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Abstract

Areas of open ocean within the sea ice cover, known as leads and polynyas, expose

ocean water directly to the cold atmosphere. In winter, these are regions of high sea ice

production, and they play an important role in the mass balance of sea ice and the salt

budget of the ocean. Sea ice formation is a complex process that starts with frazil ice crys-

tal formation in supercooled waters, which grow and precipitate to the ocean surface to

form grease ice, which eventually consolidates and turns into a layer of solid sea ice. This

thesis looks at all three phases, concentrating on the first. Frazil ice comprises millimetre-

sized crystals of ice that form in supercooled, turbulent water. They initially form through

a process of seeding, and then grow and multiply through secondary nucleation, which is

where smaller crystals break off from larger ones to create new nucleii for further growth.

The increase in volume of frazil ice will continue to occur until there is no longer super-

cooling in the water. The crystals eventually precipitate to the surface and pile up to form

grease ice. The presence of grease ice at the ocean surface dampens the effects of waves and

turbulence, which allows them to consolidate into a solid layer of ice. The ice then mostly

grows through congelation ice forming beneath the layer of ice. A mathematical model

describing the above processes is formulated and used to simulate ice growth. The model

consists of conservation equations for mass and heat, with an imposed momentum budget.

Simulations are realistic and numerical sensitivity experiments are used to investigate the

dependence of ice growth on the ambient environment.
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1 Introduction

1.1 Overview

The Earth is warming at a faster rate than it has done in recent history, and this is hap-

pening more rapidly at the poles. The 2007 IPCC Report documents evidence that the

linear warming trend of the 50 years to 2005 was twice that of the trend of the 100 years

to 2005.

Global Climate models are mathematical models that are used to simulate the Earth’s

climate, and are made up of many components including AGCMs (atmospheric GCMs)

and OGCMs (oceanic GCMs), which are coupled. Other components that can be present

describe sea ice, which is frozen seawater and will be described at length further on, and

the land surface. The oceanic and atmospheric components are based on the Navier-Stokes

equations for fluid flow, and include other fluid dynamical, chemical and biological equa-

tions. We will mostly be interested in the sea ice component, and its effect on the ocean

and the atmosphere.

In the Arctic, most GCMs have underoverestimated the sea ice summer ice extent

minimum in recent times (Fig. 1.1). Miller et al (2006) found that the uncertainty in

stand-alone sea ice models is enough to account for the model-data discrepancies. This

strongly suggests that more work needs to be carried out on the sea ice models, and this

motivates the research carried out for this thesis, which is specifically about lead and

polynya refreezing and frazil ice formation. Leads and polynyas are open ocean areas in

the sea ice cover which are in direct contact with the atmosphere and are known to be

regions of high frazil ice production.

1.2 Sea Ice in the climate system

At any one time, sea ice covers approximately 7% of the ocean, and affects the dynamics

and thermodynamics of the ocean and the atmosphere (Houghton et al 1997). The Arctic
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Figure 1.1: Observations of September Arctic sea ice extent (thick red line), and 13 models,
with the mean (thick black line), and the standard deviation of the models (dashed black
line).
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ocean can be entirely covered in sea ice, whilst in the Antarctic sea ice can only be present

around Antarctica. The sea ice extent of both the Arctic and the Antarctic varies greatly

from the summer to the winter, due to its melting and freezing. Each year the summer

sea ice extent minimum of both the Arctic and the Antarctic are recorded, and it is the

decrease in the Arctic, which has seen a rapid decline in recent years, culminating in the

2012 Arctic sea ice extent minimum.

Figure 1.2: Average Monthly Arctic Sea Ice Extent - September 1979 to 2012 (NSIDC)

Satellite data since 1978 has shown that the average annual Arctic sea ice extent has

decreased by 2.7% per decade, with the largest decrease in summer (7.4%). Fig. 1.2 shows

the decline of the average September sea ice extent from 1979 to 2012, with the trend in

blue clearly showing the decline. If we continue to lose sea ice at the same rate, we could

have a ice-free Arctic summer within a few decades (NSIDC).

Sea ice can be split into first year and multi-year sea ice. First year ice is no longer

than one year old, and multi-year ice is ice that has survived one or more years. First

year ice forms in the region known as the seasonal ice zone, which is the area that changes

between being solid in winter and liquid in summer. Multi-year ice exists all year round.

First year ice is generally thinner than multi-year ice, but multi-year ice is fresher.
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Sea ice affects the rest of the polar regions and consequently the Earth’s climate in

several ways, some of which we will now describe. Albedo is a measure of the reflectivity of

a surface, and the albedo of sea ice (0.5-0.7) is higher than that of open water (0.06). This

means that more energy is reflected off the surface of the sea ice than off the surface of the

water. Melting sea ice is a component of the positive albedo feedback mechanism: when

sea ice melts, the albedo of the surface decreases, leading to more heat being absorbed by

the ocean and consequently more sea ice melting. If sea ice melts at the edge, it runs off

into the ocean, but surface melt can result in melt ponds being formed. These are areas

within the sea ice cover covered in relatively fresh water caused by melting sea ice and

snow, and can cover up to 50% of the Arctic cover (Flocco & Feltham 2007).

Figure 1.3: The Great Ocean Conveyor Belt (Watson, 2001)

Another way in which the presence of sea ice affects the global climate is the effect on

the thermohaline circulation (figure 1.3), which is an overturning circulation in which warm

water flows poleward near the surface and is subsequently converted into cold water that is

denser and so sinks and flows equatorward in the interior (Toggweiler & Key, 2003). The

thermohaline circulation is responsible for transporting heat around the oceans, through

the polar regions where it is affected by the melting and freezing of sea ice. Drastic changes

in the amount of sea ice in the Arctic may have a great effect on this process, since more
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sea ice melting in the Arctic will make the water less dense and so it will not sink as deep

and circulate at depth as easily. This could disrupt the downwelling and could even stop

it completely.

One more way in which the presence or lack of sea ice affects the global climate is that

it acts as an insulating layer between the ocean and the atmosphere, and with less sea ice

present the fluxes between these two increases, hence warming the atmosphere and cooling

the water or vice-versa. Leads and polynyas are areas in the sea ice cover in which the open

ocean is in contact with the atmosphere, and although they represent only 3-4% of the sea

ice cover, they are estimated to be responsible for about half of the heat loss (Maykut 1982).

1.3 Sea Ice Growth

Sea water has a typical salinity of 35 psu (practical salinity units) and freezes at about

-1.8°C to form sea ice. Sea ice is a complex mixture of ice crystals, brine pockets and air

pockets. The first stage of sea ice formation involves frazil ice, which are millimetre-sized

crystals (typical size of 0.1-4 mm diameter and 1-100 µm thickness) which form in super-

cooled turbulent water (Kivisild 1970).

When frazil ice precipitates to the ocean surface, the mixture of frazil and water is

called grease ice. The evolution of grease ice, as shown in table 1, depends on mixing.

In calm conditions, a thin layer (<10 cm) of ice forms at the surface due to the rising

and agglomeration of the crystals in the water, known as nilas. In turbulent or windy

conditions, the frazil ice congeals into pancake ice, which are circular blocks of ice which

form in this way due to collisions with each other, and can be up to 3–5 m in diameter

and 50–70 cm thick (Weeks & Ackley 1986). Both nilas and pancake ice eventually form a

layer of young ice which is thicker than 10 cm. From this, ice growth happens downwards

from beneath the ice layer, known as congelation ice

Since pure ice has zero salinity, when sea ice is forming, the salt from the water is
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Table 1: Evolution of frazil ice in natural bodies (Daly, 1994)

rejected into the surrounding water. As a consequence, the water around the ice crys-

tals becomes saltier and hence has a lower freezing temperature. Some of this water can

become trapped to form pockets of brine within the sea ice which have high salinity and

hence remain liquid. Once the ice is thick enough, due to differences of density between the

brine in the pockets and the ambient water beneath, these pockets can form channels and

release the brine into the water below the ice. This, together with the salt being released

directly at the sea ice bottom, contribute to the desalination of sea ice.

1.3.1 Frazil Ice

Two areas of interest within the sea ice cover with which we are concerned are leads and

polynyas. These are ice-free areas within the sea ice cover in which the ocean is in contact

with the cold atmosphere, and they can form due to warm water upwelling (sensible heat

polynya), katabatic winds or ocean currents which drive new formed ice away (latent heat

polynyas) or when the ice breaks due to internal stresses (leads). They are areas of rapid

frazil ice production in winter, due to the large heat fluxes from the water, which is close

to the freezing temperature, to the air, which is normally a lot colder.

The formation of the initial frazil ice crystals is an area of some discussion. It is gener-
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ally agreed that nucleation is not homogeneous, since this has been shown to happen only

when supercooling reaches 40 � (Mossop 1955). Field observations of frazil ice formation

have found that the most supercooling that will ever occur before the onset of frazil ice

is about 0.1 � (Carstens 1966, Osterkamp et al 1973), so there must be another way to

explain nucleation. Another possible theory is that since sea water has impurities, organic

and inorganic, these may act as nucleii, and it was shown that silver iodide nucleates

with a supercooling of about 3 to 4 � (Fletcher 1968), and some bacteria can nucleate

at supercooling of about 1 � (Lindow et al 1978). These values are still too high to ex-

plain nucleation. The accepted theory is that the initial nucleus is an ice crystal which

is introduced into the water. The crystal can come from water vapour sublimating as it

encounters cold air (Osterkamp et al 1974), or drops of water which are ejected into the

air, and freeze before they drop back into the water (Gosink & Osterkamp 1986).

The shape of frazil ice crystals has been observed and studied (Kumai & Itagaki 1953,

Arakawa 1955, Williamson & Chalmers 1966), and most studies have found that the crys-

tals take the form of a disk. While they can start out in the shape of six-pointed stars,

hexagonal plates, spheres, or dendritic ice, they all evolve into disk shapes in turbulent

water (Daly 1994). The size of the crystals has been observed to be in the range of 0.05 mm

to several millimeters (Daly & Colbeck 1986). Experiments have shown that the crystal

becomes unstable if the diameter or the supercooling is too large, and hence there is a limit

on the maximum crystal size.

Once there is an initial seed, the number of frazil crystals may grow quickly through

secondary nucleation, also known as collision breeding. This process breaks smaller ice

crystals off from larger ones through collisions, either between two larger crystals or be-

tween crystals and hard surfaces. The new smaller crystals then act as new nuclei for

crystal growth. This creates a positive feedback process, since a higher number of crystals

will create more collisions.

The other process contributing to frazil formation directly is crystal growth. If the wa-
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ter is supercooled, the ice crystals grow to quench the supercooling, releasing latent heat,

and increasing the ice volume concentration. Conversely, if the water is not supercooled,

the crystals melt, decreasing ice volume concentration. Both crystal growth and secondary

nucleation contribute to the increase of frazil ice until the water temperature reaches the

freezing temperature.

1.4 Sea Ice Models

Sea ice models are based on dynamic and thermodynamic equations, and are solved using

finite difference methods. In the last decade or so, several climate model sea ice compo-

nents have been created, such as Fichefet & Morales Maqueda (1997), Bitz et al (2001),

Zhang & Rothrock (2003) and Hunke & Lipscomb (2004). Comparison studies between

GCMs have shown that there are still large differences in the sea ice predictions of different

climate models (Stroeve et al, 2007).

Sea ice thermodynamics are controlled by the heat flux at the ice-ocean interface and

the ice-air interface, penetration of solar radiation into the snow/ice, conduction of heat

inside the snow and ice, melting and freezing, and the vertical transport of liquid water

and moist air in the snow pack (Vihma & Haapala, 2009). Dorn et al (2007) noticed how

simplifications in the thermodynamic component of their coupled model may have lead to

overestimation in the amount of ice.

In the first stages of new ice formation, most models assume a thin layer of ice forms

which then grows (Maykut 1986, Lepparanta 1993). However, in the ocean, most initial

ice formation is related to frazil ice formation. Studies on cold seas during the last decades

have demonstrated its importance. The major sea ice forming process in the Wedell Sea,

Antarctica, is due to frazil ice that is transformed to pancake ice at the surface (Wadhams

et al 1987) and in leads, polynyas and the ice edge, frazil ice is the main process of ice

formation (Ushio & Wakatsuchi 1993, Wadhams et al 1996). Recently, more complex frazil

ice models have been developed including Jenkins & Bombosch 1995 (JB), Svensson &
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Omstedt 1998 (SO), Smedsrud & Jenkins 2004 (SJ) and Holland & Feltham 2005 (HF).

1.5 Thesis Objectives and Structure

The main objective of this PhD is to create a model of frazil ice formation in leads and

polynyas and build upon previous models with new formulations of the processes involved,

and compare the results with experiments and observations. The main model I will be us-

ing as a basis will be the Holland & Feltham model, which is of frazil ice formation beneath

an ice shelf. Since we are now dealing with leads and polynyas, most of the new elements

of the model will relate to the surface of the water and the different thermodynamics there.

In chapter 2, we will describe the mathematical model of ice growth in full, including

all the formulations and assumptions. This is split into the different stages, starting with

frazil ice forming in open water, followed by the grease ice layer, and finally congelation

ice growth and desalination of ice once we have a full cover.

Chapter 3 is based entirely on the model of Holland & Feltham and is a very simplistic

approach, where we consider the domain to be well-mixed and only consider the frazil

crystal dynamics. It is an important exercise to check whether the model is behaving as

expected at the most basic level of crystal growth/melting. We also include a study of

some experimental results compared to results from our model.

Chapter 4 presents the full results of our new model with all new formulations included.

Plots are shown for ice concentration, water temperature and salinity throughout the entire

run, and we end the run with a considerable amount of thick congelation ice. We finish

by looking at a study of observations of frazil ice formation and try to recreate the same

scenario with our model to compare the results.

In Chapter 5 we include sensitivity studies where we choose a selection of parameters to

vary and compare the results to a reference run to deduce the relevance of these parameters
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to ice growth.

We conclude, in chapter 6, with a summary of our main research results and short

discussion of their implications.
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2 A Model of Frazil Ice and Sea Ice Growth

We will now describe some previous frazil ice models. We will then describe in detail the

equations used in our model, and some parameterizations of physical processes which are

included in the model.

2.1 Frazil Ice Models

2.1.1 Svensson & Omstedt (1994) and Svensson & Omstedt (1998)

The Svensson & Omstedt (1994) model is a zero dimensional, well-mixed model which in-

cludes a crystal number continuity equation with the following processes included: initial

seeding (when the first ice crystals are formed), secondary nucleation (where new crystal

nucleii are formed from collisions between crystals), crystal rising (the effect of gravity on

the ice crystals which forces them towards the surface), crystal growth/melting (when ice

crystals grow/melt due to the water being supercooled or not) and flocculation/break up

(where crystals break up and form smaller crystals). These equations are formulated with

a resolution in time and crystal radius. The crystals are split into N different size classes

and the parameterization of the secondary nucleation and flocculation/break up terms in-

clude parameters which are then used to calibrate the model. The crystal rise velocities

are taken from Daly (1984). To validate the model, they used experiments by Hanley &

Michel (1977), specifically their measurements of the relation between time to maximum

supercooling and surface cooling (also known as supercooling curves), and the results were

in agreement. They also used preliminary results from Daly (1992) of mean radius and

number of crystals, and found that the maximum value of the mean diameter and the rapid

increase in the number of crystals after the maximum supercooling were common features.

The Svensson & Omstedt (1998) model was an extension of the 1994 model which

included some new formulations. The model was one dimensional in space, occupying the

Ekman layer. The water turbulence was modelled with a 2-equation system for calculating

turbulent diffusivity coefficients. Some conclusions from this model were that a large

number of ice crystals are formed in suspension in the ocean during freezing, but they
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only represent a small volume of ice at the surface, and that smaller crystals mix deeper,

whereas larger crystals are found only at the top, close to the surface.

2.1.2 Jenkins & Bombosch (1995)

The Jenkins & Bombosch model is of frazil ice formation under an ice shelf, and models the

ocean as a two-layer system, with turbulent ISW (ice-shelf water) above an ambient water

mass. The aim of the model is to show how the formation of ice crystals within the ISW

plume influences the dynamics and thermodynamics of the plume. The properties of the

plume are averaged and the equations are reduced to one dimension by depth integration.

The processes modelled are: entrainment rate from the ambient water to the ISW

plume, the melt rate at the ice-ocean interface, the diffusion of heat and salt towards and

away from the ice-ocean interface, the freezing and melting of ice crystals, and the depo-

sition of ice crystals from the turbulent suspension, also known as crystal precipitation.

The size of the ice crystals is used as the calibration paramater, and sensitivity studies

were carried out for several of the parameters used in the model. The results from the

simulations showed that the addition of frazil ice in the plume has a thermodynamic effect,

by keeping the supercooling very low since the growing crystals release latent heat, and a

dynamic effect, since crystals in suspension give the plume more buoyancy, which affects

the plume velocity.

2.1.3 Smedsrud & Jenkins (2004)

The Smedsrud & Jenkins model is also a model of frazil ice formation beneath an ice shelf,

and also treats the ocean as a two-layer system with an ISW plume above ambient water.

It is well-mixed and the plume is defined by its depth, and depth-averaged quantities

velocity, temperature and salinity. The new addition to this model is the use of different

sized crystals. The crystals are modelled as circular disks which are characterized by their

radius and thickness, and they range from 0.01 mm to 4 mm. The frazil ice formation

model used is that of Jenkins & Bombosch (1995).
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2.1.4 Holland & Feltham (2005)

The Holland & Feltham model is of frazil ice formation beneath an ice shelf, but it models

the frazil ice crystals more explicitly than previous ice shelf models (JB & SJ). Similarly

to SO, it splits frazil crystals into N size classes and assigns a radius and respective volume

to each one. One of the new elements in this model is the use of depth dependence, which

affects the freezing temperature and hence the crystal formation dynamics. Similarly to

JB, the model also uses the balance between buoyancy of frazil ice crystals and the tur-

bulence of the water surrounding the crystals to calculate the rate of crystals settling on

to the surface under the ice shelf, except it also takes into account whether the water flow

beneath the ice shelf is turbulent or laminar, and includes a parameterization for each case.

The parameterizations are then merged to give a new equation for frazil ice precipitation

which depends on the Reynolds number to decide whether the flow is turbulent or laminar.

The model we will describe in the next section is based on this model, but since we are

now dealing with leads and polynyas, we will adapt the model to the upper layers of the

open ocean. This will force us to reconsider processes which until now have been ignored,

such as the heat fluxes at the surface and the effect of salinity on the growing ice, and

revisit the definitions of other processes, such as the frazil precipitation.

We will now derive the governing equations of the model, and then the physical pro-

cesses involved and their equivalent mathematical formulations.

2.2 The Frazil Ice Model and Sea Ice Growth Model used in this thesis

Our model is one dimensional, occupies the ocean surface mixed layer and is made up of

several elements (figure 2.1). We have the frazil ice equations, which include the ice crystal

formation, the water temperature and the water salinity equations. These are defined by

balance equations for mass, heat and salt, respectively. Since they are all linked, we have a

system of partial differential equations with initial and boundary conditions for each one.
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The boundary conditions for the ice fraction includes the ice precipitation equations at the

surface, and a zero-flux at the bottom of the mixed layer. The boundary conditions for

the heat equation include the release of heat at the surface of the water, which is also a

heat balance equation, and the boundary condition for the salt is initially zero-flux at the

surface and bottom, but once the ice grows thick enough is made up of salt being release

from brine channels and being released from ice growth. The initial conditions for all three

are prescribed and are based on observations or previous models.

Another element to the model is the formation of grease ice, which is the stage that

proceeds frazil formation. The equations for this stage describe the area fraction of grease

ice and the ice fraction growing in the grease ice layer until the concentration is high enough

that we can consider it a mushy layer (so that it can be treated as congelation ice).

Once we have reached this stage, we use the mushy layer equations to grow the ice from

beneath, which includes heat loss through the ice, and salt release into the water beneath

by growing ice and the formation of brine channels.

We will now describe the model in full detail.

2.2.1 Frazil Ice Equations

We consider a mixture of frazil ice and seawater with density ρm defined by

ρm = ρiC + ρs(1− C), (2.2.1)

where C is the frazil ice volume concentration of the mixture, ρi is the density of ice

and ρs is the density of seawater determined by

ρs = ρ0[1 + βs(S − S0)− βt(T − T0)], (2.2.2)

where ρ0, S0 and T0 are reference density, salinity and temperature. βs and βt are

expansion coefficients of salinity and temperature respectively.
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Figure 2.1: Sketch of frazil processes involved.

We define Nice different size classes of crystals. By discretizing the crystal sizes, we

simplify the problem of growth and melting of crystals as simply moving between size

classes. The total concentration is

C =

Nice∑
i=1

Ci, (2.2.3)

where Ci is the volume concentration of frazil ice in size class i.

Applying the Boussinesq approximation to the seawater, which assumes that the effect

of temperature and salinity on the density of the water is negligible (except for buoyancy),

we set ρs = ρ0 in equation (2.2.1), so it becomes

ρm = ρiC + ρ0(1− C). (2.2.4)

Now, considering the conservation of mass equation of the mixture, we get

∂ρm
∂t

+∇ · (ρmu) = 0, (2.2.5)
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and replacing for equation (2.2.4), we get

∂ρiC

∂t
+
∂ρ0(1− C)

∂t
+∇ · (ρiCu) +∇ · [ρ0(1− C)u] = 0. (2.2.6)

Separating this into seawater and frazil ice parts, we get

∂ρiC

∂t
+∇ · (ρiCu) = 0, (2.2.7)

and

∂ρ0(1− C)

∂t
+∇ · (ρ0(1− C)u) = 0. (2.2.8)

Considering the effects of buoyancy, turbulent mixing, and growth/melting of crystals,

we can rewrite these as

∂ρiC

∂t
+∇ · (ρiCu) +

Nice∑
i=1

ρiwi
∂Ci
∂z

= ∇ · (µT∇C)− ρ0w
′, (2.2.9)

and

∂ρ0(1− C)

∂t
+∇ · (ρ0(1− C)u) +

Nice∑
i=1

ρiwi
∂(1− Ci)

∂z
= ∇ · [µT∇(1− C)] + ρ0w

′, (2.2.10)

where z is the vertical coordinate, defined as downwards depth, wi are the buoyancy

rising velocities of the different size classes, µT is the turbulent eddy coefficient for both

water and ice, and w′ is defined as the net volume discharge of water released due to crystal

melting, hence being negative in the ice equation and positive in the water equation.

