers, when those strategies exist. Webster et
al. apply model checking to the verification of high-level decision making by autonomous
UASs in civilian airspace [96]. Basic and more advanced UAS control systems are mod-
eled with PROMELA and the autonomous agent language Gwendolen, respectively. The
models are verified by Spin and the agent model checker AJPF against air traffic regu-
lations issued by the UK Civil Aviation Authority.

Jeyaraman et al. use Kripke semantics to model cooperative search underpinned by
Dubins paths2 [97]. Kripke semantics are also used by Sirigineedi et al. to model UAV
behavior during the execution of a distributed control strategy, where assets cooperate
to monitor a road network [98]. The latter model is verified by the model checker SMV
against mission properties expressed in CTL.

Our modeling effort overlaps, to some extent, with related work presented in this
section. CEMO formally defines hover and path segment traversal actions, which are

2A Dubins path is the shortest path with bounded curvature between two points in the Euclidean
plane.

68

Chapter 4. Domain Modeling 4.5. Summary

similar (if not equivalent) to the loitering and path traversal goals described by Schu-
mann et al. Tactical- and Traffic-CEMO encode military- and civilian-oriented mis-
sion concepts, respectively, and thereby resemble ontologies that formalize ISTAR and
S&R missions [82, 87, 90]. But unlike related work aimed at enhancing UAV capabil-
ities [93, 95], we use semantic and behavioral models to verify the correctness of UAV
mission plans. And unlike Gavshin and Shumik, we transform ontological (and other)
knowledge into PRISM code.

Ultimately, the divergence between our work and that of others is most compelling at
the intersection of semantic and behavioral modeling. This divergence will be highlighted
in Chapter 5.

4.5 Summary

This chapter is necessarily extensive. We exploit five formalisms—including knowledge
representation languages (OWL and SWRL), a logic programming language (Prolog), a
behavioral modeling language (PRISM DTMC), and a property specification language
(PRISM PCTL)—to model a non-trivial application domain; in doing so, a subset of
that domain is encoded precisely and from multiple perspectives. Syntactic and semantic
features of each formalism, and the inherent limitations of OWL+SWRL, are described
in the context of two case studies (involving tactical and traffic surveillance missions)
and a running example (Mission A).

When encoded with different technologies, domain concepts serve to integrate those
technologies and thereby highlight a core thesis contribution. Integrated technologies
form the stack that constitutes our prototype implementation of the cascading verifica-
tion method. This stack can be demarcated into three principal groups: OWL+SWRL,
Prolog, and PRISM DTMC and PCTL. A loose integration of OWL+SWRL and Pro-
log produces strands of composite reasoning that are traced throughout this chapter.
Composite inferences, and explicit knowledge encoded by domain experts and mission
developers, converge to support the synthesis of system models and behavioral properties
for probabilistic model checking.

The formalisms and modeling techniques that constitute our method and prototype
are involved and diverse. At present, model builders are forced to develop system mod-
els with relatively low-level modeling languages. Model builders must also engage with
at least some aspects of semantic modeling as they endeavor to integrate complex do-
main knowledge into the model checking process. The intersection of low-level modeling
languages and complex domain knowledge is evidently a formidable challenge in the
development of system models and their desired behavioral properties. This challenge
can be mitigated with cascading verification, which leverages formal domain knowledge
to support the probabilistic analysis of multiple system specifications. We proceed to
elaborate our method.

69

Chapter 5

Cascading Verification

Cascading verification combines the technologies described in Chapter 4 to enhance the
abstraction level of model and property specifications, and the effectiveness of proba-
bilistic model checking; our prototype implementation of cascading verification combines
these technologies to support the probabilistic verification of UAV mission plans. This
chapter describes the prototype by tracing verification from high-level mission speci-
fications to probabilistic model checking with PRISM. As with Chapter 4, cascading
verification is illustrated with respect to Mission A, the example mission presented in
Section 3.1.

The remainder of this chapter is structured as follows. Section 5.1 presents the YAML
DSL used by model builders to encode mission plans and the geographic data associ-
ated with those plans. Section 5.2 describes the transformation of mission specifications
into ABox assertions, and the verification of those assertions via automated semantic
reasoning. Section 5.2 also describes inferred ontological knowledge, which is gener-
ated via automated reasoning from explicitly encoded domain knowledge. Section 5.3
describes the transformation of explicit and inferred ontological knowledge into Prolog
facts, and the Prolog inferences resulting from those facts. Explicit domain knowledge—
encoded in OWL+SWRL and Prolog—and knowledge inferred via composite reasoning
is used by our prototype to synthesize DTMC and PCTL artifacts, which are presented
in Section 5.4. This section also presents results from the probabilistic model checking
underpinned by synthesized artifacts. The technologies and implemented components
that constitute our prototype are presented in Section 5.5. Our work is related to se-
mantic model checking, which is presented in Section 5.6. This chapter is summarized
in Section 5.7.

5.1 High-Level Specifications in YAML

With cascading verification, model builders use a DSL to encode high-level system spec-
ifications. In the context of our prototype, model builders use YAML to encode mission
plans and the geographic data associated with those plans. The prototype comprises a
domain-specific YAML dialect that is consistent with the domain concepts formalized
in CEMO. Consistency is enforced when mission specifications are transformed by the

70

Chapter 5. Cascading Verification 5.1. High-Level Specifications in YAML

CVC into ABox assertions, and verified via semantic reasoning with respect to the TBox
defined by domain experts.

To better illustrate the YAML DSL, which specifies Mission A, we have encoded a
schema definition in the Kwalify schema language [99]. This schema is partially defined
in Listing 5.1.

Listing 5.1: Partial schema definition for the YAML DSL
1 type: map
2 required: yes
3 mapping:
4 "Action ":
5 type: map
6 required: yes
7 mapping:
8 "HoverAction ":
9 ...

10 "LidarAction ":
11 ...
12 "PhotoSurveillanceAction ":
13 ...
14 "TraversePathSegmentAction ":
15 ...
16 "Asset":
17 type: map
18 required: yes
19 mapping:
20 "ARDrone ":
21 ...
22 "Hummingbird ":
23 ...

The Kwalify schema language is itself a dialect of YAML. Lines 1–3 in Listing 5.1
declare a YAML mapping, which is a primary logical structure in a YAML document
(lines 5–7 and 17–19 declare similar data structures). The Kwalify keyword required is
used in lines 2, 6 and 18 to denote constraints on each of the declared mappings.

According to Listing 5.1, the YAML DSL affords mission developers two top-level
elements—Action and Asset (declared in lines 4 and 16, respectively)—that must be
specified for each mission. The former contains four optional elements—HoverAction,
LidarAction, PhotoSurveillanceAction and TraversePathSegmentAction (declared
in lines 8–14)—while the latter contains optional elements ARDrone and Hummingbird

(declared in lines 20 and 22, respectively). The YAML code in Listing 5.2 specifies the
DSL element Hummingbird.

Lines 2 and 3 in Listing 5.2 declare a YAML sequence, which is a primary logical
structure in a YAML document (lines 13–15 declare a similar data structure). Accord-
ing to Listing 5.2, the element Hummingbird contains the required element id and the
optional element endurance (declared in lines 7 and 10, respectively), both of which
assume values of type int. The element Hummingbird also contains the required el-
ement actions (declared in line 12), which is a sequence of int values that identify

71

Chapter 5. Cascading Verification 5.2. Verification with Semantic Reasoning

Listing 5.2: Schema definition for the DSL element Hummingbird
1 "Hummingbird ":
2 type: seq
3 sequence:
4 - type: map
5 required: yes
6 mapping:
7 "id":
8 type: int
9 required: yes

10 "endurance ":
11 type: int
12 "actions ":
13 type: seq
14 required: yes
15 sequence:
16 - type: int

actions assigned to a specific Hummingbird asset. The elements actions and endurance

correspond, respectively, to the object property hasAction and the datatype property
hasEnduranceInSeconds encoded in Listing 4.1.

Appendix E presents a complete schema definition for the YAML DSL.

5.2 Verification with Semantic Reasoning

Mission specifications encoded in YAML are transformed by the CVC into ABox asser-
tions. During this preprocessing phase, geodesic equations use geographic coordinates
(described in Section 3.1) and threat area data from external sources to calculate sup-
plementary geographic information. For example, if the boundary of a threat area is
intersected by a flightpath, then the traverse path segment action corresponding to that
flightpath is classified as a threat area action. Geodesic equations can be used to es-
tablish threat area incursions in this manner because both flightpath and threat area
boundary are defined by great circles.1

Pellet verifies the generated ABox against the TBox defined by domain experts.
Inconsistencies between TBox and ABox signify an invalid mission specification; for
example, an asset that does not execute at least one kinetic action would be inconsistent
with respect to the definition of class Asset presented in Section 4.1. The OWL code in
Listing 5.3 formally defines a valid ABox individual with identifier H1, which corresponds
to the identifier of the Hummingbird asset specified in Mission A.

Asset H1 is related via the object property hasAction to actions TPSA1 and TPSA2

(lines 3 and 4, respectively, in Listing 5.3). Mission A specifies that action TPSA1 is a
precondition to action TPSA2 (line 10 in Listing 3.1). Because preconditions associate
actions with other actions, a precondition would be inconsistent, with respect to the

1A great circle is the intersection of the Earth’s surface with a plane passing through the center of
the Earth. The concepts that underpin geodesic equations will be elaborated in Appendix A.

72

Chapter 5. Cascading Verification 5.2. Verification with Semantic Reasoning

Listing 5.3: OWL code for the individual H1
1 Individual: H1
2 Types: Hummingbird
3 Facts: hasAction TPSA1 ,
4 hasAction TPSA2

definition of the object property hasPrecondition presented in Section 4.1, if it associ-
ated individuals that were not members of class Action. The OWL code in Listing 5.4
specifies two valid ABox individuals with identifiers TPSA1 and TPSA2, where TPSA2 is
related to TPSA1 via hasPrecondition (line 6). Figure 5.1 illustrates elements of seman-
tic verification with respect to the actions TPSA1 and TPSA2, and the object property
hasPrecondition. As a valid ABox individual, action TPSA2 inherits from the built-in
OWL class Thing, which is highlighted with red text (an invalid individual would inherit
from the built-in OWL class Nothing).

Listing 5.4: OWL code for the individuals TPSA1 and TPSA2

1 Individual: TPSA1
2 Types: TraversePathSegmentAction
3
4 Individual: TPSA2
5 Types: TraversePathSegmentAction
6 Facts: hasPrecondition TPSA1

compiler
CVC

system
specification

DSL script

formal domain
OWL+SWRL

ontology

TBox
TraversePathSegmentAction
 subClassOf Action

ObjectProperty: hasPrecondition
 Domain: Action
 Range: Action

semantic
reasoner

Pellet

specification fragment
TraversePathSegmentAction:
 - id: TPSA2
 preconditions: [TPSA1]

semantic verification
Individual: TPSA2
 Types: Thing

DL axioms
Individual: TPSA1
 Types: TraversePathSegmentAction

Individual: TPSA2
 Types: TraversePathSegmentAction
 Facts: hasPrecondition TPSA1

Figure 5.1: Elements of semantic verification with respect to the actions TPSA1 and TPSA2,
and the object property hasPrecondition.

With ABox consistency deduced, Pellet proceeds to generate inferences by, for ex-
ample, reasoning about realization, which determines the direct types of each individual.
Realization-based inferences were described in Section 4.1.2 with the classification of a
specific kinetic action as a DTAA, and the resultant classification of the asset to which

73

Chapter 5. Cascading Verification 5.3. Classification with Prolog

that action was assigned as a valid asset. As an example of realization with respect to
Mission A, let us assume a threat area action classification for action TPSA4 (via the
preprocessing phase described above). Given this assumption, Pellet would infer action
TPSA4 to be a DTAA because start point and endpoint of TPSA4 are members of classes
Waypoint (the start point of action TPSA4 is the endpoint of action TPSA3, which is
not a threat area action) and ThreatAreaWaypoint, respectively. Asset H2 would con-
sequently be inferred a valid asset (since H2 executes at least one sensor action, namely
PSA5, during the incursion).

Appendix B presents the generated ABox for Mission A.

5.3 Classification with Prolog

Some Pellet inferences are transformed by the CVC into Prolog rules; for example,
the Prolog rule terminal comprises knowledge inferred by Pellet (as described in Sec-
tion 4.2). The Prolog code in Listing 5.5 formally defines rule terminal_constrain-

ed_observer, which encapsulates the atom terminal.

Listing 5.5: Prolog code for rule terminal_constrained_observer
1 terminal_constrained_observer(X) :-
2 constrained_observer(X),
3 terminal(X).

SWI-Prolog classifies each kinetic action with respect to the relationships that exist
between it and other kinetic actions. For example, an action that is the last kinetic action
to be executed by an asset, and has as precondition at least one cross-cutting kinetic
action, is classified by SWI-Prolog as a terminal_constrained_observer (cross-cutting
actions were introduced in Section 4.2). Figure 5.2 illustrates elements of composite
semantic- and Prolog-based reasoning with respect to the actions TPSA1 and TPSA2;
the inferred object property isPreconditionTo presented in Section 4.2; and the rule
terminal_constrained_observer.

The classification of a kinetic action affects the composition of the PRISM module for
the asset to which that action is assigned; for example, the classification of action TPSA2

in Mission A as a terminal_constrained_observer affects the PRISM module corre-
sponding to asset H1. Affected asset module constructs include the action label of the
command associated with TPSA2 (recall that each asset module command is associated
with a specific kinetic action) and, potentially, the action label of the last module com-
mand (see inferred arguments in Section 4.3). Kinetic action classifications also generate
mission properties; for example, as the last kinetic action to be executed by an asset, the
successful execution of a terminal_constrained_observer is a desired mission property
because it guarantees the successful execution of all preceding actions.

Table 5.1 highlights the impact of kinetic action classifications with respect to syn-
thesized DTMC and PCTL constructs. For example, the action label of the asset mod-

74

Chapter 5. Cascading Verification 5.3. Classification with Prolog

Prolog
compiler

SWI-Prolog

compiler
CVC

formal domain
Prolog rule base

semantic
reasoner

Pellet

rules
terminal(X) :-
 not(is_precondition_to(X, _)),
 ...

terminal_contrained_observer(X) :-
 terminal(X),
 ...facts

is_precondition_to(
 TPSA1,
 TPSA2).

semantic inferences
TPSA1 isPreconditionTo
 TPSA2

Prolog reasoning
terminal(TPSA2).
terminal_contrained_observer(TPSA2).

Figure 5.2: Elements of composite semantic- and Prolog-based reasoning with respect to the ac-
tions TPSA1 and TPSA2; the inferred object property isPreconditionTo presented in Section 4.2;
and the rule terminal_constrained_observer.

ule command associated with a default classification would assume the value of the
identifier assigned to the classified action (as denoted by the dot notation); the action
label of the command associated with a terminal_constrained_observer classifica-
tion would assume the identifier of the asset to which the classified action is assigned;
and, given the notation in Listing 4.26, the identifier of the property associated with a
terminal_constrained_observer classification would assume the value of the identifier
assigned to the classified action. Not applicable (n/a) and null values in Table 5.1 de-
note classifications that either do not affect the synthesis of a specific action label, or
synthesize an empty action label, respectively. Thus Prolog inferences affect the syn-
thesis of action labels, which in turn impact module synchronization (as described in
Section 4.3) and, ultimately, the verification results returned by PRISM.

For several kinetic action classifications, action labels assume the identifier of a pri-
mary asset (as illustrated in Table 5.1), which may be different from the asset to which
a classified action is assigned. The behavioral modeling process described in Section 4.3
was guided by two concerns. Our primary goal was to develop template models and prop-
erties that could support the verification of multiple and variable UAV mission plans.
It was also our intention to accurately model domain processes and thereby achieve the
greatest possible confidence in the resulting verification process. To mimic real-world
asset behavior, module executions were loosely coupled and synchronizations limited to
occur on an as-needed basis. But this approach is not appropriate for modeling cross-
cutting actions, which must be verified with temporal precision to ensure kinetic action
workflow continuity during asset operations (this issue will be elaborated in Chapter 6).
The conflict between modeling and analytical accuracy occurs because enabled DTMC
commands are executed by PRISM with equal probability [100]. Lack of native schedul-
ing precision necessitates the synchronization of all modules representing concepts related
to cross-cutting actions. The required synchronization is achieved with the designation,

75

Chapter 5. Cascading Verification 5.3. Classification with Prolog

D
T
M
C

as
se
t
m
od

u
le

P
C
T
L

ki
ne
ti
c
ac
ti
on

cl
as
si
fic

at
io
n

ac
ti
on

la
be

l
la
st

ac
ti
on

la
be

l
pr
op

er
ty

id

de
fa

ul
t

ac
ti

on
.i

d
n/

a
n/

a

de
fa

ul
t_

si
ng

le
to

n
ac

ti
on

.i
d

nu
ll

ac
ti

on
.i

d

de
fa

ul
t_

te
rm

in
al

ac
ti

on
.i

d
nu

ll
ac

ti
on

.i
d

su
bj

ec
t_

pr
ec

on
di

ti
on

pr
im

ar
y_

as
se

t.
id

n/
a

n/
a

ob
se

rv
er

_p
re

co
nd

it
io

n
pr

im
ar

y_
as

se
t.

id
n/

a
n/

a

co
ns

tr
ai

ne
d_

su
bj

ec
t

pr
im

ar
y_

as
se

t.
id

n/
a

n/
a

le
ad

in
g_

su
bj

ec
t

ac
ti

on
.i

d
n/

a
n/

a

si
ng

le
to

n_
su

bj
ec

t
pr

im
ar

y_
as

se
t.

id
pr

im
ar

y_
as

se
t.

id
n/

a

te
rm

in
al

_s
ub

je
ct

pr
im

ar
y_

as
se

t.
id

pr
im

ar
y_

as
se

t.
id

n/
a

de
fa

ul
t_

ob
se

rv
er

ac
ti

on
.i

d
n/

a
n/

a

te
rm

in
al

_o
bs

er
ve

r
ac

ti
on

.i
d

nu
ll

ac
ti

on
.i

d

te
rm

in
al

_c
on

st
ra

in
ed

_o
bs

er
ve

r
ac

ti
on

.a
ss

et
.i

d
ac

ti
on

.a
ss

et
.i

d
ac

ti
on

.i
d

ob
se

rv
er

_a
nd

_c
on

st
ra

in
ed

_s
ub

je
ct

pr
im

ar
y_

as
se

t.
id

n/
a

n/
a

ob
se

rv
er

_a
nd

_s
in

gl
et

on
_s

ub
je

ct
pr

im
ar

y_
as

se
t.

id
pr

im
ar

y_
as

se
t.

id
n/

a

ob
se

rv
er

_a
nd

_t
er

mi
na

l_
su

bj
ec

t
pr

im
ar

y_
as

se
t.

id
pr

im
ar

y_
as

se
t.

id
n/

a

su
bj

ec
t_

co
ns

tr
ai

nt
pr

im
ar

y_
as

se
t.

id
n/

a
n/

a

te
rm

in
al

_s
ub

je
ct

_c
on

st
ra

in
t

pr
im

ar
y_

as
se

t.
id

pr
im

ar
y_

as
se

t.
id

ac
ti

on
.i

d

T
ab

le
5.

1:
K
in
et
ic

ac
ti
on

cl
as
si
fic

at
io
ns
,
w
hi
ch

ar
e
ul
ti
m
at
el
y
de
ri
ve
d
vi
a
P
ro
lo
g
in
fe
re
nc
es
,
an

d
th
ei
r
im

pa
ct

on
sy
nt
he
si
ze
d
D
T
M
C

an
d
P
C
T
L
co
ns
tr
uc
ts

as
so
ci
at
ed

w
it
h
cl
as
si
fie
d
ac
ti
on

s.

76

Chapter 5. Cascading Verification 5.3. Classification with Prolog

via Prolog inferences, of a single primary asset whose identifier is assumed by the action
labels associated with cross-cutting actions.

The Prolog code in Listing 5.6 formally defines rule primary_asset, which encapsu-
lates inferred ontological knowledge encoded with the atoms observer_asset (line 2),
observed_asset (line 4) and observes (lines 6 and 7). Rule primary_asset formalizes
the concept of a primary asset as an observer asset (i.e., an asset observing other assets)
that is either not itself observed by, or participates in a symmetric observer relation-
ship with, another asset (a symmetric relationship is the opposite of the asymmetric
relationship described in Section 4.1.2).

Listing 5.6: Prolog code for rule primary_asset
1 primary_asset(A) :-
2 observer_asset(A),
3 (
4 not(observed_asset(A));
5 (
6 observes(A, B),
7 observes(B, A)
8)
9).

Lines 1–3 in Listing 5.7 formally define class ObserverAsset, which extends class
Asset. Every member of class ObserverAsset must be associated via the object prop-
erty hasAction with a member of class Observer. Lines 5 and 6 formally define the
OWL class Observer, which is augmented by a synonymous SWRL rule (lines 8–13).
Rule Observer formalizes the concept of an observer action as an action that observes
cross-cutting actions via preconditions. Given the domain knowledge encoded in List-
ing 5.7, an observer asset can be described more precisely as an asset that observes other
assets via an assigned action that has as precondition a cross-cutting action. Conversely,
an observed asset is an asset observed by other assets via an assigned cross-cutting ac-
tion. Class ObservedAsset, which formalizes the observed asset concept, is encoded in
a similar manner to class ObserverAsset. Knowledge inferred by Pellet with respect to
ObserverAsset and ObservedAsset is transformed by the CVC into knowledge encoded
with the Prolog atoms observer_asset and observed_asset, respectively.

Listing 5.8 formally defines the object property observes (lines 1–5), which is aug-
mented by a synonymous SWRL rule (lines 7–12). Rule observes uses the cross-cutting
action relationship (lines 8–11) to underpin an asset-oriented subject-observer relation-
ship. Knowledge inferred by Pellet with respect to the OWL concept observes is trans-
formed by the CVC into knowledge encoded with the Prolog atom observes, which is
used in the context of rule primary_asset to formalize a symmetric observer relation-
ship. In conjunction with the observed and observer asset concepts, the observes concept
supports SWI-Prolog inferences with respect to primary_asset, which in turn supports
kinetic action classifications.

Rule primary_asset enables Prolog to discover the assets with assigned cross-cutting

77

Chapter 5. Cascading Verification 5.3. Classification with Prolog

Listing 5.7: OWL+SWRL code for class ObserverAsset
1 Class: ObserverAsset
2 EquivalentTo: Asset
3 and (hasAction some Observer)
4
5 Class: Observer
6 SubClassOf: Action
7
8 Rule:
9 hasAction (?a, ?x),

10 hasAction (?b, ?y),
11 hasPrecondition (?y, ?x),
12 DifferentFrom (?a, ?b)
13 -> Observer (?y)

Listing 5.8: OWL+SWRL code for the object property observes

1 ObjectProperty: observes
2 Characteristics: Asymmetric ,
3 Irreflexive
4 Domain: Asset
5 Range: Asset
6
7 Rule:
8 hasAction (?a, ?x),
9 hasAction (?b, ?y),

10 hasPrecondition (?y, ?x),
11 DifferentFrom (?a, ?b)
12 -> observes (?a, ?b)

actions that have temporal precedence in a workflow of related actions. Such a work-
flow may comprise one or, given the symmetric observer relationship encapsulated in
primary_asset, multiple primary assets. The action label identifier resulting from a
single primary asset guarantees the synchronization of all modules representing concepts
related to cross-cutting actions. Synchronization is also guaranteed with multiple pri-
mary assets when a single identifier is chosen randomly from the candidate set. We
note that a single mission plan comprising multiple independent action workflows could
be verified by PRISM without the need for synchronization between the actions that
constitute those workflows.

The primary asset mechanism may be perceived as an obfuscated method for achiev-
ing what is in essence a random result, at least with respect to a subset of the mission
space. But primary assets support an inference-based selection process that is concep-
tually compatible with the methods that derive the remaining action- and asset-based
identifiers in Table 5.1. And while this mechanism fails to eliminate randomness dur-
ing the identifier selection process, it performs better than random by eliminating and
minimizing randomness for mission plans comprising one or more primary assets, respec-
tively. It is of course entirely possible for the primary asset concept, and the reasoning
that it affords, to be extended or repurposed in subsequent versions of our prototype. In

78

Chapter 5. Cascading Verification 5.4. Synthesized Models and Properties

any case, these concerns apply neither to our method nor our prototype as a whole, but
rather to a small subset of the domain model that constitutes our prototype.

As a prelude to the following section, which presents synthesized PRISM artifacts,
Table 5.2 lists kinetic action classifications for the path segment traversal actions specified
in Mission A (top), and the impact of each classification on the synthesized DTMC and
PCTL constructs associated with the classified action (bottom).

TPSA1 TPSA2 TPSA3 TPSA4

default false false false false

default_singleton false false false false

default_terminal false false false false

subject_precondition false false false false

observer_precondition true false false false

constrained_subject false false true false

leading_subject false false false false

singleton_subject false false false false

terminal_subject false false false false

default_observer false false false false

terminal_observer false false false false

terminal_constrained_observer false true false false

observer_and_constrained_subject false false false false

observer_and_singleton_subject false false false false

observer_and_terminal_subject false false false false

subject_constraint false false false false

terminal_subject_constraint false false false true

asset module action label H1 H1 H1 H1

asset module last action label n/a H1 n/a H1

property id n/a TPSA2 n/a TPSA4

Table 5.2: Kinetic action classifications for the path segment traversal actions specified in
Mission A (top), and the impact of each classification on the synthesized DTMC and PCTL
constructs associated with the classified action (bottom).

5.4 Synthesized Models and Properties

The CVC uses explicit and inferred domain knowledge to synthesize DTMC and PCTL
artifacts from predefined templates; for example, the asset module template presented
in Section 4.3 underpins the synthesis of one module per each asset in Mission A. The
PRISM code in Listing 5.9 specifies a synthesized asset module corresponding to as-
set H2, where the commands in lines 3 and 4 represent, respectively, the execution of
actions TPSA3 and TPSA4 assigned to H2.

79

Chapter 5. Cascading Verification 5.4. Synthesized Models and Properties

Listing 5.9: PRISM asset module code
1 module Hummingbird2
2 e2 : [0..120] init 120;
3 [H1] e2 >0 & d3 >0 -> (e2 '=e2 -1);
4 [H1] e2 >0 & d4 >0 -> (e2 '=e2 -1);
5 [H1] e2=0 | d4=0 -> true;
6 endmodule

As a consequence of the realization-based inferences described in Section 5.2, the CVC
synthesizes an asset survivability module to calculate the probability of survival for H2
(as described in Section 4.3.1). The PRISM code in Listing 5.10 specifies the synthesized
survivability module corresponding to asset H2, where variable a2d (lines 6–8) represents
the asset’s destruction.

Listing 5.10: PRISM asset survivability code
1 const int start4 = 60;
2 const int finish4 = 0;
3 formula actn4_tai = d4>finish4 & d4 <= start4;
4
5 module Hummingbird2_Survivability
6 a2d : bool init false;
7 [H1] !a2d & actn4_tai -> 0.99:(a2d '=false) + 0.01:(a2d '=true);
8 [H1] a2d | !actn4_tai -> true;
9 endmodule

The CVC also synthesizes PRISM code to calculate a RAF value for the threat
area incursion prosecuted by asset H2 (as described in Section 4.3.2). The PRISM code
in Listing 5.11 specifies the synthesized sensor action counter module corresponding to
asset H2. Variables start4, finish4 and actn4_tai in Listing 5.11 are declared in
Listing 5.10.

Listing 5.11: PRISM risk acceptability code
1 formula duration4 = start4 - finish4;
2
3 formula tkad2 = duration4;
4
5 module SensorActionCounter2
6 sad2 : [0.. tkad2] init 0;
7 [H1] actn4_tai & (r5) & sad2 <tkad2 -> (sad2 '=sad2 +1);
8 [H1] !actn4_tai | !(r5) -> true;
9 endmodule

10
11 formula raf2 = sad2 / tkad2;

At the conclusion of the synthesis process, the DTMC artifact that models Mis-
sion A is verified against a set of synthesized PCTL properties. The PRISM code in
Listing 5.12 specifies a synthesized property for Mission A. This property comprises

80

Chapter 5. Cascading Verification 5.5. Implementation

variables d2 and d4, which represent the durations of TPSA2 and TPSA4, respectively;
variable a2d, described above; and variable raf2, which represents the RAF value for
the threat area incursion committed by asset H2. The property need not comprise vari-
ables to represent the durations of TPSA1 and TPSA3 because these actions precede TPSA2
and TPSA4, respectively. In other words, the successful execution of TPSA1 is implied by
the successful execution of TPSA2 (this implication is denoted by the classification of
TPSA2 as a terminal_constrained_observer), etc.

Listing 5.12: PRISM mission property code
1 P=? [F d2=0 & d4=0 & !a2d & raf2 >0.6]

Given the property in Listing 5.12, the probability of success for Mission A is calcu-
lated by PRISM to be approximately 0.299. In particular, the verification of Mission A
assigns variables d2 and d4 with values of zero; variable !a2d is assigned a probability
of approximately 0.299; and variable raf2 is assigned a value of approximately 0.833.

5.5 Implementation

We have implemented several of the components that constitute our prototype. The
ontology described in Section 4.1 and Section 4.2 was implemented in OWL+SWRL. The
Prolog rule-base described in Section 4.2 was implemented in SWI-Prolog. The DTMC
and PCTL templates presented in Section 4.3 were implemented in the programming
language Ruby (version 1.9.3). And the DSL described in Section 5.1 was implemented
in YAML, which is particularly compatible with Ruby. Because of its powerful reflective
and meta-programming capabilities, Ruby affords our prototype flexibility to substitute
the current YAML DSL with a more expressive mission specification language, if so
required [101, 102].

In developing the prototype, we leveraged open source software including Pellet 2.2.0,
PRISM 4.1 and the Protégé ontology editor (version 4.1.0). While integration, testing
and extension of implemented components is currently ongoing, completed work was
sufficient to support an evaluation, which is presented in Chapter 6.

5.6 Related Work

Cascading verification can be considered a form of semantic model checking, which has
been studied exclusively in the context of the Web service domain.

Narayanan and McIlraith encode Web service capability descriptions and behavioral
properties with DAML-S and Petri net formalisms, respectively [25]. DAML-S is a
DAML+OIL ontology for describing Web services. For any given Web service, an im-
plemented system generates the Petri net corresponding to the DAML-S description of
that service. The resulting net is used by KarmaSIM, a modeling and simulation en-

81

Chapter 5. Cascading Verification 5.7. Summary

vironment, to perform various analysis techniques including reachability analysis and
deadlock detection.

The model checking algorithm presented by Di Pietro et al. uses a DL-based ontology
to formalize the Web service domain [26]. The behavior of each Web service is modeled
as a state transition system (STS), while behavioral requirements are encoded with CTL.
Both STS and CTL formalisms are extended with semantic annotations. For any given
Web service, the algorithm generates a finite STS corresponding to the annotated de-
scription of that service. The resulting model is verified with model checking. The same
algorithm is used by Boaro et al. to verify Web service security requirements [27].

Oghabi et al. use OWL-S, an OWL ontology that supersedes DAML-S, to describe
Web service behavior [28]. For any given Web service, an implemented system generates
a PRISM model corresponding to the OWL-S description of that service. The result-
ing model is verified with PRISM. Ankolekar et al. translate OWL-S process models
to equivalent PROMELA models, which are verified with the SPIN model checker [29].
Liu et al. extend OWL-S with multiple annotation layers for specifying Web service flow
properties including temporal constraints [30]. Annotated OWL-S models are trans-
formed to corresponding time constraint Petri net (TCPN) models, which are verified
with model checking. Lomuscio and Solanki express OWL-S process models with the
interpreted systems programming language (ISPL) [31]. ISPL is the system description
language for MCMAS, a symbolic model checker tailored to the verification of multi-
agent systems. In this context, Web services and Web service compositions are viewed
as agents and multi-agent systems, respectively.

Our method is perhaps most compatible with the work presented by Oghabi et al.
Similarities include the motivation to verify stochastic behavior and the development of a
system that synthesizes PRISM models from OWL knowledge. But unlike our prototype,
the system developed by Oghabi et al. does not synthesize behavioral properties, nor
does it exploit inferred knowledge to support the synthesis of DTMC artifacts. Inferred
knowledge is utilized in other work including that of Narayanan and McIlraith, Di Pietro
et al. and Boaro et al. But existing work is exclusively concerned with the verification
of Web services, and does not address the expressive and reasoning limitations that
constrain OWL. The work presented in this thesis is (to our knowledge) unique because
it addresses semantic model checking limitations, and applies the resulting method to a
novel domain.

5.7 Summary

Chapter 4 describes the technologies and modeling methods that underpin cascading
verification; in this chapter, we describe the actual verification process, which involves
several stages of reasoning and analysis. The process begins when model builders use a
high-level DSL to encode system specifications. A compiler uses automated reasoning to
verify the consistency between each specification and formalized domain knowledge en-
coded in OWL+SWRL and Prolog. If consistency is deduced, then explicit and inferred

82

Chapter 5. Cascading Verification 5.7. Summary

domain knowledge is used by the compiler to synthesize a system model and behav-
ioral properties from template code. PRISM subsequently verifies the model against the
properties.

At its core, this chapter exposes the composite inference mechanism that underpins
our method and prototype. Composite reasoning encompasses Pellet- and Prolog-based
inference services; the former include consistency checking and realization with respect
to an OWL+SWRL ontology, while the latter involve query resolution with respect to a
knowledge base comprising rules and facts. Prolog-based inferences enable our prototype
to classify kinetic actions, and thereby calibrate the synthesis of PRISM modules related
to those actions. Our implementation of composite reasoning is illustrated with several
examples in the context of Mission A, which is assumed to involve the prosecution of a
threat area incursion. The discussion in this chapter thus utilizes the tactical case study
introduced in Section 4.1.2.

By tracing cascading verification from system specifications to probabilistic model
checking, we describe a prototype greater than the sum of its parts, i.e., a prototype
that integrates technologies presented in Chapter 4 to improve the correctness of UAV
mission plans. The following chapter quantifies this improvement.

83

Chapter 6

Evaluation

We assert that by enhancing the abstraction level of model and property specifications,
cascading verification also enhances the effectiveness of probabilistic model checking.
To validate this assertion, we will demonstrate that, as an implementation of cascading
verification for the UAV domain, the prototype presented in this thesis benefits mission
developers by simplifying the verification of UAV mission plans, and by augmenting
PRISM’s verification capabilities. Ultimately, we aim to show that our prototype benefits
mission developers by improving the correctness of UAV mission specifications. We will
also evaluate the portability of cascading verification, i.e., the usability of our method
in the context of different application domains.

The remainder of this chapter is structured as follows. Section 6.1 describes the
methodologies and metrics that underpin the evaluation of our method and prototype.
Limitations and threats to the validity of the evaluation are presented in Section 6.2.
This chapter is summarized in Section 6.3.

6.1 Evaluation Methods and Metrics

This evaluation focuses on a single project, and assesses the effects of change prior to
large-scale implementation and deployment. Case studies therefore constitute an ap-
propriate evaluation method [103]. Importantly, case studies 1) avoid scalability issues
associated with the evaluation of software-engineering tools and methods, and 2) sup-
port high-level assessments, which are desirable for wide-ranging process changes. The
evaluation was not affected by ancillary budgetary, scheduling and staffing issues.

6.1.1 Abstraction

Because it was unfeasible to involve practitioners in the evaluation of our prototype’s
utility, we opted instead for a metrics-based analysis of 58 mission plans. These plans
were based on real-world mission scenarios developed independently by DARPA and
DRDC [32, 33]. We evaluated our approach by comparing the LOC and numbers of
lexical tokens required to specify missions in YAML against the LOC and tokens in the
combined DTMC and PCTL code synthesized by the CVC. On average, our prototype

84

Chapter 6. Evaluation 6.1. Evaluation Methods and Metrics

synthesizes PRISM code that is 3.127 and 4.490 times greater than the size of YAML
input with regard to LOC and tokens, respectively. (The standard deviations were
52.4% and 95.4%, respectively.) These results provide preliminary evidence of non-trivial
reduction in the effort required to produce mission models and properties.

Table 6.1 lists metric values for a subset of the 58 mission plans. This subset repre-
sents the full range of observed PRISM-to-YAML ratios. (Appendix F contains verifi-
cation artifacts—including mission specifications encoded in YAML, synthesized DTMC
and PCTL artifacts, and PRISM results—for the mission plans presented in Table 6.1.)

YAML PRISM PRISM-to-YAML ratio

id LOC tokens LOC tokens LOC tokens

1a 9 31 22 104 244.4% 335.5%

1d 12 45 32 169 266.7% 375.6%

1g 15 59 36 218 240.0% 369.5%

2a 18 70 45 255 250.0% 364.3%

2b 18 72 52 277 288.9% 384.7%

2e 23 97 57 331 247.8% 341.2%

2g 25 105 77 457 308.0% 435.2%

2j 23 98 76 443 330.4% 452.0%

2m 26 112 91 558 350.0% 498.2%

2p 26 114 91 562 350.0% 493.0%

2r 25 109 84 468 336.0% 429.4%

2u 28 123 94 533 335.7% 433.3%

2v 28 123 99 583 353.6% 474.0%

2w 31 137 111 666 358.1% 486.1%

2x 31 137 111 666 358.1% 486.1%

3a 12 42 32 158 266.7% 376.2%

3e 15 56 45 252 300.0% 450.0%

3h 16 61 42 227 262.5% 372.1%

3k 18 70 60 357 333.3% 510.0%

3o 18 72 60 373 333.3% 518.1%

4a 21 94 39 267 185.7% 284.0%

4b 21 94 73 513 347.6% 545.7%

4d 25 110 100 707 400.0% 642.7%

4f 28 124 111 788 396.4% 635.5%

5a 23 92 58 329 252.2% 357.6%

5b 23 92 104 744 452.2% 808.7%

Table 6.1: Metric values for representative mission plans.

We observe that tactical missions (4b, 4d and 4f in Table 6.1) and traffic surveillance
missions (5a and 5b) generate more LOC and tokens than standalone mission plans,

85

Chapter 6. Evaluation 6.1. Evaluation Methods and Metrics

which are mission plans underpinned exclusively by CEMO and thereby not associated
with the more specialized subdomains encoded in Tactical- and Traffic-CEMO. Specif-
ically, tactical mission plans generate PRISM code that is on average 3.933 and 5.992
times greater than the size of YAML input with regard to LOC and tokens, respectively.
(The standard deviations were 24.0% and 59.2%, respectively.) Mission 5b generates
PRISM code that is 4.522 and 8.087 times greater than the size of YAML input with re-
gard to LOC and tokens, respectively. Because the effort required to synthesize PRISM
code is proportional to the effort required to synthesize the LOC and tokens that con-
stitute the code, tactical and traffic surveillance mission plans result in added value for
mission developers. This observation suggests that, with respect to tactical missions,
the utility of our prototype is proportional to the threat level associated with any given
mission plan. More broadly, increased LOC and token output suggests that the utility
of cascading verification may be proportional to the amount of automated reasoning
required to synthesize pertinent artifacts, a conclusion that justifies our motivation to
augment model checking with formalized domain knowledge.

6.1.2 Effectiveness

Because it cannot account for the intricate syntax of the PRISM language, a LOC-
and token-based analysis offers limited insight into the inherent complexity of model
and property specifications. We investigate complexity further by considering behav-
ioral modeling errors specific to the PRISM language that can be eliminated with the
automated synthesis of PRISM artifacts (at least for the segment of the mission space
that we have explored thus far). These errors are significant, perhaps more so than the
errors uncovered during the model checking process, because they can mislead mission
developers by causing PRISM to verify erroneous mission plans.

In the context of the PRISM language and the PRISM models created for this project:

• Inconsistent variable errors occur when PRISM variables are inconsistent in value
with corresponding variables in mission specifications; for example, the duration of
an action specified in YAML should be consistent in value with the local variable
of the PRISM module corresponding to that action.1

• Command action errors occur when command actions, which affect module syn-
chronization, are incorrect across two or more modules.

• Command probability errors occur when commands are annotated with probabil-
ities that fail to accurately reflect the system being modeled; for example, the
probabilities encapsulated in an asset survivability module should accurately re-
flect the vulnerability of the asset corresponding to that module.2

• Command update errors occur when command updates, which affect module be-
havior, are incomplete or incorrect. For example, an incomplete update could fail

1Action duration in the context of behavioral modeling was described in Section 4.3.
2Asset survivability was described in Section 4.1.2.

86

Chapter 6. Evaluation 6.1. Evaluation Methods and Metrics

to couple the modules corresponding to an asset and the action assigned to that
asset; an incorrect update could couple modules corresponding to an asset and an
action assigned to a different asset.

We also consider mission specification errors that are beyond the scope of PRISM’s
verification capabilities. These domain-specific errors are detected by either Pellet or
the SWI-Prolog compiler during the synthesis process. We have identified 28 domain-
specific errors, across six error classes, that impact the correctness of UAV missions. In
the context of the OWL language and CEMO:

Disjoint class errors occur when individuals are declared in system specifications to be
instances of incompatible classes; for example, a hover action can also be a kinetic
action, but not a sensor action. This error type affects mission correctness by
ambiguating mission constructs for humans and, potentially, computers. Construct
ambiguity could, for example, cause humans to confuse action subtypes and thereby
develop mission plans comprising one or more sensor actions and zero kinetic actions;
without appropriate verification, automated processes could subsequently attempt
to deploy erroneous missions that violate asset constraints related to the execution
of kinetic actions (as described in Section 4.1). The OWL statements in Listing 6.1
formally define disjoint classes that can cause domain-specific errors.

Listing 6.1: Disjoint class statements specified in OWL

1 Action DisjointWith Asset

2 ARDrone DisjointWith Hummingbird

3 HoverAction DisjointWith TraversePathSegmentAction

4 HoverAction DisjointWith LidarAction

5 HoverAction DisjointWith PhotoSurveillanceAction

6 TraversePathSegmentAction DisjointWith LidarAction

7 TraversePathSegmentAction DisjointWith PhotoSurveillanceAction

8 LidarAction DisjointWith PhotoSurveillanceAction

Existential restriction errors occur when individuals fail to participate in mandatory
relationships, as specified by the OWL keyword some; for example, every asset
must execute at least one kinetic action. The OWL statements in Listing 6.2 for-
mally define existential restrictions that can cause domain-specific errors. Because
of OWA, which was described in Section 2.1, OWL-based reasoning cannot conclude
the absence of a mandatory relationship from the absence of knowledge about that
relationship. Consequently, existential restriction errors are detected exclusively by
the SWI-Prolog compiler. The Prolog rules in Listing 6.3 encompass atoms that
correspond to the existential restrictions in Listing 6.2.

Data property value errors occur when data property values declared in system specifi-
cations fall outside the ranges of corresponding data properties encoded in CEMO;
for example, the endurance of a Hummingbird is 1200 time-steps. The OWL state-
ments in Listing 6.4 formally define data properties that can cause domain-specific
errors.

87

Chapter 6. Evaluation 6.1. Evaluation Methods and Metrics

Listing 6.2: Existential restriction statements specified in OWL
1 Asset hasAction some KineticAction
2 Asset hasEnduranceInSeconds some int
3 HoverAction hasWaypoint some Waypoint
4 KineticAction hasDurationInSeconds some int
5 LidarAction hasIntervalInSeconds some int
6 LidarAction isConcurrentWith some HoverAction
7 Mission hasAsset some Asset
8 PhotoSurveillanceAction hasDurationInSeconds some int
9 TraversePathSegmentAction hasEndpoint some Waypoint

10 TraversePathSegmentAction hasStartPoint some Waypoint

Data property domain and range errors occur when data property domain and range
types declared in system specifications are inconsistent with the domain and range
types of the corresponding data properties encoded in CEMO; for example, CEMO
specifies that every Hummingbird individual must be associated with a datatype
property hasCostValue of type int. The OWL code in Listing 6.5 formally defines
data properties that can cause domain-specific errors.

Object property domain and range errors occur when object property domain and range
types declared in system specifications are inconsistent with the domain and range
types of the corresponding object properties encoded in CEMO; for example, CEMO
specifies that the object property hasAction associates every member of class Asset
(the domain of hasAction) with a member of class KineticAction (the range). The
OWL code in Listing 6.6 formally defines object properties that can cause domain-
specific errors.

Threatened asset errors occur when mission plans comprise a threatened asset that is
not also a valid asset.3 With the exception of this UAV-related error class, domain-
specific errors are caused by inconsistencies between a mission specification and
the underlying domain model. Given adequate documentation of the YAML DSL,
these inconsistencies could, in theory, be eliminated by mission developers during
the design and implementation of mission plans (in practice, software bugs elude
extinction). But threatened and valid assets can only be discovered with geode-
tic calculations and subsequent formal reasoning, as described in Section 3.2 and
Section 4.1.2, respectively. The OWL code in Listing 6.7 formally defines class
ThreatenedAsset.

Mission correctness can clearly be compromised by domain-specific and behavioral
modeling errors, which occur during the design/implementation and verification phases,
respectively, of the mission development process. Our prototype augments PRISM’s
effectiveness by preventing both of these error types.

3Threatened and valid assets were described in Section 4.1.2.

88

Chapter 6. Evaluation 6.1. Evaluation Methods and Metrics

Listing 6.3: Existential restrictions encompassed in Prolog rules
1 invalid_asset(A) :-
2 zero_action_asset(A);
3 not(has_endurance_in_seconds(A, _)).
4
5 invalid_hover_action(H) :-
6 invalid_kinetic_action(H);
7 not(has_waypoint(H, _)).
8
9 invalid_kinetic_action(K) :-

10 not(has_duration_in_seconds(K, _)).
11
12 invalid_lidar_action(L) :-
13 not(has_interval_in_seconds(L, _));
14 not(is_concurrent_with(L, _)).
15
16 invalid_mission(M) :-
17 not(has_asset(M, _)).
18
19 invalid_photo_surveillance_action(P) :-
20 not(has_duration_in_seconds(P, _)).
21
22 invalid_traverse_path_segmentAction(T) :-
23 invalid_kinetic_action(T);
24 not(has_endpoint(T, _));
25 not(has_start_point(T, _)).

Listing 6.4: Data property statements specified in OWL
1 ARDrone hasEnduranceInSeconds some int[<= 70]
2 Hummingbird hasEnduranceInSeconds some int[<= 120]

6.1.3 Probabilistic Verification

Finally, we consider PRISM’s ability to meaningfully verify UAVmission plans (or rather,
we consider the utility of the DTMC and PCTL artifacts synthesized by our prototype).
For this part of the evaluation, eighteen of the 58 mission plans described above were
seeded with errors, including deadlock and non-reachable states, that violated desirable
behavioral properties. One mission plan failed (i.e., contained errors that resulted in a
0.0 probability of success) because of an unacceptably low RAF value.4

Nine mission plans failed because kinetic or sensor action workflow durations exceeded
the endurances of the assets to which those workflows were assigned. Figure 6.1 illustrates
this type of error with Mission 3g, one of the 58 mission plans supporting our evaluation.
Mission 3g comprises one asset with identifier ARD1, two hover actions with identifiers HA1
and HA2, and one photo surveillance action with identifier PSA3. The mission fails because
the duration of PSA3 exceeds the endurance of ARD1, to which PSA3 is assigned.

Finally, eight mission plans contained action workflow errors that resulted in dead-
lock. Figure 6.2 illustrates this type of error with Mission 2d, which also belongs to

4The RAF value was described in Section 5.2.

89

Chapter 6. Evaluation 6.1. Evaluation Methods and Metrics

Listing 6.5: Data properties specified in OWL
1 DataProperty: hasDurationInSeconds
2 Characteristics: Functional
3 Domain: Action
4 Range: int
5
6 DataProperty: hasEnduranceInSeconds
7 Characteristics: Functional
8 Domain: Asset
9 Range: int

10
11 DataProperty: hasIntervalInSeconds
12 Characteristics: Functional
13 Domain: LidarAction
14 Range: int

the set of missions supporting our evaluation. Mission 2d comprises two assets with
identifiers ARD1 and H1, and three hover actions with identifiers HA1–HA3. The mission
becomes deadlocked, and consequently fails, when the action workflow comprising HA1

and HA2 is disrupted. This disruption occurs because:

• HA1 and HA2 are kinetic actions assigned to asset ARD1;

• HA1 and the cross-cutting action HA3, which is assigned to asset H1, are precondi-
tions to HA2;

• the duration of HA3 is greater than the duration of HA1.

The propensity for cross-cutting actions to produce deadlock and thereby compromise
mission correctness is associated with the degree of coupling between kinetic actions
assigned to the same asset. The type of deadlock observed in Mission 2d is, to some
extent, a consequence of tight coupling between the actions HA1 and HA2, which are
required by our behavioral model to execute continuously during the operation of ARD1.
By eliminating the requirement for continuity, a looser coupling could permit HA2 to begin
its execution after the end of HA3. But missions comprising loosely coupled kinetic actions
would still have to account for side effects resulting from potential workflow disruptions.
For example, a loose coupling between HA1 and HA2 would enable the execution of HA3 to
impose a hiatus on the workflow assigned to ARD1, with implications for the operation of
that asset. We have chosen to avoid these implications, whose resolution would not have
been straightforward, by establishing the deadlock in Mission 2d as a mission specification
error.

The errors presented in this section were successfully identified by our prototype.
While the correctness of some mission plans was absolute (with a 0.0 or 1.0 probability
of success) several mission plans, including plans comprising threat area incursions, were
associated with variable probabilities of success. For example, the probability of success
for Mission A is approximately 0.299 (as described in Section 5.4).

90

Chapter 6. Evaluation 6.2. Threats to Validity

Listing 6.6: Object properties specified in OWL
1 ObjectProperty: hasAction
2 Characteristics: Asymmetric , Irreflexive , InverseFunctional
3 Domain: Asset
4 Range: Action
5 InverseOf: isActionOf
6
7 ObjectProperty: hasAsset
8 Characteristics: Asymmetric , Irreflexive , InverseFunctional
9 Domain: Mission

10 Range: Asset
11
12 ObjectProperty: hasPrecondition
13 Characteristics: Transitive
14 Domain: Action
15 Range: Action
16 InverseOf: isPreconditionTo
17
18 ObjectProperty: isConcurrentWith
19 Characteristics: Asymmetric , Irreflexive
20 Domain: LidarAction
21 Range: HoverAction

Listing 6.7: OWL code for class ThreatenedAsset
1 Class: ThreatenedAsset
2 EquivalentTo: Asset
3 and (hasAction some DirectThreatAreaHoverAction)
4 DisjointWith: DirectThreatAreaTPSA

6.1.4 Proof of Correctness

Given the broad range of disparate techniques described throughout this thesis, a formal
proof of correctness for cascading verification may not be feasible. But correctness can
be evaluated against simulations carried out during the behavioral modeling process.
To this end, simulations were carried out during the development of the 58 mission
plans. Simulated model executions are facilitated by the PRISM simulator, a tool that
generates sample paths through PRISM models. Partial simulation results for Mission A
are plotted by the graph in Figure 6.3, where x-axis and y-axis represent variable values
and time during specific executions, respectively; and plotted values represent endurance
for asset H1 (variable e1) and duration for the actions assigned to that asset (variables d1
and d2).

6.2 Threats to Validity

This evaluation has thus far been concerned with the abstraction and effectiveness af-
forded by our method and prototype. Research can be evaluated further by considering
threats to its validity. Threat types applicable to our research include conclusion validity,

91

Chapter 6. Evaluation 6.2. Threats to Validity

start

ARD1

HA1

endurance=70

duration=40

PSA3

duration=30HA2

duration=71

Figure 6.1: An illustration of Mission 3g, with red arrows representing preconditions and
horizontal lines representing the passage of time. The x mark denotes a point of failure for the
mission.

start

ARD1

HA1

endurance=70

duration=40

duration=29HA2

H1

HA3

endurance =120

duration=41

Figure 6.2: An illustration of Mission 2d, with red arrows representing preconditions and
horizontal lines representing the passage of time. The x mark denotes a point of failure for
the mission. Color coded circles delineate the operation and execution of assets and actions,
respectively, and group actions and the assets to which those actions are assigned.

internal validity, construct validity and external validity [104, 105].

Conclusion validity addresses the issue of correlation between the functionality af-
forded by our prototype and the correctness of UAV mission specifications, whereby
correctness is determined with respect to specific properties of interest. We believe
this correlation to be established by the results presented in Section 6.1. To recap, in
conjunction with the verification provided by PRISM, reduced LOC, tokens and po-
tential (domain-specific and behavioral modeling) errors demonstrate that our method
and prototype have a significant and positive effect on the correctness of UAV mission
specifications.

92

Chapter 6. Evaluation 6.2. Threats to Validity

Figure 6.3: Partial simulation results for Mission A. The x-axis and y-axis represent variable
values and time during specific executions, respectively; and plotted values depict endurance for
asset H1 (variable e1) and duration for the actions assigned to that asset (variables d1 and d2).