We are now mainly interested in the frazil ice component, so by using the Boussinesq

approximation again, we can write

∇ · u = 0 (2.2.11)

and so the ith component of equation (2.2.9) becomes
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∂Ci
∂t

+ u · ∇Ci + wi
∂Ci
∂z

= ∇ · (νT∇Ci) + Si (2.2.12)

where νT = µt/ρi, and Si is the interaction term between the different crystal size

classes.

Equation (2.2.12) is then our balance equation of the volume of frazil ice per unit

volume of mixture.

2.2.2 Temperature Equation

We start by defining the equation of conservation of water-fraction heat per unit volume

of mixture as

∂

∂t
[(1−C)T ]+∇·[(1−C)uT ]+T

ρI
ρ0

Nice∑
i=1

wi
∂(1− Ci)

∂z
= ∇·(νT∇[(1−C)T ])− QT

ρ0c0
(2.2.13)

where the terms represent, in order, the rate of change of temperature in the fluid,

the advection of heat by the fluid, the advection of heat by crystal rising, the turbulent

mixing in the fluid and the source term of heat due to freezing and melting of ice. Applying

equation (2.2.10), we arrive at the equation of conservation of heat in the water fraction

per unit volume

(1− C)
∂T

∂t
+ (1− C)u · ∇T = (1− C)∇ · (νT∇T )− 2νT∇T · ∇C − w′T −

QT
ρ0c0

. (2.2.14)

The heat sink/source QT is made up of sensible heat, which is a heat transfer associated

with a change in temperature of the water, and latent heat, which is a heat transfer

associated with a change in the state of the water. We then define QT as

QT = ρ0c0(1− C)
n∑
k=1

γcTk(T − Tc)αk − ρ0c0w
′Tc (2.2.15)
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where the first term on the RHS is the parameterization of sensible heat, and the second

term on the RHS is that of latent heat. n is the number of ice crystals of all sizes in the

unit volume, γcTk is the heat transfer coefficient and αk is the surface area per unit volume

of the kth crystal, and Tc is the temperature of all frazil crystals, which is set to the water

freezing temperature.

Similarly to the ice concentration parameterization, we can assume that since C � 1 ,

and 1−C ≈ 1, then in equation (2.2.14), we can ignore the fourth term since it is negligible

compared to the third term. The equation then becomes

∂T

∂t
+ u · ∇T = ∇ · (νT∇T ) + w′

(
Tf − T −

L

c0

)
(2.2.16)

which is our balance equation of the water temperature.

2.2.3 Salinity Equation

We start from the equation of conservation of salt in the water, assuming that when frazil

crystals form they release all the salt from that volume. Salt per unit mixture is:

∂

∂t
[(1− C)S] +∇ · [(1− C)uS] + S

ρI
ρ0

Nice∑
i=1

wi
∂(1− Ci)

∂z
= ∇ · (νT∇[(1− C)S]) (2.2.17)

where the terms represent in order, the rate of change of salt in the fluid, the advection

of salt in the fluid, the advection of salt in fluid due to crystal rising and the turbulent

mixing of salt in the fluid. Once again, using equation (2.2.10) we get

(1− C)
∂S

∂t
+ (1− C)u · ∇S = (1− C)∇ · (νT∇S)− 2νT∇S · ∇C − w′S. (2.2.18)

Now, since C � 1, we can assume that 1 − C ≈ 1 and we can ignore the fourth term

in (2.2.18) since this term will always be negligible compared to the third term. This

simplifies the equation to
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∂S

∂t
+ u · ∇S = ∇(νT∇S)− w′S, (2.2.19)

which is our balance equation of the water salinity.

2.2.4 Frazil Interaction Term

We now describe the term Si from equation 2.2.12. The crystals are modelled as being

circular disks with a constant ratio of radius to thickness, so we can define their size with

one parameter only, radius (r). To simplify our model, we split the concentration into

Nice size classes. This way we can model crystal growth (Gi), melting (Mi) and secondary

nucleation (Ni) as movement between different size classes (Fig. 2.2). Holland & Feltham

carried out sensitivity studies on Nice, the number of size classes, and found that the results

of simulations were qualitatively similar for Nice = 10 and Nice = 200, and so we continue

to use Nice = 10. Following numerical experiments, we set our radii range from 0.01 to 2

mm (0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1, 2 mm).

C1 ... Ci−1
Gi−1 ++

Ni−1

ll Ci
Gi ,,

Mi
ll

Ni

ee Ci+1Mi+1
kk

Ni+1

vv
... CNice

NNice

vv

Figure 2.2: Schematic of growth, melting and secondary nucleation

As we are assuming that the crystals have a constant thickness to radius ratio (ar), we

can define the crystal volume vi by

vi = πr2
i ti, (2.2.20)

where ti = arri is the thickness of a crystal with radius ri.
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The interaction term of size class i is defined by the difference between the sources:

melting from size class (i + 1) and growth from size class (i − 1), and the sinks: melting

and growth from size class i. Since the different size-class crystals have different volumes,

we must account for this when transferring crystals, and so if a crystal in size class (i)

of volume vi grows and enters class (i + 1), then crystal growth in term Ci must be at

least ∆vi = vi+1 − vi to transfer one crystal to size class (i + 1). We can then define the

interaction term as

Si =
vi

∆vi−1
[(1−H)Mi +HGi−1]− vi

∆vi
[(1−H)Mi+1 +HGi] +Ni, (2.2.21)

where H = He(Tf − T ) is to account for the different cases of T < Tf (supercooled)

and T > Tf (not supercooled), where He, the Heaviside function, is defined as

He(x) =


1 , x > 0

0 , x ≤ 0

(2.2.22)

We also impose that v0 = vNice+1 = G0 = GNice = MNice+1 = 0

We now define the growth/melting (Gi/Mi) and secondary nucleation (Ni) terms.

2.2.5 Crystal Growth/Melting

The main assumption we make is that crystal growth occurs solely at the crystal edge,

but crystal melting occurs all over, so the formulations differ. This is because experiments

have shown that growth rate at the edges is 1-2 orders of magnitude larger than growth

rate in the thickness, and yet melting rate is the same at the edge and faces (Daly 1994b).

We also know that the formation of frazil ice affects the salinity of the ambient water,

which in turn affects the freezing temperature close to the crystal since salt diffuses slower

than heat. We will however assume that the frazil formation is controlled solely by the

heat flux, and so is related linearly to T −Tf , where Tf is calculated using the bulk salinity
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of the water. The heat flux from a growing crystal of radius ri is given by

qig = ρ0c0NuKT
Tf − T
ri

2πriti (2.2.23)

where c0 is the specific heat capacity, Nu is the Nusselt number, KT is the molecular

thermal diffusivity, Tf and T are the freezing and water temperatures, and 2πriti is the

surface area of the disk edge.

The total heat flux from all crystals in the ith size class is qigni, where ni is the number

of crystals in that size class per unit volume. Converting this heat into an ice volume

production gives

Gi =
qigni

Lρ0
(2.2.24)

and applying (2.2.23) and Ci = πr2
i tini gives

Gi =
c0NuKT

L
(Tf − T )

2

r2
i

Ci. (2.2.25)

Similarly for crystal melting, the heat flux from a melting crystal is given by

qim = ρ0c0NuKT
Tf − T
ri

(2πriti + πr2
i ), (2.2.26)

and converting this into an ice melt rate gives

Mi =
c0NuKT

L
(Tf − T )

2

ri
(

1

ri
+

1

ti
)Ci. (2.2.27)

2.2.6 Secondary Nucleation

As mentioned earlier, secondary nucleation is the process through which new crystals are

formed and is essential in the production of frazil ice. It typically occurs when crystals

collide and a new crystal breaks off becoming the nucleus of a new crystal.

An assumption made in this formulation is that any new crystals formed through col-
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lisions are inserted into the smallest size class. This simplifies the model since secondary

nucleation becomes a source term for the smallest size class, and a sink term for all the rest.

The volume swept by a crystal in the ith size class in time ∆t is

∆V = Wiπr
e
i∆t, (2.2.28)

where rei is the effective crystal radius, which is the radius of a sphere with the same

volume of the crystal. We use rei to account for the fact that we do not know the direction

the crystal travels in. It is defined as

4

3
πre

3

i = πr2
i ti. (2.2.29)

Wi is the crystal velocity, which is made up of turbulent and rising motions and is

defined as

W 2
i =

4ε

15ν0
re

2

i + w2
i , (2.2.30)

where ε is the turbulent dissipation rate, v0 is the molecular viscosity of sea water, and

wi is the rising velocity. Defining ni to be the number of crystals in the ith size class, the

total volume swept by all crystals in that size class per unit time is given as

ni
∆V

∆t
= niWiπr

e2

i , (2.2.31)

but Ci = ni
4
3πr

e3
i and so this becomes

ni
∆V

∆t
=

3

4

WiCi
rei

. (2.2.32)

So we then define the probability of a collision between any crystal in the ith size class

and any other crystal as

Ni = anuc
WiCiCT

rei
, (2.2.33)
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where anuc is a calibration parameter which can be interpreted as the efficiency of a

collision creating a new crystal, and CT =
∑Nice

i=1 Ci is the total ice concentration. We will

vary anuc later and use experimental work to determine a value for it.

2.2.7 Frazil Precipitation

Frazil crystals which are in suspension eventually rise to the surface and enter a viscous

sublayer where they are assumed to remain and not re-enter the water domain. We call

this process of removing crystals from the water column precipitation. This formulation is

taken from Holland & Feltham, and even though we are now dealing with open water, we

keep the same formulation.

The reason for keeping the same formulation was that we were more interested in ex-

ploring the newer elements of our model, like the inclusion of water salinity and the ice

growth once a layer of ice has formed, and so we could concentrate more on those processes,

we kept the same formulation.

We can define a dimensionless distance from the surface, z+ = u∗ẑ/ν, where u∗ is the

friction velocity, ẑ is the coordinate normal to the surface and ν is the molecular viscosity.

The friction velocity is defined by u2
∗ = CdU

2, where Cd is the quadratic drag coefficient.

The viscous boundary layer at the air-ocean interface is present but is narrower than

next to a solid. Wu (1984) found z+ to be between 4 and 8, depending on the wind velocity.

The added effect of the wind stress on the ocean is already accounted for in the model,

which uses a wind-speed depended turbulent diffusivity in the mixed layer. Further study

could be carried out to investigate the impact of the variable turbulent conditions. We

note this in the interpretation of model results.

We consider the different layers present. Just beneath the open air we have a vis-

cous sublayer (z+ < 7) where viscous stresses dominate. We then have a buffer layer

(7 < z+ < 40) where both viscous and turbulent stresses are important. Further out
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(40 < z+ < 500) turbulent stresses dominate. We define these three layers respectively as

the viscous sublayer, the buffer layer and the mixed layer (Figure 2.3).

Open Air

��

− 0

Viscous sublayer p′

− 7

Buffer layer

��

Si

KS

z = I

− 40

Mixed Layer wiCi(I)

KS

νt
dCi(I)
dz z+

Figure 2.3: Schematic of balance of terms in the ‘thin layer’

Using this schematic allows us to describe the different processes as sinks and sources in

the different layers. We define buoyancy rising into the buffer layer from the mixed layer,

turbulence out of the buffer layer into the mixed layer, interaction of frazil ice within the

buffer layer, and precipitation out of the buffer layer into the viscous sublayer.

The crystal volume/mass balance in the buffer layer is applied as a surface boundary

condition at z = 0 to the frazil equations in the mixed layer, and so the boundary condition

at the surface becomes

∂Ci(0)

∂t
= wiCi(0)− νt

∂Ci(0)

∂z
+ Si + p′i. (2.2.34)

p′i is the precipitation term which we now define. We distinguish between laminar and

turbulent flows, since precipitation will be significantly different for both cases. Using the

parameterization of McCave & Swift (1976), we define the turbulent precipitation as

p′iT = −wiCi(0)

(
1−

U2 + U2
T

U2
Ci

)
He

(
1−

U2 + U2
T

U2
Ci

)
(2.2.35)

where U is the depth-mean velocity in the mixed layer and UT is the root-mean-square

tidal velocity. He is the Heaviside function defined as equation (2.2.22), and UCi is the

critical deposition velocity for each crystal size class, which can be calculated from the

Sheilds criterion and the quadratic law,
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U2
Ci =

0.05(ρ0 − ρi)g2rei
ρ0Cd

. (2.2.36)

We define the laminar precipitation as being

p′iL =

(
−wiCi(0) + νt

∂Ci(0)

∂z
− Si

)
He

(
−wiCi(0) + νt

∂Ci(0)

∂z
− Si

)
(2.2.37)

The step function is used here to ensure that p′iL ≥ 0.

Now, to determine whether the flow is turbulent or laminar, we use the Richardson

number, which can be defined as

Ri =
− g
ρm

∂ρm
∂z

(∂u/∂z)2
. (2.2.38)

One issue is that the Richardson number is normally applied to a single component fluid

where the viscosity is (almost) constant. Holland & Feltham adopted a new definition of

Ri, which is modified to provide a single dimensionless quantity that represents the effects

of frazil-seawater mixture viscosity, shear and stability on turbulence. It is assumed that

shear stress exerted in the middle of the bursting layer by a steady externally driven flow

is unchanged by an increase in the fluid viscosity and so

ν0

(
∂u

∂z

)
ref

= ν(C)
∂u

∂z
. (2.2.39)

The Richardson number can then be simplified to

Ri = −gν(C)2

ρmν2
0

∂ρm
∂z

(
∂u

∂z

)−2

ref

, (2.2.40)

where

(
∂u

∂z

)
ref

=
CdU

2

35ν0κ
(2.2.41)

is calculated using the predicted velocity profile in the vicinity of z+ = 35 by the law
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of the wall with depth-mean velocity U .

The calculation of the molecular viscosity as a function of the ice concentration ν(C)

is poorly understood. The only estimate we have is that for concentration C = 0.47, the

molecular viscosity is ν = 0.02 m2s−1, so together with the pure-water value of ν0 when

C = 0, our best approximation is to use the linear function

ν(C) = ν0 +
0.02

0.47
C. (2.2.42)

Now we have Ri to calculate when the flow is laminar or turbulent, we can define the

total precipitation, using a error function to smooth the function, as follows,

pi = p′iT +
p′iL − p′iT

2
{1 + erf [d(Ri−RiC)]} (2.2.43)

where RiC = 0.25 and d = 8. This means, p′i ≈ p′iT if Ri < 0, and p′i ≈ p′iL if Ri > 0.5.

2.2.8 Frazil Rise Velocities

Several studies on frazil rise velocities have been carried out (e.g. Wueben 1984, Gosink &

Osterkamp 1983, Daly 1984, Svensson & Omstedt 1994, Shen & Wang 1995), with the main

objective to find a relation between rise velocity wr and diameter d (Morse & Richard 2009).

Wueben (1984), using data from Gosink & Osterkamp’s (1983) field work, proposed

the following:

wr = 0.3751d0.64. (2.2.44)

But Wueben also made measurements and found them to be approximately 2.25 times

lower than those found by Gosink & Osterkamp, so he proposed

wr = 0.19d2/3. (2.2.45)

Based on several sources of published experimental data related to the drag coefficients
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of disks, Gosink and Osterkamp (1983) proposed a recursive set of equations to calculate

the rise velocity, which depend on crystal drag (Cd) and the Reynolds number (Re),

log10(Cd) = 1.386− 0.892log10(Re) + 0.111[log10(Re)]2, (2.2.46)

Re =
wrd

ν
, (2.2.47)

and

w2
r =

2(ρw − ρi)gad
ρwCd

. (2.2.48)

Daly (1984) assumed that the rise velocity changed with diameter range, and proposed

the following:

wr =


0.02(g′ν−1d2) if d < 0.0006 m

0.0726(g′0.715ν−0.428d1.14) if 0.0006 m < d < 0.0028 m

0.5(g′r)1/2 if d ≥ 0.0028 m

(2.2.49)

where g′ and Kv are defined as

g′ = 2

(
ρw − ρi
ρw

)(
gKv

π

)
(2.2.50)

and

Kvd
3

8
= Vi (2.2.51)

with Vi being the disk volume.

Svensson & Omstedt (1994) used a simplification of Daly’s equations, and proposed

that

wr = 32.8d1/2. (2.2.52)

Shen & Wang (1995) used the following:
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wr = −4
k2

k1

ν

d
+

√(
4
k2

k1

ν

d

)2

+
4

3k1

(
ρw − ρi
ρw

)
gd (2.2.53)

where k1 = 1.22 and k2 = 4.27.

HF, JB, SJ use the recursive algorithm of Gosink & Osterkamp (Eqs. (2.2.46)-(2.2.48))

to calculate the rising velocities and SO uses an approximation of Daly’s (Eqs. (2.2.49)).

Morse & Richard (2009) studied a range of formulations and found a good approxima-

tion to be

wr =

 2.025d1.621 , if d ≤ 1.27 mm

−0.103d2 + 4.069d− 2.024 , if d > 1.27 mm
(2.2.54)

where d is the diameter given in mm, and wr is given in mm/s.

A study was carried out using all the above formulations to compare them and decide

which one to use in this study. The final formulation in equation (2.2.54) was chosen as it

gives the best fit to observations for the ranges discussed in this work.

This formulation has been corrected, after we had used it in our study (Morse & Richard

2010). The correct values should have been approximately twice as large, and so our results

would be affected by the new formulation. Since the rise velocities would have been larger,

the frazil crystals would have risen to the surface faster, which would have lead to a layer

of ice forming faster at the surface.This would have lead to lower frazil ice formation rates.

2.2.9 Surface Heat Balance

The energy flux at the surface of the ocean can be defined as

Enet = χ+ FLW − εσT 4
0 + (1− i0)(1− α)FSW + Fsens + Flat (2.2.55)

where each term represents a different type of heat flux.
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χ is the oceanic diffusive flux, and is given by

χ = −νt
∂T

∂z
; (2.2.56)

FLW is the incoming longwave radiation which can be measured, and we will later

take a value from observations; −εσT 4
0 is the outgoing longwave radiation, given by the

Stefan-Boltzmann law, which defines the power radiated from a black body in terms of its

temperature. T is taken to be the temperature at the surface and ε is the emissivity, which

is the ratio of the radiation emitted by a surface to the radiation emitted by a blackbody

at the same temperature; (1 − i0)(1 − α)FSW is the net shortwave radiation. i0 is the

fraction of radiation that is not absorbed near the surface, and α is the albedo, which is

the measure of the reflectivity of a surface; Fsens is the sensible heat emitted, which is

given by Ebert & Curry (1993) as

Fsens = ρacaCT va(Ta − T0) (2.2.57)

where Ta is the air temperature at a reference height (taken here to be 5 m), T0 is the

temperature of the water at the surface and va is the wind speed at the reference height;

Flat is the latent heat, and is also taken from Ebert & Curry (1993) as

Flat = ρaL∗Ctva(qa − q0) (2.2.58)

where qa is the humidity at a reference height (e.g. 5 m) and q0 is the humidity at the

surface. The value for qa is taken from measurements, but q0 is calculated using

q0 =
0.622pv

patm − 0.378pv
(2.2.59)

where the vapour pressure is

pv = 2.53× 108e(−5420/T0). (2.2.60)
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If there is no phase change at the surface then Enet = 0 and so

νt
∂T

∂z
= FLW − εσT 4 + (1− i0)(1− α)FSW + Fsens + Flat. (2.2.61)

2.3 Grease Ice Growth

When enough frazil ice forms and rises to the surface, it builds up at the sea ice edge due

to the effects of wind and water currents and becomes grease ice, a mixture of frazil and

sea water which resembles an ”oil slick”, hence the name. The stronger the force driving

the frazil ice to the edge, the more piled-up the ice becomes. We define the collection depth

of a lead or polynya as the maximum depth the grease ice would accumulate at the edge.

Figure 2.4: Grease ice layer build up near pack ice with collection depth hg. (Smedsrud
(2011))

Figure 2.4 shows the process of grease ice build up near pack ice in a lead. Llead is the

length of the lead, L is the length of the grease ice layer, hg is the collection depth of the

grease layer, Ua is the wind speed, Uw is the ocean current and Ftot is the total heat flux at

the surface. By balancing the packing force of the ice and the stress from the wind above

and the water below, Smedsrud (2011) derived the collection depth to be

hg(x) =

√
ρaCa
Kr

Ua
√
x, (2.3.1)

where ρa is air density, Ca is the open-ocean drag coefficient, and Kr ≈ 100 N m−3 is

the resistance force constant. We can also deduce the total grease-ice volume as
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Vg =

∫ L

0
hgdx =

2

3

√
ρaCa
Kr

UaL
3
2 , (2.3.2)

which can be rearranged to give

L =

[
3

2

Vg
Ua

√
Kr

ρaCa

] 2
3

(2.3.3)

We define acover as the area of domain which is not covered in grease ice, and calculate

this as

acover = 1− L

Llead
. (2.3.4)

We define the point at which the lead closes as

acover = 0.95. (2.3.5)

We set the threshold at 95% for mathematical convenience, since it would never reach

100% because the closer the cover gets to 100% the slower the ice growth is because of the

insulation effect of the ice cover.