6.2.1 Internal Validity

Having established correlation, we proceed to establish internal validity, which addresses
the issue of causation between the functionality afforded by our prototype and the cor-
rectness of UAV mission specifications. For correlated variables x and y, it can be claimed
that x causes y if x precedes y in the absence of confounding factors [106]. We will not
elaborate on the issue of precedence except to mention that our prototype’s function-
ality precedes verification results returned by PRISM. The problem of confounding is
somewhat more challenging.

Confounding can occur when unknown or extraneous factors affect the relationship
between correlated variables. With well defined input and output interfaces, our proto-
type is not likely to be influenced by unknown factors. But the 58 mission plans that
act as input to the prototype, and thereby generate the established correlation, could
constitute an extraneous factor if they fail to 1) be grounded in the real-world, or 2)
sample a sufficiently large subset of the UAV mission state space. The former concern
is mitigated by the real-world mission scenarios underpinning our mission plans. The
latter concern is related to the issue of variability.

We do not attempt to achieve variability with, for example, randomized mission pa-
rameters. Nevertheless, mission plans vary with respect to LOC and token values, as
indicated in Table 6.1. Mission plans also vary along several parameters, which are listed
in Table 6.2 for a subset of the 58 mission plans. These parameters include numbers of
assets; kinetic, sensor and cross-cutting actions; and preconditions and concurrencies.
Concerns regarding the potential for mission plans to act as a confounding factor are
therefore mitigated by the observed variability in both metric values and mission param-
eters.

The size of DTMC and PCTL templates could constitute a second extraneous factor
if PRISM-to-YAML ratios are affected by poor template design rather than the func-
tionality afforded by our prototype. But this is not the case: our templates are not

93

Chapter 6. Evaluation 6.2. Threats to Validity

actions dependencies

id assets kinetic sensor cross-cutting preconditions concurrencies

1a 1 1 0 0 0 0

1d 1 2 0 0 1 0

1g 1 3 0 0 2 0

2a 2 3 0 0 1 0

2b 2 3 0 1 2 0

2e 3 4 0 2 3 0

2g 2 5 0 2 5 0

2j 2 5 0 1 4 0

2m 2 6 0 1 5 0

2p 2 6 0 2 6 0

2r 3 5 0 2 4 0

2u 3 6 0 2 5 0

2v 3 6 0 2 5 0

2w 3 7 0 2 6 0

2x 3 7 0 2 6 0

3a 1 1 1 0 0 0

3e 1 2 1 0 1 0

3h 1 2 1 0 2 0

3k 1 2 2 0 2 0

3o 1 2 2 0 3 0

4a 1 4 0 0 3 0

4b 1 4 0 0 3 0

4d 1 4 1 0 4 0

4f 1 4 2 0 5 0

5a 1 3 2 0 2 2

5b 1 3 2 0 2 2

Table 6.2: Parameters—including number of assets, actions and action dependencies—for the
representative mission plans listed in Table 6.1.

designed to create code bloat, but rather to generate PRISM code that is intelligible to
a human model builder. We also note that metric values in Table 6.1 do not account for
programmer-readable comments.

6.2.2 Construct Validity

Construct validity addresses the metrics, including LOC and token count, used to quan-
tify model and property specification complexity. These are widely applicable, language
independent software metrics that ignore logic structure and control flow. The abil-

94

Chapter 6. Evaluation 6.3. Summary

ity to bypass control flow is useful when evaluating complexity in the context of the
PRISM language, a somewhat unconventional formalism that lacks appropriate control
structures.

We do acknowledge that a LOC- and token-based analysis cannot in and of itself
account for the intricate syntax of the PRISM language. To address this limitation, we
propose a multidimensional complexity model [107], which encompasses domain-specific
and behavioral modeling errors prevented by our prototype. The (potentially bidirec-
tional) correlation between error rates and software complexity suggests that software
errors can be used as descriptors of complexity [108, 109]. By considering complexity
from multiple dimensions, our metric- and error-based analysis provides a more complete
understanding of PRISM artifact complexity, which in turn increases confidence in the
resulting evaluation.

6.2.3 External Validity

Finally, we consider external validity, which addresses the issue of transferability/porta-
bility. In conjunction with the complexity of the UAV domain, and the real-world
DARPA and DRDC mission scenarios underpinning this evaluation, the results presented
in Section 6.1 suggest that cascading verification can be ported to different application
domains. The portability of our method is supported by the general purpose of its con-
stituent technologies including OWL+SWRL, Prolog, and DTMC and PCTL. Presently,
we cannot make the same argument for the connections that link those technologies in
the context of the method. But cascading verification is an extension of semantic model
checking methods with identical or comparable constituent technologies (similarities to
semantic model checking were presented in Section 5.6). The successful application of
these methods to the Web service domain further supports the portability of cascading
verification.

6.3 Summary

By automating the synthesis of PRISM artifacts, and by providing multiple stages of
reasoning and analysis, our prototype enhances the abstraction level of model and prop-
erty specifications, and the effectiveness of probabilistic model checking, respectively.
This cascading approach to verification improves mission correctness to a degree that is
evidently unattainable by the individual components that constitute the prototype.

We note that this evaluation is preliminary. Further work is required to determine
the utility of our prototype in the context of a more sophisticated mission specifica-
tion language and domain model; and the ability of cascading verification to support
probabilistic model checking in the context of other non-trivial domains.

95

Chapter 7

Conclusions and Future Work

This thesis describes a novel cascading verification method that uses composite reasoning
over high-level system specifications and formalized domain knowledge to synthesize
both system models and their desired behavioral properties. With cascading verification,
model builders use a high-level DSL to encode system specifications that can be analyzed
with model checking. Domain knowledge is encoded in OWL+SWRL and Prolog, which
are combined to overcome their individual limitations. Synthesized DTMC models and
PCTL properties are analyzed with the probabilistic model checker PRISM. Cascading
verification was illustrated with a prototype system that verified the correctness of UAV
mission plans. An evaluation of this prototype revealed non-trivial reductions in the size
and complexity of input system specifications compared to the artifacts synthesized for
PRISM.

The remainder of this chapter is structured as follows. Section 7.1 reiterates our
contributions to the state of the art in semantic model checking. Section 7.2 discusses
directions for future work. Two specific areas of research, involving network centric
and annotation-guided model checking, are described in Section 7.2.1 and Section 7.2.2,
respectively.

7.1 Contributions

With cascading verification, we claim several contributions to semantic model check-
ing, a method that leverages semantic reasoning over domain knowledge to augment the
model checking process. Unlike related work, our method synthesizes both system mod-
els and behavioral properties for probabilistic model checking. Cascading verification is
underpinned by a composite DL- and LP-based inference mechanism that overcomes ex-
pressive and reasoning limitations in the ontology language OWL. By using our method
to verify UAV missions, we highlight the potential portability of cascading verification
and, ultimately, semantic model checking, which has thus far been applied exclusively
to the Web services domain.

We illustrate cascading verification with a prototype system that verifies the cor-
rectness of 58 UAV mission plans; the development of those plans is structured with
DSM. On average, our prototype synthesizes PRISM code that is 3.127 and 4.490 times

96

Chapter 7. Conclusions and Future Work 7.2. Future Work

greater than the size of YAML input with regard to LOC and tokens, respectively. For
traffic-surveillance missions, the prototype realizes even bigger reductions with synthe-
sized PRISM code that is 4.522 and 8.087 times greater than the size of YAML input
with regard to LOC and tokens, respectively. These results provide preliminary evidence
of non-trivial reduction in the effort required to produce mission models and properties.

LOC- and token-based metrics are used to evaluate the abstraction, i.e., the reduction
in modeling complexity, afforded by our prototype. In addition to enhanced abstraction,
the prototype augments PRISM’s verification capabilities and thereby enhances the effec-
tiveness of probabilistic model checking. We evaluate effectiveness by presenting errors
that can only be effectively eliminated with the automated synthesis of PRISM arti-
facts. We also evaluate the utility of the DTMC and PCTL artifacts synthesized by our
prototype.

7.2 Future Work

We have identified several promising directions for future work. Composite CVC infer-
ences are currently unidirectional, with Prolog facts derived from knowledge encoded in
OWL+SWRL. The effects of this pipeline architecture were particularly pronounced in
Section 5.3, where semantic reasoning underpinned Prolog-based classifications, which
subsequently impacted the synthesis of DTMC and PCTL artifacts. While conceptually
and practically appealing, an inference pipeline constrains the reasoning process from
refining Prolog inferences with ontological knowledge, and increases the potential for
knowledge duplication. We aim to address these limitations by developing a knowledge
representation framework that can support more flexible, iterative reasoning.

A second issue pertains to the artifacts that constitute the CVC knowledge base
including CEMO, the Prolog rule-base, and the DTMC and PCTL templates. These
artifacts should be extensible to reflect changes in domain knowledge. Extensions should
in turn be verifiable to ensure that domain knowledge remains consistent across the entire
knowledge base. This requirement provides impetus for the development of a mechanism
that will automate the consistency management process.

We also intend to further the evaluation of our method and prototype by enhancing
the sophistication of the mission specification language and domain model presented in
this thesis. And we intend to confirm the portability of cascading verification by applying
our method to other significant application domains. We expect a more robust evalua-
tion process to facilitate the abstraction and formal specification of the connections that
link different technologies in the context of our method. Once formalized, these connec-
tions will likely support the consistency management process described in the preceding
paragraph, and the development of a domain-agnostic compiler. Such a compiler would
receive as input the artifacts and connections that constitute a domain-specific knowledge
base and thereby eliminate the current de facto requirement for bespoke implementations
of the CVC.

Our work has yet to address the problem of tracing PRISM results back to the un-

97

Chapter 7. Conclusions and Future Work 7.2. Future Work

derlying system specifications. Without traceability, the analysis provided by PRISM
may be incomprehensible to model builders [110]. In the context of the YAML DSL,
traceability would serve to disambiguate the relationship between syntactic rules and
operational semantics, which are defined with OWL and the PRISM language, respec-
tively. Once formalized, elements of this relationship will likely parallel the connections
described in the preceding paragraph.

Future work discussed thus far is closely related to the research, development, eval-
uation and outcomes presented in this thesis. The following sections present research
directions that are more expansive in scope.

7.2.1 Network-Centric Model Checking

Network-Centric Operations (NCO) is a doctrine that leverages information technology
to improve the effectiveness and efficiency of military operations [111]. NCO is un-
derpinned by contemporary socio-technological advancements, and enabled by “a high-
performance information grid, access to all appropriate information sources, weapons
reach and maneuver with precision and speed of response, value-adding C2 processes—
to include high-speed automated assignment of resources to need—and integrated sensor
grids closely coupled in time to shooters and C2 processes.” [18] When combined, these
elements support speed of command, the process by which superior information is turned
into competitive advantage. Speed of command can be substantially enhanced when
command-and-control processes are automated. Enhanced speed of command acceler-
ates the observe, orient, decide and act (OODA) loop, which denies the enemy opera-
tional pause. Regaining this time amplifies the effects associated with speed of command,
resulting in an accelerated rate of change that leads to enemy lock-out.

By automating the organization and utilization of complex operational knowledge,
cascading verification could support the analysis and deployment of mission plans com-
prising asset configurations derived from real-time operational data including asset lo-
cation, fuel and weapon statuses. Near real-time coupling of mission verification and
deployment has the potential to yield a near real-time OODA loop, which will inevitably
be susceptible to network and processing speed latencies. Addressing the impact of la-
tency on mission correctness in the context of NCO constitutes an interesting research
direction.

7.2.2 Annotation-Guided Model Checking

With our prototype implementation of cascading verification, model builders encode
mission specifications in a YAML DSL. Notwithstanding the inherent advantages of
YAML, the introduction of a novel declarative formalism can be associated with potential
disadvantages. Declarative programming that is based on first-order or higher-order
logics does not cope well with temporal systems [112]. This limitation, which derives
from the static model theory that defines standard logics, impacts the level of expressivity
afforded to mission developers. Furthermore, the novelty of our formalism increases the

98

Chapter 7. Conclusions and Future Work 7.2. Future Work

complexity for potential adopters, and distances the project from real-world grounding,
thereby potentially compromising the utility and evaluation of our prototype.

URBI and the Robot Operating System (ROS) are sophisticated, cross-platform and
open-source frameworks that support robotic software development. Both frameworks
are interoperable with established programming languages, including C++ and Java,
that mitigate the aforementioned limitations. With Java-encoded missions, Java anno-
tations could be used by model builders to embed domain knowledge in executable code,
and thereby guide the automated synthesis of verification artifacts. Annotation-based
verification frameworks and other related work indicate this to be a promising direction
for future work [113, 114, 115]. Development and evaluation of the proposed annotation
framework would be informed by, and thereby benefit from, our experience with the
existing YAML DSL.

99

References

[1] “UAV Planner.” [online] Available at: http://www.orbitlogic.com/products/

uav.php.

[2] “Research Projects: MissionLab.” [online] Available at: http://www.cc.gatech.

edu/ai/robot-lab/research/MissionLab/.

[3] D. J. Nowak, I. Price, and G. B. Lamont, “Self Organized UAV Swarm Planning
Optimization for Search and Destroy Using SWARMFARE Simulation,” in Pro-
ceedings of the 39th Conference on Winter Simulation: 40 Years! The Best Is Yet
to Come, WSC ’07, pp. 1315–1323, IEEE Press, 2007.

[4] J. Perron, J. Hogan, B. Moulin, J. Berger, and M. Bélanger, “A Hybrid Approach
Based on Multi-Agent Geosimulation and Reinforcement Learning to Solve a UAV
Patrolling Problem,” in Proceedings of the 40th Conference on Winter Simulation,
WSC ’08, pp. 1259–1267, Winter Simulation Conference, 2008.

[5] D. J. Nowak, G. B. Lamont, and G. L. Peterson, “Emergent Architecture in
Self Organized Swarm Systems for Military Applications,” in Proceedings of the
2008 GECCO Conference Companion on Genetic and Evolutionary Computation,
GECCO ’08, pp. 1913–1920, ACM, 2008.

[6] E. Zitzler, M. Laumanns, and S. Bleuler, “A Tutorial on Evolutionary Mul-
tiobjective Optimization,” in Metaheuristics for Multiobjective Optimisation
(X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’kindt, eds.), vol. 535 of Lecture
Notes in Economics and Mathematical Systems, pp. 3–37, Springer Berlin Heidel-
berg, 2004.

[7] A. Agogino, C. HolmesParker, and K. Tumer, “Evolving Large Scale UAV Com-
munication System,” in Proceedings of the Fourteenth International Conference on
Genetic and Evolutionary Computation Conference, GECCO ’12, pp. 1023–1030,
ACM, 2012.

[8] D. W. Stouch, E. Zeidman, M. Richards, K. D. McGraw, and W. Callahan, “Coe-
volving Collection Plans for UAS Constellations,” in Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’11, pp. 1691–
1698, ACM, 2011.

100

http://www.orbitlogic.com/products/uav.php
http://www.orbitlogic.com/products/uav.php
http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/
http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/

References References

[9] B. Rosenberg, M. Richards, J. T. Langton, S. Tenenbaum, and D. W. Stouch, “Ap-
plications of Multi-objective Evolutionary Algorithms to Air Operations Mission
Planning,” in Proceedings of the 2008 GECCO Conference Companion on Genetic
and Evolutionary Computation, GECCO ’08, pp. 1879–1886, ACM, 2008.

[10] A. J. Pohl and G. B. Lamont, “Multi-Objective UAV Mission Planning Using Evo-
lutionary Computation,” in Proceedings of the 2008 Winter Simulation Conference,
WSC ’08, pp. 1268–1279, Winter Simulation Conference, 2008.

[11] V. K. Shetty, M. Sudit, and R. Nagi, “Priority-Based Assignment and Routing of a
Fleet of Unmanned Combat Aerial Vehicles,” Computers and Operations Research,
vol. 35, pp. 1813–1828, June 2008.

[12] D. K. Ahner, A. H. Buss, and J. Ruck, “Assignment Scheduling Capability for
Unmanned Aerial Vehicles: A Discrete Event Simulation With Optimization in
the Loop Approach to Solving a Scheduling Problem,” in Proceedings of the 38th
Conference on Winter Simulation, WSC ’06, pp. 1349–1356, Winter Simulation
Conference, 2006.

[13] Y. Alver, M. Ozdogan, and E. Yucesan, “Assessing the Robustness of UAV As-
signments,” in Proceedings of the 2012 Winter Simulation Conference, WSC ’12,
pp. 1–11, Winter Simulation Conference, 2012.

[14] F. Kamrani and R. Ayani, “Simulation-Aided Path Planning of UAV,” in Proceed-
ings of the 39th Conference on Winter Simulation: 40 Years! The Best Is Yet to
Come, WSC ’07, pp. 1306–1314, IEEE Press, 2007.

[15] J. J. Corner and G. B. Lamont, “Parallel Simulation of UAV Swarm Scenarios,” in
Proceedings of the 36th Conference on Winter Simulation, WSC ’04, pp. 355–363,
Winter Simulation Conference, 2004.

[16] Z. Lian and A. Deshmukh, “Performance Prediction of an Unmanned Airborne
Vehicle Multi-Agent System,” European Journal of Operational Research, vol. 172,
no. 2, pp. 680–695, 2006.

[17] S. Hamilton, C. T. Schmoyer, and J. A. “Drew” Hamilton, Jr., “Validating a Net-
work Simulation Testbed for Army UAVs,” in Proceedings of the 39th Conference on
Winter Simulation: 40 Years! The Best Is Yet to Come, WSC ’07, pp. 1300–1305,
IEEE Press, 2007.

[18] A. K. Cebrowski and J. J. Garstka, “Network-Centric Warfare: Its Origin and
Future,” U.S. Naval Institute Proceedings, vol. 124, no. 1, pp. 28–35, 1998.

[19] G. C. Chasparis and J. S. Shamma, “Linear-Programming-Based Multi-Vehicle
Path Planning With Adversaries,” in Proceedings of the 2005 American Control
Conference, ACC ’05, pp. 1072–1077, June 2005.

101

References References

[20] M.-W. Jang and G. Agha, “Scalable Agent Distribution Mechanisms for Large-
Scale UAV Simulations,” in International Conference on Integration of Knowledge
Intensive Multi-Agent Systems, KIMAS ’05, pp. 85–90, April 2005.

[21] J. Russo, M. Amduka, K. Pedersen, R. Lethin, B. Gelfand, J. Springer,
R. Manohar, and R. Melhem, “Enabling Cognitive Architectures for UAV Mission
Planning,” in Proceedings of the High Performance Embedded Computing Work-
shop, HPEC ’06, September 2006.

[22] F. Zervoudakis, D. S. Rosenblum, S. Elbaum, and A. Finkelstein, “Cascading Veri-
fication: An Integrated Method for Domain-Specific Model Checking,” in Proceed-
ings of the 2013 9th Joint Meeting on the Foundations of Software Engineering,
ESEC/FSE ’13, pp. 400–410, ACM, 2013.

[23] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT Press, 2008.

[24] Robby, M. B. Dwyer, and J. Hatcliff, “Bogor: An Extensible and Highly-Modular
Software Model Checking Framework,” in Proceedings of the 9th European Software
Engineering Conference Held Jointly With the 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ESEC/FSE-11, pp. 267–276,
ACM, 2003.

[25] S. Narayanan and S. A. McIlraith, “Simulation, Verification and Automated Com-
position of Web Services,” in Proceedings of the 11th International Conference on
World Wide Web, WWW ’02, pp. 77–88, ACM, 2002.

[26] I. D. Pietro, F. Pagliarecci, and L. Spalazzi, “Model Checking Semantically Anno-
tated Services,” IEEE Transactions on Software Engineering, vol. 38, pp. 592–608,
May 2012.

[27] L. Boaro, E. Glorio, F. Pagliarecci, and L. Spalazzi, “Semantic Model Checking
Security Requirements for Web Services,” in Proceedings of the 2010 International
Conference on High Performance Computing and Simulation, HPCS ’10, pp. 283–
290, IEEE, 2010.

[28] G. Oghabi, J. Bentahar, and A. Benharref, “On the Verification of Behavioral
and Probabilistic Web Services Using Transformation,” in Proceedings of the 2011
IEEE International Conference on Web Services, ICWS ’11, pp. 548–555, IEEE
Computer Society, 2011.

[29] A. Ankolekar, M. Paolucci, and K. Sycara, “Towards a Formal Verification of
OWL-S Process Models,” in Proceedings of the 4th International Conference on
the Semantic Web, ISWC ’05, pp. 37–51, Springer-Verlag, 2005.

[30] R. Liu, C. Hu, and C. Zhao, “Model Checking for Web Service Flow Based on Anno-
tated OWL-S,” in Proceedings of the 2008 Ninth ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, SNPD ’08, pp. 741–746, IEEE Computer Society, 2008.

102

References References

[31] A. Lomuscio and M. Solanki, “Mapping OWL-S Processes to Multi Agent Systems:
A Verification Oriented Approach,” in Proceedings of the 2009 International Con-
ference on Advanced Information Networking and Applications Workshops, WAINA
’09, pp. 488–493, IEEE Computer Society, 2009.

[32] DARPA, “UAVForge.” [online] Available at: http://www.uavforge.net/.

[33] G. Youngson, K. Baker, D. Kelleher, and S. Williams, “Project Support Services for
the Operational Mission and Scenario Analysis for Multiple UAVs/UCAVs Control
From Airborne Platform,” March 2004.

[34] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: A Tool for
Automatic Verification of Probabilistic Systems,” in Proceedings of the 12th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS ’06, pp. 441–444, Springer-Verlag, 2006.

[35] C. C. Evans, “The Official YAML Web Site.” [online] Available at: http://yaml.
org/.

[36] M. Mernik, J. Heering, and A. M. Sloane, “When and How to Develop Domain-
Specific Languages,” ACM Computing Surveys, vol. 37, pp. 316–344, December
2005.

[37] J. E. Rivera, F. Durán, and A. Vallecillo, “Formal Specification and Analysis of
Domain Specific Models Using Maude,” Simulation, vol. 85, pp. 778–792, November
2009.

[38] M. A. Musen, “Ontology-Oriented Design and Programming,” in Knowledge Engi-
neering and Agent Technology, pp. 3–16, IOS Press, 2004.

[39] T. Walter, F. S. Parreiras, and S. Staab, “OntoDSL: An Ontology-Based Frame-
work for Domain-Specific Languages,” in Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems, MODELS ’09,
pp. 408–422, Springer-Verlag, 2009.

[40] I. Horrocks and P. F. Patel-Schneider, “Knowledge Representation and Reason-
ing on the Semantic Web: OWL,” in Handbook of Semantic Web Technologies
(J. Domingue, D. Fensel, and J. A. Hendler, eds.), ch. 9, pp. 365–398, Springer,
2011.

[41] B. Motik, I. Horrocks, R. Rosati, and U. Sattler, “Can OWL and Logic Program-
ming Live Together Happily Ever After?,” in Proceedings of the 5th International
Conference on the Semantic Web, ISWC ’06, pp. 501–514, Springer-Verlag, 2006.

[42] M. Şensoy, G. de Mel, W. W. Vasconcelos, and T. J. Norman, “Ontological Logic
Programming,” in Proceedings of the International Conference on Web Intelligence,
Mining and Semantics, WIMS ’11, pp. 44:1–44:9, ACM, 2011.

103

http://www.uavforge.net/
http://yaml.org/
http://yaml.org/

References References

[43] T. Matzner and P. Hitzler, “Any-World Access to OWL From Prolog,” in Proceed-
ings of the 30th Annual German Conference on Advances in Artificial Intelligence,
KI ’07, pp. 84–98, Springer-Verlag, 2007.

[44] N. Papadakis, K. Stravoskoufos, E. Baratis, E. G. M. Petrakis, and D. Plexousakis,
“PROTON: A Prolog Reasoner for Temporal ONtologies in OWL,” Expert Systems
With Applications, vol. 38, pp. 14660–14667, November 2011.

[45] K. Samuel, L. Obrst, S. Stoutenberg, K. Fox, P. Franklin, A. Johnson, K. Laskey,
D. Nichols, S. Lopez, and J. Peterson, “Translating OWL and Semantic Web Rules
Into Prolog: Moving Toward Description Logic Programs,” Theory and Practice of
Logic Programming, vol. 8, pp. 301–322, May 2008.

[46] G. Lukácsy and P. Szeredi, “Efficient Description Logic Reasoning in Prolog: The
DLog System,” Theory and Practice of Logic Programming, vol. 9, pp. 343–414,
May 2009.

[47] J. M. Almendros-Jiménez, “A Prolog-Based Query Language for OWL,” Electronic
Notes in Theoretical Computer Science, vol. 271, pp. 3–22, March 2011.

[48] D. Elenius, “SWRL-IQ: A Prolog-Based Query Tool for OWL and SWRL,” in
Proceedings of OWL: Experiences and Directions Workshop 2012, vol. 849 of CEUR
Workshop Proceedings, CEUR-WS.org, 2012.

[49] F. Baader, I. Horrocks, and U. Sattler, “Description Logics as Ontology Lan-
guages for the Semantic Web,” in Mechanizing Mathematical Reasoning, Essays
in Honor of Jörg H. Siekmann on the Occasion of His 60th Birthday (D. Hutter
and W. Stephan, eds.), no. 2605 in Lecture Notes in Computer Science, pp. 228–
248, Springer, 2005.

[50] M. Krötzsch and S. Speiser, “ShareAlike Your Data: Self-Referential Usage Policies
for the Semantic Web,” in Proceedings of the 10th International Conference on the
Semantic Web—Volume Part I, ISWC ’11, pp. 354–369, Springer-Verlag, 2011.

[51] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean,
“SWRL: A Semantic Web Rule Language Combining OWL and RuleML.” W3C
Member Submission, May 2004.

[52] R. E. McGrath and J. Futrelle, “Reasoning About Provenance With OWL and
SWRL Rules,” in AAAI Spring Symposium: AI Meets Business Rules and Process
Management, pp. 87–92, AAAI, 2008.

[53] R. Volz, S. Decker, and D. Oberle, “Bubo—Implementing OWL in Rule-Based
Systems,” in Proceedings of the 12th International Conference on World Wide Web,
WWW ’03, ACM, 2003.

[54] V. S. Costa, R. Rocha, and L. Damas, “The YAP Prolog System,” Theory and
Practice of Logic Programming, vol. 12, pp. 5–34, January 2012.

104

References References

[55] S. Greco and F. A. Lisi, “Logic programming Languages for Databases and the
Web,” in A 25-Year Perspective on Logic Programming (A. Dovier and E. Pontelli,
eds.), pp. 183–203, Springer-Verlag, 2010.

[56] M. Kwiatkowska and D. Parker, “Advances in Probabilistic Model Checking,” in
Software Safety and Security: Tools for Analysis and Verification (T. Nipkow,
O. Grumberg, and B. Hauptmann, eds.), vol. 33 of NATO Science for Peace and
Security Series D: Information and Communication Security, pp. 126–151, IOS
Press, 2012.

[57] A. Rango, A. Laliberte, K. Havstad, C. Winters, C. Steele, and D. Browning,
“Rangeland Resource Assessment, Monitoring, and Management Using Unmanned
Aerial Vehicle-Based Remote Sensing,” in Proceedings of the IEEE International
Geoscience & Remote Sensing Symposium, IGARSS ’10, pp. 608–611, IEEE, 2010.

[58] J. A. Jiménez-Berni, P. J. Zarco-Tejada, L. Suarez, and E. Fereres, “Thermal and
Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an
Unmanned Aerial Vehicle,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 47, pp. 722–738, March 2009.

[59] F. Heintz, P. Rudol, and P. Doherty, “From Images to Traffic Behavior—A UAV
Tracking and Monitoring Application,” in Proceedings of the 10th International
Conference on Information Fusion, FUSION ’07, pp. 1–8, IEEE, 2007.

[60] S. Karaman and E. Frazzoli, “Complex Mission Optimization for Multiple UAVs
Using Linear Temporal Logic,” in Proceedings of the 2008 American Control Con-
ference, ACC ’08, pp. 2003–2009, IEEE, 2008.

[61] P. Tosic, M.-W. Jang, S. Reddy, J. Chia, L. Chen, and G. Agha, “Modeling a
System of UAVs on a Mission,” in Proceedings of the 7th World Multiconference on
Systemics, Cybernetics and Informatics, SCI ’03, pp. 508–514, 2003.

[62] United States Department of Defense, “Unmanned Aircraft Systems Roadmap
2005–2030,” 2005.

[63] M. Arjomandi, Classification of Unmanned Aerial Vehicles. The University of
Adelaide.

[64] D. Crocker, Dictionary of Aviation. A&C Black Publishers Ltd, second ed., March
2007.

[65] AscTec, “Manufacturer and Innovator of Aerial Imaging and Research UAVs—
Ascending Technologies.” [online] Available at: http://www.asctec.de/.

[66] Draganfly, “Draganfly.com Industrial Aerial Video Systems & UAVs.” [online] Avail-
able at: http://www.draganfly.com/.

[67] Parrot, “Parrot USA.” [online] Available at: http://www.parrot.com/.

105

http://www.asctec.de/
http://www.draganfly.com/
http://www.parrot.com/

References References

[68] C. E. Nehme, M. Cummings, and J. W. Crandall, A UAV Mission Hierarchy.
Massachusetts Institute of Technology, 2006.

[69] M. Hou and R. D. Kobierski, “Intelligent Adaptive Interfaces,” tech. rep., Defence
Research and Development Canada, December 2006.

[70] M. Hou, H. Zhu, M. Zhou, and G. G. Arrabito, “Optimizing Operator—Agent
Interaction in Intelligent Adaptive Interface Design: A Conceptual Framework,”
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Trans-
actions on, vol. 41, pp. 161–178, March 2011.

[71] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical
OWL-DL Reasoner,” Journal of Web Semantics, vol. 5, pp. 51–53, June 2007.

[72] “SWI-Prolog’s home.” [online] Available at: http://www.swi-prolog.org/.

[73] J. Bao and V. Honavar, “Adapt OWL as a Modular Ontology Language,” in
Proceedings of the OWLED*06 Workshop on OWL: Experiences and Directions,
CEUR-WS.org, 2006.

[74] S. Staab and R. Studer, Handbook on Ontologies. Springer, second ed., 2009.

[75] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein, “OWL Web Ontology Language Reference.” [on-
line] Available at: http://www.w3.org/TR/owl-ref/, February 2004.

[76] M. Horridge, N. Drummond, J. Goodwin, A. L. Rector, R. Stevens, and H. Wang,
“The Manchester OWL Syntax,” in Proceedings of the OWLED*06 Workshop on
OWL: Experiences and Directions, CEUR-WS.org, 2006.

[77] M. Horridge, A Practical Guide to Building OWL Ontologies Using Protégé 4 and
CO-ODE Tools. The University of Manchester, 1.3 ed., 2011.

[78] Joint Technical Coordinating Group on Aircraft Survivability (JTCG/AS),
“JTCG/AS Aerospace Systems Survivability Handbook Series,” Volume 1. Hand-
book Overview, United States Department of Defense, May 2001.

[79] M. J. Cassidy, S. B. Anani, and J. M. Haigwood, “Study of Freeway Traffic Near
an Off-Ramp,” Transportation Research Part A: Policy and Practice, vol. 36, no. 6,
pp. 563–572, 2002.

[80] M. U. Piracha, D. Nguyen, D. Mandridis, T. Yilmaz, I. Ozdur, S. Ozharar, and
P. J. Delfyett, “Range Resolved LIDAR for Long Distance Ranging With Sub-
Millimeter Resolution,” Optics Express, vol. 18, pp. 7184–7189, March 2010.

[81] M. Şensoy, W. W. Vasconcelos, T. J. Norman, and K. Sycara, “Reasoning Support
for Flexible Task Resourcing,” Expert Systems With Applications, vol. 39, pp. 1998–
2010, February 2012.

106

http://www.swi-prolog.org/
http://www.w3.org/TR/owl-ref/

References References

[82] G. de Mel, M. Şensoy, W. Vasconcelos, and T. J. Norman, “A Hybrid Reasoning
Mechanism for Effective Sensor Selection for Tasks,” Engineering Applications of
Artificial Intelligence, vol. 26, pp. 873–887, February 2013.

[83] L. Obrst, S. Stoutenburg, D. McCandless, D. Nichols, P. Franklin, M. Prausa, and
R. Sward, “Ontologies for Rapid Integration of Heterogeneous Data for Command,
Control, & Intelligence,” in Proceedings of the 2010 Conference on Ontologies and
Semantic Technologies for Intelligence, pp. 71–89, IOS Press, 2010.

[84] Z. Zombori, “Efficient Two-Phase Data Reasoning for Description Logics,” in Ar-
tificial Intelligence in Theory and Practice II, vol. 276 of IFIP ’08, pp. 393–402,
Springer US, 2008.

[85] G. Lukácsy, P. Szeredi, and B. Kádár, “Prolog Based Description Logic Reasoning,”
in Proceedings of the 24th International Conference on Logic Programming, ICLP
’08, pp. 455–469, Springer-Verlag, 2008.

[86] G. Lukácsy and P. S. and, “Scalable Web Reasoning Using Logic Programming
Techniques,” in Proceedings of the 3rd International Conference on Web Reasoning
and Rule Systems, RR ’09, pp. 102–117, Springer-Verlag, 2009.

[87] A. Preece, M. Gomez, G. de Mel, W. Vasconcelos, D. Sleeman, S. Colley, G. Pear-
son, T. Pham, and T. L. Porta, “Matching Sensors to Missions Using a Knowledge-
Based Approach,” in Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, 2008.

[88] M. Ferraro, J. Scanlan, H. Fangohr, and B. Schumann, “A Generic Unifying On-
tology for Civil Unmanned Aerial Vehicle Missions,” in 12th AIAA Aviation Tech-
nology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, 2012.

[89] A. Valente, D. Holmes, and F. C. Alvidrez, “Using Ontologies to Build Web Service-
Based Architecture for Airspace Systems,” in Proceedings of the 8th International
Protégé Conference, 2005.

[90] C. Schlenoff and E. Messina, “A Robot Ontology for Urban Search and Rescue,” in
Proceedings of the 2005 ACM Workshop on Research in Knowledge Representation
for Autonomous Systems, KRAS ’05, pp. 27–34, ACM, 2005.

[91] F. Amigoni and M. A. Neri, “An Application of Ontology Technologies to Robotic
Agents,” in Proceedings of the 2005 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, pp. 751–754, IEEE Computer Society, 2005.

[92] A. Chella, M. Cossentino, R. Pirrone, and A. Ruisi, “Modeling Ontologies for
Robotic Environments,” in Proceedings of the 14th international Conference on
Software Engineering and Knowledge Engineering, SEKE ’02, pp. 77–80, ACM,
2002.

107

References References

[93] C. Schlenoff, S. Balakirsky, M. Uschold, R. Provine, and S. Smith, “Using Ontolo-
gies to Aid Navigation Planning in Autonomous Vehicles,” Knowledge Engineering
Review, vol. 18, pp. 243–255, September 2003.

[94] Y. Gavshin and J. Shumik, “Runtime Generation of Robot Control Code From
Ontology File,” in Proceedings of the Second International Conference on Adaptive
and Intelligent Systems, ICAIS ’11, pp. 157–167, Springer-Verlag, 2011.

[95] C. A. Bohn, “Heuristics for Designing the Control of a UAV Fleet With Model
Checking,” in Cooperative Systems (D. Grundel, R. Murphey, P. Pardalos, and
O. Prokopyev, eds.), vol. 588 of Lecture Notes in Economics and Mathematical
Systems, pp. 21–36, Springer Berlin Heidelberg, 2007.

[96] M. Webster, M. Fisher, N. Cameron, and M. Jump, “Formal Methods for the Cer-
tification of Autonomous Unmanned Aircraft Systems,” in Proceedings of the 30th
International Conference on Computer Safety, Reliability, and Security, SAFE-
COMP ’11, pp. 228–242, Springer-Verlag, 2011.

[97] S. Jeyaraman, A. Tsourdos, R. Żbikowski, and B. A. White, “Formal Techniques
for the Modelling and Validation of a Co-Operating UAV Team That Uses Dubins
Set for Path Planning,” in Proceedings of the 2005 American Control Conference,
vol. 7, pp. 4690–4695, 2005.

[98] G. Sirigineedi, A. Tsourdos, B. A. White, and R. Żbikowski, “Kripke Modelling
and Verification of Temporal Specifications of a Multiple UAV System,” Annals of
Mathematics and Artificial Intelligence, vol. 63, pp. 31–52, September 2011.

[99] M. Kuwata, “Kwalify User’s Guide (for Ruby).” [online] Available at: http://www.
kuwata-lab.com/kwalify/ruby/users-guide.html, 2011.

[100] “PRISM Manual | The PRISM Language / Parallel Composition.” [online] Avail-
able at: http://www.prismmodelchecker.org/manual/ThePRISMLanguage/.

[101] D. Flanagan and Y. Matsumoto, The Ruby Programming Language. O’Reilly Me-
dia, first ed., 2008.

[102] P. Perrotta, Metaprogramming Ruby: Program Like the Ruby Pros. The Pragmatic
Programmers, first ed., January 2010.

[103] B. Kitchenham, L. Pickard, and S. L. Pfleeger, “Case Studies for Method and Tool
Evaluation,” IEEE Software, vol. 12, pp. 52–62, July 1995.

[104] H. K. Wright, M. Kim, and D. E. Perry, “Validity Concerns in Software Engineer-
ing Research,” in Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research, FoSER ’10, pp. 411–414, ACM, 2010.

108

http://www.kuwata-lab.com/kwalify/ruby/users-guide.html
http://www.kuwata-lab.com/kwalify/ruby/users-guide.html
http://www.prismmodelchecker.org/manual/ThePRISMLanguage/

References References

[105] R. Feldt and A. Magazinius, “Validity Threats in Empirical Software Engineering
Research—An Initial Survey,” in Proceedings of the 22nd International Confer-
ence on Software Engineering & Knowledge Engineering, SEKE ’10, pp. 374–379,
Knowledge Systems Institute Graduate School, 2010.

[106] H. J. Seltman, Experimental Design and Analysis. Carnegie Mellon, 2013.

[107] C. Kaner and W. P. Bond, “Software Engineering Metrics: What Do They Measure
and How DoWe Know?,” in 10th IEEE International Software Metrics Symposium,
Metrics ’04, IEEE Computer Society, 2004.

[108] R. D. Banker, S. M. Datar, and D. Zweig, “Software Complexity and Maintainabil-
ity,” in Proceedings of the Tenth International Conference on Information Systems,
ICIS ’89, pp. 247–255, ACM, 1989.

[109] S. H. Kan, Metrics and Models in Software Quality Engineering. Addison-Wesley
Professional, 2nd ed., 2002.

[110] B. Combemale, L. Gonnord, and V. Rusu, “A Generic Tool for Tracing Executions
Back to a DSML’s Operational Semantics,” in Proceedings of the 7th European
Conference on Modelling Foundations and Applications, ECMFA ’11, pp. 35–51,
Springer-Verlag, 2011.

[111] C. Wilson, “Network Centric Operations: Background and Oversight Issues for
Congress,” March 2007.

[112] J. W. Lloyd, “Practical Advantages of Declarative Programming,” in Proceedings
of the 1994 Joint Conference on Declarative Programming, GULP-PRODE ’94,
pp. 18–30, 1994.

[113] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, “Beyond Assertions: Advanced
Specification and Verification With JML and ESC/Java2,” in Proceedings of the 4th
International Conference on Formal Methods for Components and Objects, FMCO
’05, pp. 342–363, Springer-Verlag, 2006.

[114] A. Holmgren, “Using Annotations to Add Validity Constraints to Jav-
aBeans Properties.” [online] Available at: http://192.9.162.55/developer/

technicalArticles/J2SE/constraints/annotations.html, March 2005.

[115] G. Ferreira, E. Loureiro, and E. Oliveira, “A Java Code Annotation Approach for
Model Checking Software Systems,” in Proceedings of the 2007 ACM Symposium
on Applied Computing, SAC ’07, pp. 1536–1537, ACM, 2007.

[116] C. Veness, “Calculate Distance, Bearing and More Between Latitude/Longi-
tude Points.” [online] Available at: http://www.movable-type.co.uk/scripts/

latlong.html. Movable Type Ltd.

109

http://192.9.162.55/developer/technicalArticles/J2SE/constraints/annotations.html
http://192.9.162.55/developer/technicalArticles/J2SE/constraints/annotations.html
http://www.movable-type.co.uk/scripts/latlong.html
http://www.movable-type.co.uk/scripts/latlong.html

Appendix A

Threat Area Calculations

Threat area incursions have been considered throughout this thesis. The CVC uses hard-
coded geodesic equations to establish the occurrence, and calculate the duration, of threat
area incursions committed by UAVs (as described in Chapter 3). The equations employed
by the CVC are underpinned by a spherical Earth with a two-dimensional surface. This
rudimentary mission environment enables our prototype to avoid complexities associated
with three-dimensional topographies. (Because the shape of the Earth is approximately
ellipsoidal, geodetic calculations that assume a spherical geometry result in errors ranging
between 0.3% and 0.55%.)

In this context, a direct flightpath between two waypoints can be delineated by the
minor arc of a great circle. A waypoint is a zero-dimensional spherical point designated
by latitude and longitude; a great circle is the intersection of a sphere and a plane passing
through the center of that sphere. The minor arc of a great circle, which we will refer to
as a great circle arc, is the shortest path between two points on the surface of a sphere.

Since great circle arcs can also be used to delineate threat area boundaries, an asset
enters and exits a threat area at the intersection of two great circle arcs. We therefore
use great circle intersections to establish the occurrence of threat area incursions.

A.1 Establishing Threat Area Incursions

Following from the definition of a great circle, a great circle arc lies on a plane that
passes through the center of a sphere. Two great circles intersect when their respec-
tive planes intersect (the only other possibility being that the planes overlap), thereby
forming a straight line that crosses the surface of the underlying sphere at two points.
Consequently, the intersection of two great circle arcs must occur at one of the spherical
points resulting from the intersection of the great circles underpinning those arcs.

We consider great circle arcs a and b defined by points a1, a2 and b1, b2, respectively.
The latitude and longitude coordinates that designate these points are converted to
Cartesian coordinates using Equation A.1, where R is the Earth’s mean radius (6371
kilometers).

Equation A.2 calculates vectors va and vb from points a1, a2 and b1, b2, respectively,
where each vector defines a plane containing the points used to calculate that vector.

110

Appendix A. Threat Area Calculations A.2. Calculating Threat Area Durations

p =

xy
z

 =

R · cos lat · cos lon
R · cos lat · sin lon

R · sin lat

 (A.1)

Equation A.3 calculates unit vectors ua and ub from va and vb, respectively. If unit
vectors ua and ub are not identical (as determined by Equation A.4) vectors va and vb
define planes that do not overlap.

v =

vxvy
vz

 =

y1 · z2 − y2 · z1x2 · z1 − x1 · z2
x1 · y2 − x2 · y1

 (A.2)

u =

uxuy
uz

 =

vx/
√
vx2 + vy2 + vz2

vy/
√
vx2 + vy2 + vz2

vz/
√
vx2 + vy2 + vz2

 (A.3)

u1 ∩ u2 =

|u1x − u2x| < ε
|u1y − u2y| < ε
|u1z − u2z| < ε

(A.4)

Two non-overlapping planes intersect in a straight line defined by direction vector d.
Equation A.5 calculates d from vectors ua and ub. Equation A.6 calculates the unit
vector of d, which defines the coordinates of spherical point p1. Equation A.7 calculates
the inverse of the unit vector of d, which defines the coordinates of spherical point p2.
The latitude and longitude coordinates of p1 and p2 are calculated from their Cartesian
coordinates using Equation A.8 and Equation A.9, respectively. Since all values passed
to trigonometric functions are expressed in radians, output from Equation A.8 and Equa-
tion A.9 must be converted from radians to degrees before proceeding to the next set of
calculations.

Having identified points p1 and p2, we check if either point is located on both arcs a
and b. For arc a (defined by points a1 and a2) and point p1, we use the Haversine formula,
which is described in Section A.2.1, to calculate the distance from a1 to a2, d(a1,a2); and
the distances from p1 to a1 and a2, d(p1,a1) and d(p1,a2), respectively. Consequently,
p1 ∈ a⇔ d(a1,a2) = d(p1,a1) + d(p1,a2). Similarly, we check p1 with respect to arc b. If p1
is not an intersection, we check p2. If p1 and p2 are not intersection points, then arcs a
and b do not intersect.

A.2 Calculating Threat Area Durations

Having established the occurrence of a threat area incursion, we proceed to calculate its
duration. The duration of travel between two points is a function of distance and speed.

111

Appendix A. Threat Area Calculations A.2. Calculating Threat Area Durations

d =

dxdy
dz

 =

u1y · u2z − u2y · u1zu2x · u1z − u1x · u2z
u1x · u2y − u2x · u1y

 (A.5)

p1 =

p1xp1y
p1z

 =

dx/
√
dx

2 + dy
2 + dz

2

dy/
√
dx

2 + dy
2 + dz

2

dz/
√
dx

2 + dy
2 + dz

2

 (A.6)

p2 =

p2xp2y
p2z

 =

−dx/

√
dx

2 + dy
2 + dz

2

−dy/
√
dx

2 + dy
2 + dz

2

−dz/
√
dx

2 + dy
2 + dz

2

 (A.7)

lat = arcsin
(z
R

)
(A.8)

lon = arctan(y, x) (A.9)

A.2.1 Distance

A great circle distance is the shortest distance between two points along a path on
the surface of a sphere. The great circle distance d between points p1 and p2 with
coordinates lat1, lon1 and lat2, lon2, respectively, can be calculated using the Haversine
formula in Equation A.10, where R is the Earth’s mean radius [116]. (All values passed
to trigonometric functions are assumed radians.)

a = sin2 lat2 − lat1
2

+ sin2 lon2 − lon1
2

· cos lat1 · cos lat2

c = 2 · arctan(
√
a,
√

1− a)

d = R · c (A.10)

A.2.2 Speed

The velocity of a UAV at any given moment during flight is a function of four parameters
including the velocity of the UAV in still air; the UAV’s direction of travel; and the
velocity and direction of the wind. Consider a UAV with velocity vector va, which
has magnitude |va| and direction θa. The UAV flies in a wind with velocity vector vw,
which has magnitude |vw| and direction θw. Let i and j be 1ms−1 (meters per second)
East and 1ms−1 North, respectively. The component form for each velocity vector can
be calculated using Equation A.11 and Equation A.12; velocity can be calculated using
Equation A.13; and the speed of the UAV inms−1 can be calculated using Equation A.14.

112

Appendix A. Threat Area Calculations A.2. Calculating Threat Area Durations

va = |va| cos θai+ |va| sin θaj (A.11)
vw = |vw| cos θwi+ |vw| sin θwj (A.12)

v = va + vw (A.13)

s = |v| ≈
√
va2 + vw2 (A.14)

A.2.3 Bearing

The direction of travel along a great circle arc is defined by initial and final bearings. The
initial bearing θ from point p1 to point p2 is calculated using Equation A.15. Because
the range of arctan is the interval [−180◦, 180◦], the initial bearing is normalized to a
compass bearing θin using Equation A.16. The range of θin is the interval [0, 360◦]. The
normalized final bearing θfn is calculated by reversing the initial bearing from p2 to p1
using Equation A.17.

y = sin(lon2 − lon1) · cos lat2

x = cos lat1 · sin lat2 − sin lat1 · cos lat2 · cos(lon2 − lon1)
θ = arctan(y, x) (A.15)

θin = (θ(p1,p2) ·
360

2π
+ 360) mod 360 (A.16)

θfn = (θ(p2,p1) ·
360

2π
+ 180) mod 360 (A.17)

Each bearing is applied to a specific route segment. The initial bearing defines the
direction of travel from p1 to midpoint pm between p1 and p2. The final bearing defines
the direction of travel from pm to p2. The latitude and longitude coordinates for pm are
calculated using Equation A.18 and Equation A.19, respectively.

Bx = cos lat2 · cos(lon2 − lon1)
By = cos lat2 · sin(lon2 − lon1)

latm = arctan(sin lat1 + sin lat2,
√

(cos lat1 +Bx)2 +By2) (A.18)
lonm = lon1 + arctan(By, cos lat1 +Bx) (A.19)

A.2.4 Duration

The duration of travel along a great circle arc defined by initial and final bearings requires
calculations for two speeds and two distances. Equation A.20 generalizes this requirement

113

Appendix A. Threat Area Calculations A.2. Calculating Threat Area Durations

by calculating the duration of travel along a path delineated by n waypoints, where
d(pi,pi+1) is the distance in kilometers between sequential points pi and pi+1; and s(pi,pi+1)

is the speed of travel in ms−1 from pi to pi+1. Because Equation A.10 calculates distance
in kilometers and Equation A.14 calculates speed in meters per second, Equation A.20
converts distances to meters in order to calculate duration in seconds.

duration :=

n∑
i=1

d(pi,pi+1)

s(pi,pi+1)
· 1000 (A.20)

114

Appendix B

Ontology

Listing B.1: OWL code for CEMO.
Ontology: complex_missions

Datatype: xsd:integer

Class: owl:Nothing

Class: Action

Class: ARDrone
SubClassOf: NamedAsset ,

hasCostValue some xsd:integer[<= 500],
hasEnduranceInSeconds some xsd:integer[<= 70],
hasSpeedInKilometersPerHour some xsd:integer[<= 18]

DisjointWith: Hummingbird

Class: Area
SubClassOf: hasWaypoint some Waypoint

Class: Asset
SubClassOf: hasAction some KineticAction ,

hasCostValue some xsd:integer ,
hasEnduranceInSeconds some xsd:integer ,
hasSpeedInKilometersPerHour some xsd:integer

Class: HoverAction
SubClassOf: KineticAction ,

hasWaypoint some Waypoint
DisjointWith: TraversePathSegmentAction

Class: Hummingbird
SubClassOf: NamedAsset ,

hasCostValue some xsd:integer[>= 5000],
hasEnduranceInSeconds some xsd:integer[<= 120],
hasSpeedInKilometersPerHour some xsd:integer[<= 50]

DisjointWith: ARDrone

Class: KineticAction
SubClassOf: Action ,

hasDurationInSeconds some xsd:integer ,
hasPrecondition only Action

DisjointWith: SensorAction

Class: Mission
SubClassOf: hasAsset some Asset

Class: NamedAsset
SubClassOf: Asset

Class: PhotoSurveillanceAction
SubClassOf: SensorAction ,

hasDurationInSeconds some xsd:integer ,
hasPrecondition only Action

Class: SensorAction

115

Appendix B. Ontology

SubClassOf: Action
DisjointWith: KineticAction

Class: TraversePathSegmentAction
SubClassOf: KineticAction ,

hasStartPoint some Waypoint ,
hasEndpoint some Waypoint

DisjointWith: HoverAction

Class: Waypoint

DisjointClasses: Action , Area , Asset , Mission , Waypoint

DataProperty: hasCostValue
Characteristics: Functional
Domain: Asset
Range: xsd:integer

DataProperty: hasDurationInSeconds
Characteristics: Functional
Domain: Action
Range: xsd:integer

DataProperty: hasEnduranceInSeconds
Characteristics: Functional
Domain: Asset
Range: xsd:integer

DataProperty: hasSpeedInKilometersPerHour
Characteristics: Functional
Domain: Asset
Range: xsd:integer

ObjectProperty: hasAction
Characteristics: Asymmetric ,

Irreflexive ,
InverseFunctional

Domain: Asset
Range: Action
InverseOf: isActionOf

ObjectProperty: hasAsset
Characteristics: Asymmetric ,

Irreflexive ,
InverseFunctional

Domain: Mission
Range: Asset

ObjectProperty: hasEndpoint
SubPropertyOf: hasWaypoint
Characteristics: Asymmetric ,

Irreflexive ,
Functional

Domain: TraversePathSegmentAction
Range: Waypoint

ObjectProperty: hasPrecondition
Characteristics: Transitive
Domain: Action
Range: Action
InverseOf: isPreconditionTo

ObjectProperty: hasSibling
Characteristics: Asymmetric ,

Irreflexive
Domain: SensorAction
Range: KineticAction

ObjectProperty: hasStartPoint
SubPropertyOf: hasWaypoint
Characteristics: Asymmetric ,

Irreflexive ,
Functional

116

Appendix B. Ontology

Domain: TraversePathSegmentAction
Range: Waypoint

ObjectProperty: hasWaypoint
Characteristics: Asymmetric ,

Irreflexive
Range: Waypoint
InverseOf: isWaypointOf

ObjectProperty: isActionOf
Characteristics: Asymmetric ,

Irreflexive ,
Functional

Domain: Action
Range: Asset
InverseOf: hasAction

ObjectProperty: isPreconditionTo
Characteristics: Transitive
Domain: Action
Range: Action
InverseOf: hasPrecondition

ObjectProperty: isWaypointOf
Characteristics: Asymmetric ,

Irreflexive
Domain: Waypoint
InverseOf: hasWaypoint

Rule:
KineticAction (?x),
KineticAction (?y),
SensorAction (?z),
hasAction (?a, ?x),
hasAction (?a, ?y),
hasAction (?a, ?z),
hasPrecondition (?x, ?y),
hasPrecondition (?z, ?y)