2.4 Mushy Layer Equations

Once we have a full cover of ice at the surface of the mixed layer, using the mushy layer

equations of Feltham et al (2006) , we can calculate the rate at which the ice grows from

beneath. To do this, we consider the domains of the ice and the water separately, and

calculate the heat fluxes occurring at the ice-ocean interface.

At the surface of the ice, the boundary condition remains the same as that of water (eq

(2.2.61)), except that we are now dealing with ice so the diffusivity changes accordingly.

In the ice domain, we use mushy layer theory, with the governing equation being

ceff
∂T

∂t
=

∂

∂z
(keff

∂T

∂z
), (2.4.1)
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where ceff and keff are the effective volumetric specific heat capacity and thermal con-

ductivity of sea ice. These are calculated from

ceff = ci −
TL(Sbulk)− TL(0)

θ2
L, (2.4.2)

and

keff = kbi − (kbi − kb)
TL(Sbulk)− TL(0)

θ
, (2.4.3)

where TL(Sbulk) is the freezing liquidus temperature for the bulk salinity Sbulk, TL(0)

is the freezing temperature of pure water, θ = T − TL(0), L is the volumetric heat of

fusion of pure ice, ci is the volumetric heat capacity of pure ice, and kbi and kb are the

conductivities of bubbly ice and brine, and are given by

kbi =
2ki + ka − 2Va(ki − ka)
2ki + ka + Va(ki − ka)

ki, (2.4.4)

and

kb = 0.4184(1.25 + 0.030K−1θ + 0.00014K−2θ2), (2.4.5)

(Schwerdtfeger, 1963) where ki = 1.16(1.91− 8.66× 10−3K−1θ+ 2.97× 10−5K−2θ2) is

the conductivity of pure ice, ka = 0.03 W(m K−1) is the conductivity of air, and Va = 0.025

is the fractional volume of air in sea ice.

At the ice-ocean interface, the ice and water are at the freezing temperature of the

ocean water.

Using the solutions from both the governing equations of the ice temperature and the

water temperature, we can calculate the heat balance at the ice-ocean interface, and from

this we can calculate the ice growth using a modified version of a Stefan condition, to

include salinity. These are given by Notz & Worster (2008) and are defined as
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ρiLφ
dh

dt
= ki

∂Ti
∂z
− Focean(Tw), (2.4.6)

where the first term on the RHS is the heat flux from the ice to the water, and Focean(Tw)

is the heat flux from the water into the ice, which is defined as

Focean(Tw) = νt
∂Tw
∂z

, (2.4.7)

φS
dh

dt
= D

∂S

∂z
+ Fbrine, (2.4.8)

where Fbrine is the salt flux at the ice-ocean interface, and

Tw = T0 − ΓSw, (2.4.9)

which is the equation of the liquidus curve. h is the depth of the ice, ki is the conduc-

tivity of ice, and φ is the ice solid fraction defined by

φ = 1− Sbulk

Sw
. (2.4.10)

Equations (2.4.6)–(2.4.9) are solved at each time step to give dh
dt , and the temperature

and salinity at the interface.

2.5 Desalination of the Sea Ice

When sea ice is forming, salt is rejected from the ice crystals into the surrounding am-

bient water forming brine. This raises the salinity in the near-surface of the crystals.

Sometimes this brine gets trapped in between crystals, and since it has high salinity, it

can remain liquid even if the temperature decreases further. These are called brine pockets.

When the sea ice thickness reaches a critical value, the brine in the pockets is trans-

ported downwards by gravity (Wettlaufer et al. 1997). This happens through the formation

of brine channels which are channels in the sea ice and carry the high salinity brine into
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the lower salinity ocean. Together with the salt which is instantaneously rejected during

sea ice formation, these are two ways in which forming sea ice rejects salt.

Wells et al (2011) noticed that brine channels form to maximize the rate of removal of

stored potential energy. Using this they created a model of sea ice growth and found that

the brine flux could be parameterized as

Fbrine =


γ
ρ0gβ(CE − C0)2Π0

µ

(
Rm −Rc
Rm

)
, Rm > Rc

0 , Rm < Rc,

(2.5.1)

where we define the porous medium Rayleigh number Rm as

Rm =
ρ0gβ∆CΠ0lT

µκ
(2.5.2)

where β is the haline expansion coefficient, ∆C = CE − C0 where CE is the eutectic

temperature and C0 is the ambient water salinity, lT is length of sea ice, in our case the

depth h, µ is the dynamic viscosity, κ is the thermal diffusivity and Π0 is the permeability

given by

Π0 = 3× 10−8(1− φ)3 (2.5.3)

where φ is the solid fraction of the sea ice defined in equation (2.4.10) (Golden et al

2007).
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ar Crystal aspect ratio 0.02 -
βS Salinity expansion coefficient 7.86 ×10−4 psu−1

βT Temperaature expansion coefficient 3.87 ×10−5 °C−1

ca Specific heat capacity of dry air 1005 J kg−1°C−1

c0 Specific heat capacity 3974 J kg−1°C−1

Cd Quadratic drag 1.5× 10−3 -
Ct Stability dependent bulk transfer coefficient 1.235× 10−3 -
d Arbitrary Number 8 -
ε Turbulent dissipation rate 7.4× 10−6 W kg−1

ε0 Longwave emissivity 0.99 -
FLW Longwave radiation 168.3 W m−2

g Gravity 9.81 m s−2

I Layer depth 60 m
κ Von Karmann constant 0.41 -
KT Molecular thermal diffusivity 1.4× 10−7 m2 s−1

L Latent heat of ice fusion 3.35× 105 J kg−1

L∗ Latent heat of vaporization 2.501× 10−6 J kg−1

Nice Number of size classes 10 -
Nu Nusselt number 1 -
patm Atmospheric Pressure 101.325 kPa
ρa Density of dry air 1.275 kg m−3

ρ0 Density of water 1028 kg m−3

ρI Density of ice 917 kg m−3

qa Air humidity 4× 10−5 -
RiC Critical Richardson Number 0.25 -
σ Stefan-Boltzmann constant 5.67× 10−8 W m−2K−4

S Ocean salinity 34.5 psu
S0 Reference Salinity 34.5 psu
T0 Reference Temperature -2.0 °C
Ta Air temperature 248.7 K
U Plume speed parallel to surface 0.055 m s−1

UT Root-mean-squared tidal velocity 0.06 m s−1

v0 Molecular viscosity of water 1.95× 10−6 m2s−1

ν Wind speed 5 m s−1

νt Turbulent eddy coefficient 1× 10−2 m2s−1

Table 2: List of model parameters and constants
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3 Well Mixed Case

As a test of the frazil component of our model of new sea ice growth introduced in Chapter

2, we first look at a well-mixed case, where we assume that the domain is perfectly mixed,

and hence we ignore the terms of advection and diffusion. This follows directly on from a

study that was carried out in Holland & Feltham. Equations (2.2.12) and (2.2.16) simply

become

∂Ci
∂t

= Si (3.0.4)

and

∂T

∂t
= w′(Tf − T − L/c0). (3.0.5)

We consider a case when Nice = 10 size classes are used, and the radii of the size classes

are r = {0.01, 0.05, 0.15, 0.3, 0.4, 0.5, 0.6, 0.8, 1, 2} mm, which includes the majority of frazil

crystals sizes in experiments and observations.

Since for now we are only investigating how the crystals grow, we use a uniform super-

cooling of 1× 10−4 �, and so the initial condition is

Tin = Tf − 1× 10−4. (3.0.6)

For the initial concentrations, we start with an amount of 4 × 10−8 divided equally

between the 10 size classes to facilitate comparison between size classes during the run.

The initial condition for the ice concentration is then

Ciin = 4× 10−9. (3.0.7)

So equations (3.0.4), (3.0.5), (3.0.6), and (3.0.7) form a closed system of ordinary dif-

ferential equations, which were solved numerically.
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3.1 Results

To validate the solution, we check that the amount of heat being released from ice formation

is the same as the heat equivalent to the increase in water temperature. Integrating the

temperature equation over the period until t = ta, we get

∫ ta

t0

∂T

∂t
dt =

∫ ta

t0

w′(Tf − T − L/c0)dt (3.1.1)

which expands to

ρ0c0(T (ta)− T (t0)) = ρiL
Nice∑

1

(Ci(ta)− Ci(t0)) + ρic0

∫ ta

t0

Nice∑
1

Ci(Tf − T ). (3.1.2)

The term on the left hand side is the amount of heat needed to raise the temperature of

the water from T (t0) to T (ta), the first term on the right hand side is the amount of latent

heat released form the formation of ice crystals, and the second term on the right hand

side is the amount of sensible heat needed to lower the temperature of the water to freez-

ing temperature before the crystals form. After calculating all three terms numerically,

and checking that they agree with the above equation, we can assume that our solution is

correct.

Fig. 3.1 shows the water temperature over the first 2 days of model time. The temper-

ature increases as expected as the ice crystals are being formed to quench the supercooling

and after 2 days we enter a quasi-steady state, when ice stops being created. This is simply

a quasi-steady state since secondary nucleation still occurs for a lot longer.
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Figure 3.1: Temperature of water in first 2 days.

We look next at the concentration of the different size classes over the same period in

Fig. 3.2 and find that, as we expect, the concentrations increase for the first 2 days until it

halts. Since secondary nucleation occurs for a lot longer and acts as a source for size class

1, and a sink for the rest, the long term steady state is for all ice to end up in size class 1.

0.0 0.5 1.0 1.5 2.0 Time

2. ´ 10-7

4. ´ 10-7

6. ´ 10-7

8. ´ 10-7

1. ´ 10-6
Concentration

C3

C2

C4

C1,C5-C10

Figure 3.2: Concentration of different size classes in first 2 days.

An interesting point to note is the concentrations of the different ice concentration size

classes. Smaller size classes are a lot closer in size so it is easier for them to grow to the
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next size class, and larger size class crystals are more likely to suffer secondary nucleation

since the volume swept is a lot larger. Consequently, the predominant size classes are in

fact the intermediate ones (C2,C3 and C4).

We now describe the first of two case studies analysed in this thesis, Tsang & Hanley

(1985). Even though the model used in the calculations in the following case study is more

advanced than the well-mixed case just described, the experiments are carried out in a

well-mixed box and so the results are more relevant to this section.

3.2 Tsang & Hanley (1985)

Tsang & Hanley (1985) studied the initial stages of the formation of frazil ice in various

different sets of laboratory experiments. As the experiments were conducted in a con-

trolled environment, measurements of the salinity, temperature and ice concentration were

possible. We can use the results from this work to test our model and, as we will show,

also to constrain the parameter anuc from the secondary nucleation definition.

Figure 3.3: Typical time series of temperature in the initial stages of frazil ice formation.

Figure 3.3 shows the typical temperature time-series in the first instances of frazil ice

formation. The water temperature is initially decreasing due to the heat flux at the surface

of the water. At a time tn, the water is seeded with an ice crystal, and from then ice starts

forming through ice growth and secondary nucleation. There is a delay before the temper-

ature begins to rise again until it reaches the equilibrium temperature. The equilibrium
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temperature is still slightly below the freezing temperature, since ice is still being formed.

Two of the parameters measured in each of the experiments are the minimum temper-

ature Tmin and the time at which that minimum occurs tmin.

Two of the parameters in our model that influence Tmin and tmin are the amount of

ice present at seeding, and the efficiency of the secondary nucleation. This was previously

defined in Chapter 2 as being

Ni = −
anucCiWi

∑
iCi

rei
(3.2.1)

where anuc is a parameter which limits the amount of secondary nucleation occurring.

We can use the results from these experiments to give it a more accurate value.

Since we have simplified the initial seeding in our model by starting the model run with

ice present, we can only start from time tn. The initial amount of ice present is unclear

from the paper, so we used a range of values and compared each to the results expected.

Two different experiments from the paper were used, one from the set of experiments

A, and one from the set of experiments C.

The results from a modified version of our model were then compared to the observa-

tions. Since we have the measurements of the tank in which the experiments took place, we

can define our model domain to be the same depth. We can also calculate the heat loss at

the surface from the cooling rate of the water by calculating the total heat loss in the water.

If dT
dn is the cooling rate of the water, the total heat loss at the surface per unit area is

Fheat = ρ0c0d
dT

dn
(3.2.2)

where ρ0 is the density of water, c0 is the specific heat capacity and d is the depth of
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the tank. The units of Fheat are therefore Wm−2.

Since we want to compare two variables (Tmin and tmin), we define a cost function as

follows

Ψ =
√

(αT (Tmin − T emin))2 + (αt(tmin − temin))2 (3.2.3)

which we then try to minimize for Tmin and tmin, where the e superscript denotes the

experimental values. So that we can compare temperature and time, we use the price

parameters αT and αt which we must define so that the both parts of the cost function are

in the same unit. Since we are dealing with temperature and time, we can convert both

into heat, by multiplying the temperature by the sensible heat of the water and time by

heat loss at the surface. We then define αT and αt as

αT = ρ0cpd [JK−1m−2] (3.2.4)

and

αt = Fheat [Wm−2], (3.2.5)

where ρ is the water density, cp is the specific heat capacity, d is the depth of the tank

and Fheat is the heat flux at the surface.

In the group A experiments, artificial water was used, by mixing ”Forty Fathoms” salt

dissolved in distilled water, and they were conducted in a plexiglass tank of measurements

38 cm long × 25.5 cm wide × 15 cm deep. The air temperature was about 15°C below freez-

ing. Eight experiments were carried out, named A1-A8. We solely looked at experiment

A1. The parameters of that experiment are given in Table 3

We then ran our model for varying parameters initial concentration Cin and secondary

nucleation parameter anuc, and the results of the cost function are shown in table 6. From

these results, we can assume that an adequate value for anuc is 1 with an initial amount
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Parameter Value

Salinity 47.1 psu
Seeding temperature (Tn) -2.681°C
Minimum temperature (Tmin) -2.695 °C
Equilibrium temperature (Te) -2.651 °C
Supercooling at seeding (Te − Tn) 0.030 °C
Cooling rate at seeding ((dT/dt)n) -5.14×10−4 °C/s
Heat loss at surface (from cooling rate) (Fheat) 315.59 Wm−2

Time of minimum temperature (tmin) 72 s
Average rate of ice production (dc/dt) 7.554×10−6 s−1

Table 3: Parameters of experiment A1.

of ice present of 1× 104. Since we do not know how much ice was present initially, we can

not make too many assumptions based on these results, but nevertheless we can take an

estimate of anuc.

Cin/anuc 1× 10−3 1× 10−2 1× 10−1 1× 100

10−8 ∞ 4.81× 107 5.49× 106 1.30× 106

10−7 4.81× 107 5.45× 106 1.28× 106 5.45× 105

10−6 5.34× 106 1.22× 106 5.15× 105 2.34× 105

10−5 1.08× 106 4.46× 105 1.98× 105 7.56× 104

10−4 3.10× 105 1.32× 105 4.15× 104 8.30× 103

10−3 1.23× 105 1.38× 105 3.48× 104 3.48× 104

Table 4: Cost Function Ψ - Experiment A1.

We also ran a similar study for one of the experiments in group C, namely C1. These

experiments used real Atlantic sea-water, and so are more comparable to the amount of

salinity in our model. The parameters of that experiment are given in Table 5. The data

from this experiment is as follows:

We used the same cost function as defined earlier and the same initial conditions Cin

and secondary nucleation parameters anuc, and table 6 shows the results.

Similarly to the previous results, the minimum Ψ occurs when Cin is 1 × 10−4, but

when anuc is 1× 10−1.

We conclude that the model adequately reproduces the experimental results with a
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Parameter Value

Salinity 31.6 psu
Seeding temperature (Tn) -1.728°C
Minimum temperature (Tmin) -1.764 °C
Equilibrium temperature (Te) -1.728 °C
Supercooling at seeding (Te − Tn) 0.000 °C
Cooling rate at seeding ((dT/dt)n) -2.68×10−4 °C/s
Time of minimum temperature (tmin) 298 s
Average rate of ice production (dc/dt) 4.673×10−6 s−1

Table 5: Parameters of experiment C1.

Cin/anuc 1× 10−3 1× 10−2 1× 10−1 1× 100

10−8 ∞ 3.24× 107 4.00× 106 1.11× 106

10−7 1.02× 107 3.96× 106 1.09× 106 4.57× 105

10−6 3.86× 106 1.03× 106 4.30× 105 1.72× 105

10−5 9.15× 105 3.70× 105 1.40× 105 4.15× 104

10−4 2.69× 105 8.57× 104 2.78× 104 6.49× 104

10−3 1.85× 105 9.35× 104 9.35× 104 9.35× 104

Table 6: Cost Function Ψ - Experiment C1.

range of values of Cin (10−3 to 1) and anuc (10−8 to 10−3), and since the values of Ψ

are still relatively small for anuc = 1 × 100, we assume that it is a good estimate of that

parameter, and will continue to use that value throughout this study.

49



4 Vertical Diffusion Case

In this chapter, we will consider the frazil ice model of Chapter 2 with vertical and hor-

izontal terms included. We start with the model description, then a reference run with

parameters taken from observations.

4.1 Model Set Up

We start with the equations describing the local balance of crystal concentration, heat and

salt, (2.2.12), (2.2.16) and (2.2.19), and write these out, expanding into horizontal and

vertical derivatives

∂Ci
∂t

+ u
∂Ci
∂x

+ w
∂Ci
∂z

+ wi
∂Ci
∂z

=
∂

∂x

(
νT
∂Ci
∂x

)
+

∂

∂z

(
νT
∂Ci
∂z

)
+ Si, (4.1.1)

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
=

∂

∂x

(
νT
∂T

∂x

)
+

∂

∂z

(
νT
∂T

∂z

)
+ w′

(
Tf − T −

L

c0

)
, (4.1.2)

and

∂S

∂t
+ u

∂S

∂x
+ w

∂S

∂z
=

∂

∂x

(
νT
∂S

∂x

)
+

∂

∂z

(
νT
∂S

∂z

)
+ w′S. (4.1.3)

We can now make assumptions about the relative size of these terms:

1. Since the rising velocities and vertical diffusion of the crystals are much larger than

vertical advection, we can ignore the 3rd term on the RHS of the concentration

equation.

2. Since the vertical diffusion of heat and salt is a lot larger than the vertical advection,

we can also ignore the 3rd term on the RHS of both the temperature and salinity

equations.

3. Since vertical processes dominate in leads and polynyas, we can also assume that

horizontal processes have a negligible effect compared to vertical processes, and so

we ignore all horizontal terms.
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With these assumptions, the three equations (4.1.1)-(4.1.3) then become:

∂Ci
∂t

= νT
∂2Ci
∂z2

− wi
∂Ci
∂z

+ Si, (4.1.4)

∂T

∂t
= νT

∂2T

∂z2
+ w′

(
Tf − T −

L

c0

)
, (4.1.5)

and

∂S

∂t
= νT

∂2S

∂z2
+ w′S, (4.1.6)

which become the balance equations of our model.

We must now define the model domain, the turbulent diffusivity and the initial and

boundary conditions.

With regards to domain, we wish to include the mixed layer and also ambient water

beneath. We assume that the mixed layer is 10 m deep and the ambient water is 90 m

beneath, giving us 100 m of domain depth. We define the initial conditions and the tur-

bulent diffusivity with a mixed layer of 10 m, but we also allow the mixed layer to grow

should that be the case.

The turbulent diffusivity in the mixed layer is affected by three processes: waves at the

surface, wind-driven ocean currents and differences in water density causing convection.

We assume the effects of the first two processes are even throughout the mixed layer, hence

if the density profile is stable, the turbulent diffusivity is constant. To simplify the model,

we assume the stable turbulent diffusivity is constant and define it as

νT1 =


1× 10−2 m2/s , x < 10 m

1× 10−4 m2/s , x ≥ 10 m

(4.1.7)

where x is the depth from the surface. The mixed layer is by definition more mixed

than the ambient water, and we take the high value of mixing of 1 × 10−2 m2/s and the
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low value of mixing of 1× 10−4 m2/s. We have assumed a fixed stable turbulent diffusiv-

ity here, which is independent of wind and current velocities. This assumption means we

will need to take care later on in the wind speed sensitivity study and take this into account.

We also need to consider the case when the density profile in the water becomes un-

stable. This happens when heavier water is above lighter water, and it creates very strong

mixing to stabilise the density profile. We can then define the total turbulent diffusivity,

using the above definition as

νT =


1 ,

∂ρ

∂z
< 0

νT1 ,
∂ρ

∂z
≥ 0

. (4.1.8)

We would expect the density profile to become unstable in the upper layers of the ocean

as soon as it is in contact with the cold atmosphere since the water temperature decreases

there and this increases the density. If the unstable density domain reaches the bottom of

the mixed layer we would expect the mixed layer to grow from the 10 m, which we have

predefined.

To initiate our model, we assume that a small amount of frazil ice is present at t = 0,

similarly to the well-mixed scenario. We also take the same initial amount of ice, but only

present in the mixed layer and so we can define the ice concentration initial condition as

Ci(0, z) =


4× 10−9 , z < 10 m

0 , z ≥ 10 m

. (4.1.9)

The initial profiles of temperature and salinity were chosen to best replicate a realistic

upper layer of ocean with a 10 m mixed layer. We expect the temperature to be lower in

the mixed layer and close to the freezing temperature and higher in the ambient water,

and we expect the salinity to be lower in the mixed layer and higher in the ambient water,

due to the previous sea ice melt and summer river runoff. We also define the profiles so

that we start with a stable density profile and let it become unstable during the model
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Figure 4.1: Initial profiles of temperature, salinity and density.

run. Figure 4.1 shows the initial temperature, salinity and equivalent density profiles we

adopted in our model runs. The pyncocline can clearly be seen at 10 m, which separates

the mixed layer from the ambient water below.