-> hasSibling (?z, ?x)

Rule:
KineticAction (?x),
KineticAction (?y),
SensorAction (?z),
hasAction (?a, ?x),
hasAction (?a, ?y),
hasAction (?a, ?z),
hasPrecondition (?x, ?y),
hasSibling (?z, ?y)

-> hasSibling (?z, ?x)

Rule:
SensorAction (?y),
hasAction (?a, ?x),
hasAction (?b, ?y),
hasPrecondition (?x, ?y),
DifferentFrom (?a, ?b)

-> owl:Nothing (?y)

Listing B.2: OWL code for Tactical-CEMO.
Ontology: complex_tactical_missions

Import: complex_missions
Class: Action
Class: Area
Class: Asset
Class: HoverAction
Class: KineticAction
Class: Mission
Class: SensorAction
Class: TraversePathSegmentAction

117

Appendix B. Ontology

Class: Waypoint
DataProperty: hasCostValue
DataProperty: hasSpeedInKilometersPerHour
ObjectProperty: hasAction
ObjectProperty: hasEndpoint
ObjectProperty: hasSibling
ObjectProperty: hasWaypoint
ObjectProperty: isWaypointOf

Datatype: xsd:double
Datatype: xsd:integer

Class: DirectThreatAreaAction
EquivalentTo: ThreatAreaAction

and (DirectThreatAreaHoverAction or DirectThreatAreaTPSA)

Class: DirectThreatAreaHoverAction
EquivalentTo: ThreatAreaAction

and (HoverAction
and (hasWaypoint some ThreatAreaWaypoint))

DisjointWith: DirectThreatAreaTPSA

Class: DirectThreatAreaTPSA
EquivalentTo: ThreatAreaAction

and (TraversePathSegmentAction
and (hasEndpoint some ThreatAreaWaypoint))

DisjointWith: DirectThreatAreaHoverAction

Class: DomainConcept

Class: HighVulnerabilityAsset
EquivalentTo: Asset

and (hasCostValue some xsd:integer[<= 1000])
and (hasSpeedInKilometersPerHour some xsd:integer[<= 20])

SubClassOf: hasRiskAcceptabilityFactor value HighRiskAcceptabilityFactor ,
hasVulnerability value HighVulnerability

DisjointWith: LowVulnerabilityAsset

Class: LowVulnerabilityAsset
EquivalentTo: Asset

and (hasCostValue some xsd:integer[>= 3000])
and (hasSpeedInKilometersPerHour some xsd:integer[<= 60])

SubClassOf: hasRiskAcceptabilityFactor value LowRiskAcceptabilityFactor
hasVulnerability value LowVulnerability ,

DisjointWith: HighVulnerabilityAsset

Class: RiskAcceptabilityFactor
EquivalentTo: DomainConcept

and ({ HighRiskAcceptabilityFactor , LowRiskAcceptabilityFactor })
DisjointWith: Vulnerability

Class: ThreatArea
EquivalentTo: Area

and (hasWaypoint some ThreatAreaWaypoint)

Class: ThreatAreaAction
EquivalentTo: KineticAction

and (hasWaypoint some ThreatAreaWaypoint)

Class: ThreatAreaWaypoint
EquivalentTo: Waypoint

and (isWaypointOf some ThreatArea)

Class: ThreatenedAsset
EquivalentTo: Asset

and (hasAction some DirectThreatAreaAction)

Class: ValidAsset
EquivalentTo: ThreatenedAsset

and (hasAction some (SensorAction
and (hasSibling some DirectThreatAreaAction)))

Class: Vulnerability

118

Appendix B. Ontology

EquivalentTo: DomainConcept
and ({ HighVulnerability , LowVulnerability })

DisjointWith: RiskAcceptabilityFactor

DisjointClasses: Action , Area , Asset , DomainConcept , Mission , Waypoint

DataProperty: hasDoubleValue
Characteristics: Functional
Domain: DomainConcept
Range: xsd:double

Individual: HighRiskAcceptabilityFactor
Types: RiskAcceptabilityFactor
Facts: hasDoubleValue 0.8

Individual: HighVulnerability
Types: Vulnerability
Facts: hasDoubleValue 0.1

Individual: LowRiskAcceptabilityFactor
Types: RiskAcceptabilityFactor
Facts: hasDoubleValue 0.6

Individual: LowVulnerability
Types: Vulnerability
Facts: hasDoubleValue 0.01

ObjectProperty: hasRiskAcceptabilityFactor
Characteristics: Asymmetric ,

Irreflexive ,
Functional

Domain: Asset
Range: RiskAcceptabilityFactor

ObjectProperty: hasVulnerability
Characteristics: Asymmetric ,

Irreflexive ,
Functional

Domain: Asset
Range: Vulnerability

ObjectProperty: invades
Characteristics: Asymmetric ,

Irreflexive ,
Functional

Domain: DirectThreatAreaTPSA
Range: ThreatArea

Rule:
ThreatArea (?a),
hasEndpoint (?x, ?w),
isWaypointOf (?w, ?a)

-> invades (?x, ?a)

Listing B.3: OWL code for Traffic-CEMO.
Ontology: complex_traffic_surveillance_missions

Import: complex_missions
Class: owl:Nothing
Class: Action
Class: Area
Class: Asset
Class: HoverAction
Class: Mission
Class: SensorAction
Class: Waypoint
ObjectProperty: hasAction
ObjectProperty: hasWaypoint

Datatype: xsd:double
Datatype: xsd:integer

119

Appendix B. Ontology

Class: DomainConcept

Class: FreewaySection
SubClassOf: Road ,

approachesMinimumSpeed some xsd:double ,
exceedsMinimumSpeed some xsd:double ,
exceedsNominalSpeed some xsd:double ,
hasLaneClassification some LaneClassification ,
hasRampFrequency some RampFrequency

Class: HighRampFrequency
SubClassOf: RampFrequency
DisjointWith: LowRampFrequency

Class: HighSpeedFreewaySection
EquivalentTo: FreewaySection

and (hasLaneClassification some ThreeLaneClassification)
and (hasRampFrequency some LowRampFrequency)

SubClassOf: approachesMinimumSpeed some xsd:double[>= 0.2],
exceedsMinimumSpeed some xsd:double[>= 0.9],
exceedsNominalSpeed some xsd:double[>= 0.5]

DisjointWith: LowSpeedFreewaySection

Class: HighSpeedLidarAction
EquivalentTo: LidarAction

and (monitors some HighSpeedFreewaySection)
SubClassOf: hasIntervalCalibrationFactor value HighIntervalCalibrationFactor
DisjointWith: LowSpeedLidarAction

Class: IntervalCalibrationFactor
EquivalentTo: DomainConcept

and ({ HighIntervalCalibrationFactor , LowIntervalCalibrationFactor })

Class: LaneClassification
EquivalentTo: ThreeLaneClassification

or TwoLaneClassification
SubClassOf: ValuePartition
DisjointWith: RampFrequency

Class: LidarAction
SubClassOf: SensorAction ,

hasIntervalCalibrationFactor some IntervalCalibrationFactor ,
hasIntervalInSeconds some xsd:integer ,
isConcurrentWith some HoverAction

DisjointWith: PhotoSurveillanceAction

Class: LowRampFrequency
SubClassOf: RampFrequency
DisjointWith: HighRampFrequency

Class: LowSpeedFreewaySection
EquivalentTo: FreewaySection

and (hasLaneClassification some TwoLaneClassification)
and (hasRampFrequency some HighRampFrequency)

SubClassOf: approachesMinimumSpeed some xsd:double[>= 0.3],
exceedsMinimumSpeed some xsd:double[>= 0.7],
exceedsNominalSpeed some xsd:double[>= 0.4]

DisjointWith: HighSpeedFreewaySection

Class: LowSpeedLidarAction
EquivalentTo: LidarAction

and (monitors some LowSpeedFreewaySection)
SubClassOf: hasIntervalCalibrationFactor value LowIntervalCalibrationFactor
DisjointWith: HighSpeedLidarAction

Class: PhotoSurveillanceAction
DisjointWith: LidarAction

Class: RampFrequency
EquivalentTo: HighRampFrequency

or LowRampFrequency
SubClassOf: ValuePartition

120

Appendix B. Ontology

DisjointWith: LaneClassification

Class: Road
SubClassOf: hasWaypoint some Waypoint

Class: ThreeLaneClassification
SubClassOf: LaneClassification
DisjointWith: TwoLaneClassification

Class: TwoLaneClassification
SubClassOf: LaneClassification
DisjointWith: ThreeLaneClassification

Class: ValuePartition

DisjointClasses: Action , Area , Asset , DomainConcept , Mission , Road ,
ValuePartition , Waypoint

DataProperty: approachesMinimumSpeed
Characteristics: Functional
Domain: FreewaySection
Range: xsd:double

DataProperty: exceedsMinimumSpeed
Characteristics: Functional
Domain: FreewaySection
Range: xsd:double

DataProperty: exceedsNominalSpeed
Characteristics: Functional
Domain: FreewaySection
Range: xsd:double

DataProperty: hasDoubleValue
Characteristics: Functional
Domain: DomainConcept
Range: xsd:double

DataProperty: hasIntegerValue
Characteristics: Functional
Domain: DomainConcept
Range: xsd:integer

DataProperty: hasIntervalInSeconds
Characteristics: Functional
Domain: LidarAction
Range: xsd:integer

Individual: HighIntervalCalibrationFactor
Types: IntervalCalibrationFactor
Facts: hasIntegerValue 3

Individual: LowIntervalCalibrationFactor
Types: IntervalCalibrationFactor
Facts: hasIntegerValue 2

ObjectProperty: hasIntervalCalibrationFactor
Characteristics: Asymmetric ,

Irreflexive ,
Functional

Domain: LidarAction
Range: IntervalCalibrationFactor

ObjectProperty: hasLaneClassification
Characteristics: Asymmetric ,

Irreflexive ,
Functional

Domain: FreewaySection
Range: LaneClassification

ObjectProperty: hasRampFrequency
Characteristics: Asymmetric ,

Irreflexive ,

121

Appendix B. Ontology

Functional
Domain: FreewaySection
Range: RampFrequency

ObjectProperty: isConcurrentWith
Characteristics: Asymmetric ,

Irreflexive
Domain: LidarAction
Range: HoverAction

ObjectProperty: monitors
Characteristics: Asymmetric ,

Irreflexive
Domain: LidarAction
Range: FreewaySection

Rule:
hasAction (?a, ?x),
isConcurrentWith (?y, ?x)

-> hasAction (?a, ?y)

Rule:
HoverAction (?h),
FreewaySection (?f),
LidarAction (?l),
hasWaypoint (?f, ?w),
hasWaypoint (?h, ?w),
isConcurrentWith (?l, ?h)

-> monitors (?l, ?f)

Rule:
hasAction (?a, ?x),
hasAction (?b, ?y),
isConcurrentWith (?x, ?y),
DifferentFrom (?a, ?b)

-> owl:Nothing (?x)

Listing B.4: OWL code for Mission A.
Ontology: Mission_A

Import: complex_tactical_missions
Class: Hummingbird
Class: PhotoSurveillanceAction
Class: ThreatArea
Class: TraversePathSegmentAction
Class: Waypoint
ObjectProperty: hasAction
ObjectProperty: hasEndpoint
ObjectProperty: hasPrecondition
ObjectProperty: hasStartPoint
ObjectProperty: hasWaypoint

Individual: Hummingbird1
Types: Hummingbird
Facts: hasAction TraversePathSegmentAction1 ,

hasAction TraversePathSegmentAction2

Individual: Hummingbird2
Types: Hummingbird
Facts: hasAction TraversePathSegmentAction3 ,

hasAction TraversePathSegmentAction4 ,
hasAction PhotoSurveillanceAction5

Individual: PhotoSurveillanceAction5
Types: PhotoSurveillanceAction
Facts: hasPrecondition TraversePathSegmentAction3

Individual: ThreatArea1
Types: ThreatArea
Facts: hasWaypoint Waypoint6

122

Appendix B. Ontology

Individual: TraversePathSegmentAction1
Types: TraversePathSegmentAction
Facts: hasStartPoint Waypoint1 ,

hasEndpoint Waypoint2

Individual: TraversePathSegmentAction2
Types: TraversePathSegmentAction
Facts: hasPrecondition TraversePathSegmentAction1 ,

hasPrecondition TraversePathSegmentAction3 ,
hasStartPoint Waypoint2 ,
hasEndpoint Waypoint3

Individual: TraversePathSegmentAction3
Types: TraversePathSegmentAction
Facts: hasStartPoint Waypoint4 ,

hasEndpoint Waypoint5

Individual: TraversePathSegmentAction4
Types: TraversePathSegmentAction
Facts: hasPrecondition TraversePathSegmentAction3 ,

hasStartPoint Waypoint5 ,
hasEndpoint Waypoint6

Individual: Waypoint1
Types: Waypoint

Individual: Waypoint2
Types: Waypoint

Individual: Waypoint3
Types: Waypoint

Individual: Waypoint4
Types: Waypoint

Individual: Waypoint5
Types: Waypoint

Individual: Waypoint6
Types: Waypoint

123

Appendix C

Prolog Knowledge Base

Listing C.1: Prolog code for asset rules.
/* OWL defined class */
single_action_asset(A) :-

bagof(A, X^(has_action(A, X)), C),
length(C, 1).

/* OWL defined class */
zero_action_asset(A) :-

not(has_action(A, _)).

/* OWL defined class */
observer_asset(A) :-

has_action(A, X),
observer(X).

/* OWL defined class */
observed_asset(A) :-

has_action(A, X),
subject(X).

/* SWRL rule */
observes(A, B) :-

crosscutting_precondition(A, _, B, _).

primary_asset(A) :-
observer_asset(A),
(

not(observed_asset(A));
(

observes(A, B),
observes(B, A)

)
).

Listing C.2: Prolog code for utility rules.
:- dynamic asset /1.
:- dynamic kinetic_action /1.
:- dynamic has_action /2.
:- dynamic has_precondition /2.

precondition_util(A, X, B, Y) :-
has_action(A, X),
has_action(B, Y),
has_precondition(Y, X).

crosscutting_precondition(A, X, B, Y) :-
precondition_util(A, X, B, Y),
not(A = B).

sibling_precondition(A, X, B, Y) :-
precondition_util(A, X, B, Y),
A = B.

124

Appendix C. Prolog Knowledge Base

/* OWL property */
is_precondition_to(X, Y) :-

has_action(A, X),
has_action(A, Y),
has_precondition(Y, X).

/* OWL defined class */
singleton(X) :-

has_action(A, X),
single_action_asset(A).

terminal(X) :-
has_action(A, X),
not(is_precondition_to(X, _)),
not(single_action_asset(A)),
not(zero_action_asset(A)).

Listing C.3: Prolog code for default rules.
default_util(X) :-

not(constrained_observer(X)),
not(observer(X)),
not(observer_precondition(X)),
not(subject(X)),
not(subject_constraint(X)),
not(subject_precondition(X)).

default(X) :-
default_util(X),
not(singleton(X)),
not(terminal(X)).

default_singleton(X) :-
default_util(X),
singleton(X).

default_terminal(X) :-
default_util(X),
terminal(X).

Listing C.4: Prolog code for observer and subject rules.
/* OWL defined class */
observer_and_subject(X) :-

observer(X),
subject(X).

/* OWL defined class */
observer_and_constrained_subject(X) :-

observer(X),
constrained_subject(X).

/* OWL defined class */
observer_and_singleton_subject(X) :-

observer(X),
singleton_subject(X).

observer_and_terminal_subject(X) :-
observer(X),
terminal_subject(X).

Listing C.5: Prolog code for observer rules.
/* SWRL rule */
observer(Y) :-

crosscutting_precondition(_, _, _, Y).

default_observer(X) :-
observer(X),
not(observer_precondition(X)).

125

Appendix C. Prolog Knowledge Base

/* SWRL rule */
constrained_observer(Y) :-

constrained_subject(X),
crosscutting_precondition(_, X, _, Y).

/* SWRL rule */
sibling_observer(Y) :-

sibling_precondition(_, _, _, Y).

terminal_observer(X) :-
observer(X),
terminal(X).

terminal_constrained_observer(X) :-
constrained_observer(X),
terminal(X).

/* SWRL rule */
observer_precondition(X) :-

sibling_precondition(_, X, _, Y),
(

observer(Y);
observer_precondition(Y)

).

Listing C.6: Prolog code for subject rules.
/* SWRL rule */
subject(X) :-

crosscutting_precondition(_, X, _, _).

/* OWL defined class */
constrained_subject(X) :-

subject(X),
is_precondition_to(X, _).

leading_subject(X) :-
crosscutting_precondition(_, X, _, Y),
not(sibling_observer(Y)).

/* OWL defined class */
singleton_subject(X) :-

subject(X),
singleton(X).

terminal_subject(X) :-
subject(X),
terminal(X).

/* SWRL rule */
subject_constraint(Y) :-

sibling_precondition(_, X, _, Y),
(

constrained_subject(X);
subject_constraint(X)

).

/* SWRL rule */
subject_precondition(X) :-

sibling_precondition(_, X, _, Y),
(

subject(Y);
subject_precondition(Y)

).

terminal_subject_constraint(X) :-
subject_constraint(X),
terminal(X).

126

Appendix C. Prolog Knowledge Base

Listing C.7: Prolog code for existential quantification rules.
:- include(asset_rules).
:- include(utility_rules).

:- dynamic has_asset /2.
:- dynamic has_duration_in_seconds /2.
:- dynamic has_endpoint /2.
:- dynamic has_endurance_in_seconds /2.
:- dynamic has_interval_in_seconds /2.
:- dynamic has_start_point /2.
:- dynamic has_waypoint /2.
:- dynamic is_concurrent_with /2.
:- dynamic lidar_action /1.
:- dynamic mission /1.
:- dynamic photo_surveillance_action /1.

invalid_kinetic_action(K) :-
not(has_duration_in_seconds(K, _)).

invalid_hover_action(H) :-
invalid_kinetic_action(H);
not(has_waypoint(H, _)).

invalid_traverse_path_segmentAction(T) :-
invalid_kinetic_action(T);
not(has_endpoint(T, _));
not(has_start_point(T, _)).

invalid_photo_surveillance_action(P) :-
not(has_duration_in_seconds(P, _)).

invalid_asset(A) :-
zero_action_asset(A);
not(has_endurance_in_seconds(A, _)).

invalid_mission(M) :-
not(has_asset(M, _)).

invalid_lidar_action(L) :-
not(has_interval_in_seconds(L, _));
not(is_concurrent_with(L, _)).

127

Appendix D

PRISM Templates

Listing D.1: Ruby code for the DTMC asset module template.
require './ template_util '

class Action; attr_accessor :asset end

class Asset
alias :original_add :add_action

def add_action(action)
original_add(action)
action.asset = self

end

def last
@kinetic_actions.each { |action| return action if action.is_terminal? }

end
end

class KineticAction < Action
attr_reader :observers

def is_terminal?
@type.include ?(: singleton) || @type.include ?(: terminal)

end
end

module AssetTemplate
@primary_asset = lambda { |action|

@asset ||=
if action.asset.type == :primary_asset

@asset = action.asset
else

action.asset.kinetic_actions.each { |kinetic_action|
kinetic_action.observers.each { |observer|

return @primary_asset[observer] if observer.is_kinetic_action?
}

}
end

}

def self.generate(asset)
commands = String.new
asset.kinetic_actions.each { |kinetic_action|

action = "[#{ action_name␣kinetic_action }]"
guard = "e#{asset.id}>0␣&␣d#{ kinetic_action.id}>0"
update = "(e#{asset.id}'=e#{asset.id}-1)"
commands += "#{ action}␣#{ guard}␣->␣#{ update };"
commands += "\n#{"\s"*2}" unless kinetic_action == asset.kinetic_actions.

last
}
puts <<-end.gsub(/ {6}/, '')

module #{asset.class }#{ asset.id}
e#{asset.id} : [0..#{ asset.class.endurance }] init #{ asset.class.endurance

};
#{commands}

128

Appendix D. PRISM Templates

[#{last_action_name asset.last}] e#{asset.id}=0 | d#{ asset.last.id}=0 ->
true;

endmodule
end

end

private
def self.action_name(action)

case action.type
when :default ,

:default_singleton ,
:default_terminal ,
:leading_subject ,
:default_observer ,
:terminal_observer

"actn#{ action.id}"
when :terminal_constrained_observer

"asst#{ action.asset.id}"
else

"asst#{ @primary_asset[action].id}"
end

end

def self.last_action_name(action)
case action.type

when :terminal_constrained_observer
"asst#{ action.asset.id}"

when :singleton_subject ,
:terminal_subject ,
:observer_and_singleton_subject ,
:observer_and_terminal_subject ,
:terminal_subject_constraint

"asst#{ @primary_asset[action].id}"
end

end
end

execute { |operation|
puts "asset␣modules␣for␣#{ operation }..."
ClassLoader.new(operation).assets.each { |asset|

AssetTemplate.generate asset
}

}

Listing D.2: Ruby code for the DTMC survivability template.
require './ template_util '

class Asset; attr_accessor :raf , :vulnerability end
class KineticAction < Action; attr_accessor :incursion end

class SensorAction < Action
attr_reader :id
defensive_copy :siblings

def siblings =(siblings)
@siblings = siblings.collect { |item| item.to_s }

end
end

class ThreatLoader < ClassLoader
def initialize(operation)

super(operation)
load(:actions , :incursion , :siblings)
load(:assets , :raf , :vulnerability)

end
end

module SurvivabilityTemplate
@command = lambda { |params , action|

newline = "\n#{"\s"*2}"

129

Appendix D. PRISM Templates

temp = "#{ params [: action]}␣#{ params [: guard1]}␣->␣#{ params [: update]};#{ newline
}"

temp += "#{ params [: action]}␣#{ params [: guard2]}␣->␣true;"
temp += newline unless action == @asset.kinetic_actions.last
temp

}

def self.generate(asset)
unless asset.vulnerability == nil

@asset = asset
generate_formulas
generate_kinetic_action_modules (& @command)
generate_sensor_action_modules (& @command) unless asset.sensor_actions.empty

?
generate_properties

end
end

private
def self.generate_formulas

durations = String.new
@asset.kinetic_actions.each { |action|

unless action.incursion == nil
action.incursion.each_pair { |key , value| puts "const␣int␣#{key }#{

action.id}␣=␣#{value };\n" }
start = "start#{ action.id}"
finish = "finish #{ action.id}"
duration = "duration #{ action.id}"
puts <<-end.gsub(/ {2}/, '')

formula actn#{action.id}_tai = d#{ action.id}>#{ finish} & d#{ action.id
}<=#{ start};

formula #{duration} = #{ start} - #{ finish };
end
durations += durations.empty? ? duration : "␣+␣#{ duration}"

end
}
sad = @asset.sensor_actions.empty? ? 0 : "sad#{ @asset.id}"
puts <<-end.gsub(/ {2}/, '')

formula tkad#{@asset.id} = #{ durations };
formula raf#{@asset.id} = #{sad} / tkad#{ @asset.id};

end
end

def self.generate_kinetic_action_modules
commands = String.new
@asset.kinetic_actions.each { |action|

unless action.incursion == nil
params = {

action: "[actn#{ action.id}]",
guard1: "!a#{ @asset.id}d␣&␣␣actn#{ action.id}_tai",
guard2: "␣a#{ @asset.id}d␣|␣!actn#{ action.id}_tai",
update: "#{1␣-␣@asset.vulnerability }:(a#{ @asset.id}d '=false)␣+␣" +

"#{ @asset.vulnerability }:(a#{ @asset.id}d'=true)"
}
commands += yield(params , action)

end
}
puts <<-end.gsub(/ {8}/, '')

module #{@asset.class }#{ @asset.id}_Survivability
a#{@asset.id}d : bool init false;
#{commands}

endmodule
end

end

def self.generate_sensor_action_modules
commands = String.new
@asset.kinetic_actions.each { |action|

siblings = String.new
@asset.sensor_actions.each { |sensor_action|

if sensor_action.siblings.include ?(action.id)
siblings += (siblings.empty? ? 'r' : '␣|␣r') + sensor_action.id

end

130

Appendix D. PRISM Templates

}
unless siblings.empty?

params = {
action: "[actn#{ action.id}]",
guard1: "␣actn#{ action.id}_tai␣&␣␣(#{ siblings })␣&␣sad#{ @asset.id}<

tkad#{ @asset.id}",
guard2: "!actn#{ action.id}_tai␣|␣!(#{ siblings })",
update: "(sad#{ @asset.id}'=sad#{ @asset.id}+1)"

}
commands += yield(params , action)

end
}
puts <<-end.gsub(/ {8}/, '')

module SensorActionCounter#{@asset.id}
sad#{@asset.id} : [0.. tkad#{ @asset.id}] init 0;
#{commands}

endmodule
end

end

def self.generate_properties
puts "P=?␣[␣F␣!a#{ @asset.id}d␣&␣raf#{ @asset.id}>#{ @asset.raf}␣]"

end
end

execute { |operation|
puts "survivability␣constructs␣for␣#{ operation }..."
ThreatLoader.new(operation).assets.each { |asset|

SurvivabilityTemplate.generate(asset)
}

}

Listing D.3: Ruby code for the PCTL property template.
require './ template_util '

class ClassLoader < OpLoader; defensive_copy :actions end
class LidarAction; include ActionUtil end

module PropertyTemplate
def self.generate(actions)

properties = String.new
actions.each { |action|

property = get_property(action)
properties += (properties.empty? ? 'd' : '␣&␣d') + "#{ property }=0" unless

property.nil?
}
puts "P=?␣[␣F␣#{ properties}␣]"

end

private
def self.get_property(action)

if action.is_kinetic_action?
case action.type

when :default_singleton ,
:default_terminal ,
:terminal_observer ,
:terminal_constrained_observer ,
:terminal_subject_constraint

action.id
end

end
end

end

execute { |operation|
puts "properties␣for␣#{ operation }..."
PropertyTemplate.generate(ClassLoader.new(operation).actions)

}

131

Appendix D. PRISM Templates

Listing D.4: Ruby template utility code.
require './util'

autoload :Asset , './asset '
autoload :ClassLoader , './ class_loader '

module ActionUtil
def self.respondent *method_names

method_names.each { |name|
define_method("is_#{name}_action?") { self.class.superclass.name == "#{name

.capitalize}Action" }
}

end

respondent :kinetic , :sensor
end

module TypeUtil
attr_reader :type

def type=(type)
@type = type.to_sym

end
end

class Action; include ActionUtil end

class Asset;
include TypeUtil

def self.reader *method_names
method_names.each { |name|

temp = "#{name}_actions"
define_method(temp) {

unless instance_variable_defined ?("@#{temp}")
instance_variable_set("@#{temp}", Array.new(@actions).delete_if { |

action|
!action.send("is_#{name}_action?")

})
end
instance_variable_get("@#{temp}")

}
}

end

attr_reader :id
reader :kinetic , :sensor

end

class KineticAction < Action
include TypeUtil
attr_reader :id

end

Listing D.5: Ruby code for module Mission.
require './util'

autoload :ARDrone , './asset '
autoload :TraversePathSegmentAction , './ action '

module Mission
def self.execute(assets)

while !assets.empty?
assets.each { |asset|

asset.execute
assets.delete(asset) if asset.completed?

}
end

end
end

132

Appendix D. PRISM Templates

execute { |operation|
puts "executing␣#{ operation }..."
Mission.execute(OpLoader.new(operation).assets)

}

Listing D.6: Ruby utility code.
autoload :YAML , 'yaml'

autoload :HoverAction , './ hover_action '
autoload :KineticAction , './ action '
autoload :LidarAction , './ lidar_action '
autoload :Observer , './ observer '
autoload :OpLoader , './ op_loader '
autoload :Subject , './ subject '

Dir['./core/*'].each { |file| require file }

def execute
Dir['./ operations/operation_*'].each { |file|

yield(File.basename(file , '.yaml'))
}

end

Listing D.7: Ruby code for class Asset.
class Asset

class << self; attr_accessor :endurance end

def initialize(id)
@id = id.to_s
@endurance = self.class.endurance
@actions = Array.new

end

def add_action(action)
@actions.push(action)

end

def execute
@actions.each { |action|

action.execute
@actions.delete(action) if action.completed?

}
@endurance -= 1

end

def completed?
@endurance == 0 || @actions.empty?

end
end

class ARDrone < Asset; end
class Hummingbird < Asset; end

Listing D.8: Ruby code for class ClassLoader.
class ClassLoader < OpLoader

def initialize(operation)
super(operation)
@class_file = load_file(operation , :classifications)
load(:actions , :type)
load(:assets , :type)

end

private
def load(name , *attributes)

singular_name = name.capitalize.singularize
if @class_file.include ?(singular_name)

@class_file.fetch(singular_name).each_value { |collection|

133

Appendix D. PRISM Templates

collection.symbolize_keys !.each { |item|
attributes.each { |attribute|

if item.include ?(attribute)
instance_variable_get("@#{name}").fetch(item.fetch(:id)).send("#{

attribute }=", item.fetch(attribute))
end

}
}

}
end

end
end

Listing D.9: Ruby code for class HoverAction.
class HoverAction < KineticAction

def initialize(id , duration)
super id , duration
@concurrencies = Array.new

end

def add_concurrency(action)
@concurrencies.push(action)

end

def execute
if @subjects.empty?

@concurrencies.each { |action| action.execute }
execute_naively

end
end

end

Listing D.10: Ruby code for class Action.
class Action

include Subject
include Observer

def initialize(id , duration)
super()
@id = id.to_s
@duration = duration

end

def add_precondition(action)
add_subject(action)

end

def execute
execute_naively if @subjects.empty?

end

def completed?
@duration == 0

end

private
def execute_naively

@duration -= 1
notify if completed?

end
end

class KineticAction < Action; end
class SensorAction < Action; end
class PhotoSurveillanceAction < SensorAction; end
class TraversePathSegmentAction < KineticAction; end

134

Appendix D. PRISM Templates

Listing D.11: Ruby code for class LidarAction.
class LidarAction

include Subject

def initialize(id , interval)
super()
@id = id
@interval = interval
@readings = 0
@timestep = 0

end

def execute
@readings += 1 if @timestep % @interval == 0
@timestep += 1

end
end

Listing D.12: Ruby code for module Observer.
module Observer

def initialize
super()
@subjects = Array.new

end

protected
def add_subject(obj)

@subjects.push(obj)
obj.attach(self)

end

def update(obj)
@subjects.delete(obj)
obj.detach(self)

end
end

Listing D.13: Ruby code for class OpLoader.
class OpLoader

def self.loader *method_names
method_names.each { |name|

define_method("load_#{name}") {
instance_variable_get("@#{name}").each_pair { |observer_id , subject_ids|

subject_ids.each { |subject_id|
case name

when :concurrencies then id_1 , id_2 = subject_id , observer_id
when :preconditions then id_1 , id_2 = observer_id , subject_id

end
@actions.fetch(id_1).send("add_#{name.singularize}", @actions.fetch(

id_2))
}

}
}

}
end

defensive_copy :assets
loader :concurrencies , :preconditions

def initialize(operation)
@op_file = load_file operation
collections = [:actions , :concurrencies , :preconditions , :assets]
collections.each { |collection| instance_variable_set("@#{ collection}", Hash.

new) }
collections.each { |collection| send("load_#{ collection}") }

end

private
def load_file(file , dir = :operations)

135

Appendix D. PRISM Templates

YAML::load(File.open("#{dir }/#{ file}.yaml")).symbolize_keys!
end

def load_actions
@op_file.fetch(: Action).each_pair { |type , actions|

actions.symbolize_keys !.each { |action|
id = action.fetch(:id)
@actions[id] = type.to_c.new(id , type == :LidarAction ? action.fetch(:

interval) : action.fetch (: duration))
@concurrencies[id] = action.fetch(: concurrencies) if action.include ?(:

concurrencies)
@preconditions[id] = action.fetch(: preconditions) if action.include ?(:

preconditions)
}

}
end

def load_assets
load_file (: asset_data).each_pair { |type , asset| type.to_c.endurance =

asset.fetch(: endurance) }
@op_file.fetch(:Asset).each_pair { |type , assets|

assets.symbolize_keys !.each { |asset|
id = asset.fetch(:id)
@assets[id] = type.to_c.new(id)
asset.fetch(: actions).each { |action| @assets[id]. add_action(@actions.

fetch(action)) }
}

}
end

end

Listing D.14: Ruby code for module Subject.
module Subject

def initialize
@observers = Array.new

end

protected
def attach(obj)

@observers.push(obj)
end

def detach(obj)
@observers.delete(obj)

end

def notify
@observers.each { |observer| observer.update(self) }

end
end

Listing D.15: Code that modifies the Ruby core class Array.
class Array

def symbolize_keys!
self.each { |item| item.symbolize_keys! if item.class == Hash }
self

end
end

Listing D.16: Code that modifies the Ruby core class Hash.
class Hash

def symbolize_keys!
keys.each { |key| self[(key.to_sym rescue key)] = delete(key) }
values.each { |value| value.symbolize_keys! if value.class == Hash }
self

end
end

136

Appendix D. PRISM Templates

Listing D.17: Code that modifies the Ruby core class Module.
class Module

def defensive_copy *method_names
method_names.each { |name|

define_method(name) {
var = instance_variable_get("@#{name}")
Array.new(var.class == Array ? var : var.values)

}
}

end
end

Listing D.18: Code that modifies the Ruby core class Symbol.
require 'active_support/inflector '

class Symbol
def include ?(sym)

to_s.include ?(sym.to_s)
end

def singularize
to_s.singularize.intern

end

def to_c
Kernel.const_get(self)

end
end

137

Appendix E

DSL Schema

Listing E.1: A schema definition, encoded in the Kwalify schema language, for the YAML DSL
presented in this thesis.
type: map
required: yes
mapping:

"Action ":
type: map
required: yes
mapping:

"HoverAction ":
type: seq
sequence:

- type: map
required: yes
mapping:

"id":
type: int
required: yes

"duration ":
type: int
required: yes

"preconditions ":
type: seq
sequence:

- type: int
"coordinates ":

type: seq
sequence:

- type: float
"LidarAction ":

type: seq
sequence:

- type: map
required: yes
mapping:

"id":
type: int
required: yes

"interval ":
type: int
required: yes

"concurrencies ":
type: seq
required: yes
sequence:

- type: int
"PhotoSurveillanceAction ":

type: seq
sequence:

- type: map
required: yes
mapping:

"id":
type: int
required: yes

138

Appendix E. DSL Schema

"duration ":
type: int
required: yes

"preconditions ":
type: seq
sequence:

- type: int
"TraversePathSegmentAction ":

type: seq
sequence:

- type: map
required: yes
mapping:

"id":
type: int
required: yes

"duration ":
type: int
required: yes

"preconditions ":
type: seq
sequence:

- type: int
"coordinates ":

type: seq
sequence:

- type: float
"Asset":

type: map
required: yes
mapping:

"ARDrone ":
type: seq
sequence:

- type: map
required: yes
mapping:

"id":
type: int
required: yes

"endurance ":
type: int

"actions ":
type: seq
required: yes
sequence:

- type: int
"Hummingbird ":

type: seq
sequence:

- type: map
required: yes
mapping:

"id":
type: int
required: yes

"endurance ":
type: int

"actions ":
type: seq
required: yes
sequence:

- type: int

139

Appendix F

Mission Verification Artifacts

Listing F.1: YAML input for Mission 1a.
Action:

HoverAction:
- id: 1

duration: 69
coordinates: [-112.1334152514208 , 36.08362433106716]

Asset:
ARDrone:

- id: 1
actions: [1]

Listing F.2: DTMC output for Mission 1a.
dtmc

const int max_e1 = 70; // maximum endurance
const int max_d1 = 69; // maximum duration

module ARDrone1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[] e1=0 | d1=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

Listing F.3: PCTL output for Mission 1a.
P=? [F d1=0]

Listing F.4: Log output for Mission 1a.
Model checking: P=? [F d1=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 70 iterations in 0.01 seconds (average 0.000171 , setup 0.00)

Time for model construction: 0.034 seconds.

Type: DTMC

140

Appendix F. Mission Verification Artifacts

States: 70 (1 initial)
Transitions: 70

Transition matrix: 720 nodes (2 terminal), 70 minterms , vars: 14r/14c

Prob0: 70 iterations in 0.01 seconds (average 0.000086 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 70, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.0070 seconds.

Result: 1.0 (value in the initial state)

Listing F.5: YAML input for Mission 1d.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 30
preconditions: [1]

Asset:
ARDrone:

- id: 1
actions: [1, 2]

Listing F.6: DTMC output for Mission 1d.
dtmc

const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 30; // maximum duration

module ARDrone1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[] e1=0 | d2=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

Listing F.7: PCTL output for Mission 1d.
P=? [F d2=0]

141

Appendix F. Mission Verification Artifacts

Listing F.8: Log output for Mission 1d.
Model checking: P=? [F d2=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 71 iterations in 0.01 seconds (average 0.000099 , setup 0.00)

Time for model construction: 0.043 seconds.

Type: DTMC
States: 71 (1 initial)
Transitions: 71

Transition matrix: 1031 nodes (2 terminal), 71 minterms , vars: 18r/18c

Prob0: 71 iterations in 0.01 seconds (average 0.000127 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 71, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.0090 seconds.

Result: 1.0 (value in the initial state)

Listing F.9: YAML input for Mission 1g.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 40
preconditions: [1]

- id: 3
duration: 40
preconditions: [2]

Asset:
Hummingbird:

- id: 1
actions: [1, 2, 3]

Listing F.10: DTMC output for Mission 1g.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 40; // maximum duration
const int max_d3 = 40; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[actn3] e1 >0 & d3 >0 -> (e1 '=e1 -1);
[] e1=0 | d3=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

142

Appendix F. Mission Verification Artifacts

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module HoverAction3 = HoverAction2[d2=d3, max_d2=max_d3 , actn2=actn3 , d1=d2]
endmodule

Listing F.11: PCTL output for Mission 1g.
P=? [F d3=0]

Listing F.12: Log output for Mission 1g.
Model checking: P=? [F d3=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 121 iterations in 0.03 seconds (average 0.000240 , setup 0.00)

Time for model construction: 0.188 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121

Transition matrix: 2639 nodes (2 terminal), 121 minterms , vars: 25r/25c

Prob0: 121 iterations in 0.03 seconds (average 0.000281 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 121, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.033 seconds.

Result: 1.0 (value in the initial state)

Listing F.13: YAML input for Mission 2a.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 29
preconditions: [1]

- id: 3
duration: 39
coordinates: [-112.1199316051625 , 36.07823185748754]

Asset:
ARDrone:

- id: 1
actions: [1, 2]

Hummingbird:
- id: 2

actions: [3]

143

Appendix F. Mission Verification Artifacts

Listing F.14: DTMC output for Mission 2a.
dtmc

const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 29; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 39; // maximum duration

module ARDrone1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[] e1=0 | d2=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module Hummingbird2

e2 : [0.. max_e2] init max_e2; // endurance

[actn3] e2 >0 & d3 >0 -> (e2 '=e2 -1);
[] e2=0 | d3=0 -> true;

endmodule

module HoverAction3 = HoverAction1[d1=d3, max_d1=max_d3 , actn1=actn3 , e1=e2]
endmodule

Listing F.15: PCTL output for Mission 2a.
P=? [F d2=0 & d3=0]

Listing F.16: Log output for Mission 2a.
Model checking: P=? [F d2=0&d3=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 109 iterations in 0.13 seconds (average 0.001220 , setup 0.00)

Time for model construction: 0.204 seconds.

Type: DTMC
States: 2800 (1 initial)
Transitions: 5599

Transition matrix: 2541 nodes (3 terminal), 5599 minterms , vars: 31r/31c

Prob0: 109 iterations in 0.20 seconds (average 0.001789 , setup 0.00)

144

Appendix F. Mission Verification Artifacts

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 2800, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.202 seconds.

Result: 1.0 (value in the initial state)

Listing F.17: YAML input for Mission 2b.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 29
preconditions: [1, 3]

- id: 3
duration: 39
coordinates: [-112.1199316051625 , 36.07823185748754]

Asset:
ARDrone:

- id: 1
actions: [1, 2]

Hummingbird:
- id: 2

actions: [3]

Listing F.18: DTMC output for Mission 2b.
dtmc

const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 29; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 39; // maximum duration

module ARDrone1

e1 : [0.. max_e1] init max_e1; // endurance

[asst1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[] e1=0 | d2=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[asst1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d3=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module Hummingbird2

e2 : [0.. max_e2] init max_e2; // endurance

145

Appendix F. Mission Verification Artifacts

[asst1] e2 >0 & d3 >0 -> (e2 '=e2 -1);
[asst1] e2=0 | d3=0 -> true;

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[asst1] d3 >0 & e2 >0 -> (d3 '=d3 -1);
[asst1] d3=0 -> true;

endmodule

Listing F.19: PCTL output for Mission 2b.
P=? [F d2=0]

Listing F.20: Log output for Mission 2b.
Model checking: P=? [F d2=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 70 iterations in 0.02 seconds (average 0.000300 , setup 0.00)

Time for model construction: 0.101 seconds.

Type: DTMC
States: 70 (1 initial)
Transitions: 70

Transition matrix: 2456 nodes (2 terminal), 70 minterms , vars: 31r/31c

Prob0: 70 iterations in 0.02 seconds (average 0.000257 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 70, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.018 seconds.

Result: 1.0 (value in the initial state)

Listing F.21: YAML input for Mission 2e.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 29
preconditions: [1, 3, 4]

- id: 3
duration: 40
coordinates: [-112.1199316051625 , 36.07823185748754]

- id: 4
duration: 40
coordinates: [-112.1075818315498 , 36.08838518690878]

Asset:
ARDrone:

- id: 1
actions: [1, 2]

Hummingbird:
- id: 2

146

Appendix F. Mission Verification Artifacts

actions: [3]
- id: 3

actions: [4]

Listing F.22: DTMC output for Mission 2e.
dtmc

const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 29; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 40; // maximum duration
const int max_e3 = 120; // maximum endurance
const int max_d4 = 40; // maximum duration

module ARDrone1

e1 : [0.. max_e1] init max_e1; // endurance

[asst1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[] e1=0 | d2=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[asst1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d3=0 & d4=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module Hummingbird2

e2 : [0.. max_e2] init max_e2; // endurance

[asst1] e2 >0 & d3 >0 -> (e2 '=e2 -1);
[asst1] e2=0 | d3=0 -> true;

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[asst1] d3 >0 & e2 >0 -> (d3 '=d3 -1);
[asst1] d3=0 -> true;

endmodule

module Hummingbird3 = Hummingbird2[e2=e3, max_e2=max_e3 , d3=d4] endmodule
module HoverAction4 = HoverAction3[d3=d4, max_d3=max_d4 , e2=e3] endmodule

Listing F.23: PCTL output for Mission 2e.
P=? [F d2=0]

Listing F.24: Log output for Mission 2e.
Model checking: P=? [F d2=0]

147

Appendix F. Mission Verification Artifacts

Building model ...

Computing reachable states ...

Reachability (BFS): 70 iterations in 0.03 seconds (average 0.000457 , setup 0.00)

Time for model construction: 0.192 seconds.

Type: DTMC
States: 70 (1 initial)
Transitions: 70

Transition matrix: 3539 nodes (2 terminal), 70 minterms , vars: 44r/44c

Prob0: 70 iterations in 0.02 seconds (average 0.000343 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 70, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.026 seconds.

Result: 1.0 (value in the initial state)

Listing F.25: YAML input for Mission 2g.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 40
preconditions: [1]

- id: 3
duration: 39
preconditions: [2, 4]

- id: 4
duration: 39
preconditions: [1]
coordinates: [-112.1199316051625 , 36.07823185748754]

- id: 5
duration: 29
preconditions: [4]

Asset:
Hummingbird:

- id: 1
actions: [1, 2, 3]

ARDrone:
- id: 2

actions: [4, 5]

Listing F.26: DTMC output for Mission 2g.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 40; // maximum duration
const int max_d3 = 39; // maximum duration
const int max_e2 = 70; // maximum endurance
const int max_d4 = 39; // maximum duration
const int max_d5 = 29; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

148

Appendix F. Mission Verification Artifacts

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[asst1] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[asst1] e1 >0 & d3 >0 -> (e1 '=e1 -1);
[asst1] e1=0 | d3=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[asst1] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);
[asst1] d2=0 -> true;

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[asst1] d2 >0 -> true;
[asst1] d2=0 & d4=0 & d3 >0 & e1 >0 -> (d3 '=d3 -1);
[asst1] d3=0 -> true;

endmodule

module ARDrone2

e2 : [0.. max_e2] init max_e2; // endurance

[asst1] e2 >0 & d4 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d5 >0 -> (e2 '=e2 -1);
[asst1] e2=0 | d5=0 -> true;

endmodule

module HoverAction4

d4 : [0.. max_d4] init max_d4; // duration

[asst1] d4 >0 & e2 >0 -> (d4 '=d4 -1);
[asst1] d4=0 -> true;

endmodule

module HoverAction5

d5 : [0.. max_d5] init max_d5; // duration

[asst1] d4 >0 -> true;
[asst1] d4=0 & d5 >0 & e2 >0 -> (d5 '=d5 -1);
[asst1] d5=0 -> true;

endmodule

Listing F.27: PCTL output for Mission 2g.
P=? [F d3=0 & d5=0]

Listing F.28: Log output for Mission 2g.
Model checking: P=? [F d3=0&d5=0]

149

Appendix F. Mission Verification Artifacts

Building model ...

Computing reachable states ...

Reachability (BFS): 120 iterations in 0.05 seconds (average 0.000442 , setup 0.00)

Time for model construction: 0.325 seconds.

Type: DTMC
States: 120 (1 initial)
Transitions: 120

Transition matrix: 5292 nodes (2 terminal), 120 minterms , vars: 43r/43c

Prob0: 120 iterations in 0.07 seconds (average 0.000617 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 120, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.072 seconds.

Result: 1.0 (value in the initial state)

Listing F.29: YAML input for Mission 2j.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 40
preconditions: [1]

- id: 3
duration: 40
preconditions: [2, 5]

- id: 4
duration: 40
coordinates: [-112.1199316051625 , 36.07823185748754]

- id: 5
duration: 39
preconditions: [4]

Asset:
Hummingbird:

- id: 1
actions: [1, 2, 3]

- id: 2
actions: [4, 5]

Listing F.30: DTMC output for Mission 2j.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 40; // maximum duration
const int max_d3 = 40; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d4 = 40; // maximum duration
const int max_d5 = 39; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[asst1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[asst1] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[actn3] e1 >0 & d3 >0 -> (e1 '=e1 -1);

150

Appendix F. Mission Verification Artifacts

[] e1=0 | d3=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[asst1] d1 >0 & e1 >0 -> (d1 '=d1 -1);
[asst1] d1=0 -> true;

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[asst1] d1 >0 -> true;
[asst1] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[actn3] d2=0 & d5=0 & d3 >0 & e1 >0 -> (d3 '=d3 -1);

endmodule

module Hummingbird2

e2 : [0.. max_e2] init max_e2; // endurance

[asst1] e2 >0 & d4 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d5 >0 -> (e2 '=e2 -1);
[asst1] e2=0 | d5=0 -> true;

endmodule

module HoverAction4

d4 : [0.. max_d4] init max_d4; // duration

[asst1] d4 >0 & e2 >0 -> (d4 '=d4 -1);
[asst1] d4=0 -> true;

endmodule

module HoverAction5

d5 : [0.. max_d5] init max_d5; // duration

[asst1] d4 >0 -> true;
[asst1] d4=0 & d5 >0 & e2 >0 -> (d5 '=d5 -1);
[asst1] d5=0 -> true;

endmodule

Listing F.31: PCTL output for Mission 2j.
P=? [F d3=0]

Listing F.32: Log output for Mission 2j.
Model checking: P=? [F d3=0]

Building model ...

Computing reachable states ...

151

Appendix F. Mission Verification Artifacts

Reachability (BFS): 121 iterations in 0.09 seconds (average 0.000752 , setup 0.00)

Time for model construction: 0.445 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121

Transition matrix: 6636 nodes (2 terminal), 121 minterms , vars: 44r/44c

Prob0: 121 iterations in 0.08 seconds (average 0.000645 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.001000 , setup 0.00)

yes = 121, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.077 seconds.

Result: 1.0 (value in the initial state)

Listing F.33: YAML input for Mission 2m.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 40
preconditions: [1]

- id: 3
duration: 40
preconditions: [2, 5]

- id: 4
duration: 40
coordinates: [-112.1199316051625 , 36.07823185748754]

- id: 5
duration: 39
preconditions: [4]

- id: 6
duration: 40
preconditions: [5]

Asset:
Hummingbird:

- id: 1
actions: [1, 2, 3]

- id: 2
actions: [4, 5, 6]

Listing F.34: DTMC output for Mission 2m.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 40; // maximum duration
const int max_d3 = 40; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d4 = 40; // maximum duration
const int max_d5 = 39; // maximum duration
const int max_d6 = 40; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[asst1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[asst1] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[asst1] e1 >0 & d3 >0 -> (e1 '=e1 -1);

152

Appendix F. Mission Verification Artifacts

[asst1] e1=0 | d3=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[asst1] d1 >0 & e1 >0 -> (d1 '=d1 -1);
[asst1] d1=0 -> true;

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[asst1] d1 >0 -> true;
[asst1] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);
[asst1] d2=0 -> true;

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[asst1] d2 >0 -> true;
[asst1] d2=0 & d5=0 & d3 >0 & e1 >0 -> (d3 '=d3 -1);
[asst1] d3=0 -> true;

endmodule

module Hummingbird2

e2 : [0.. max_e2] init max_e2; // endurance

[asst1] e2 >0 & d4 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d5 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d6 >0 -> (e2 '=e2 -1);
[asst1] e2=0 | d6=0 -> true;

endmodule

module HoverAction4

d4 : [0.. max_d4] init max_d4; // duration

[asst1] d4 >0 & e2 >0 -> (d4 '=d4 -1);
[asst1] d4=0 -> true;

endmodule

module HoverAction5

d5 : [0.. max_d5] init max_d5; // duration

[asst1] d4 >0 -> true;
[asst1] d4=0 & d5 >0 & e2 >0 -> (d5 '=d5 -1);
[asst1] d5=0 -> true;

endmodule

module HoverAction6

d6 : [0.. max_d6] init max_d6; // duration

[asst1] d5 >0 -> true;
[asst1] d5=0 & d6 >0 & e2 >0 -> (d6 '=d6 -1);
[asst1] d6=0 -> true;

endmodule

153

Appendix F. Mission Verification Artifacts

Listing F.35: PCTL output for Mission 2m.
P=? [F d3=0 & d6=0]

Listing F.36: Log output for Mission 2m.
Model checking: P=? [F d3=0&d6=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 121 iterations in 0.10 seconds (average 0.000843 , setup 0.00)

Time for model construction: 0.554 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121

Transition matrix: 8660 nodes (2 terminal), 121 minterms , vars: 50r/50c

Prob0: 121 iterations in 0.11 seconds (average 0.000876 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 121, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.107 seconds.

Result: 1.0 (value in the initial state)

Listing F.37: YAML input for Mission 2p.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 40
preconditions: [1, 4]

- id: 3
duration: 40
preconditions: [2, 5]

- id: 4
duration: 40
coordinates: [-112.1199316051625 , 36.07823185748754]

- id: 5
duration: 40
preconditions: [4]

- id: 6
duration: 40
preconditions: [5]

Asset:
Hummingbird:

- id: 1
actions: [1, 2, 3]

- id: 2
actions: [4, 5, 6]

Listing F.38: DTMC output for Mission 2p.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 40; // maximum duration
const int max_d3 = 40; // maximum duration

154

Appendix F. Mission Verification Artifacts

const int max_e2 = 120; // maximum endurance
const int max_d4 = 40; // maximum duration
const int max_d5 = 40; // maximum duration
const int max_d6 = 40; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[asst1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[asst1] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[asst1] e1 >0 & d3 >0 -> (e1 '=e1 -1);
[asst1] e1=0 | d3=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[asst1] d1 >0 & e1 >0 -> (d1 '=d1 -1);
[asst1] d1=0 -> true;

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[asst1] d1 >0 -> true;
[asst1] d1=0 & d4=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);
[asst1] d2=0 -> true;

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[asst1] d2 >0 -> true;
[asst1] d2=0 & d5=0 & d3 >0 & e1 >0 -> (d3 '=d3 -1);
[asst1] d3=0 -> true;

endmodule

module Hummingbird2

e2 : [0.. max_e2] init max_e2; // endurance

[asst1] e2 >0 & d4 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d5 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d6 >0 -> (e2 '=e2 -1);
[asst1] e2=0 | d6=0 -> true;

endmodule

module HoverAction4

d4 : [0.. max_d4] init max_d4; // duration

[asst1] d4 >0 & e2 >0 -> (d4 '=d4 -1);
[asst1] d4=0 -> true;

endmodule

module HoverAction5

d5 : [0.. max_d5] init max_d5; // duration

[asst1] d4 >0 -> true;
[asst1] d4=0 & d5 >0 & e2 >0 -> (d5 '=d5 -1);
[asst1] d5=0 -> true;

155

Appendix F. Mission Verification Artifacts

endmodule

module HoverAction6

d6 : [0.. max_d6] init max_d6; // duration

[asst1] d5 >0 -> true;
[asst1] d5=0 & d6 >0 & e2 >0 -> (d6 '=d6 -1);
[asst1] d6=0 -> true;

endmodule

Listing F.39: PCTL output for Mission 2p.
P=? [F d3=0 & d6=0]

Listing F.40: Log output for Mission 2p.
Model checking: P=? [F d3=0&d6=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 121 iterations in 0.08 seconds (average 0.000694 , setup 0.00)

Time for model construction: 0.611 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121

Transition matrix: 8689 nodes (2 terminal), 121 minterms , vars: 50r/50c

Prob0: 121 iterations in 0.10 seconds (average 0.000810 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.001000 , setup 0.00)

yes = 121, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.1 seconds.