The boundary conditions for our domain have previously been defined in Chapter 2.

Equation (2.2.34) is our upper ice concentration boundary condition, and equation (2.2.61)

is our upper temperature boundary condition. We have prescribed the upper and lower

salinity boundary conditions as being of zero flux, and the lower boundary conditions of

ice concentration and temperature are also of zero flux. The boundary conditions are then

∂Ci
∂t

= wiCi − νt
∂Ci
∂z

+ Si + p′i, νT
∂S

∂z
= 0 (z = 0), (4.1.10)

νT
∂T

∂z
= FLW − εσT 4 + (1− i0)(1− α)FSW − Fsens − Flat (z = 0), (4.1.11)
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νT
∂S

∂z
= 0, νT

∂Ci
∂z

= 0, νT
∂T

∂z
= 0 (z = I), (4.1.12)

where I = 100 m is the bottom of our domain.

To solve the model a FORTRAN computer program was written in which the whole

system of equations ((4.1.4)-(4.1.6)), boundary conditions ((4.1.10) - (4.1.12)) and initial

conditions as defined in figure 4.1 were numerically solved with the help of NAG routines

D03 PCA and D03 PZF. The space resolution of the model was 10 cm, so over 100 m of

domain we had 1000 depth points. The time resolution was 1 s, so over 2 days of run we

had 172,800 time points. (See appendix for code)

We calculate the volume of frazil ice which is precipitated out of the domain into the

viscous sublayer, where we assume it stays and cannot re-enter the domain. This ice even-

tually leads to grease ice, and finally a layer of congelation ice. We use the parameterization

of Smedsurd et al (2011) to calculate how the grease ice grows in a lead, and how it affects

the ice cover and hence the heat loss at the surface.

Smedsrud et al assume that grease ice is 25% solid ice and 75% water, and calculate

the amount of solid ice formed directly from the heat loss at the surface and the latent

heat. Since our model directly outputs the volume of precipitated ice, we use this value to

calculate the grease ice volume using

Vg =
Vp

0.25
Llead (4.1.13)

where Vp is the volume of precipitated frazil ice, and Llead is the length of the lead.

The grease ice is assumed to be pushed against a large floe of stagnant pack ice by the

wind, and we can calculate the total length of the grease ice layer L from equation 2.3.3

The upper temperature boundary condition (4.1.11) now becomes
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νT
∂T

∂z
= (1− acover)(FLW − εσT 4 + (1− i0)(1− α)FSW − Fsens − Flat), (4.1.14)

which assumes negligible heat loss from the ocean through the grease ice. When L =

Llead, the heat flux stops and we start the next stage of our model. This happens when

Vp =
3

8
Ua

√
LleadρaCa

Kr
. (4.1.15)

Although it is assumed that grease ice forms with 25% ice, since heat is still being

lost from the grease ice layer, we assume that the ice fraction increases as ice is formed,

and that the total volume of grease ice is kept constant. Using the temperature boundary

condition we can calculate the total heat flux at the surface per unit area as

Fheat = FLW − εσT (0)4 + (1− i0)(1− α)FSW − Fsens − Flat (4.1.16)

and use this to calculate the rate of increase of grease ice solid fraction φg,

dφg
dt

=
Fheat
ρ0L

, (4.1.17)

where ρ0 is the density of sea water, and L is the latent heat of water.

So, once the grease ice cover is 95% (acover = 0.95) we stop heat loss from the water

below but the grease ice solid fraction continues to increase until we reach a cut-off point

of 70% (φg = 0.7). The time it takes to reach this point can be calculated from the ice

volume precipitation rate and the total volume of grease ice. At this point, we precipitate

any frazil ice that was still below the grease ice layer in the ocean on to the ice and stop

frazil ice production in the water. This follows from the fact that when an ice layer forms

at the surface, the turbulent mixing beneath decreases and whatever ice that is still present

in the water will quickly rise. The amount of ice left in the water was found to be small

compared to the amount of ice which had precipitated up until this point. We now solely

concentrate on the downwards growth of congelation ice from the layer that has formed at
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the surface.

Since we have defined congelation ice growth to start when the grease ice has reached

70% solid ice fraction, we calculate the initial bulk salinity Sbulk of the sea ice from

φ = 1− Sbulk

S
(4.1.18)

to be Sbulk = 0.3S, where S is the ocean salinity.

Once we have entered the congelation growth stage, we model the sea ice using the

mushy layer equations, from section 2.4, so that the temperature equation is given by

ceff
∂T

∂t
=

∂

∂z

(
keff

∂T

∂z

)
. (4.1.19)

Ice growth at the ice-ocean interface is determined from

ρiLφ
dh

dt
= ki

∂Ti
∂z
− Focean, (4.1.20)

φS
dh

dt
= νT

∂S

∂z
+ Fbrine, (4.1.21)

and

Tw = T0 − ΓSw, (4.1.22)

where φ = 1− Sbulk/S is the solid fraction at the ice-ocean interface.

In the water below the ice layer, even though we have stopped frazil ice formation,

we are still interested in the temperature and the salinity of the water. We keep the

same governing equations for temperature and salinity, but we now change the boundary

conditions accordingly. The ice-ocean interface temperature is at the freezing point. Salt

can now enter the water in two different ways: salt is released from ice growth, which we

can calculate from the volume of ice formed, and natural convection can cause brine to be
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released from the ice through brine channels. We can define the boundary condition then

as

νT
∂S

∂z
= φ

dh

dt
S + Fbrine, (z = 0) (4.1.23)

where Fbrine is defined as in section 2.5.

4.2 Reference Run

We will now show the results from a reference run of the model described so far. We use

the initial ocean temperature and salinity profiles as given in fig 4.1, and choose constant

atmospheric parameters FLW = 168 Wm−2, FSW = 0 Wm−2, Uw = 5 ms−1, Ta = 249 K

and qa = 5× 10−4. We consider ice growth within a lead of width Llead = 150 m.

As previously mentioned, the model can be split into three stages, defined by the for-

mation of frazil ice, grease ice and congelation ice, respectively. We define the time at

which the ice cover reaches 95% (acover = 0.95) as T1, and the point at which the grease

ice solid fraction φg reaches 70% as T2.

For the first stage, we look at the frazil ice concentration, and the temperature and

salinity of the water. Figure 4.2 shows the ice concentration in the mixed layer during

the first 2 hours. The ice cover forms at about T1 = 2.3 h, which defines the end of the

first stage. One may see from the ice concentration plots that the top 4–5 m are well

mixed. This happens because the water becomes cooler near the surface which increases

the density and leads to an unstable density profile, causing vigorous mixing.
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Figure 4.2: Frazil ice concentration in top 10 m at regular intervals during the first 2 hours.

Figure 4.3 shows the upper 10 m water temperature, which also becomes more mixed

with time. Within one hour, the temperature has decreased and the profile is approaching

that of the freezing temperature with depth. The profile is likely to remain close to that

profile since any heat being lost at the surface is being quenched by new frazil ice formation.
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Figure 4.3: Water temperature in top 10 m at regular intervals during the first 2 hours.

Figure 4.4 shows the water salinity in the top 10 m. As expected, the profile becomes
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well mixed as ice is forming. The salinity at the bottom of the mixed layer is decreasing,

but this is due to the mixing, and the total salinity in the layer is increasing due to salt

bring rejected from new ice being formed.
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Figure 4.4: Water salinity in top 10 m at regular intervals during the first 2 hours.

As frazil ice is forming, we calculate the volume of ice which is precipitating out of

the mixed layer. Figure 4.5 shows the total precipitation. Using equation (4.1.15), we can

calculate that the ice cover acover reaches 95% when Vp = 4.35 × 10−2 m3 . In Figure 4.6

we plot the grease ice cover acover until it reaches 0.95 at T1.
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Figure 4.5: Total precipitation until T1. The precipitation rate is approximately constant
at 8× 10−6 m/s per unit cross-sectional area.
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Figure 4.6: Grease ice cover until T1.

Since we have assumed that grease ice forms at 25% solid fraction, only once we reach

T1 is when we switch off frazil ice production and let the grease ice solid fraction grow until

it reaches 70%. Using (4.1.17), we calculate that this happens at T2 = 21.7 h. In figure 4.7

we can see the grease ice solid fraction throughout the second and third stages with T1 and

T2 indicated. We can see the second stage when grease ice is forming due to heat loss at
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the surface, and after T2 the solid fraction keeps growing due to the decreasing bulk salinity.
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Figure 4.7: Grease ice solid fraction until T1.

During the third stage, frazil ice has stopped forming and the ice layer has fully formed

so we allow the ice to grow downwards according to the mushy layer equations. Figures

4.8 and 4.9 show the ice thickness and ice growth rate during the period dominated by

congelation ice growth. They show that the ice growth rate slows down as the ice thickens,

which is to be expected, and that the ice grows about 5 cm in the period of the next 24

hours after the model begins.
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Figure 4.8: Ice thickness from T2 to 48 h.
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Figure 4.9: Ice growth rate from T2 to 48 h.

During this period, the changes to the water below the ice are dominated by the

downwards flux of salt from the sea ice growth. This happens in two ways, firstly by salt

being rejected from the ice growing, which we call brine expulsion, and secondly by the

formation of brine channels that release brine from within the sea ice. The upper boundary

condition of salinity is
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νT
∂S

∂z
= φS

dh

dt
+ Fbrine (4.2.1)

where the first term on the right side represents the brine expulsion, and the second

term represents brine drainage, as defined in equation (2.5.1) . Figures 4.10 and 4.11 show

the rate and total release of salt through brine expulsion. The rate is calculated from

the first part of the previous equation, and the reason it remains close to constant is that

although
dh

dt
is decreasing, φ is increasing due to a lower bulk salinity, and S is also in-

creasing due to more salt being released into the water.
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Figure 4.10: Ice growth salt release from T2 to 48 h.
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Figure 4.11: Total ice growth salt release from T2 to 48 h.

Figures 4.12 and 4.13 show the rate and total release of salt from brine channels. The

rate quickly decreases because the permeability is very sensitive to the solid fraction, which

is decreasing due to the decreasing bulk salinity. It is interesting to note that during the

first 6 hours, the leading process is brine channels, and then it becomes release from the ice

growth. If run for enough time, the brine channels would eventually stop releasing brine,

which would happen in equation (2.5.1) when Rm < Rc.
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Figure 4.12: Brine channel release rate from T2 to 48 h.
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Figure 4.13: Total brine release from T2 to 48 h.

4.3 Dmitrenko et al (2010)

Dmitrenko et al (2010) studied the formation of a polynya, namely the Laptev Sea polynya

in the Arctic. Using a range of measurements including radar from Envisat and satellite

imagery from TerraSAR-X, they captured a polynya event from start to finish and made
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measurements of the water salinity and temperature profiles from a mooring attached to

the fast-ice edge.

Since our model is 1D and does not account for ice being driven away from the surface

or horizontal advection of ice by ocean currents like a polynya, we modified our model to

include heat loss and frazil ice formation, but we do not allow an ice cover to form.

The Siberian continental shelf undergoes several changes in the winter due to seasonal

sea-ice formation. The katabatic winds coming offshore from Siberia create areas of open

water off the land-fast ice, such as the Great Siberian Polynya. One such polynya was

formed in the southeastern Laptev Sea at the end of April 2008.

In summer, due to the river run-off from the Lena River and seasonal ice melting, the

salinity of the surface waters in the southeastern Laptev Sea are relatively low (∼5-15

psu, Dmitrenko et al (2010)). In winter there is considerably less river inflow and sea ice

formation, which leads to a summer-to-winter salinity difference of ∼5 psu.

Between April and May 2008, 5 moorings were placed along the land-fast ice edge

contouring the perimeter of the polynya. Each mooring carried equipment to detect con-

ductivity, temperature and pressure in the surface layer and at the bottom water layers.

CTD profiles were also measured periodically at the mooring locations. 26 images from

Envisat and 10 from TerraSAR-X were also acquired. The scattering signatures of newly

formed sea-ice, polynya open water, frazil ice and land-fast ice edge are different, and are

distinguishable on the SAR images. Four of the moorings used AWS (automated weather

stations) to pick up on the meteorological data with high temporal resolution. One of

the mooring’s AWS was attacked by polar bears and so Global Digital Analyses from the

German Meteorological Service were used to fill the gap.

After observing the area from the 20th April, there were three possible polynya induc-

ing wind events, on the 16-18 April, 22-23 April and 26-30 April. Only during the last one
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was a polynya actually created, starting on the 30th April and lasting until the 1st May.

High-resolution simulations with the atmospheric model COSMO (Consortium for Small-

Scale Modelling) found that the total oceanic heat flux around that time was between 300

and 550 W m−2. The opening of the polynya is also clearly visible in the satellite images

from 30 April, when the air temperature was about -12 °C.

Figure 4.14: Vertical Profiles of temperature (dashed) and salinity (solid) taken on 24 April
before the polynya forms.

Fig 4.14 shows the initial temperature and salinity profiles before the formation of the

polynya on the 24th April. The mixed layer is shown to go down to about 6 metres, where

the salinity and temperature are relatively uniform. The salinity difference from the mixed

layer to the bottom water is due to the summer river runoff. The temperature at the

surface is still not supercooled at this point and is ∼0.03°C above the salinity dependent

freezing temperature.

Using acoustic Doppler current profilers (ADCPs) attached to the moorings, frazil ice
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crystals can be detected, but no values of frazil concentration were obtained due to a miss-

ing calibration, and also crystals can only be detected if they are greater that ∼1.5 mm of

diameter, which is larger than most crystals in observations, and therefore in our model.

Figure 4.15: M2 mooring time series from 11 April to 5 May 2008. The red line represents
the water temperature at 4.5 m, and the green line represents the salinity at 4.5 m. The
period highlighted in blue is the polynya event, starting on the 28th April and ending on
the 1st May.

In order to model this situation, we made changes to our model to account for a more

realistic scenario in the south Laptev sea. The air temperature and heat flux data were

mentioned earlier as being -12°C and 300-550 W m−2. The wind speed is measured as

being between 5 and 7 m s−1, and the air humidity is taken from ERA reanalysis data.

The mixed layer depth is set to 6 m, with high turbulent diffusivity of νT = 1×10−2 there,

to account for high mixing. Below the mixed layer the turbulent diffusivity is a lot lower

(νT = 1×10−5). The initial profiles of temperature and salinity are taken from figure 4.14.
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Figure 4.15 shows the time series of temperature and salinity during about three weeks

in April and May, with the three days corresponding to the polynya event highlighted.

Assuming that the mixed layer is well mixed, these values taken at 4.5 m can be assumed

to be the same throughout the whole mixed layer. As expected the salinity increases as

frazil ice is formed and releases salt, and consequently the freezing temperature decreases.

This, along with the fact the heat is being lost at the surface continually account for the

decrease in temperature. The observed values show a decrease in temperature of about

∼0.1°C (from about -1.42°C to -1.52°C ), and a rise in salinity of ∼2 psu (from 26 psu to 28

psu). The results from our model are similar to these values. We found a final temperature

of about -1.518°C and a salinity of about 27.9 psu. In figure 4.16 you can see that the

temperature and salinity time-series are close to linear unlike the observations, but that is

to be expected from an idealized model, where parameters such as wind speed and heat

fluxes are kept constant throughout. Although the observations can provide only a limited

test of our model, the consistency in the temperature and salinity evolution lends us some

confidence in the model.
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Figure 4.16: Temperature and salinity in the mixed layer during the three days of the
polynya event.
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5 Sensitivity Studies

In this chapter we will vary some of the more important forcings and parameters of our

model, and compare the results to our reference run, which will allow us to make some

conclusions on how important the varying parameter is to the model. Table 7 shows a

summary of the results from six different sensitivity studies, where we vary wind speed (1

& 2), air temperature (3 & 4), initial water salinity temperature (5 & 6), lead width (7

& 8), longwave radiation (9 & 10) and air humidity (11 & 12). T1 represents the time it

takes for an ice cover of precipitated frazil ice to form and T2 represents how long it takes

for the grease ice to reach a solid fraction φg = 70%.

During the analysis of these sensitivity studies, what we realised was the time it takes

for ice to first start forming, what we called the ‘delay’, was mainly caused by the sec-

ondary nucleation and the parameterization we had used for it. This is shown in the values

of T1′ and T2′ of table 7, which are the times taken to form an ice cover and for the solid

grease ice to reach 70% in the same scenarios, but by increasing the secondary nucleation

parameter anuc from a value of 1× 10−3 to 1. The times are reduced in all cases, in some

cases dramatically. This happens because of the nonlinearity of the secondary nucleation

formulation, that somewhat non-intuitively depends on the forcings. Since there is some

uncertainty in this process, when looking at the results, we mostly interpret results after

the secondary nucleation kicks in, and ice starts forming.

The results of the reference run, shown in table 7, are also affected by the delay, which

is about 0.9 hours in this case. Since the time difference between T1 and T2, when grease

ice solid fraction is increasing at a constant rate, remains the same in both cases, the delay

of 0.9 hours can also be seen in the difference between T2 and T2’. The overall effect is

that less ice will be formed since, as we will see in the sensitivity studies, the rate of ice

formation is higher during the first phase when the ocean is in contact with open water,

than later on when congelation ice is growing beneath the ice.
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The delay in the formation of frazil means that even though the water is supercooled

enough to form ice, since the secondary nucleation is not strong enough to create ice, the

water becomes more supercooled than it normally would. Once ice starts forming and

there are enough nucleii to form more ice, this supercooling will get quickly quenched, and

ice will form at a faster rate than it normally would. Once a quasi-steady state is formed

where the amount heat lost at the surface is the same amount of heat released from ice

formation, the effect of the initial delay will no longer be felt as the total ice formed should

be the same, except that it will happen slightly later in the delay case.

With regards to the sensitivity studies, since the delay only affects up to about 1 hour

of the run, we felt that over 48 hours, the effects of the delay were small enough that it

would not affect the results qualitatively much, and so used the results with the delay, so

that we were comparing the reference run with results on the same basis.

Simulation T1 (h) T1’ (h) T2 (h) T2’ (h) H (cm)

0 Reference 1.9 1.0 21.7 20.8 24.58

1 Uw = 10 m/s 2.6 1.7 26.8 25.9 40.69
2 Uw = 2.5 m/s 1.0 0.5 15.6 15.1 17.31

3 Tair = −15 °C 1.6 1.0 27.0 26.4 22.19
4 Tair = −35 °C 2.9 1.0 19.2 17.3 26.96

5 Sw = 44.5 psu 1.9 1.1 22.2 21.4 24.69
6 Sw = 24.5 psu 1.9 0.9 21.3 20.3 24.60

7 Llead = 50 m 1.6 0.7 13.0 12.1 20.20
8 Llead = 250 m 2.1 1.2 27.8 26.9 28.21

9 FLW = 100 W/m2 3.1 1.0 19.9 17.8 25.45
10 FLW = 240 W/m2 1.6 1.0 26.2 25.6 23.40

11 qa = 2.5× 10−3 1.6 0.9 24.1 23.4 23.25
12 qa = 1× 10−4 1.9 1.0 21.3 20.4 24.80

Table 7: Sensitivity studies from varying several parameters. T1 is the time taken to form
an ice cover, and T2 is the time taken for the grease ice solid fraction to reach 70%. T1’
and T2’ are the equivalent times when we use a higher secondary nucleation parameter.
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5.1 Varying wind speed

Wind speed affects our model in several ways. Firstly, the wind speed affects how the frazil

ice builds up at the sea ice edge, and hence the collection depth. This is the maximum

depth we assume the grease ice forms at. This means that if the wind speed is higher, the

collection depth will be larger and this will create a thicker grease ice layer. Another way

in which the wind speed affects the model is that the sensible and latent heat parameteri-

zation depend on wind speed directly, and so if the wind speed doubles, so do the sensible

and latent heats. Since increasing wind speed will create a thicker collection depth and

will increase the heat fluxes at the surface, we might expect a larger wind speed to create

more frazil ice and take longer to fully cover with grease ice.

As mentioned in Chapter 2, the turbulent diffusivity in the mixed layer does not depend

on the wind speed and is defined to be constant. In reality, the higher wind speed would

cause more mixing and the lower wind speed would cause less mixing. This would affect the

results by releasing heat faster, but also by keeping the frazil crystals from precipitating

to the surface as easily. Overall it would potentially mean that even more ice would form

in the higher wind speed case and less ice in the lower wind speed case.

Our reference run has a wind speed of Uw = 5 m/s, and we ran two new simula-

tions where we doubled the wind speed to Uw = 10 m/s and halved the wind speed to

Uw = 2.5 m/s.We now discuss the results and show the relevant plots.

As a higher wind speed has a larger collection depth, the run which takes the longest

to form a complete ice cover is the case with the highest wind speed and conversely, the

quickest is the case with the lowest wind speed which just takes over an hour to form, as

shown in figure 5.1. One interesting point to note is the depth to which the ice concen-

tration is very well-mixed, which is about 4 m in the reference run, but reaches 10 m in

the higher wind speed and only 2 m in the lower wind speed. This happens because the

higher the wind speed, the more turbulence there is in the water, which causes more mixing.
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Figure 5.1: Frazil ice concentration plots until an ice cover forms. The top plot is the
reference run (Uw = 5 m/s), the middle one is the higher wind speed (Uw = 10 m/s) and
the bottom one is the lower wind speed (Uw = 5 m/s).

In figure 5.2 we see that the temperature profiles do not vary much. The temperature

profile varies more in the earlier stages, as the profile after 30 minutes is different for all

three, but after an hour, the profiles look more similar.
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Figure 5.2: Water temperature profiles until an ice cover forms. The top plot is the
reference run (Uw = 5 m/s), the middle one is the higher wind speed (Uw = 10 m/s) and
the bottom one is the lower wind speed (Uw = 5 m/s).

Similarly to the temperature, and also because salinity and temperature are intrinsi-

cally linked, the salinity profiles do not appear to be affected very much by the different

wind speeds, as shown in figure 5.3. The profiles are slightly different at the one hour

mark, but not enough to account for any big changes in results.
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Figure 5.3: Water salinity profiles until an ice cover forms. The top plot is the reference
run (Uw = 5 m/s), the middle one is the higher wind speed (Uw = 10 m/s) and the bottom
one is the lower wind speed (Uw = 5 m/s).

Figure 5.4 shows the total precipitation of frazil ice out of the water column until an

ice cover forms. Since the wind speed directly affects the collection depth, the amount of

ice precipitated needed to form an ice cover is also directly proportional to wind speed,

doubling for the higher wind speed and halving for the lower wind speed.
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Figure 5.4: Total precipitation out of the water column until an ice cover forms.

Figure 5.5: Grease ice cover until an ice cover forms.

In figure 5.5 we see the grease ice cover fraction from the beginning of the run until an

full cover of grease ice forms. Since the mixing is lower in the lower wind scenario, the ice

rises faster to the surface and starts forming the cover first. Conversely, the higher wind

speed takes longer to start forming the ice cover. It also takes longer in this case since, as

mentioned earlier, the collection depth is a lot larger.
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Figure 5.6: Grease ice solid fraction until 2 days of simulation.

Once the frazil ice has precipitated and formed an ice layer, we treat the mixture as

grease ice and allow it to grow by letting the grease solid fraction increase, as shown in

figure 5.6. Once the grease ice reaches a critical solid fraction of 70%, we assume the layer

is now ice and allow growth from beneath as well as growth within the grease ice. This is

why the gradient of the plots change when they reach a fraction of 70%. As the wind speed

affects the rate at which heat is released from the water, the grease ice fraction growth

rate is higher in the lower wind speed case, and conversely lower in the higher wind speed

case. Even though the heat flux is higher with a higher wind speed, the grease ice layer is

thicker, and so takes longer to reach the 70% fraction.

Once the grease ice cover reaches the required 70% for a solid layer, we let the congela-

tion ice grow downwards, and measure the ice thickness, as shown in figure 5.7. The only

mechanism for ice growth now is the heat lost through the ice from the water beneath, at a

much lower rate than that through open water. Since the heat loss is higher in the higher

wind speed case, the collection depth is larger in that case, and smaller in the lower wind

speed. In figure 5.8 we see the ice growth rate. Although the higher wind speed cases have

a larger surface heat loss, the thicker ice in these cases reduce the conductive flux at the

base of the ice so that the ice growth is slower in these cases.
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Figure 5.7: Ice thickness until two days of simulation.

Figure 5.8: Ice growth rate until two days of simulation.

While the ice is growing, salt is released in two ways, through the formation of brine

channels and from congelation ice formation rejecting the salt when it grows. Figure 5.9

shows the rate of salt release from brine channel formation. Since the ice starts growing

first in the lower wind speed case, the release starts in that case first, and starts last for the

higher wind speed. The brine channel salt loss rate, however, is larger in the higher wind
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speed case, since the ice is thicker and there is more brine to release. Figure 5.10 shows

the total salt released by brine channels. We can see from this that although the higher

wind speed case starts releasing brine later, the total brine released is larger, as shown by

the area under the curve.

Figure 5.9: Brine channel release rate until two days of simulation.

Figure 5.10: Total brine channel release until two days of simulation.

The other way in which salt is released into the water is through the congelation ice
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rejecting salt into the water when growing. Figure 5.11 shows the rate of salt released in

this way. Since it is directly related to the rate of ice growth, following on from figure 5.7,

the lowest wind speed case has the highest rate and the highest wind speed case has the

lowest. Since the lowest wind speed case also starts forming congelation ice first, the total

salt released in this way is always higher, as shown in figure 5.12, and lower in the higher

wind speed case.

Figure 5.11: Rate of salt release from congelation ice formation until two days of simulation.

Figure 5.12: Total salt released from congelation ice formation until two days of simulation.
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5.2 Varying air temperature

Air temperature affects our model because it changes the heat flux from the water to the

air, hence increasing the amount of ice produced. The air temperature in the reference run

was Tair = −25°C, and we ran two more simulations where we increased it to Tair = −15°C,

and decreased it to Tair = −35°C and compared the results from these with the reference

run.

Figure 5.13: Frazil ice concentration plots until an ice cover forms. The top plot is the
reference run (Tair = −25°C), the middle plot is the higher air temperature (Tair = −15°C)
and the bottom plot is the lower air temperature (Tair = −35°C)

Figure 5.13 shows the concentration plots for the three simulations. We can see from

the plots that the lower the temperature, the longer it takes for ice to start forming, and

ice does not start forming in the bottom plot until after 1.5 hours. This delay in the ice

beginning to form leads to a time T1 which is inversely proportional to the air temperature

(as seen in table 7).
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Figure 5.14: Water temperature profiles until an ice cover forms.

Figure 5.14 shows the temperature profiles for the three simulations. As expected, they

do not vary much except near the surface.

The salinity profiles are shows in figure 5.15 and, similarly to the temperature, they do

not vary too much except slightly near the surface after about 1.5 hours.

Figure 5.16 shows the total precipitation until we reach T1. As mentioned earlier, the

lowest air temperature takes the longest to start forming ice, but the rate of precipitation

is relatively constant for all three cases.
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Figure 5.15: Water salinity profiles until an ice cover forms.

Figure 5.16: Total precipitation out of the water column until an ice cover forms.

Figure 5.17 shows the fraction of the surface covered in grease ice, which relates to the

total ice precipitated, since when ice precipitates to the surface it adds to the grease ice

layer there and increases the solid fraction, hence the similarity to figure 5.16.
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Figure 5.17: Grease ice cover until an ice cover forms

Figure 5.18: Grease ice solid fraction until 2 days of simulation.

Figure 5.18 shows the grease ice solid fraction once an ice cover has formed. Although

the lowest temperature case takes the longest to form a complete ice cover, the rate of

increase of the grease ice solid fraction is largest so that it reaches a solid fraction of 70%

before the other cases (the point at which the ice is classified as congelation ice).
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Once the grease ice solid fraction reaches 70%, we define the ice as congelation ice

which grows downwards only. Since the lowest air temperature case reaches this state first,

as seen in figure 5.18, and since the heat flux at the surface is higher, it has the highest

growth rate and inversely for the highest air temperature, as shown in figure 5.19.

Following on from this, figure 5.20 shows the total ice thickness during the same pe-

riod. Since the lowest air temperature case rate of ice growth is the highest, so is the total

thickness.

Figure 5.19: Ice growth rate until 2 days of simulation.

We now turn to the desalination of the ice. Figure 5.21 shows the rate of brine release

from brine channels. Since the ice is thicker in the lowest temperature scenario, the initial

rate of brine release is the highest, and also since the brine channel release starts earlier,

the total brine release is always higher in that case, as shown by figure 5.22.
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Figure 5.20: Total ice thickness until 2 days of simulation.

Figure 5.21: Brine channel release rate until 2 days of simulation.

Salt is also released by the ice growing and releasing salt. The rates for this salt release

appear to be more linearly dependent on the air temperature, as shown by figure 5.23, and

5.24 which shows the total salt released in this way.
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Figure 5.22: Total brine channel release until 2 days of simulation.

Figure 5.23: Rate of salt release from congelation ice formation until 2 days of simulation.
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Figure 5.24: Total salt release from congelation ice formation until 2 days of simulation.

5.3 Varying initial water salinity

Since our model starts in a slightly supercooled state, varying the initial salinity also varies

the initial water temperature, hence we will not be analyzing the water salinity and tem-

perature profiles, since the three profiles will look so different from the beginning.

The initial water salinity in the reference run was Sw = 34.5psu, and we ran two simu-

lations where we increased the salinity to Sw = 44.5psu and decreased it to Sw = 24.5psu,

before comparing the results.

Water salinity affects the freezing temperature and so, all other variables remaining

equal, we would expect it to take longer for ice to grow when the salinity is higher as

we would need more heat loss. Figure 5.25 shows just that, with the total concentration

highest in the lowest salinity and lowest in the highest salinity cases. Although they all

take approximately the same time to reach an ice cover, the depth of the ice is different

for all three cases.

Figure 5.26 shows the total precipitation out of the water column until an ice cover
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forms. As shown in table 7, all three cases reach the solid cover nearly at the same time,

with the highest salinity case slightly later. The precipitation rates are about the same

for all three cases, showing us that salinity does not significantly affect precipitation. This

is because water salinity does not affect the heat loss at the surface, which is the main

process contributing to grease ice formation.

Figure 5.25: Frazil ice concentration plots until an ice cover forms. The top plot is the
reference run (Sw = 34.5psu), the middle plot is the higher salinity case (”Sw = 44.5psu)
and the bottom plot is the lower salinity case (Sw = 24.5psu).
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Figure 5.26: Total precipitation out of the water column until an ice cover forms.

Figure 5.27 shows the fraction of the surface covered in grease ice, which again is similar

for all three cases, but is slightly later for the higher salinity.

As we can see in figure 5.28, the grease ice solid fraction is approximately the same for

all three scenarios. This is again due to the fact that water salinity does not affect the

heat loss at the surface.
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Figure 5.27: Grease ice cover until an ice cover forms.

Figure 5.28: Grease ice solid fraction until two days of simulation.

Following on from figure 5.28, where we can see that all three cases reach the required

70% to be considered an ice layer at approximately the same time. We can see in figure

5.29 that although congelation ice growth starts at the same time for all three cases, the

lower salinity case is thicker to start but also has a slightly slower growth rate, as we can

see in figure 5.30. This is because thicker ice grows at a slower rate since the gradient of

temperature is less steep in thicker ice, which leads to slower growth.
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Figure 5.29: Total ice thickness until two days of simulation.

Figure 5.30: Ice growth rate until two days of simulation.

In figure 5.31 we see the rate of brine release from the brine channels. Although they

start at different times, they quickly become very close, which can also be seen in figure

5.32.
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Figure 5.31: Brine channel release rate until two days of simulation.

Figure 5.32: Total brine channel release until two days of simulation

Figure 5.33 shows that the differences in the salt release are bigger in the case of salt

released by ice formation than by brine channel release.
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Figure 5.33: Rate of salt release form congelation ice formation until 2 days of simulation.

Figure 5.34: Total salt release from congelation ice formation until 2 days of simulation.

5.4 Varying lead width

We now vary the width of the lead which affects the formation of grease ice since the area

to cover is altered and the parameterization of the grease ice build-up depends on the

lead width. We compare the reference run, which has a lead width of Llead = 150m, with

two runs with a larger lead width of Llead = 250m and a smaller lead width of Llead = 50m.
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Figure 5.35 shows the frazil ice concentration plots for the three cases, with the refer-

ence run first, the smaller length lead second and the larger length lead last. The growth

rate of the frazil ice is approximately constant for all three cases, but the time it takes to

form an ice layer changes with the lead length. From table 7 we see that the longer the

lead, the longer it takes for the ice layer to form.

Figure 5.35: Frazil ice concentration plots until an ice cover forms. The top plot is the
reference run (Llead = 150m), the middle one is the smallest lead width (Llead = 50m) and
the bottom one is the largest lead width (Llead = 250m).

Figures 5.36 and 5.37 show the water temperature and salinity profiles for the three

cases, and similarly to the ice concentration, all have similar profiles, except that the longer

lead width case takes longer for an ice cover to form.
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Figure 5.36: Water temperature plots until an ice cover forms. The top plot is the reference
run (Llead = 150m), the middle one is the smallest lead width (Llead = 50m) and the
bottom one is the largest lead width (Llead = 250m).
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Figure 5.37: Water salinity plots until an ice cover forms. The top plot is the reference run
(Llead = 150m), the middle one is the smallest lead width (Llead = 50m) and the bottom
one is the largest lead width (Llead = 250m).

Figure 5.38 shows the total precipitation for all three cases. Since the collection depth

is dependent on the lead width, the total precipitation needed to form an ice cover varies

in all three cases, and is proportionally higher for the biggest lead width and lower for the

smallest lead width.
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Figure 5.38: Total precipitation out of the water column until an ice cover forms.

Figure 5.39: Grease ice cover until an ice cover forms.

Figure 5.40 shows the grease ice solid fraction from the time when an ice cover is

reached, up to 48 hours. Since the collection depth is different for all three cases, the rate

of growth of the grease ice fraction is also different for all three cases. This is due to the

thicker ice solid fraction growing slower, hence the smallest lead width case solid fraction

growing fastest, and the biggest lead width case solid fraction growing slowest. This can

also be seen in figure 5.39, where the smallest lead width case reaches a full grease ice cover

98



faster.

Figure 5.40: Grease ice solid fraction until two days of simulation.

Figure 5.41: Total ice thickness until two days of simulation.

Figure 5.41 shows the thickness of the ice cover up to 48 hours of run-time. Following

on from figure 5.40, the smallest lead width case reaches the required 70% grease ice solid

fraction first and the largest lead width reaches it last. As mentioned earlier, the thicker

the ice is the slower the growth rate is, which can be seen in figure 5.42. We can infer from

figure 5.41 that ice growth rates are a lot higher during the frazil ice formation stage than
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the congelation ice formation stage, since after 48 hours the ice is thicker in the largest

lead width case, solely because it spends longer in the frazil ice formation stage.

Figure 5.42: Ice growth rate until two days of simulation.

Once the ice grows to a certain thickness, brine channels form and release brine to the

water below. Since the ice is thickest in the largest lead width case, we might expect the

brine channels to form here first, but because of the lower salinity in the lower salinity case

the threshold for brine channel formation is lower and so they form in this case first, as

shown in figure 5.43. The other two cases follow on, with brine tube drainage in the largest

lead width case starting last, but the later they start, the higher the rate is. This happens

because the ice is thicker, which leads to larger brine channels, and hence a higher brine

release rate. In figure 5.44 we see the total brine release from the ice. We can see that

although the smallest lead width start first, the total salt released is quickly larger in the

other two cases, since the brine release rate is larger.
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Figure 5.43: Brine channel release rate until two days of simulation.

Figure 5.44: Total brine channel release until two days of simulation.

The rate of salt release at the interface solely by brine expulsion is directly proportional

to the ice growth rate, and so is larger in the smallest lead width case, and smaller in the

largest width case, as can be seen in figure 5.45. Since the smallest lead width case starts

first and has the highest rate, the total salt release from congelation growth is largest in

this case, as shown in figure 5.46.
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Figure 5.45: Rate of salt release from congelation ice until two days of simulation.

Figure 5.46: Total salt release from congelation ice formation until two days of simulation.

5.5 Varying longwave radiation

Varying longwave radiation affects the heat balance at the ocean-atmosphere interface.

This affects the amount of heat loss from the ocean and hence the growth/melting rate of

the ice. The results in this section should therefore be comparable to the results in the air

temperature sensitivity study.
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Once again, we compared the reference run, with a longwave radiation of FLW =

170 W/m2, with two cases with a higher longwave radiation of FLW = 240 W/m2), and

a lower longwave radiation of FLW = 100 W/m2. In figure 5.47 we see the concentration

profiles for the three scenarios until they form ice layers. The lowest radiation case takes

longer to start forming ice, since lower radiation means that there is greater net heat loss,

which in turn delays the formation of frazil ice. This is probably due to the secondary

nucleation and is similar to the air temperature study. The reference case and the higher

radiation case are a lot more similar, which suggests that the delay in ice formation is not

directly related to the longwave radiation.

Figure 5.47: Frazil ice concentration plots until an ice cover forms. The top plot is the
reference run (FLW = 170 W/m2), the middle plot is the lower longwave radiation (FLW =
100 W/m2) and the bottom plot is the higher longwave radiation (FLW = 240 W/m2).

Figure 5.48 shows the temperature profiles for the three scenarios. The temperature

takes longer to decrease in the lower radiation plot since, although the net heat loss is

greater, more ice is created in this case which keeps the temperature from decreasing.

Another thing to note is the depth to which mixing occurs in all three cases. In the reference
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run the mixing happens until about 4 m, in the second plot it happens throughout the

whole 10 m, and in the bottom plot it happens in the top 3 m. This happens because the

delay in the initial formation of ice in the lowest radiation allows the layer to become more

mixed, and so when ice starts forming it mixes further down. Conversely for the higher

radiation case.

Figure 5.48: Water temperature plots until an ice cover forms. The top plot is the refer-
ence run (FLW = 170 W/m2), the middle plot is the lower longwave radiation (FLW =
100 W/m2) and the bottom plot is the higher longwave radiation (FLW = 240 W/m2).
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Figure 5.49: Water salinity plots until an ice cover forms. The top plot is the reference run
(FLW = 170 W/m2), the middle plot is the lower longwave radiation (FLW = 100 W/m2)
and the bottom plot is the higher longwave radiation (FLW = 240 W/m2).

The salinity profiles are similar to the temperature profiles, with the water being mixed

to much deeper in the lower radiation case, as shown in plot 2 of figure 5.49. The reference

plot and the bottom plot are much more similar.

The precipitation plots are shown in figure 5.50, where we can clearly see the delay in

the initial formation of frazil ice, with the lower radiation case starting more than an hour

later than the other two cases. The higher radiation case also starts slightly before the

reference case. The rates of precipitation are about the same for all three cases.
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Figure 5.50: Total precipitation out of the water column until an ice cover forms.

Although the lowest radiation case forms an ice layer later than the other two cases

the heat loss at the surface is higher, hence the grease ice growth rate is higher and so it

reaches the 70% threshold first, as seen in figure 5.52. Conversely, the highest radiation

case reaches it last. The grease ice cover plots in figure 5.51 show that the lower the

radiation, the longer it takes for the grease ice cover to begin forming. This is counter

intuitive and probably due to the secondary nucleation delay we have mentioned before.

Figure 5.51: Grease ice cover until an ice cover forms.
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Figure 5.52: Grease ice solid fraction until two days of simulation.

Figure 5.53 shows the ice thickness plots for all three cases up to 48 hours of simula-

tion. As seen earlier, the lowest radiation case reaches the consolidated ice cover stage first

and the highest radiation case reaches it last. We would expect the growth rate for the

lowest radiation case to be the highest, but since the ice is slightly thicker to start with,

the growth rate is actually the lowest, as shown in figure 5.54. Conversely, the highest

radiation case would normally have the lowest growth rate, but has the highest, since the

ice is thinner. After two days of simulation, the ice is thickest in the lowest radiation case,

as we would expect, since the heat loss at the surface is higher.
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Figure 5.53: Total ice thickness until two days of simulation.

Figure 5.54: Ice growth rate until two days of simulation.

The rate of desalination of the ice through brine channels is shown in figure 5.55, where

we can see that since the lowest radiation case has the thicker ice, the brine channels form

earlier in this case. The highest radiation case is the last to start. We note that although

they all start at different times, at the end of 48 hours, the rates are approximately equal.

Similarly, in figure 5.56 we see that with time, the total brine released becomes closer for

all three cases.
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Figure 5.55: Brine channel release rate until two days of simulation.

Figure 5.56: Total brine channel release until two days of simulation.

With regards to the salt released during the formation of congelation ice, we see in

figure 5.57 that the rate of salt release is approximately constant for all 3 cases, with a

slight downturn later on, as the ice becomes thicker and the growth rate slows. Although

the rates are constant, since the lower radiation case starts first, the total salt released is

always higher in this case, as seen in figure 5.58
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Figure 5.57: Rate of salt release from congelation ice until two days of simulation.

Figure 5.58: Total salt release from congelation ice formation until two days of simulation.

5.6 Varying air humidity

Varying air humidity affects the heat balance at the surface of the water. A higher hu-

midity gives a lower latent heat loss and so decreases the rate of frazil and congelation ice

growth, similarly to the air temperature and longwave radiation flux sensitivity studies.

We compare the reference run, which has air humidity of qa = 5 × 10−4, with two cases
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with a higher air humidity of qa = 2.5× 10−3 and a lower humidity of qa = 1× 10−4.

Figure 5.59 shows the concentration plots until an ice cover forms. The concentration

after an hour is highest in the higher humidity case, and lowest in the lowest in the lower

humidity case. This is contrary to what we expect, since lower humidity leads to a larger

heat loss. We relate this back to the delay we encountered during this study, where ice only

starts forming after a period of time which seems to be directly related to the secondary

nucleation parameterization. As can be seen in table 7, the higher humidity case forms an

ice layer at T1 first, implying that the delay in this case is not as large as in the reference

and lower humidity cases.

Figure 5.59: Frazil ice concentration plots until an ice cover forms. The top plot is the
reference run (qa = 5× 104), the middle plot is the higher humidity (qa = 2.5× 10−3) and
the bottom plot is the lower humidity (qa = 1× 10−4).

The water temperature profiles are shown in figure 5.60, where after 1 hour, the tem-

perature is lower in the higher humidity case, since less ice has formed to quench the

supercooling. The salinity profiles, in figure 5.61 are all approximately the same, except
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the salinity is lower in the middle plot for the same reason as mentioned above.

Figure 5.60: Water temperature plots until an ice cover forms. The top plot is the reference
run (qa = 5×104), the middle plot is the higher humidity (qa = 2.5×10−3) and the bottom
plot is the lower humidity (qa = 1× 10−4).

The total frazil ice precipitation plot is shown in figure 5.62. The precipitation starts

first in the higher humidity case, because since frazil ice starts forming earlier, it also pre-

cipitates earlier. The precipitation rates are about the same with all three cases forming

an ice layer before two hours.
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Figure 5.61: Water salinity plots until an ice cover forms. The top plot is the reference run
(qa = 5 × 104), the middle plot is the higher humidity (qa = 2.5 × 10−3) and the bottom
plot is the lower humidity (qa = 1× 10−4).

Figure 5.62: Total precipitation out of the water column until an ice cover forms.