Result: 1.0 (value in the initial state)

Listing F.41: YAML input for Mission 2r.
Action:

HoverAction:
- id: 1

duration: 60
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 30
preconditions: [1, 4]

- id: 3
duration: 30
coordinates: [-112.1199316051625 , 36.07823185748754]

- id: 4
duration: 30
preconditions: [3, 5]

- id: 5
duration: 29
coordinates: [-112.1075818315498 , 36.08838518690878]

Asset:
Hummingbird:

- id: 1
actions: [1, 2]

- id: 2

156

Appendix F. Mission Verification Artifacts

actions: [3, 4]
- id: 3

actions: [5]

Listing F.42: DTMC output for Mission 2r.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 60; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration
const int max_e3 = 120; // maximum endurance
const int max_d5 = 29; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[asst1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[] e1=0 | d2=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[asst1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d4=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module Hummingbird2

e2 : [0.. max_e2] init max_e2; // endurance

[asst1] e2 >0 & d3 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d4 >0 -> (e2 '=e2 -1);
[asst1] e2=0 | d4=0 -> true;

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[asst1] d3 >0 & e2 >0 -> (d3 '=d3 -1);
[asst1] d3=0 -> true;

endmodule

module HoverAction4

d4 : [0.. max_d4] init max_d4; // duration

[asst1] d3 >0 -> true;
[asst1] d3=0 & d5=0 & d4 >0 & e2 >0 -> (d4 '=d4 -1);
[asst1] d4=0 -> true;

endmodule

157

Appendix F. Mission Verification Artifacts

module Hummingbird3

e3 : [0.. max_e3] init max_e3; // endurance

[asst1] e3 >0 & d5 >0 -> (e3 '=e3 -1);
[asst1] e3=0 | d5=0 -> true;

endmodule

module HoverAction5

d5 : [0.. max_d5] init max_d5; // duration

[asst1] d5 >0 & e3 >0 -> (d5 '=d5 -1);
[asst1] d5=0 -> true;

endmodule

Listing F.43: PCTL output for Mission 2r.
P=? [F d2=0]

Listing F.44: Log output for Mission 2r.
Model checking: P=? [F d2=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 91 iterations in 0.05 seconds (average 0.000571 , setup 0.00)

Time for model construction: 0.392 seconds.

Type: DTMC
States: 91 (1 initial)
Transitions: 91

Transition matrix: 4675 nodes (2 terminal), 91 minterms , vars: 47r/47c

Prob0: 91 iterations in 0.04 seconds (average 0.000429 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 91, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.04 seconds.

Result: 1.0 (value in the initial state)

Listing F.45: YAML input for Mission 2u.
Action:

HoverAction:
- id: 1

duration: 60
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 30
preconditions: [1, 5]

- id: 3
duration: 30
preconditions: [2]

- id: 4
duration: 30
coordinates: [-112.1199316051625 , 36.07823185748754]

- id: 5
duration: 30

158

Appendix F. Mission Verification Artifacts

preconditions: [4, 6]
- id: 6

duration: 30
coordinates: [-112.1075818315498 , 36.08838518690878]

Asset:
Hummingbird:

- id: 1
actions: [1, 2, 3]

- id: 2
actions: [4, 5]

- id: 3
actions: [6]

Listing F.46: DTMC output for Mission 2u.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 60; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d4 = 30; // maximum duration
const int max_d5 = 30; // maximum duration
const int max_e3 = 120; // maximum endurance
const int max_d6 = 30; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[asst1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[actn3] e1 >0 & d3 >0 -> (e1 '=e1 -1);
[] e1=0 | d3=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[asst1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d4=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[actn3] d2=0 & d3 >0 & e1 >0 -> (d3 '=d3 -1);

endmodule

module Hummingbird2

e2 : [0.. max_e2] init max_e2; // endurance

[asst1] e2 >0 & d4 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d5 >0 -> (e2 '=e2 -1);
[asst1] e2=0 | d5=0 -> true;

endmodule

159

Appendix F. Mission Verification Artifacts

module HoverAction4

d4 : [0.. max_d4] init max_d4; // duration

[asst1] d4 >0 & e2 >0 -> (d4 '=d4 -1);
[asst1] d4=0 -> true;

endmodule

module HoverAction5

d5 : [0.. max_d5] init max_d5; // duration

[asst1] d4 >0 -> true;
[asst1] d4=0 & d6=0 & d5 >0 & e2 >0 -> (d5 '=d5 -1);
[asst1] d5=0 -> true;

endmodule

module Hummingbird3

e3 : [0.. max_e3] init max_e3; // endurance

[asst1] e3 >0 & d6 >0 -> (e3 '=e3 -1);
[asst1] e3=0 | d6=0 -> true;

endmodule

module HoverAction6

d6 : [0.. max_d6] init max_d6; // duration

[asst1] d6 >0 & e3 >0 -> (d6 '=d6 -1);
[asst1] d6=0 -> true;

endmodule

Listing F.47: PCTL output for Mission 2u.
P=? [F d3=0]

Listing F.48: Log output for Mission 2u.
Model checking: P=? [F d3=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 121 iterations in 0.10 seconds (average 0.000785 , setup 0.00)

Time for model construction: 0.54 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121

Transition matrix: 6210 nodes (2 terminal), 121 minterms , vars: 52r/52c

Prob0: 121 iterations in 0.07 seconds (average 0.000554 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 121, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.067 seconds.

Result: 1.0 (value in the initial state)

160

Appendix F. Mission Verification Artifacts

Listing F.49: YAML input for Mission 2v.
Action:

HoverAction:
- id: 1

duration: 60
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 30
preconditions: [1, 4]

- id: 3
duration: 30
coordinates: [-112.1199316051625 , 36.07823185748754]

- id: 4
duration: 30
preconditions: [3, 6]

- id: 5
duration: 30
preconditions: [4]

- id: 6
duration: 30
coordinates: [-112.1075818315498 , 36.08838518690878]

Asset:
Hummingbird:

- id: 1
actions: [1, 2]

- id: 2
actions: [3, 4, 5]

- id: 3
actions: [6]

Listing F.50: DTMC output for Mission 2v.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 60; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration
const int max_d5 = 30; // maximum duration
const int max_e3 = 120; // maximum endurance
const int max_d6 = 30; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[asst1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[asst1] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[asst1] e1=0 | d2=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[asst1] d1 >0 & e1 >0 -> (d1 '=d1 -1);
[asst1] d1=0 -> true;

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[asst1] d1 >0 -> true;
[asst1] d1=0 & d4=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);
[asst1] d2=0 -> true;

endmodule

161

Appendix F. Mission Verification Artifacts

module Hummingbird2

e2 : [0.. max_e2] init max_e2; // endurance

[asst1] e2 >0 & d3 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d4 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d5 >0 -> (e2 '=e2 -1);
[asst1] e2=0 | d5=0 -> true;

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[asst1] d3 >0 & e2 >0 -> (d3 '=d3 -1);
[asst1] d3=0 -> true;

endmodule

module HoverAction4

d4 : [0.. max_d4] init max_d4; // duration

[asst1] d3 >0 -> true;
[asst1] d3=0 & d6=0 & d4 >0 & e2 >0 -> (d4 '=d4 -1);
[asst1] d4=0 -> true;

endmodule

module HoverAction5

d5 : [0.. max_d5] init max_d5; // duration

[asst1] d4 >0 -> true;
[asst1] d4=0 & d5 >0 & e2 >0 -> (d5 '=d5 -1);
[asst1] d5=0 -> true;

endmodule

module Hummingbird3

e3 : [0.. max_e3] init max_e3; // endurance

[asst1] e3 >0 & d6 >0 -> (e3 '=e3 -1);
[asst1] e3=0 | d6=0 -> true;

endmodule

module HoverAction6

d6 : [0.. max_d6] init max_d6; // duration

[asst1] d6 >0 & e3 >0 -> (d6 '=d6 -1);
[asst1] d6=0 -> true;

endmodule

Listing F.51: PCTL output for Mission 2v.
P=? [F d2=0 & d5=0]

Listing F.52: Log output for Mission 2v.
Model checking: P=? [F d2=0&d5=0]

Building model ...

Computing reachable states ...

162

Appendix F. Mission Verification Artifacts

Reachability (BFS): 91 iterations in 0.07 seconds (average 0.000714 , setup 0.00)

Time for model construction: 0.455 seconds.

Type: DTMC
States: 91 (1 initial)
Transitions: 91

Transition matrix: 6332 nodes (2 terminal), 91 minterms , vars: 52r/52c

Prob0: 91 iterations in 0.06 seconds (average 0.000692 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 91, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.064 seconds.

Result: 1.0 (value in the initial state)

Listing F.53: YAML input for Mission 2w.
Action:

HoverAction:
- id: 1

duration: 60
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 30
preconditions: [1, 4]

- id: 3
duration: 30
coordinates: [-112.1199316051625 , 36.07823185748754]

- id: 4
duration: 30
preconditions: [3, 7]

- id: 5
duration: 30
preconditions: [4]

- id: 6
duration: 30
preconditions: [5]

- id: 7
duration: 30
coordinates: [-112.1075818315498 , 36.08838518690878]

Asset:
Hummingbird:

- id: 1
actions: [1, 2]

- id: 2
actions: [3, 4, 5, 6]

- id: 3
actions: [7]

Listing F.54: DTMC output for Mission 2w.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 60; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration
const int max_d5 = 30; // maximum duration
const int max_d6 = 30; // maximum duration
const int max_e3 = 120; // maximum endurance
const int max_d7 = 30; // maximum duration

163

Appendix F. Mission Verification Artifacts

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[asst1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[asst1] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[asst1] e1=0 | d2=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[asst1] d1 >0 & e1 >0 -> (d1 '=d1 -1);
[asst1] d1=0 -> true;

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[asst1] d1 >0 -> true;
[asst1] d1=0 & d4=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);
[asst1] d2=0 -> true;

endmodule

module Hummingbird2

e2 : [0.. max_e2] init max_e2; // endurance

[asst1] e2 >0 & d3 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d4 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d5 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d6 >0 -> (e2 '=e2 -1);
[asst1] e2=0 | d6=0 -> true;

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[asst1] d3 >0 & e2 >0 -> (d3 '=d3 -1);
[asst1] d3=0 -> true;

endmodule

module HoverAction4

d4 : [0.. max_d4] init max_d4; // duration

[asst1] d3 >0 -> true;
[asst1] d3=0 & d7=0 & d4 >0 & e2 >0 -> (d4 '=d4 -1);
[asst1] d4=0 -> true;

endmodule

module HoverAction5

d5 : [0.. max_d5] init max_d5; // duration

[asst1] d4 >0 -> true;
[asst1] d4=0 & d5 >0 & e2 >0 -> (d5 '=d5 -1);
[asst1] d5=0 -> true;

endmodule

module HoverAction6

d6 : [0.. max_d6] init max_d6; // duration

164

Appendix F. Mission Verification Artifacts

[asst1] d5 >0 -> true;
[asst1] d5=0 & d6 >0 & e2 >0 -> (d6 '=d6 -1);
[asst1] d6=0 -> true;

endmodule

module Hummingbird3

e3 : [0.. max_e3] init max_e3; // endurance

[asst1] e3 >0 & d7 >0 -> (e3 '=e3 -1);
[asst1] e3=0 | d7=0 -> true;

endmodule

module HoverAction7

d7 : [0.. max_d7] init max_d7; // duration

[asst1] d7 >0 & e3 >0 -> (d7 '=d7 -1);
[asst1] d7=0 -> true;

endmodule

Listing F.55: PCTL output for Mission 2w.
P=? [F d2=0 & d6=0]

Listing F.56: Log output for Mission 2w.
Model checking: P=? [F d2=0&d6=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 121 iterations in 0.11 seconds (average 0.000893 , setup 0.00)

Time for model construction: 0.676 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121

Transition matrix: 7789 nodes (2 terminal), 121 minterms , vars: 57r/57c

Prob0: 121 iterations in 0.09 seconds (average 0.000777 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 121, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.095 seconds.

Result: 1.0 (value in the initial state)

Listing F.57: YAML input for Mission 2x.
Action:

HoverAction:
- id: 1

duration: 60
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 30
preconditions: [1, 4]

- id: 3

165

Appendix F. Mission Verification Artifacts

duration: 30
coordinates: [-112.1199316051625 , 36.07823185748754]

- id: 4
duration: 30
preconditions: [3]

- id: 5
duration: 30
preconditions: [4]

- id: 6
duration: 30
preconditions: [5, 7]

- id: 7
duration: 90
coordinates: [-112.1075818315498 , 36.08838518690878]

Asset:
Hummingbird:

- id: 1
actions: [1, 2]

- id: 2
actions: [3, 4, 5, 6]

- id: 3
actions: [7]

Listing F.58: DTMC output for Mission 2x.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 60; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_e2 = 120; // maximum endurance
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration
const int max_d5 = 30; // maximum duration
const int max_d6 = 30; // maximum duration
const int max_e3 = 120; // maximum endurance
const int max_d7 = 90; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[asst1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[asst1] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[asst1] e1=0 | d2=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[asst1] d1 >0 & e1 >0 -> (d1 '=d1 -1);
[asst1] d1=0 -> true;

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[asst1] d1 >0 -> true;
[asst1] d1=0 & d4=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);
[asst1] d2=0 -> true;

endmodule

module Hummingbird2

e2 : [0.. max_e2] init max_e2; // endurance

[asst1] e2 >0 & d3 >0 -> (e2 '=e2 -1);

166

Appendix F. Mission Verification Artifacts

[asst1] e2 >0 & d4 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d5 >0 -> (e2 '=e2 -1);
[asst1] e2 >0 & d6 >0 -> (e2 '=e2 -1);
[asst1] e2=0 | d6=0 -> true;

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[asst1] d3 >0 & e2 >0 -> (d3 '=d3 -1);
[asst1] d3=0 -> true;

endmodule

module HoverAction4

d4 : [0.. max_d4] init max_d4; // duration

[asst1] d3 >0 -> true;
[asst1] d3=0 & d4 >0 & e2 >0 -> (d4 '=d4 -1);
[asst1] d4=0 -> true;

endmodule

module HoverAction5

d5 : [0.. max_d5] init max_d5; // duration

[asst1] d4 >0 -> true;
[asst1] d4=0 & d5 >0 & e2 >0 -> (d5 '=d5 -1);
[asst1] d5=0 -> true;

endmodule

module HoverAction6

d6 : [0.. max_d6] init max_d6; // duration

[asst1] d5 >0 -> true;
[asst1] d5=0 & d7=0 & d6 >0 & e2 >0 -> (d6 '=d6 -1);
[asst1] d6=0 -> true;

endmodule

module Hummingbird3

e3 : [0.. max_e3] init max_e3; // endurance

[asst1] e3 >0 & d7 >0 -> (e3 '=e3 -1);
[asst1] e3=0 | d7=0 -> true;

endmodule

module HoverAction7

d7 : [0.. max_d7] init max_d7; // duration

[asst1] d7 >0 & e3 >0 -> (d7 '=d7 -1);
[asst1] d7=0 -> true;

endmodule

Listing F.59: PCTL output for Mission 2x.
P=? [F d2=0 & d6=0]

Listing F.60: Log output for Mission 2x.
Model checking: P=? [F d2=0&d6=0]

167

Appendix F. Mission Verification Artifacts

Building model ...

Computing reachable states ...

Reachability (BFS): 121 iterations in 0.11 seconds (average 0.000934 , setup 0.00)

Time for model construction: 0.779 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121

Transition matrix: 10188 nodes (2 terminal), 121 minterms , vars: 59r/59c

Prob0: 121 iterations in 0.11 seconds (average 0.000876 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.001000 , setup 0.00)

yes = 121, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.11 seconds.

Result: 1.0 (value in the initial state)

Listing F.61: YAML input for Mission 3a.
Action:

HoverAction:
- id: 1

duration: 69
coordinates: [-112.1334152514208 , 36.08362433106716]

PhotoSurveillanceAction:
- id: 2

duration: 68
Asset:

ARDrone:
- id: 1

actions: [1, 2]

Listing F.62: DTMC output for Mission 3a.
dtmc

const int max_e1 = 70; // maximum endurance
const int max_d1 = 69; // maximum duration
const int max_d2 = 68; // maximum duration

module ARDrone1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[] e1=0 | d1=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module PhotoSurveillanceAction2

d2 : [0.. max_d2] init max_d2; // duration

168

Appendix F. Mission Verification Artifacts

[actn1] d2 >0 & e1 >0 -> (d2 '=d2 -1);
[actn1] d2=0 -> true;

endmodule

Listing F.63: PCTL output for Mission 3a.
P=? [F d1=0 & d2=0]

Listing F.64: Log output for Mission 3a.
Model checking: P=? [F d2=0&d3=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 71 iterations in 0.02 seconds (average 0.000254 , setup 0.00)

Time for model construction: 0.071 seconds.

Type: DTMC
States: 71 (1 initial)
Transitions: 71

Transition matrix: 2282 nodes (2 terminal), 71 minterms , vars: 25r/25c

Prob0: 71 iterations in 0.02 seconds (average 0.000254 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.001000 , setup 0.00)

yes = 71, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.019 seconds.

Result: 1.0 (value in the initial state)

Listing F.65: YAML input for Mission 3e.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 30
preconditions: [1]

PhotoSurveillanceAction:
- id: 3

duration: 69
Asset:

ARDrone:
- id: 1

actions: [1, 2, 3]

Listing F.66: DTMC output for Mission 3e.
dtmc

const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 69; // maximum duration

module ARDrone1

e1 : [0.. max_e1] init max_e1; // endurance

169

Appendix F. Mission Verification Artifacts

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[] e1=0 | d2=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module PhotoSurveillanceAction3

d3 : [0.. max_d3] init max_d3; // duration

[actn1] d3 >0 & e1 >0 -> (d3 '=d3 -1);
[actn1] d3=0 -> true;

[actn2] d3 >0 & e1 >0 -> (d3 '=d3 -1);
[actn2] d3=0 -> true;

endmodule

Listing F.67: PCTL output for Mission 3e.
P=? [F d2=0 & d3=0]

Listing F.68: Log output for Mission 3e.
Model checking: P=? [F d2=0&d3=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 71 iterations in 0.02 seconds (average 0.000254 , setup 0.00)

Time for model construction: 0.071 seconds.

Type: DTMC
States: 71 (1 initial)
Transitions: 71

Transition matrix: 2282 nodes (2 terminal), 71 minterms , vars: 25r/25c

Prob0: 71 iterations in 0.02 seconds (average 0.000254 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.001000 , setup 0.00)

yes = 71, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.019 seconds.

Result: 1.0 (value in the initial state)

170

Appendix F. Mission Verification Artifacts

Listing F.69: YAML input for Mission 3h.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 30
preconditions: [1]

PhotoSurveillanceAction:
- id: 3

duration: 29
preconditions: [1]

Asset:
ARDrone:

- id: 1
actions: [1, 2, 3]

Listing F.70: DTMC output for Mission 3h.
dtmc

const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 29; // maximum duration

module ARDrone1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[] e1=0 | d2=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module PhotoSurveillanceAction3

d3 : [0.. max_d3] init max_d3; // duration

[actn2] d1=0 & d3 >0 & e1 >0 -> (d3 '=d3 -1);
[actn2] d3=0 -> true;

endmodule

Listing F.71: PCTL output for Mission 3h.
P=? [F d2=0 & d3=0]

Listing F.72: Log output for Mission 3h.
Model checking: P=? [F d2=0&d3=0]

171

Appendix F. Mission Verification Artifacts

Building model ...

Computing reachable states ...

Reachability (BFS): 71 iterations in 0.01 seconds (average 0.000127 , setup 0.00)

Time for model construction: 0.054 seconds.

Type: DTMC
States: 71 (1 initial)
Transitions: 71

Transition matrix: 1349 nodes (2 terminal), 71 minterms , vars: 23r/23c

Prob0: 71 iterations in 0.01 seconds (average 0.000183 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 71, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.015 seconds.

Result: 1.0 (value in the initial state)

Listing F.73: YAML input for Mission 3k.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 30
preconditions: [1]

PhotoSurveillanceAction:
- id: 3

duration: 39
- id: 4

duration: 29
preconditions: [3]

Asset:
ARDrone:

- id: 1
actions: [1, 2, 3, 4]

Listing F.74: DTMC output for Mission 3k.
dtmc

const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 39; // maximum duration
const int max_d4 = 29; // maximum duration

module ARDrone1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[] e1=0 | d2=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

172

Appendix F. Mission Verification Artifacts

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module PhotoSurveillanceAction3

d3 : [0.. max_d3] init max_d3; // duration

[actn1] d3 >0 & e1 >0 -> (d3 '=d3 -1);
[actn1] d3=0 -> true;

[actn2] d3 >0 & e1 >0 -> (d3 '=d3 -1);
[actn2] d3=0 -> true;

endmodule

module PhotoSurveillanceAction4

d4 : [0.. max_d4] init max_d4; // duration

[actn1] d3 >0 -> true;
[actn1] d3=0 & d4 >0 & e1 >0 -> (d4 '=d4 -1);
[actn1] d4=0 -> true;

[actn2] d3 >0 -> true;
[actn2] d3=0 & d4 >0 & e1 >0 -> (d4 '=d4 -1);
[actn2] d4=0 -> true;

endmodule

Listing F.75: PCTL output for Mission 3k.
P=? [F d2=0 & d4=0]

Listing F.76: Log output for Mission 3k.
Model checking: P=? [F d2=0&d4=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 71 iterations in 0.02 seconds (average 0.000282 , setup 0.00)

Time for model construction: 0.076 seconds.

Type: DTMC
States: 71 (1 initial)
Transitions: 71

Transition matrix: 2577 nodes (2 terminal), 71 minterms , vars: 29r/29c

Prob0: 71 iterations in 0.02 seconds (average 0.000296 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 71, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.021 seconds.

Result: 1.0 (value in the initial state)

173

Appendix F. Mission Verification Artifacts

Listing F.77: YAML input for Mission 3o.
Action:

HoverAction:
- id: 1

duration: 40
coordinates: [-112.1334152514208 , 36.08362433106716]

- id: 2
duration: 30
preconditions: [1]

PhotoSurveillanceAction:
- id: 3

duration: 39
- id: 4

duration: 29
preconditions: [1, 3]

Asset:
ARDrone:

- id: 1
actions: [1, 2, 3, 4]

Listing F.78: DTMC output for Mission 3o.
dtmc

const int max_e1 = 70; // maximum endurance
const int max_d1 = 40; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 39; // maximum duration
const int max_d4 = 29; // maximum duration

module ARDrone1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[] e1=0 | d2=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module HoverAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module PhotoSurveillanceAction3

d3 : [0.. max_d3] init max_d3; // duration

[actn1] d3 >0 & e1 >0 -> (d3 '=d3 -1);
[actn1] d3=0 -> true;

[actn2] d3 >0 & e1 >0 -> (d3 '=d3 -1);
[actn2] d3=0 -> true;

endmodule

module PhotoSurveillanceAction4

d4 : [0.. max_d4] init max_d4; // duration

174

Appendix F. Mission Verification Artifacts

[actn1] d1 >0 | d3 >0 -> true;
[actn1] d1=0 & d3=0 & d4 >0 & e1 >0 -> (d4 '=d4 -1);
[actn1] d4=0 -> true;

[actn2] d1 >0 | d3 >0 -> true;
[actn2] d1=0 & d3=0 & d4 >0 & e1 >0 -> (d4 '=d4 -1);
[actn2] d4=0 -> true;

endmodule

Listing F.79: PCTL output for Mission 3o.
P=? [F d2=0 & d4=0]

Listing F.80: Log output for Mission 3o.
Model checking: P=? [F d2=0&d4=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 71 iterations in 0.02 seconds (average 0.000310 , setup 0.00)

Time for model construction: 0.03 seconds.

Type: DTMC
States: 71 (1 initial)
Transitions: 71

Transition matrix: 2588 nodes (2 terminal), 71 minterms , vars: 29r/29c

Prob0: 71 iterations in 0.02 seconds (average 0.000268 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 71, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.02 seconds.

Result: 1.0 (value in the initial state)

Listing F.81: YAML input for Mission 4a.
Action:

TraversePathSegmentAction:
- id: 1

duration: 30
coordinates: [-112.1456898399667 , 36.08223661335747 , -112.1329057930546 ,

36.09138166778199]
- id: 2

duration: 30
coordinates: [-112.1136958212283 , 36.08434312651666]
preconditions: [1]

- id: 4
duration: 30
coordinates: [-112.086330390576 , 36.09066857566722]
preconditions: [3]

HoverAction:
- id: 3

duration: 30
preconditions: [2]

Asset:
Hummingbird:

- id: 1
actions: [1, 2, 3, 4]

175

Appendix F. Mission Verification Artifacts

Listing F.82: DTMC output for Mission 4a.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 30; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[actn3] e1 >0 & d3 >0 -> (e1 '=e1 -1);
[actn4] e1 >0 & d4 >0 -> (e1 '=e1 -1);
[] e1=0 | d4=0 -> true;

endmodule

module TraversePathSegmentAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module TraversePathSegmentAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module HoverAction3 = TraversePathSegmentAction2[d2=d3 , max_d2=max_d3 , actn2=
actn3 , d1=d2] endmodule

module TraversePathSegmentAction4 = HoverAction3[d3=d4 , max_d3=max_d4 , actn3=
actn4 , d2=d3] endmodule

Listing F.83: PCTL output for Mission 4a.
P=? [F d4=0]

Listing F.84: Log output for Mission 4a.
Model checking: P=? [F d4=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 121 iterations in 0.02 seconds (average 0.000182 , setup 0.00)

Time for model construction: 0.238 seconds.

Type: DTMC
States: 121 (1 initial)
Transitions: 121

Transition matrix: 2880 nodes (2 terminal), 121 minterms , vars: 27r/27c

Prob0: 121 iterations in 0.03 seconds (average 0.000273 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 121, no = 0, maybe = 0

Value in the initial state: 1.0

176

Appendix F. Mission Verification Artifacts

Time for model checking: 0.034 seconds.

Result: 1.0 (value in the initial state)

Listing F.85: YAML input for Mission 4b.
Action:

TraversePathSegmentAction:
- id: 1

duration: 30
coordinates: [-112.1456898399667 , 36.08223661335747 , -112.1329057930546 ,

36.09138166778199]
- id: 2

duration: 30
coordinates: [-112.1136958212283 , 36.08434312651666]
preconditions: [1]

- id: 4
duration: 30
coordinates: [-112.086330390576 , 36.09066857566722]
preconditions: [3]

HoverAction:
- id: 3

duration: 30
preconditions: [2]

Asset:
Hummingbird:

- id: 1
actions: [1, 2, 3, 4]

Listing F.86: DTMC output for Mission 4b.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 30; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[actn3] e1 >0 & d3 >0 -> (e1 '=e1 -1);
[actn4] e1 >0 & d4 >0 -> (e1 '=e1 -1);
[] e1=0 | d4=0 -> true;

endmodule

module TraversePathSegmentAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module TraversePathSegmentAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module HoverAction3 = TraversePathSegmentAction2[d2=d3 , max_d2=max_d3 , actn2=
actn3 , d1=d2] endmodule

177

Appendix F. Mission Verification Artifacts

module TraversePathSegmentAction4 = HoverAction3[d3=d4 , max_d3=max_d4 , actn3=
actn4 , d2=d3] endmodule

//

const int start2 = 15; // threat area incursion start for
TraversePathSegmentAction2

const int start3 = 30; // threat area incursion start for HoverAction1
const int start4 = 30; // threat area incursion start for

TraversePathSegmentAction3
const int finish2 = 0; // threat area incursion end for

TraversePathSegmentAction2
const int finish3 = 0; // threat area incursion end for HoverAction1
const int finish4 = 5; // threat area incursion end for

TraversePathSegmentAction3
formula actn2_tai = d2>finish2 & d2 <= start2; // threat area incursion during

TraversePathSegmentAction2
formula actn3_tai = d3>finish3 & d3 <= start3; // threat area incursion during

HoverAction1
formula actn4_tai = d4>finish4 & d4 <= start4; // threat area incursion during

TraversePathSegmentAction3

module Hummingbird1_Survivability

a1d : bool init false; // Hummingbird 1 destroyed

[actn2] !a1d & actn2_tai -> 0.99:(a1d '=false) + 0.01:(a1d '=true);
[actn2] a1d | !actn2_tai -> true;

[actn3] !a1d & actn3_tai -> 0.99:(a1d '=false) + 0.01:(a1d '=true);
[actn3] a1d | !actn3_tai -> true;

[actn4] !a1d & actn4_tai -> 0.99:(a1d '=false) + 0.01:(a1d '=true);
[actn4] a1d | !actn4_tai -> true;

endmodule

formula duration2 = start2 - finish2;
formula duration3 = start3 - finish3;
formula duration4 = start4 - finish4;

formula tkad1 = duration2 + duration3 + duration4; // total threat area action
durations

formula raf1 = 0 / tkad1; // risk acceptability factor

Listing F.87: PCTL output for Mission 4b.
P=? [F d4=0 & !a1d & raf1 >0.6]

Listing F.88: Log output for Mission 4b.
Model checking: P=? [F d4=0&! a1d&raf1 >0.6]

Building model ...

Computing reachable states ...

Reachability (BFS): 121 iterations in 0.03 seconds (average 0.000207 , setup 0.00)

Time for model construction: 0.225 seconds.

Type: DTMC
States: 196 (1 initial)
Transitions: 266

Transition matrix: 3024 nodes (4 terminal), 266 minterms , vars: 28r/28c

yes = 0, no = 196, maybe = 0

Value in the initial state: 0.0

178

Appendix F. Mission Verification Artifacts

Time for model checking: 0.0070 seconds.

Result: 0.0 (value in the initial state)

Listing F.89: YAML input for Mission 4d.
Action:

TraversePathSegmentAction:
- id: 1

duration: 30
coordinates: [-112.1456898399667 , 36.08223661335747 , -112.1329057930546 ,

36.09138166778199]
- id: 2

duration: 30
coordinates: [-112.1136958212283 , 36.08434312651666]
preconditions: [1]

- id: 4
duration: 30
coordinates: [-112.086330390576 , 36.09066857566722]
preconditions: [3]

HoverAction:
- id: 3

duration: 30
preconditions: [2]

PhotoSurveillanceAction:
- id: 5

duration: 43
preconditions: [2]

Asset:
Hummingbird:

- id: 1
actions: [1, 2, 3, 4, 5]

Listing F.90: DTMC output for Mission 4d.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 30; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration
const int max_d5 = 43; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[actn3] e1 >0 & d3 >0 -> (e1 '=e1 -1);
[actn4] e1 >0 & d4 >0 -> (e1 '=e1 -1);
[] e1=0 | d4=0 -> true;

endmodule

module TraversePathSegmentAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module TraversePathSegmentAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

179

Appendix F. Mission Verification Artifacts

module HoverAction3 = TraversePathSegmentAction2[d2=d3 , max_d2=max_d3 , actn2=
actn3 , d1=d2] endmodule

module TraversePathSegmentAction4 = HoverAction3[d3=d4 , max_d3=max_d4 , actn3=
actn4 , d2=d3] endmodule

module PhotoSurveillanceAction5

d5 : [0.. max_d5] init max_d5; // duration
r5 : bool init false; // running

[actn3] d2=0 & d5 >0 & e1 >0 -> (d5 '=d5 -1)&(r5 '=true);
[actn3] d5=0 -> (r5 '=false);

[actn4] d2=0 & d5 >0 & e1 >0 -> (d5 '=d5 -1)&(r5 '=true);
[actn4] d5=0 -> (r5 '=false);

endmodule

//

const int start2 = 15; // threat area incursion start for
TraversePathSegmentAction2

const int start3 = 30; // threat area incursion start for HoverAction1
const int start4 = 30; // threat area incursion start for

TraversePathSegmentAction3
const int finish2 = 0; // threat area incursion end for

TraversePathSegmentAction2
const int finish3 = 0; // threat area incursion end for HoverAction1
const int finish4 = 5; // threat area incursion end for

TraversePathSegmentAction3
formula actn2_tai = d2>finish2 & d2 <= start2; // threat area incursion during

TraversePathSegmentAction2
formula actn3_tai = d3>finish3 & d3 <= start3; // threat area incursion during

HoverAction1
formula actn4_tai = d4>finish4 & d4 <= start4; // threat area incursion during

TraversePathSegmentAction3

module Hummingbird1_Survivability

a1d : bool init false; // Hummingbird 1 destroyed

[actn2] !a1d & actn2_tai -> 0.99:(a1d '=false) + 0.01:(a1d '=true);
[actn2] a1d | !actn2_tai -> true;

[actn3] !a1d & actn3_tai -> 0.99:(a1d '=false) + 0.01:(a1d '=true);
[actn3] a1d | !actn3_tai -> true;

[actn4] !a1d & actn4_tai -> 0.99:(a1d '=false) + 0.01:(a1d '=true);
[actn4] a1d | !actn4_tai -> true;

endmodule

formula duration2 = start2 - finish2;
formula duration3 = start3 - finish3;
formula duration4 = start4 - finish4;

formula tkad1 = duration2 + duration3 + duration4; // total threat area action
durations

module SensorActionCounter1

sad1 : [0.. tkad1] init 0; // sensor action duration

[actn3] actn3_tai & r5 & sad1 <tkad1 -> (sad1 '=sad1 +1);
[actn3] !actn3_tai | !r5 -> true;

[actn4] actn4_tai & r5 & sad1 <tkad1 -> (sad1 '=sad1 +1);
[actn4] !actn4_tai | !r5 -> true;

endmodule

formula raf1 = sad1 / tkad1; // risk acceptability factor

180

Appendix F. Mission Verification Artifacts

Listing F.91: PCTL output for Mission 4d.
P=? [F d4=0 & !a1d & raf1 >0.6]

Listing F.92: Log output for Mission 4d.
Model checking: P=? [F d4=0&! a1d&raf1 >0.6]

Building model ...

Computing reachable states ...

Reachability (BFS): 121 iterations in 0.04 seconds (average 0.000355 , setup 0.00)

Time for model construction: 0.35 seconds.

Type: DTMC
States: 196 (1 initial)
Transitions: 266

Transition matrix: 5393 nodes (4 terminal), 266 minterms , vars: 42r/42c

Prob0: 121 iterations in 0.09 seconds (average 0.000702 , setup 0.00)

Prob1: 47 iterations in 0.04 seconds (average 0.000872 , setup 0.00)

yes = 6, no = 75, maybe = 115

Computing remaining probabilities ...
Engine: Hybrid

Building hybrid MTBDD matrix ... [levels =42, nodes =4775] [111.9 KB]
Adding explicit sparse matrices ... [levels =42, num=1, compact] [0.9 KB]
Creating vector for diagonals ... [dist=1, compact] [0.4 KB]
Creating vector for RHS... [dist=2, compact] [0.4 KB]
Allocating iteration vectors ... [2 x 1.5 KB]
TOTAL: [116.7 KB]

Starting iterations ...

Jacobi: 116 iterations in 0.01 seconds (average 0.000009 , setup 0.01)

Value in the initial state: 0.49483865960020695

Time for model checking: 0.158 seconds.

Result: 0.49483865960020695 (value in the initial state)

Listing F.93: YAML input for Mission 4f.
Action:

TraversePathSegmentAction:
- id: 1

duration: 30
coordinates: [-112.1456898399667 , 36.08223661335747 , -112.1329057930546 ,

36.09138166778199]
- id: 2

duration: 30
coordinates: [-112.1136958212283 , 36.08434312651666]
preconditions: [1]

- id: 4
duration: 30
coordinates: [-112.086330390576 , 36.09066857566722]
preconditions: [3]

HoverAction:
- id: 3

duration: 30
preconditions: [2]

PhotoSurveillanceAction:
- id: 5

duration: 35
preconditions: [2]

181

Appendix F. Mission Verification Artifacts

- id: 6
duration: 13
preconditions: [3]

Asset:
Hummingbird:

- id: 1
actions: [1, 2, 3, 4, 5, 6]

Listing F.94: DTMC output for Mission 4f.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 30; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration
const int max_d4 = 30; // maximum duration
const int max_d5 = 35; // maximum duration
const int max_d6 = 13; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[actn3] e1 >0 & d3 >0 -> (e1 '=e1 -1);
[actn4] e1 >0 & d4 >0 -> (e1 '=e1 -1);
[] e1=0 | d4=0 -> true;

endmodule

module TraversePathSegmentAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module TraversePathSegmentAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module HoverAction3 = TraversePathSegmentAction2[d2=d3 , max_d2=max_d3 , actn2=
actn3 , d1=d2] endmodule

module TraversePathSegmentAction4 = HoverAction3[d3=d4 , max_d3=max_d4 , actn3=
actn4 , d2=d3] endmodule

module PhotoSurveillanceAction5

d5 : [0.. max_d5] init max_d5; // duration
r5 : bool init false; // running

[actn3] d2=0 & d5 >0 & e1 >0 -> (d5 '=d5 -1)&(r5 '=true);
[actn3] d5=0 -> (r5 '=false);

[actn4] d2=0 & d5 >0 & e1 >0 -> (d5 '=d5 -1)&(r5 '=true);
[actn4] d5=0 -> (r5 '=false);

endmodule

module PhotoSurveillanceAction6

d6 : [0.. max_d6] init max_d6; // duration
r6 : bool init false; // running

[actn4] d3=0 & d6 >0 & e1 >0 -> (d6 '=d6 -1)&(r6 '=true);

182

Appendix F. Mission Verification Artifacts

[actn4] d6=0 -> (r6 '=false);

endmodule

//

const int start2 = 15; // threat area incursion start for
TraversePathSegmentAction2

const int start3 = 30; // threat area incursion start for HoverAction1
const int start4 = 30; // threat area incursion start for

TraversePathSegmentAction3
const int finish2 = 0; // threat area incursion end for

TraversePathSegmentAction2
const int finish3 = 0; // threat area incursion end for HoverAction1
const int finish4 = 5; // threat area incursion end for

TraversePathSegmentAction3
formula actn2_tai = d2>finish2 & d2 <= start2; // threat area incursion during

TraversePathSegmentAction2
formula actn3_tai = d3>finish3 & d3 <= start3; // threat area incursion during

HoverAction1
formula actn4_tai = d4>finish4 & d4 <= start4; // threat area incursion during

TraversePathSegmentAction3

module Hummingbird1_Survivability

a1d : bool init false; // Hummingbird 1 destroyed

[actn2] !a1d & actn2_tai -> 0.99:(a1d '=false) + 0.01:(a1d '=true);
[actn2] a1d | !actn2_tai -> true;

[actn3] !a1d & actn3_tai -> 0.99:(a1d '=false) + 0.01:(a1d '=true);
[actn3] a1d | !actn3_tai -> true;

[actn4] !a1d & actn4_tai -> 0.99:(a1d '=false) + 0.01:(a1d '=true);
[actn4] a1d | !actn4_tai -> true;

endmodule

formula duration2 = start2 - finish2;
formula duration3 = start3 - finish3;
formula duration4 = start4 - finish4;

formula tkad1 = duration2 + duration3 + duration4; // total threat area action
durations

module SensorActionCounter1

sad1 : [0.. tkad1] init 0; // sensor action duration

[actn3] actn3_tai & r5 & sad1 <tkad1 -> (sad1 '=sad1 +1);
[actn3] !actn3_tai | !r5 -> true;

[actn4] actn4_tai & (r5 | r6) & sad1 <tkad1 -> (sad1 '=sad1 +1);
[actn4] !actn4_tai | !(r5 | r6) -> true;

endmodule

formula raf1 = sad1 / tkad1; // risk acceptability factor

Listing F.95: PCTL output for Mission 4f.
P=? [F d4=0 & !a1d & raf1 >0.6]

Listing F.96: Log output for Mission 4f.
Model checking: P=? [F d4=0&! a1d&raf1 >0.6]

Building model ...

Computing reachable states ...

183

Appendix F. Mission Verification Artifacts

Reachability (BFS): 121 iterations in 0.04 seconds (average 0.000364 , setup 0.00)

Time for model construction: 0.383 seconds.

Type: DTMC
States: 196 (1 initial)
Transitions: 266

Transition matrix: 5873 nodes (4 terminal), 266 minterms , vars: 47r/47c

Prob0: 121 iterations in 0.09 seconds (average 0.000744 , setup 0.00)

Prob1: 47 iterations in 0.04 seconds (average 0.000894 , setup 0.00)

yes = 6, no = 75, maybe = 115

Computing remaining probabilities ...
Engine: Hybrid

Building hybrid MTBDD matrix ... [levels =47, nodes =5245] [122.9 KB]
Adding explicit sparse matrices ... [levels =47, num=1, compact] [0.9 KB]
Creating vector for diagonals ... [dist=1, compact] [0.4 KB]
Creating vector for RHS... [dist=2, compact] [0.4 KB]
Allocating iteration vectors ... [2 x 1.5 KB]
TOTAL: [127.7 KB]

Starting iterations ...

Jacobi: 116 iterations in 0.01 seconds (average 0.000009 , setup 0.01)

Value in the initial state: 0.49483865960020695

Time for model checking: 0.158 seconds.

Result: 0.49483865960020695 (value in the initial state)

Listing F.97: YAML input for Mission 5a.
Action:

HoverAction:
- id: 1

duration: 30
- id: 3

duration: 30
preconditions: [2]

TraversePathSegmentAction:
- id: 2

duration: 30
coordinates: [-118.2738988072612 , 34.03893526262756 , -118.2710020707466 ,

34.03699573489515]
preconditions: [1]

LidarAction:
- id: 4

interval: 5
concurrencies: [1]

- id: 5
interval: 5
concurrencies: [3]

Asset:
Hummingbird:

- id: 1
actions: [1, 2, 3]

Listing F.98: DTMC output for Mission 5a.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 30; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration

184

Appendix F. Mission Verification Artifacts

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[actn3] e1 >0 & d3 >0 -> (e1 '=e1 -1);
[] e1=0 | d3=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

module TraversePathSegmentAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[actn3] d2=0 & d3 >0 & e1 >0 -> (d3 '=d3 -1);

endmodule

//

const int i4 = 5; // interval
const int i5 = 5; // interval

module LidarAction4

r4 : [0.. max_d1] init 0; // readings

[actn1] mod(d1, i4)=0 & r4<max_d1 -> (r4 '=r4+1);
[actn1] !mod(d1, i4)=0 -> true;

endmodule

module LidarAction5 = LidarAction4[r4=r5, max_d1=max_d3 , actn1=actn3 , d1=d3, i4=
i5] endmodule

Listing F.99: PCTL output for Mission 5a.
P=? [F d3=0]

Listing F.100: Log output for Mission 5a.
Model checking: P=? [F d3=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 91 iterations in 0.02 seconds (average 0.000253 , setup 0.00)

Time for model construction: 0.209 seconds.

Type: DTMC
States: 91 (1 initial)

185

Appendix F. Mission Verification Artifacts

Transitions: 91

Transition matrix: 2570 nodes (2 terminal), 91 minterms , vars: 32r/32c

Prob0: 91 iterations in 0.02 seconds (average 0.000242 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 91, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.023 seconds.

Result: 1.0 (value in the initial state)

Listing F.101: YAML input for Mission 5b.
Action:

HoverAction:
- id: 1

duration: 30
- id: 3

duration: 30
preconditions: [2]

TraversePathSegmentAction:
- id: 2

duration: 30
coordinates: [-118.2738988072612 , 34.03893526262756 , -118.2710020707466 ,

34.03699573489515]
preconditions: [1]

LidarAction:
- id: 4

interval: 5
concurrencies: [1]

- id: 5
interval: 5
concurrencies: [3]

Asset:
Hummingbird:

- id: 1
actions: [1, 2, 3]

Listing F.102: DTMC output for Mission 5b.
dtmc

const int max_e1 = 120; // maximum endurance
const int max_d1 = 30; // maximum duration
const int max_d2 = 30; // maximum duration
const int max_d3 = 30; // maximum duration

module Hummingbird1

e1 : [0.. max_e1] init max_e1; // endurance

[actn1] e1 >0 & d1 >0 -> (e1 '=e1 -1);
[actn2] e1 >0 & d2 >0 -> (e1 '=e1 -1);
[actn3] e1 >0 & d3 >0 -> (e1 '=e1 -1);
[] e1=0 | d3=0 -> true;

endmodule

module HoverAction1

d1 : [0.. max_d1] init max_d1; // duration

[actn1] d1 >0 & e1 >0 -> (d1 '=d1 -1);

endmodule

186

Appendix F. Mission Verification Artifacts

module TraversePathSegmentAction2

d2 : [0.. max_d2] init max_d2; // duration

[actn2] d1=0 & d2 >0 & e1 >0 -> (d2 '=d2 -1);

endmodule

module HoverAction3

d3 : [0.. max_d3] init max_d3; // duration

[actn3] d2=0 & d3 >0 & e1 >0 -> (d3 '=d3 -1);

endmodule

//

const int i4 = 5; // interval
const int icf4 = 2; // interval calibration factor
formula ci4 = nse4 ? i4 * icf4 : i4; // current interval

module LidarAction4

r4 : [0.. max_d1] init 0; // readings
nse4 : bool init false; // nominal speed exceeded

[actn1] mod(d1, ci4)=0 & r4 <max_d1 & spd1=2 -> (r4 '=r4+1)&(nse4 '=true);
[actn1] mod(d1, ci4)=0 & r4 <max_d1 & !spd1=2 -> (r4 '=r4+1)&(nse4 '=false);
[actn1] !mod(d1, ci4)=0 -> true;

endmodule

module FreewaySection1 // low speed freeway section

// 0 = minimum speed
// 1 = nominal speed
// 2 = nominal speed exceeded
spd1 : [0..2] init 1;

[actn1] spd1=0 -> 0.3:(spd1 '=0) + 0.7:(spd1 '=1);
[actn1] spd1=1 -> 0.3:(spd1 '=0) + 0.3:(spd1 '=1) + 0.4:(spd1 '=2);
[actn1] spd1=2 -> 0.6:(spd1 '=1) + 0.4:(spd1 '=2);

endmodule

//

const int i5 = 5; // interval
const int icf5 = 3; // interval calibration factor
formula ci5 = nse5 ? i5 * icf5 : i5; // current interval

module LidarAction5

r5 : [0.. max_d3] init 0; // readings
nse5 : bool init false; // nominal speed exceeded

[actn3] mod(d3, ci5)=0 & r5 <max_d3 & spd2=2 -> (r5 '=r5+1)&(nse5 '=true);
[actn3] mod(d3, ci5)=0 & r5 <max_d3 & !spd2=2 -> (r5 '=r5+1)&(nse5 '=false);
[actn3] !mod(d3, ci5)=0 -> true;

endmodule

module FreewaySection2 // high speed freeway section

// 0 = minimum speed
// 1 = nominal speed
// 2 = nominal speed exceeded
spd2 : [0..2] init 1;

[actn3] spd2=0 -> 0.1:(spd2 '=0) + 0.9:(spd2 '=1);
[actn3] spd2=1 -> 0.2:(spd2 '=0) + 0.3:(spd2 '=1) + 0.5:(spd2 '=2);
[actn3] spd2=2 -> 0.5:(spd2 '=1) + 0.5:(spd2 '=2);

187

Appendix F. Mission Verification Artifacts

endmodule

Listing F.103: PCTL output for Mission 5b.
P=? [F d3=0]
P=? [F nse4 & spd1=0 & !mod(d1, ci4)=0]
P=? [F nse5 & spd2=0 & !mod(d3, ci5)=0]

Listing F.104: Log output for Mission 5b.
Model checking: P=? [F d3=0]

Building model ...

Computing reachable states ...

Reachability (BFS): 91 iterations in 0.02 seconds (average 0.000242 , setup 0.00)

Time for model construction: 0.259 seconds.

Type: DTMC
States: 5335 (1 initial)
Transitions: 11531

Transition matrix: 3381 nodes (10 terminal), 11531 minterms , vars: 38r/38c

Prob0: 91 iterations in 0.03 seconds (average 0.000308 , setup 0.00)

Prob1: 1 iterations in 0.00 seconds (average 0.000000 , setup 0.00)

yes = 5335, no = 0, maybe = 0

Value in the initial state: 1.0

Time for model checking: 0.028 seconds.

Result: 1.0 (value in the initial state)

Model checking: P=? [F nse4&spd1 =0&! mod(d1 ,ci4)=0]

Prob0: 9 iterations in 0.01 seconds (average 0.000667 , setup 0.00)

Prob1: 25 iterations in 0.01 seconds (average 0.000520 , setup 0.00)

yes = 33, no = 5139, maybe = 163

Computing remaining probabilities ...
Engine: Hybrid

Building hybrid MTBDD matrix ... [levels =38, nodes =1135] [53.2 KB]
Adding explicit sparse matrices ... [levels =38, num=1, compact] [6.8 KB]
Creating vector for diagonals ... [dist=1, compact] [10.4 KB]
Creating vector for RHS... [dist=2, compact] [10.4 KB]
Allocating iteration vectors ... [2 x 41.7 KB]
TOTAL: [164.2 KB]

Starting iterations ...

Jacobi: 30 iterations in 0.00 seconds (average 0.000067 , setup 0.00)

Value in the initial state: 0.6250983112904365

Time for model checking: 0.048 seconds.

Result: 0.6250983112904365 (value in the initial state)

188

Appendix F. Mission Verification Artifacts

Model checking: P=? [F nse5&spd2 =0&! mod(d3 ,ci5)=0]

Prob0: 68 iterations in 0.04 seconds (average 0.000515 , setup 0.00)

Prob1: 85 iterations in 0.04 seconds (average 0.000447 , setup 0.00)

yes = 720, no = 900, maybe = 3715

Computing remaining probabilities ...
Engine: Hybrid

Building hybrid MTBDD matrix ... [levels =38, nodes =3464] [162.4 KB]
Adding explicit sparse matrices ... [levels =38, num=1, compact] [37.9 KB]
Creating vector for diagonals ... [dist=1, compact] [10.4 KB]
Creating vector for RHS... [dist=2, compact] [10.4 KB]
Allocating iteration vectors ... [2 x 41.7 KB]
TOTAL: [304.5 KB]

Starting iterations ...

Jacobi: 90 iterations in 0.01 seconds (average 0.000089 , setup 0.01)

Value in the initial state: 0.6507381247299331

Time for model checking: 0.115 seconds.

Result: 0.6507381247299331 (value in the initial state)

189

	Introduction
	Research Problem and Scope
	Thesis Contributions
	Cascading Verification
	Domain-Specific Modeling for the UAV Domain
	Prototype Design and Implementation
	Prototype Evaluation

	Thesis Outline

	Background
	OWL+SWRL and Prolog
	Probabilistic Model Checking
	UAV Missions
	UAV Performance Specifications
	UAV Mission Hierarchy
	DARPA Mission Scenario
	DRDC Mission Scenario

	Summary

	Method Overview
	An Example Mission
	From Specification to Verification

	Domain Modeling
	Semantic Modeling
	Building an OWL Ontology
	Modeling Tactical Missions
	Modeling Traffic Surveillance Missions
	An Overview

	Rule-Based Modeling
	An Overview

	Behavioral Modeling
	Modeling Survivability
	Modeling Risk Acceptability
	Modeling Traffic Surveillance
	An Overview

	Related Work
	Integrating OWL and Prolog
	Modeling the UAV Domain

	Summary

	Cascading Verification
	High-Level Specifications in YAML
	Verification with Semantic Reasoning
	Classification with Prolog
	Synthesized Models and Properties
	Implementation
	Related Work
	Summary

	Evaluation
	Evaluation Methods and Metrics
	Abstraction
	Effectiveness
	Probabilistic Verification
	Proof of Correctness

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Summary

	Conclusions and Future Work
	Contributions
	Future Work
	Network-Centric Model Checking
	Annotation-Guided Model Checking

	References
	Threat Area Calculations
	Establishing Threat Area Incursions
	Calculating Threat Area Durations
	Distance
	Speed
	Bearing
	Duration

	Ontology
	Prolog Knowledge Base
	PRISM Templates
	DSL Schema
	Mission Verification Artifacts