Figure 5.63 shows the grease ice cover until the ice cover forms, and once again, follow-

ing on from figure 5.62, ice is formed earlier in the higher humidity case, hence precipitating
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and forming a grease ice cover first. The grease ice solid fraction is shown in figure 5.64,

where we can see that the higher humidity case has a slower growth rate due to the lower

heat loss at the surface. By this point, the effect of the initial delay is no longer felt since

the grease ice is growing slower for the higher humidity case, and faster for the lower hu-

midity case, as we expect.

Figure 5.63: Grease ice cover until an ice cover forms.

Figure 5.64: Grease ice solid fraction until two days of simulation.
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The required 70% threshold in figure 5.64 to form an ice cover shows that the higher

humidity case forms an ice cover last, which we can see in figure 5.65. This shows the

total ice thickness until 48 hours. The growth rate is also lower as shown in figure 5.66,

which means that after 48 hours, the higher humidity case ice thickness is considerably

lower than the other two cases.

Figure 5.65: Total ice thickness until two days of simulation.

Figure 5.66: Ice growth rate until two days of simulation.
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The brine channel formation starts in the higher humidity case later than the other two

cases since the ice is thinner, and when it does, has a slower release rate, since it is thinner

than the two other cases when it starts, as shown in figure 5.67. The total salt release by

brine channels, shown in figure 5.68, happens faster in the higher humidity case, but, be-

cause it starts later, after 48 hours, the total salt released by the brine channels is still lower.

Figure 5.67: Brine channel release rate until two days of simulation.

Figure 5.68: Total brine channel release until two days of simulation.
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The rate of salt released by congelation ice is approximately constant for all three cases

as shown in figure 5.69, with the higher humidity case with the lowest rate, since the

growth rate is smaller. Since the higher humidity case starts later and has a smaller rate,

again in figure 5.70, the total salt released by congelation ice is the smallest after 48 hours

in that case.

Figure 5.69: Rate of salt released from congelation ice until two days of simulation.

Figure 5.70: Total salt released from congelation ice formation until two days of simulation.
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5.7 Summary

As shown by the majority of the sensitivity studies, ice does indeed grow faster during the

frazil ice stage. This is because there is a lot more contact between the crystals and the

water, and the heat loss at the open surface is so much greater. This in agreement with

the theory that frazil ice formation is a major source of new ice, and demonstrates the

impact leads and polynyas have on the polar regions.

We have explored a range of typical values of forcing choices and, although these are

somewhat arbitrary, we can argue that wind speed seems to have the largest effect on the

amount of ice formed, with the total ice thickness in the higher wind speed case more than

double the total ice thickness in the lower wind speed case. This is because there are two

mechanisms that are affected by wind speed. Firstly, higher wind speed increases the heat

flux at the surface, which in turn leads to more ice creation. Secondly, higher wind speed

creates a larger build-up of ice at the edge, or collection depth, and so forces the frazil ice

formation stage to last longer, which, as already mentioned, increases the total amount of

ice.

These seem to be two main processes which affect frazil ice formation, by the thermo-

dynamics at the surface of the water, and by the collection depth at the edge. In this study,

the thermodynamics was affected by wind speed, air temperature, longwave radiation and

air humidity. The collection depth was affected by wind speed and lead width. Changing

water salinity does not directly affect either of these processes, but as the study shows,

varying it has little effect on the results.

To summarise, higher heat fluxes at the surface and a larger collection depth both

increase the amount of ice created, and with wind speed affecting both of these, we con-

clude that frazil ice formation is more sensitive to wind speed variation that other typical

variations in forcing.

118



6 Concluding Remarks

The aim of this PhD was to create a model of how frazil ice forms in the Arctic, specifically

in leads and polynyas. By doing so, we wanted to check what effect frazil ice has on new

ice formation in these areas, and what physical drivers affect the amount of ice formed.

Looking at the bigger picture, we wanted to see if we could build a model which could

be used in a GCM to more accurately predict frazil ice formation and hence the initial

stages of sea ice formation. The motivation for this were studies which showed that sea

ice formation was underestimated in GCMs and also that frazil ice formation accounts for

a larger amount of new sea ice production than previously thought.

Our model was based on that of Holland & Feltham (H&F) (2005), which was of frazil

ice formation under an ice shelf. The predictions of the H&F frazil dynamics model were

in agreement with observations; the model itself was based on previous models such as

Smedsrud & Jenkins (2004) and Jenkins & Bombosch (1995). We now briefly discuss the

main changes and additions we made to H&F to create our model (the mathematical for-

mulations are described in Chapter 2).

The first main change we made was the inclusion of salinity as a model variable. Since

we are interested in the evolution of the sea ice after an ice cover has formed, salinity

becomes an interesting variable due to the desalination of sea ice. During the initial frazil

ice formation, as the crystals grow they release salt, affecting the ambient water salinity.

We also consider in our model the mixed layer, which is the upper layer of the ocean which,

due to stirring from waves/wind, has a relatively constant temperature and salinity. We

allow the mixed layer bottom to move, which depends heavily on the temperature and

salinity of the water.

With regards to the frazil crystal dynamics, we kept most of the assumptions from H&F

as they had achieved results which appeared to be realistic. The frazil precipitation formu-

lation was kept the same as H&F, even though we were now dealing with open water, since
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the depth of the viscous layer used in H&F was within the bounds of that of an ice-ocean

interface, and since the wind at the surface was already included elsewhere in the model.

One area in which we made changes were the crystal rising velocities due to buoyancy.

We used the study of Morse & Richard (2009) to investigate different parameterizations.

These were later found to be wrong, and smaller than they should have been. The correct

figures would have affected our results, since higher rising velocities would have forced an

ice layer to form at the surface sooner. The qualitative results wouldn’t have changed, but

the overall times would have. The formulation for secondary nucleation was also altered.

Relative to the difference in the area we were modelling compared to H&F, the main

difference is the upper boundary condition of our system. Since our water is in contact

with the open atmosphere, the heat loss is a lot larger, and it is this heat loss which is the

main contributing factor towards rapid ice formation. Since we were considering an Arctic

winter scenario, we looked at an average air temperature of −25° C. This, compared to the

average water temperature, near to freezing temperature of −2° C, means the heat loss to

the air is large.

Once enough frazil ice has formed we depart from the model of H&F by letting a layer

of grease ice form. To calculate at which point this happens, we looked at the study of

Smedsrud (2011), which gives a parameterization of the collection depth, which is the max-

imum depth grease ice will collect to at the edge of a lead. Once enough ice has formed to

create a full layer of ice at the collection depth, we treat the mixture as a granular layer,

and we stop the frazil ice formation, allowing the escaping heat at the surface to increase

the solid fraction of the granular ice layer until it reaches 90%, which is where we define

the cut-off point, after which it becomes a solid ice layer. During this time, since more ice

is forming in the granular layer, salt is being released into the surrounding water, which

eventually leads to areas of very salty water known as brine pockets.

Once we have a solid layer of ice, the growth mechanism changes again and congelation

ice starts to grow downwards, increasing the ice layer depth. We describe this growth
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stage using the mushy layer equations. It is during this time that brine channels form,

which carry salt water from brine pockets within the ice layer to the ocean beneath. This,

together with salt being released solely from congelation ice growth, is responsible for the

desalination of sea ice. This stage is important to model accurately, as salt being released

from the ice layer lowers the bulk salinity of the ice, which in turn affects the growth rate

of the ice. This is the last stage in our study, and concludes the initial stages of sea ice

formation. All the model runs in our work simulate two days of real time, by which point

they have all reached this last stage.

The ice formation model and equation solution procedures were built in stages into a

Fortran 90 code, with the help of NAG (Numerical Algorithms Group) routines. (See Ap-

pendix for code). The first solutions we looked at in Chapter 3 were those of a well-mixed

layer, where we simplified the problem by removing all space variables and consider a well-

mixed box. This was also done in H&F, and was a necessary exercise to check whether

our solving mechanism was accurate. Since the results were the same as H&F, we were

confident in proceeding with the same method.

The next chapter, Chapter 4, saw us solve the full one dimensional model with all the

formulations from chapter 2 included. This stage of the work was done in stages, adding

new parameterizations and solving the full system to check the validity of the results. This

took up the bulk of the work in the PhD since the programming sometimes became cum-

bersome, which required days of debugging at times. All throughout this process, one way

we used to check if our results were realistic was to measure the total amounts of heat and

salinity and check whether they had been conserved within the system.

Once the full model had been built and the solution procedures verified, we wanted to

analyse the full results using a reference run. For this we needed realistic initial conditions

and forcings for an Arctic winter scenario, obtained from the literature. It is this reference

run which is shown in the second half of Chapter 4. All plots we thought were worth

investigation are also included. Following on from this, we have a case study which uses
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the full model solution and forcings from Dmitrenko el al (2010) to compare our model

results to those observed in the paper. The results were found to be similar enough to

believe our model is realistic.

In the next chapter, Chapter 5, we used the reference run from the previous chapter

as a basis about which to conduct some sensitivity studies. We varied six different forc-

ings/parameters in the model: wind speed, air temperature, water salinity, lead width,

longwave radiation and air humidity. For each of these, we did a detailed analysis of the

reference run and two runs, with a larger and lower value of the respective parameter. One

issue we found whilst analysing the results was that the anuc parameter in the formulation

we used for the secondary nucleation was too low. This caused, in some of the cases, a

delay in the amount of time it took for ice to first start forming. To confirm that this was

indeed due to the secondary nucleation parameter, we ran the same cases with a larger

value of anuc and found the delay disappeared or was severely dampened in most cases. In

the end, we decided to keep the original value, since it was the one we had used throughout

the study, but we remained aware whilst analysing the results that the any ’delay’ before

the onset of strong secondary nucleation found in the results could possibly not be physical.

We now discuss the results of the model solution, the case studies and the sensitivity

studies, and try to make some comments on the implications for frazil ice and sea ice

modelling, their inclusion into GCMs, and future climate research.

One major conclusion which was made from the sensitivity studies was that the two

main drivers of the amount of ice formed in the initial stages of sea ice formation are heat

flux at the surface and the collection depth at the edge of the lead/polynya. The heat

flux drive means that more heat being lost at the surface means more ice is formed, and

the collection depth drive means that a larger collection depth implies the lead/polynya

remains uncovered for longer and more ice is formed. From this we can see why the wind

speed is the parameter the model is the most sensitive to, since increasing wind speed

increases the heat flux and increases the collection depth, meaning the ice formation rate
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is larger and it lasts for longer.

As mentioned in Chapter 1, current GCMs predictions of sea ice from year to year are

not accurate e.g. they have underestimated the reduction in sea ice summer extent greatly.

It’s reasonable to assume that it is important to model frazil ice production accurately if

we are to improve sea ice models. The complexity and uncertainty in frazil ice formation

has lead to significant simplifications in models, and we hope that our study and future

works will improve this.

Current global climate models underestimate the amount of sea ice which is of gran-

ular origin, which mostly is formed in leads and polynyas. We suggest that increasing

the realism of lead/polynya refreezing in these models would improve this. Since GCMs

use a spatial discrete grid, we could create a version of the model which would be valid

only within a single unit of the grid. The main change would be how to model the col-

lection depth at the edge of the lead/polynya, but we could use the direction of the wind

to advect frazil ice into neighbouring grid elements. The parameters needed for the model

(wind speed, heat fluxes, air temperature, water temperature, water salinity) are already

present in climate models so could just be used to estimate the rate of frazil ice production.

With changing climate conditions, the average air temperature in the polar regions is

expected to increase. This implies, as has been observed, that less ice will be present at

the poles. In our model, similarly, if the winter air temperature increases, the heat flux at

the surface will decrease and hence less ice will form. This is shown in the sensitivity study

where we increase and decrease the air temperature. As shown in the sensitivity studies,

the parameter the model is most sensitive to is wind speed. With changing climate condi-

tions, it is possible that the average wind speed could decrease. Our model suggests that

if this happens, less ice will form, and if the average air temperature is also increasing,

there could be a compounding effect on the amount of ice formed. If our model were to

be included in a GCM, we would therefore expect estimates of sea ice formation rates to

decrease in the future, hence making modelled values closer to observed values.
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As discussed in Chapter 1, sea ice affects the thermohaline circulation. One way in

which this happens is by the formation of dense water, hence being denser, which sinks

near the poles and travel equatorward. Frazil ice formation, by releasing salt into the ocean,

accounts for a sizeable amount of dense water formed in the Antarctic. It is believed to be a

major contributor to High Salinity Shelf Water (HSSW) in the Filchner-Ronne continental

shelf. Our model suggests that under changing climate conditions less frazil ice may form

in leads and polynyas, which will in turn lead to lower dense water formation rates. This is

predicted to create a slowdown of the thermohaline circulation, which could lead to major

consequences in the Earth’s climate.

Granular ice of frazil origin is believed to be the most common type of ice found in the

Antarctic (Weeks & Ackley 1986). As previously mentioned, current GCMs underestimate

the amount of sea ice which is granular. We suggest that incorporating our model into

global climate models would increase the amount of frazil ice that forms, hence increasing

the amount of sea ice which is granular.

The main limitation of our model is that it is one-dimensional. Inclusion of horizontal

dimensions would permit horizontal advection of scalars such as frazil ice, however the

scaling analysis in chapter 2 show these terms to be negligible compared to the turbulent

mixing. The most important feature to be captured by including a horizontal dimension

is the wind-driven herding of frazil to collect as grease ice at the lead/polynya edge. Such

an extension of our work would likely lead to new insight into the processes controlling the

formation of new sea ice in leads and polynyas.
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Appendix A Program Code

We attach the source Fortran code that we wrote to solve the equations of our model,

described in Chapter 4.

In this code, we first define all the variables and parameters of the model, including the

independent variables of depth and time, and the dependent variables of concentration,

temperature and salinity. The depth variable is defined as an array UX with 1001 points

(defined as a depth of 100 m with 0.1 m step size). The dependent variables are defined

in the form of a two-dimensional array UW(12,1001), where the first dimension are the 10

concentration size classes, the temperature and the salinity, and the second dimension are

the 1001 depth points. We then populate the data array UW with the initial conditions,

using functions and subroutines we have written for this.

We then define the equations that govern the system, including the boundary condi-

tions. To simplify the solution procedure, we used numerical algorithms from the Numerical

Algorithms Group (NAG), namely D03PCA and D03PZF, which are both used in solving

systems of partial differential equations. To use the NAG routines, we must input into

these subroutines the initial conditions array and parameters. The routines solve the sys-

tem for one time step (1s in our case) and populate the dependent variable data array with

the solution after that time step. This is then used as the initial condition in the next call

to the NAG routine. By using a FOR loop we run the model for the required number of

time steps (172,000 in our case), and solve the system for each one.

To output data from the model, we write the necessary data to external data files (the

.dat files), which are then analysed separately. To do this, and since the amount of data is

large, we only write the model solution every 360 times steps (i.e. 6 minutes of real time).

This is resolution is sufficiently fine that over 2 days of run time, our solution curves are

smooth.
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PROGRAM FRAZIL_REF 

 

 

 

IMPLICIT NONE 

 

 

!WATER VARIABLES 1 

 

 

 

INTEGER    NPDEW, MW, NPTSW, INTPTSW, ITYPEW, NWW, 

NIWW, ITASKW, ITRACEW, INDW, IUSERW(1), IWSAVW(505), IFAILW, NEQNW, NWKW

   

 

PARAMETER   (NPDEW=12, NPTSW=1001, INTPTSW=1001, ITYPEW=2, 

NEQNW=NPDEW*NPTSW, NIWW=NEQNW+24, NWKW=(10+6*NPDEW)*NEQNW, 

NWW=NWKW+(21+3*NPDEW)*NPDEW+7*NPTSW+54) 

 

DOUBLE PRECISION  TSW, TOUTW, UW(NPDEW, NPTSW), UPW(NPDEW, INTPTSW, 

ITYPEW), XW(NPTSW), XPW(INTPTSW), ACCW, WW(NWW), RUSERW(1), RWSAVW(1100) 

 

DOUBLE PRECISION  UL(NPDEW, NPTSW), DUL(NPDEW, NPTSW) 

 

INTEGER    IWW(NIWW) 

 

LOGICAL    LWSAVW(100) 

 

CHARACTER*80   CWSAVW(10) 

 

EXTERNAL   PDEDEFW, BNDARYW, UINITW 

 

 

 

 

!WATER VARIABLES 2 

 

 

 

INTEGER    NPDEWW, MWW, NPTSWW, INTPTSWW, ITYPEWW, 

NWWW, NIWWW, ITASKWW, ITRACEWW, INDWW, IUSERWW(1), IWSAVWW(505), IFAILWW, 

NEQNWW, NWKWW 

 

PARAMETER   (NPDEWW=2, NPTSWW=1001, INTPTSWW=1001, ITYPEWW=2, 

NEQNWW=NPDEWW*NPTSWW, NIWWW=NEQNWW+24, NWKWW=(10+6*NPDEWW)*NEQNWW, 

NWWW=NWKWW+(21+3*NPDEWW)*NPDEWW+7*NPTSWW+54) 

 

DOUBLE PRECISION  TSWW, TOUTWW, UWW(NPDEWW, NPTSWW), UPWW(NPDEWW, 

INTPTSWW, ITYPEWW), XWW(NPTSWW), XPWW(INTPTSWW), ACCWW, WWW(NWWW), 

RUSERWW(1), RWSAVWW(1100) 

 

DOUBLE PRECISION  ULW(NPDEWW, NPTSWW), DULW(NPDEWW, NPTSWW) 

 

INTEGER    IWWW(NIWWW) 
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LOGICAL    LWSAVWW(100) 

 

CHARACTER*80   CWSAVWW(10) 

 

EXTERNAL   PDEDEFWW, BNDARYWW 

 

 

 

 

!ICE VARIABLES 

 

 

 

INTEGER    NPDEI, MI, NPTSI, INTPTSI, ITYPEI, NWI, 

NIWI, ITASKI, ITRACEI, INDI, IUSERI(1), IWSAVI(505), IFAILI, NEQNI, NWKI 

 

PARAMETER   (NPDEI=1, NPTSI=201, INTPTSI=201, ITYPEI=2, 

NEQNI=NPDEI*NPTSI, NIWI=NEQNI+24, NWKI=(10+6*NPDEI)*NEQNI, 

NWI=NWKI+(21+3*NPDEI)*NPDEI+7*NPTSI+54) 

DOUBLE PRECISION TSI, TOUTI, UI(NPDEI, NPTSI), UPI(NPDEI, INTPTSI, 

ITYPEI), XI(NPTSI), XPI(INTPTSI), ACCI, WI(NWI), RUSERI(1), RWSAVI(1100) 

 

INTEGER    IWI(NIWI) 

 

LOGICAL    LWSAVI(100) 

 

CHARACTER*80   CWSAVI(10) 

 

EXTERNAL   PDEDEFI, BNDARYI, UINITI 

 

 

 

 

 

!GENERAL VARIABLES 

 

 

 

INTEGER    I, IT, TSTEPS, COUNTER, AA, NNN, J 

 

DOUBLE PRECISION  RAD(10), W(10), HW, HI, RHO(NPTSW), UII, BRINE, 

T0, CBULK, UA, KT, PA, CA, LLEAD, VGRE 

 

DOUBLE PRECISION  KICE, KEFF, KWAT, VT, P0, CP, COV, DH, DHDT, H, 

T1, T2, TOTTIME, VTT, BS, BT, FLUXES, LL 

 

PARAMETER   (TSTEPS=172800) 

 

DOUBLE PRECISION  CTOT, DCTOT, PREC, PRECIP(10), TOTPRECIP, COVER, 

INTERACTION, TF, PRECTOP, TEMP0, TOTBRINE, TOTSALT 

 

EXTERNAL   D03PCA, D03PZF 
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COMMON /BLOCK1/   UL, DUL, COVER 

 

COMMON /BLOCK2/   H, DH 

 

COMMON /BLOCK3/   ULW, DULW 

 

COMMON /BLOCK4/   UII 

 

COMMON /BLOCK5/   TEMP0 

 

COMMON /BLOCK6/   CBULK 

 

 

 

 

 

!WATER PARAMETERS 

 

 

MW=0 

 

ACCW=1.0D-8 

 

HW=0.1D0 

 

TSW=0.0D0 

 

TOUTW=1.0D0 

 

ITRACEW=0 

 

INDW=0 

 

ITASKW=1 

 

 

 

 

!WATER PARAMETERS 2 

 

 

MWW=0 

 

ACCWW=1.0D-8 

 

ITRACEWW=0 

 

INDWW=0 

 

ITASKWW=1 
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!ICE PARAMETERS 

 

 

MI=0 

 

ACCI=1.0D-6 

 

HI=0.0001D0 

 

TSI=0.0D0 

 

TOUTI=1.0D0 

 

ITRACEI=0 

 

INDI=0 

 

ITASKI=1 

 

 

 

 

 

!GENERAL PARAMETERS 

 

 

COUNTER=0 

 

COVER=0.0D0 

 

TOTPRECIP=0.0D0 

 

VT=1.0D-2 

 

P0=1030.0D0 

 

CP=3974.0D0 

 

BS=7.86D-4 

 

BT=3.87D-5 

 

AA=0 

 

CBULK=10.35D0 

 

UA=5.0D0 

 

KT=100.0D0 

 

PA=1.4D0 

 

CA=1.3D-3 
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LLEAD=150.0D0 

 

VGRE=0.0D0 

 

LL=3.35D5 

 

TOTBRINE=0.0D0 

 

TOTSALT=0.0D0 

 

 

 

 

 

!CRYSTAL RADIUS AND RISE VELOCITIES 

 

 

 

RAD=(/0.01D-3, 0.05D-3, 0.15D-3, 0.3D-3, 0.4D-3, 0.5D-3, 0.6D-3, 0.8D-3, 

1.0D-3, 2.0D-3/) 

 

W=(/3.56775D-6, 0.0000484646D0, 0.000287633D0, 0.000884725D0, 

0.00141037D0, 0.002025D0, 0.00272131D0, 0.00422272D0, 0.005702D0, 

0.012604D0/) 

 

 

 

 

 

!OPEN DATA FILE 

 

 

 

OPEN(30,file='1frazil.dat') 

 

OPEN(31,file='1frazilice.dat') 

 

OPEN(32,file='1frazilice2.dat') 

 

OPEN(33,file='1frazilprec.dat') 

 

OPEN(34,file='1fraziltc.dat') 

 

OPEN(35,file='1frazilsalt.dat') 

 

OPEN(36,file='1frazilbrine.dat') 

 

OPEN(37,file='1frazilt0.dat') 

 

OPEN(38,file='1frazilgrease.dat') 

 

OPEN(39,file='1frazilcbulk.dat') 
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!SET DEPTH DATA POINTS 

 

 

 

DO I=1,NPTSW 

  

 XW(I)=(I-1)*HW 

  

 XPW(I)=(I-1)*HW 

  

 XWW(I)=(I-1)*HW 

  

 XPWW(I)=(I-1)*HW 

 

END DO 

 

 

 

DO I=1,NPTSI 

  

 XI(I)=(I-1)*HI 

  

 XPI(I)=(I-1)*HI 

 

END DO 

 

 

 

 

!CALL INITIAL CONDITIONS 

 

 

 

CALL UINITW(UW, XW, NPTSW) 

 

CALL UINITI(UI, XI, NPTSI) 

 

 

 

 

!WRITE INITIAL CONDITIONS 

 

 

 

WRITE (30,*), UW(1:10,:) 

 

WRITE (34,*), UW(11:12,:) 

 

WRITE (31,*), UI(:,:) 

 

WRITE (32,*), H, DH 
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WRITE (33,*), PRECTOP, TOTPRECIP 

 

WRITE (38,*), VGRE 

 

WRITE (39,*), CBULK 

 

 

 

 

!START RUN 

 

 

 

 

 

DO IT=1,TSTEPS 

  

 

CALL CPU_TIME(T1) 

 

 

 

 IF (COVER .LT. 1.0D0) THEN 

 

  

  UL(:,:)=UW(:,:) 

  

  DUL(:,:)=UPW(:,:,2) 

 

  

  CTOT=0.0D0 

  

  DCTOT=0.0D0 

  

 

  DO I=1,NPDEW-2 

   

   CTOT=CTOT+UW(I,NPTSW) 

   

   DCTOT=DCTOT+UPW(I,NPTSW,2) 

             

  END DO 

 

  

 

  DO I=1,NPDEW-2 

   

  

 PRECIP(I)=PREC(W(I),RAD(I),UW(I,NPTSW),UPW(I,NPTSW,2),CTOT,DCTOT,IN

TERACTION(I,RAD,W,UW(:,NPTSW),TF(100.0D0,UW(NPDEW,NPTSW)))) 

   

   TOTPRECIP=TOTPRECIP-PRECIP(I) 
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  END DO 

 

  

 

  PRECTOP=0.0D0 

  

 

  DO I=1,NPDEW-2 

   

   PRECTOP=PRECTOP-PRECIP(I) 

  

  END DO 

 

  

 

 

 COVER=(((3.0D0/2.0D0)*((TOTPRECIP*LLEAD/0.25D0)/UA)*SQRT(KT/(PA*CA)

))**(2.0D0/3.0D0))/LLEAD 

  

  

  VGRE=VGRE+PRECTOP-(FLUXES(UW(11,1001))*CP*COVER/LL) 

   

  

 

  CALL D03PCA(NPDEW, MW, TSW, TOUTW, PDEDEFW, BNDARYW, UW, 

NPTSW, XW, ACCW, WW, NWW, IWW, NIWW, ITASKW, ITRACEW, INDW, IUSERW, 

RUSERW, CWSAVW, LWSAVW, IWSAVW, RWSAVW, IFAILW)  

  

  CALL D03PZF(NPDEW, MW, UW, NPTSW, XW, XPW, INTPTSW, ITYPEW, 

UPW,  IFAILW) 

  

  

 

  TOUTW=TOUTW+1.0D0 

 

  

  COUNTER=COUNTER+1 

  

  

 

  IF(MOD(COUNTER,360) .EQ. 0) THEN 

   

 

   WRITE (30,*), UW(1:10,:) 

   

   WRITE (34,*), UW(11:12,:) 

   

   WRITE (31,*), UI(:,:) 

   

   WRITE (32,*), H, DH 

   

   WRITE (33,*), PRECTOP, TOTPRECIP 

   

   WRITE (38,*), VGRE 
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   WRITE (39,*), CBULK 

  

  ELSE 

  

  END IF 

  

  

 

  PRINT*, "A" 

  

 

 

 ELSEIF (AA .EQ. 0) THEN 

  

 

  UWW(:,:)=UW(11:12,:) 

  

  UPWW(:,:,:)=UPW(11:12,:,:) 

  

  

  TEMP0=-1.89365D0 

 

  

  H=TOTPRECIP/0.25D0 

   

  

 

  DO I=1,NPDEW-2 

   

   DO J=1,NPTSW 

    

    H=H+0.1D0*UW(I,J) 

   

   END DO 

  

  END DO 

   

  

 

  TSWW=TSW 

  

  TOUTWW=TOUTW 

  

  

  VGRE=VGRE-(FLUXES(UW(11,1001))*CP*COVER/LL) 

  

  

 

  IF (VGRE/(4.0D0*TOTPRECIP) .GE. 0.7D0) THEN 

  

   AA=AA+1 

  

  ELSE 

139



  

  END IF 

  

  

 

  COUNTER=COUNTER+1 

  

  

 

  IF(MOD(COUNTER,360) .EQ. 0) THEN 

   

 

   WRITE (34,*), UW(11:12,:) 

   

   WRITE (31,*), UI(:,:) 

   

   WRITE (32,*), H, DH 

   

   WRITE (33,*), PRECTOP, TOTPRECIP 

   

   WRITE (38,*), VGRE 

    

   WRITE (39,*), CBULK 

  

  ELSE 

  

  END IF 

  

  

 

 

  PRINT*, VGRE*100/(4.0D0*TOTPRECIP) 

  

  

  PRINT*, "B" 

 

 

 ELSE 

 

  

 

  ULW(:,:)=UWW(:,:) 

  

  DULW(:,:)=UPWW(:,:,2) 

  

  

  UII=UI(1,101) 

 

  

 

  CALL D03PCA(NPDEWW, MWW, TSWW, TOUTWW, PDEDEFWW, BNDARYWW, 

UWW, NPTSWW, XWW, ACCWW, WWW, NWWW, IWWW, NIWWW, ITASKWW, ITRACEWW, 

INDWW, IUSERWW, RUSERWW, CWSAVWW, LWSAVWW, IWSAVWW, RWSAVWW, IFAILWW) 
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  CALL D03PZF(NPDEWW, MWW, UWW, NPTSWW, XWW, XPWW, INTPTSWW, 

ITYPEWW, UPWW, IFAILWW) 

  

  

 

  INDWW=0 

      

  

  TOUTWW=TOUTWW+1.0D0 

   

  

 

 

  DO I=1,NPTSW 

   

   RHO(I)=BS*UWW(2,I)-BT*UWW(1,I) 

  

  END DO 

   

  

 

  DO J=1,10000 

  

 

   NNN=0 

   

 

   DO I=1,NPTSW-1 

    

 

    IF (RHO(I+1) .GT. RHO(I)) THEN 

     

 

     UWW(1,I+1)=(UWW(1,I+1)+UWW(1,I))/2.0D0 

     

     UWW(1,I)=UWW(1,I+1) 

     

     UWW(2,I+1)=(UWW(2,I+1)+UWW(2,I))/2.0D0 

     

     UWW(2,I)=UWW(2,I+1) 

     

     

     RHO(I)=BS*UWW(2,I)-BT*UWW(1,I) 

     

     RHO(I+1)=BS*UWW(2,I+1)-BT*UWW(1,I+1) 

    

    ELSE 

     

     NNN=NNN+1 

    

    END IF 

   

   END DO 
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   IF (NNN .EQ. 1000) THEN 

    

    EXIT 

   

   ELSE 

  

   END IF 

  

 

  END DO  

   

   

  

 

 

  COVER=1.0D0 

  

 

  CALL D03PCA(NPDEI, MI, TSI, TOUTI, PDEDEFI, BNDARYI, UI, 

NPTSI, XI, ACCI, WI, NWI, IWI, NIWI, ITASKI, ITRACEI, INDI, IUSERI, 

RUSERI, CWSAVI, LWSAVI, IWSAVI, RWSAVI, IFAILI) 

  

  CALL D03PZF(NPDEI, MI, UI, NPTSI, XI, XPI, INTPTSI, ITYPEI, 

UPI, IFAILI) 

  

 

  TOUTI=TOUTI+1.0D0 

  

  KICE=KEFF(271.256D0) 

  

  KWAT=VT*P0*CP 

  

  COV=1.0D0-CBULK/(34.5D0) 

  

  DH=DHDT(H,UI(1,1),UWW(1,981),UWW(2,981)) 

  

  H=H+DH 

  

 

  DO I=1,NPTSI 

   

   XI(I)=(I-1)*(H/200.0D0) 

    

   XPI(I)=(I-1)*(H/200.0D0) 

  

  END DO 

   

  

 

  BULK=CBULK-(BRINE(H,UII,CBULK)/H) 
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  TOTBRINE=TOTBRINE+BRINE(H,UII,CBULK) 

  

  TOTSALT=TOTSALT+UWW(2,1001)*(1.0D0-(CBULK/34.5D0))*DH 

  

  

  TEMP0=T0(DH,UWW(2,981)) 

   

  

    

  COUNTER=COUNTER+1 

  

  

 

  IF(MOD(COUNTER,360) .EQ. 0) THEN 

   

   WRITE (34,*), UWW(:,:) 

   

   WRITE (31,*), UI(:,:) 

   

   WRITE (32,*), H, DH 

   

   

   WRITE(35,*), (1.0D0-(10.0D0/34.5D0))*DH*UWW(2,1001) 

   

   WRITE(36,*), BRINE(H,UII,CBULK) 

   

   WRITE(37,*), T0(DH,UWW(2,981)) 

   

   

   WRITE (38,*), VGRE 

   

   WRITE (39,*), CBULK 

  

  ELSE 

  

  END IF 

   

 END IF 

 

  

 

CALL CPU_TIME(T2) 

  

  

 

PRINT*, IT, COVER 

 

 PRINT*, VGRE/(4.0D0*TOTPRECIP) 

  

PRINT*, H, UII, CBULK 

 

 PRINT*, BRINE(H, UII, CBULK) 
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PRINT*, TOTBRINE, TOTSALT 

 PRINT*, "----------" 

 

 

  

END DO 

 

 

 

CALL CPU_TIME(T2) 

 

 

 

PRINT*, "TOTAL TIME", T2 

 

 

 

END PROGRAM 

 

 

 

 

 

!---------- WATER EQUATIONS DEFINITIONS PART1---------- 

 

 

 

SUBROUTINE PDEDEFW(NPDE, T, X, U, UX, P, Q, R, IRES, IUSER, RUSER) 

 

 

 

INTEGER    I, J, NPDE, IRES, IUSER(1) 

 

DOUBLE PRECISION  T, X, U(NPDE), UX(NPDE), P(NPDE, NPDE), Q(NPDE), 

R(NPDE), RUSER(1) 

 

DOUBLE PRECISION  INTERACTION, TOTINTER, RAD(10), W(10), TF, PI, P0, 

LL, C0, VT, VTT1, BS, BT 

 

PARAMETER   (PI=920.0D0, P0=1030.0D0, LL=3.35D5, C0=3974.0D0, 

VT=1.0D-2, BS=7.86D-4, BT=3.87D-5) 

 

 

 

RAD=(/0.01D-3, 0.05D-3, 0.15D-3, 0.3D-3, 0.4D-3, 0.5D-3, 0.6D-3, 0.8D-3, 

1.0D-3, 2.0D-3/) 

 

W=(/3.56775D-6, 0.0000484646D0, 0.000287633D0, 0.000884725D0, 

0.00141037D0, 0.002025D0, 0.00272131D0, 0.00422272D0, 0.005702D0, 

0.012604D0/) 

 

 

 

DO I=1,NPDE 
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 DO J=1,NPDE 

   

  IF (I .EQ. J) THEN 

    

   P(I,J)=1.0D0 

   

  ELSE 

    

   P(I,J)=0.0D0 

   

  END IF 

  

 END DO 

 

END DO 

 

 

 

TOTINTER=INTERACTION(1,RAD,W,U,TF(X,U(12)))+INTERACTION(2,RAD,W,U,TF(X,U(

12)))+INTERACTION(3,RAD,W,U,TF(X,U(12)))+INTERACTION(4,RAD,W,U,TF(X,U(12)

))+INTERACTION(5,RAD,W,U,TF(X,U(12)))+INTERACTION(6,RAD,W,U,TF(X,U(12)))+

INTERACTION(7,RAD,W,U,TF(X,U(12)))+INTERACTION(8,RAD,W,U,TF(X,U(12)))+INT

ERACTION(9,RAD,W,U,TF(X,U(12)))+INTERACTION(10,RAD,W,U,TF(X,U(12))) 

 

 

 

DO I=1,10 

  

 Q(I)=-INTERACTION(I,RAD,W,U(1:11),TF(X,U(12))) 

 

END DO 

  

 

Q(NPDE-1)=(PI/P0)*TOTINTER*(TF(X,U(12))-U(11)-(LL/C0)) 

  

Q(NPDE)=-(PI/P0)*TOTINTER*U(12) 

  

 

 

DO I=1,10 

  

 R(I)=VTT1(BS*UX(12)-BT*UX(11),X)*UX(I)-W(I)*U(I) 

 

END DO 

  

 

R(NPDE-1)=VTT1(BS*UX(12)-BT*UX(11),X)*UX(NPDE-1) 

  

R(NPDE)=VTT1(BS*UX(12)-BT*UX(11),X)*UX(NPDE) 

 

 

 

END SUBROUTINE 
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!---------- WATER EQUATIONS DEFININITIONS PART2---------- 

 

 

 

SUBROUTINE PDEDEFWW(NPDE, T, X, U, UX, P, Q, R, IRES, IUSER, RUSER) 

 

 

 

INTEGER    I, J, NPDE, IRES, IUSER(1) 

 

DOUBLE PRECISION  T, X, U(NPDE), UX(NPDE), P(NPDE, NPDE), Q(NPDE), 

R(NPDE), RUSER(1) 

 

DOUBLE PRECISION  INTERACTION, TOTINTER, RAD(10), W(10), TF, PI, P0, 

LL, C0, VT, VTT2, BS, BT 

 

PARAMETER   (PI=920.0D0, P0=1030.0D0, LL=3.35D5, C0=3974.0D0, 

VT=1.0D-2, BS=7.86D-4, BT=3.87D-5) 

 

 

 

DO I=1,2 

  

 DO J=1,2 

   

  IF (I .EQ. J) THEN 

    

   P(I,J)=1.0D0 

   

  ELSE 

    

   P(I,J)=0.0D0 

   

  END IF 

  

 END DO 

 

END DO 

 

 

 

Q(1)=0.0D0 

 

Q(2)=0.0D0 

  

 

 

R(1)=VTT2(BS*UX(2)-BT*UX(1),X)*UX(1) 

R(2)=VTT2(BS*UX(2)-BT*UX(1),X)*UX(2) 

146



 

 

 

END SUBROUTINE 

 

 

 

 

 

 

 

!---------- ICE EQUATION DEFINITION ---------- 

 

 

 

SUBROUTINE PDEDEFI(NPDE, T, X, U, UX, P, Q, R, IRES) 

 

 

 

INTEGER    NPDE, IRES 

 

DOUBLE PRECISION  T, X, U(NPDE), UX(NPDE), P(NPDE,NPDE), Q(NPDE), 

R(NPDE), CEFF, KEFF 

 

 

 

P(1,1)=CEFF(U(1)+273.15D0) 

 

Q(1)=0.0D0 

 

R(1)=KEFF(U(1)+273.15D0)*UX(1) 

 

 

 

END SUBROUTINE 

 

 

 

 

!---------- WATER BOUNDARY CONDITIONS ---------- 

 

 

 

SUBROUTINE BNDARYW(NPDE, T, U, UX, IBND, BETA, GAMMA, IRES, IUSER, 

RUSER) 

 

 

 

INTEGER    I, NPDE, NPTS, IBND, IRES, IUSER(1), NPDEW 

 

PARAMETER   (NPTS=1001, NPDEW=12) 

 

DOUBLE PRECISION T, U(NPDE), UX(NPDE), BETA(NPDE), GAMMA(NPDE), RUSER(1) 
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DOUBLE PRECISION UL(NPDEW, NPTS), DUL(NPDEW,NPTS), RAD(10), W(10), 

INTERACTION, TF, CTOT, DCTOT, VT 

 

DOUBLE PRECISION PREC, FLUXES, COVER, VTT, BS, BT, COV, H, DH 

 

PARAMETER   (VT=1.0D-2, BS=7.86D-4, BT=3.87D-5) 

 

 

COMMON /BLOCK1/  UL, DUL, COVER 

 

COMMON /BLOCK2/  H, DH 

 

COMMON /BLOCK6/  CBULK 

 

COV=1.0D0-(CBULK/34.5D0) 

 

 

 

RAD=(/0.01D-3, 0.05D-3, 0.15D-3, 0.3D-3, 0.4D-3, 0.5D-3, 0.6D-3, 0.8D-3, 

1.0D-3, 2.0D-3/) 

 

W=(/3.56775D-6, 0.0000484646D0, 0.000287633D0, 0.000884725D0, 

0.00141037D0, 0.002025D0, 0.00272131D0, 0.00422272D0, 0.005702D0, 

0.012604D0/) 

 

 

 

CTOT=UL(1,NPTS)+UL(2,NPTS)+UL(3,NPTS)+UL(4,NPTS)+UL(5,NPTS)+UL(6,NPTS)+UL

(7,NPTS)+UL(8,NPTS)+UL(9,NPTS)+UL(10,NPTS) 

 

DCTOT=DUL(1,NPTS)+DUL(2,NPTS)+DUL(3,NPTS)+DUL(4,NPTS)+DUL(5,NPTS)+DUL(6,N

PTS)+DUL(7,NPTS)+DUL(8,NPTS)+DUL(9,NPTS)+DUL(10,NPTS) 

 

 

 

IF (IBND .EQ. 0) THEN 

  

 

 DO I=1,NPDE 

   

  BETA(I)=1.0D0 

   

  GAMMA(I)=0.0D0 

  

 END DO 

 

ELSE 

   

 DO I=1,NPDE-2 

    

  BETA(I)=0.0D0 

    

  GAMMA(I)=(-U(I)+UL(I,NPTS))+(W(I)*UL(I,NPTS)-

VT*DUL(I,NPTS)+INTERACTION(I,RAD,W,UL(:,NPTS),TF(100.0D0,UL(NPDEW,NPTS)))
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+PREC(W(I),RAD(I),UL(I,NPTS),DUL(I,NPTS),CTOT,DCTOT,INTERACTION(I,RAD,W,U

L(:,NPTS),TF(100.0D0,UL(NPDEW,NPTS))))) 

   

 END DO 

   

 

 BETA(NPDE-1)=1.0D0 

   

 GAMMA(NPDE-1)=(1.0D0-COVER)*FLUXES(UL(11,1001)) 

   

 BETA(NPDE)=1.0D0 

   

 GAMMA(NPDE)=0.0D0 

 

 

END IF 

 

 

 

 

END SUBROUTINE 

 

 

 

 

!---------- WATER BOUNDARY CONDITIONS 2 ---------- 

 

 

 

SUBROUTINE BNDARYWW(NPDE, T, U, UX, IBND, BETA, GAMMA, IRES, IUSER, 

RUSER) 

 

 

 

INTEGER    I, NPDE, NPTS, IBND, IRES, IUSER(1), NPDEW 

 

PARAMETER   (NPTS=1001, NPDEW=2) 

 

DOUBLE PRECISION T, U(NPDE), UX(NPDE), BETA(NPDE), GAMMA(NPDE), RUSER(1) 

 

DOUBLE PRECISION UL(NPDEW, NPTS), DUL(NPDEW,NPTS), INTERACTION, TF, CTOT, 

DCTOT, VT 

 

DOUBLE PRECISION PREC, FLUXES, COVER, VTT, BS, BT, COV, H, DH, BRINE, 

TEMP0, CBULK 

 

PARAMETER   (VT=1.0D-2, BS=7.86D-4, BT=3.87D-5) 

 

COMMON /BLOCK3/  UL, DUL 

 

COMMON /BLOCK2/  H, DH 

 

COMMON /BLOCK4/  UII 
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COMMON /BLOCK5/  TEMP0 

 

COMMON /BLOCK6/  CBULK 

 

 

 

COV=1.0D0-(CBULK/34.5D0) 

 

 

 

IF (IBND .EQ. 0) THEN 

   

 BETA(1)=1.0D0 

   

 GAMMA(1)=0.0D0 

   

 BETA(2)=1.0D0 

   

 GAMMA(2)=0.0D0 

 

ELSE 

   

 BETA(1)=0.0D0 

   

 GAMMA(1)=U(1)-TEMP0 

   

 BETA(2)=1.0D0 

   

 GAMMA(2)=U(2)*COV*DH+BRINE(H,UII,CBULK) 

 

END IF 

 

 

 

END SUBROUTINE 

 

 

 

 

 

!---------- ICE BOUNDARY CONDITIONS ---------- 

 

 

 

SUBROUTINE BNDARYI(NPDE, T, U, UX, IBND, BETA, GAMMA, IRES) 

 

 

 

INTEGER    NPDE, IBND, IRES 

 

DOUBLE PRECISION T, U(NPDE), UX(NPDE), BETA(NPDE), GAMMA(NPDE) 

 

DOUBLE PRECISION PI, CPI, FLW, EPSILON, SIGMA, KEL, FSENSI, FLATI, KICE, 

H, KEFF, TEMP0 
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PARAMETER   (FLW=168.3D0, EPSILON=0.99D0, SIGMA=5.67D-8, 

KEL=273.15D0, PI=917.0D0, CPI=2050.0D0, KICE=1.0D-6) 

 

COMMON /BLOCK2/  H 

 

COMMON /BLOCK5/  TEMP0 

 

 

 

IF (IBND .EQ. 0) THEN 

  

 BETA(1)=0.0D0 

  

 GAMMA(1)=KEFF(U(1)+273.15D0)*(U(1)+1.89365D0)/H-(EPSILON*(FLW-

SIGMA*((U(1)+KEL)**4.0D0))+FSENSI(U(1)+KEL)+FLATI(U(1)+KEL)) 

 

ELSE 

  

 BETA(1)=0.0D0 

  

 GAMMA(1)=U(1)-TEMP0 

 

END IF 

 

 

 

END SUBROUTINE 

 

 

 

 

 

!---------- WATER INITIAL CONDITIONS ---------- 

 

 

 

SUBROUTINE UINITW(U, X, NPTS) 

 

 

 

INTEGER    I, J, NPTS, NPDE 

 

PARAMETER   (NPDE=12) 

 

DOUBLE PRECISION X(NPTS), U(NPDE, NPTS) 

 

 

 

DO J=1,NPTS 

  

 DO I=1,NPDE-2 

   

  U(I,J)=4.0D-9*(1.0D0-((ERF(90.0D0-X(J))+1.0D0)/2.0D0)) 
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 END DO 

  

  

 U(NPDE-1,J)=-1.89365D0+0.001D0*(100.0D0-X(J))+((ERF(90.0D0-

X(J))+1.0D0)/2.0D0) 

  

 U(NPDE,J)=34.5D0+0.01D0*(100.0D0-X(J))+((ERF(90.0D0-

X(J))+1.0D0)/2.0D0) 

 

END DO 

 

 

 

END SUBROUTINE 

 

 

 

 

 

!---------- ICE INITIAL CONDITIONS ---------- 

 

 

 

SUBROUTINE UINITI(U, X, NPTS) 

 

 

 

INTEGER    NPTS, I 

 

DOUBLE PRECISION U(1, NPTS), X(NPTS) 

 

 

 

DO I=1,NPTS 

  

 U(1,I)=-1.89365D0 

 

END DO 

 

 

 

END SUBROUTINE 

 

 

 

 

 

 

 

 

! INTERACTION TERMS 

 

 

152



 

 

 

!----------CRYSTAL INTERACTION TERM---------- 

 

 

 

FUNCTION INTERACTION(I,R,W,U,TF) 

 

 

 

INTEGER    I, N, NPDE 

 

PARAMETER   (N=10, NPDE=12) 

 

DOUBLE PRECISION INTERACTION, GROWTH, MELT, NUCLEATION, R(N), W(N), 

U(N+1), H, TF, HE,  

 

CT 

 

H=HE(TF-U(N+1)) 

 

 

CT=U(1)+U(2)+U(3)+U(4)+U(5)+U(6)+U(7)+U(8)+U(9)+U(10) 

 

 

 

IF (I .EQ. 1) THEN 

  

 INTERACTION=(1.0D0-H)*MELT(R(I),U(I),U(N+1),TF)-

(R(I)**3/(R(I+1)**3-R(I)**3))*((1.0D0-

H)*MELT(R(I+1),U(I+1),U(N+1),TF)+H*GROWTH(R(I),U(I),U(N+1),TF))-

NUCLEATION(R(2),W(2),U(2),CT)-NUCLEATION(R(3),W(3),U(3),CT)-

NUCLEATION(R(4),W(4),U(4),CT)-NUCLEATION(R(5),W(5),U(5),CT)-

NUCLEATION(R(6),W(6),U(6),CT)-NUCLEATION(R(7),W(7),U(7),CT)-

NUCLEATION(R(8),W(8),U(8),CT)-NUCLEATION(R(9),W(9),U(9),CT)-

NUCLEATION(R(10),W(10),U(10),CT) 

 

ELSE IF (I .EQ. 10) THEN 

  

 INTERACTION=(R(I)**3/(R(I)**3-R(I-1)**3))*((1.0D0-

H)*MELT(R(I),U(I),U(N+1),TF)+H*GROWTH(R(I-1),U(I-

1),U(N+1),TF))+NUCLEATION(R(I),W(I),U(I),CT) 

 

ELSE 

  

 INTERACTION=(R(I)**3/(R(I)**3-R(I-1)**3))*((1.0D0-

H)*MELT(R(I),U(I),U(N+1),TF)+H*GROWTH(R(I-1),U(I-1),U(N+1),TF))-

(R(I)**3/(R(I+1)**3-R(I)**3))*((1.0D0-

H)*MELT(R(I+1),U(I+1),U(N+1),TF)+H*GROWTH(R(I),U(I),U(N+1),TF))+NUCLEATIO

N(R(I),W(I),U(I),CT) 

 

END IF 
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END FUNCTION 

 

 

 

 

 

!----------CRYSTAL GROWTH TERM---------- 

 

 

 

FUNCTION GROWTH(R,C,T,TF) 

 

DOUBLE PRECISION GROWTH, R, C, T, TF, C0, NU, KT, LL 

 

 

PARAMETER   (C0=3974.0D0, NU=1.0D0, KT=1.4D-7, LL=3.35D5) 

 

 

 

GROWTH=(C0*NU*KT/LL)*(TF-T)*(2.0D0/(R**2.0D0))*C 

 

 

 

END FUNCTION 

 

 

 

 

 

!----------CRYSTAL MELTING TERM---------- 

 

 

 

FUNCTION MELT(R,C,T,TF) 

 

 

 

DOUBLE PRECISION MELT, R, C, T, TF, C0, NU, KT, LL 

 

PARAMETER   (C0=3974.0D0, NU=1.0D0, KT=1.4D-7, LL=3.35D5) 

 

 

 

MELT=(C0*NU*KT/LL)*(TF-T)*(52.0D0/(R**2.0D0))*C 

 

 

 

END FUNCTION 
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!----------SECONDARY NUCLEATION---------- 

 

 

 

FUNCTION NUCLEATION(R,W,C,CT) 

 

 

 

DOUBLE PRECISION NUCLEATION, R, W, C, CT, RE, AR, EP, V0, WI, ANUC 

 

 

PARAMETER   (EP=7.4D-7, V0=1.95D-6, AR=0.02D0, ANUC=1.0D-6) 

 

 

 

RE=R*((3.0D0*AR/2.0D0)**(1.0D0/3.0D0)) 

WI=SQRT((4.0D0*EP/(15.0D0*V0))*(RE**2.0D0)+(W**2.0D0)) 

 

NUCLEATION=-ANUC*C*WI*CT/RE 

 

 

 

END FUNCTION 

 

 

 

 

 

!---------- FREEZING TEMPERATURE ---------- 

 

 

 

FUNCTION TF(X,S) 

 

 

 

DOUBLE PRECISION TF, X, S, BS, BT, T0 

 

PARAMETER   (T0=0.0832D0, BS=-0.0573D0, BT=-7.61D-4) 

 

 

 

TF=T0+S*BS+(100.0D0-X)*BT 

 

 

 

END FUNCTION 

 

 

 

 

 

!---------- HEAVISIDE FUNCTION ----------  
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FUNCTION HE(X) 

 

 

 

DOUBLE PRECISION HE, X 

 

 

 

IF (X .LE. 0.0D0) THEN 

  

 HE=0.0D0 

 

ELSE 

  

 HE=1.0D0 

 

END IF 

 

 

 

END FUNCTION 

 

 

 

 

 

 

 

 

 

! PRECIPITATION TERMS 

 

 

 

 

!----------PRECIPITATION TERM---------- 

 

 

 

FUNCTION PREC(W,R,C,DCDZ,CT,DCTDZ,S) 

 

 

 

DOUBLE PRECISION PREC, TPREC, LPREC, RICH, W, C, R, DCDZ, S, D, RIC, CT, 

DCTDZ 

 

PARAMETER   (D=8.0D0, RIC=0.25D0) 

 

 

PREC=TPREC(W,C,R)+((LPREC(W,C,DCDZ,S)-

TPREC(W,C,R))/2.0D0)*(1+ERF(D*(RICH(CT,DCTDZ)-RIC))) 
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END FUNCTION 

 

 

 

 

 

!----------TURBULENT PRECIPITATION---------- 

 

 

 

FUNCTION TPREC(W,C,R) 

 

 

 

DOUBLE PRECISION TPREC, P0, PI, G, R, RE, CD, W, C, U, UT, HE, AR 

 

PARAMETER   (P0=1030.0D0, PI=920.0D0, G=9.81D0, CD=1.5D-3, 

UT=0.06D0, U=0.055D0, AR=0.02D0) 

 

 

 

RE=R*(3.0D0*AR/2.0D0)**(1.0D0/3.0D0) 

 

UCI2=0.05D0*(P0-PI)*G*2.0D0*RE/(P0*CD) 

 

TPREC=-W*C*(1-((U**2.0D0+UT**2.0D0)/UCI2))*HE(1-

((U**2.0D0+UT**2.0D0)/UCI2)) 

 

 

 

END FUNCTION 

 

 

 

 

 

!----------LAMINAR PRECIPITATION---------- 

 

 

 

FUNCTION LPREC(W,C,DCDZ,S) 

 

 

 

DOUBLE PRECISION LPREC, W, C, VT, DCDZ, S, HE 

 

PARAMETER   (VT=1.0D-2) 

 

 

 

LPREC=(-W*C+VT*DCDZ-S)*HE(-(-W*C+VT*DCDZ-S)) 
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END FUNCTION 

 

 

 

 

 

!----------RICHARDSON NUMBER---------- 

 

 

 

FUNCTION RICH(C,DCDZ) 

 

 

 

DOUBLE PRECISION RICH, G, V, C, PM, P0, PI, V0, DCDZ, CD, U, K 

 

PARAMETER   (G=9.81D0, P0=1030.0D0, PI=920.0D0, V0=1.95D-6, 

CD=1.5D-3, U=0.055D0, K=0.41D0) 

 

V=((0.02D0-V0)/0.47D0)*C+V0 

 

 

PM=P0+C*(PI-P0) 

 

 

RICH=-((G*(V**2.0D0))/(PM*(V0**2.0D0)))*((PI-

P0)*DCDZ)*((35.0D0*V0*K/(CD*(U**2.0D0)))**2.0D0) 

 

 

 

END FUNCTION 

 

 

 

 

 

 

 

 

 

! WATER SURFACE HEAT FLUXES 

 

 

 

!----------HEAT FLUXES WATER--------- 

 

 

 

FUNCTION FLUXES(T0) 
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DOUBLE PRECISION FLUXES, FLW, EPS, SIG, T0, KEL, FSENSW, FLATW, P0, CP 

 

PARAMETER   (FLW=168.3D0, EPS=0.99D0, SIG=5.67D-8, 

KEL=273.15D0, P0=1030.0D0, CP=3974.0D0) 

 

 

 

FLUXES=(EPS*(FLW-SIG*((T0+KEL)**4.0D0))+FSENSW(T0)+FLATW(T0))/(P0*CP) 

 

 

 

END FUNCTION 

 

 

 

 

 

!----------WATER LATENT HEAT--------- 

 

 

 

FUNCTION FLATW(T0) 

 

 

 

DOUBLE PRECISION FLATW, T0, PA, LL, CT, VV, QV, PATM, PV, RV, PAT, QAT, 

KEL 

 

PARAMETER   (PA=1.275D0, LL=2.501D6, CT=1.235D-3, VV=5.0D0, 

PATM=1013.25D0, RV=461.7D0, KEL=273.15D0) 

 

 

 

PV=6.112*EXP((LL/RV)*((1.0D0/273.1D0) - (1.0D0/(T0+KEL)))) 

 

PAT=6.112*EXP((LL/RV)*((1.0D0/273.1D0) - (1.0D0/248.7))) 

 

 

QV=0.622D0*PV/(PATM-0.387D0*PV) 

 

QAT=0.622D0*PAT/(PATM-0.387D0*PAT) 

 

 

FLATW=PA*LL*CT*VV*(QAT-QV) 

 

 

 

END FUNCTION 
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!----------WATER SENSIBLE HEAT---------- 

 

 

 

FUNCTION FSENSW(T0) 

 

 

 

DOUBLE PRECISION FSENSW, PA, CA, CT, VV, TA, T0, KEL 

 

PARAMETER   (PA=1.275D0, CA=1005.0D0, CT=1.235D-3, VV=5.0D0, 

TA=248.7D0, KEL=273.15D0)  

 

 

 

FSENSW=PA*CA*CT*VV*(TA-(T0+KEL)) 

  

 

 

END FUNCTION 

 

 

 

 

 

 

 

 

 

! SPECIFIC HEAT CAPACITY AND CONDUCTIVITY 

 

 

 

!----------VOLUMETRIC SPECIFIC HEAT---------- 

 

 

 

FUNCTION CEFF(T) 

 

 

DOUBLE PRECISION CEFF, T, TFR, LL, CBULK, CI, CEFFB, CEFFI 

 

PARAMETER   (LL=3.35D5, CBULK=20.0D0, CI=0.0D0, 

CEFFB=4.08572D6, CEFFI=1.87985D6) 

 

 

CEFF=CEFFI-LL*((TFR(CBULK)-TFR(CI))/((T-TFR(0.0D0))**2.0D0)) 

 

 

END FUNCTION 
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!----------LIQUIDUS CURVE---------- 

 

 

 

FUNCTION TFR(C) 

 

 

DOUBLE PRECISION TFR, C, GAMMA, T0 

 

PARAMETER   (GAMMA=0.0573D0, T0=273.15D0) 

 

 

TFR=T0-C*GAMMA 

 

 

END FUNCTION 

 

 

 

 

 

!----------CONDUCTIVITY---------- 

 

 

 

FUNCTION KEFF(T) 

 

 

DOUBLE PRECISION KEFF, T, TFR, CI, CBULK, KI, KBI, KB, KA, VA 

 

PARAMETER   (CI=0.0D0, CBULK=20.0D0, KA=0.03D0, VA=0.025D0) 

 

 

KI=1.16D0*(1.91D0-8.66D-3*(T-TFR(0.0D0))+2.97D-5*((T-TFR(0.0D0))**2.0D0)) 

 

 

KBI=((2.0D0*KI+KA-2*VA*(KI-KA))/(2.0D0*KI+KA+VA*(KI-KA)))*KI 

 

 

KB=0.4184D0*(1.25D0+0.03D0*(T-TFR(0.0D0))+0.00014D0*((T-

TFR(0.0D0))**2.0D0)) 

 

 

KEFF=KBI-(KBI-KB)*((TFR(CBULK)-TFR(CI))/(T-TFR(0.0D0))) 

 

 

END FUNCTION 
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! STEFAN CONDITION 

 

 

 

!----------STEFAN CONDITION---------- 

 

 

 

FUNCTION DHDT(H,TS,TINF,SINF) 

 

 

 

DOUBLE PRECISION DHDT, H, TS, TINF, SINF 

 

DOUBLE PRECISION A, B, C, D, E, F, AA, BB, CC 

 

DOUBLE PRECISION RHO, LL, PHI, UU, KI, AH, TREF, AS, DEL, CP 

 

PARAMETER   (RHO=1028.0D0, LL=3.35D5, UU=0.015D0, KI=2.0D0, 

AH=0.0058D0, TREF=0.0832D0, AS=2.0D-4, DEL=0.054D0, CP=3974.0D0) 

 

PHI=1.0D0-(10.0D0/34.5D0) 

 

 

 

A=PHI*RHO*LL 

 

B=KI 

 

C=RHO*CP*AH*UU 

 

D=PHI 

 

E=AS*UU 

 

F=DEL 

 

 

 

AA=-A*D*H 

 

 

BB=A*E*H+B*D*TREF-B*D*TS-C*D*TINF*H+C*D*H*TREF 

 

 

CC=-B*E*TREF+F*E*B*SINF+B*E*TS+C*E*TINF*H-C*E*TREF*H+C*E*F*SINF*H 

 

 

 

DHDT=(-BB+SQRT(BB*BB-4.0D0*AA*CC))/(2.0D0*AA) 
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END FUNCTION 

 

 

 

 

 

 

 

 

 

!----------INTERFACE TEMPERATURE 

 

 

 

FUNCTION T0(DH,SINF) 

 

 

 

DOUBLE PRECISION T0, DH, SINF, TREF, AS, UU, PHI, DEL 

PARAMETER   (TREF=0.0832D0, AS=2.0D-4, UU=0.015D0, 

DEL=0.054D0) 

 

 

 

PHI=0.7D0 

 

 

T0=TREF-((DEL*AS*UU*SINF)/(AS*UU-PHI*DH)) 

 

 

 

END FUNCTION 

 

 

 

 

 

 

 

 

 

! ICE HEAT FLUXES 

 

 

 

!---------ICE TRANSFER COEFFICIENT--------- 

 

 

 

FUNCTION CTI(T) 
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DOUBLE PRECISION CTI, T, CT0, B, C, RI, DZ, UA, G, TA 

 

PARAMETER   (CT0=1.3D-3, B=20.0D0, DZ=10.0D0, UA=5.0D0, 

G=9.81D0, TA=248.7D0) 

 

 

C=1961.0D0*B*CT0 

 

 

RI=G*(TA-T)*DZ/(TA*UA**2) 

 

 

CTI=CT0*(1.0D0-((2.0D0*B*RI)/(1.0D0+C*(DABS(RI)**(0.5D0))))) 

 

 

END FUNCTION 

 

 

 

 

!----------ICE SENSIBLE HEAT---------- 

 

 

 

FUNCTION FSENSI(T) 

 

 

DOUBLE PRECISION FSENSI, T, PA, CA, CTI, VV, TA 

 

PARAMETER   (PA=1.275D0, CA=1005.0D0, VV=5.0D0, TA=248.7D0) 

 

 

FSENSI=PA*CA*CTI(T)*VV*(TA-T) 

 

END FUNCTION 

 

 

 

 

 

!----------ICE LATENT HEAT---------- 

 

 

 

FUNCTION FLATI(T) 

 

 

DOUBLE PRECISION FLATI, T, PA, LL, CTI, VV, QV, PATM, PV, RV, PAT, QAT 

 

PARAMETER   (PA=1.275D0, LL=2.501D6, VV=5.0D0, PATM=1013.25, 

RV=461.7) 

 

 

PV=6.112*EXP((LL/RV)*((1.0D0/273.1D0) - (1.0D0/T))) 
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PAT=6.112*EXP((LL/RV)*((1.0D0/273.1D0) - (1.0D0/248.7))) 

 

 

QV=0.622D0*PV/(PATM-0.387D0*PV) 

 

 

QAT=0.622D0*PAT/(PATM-0.387D0*PAT) 

 

 

FLATI=PA*LL*CTI(T)*VV*(QAT-QV) 

 

 

END FUNCTION 

 

 

 

 

 

 

 

 

 

! DEPTH DEPENDENT TURBULENT DIFFUSIVITY 

 

 

 

 

!----------DEPTH DEPENDENT TURBULENT DIFFUSIVITY 1---------- 

 

 

 

FUNCTION VTT1(Z,X) 

 

 

 

DOUBLE PRECISION VTT1, X, ERF, Z 

 

 

 

IF (X .LE. 90.0D0) THEN 

  

 VTT1=1.0D-4+0.9999D0*((ERF(1.0D8*Z)+1.0D0)/2.0D0) 

 

ELSE 

  

 VTT1=1.0D-2+0.9999D0*((ERF(1.0D8*Z)+1.0D0)/2.0D0) 

 

END IF 

 

 

 

END FUNCTION 
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!----------DEPTH DEPENDENT TURBULENT DIFFUSIVITY 2---------- 

 

 

 

FUNCTION VTT2(Z,X) 

 

 

 

DOUBLE PRECISION VTT2, X, ERF, Z 

 

 

 

IF (X .LE. 90.0D0) THEN 

  

 VTT2=1.0D-4 

 

ELSE 

  

 VTT2=1.0D-2 

 

END IF 

 

 

 

END FUNCTION 

 

 

 

! BRINE CHANNELS FORMATION 

 

 

 

!----------BRINE CHANNELS---------- 

 

 

 

FUNCTION BRINE(H,T,CBULK) 

 

 

 

DOUBLE PRECISION BRINE, H, T, CBULK 

 

DOUBLE PRECISION RM, RC, RHO, G, B, CE, C0, PI, NU, K, GAMMA, ALPHA, CS, 

PHI 

 

PARAMETER   (RC=10.0D0, RHO=1028.0D0, G=9.81D0, B=7.86D-4, 

C0=34.5D0, NU=1.787D-3, K=1.4D-7, ALPHA=0.023D0) 

 

166



 

 

CE=T/-0.0573D0 

 

 

CS=C0/(CE-C0) 

 

 

GAMMA=ALPHA*CS 

 

 

 

PHI=1.0D0-(CBULK/C0) 

 

 

 

PI=3.0D-8*((1.0D0-PHI)**3.0D0) 

 

 

 

RM=RHO*G*B*(CE-C0)*PI*(H/2.0D0)/(NU*K) 

 

 

 

IF (RM .LE. RC) THEN 

  

 BRINE=0.0D0 

 

ELSE 

  

 BRINE=GAMMA*RHO*B*((CE-C0)*(CE-C0))*PI*(RM-RC)/(NU*RM) 

 

END IF 

 

 

 

END FUNCTION 

 

 

167


