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Abstract 

 

Potential therapeutic avenues may emerge from understanding morphological adaptations of adult 

human skeletal muscle that result from critical issue ischaemia (CLI). There is little understanding of 

the role and limitations of satellite cells in repairing and regenerating ischaemic tissue. This study 

aims to show the pathognomonic changes that take place as adaptations to chronic ischaemia.  

 

Patients (n=10) undergoing lower limb amputations for critical limb ischaemia were recruited to the 

study and gastrocnemius muscle biopsies were compared to those from control patients (n=10) 

undergoing long saphenous vein harvesting for coronary artery bypass grafting. Transmission 

Electron microscopy, histology, immunohistochemistry and Western blotting were used to assess the 

myogenic response to ischaemia. Any significant change in tissue morphology, morphometry and 

satellite cell number or activity was of interest. 

 

There was significantly greater deposition of fibrofatty tissue, collagen and a loss of polygonal 

structure in CLI samples. Myonuclear number per fibre was not significantly different, neither was the 

occurrence of centrally occurring nuclei. All fibre types demonstrated significant atrophy except IIc. 

IIc hybrid fibres were more abundant in CLI samples (p=0.0147). Type I fibres displayed a 

proportionate rise by 2.4 fold (p=0.0288). Type IIx fibres were most susceptible to ischaemia with x6 

fold reduction in number (p=0.0039) and greatest reduction in CSA (p=0.0029). Type II fibres 

showed greater fibre-size diversity.  

 

The endothelial marker, CD31 and the haematopoietic stem cell marker, CD34 were more abundant in 

CLI (p<0.0001). There was over expression of the satellite cell marker pax7 (p<0.0001)  and  

quiescent satellite cell numbers. MyoD, a marker of activated satellite cells is significantly reduced in 

ischaemia (p<0.0001).  

 

These findings confirm active repair and regeneration in CLI tissue, but the indigenous response of 

muscle is inadequate for proper healing. These processes are disordered, with limited maturation of 

myogenesis.  

 

 

Keywords:  Ischaemia, critical limb ischaemia, satellite cells, myofibres, haematopoietic stem 

cells, myogenic precursor cells, plasticity, myogenesis 
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Chapter 1  Introduction 

 

 

 

1.1 Critical Limb Ischaemia 

 

1.1.1 Chronic Limb Ischaemia: Natural History, Symptoms and Signs 

 

Intermittent claudication, rest pain and critical limb ischaemia are due to the same process of 

atherosclerotic disease but of varying degrees, disrupting blood flow to the end organ which 

is the motor unit. These clinical manifestations collectively represent the spectrum known as 

peripheral arterial disease. Symptomology worsens proportionately with decreasing Ankle to 

Brachial Pressure Index (ABPI). Most patients with chronic limb ischaemia first manifest 

with pain in the calf when walking, particularly uphill, and this intermittent claudication of 

gastrocnemius occurs due to the large requirements of the muscle for oxygen and nutrient 

outstripping those supplied by atherosclerotic vessels. Relief from calf pain is typically 

achieved after a few minutes rest. Intermittent claudication may also affect the large and 

energy hungry gluteus and thigh muscles when limited by poor blood flow.  

 

Critical Limb Ischaemia causes rest pain which occurs in the toes and foot when the leg is 

elevated. Sufferers often sleep in chairs or hang the affected limb out of bed as gravity assists 

the impaired flow of arterial blood. Invariably the disease progresses from rest pain to 

ulceration and or gangrene within weeks. Ulceration or gangrene may sometimes be the first 

signs of chronic limb ischaemia as patients may have poor exercise tolerance or be bed 

bound. Rest pain, ulceration and/ or gangrene is termed as critical limb ischaemia (ABPI <0.4 

or <50mmHg) whereby the limb is threatened. (1-3) 
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1.1.2 Epidemiology of Critical Limb Ischaemia 

 

Critical Limb Ischaemia (CLI) is defined as the presence of rest pain, ulceration and/ or 

gangrene in a limb of a duration of over 2 weeks and it affects between 500-1000 patients per 

million annually. Around 30% require a major amputation within the first year after diagnosis 

and a further 10% will lose their limb over the next two years. The presence of CLI is a 

marker of high mortality and morbidity as it infers the presence of cardiac or neurovascular 

disease. Patients have a poor life expectancy, with a 25% mortality rate within a year of 

diagnosis or over 50% over 5 years. Patients with CLI are six times more likely to die from a 

cardiac event within ten years compared with non ischaemic patients (4;5;5-8). 

 

Prevalence of arterial disease increases with age and the incidence of peripheral arterial 

disease in men <50 years old is 1.5%. In 55-74 year old males this rises sharply to 5% and in 

men aged 75 and over, more than 20% are affected. In younger age groups, there is a 2:1 

male to female ratio but this almost equals out in older age groups. Critical limb ischaemia 

represents 1-3% of the whole spectrum of peripheral arterial occlusive disease.(4;4) 

 

Approximately 30% of patients with symptomatic disease will die within 5 years and about 

78% die within 15 years compared to 22% in asymptomatic patients (5;6). The severity of the 

disease is such that it and its risk factors must be treated aggressively as early as possible. 

Without intervention and revascularisation, most CLI patients would lose their affected limb 

within 6 months. Treatment with major surgery carries a 5-6% 30 day mortality rate (7). 5.1 

major amputations per 100 000 population are performed a year (8). 
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1.1.3 The Economic Impact of Critical limb Ischaemia on the NHS 

 

CLI is a significant drain on the National Health Service, to the tune of  £300m per year. For 

those patients suffering from peripheral arterial disease who are at grave risk of losing limbs, 

lifestyle and independence, there are limited options available. Therapeutic angiogenesis is as 

yet unproven, but in principle the option of manipulating the processes of angiogenesis and 

myogenesis via injections, or direct administration of stem cells would be far preferable to 

invasive management (9). Operative interventions including amputations carry their own 

significant risks, complications and long term sequelae.  

 

The cost of maintaining care for those patients with chronic ulceration is impressive. In the 

UK, chronic wounds represent a significant burden to patients and the NHS and their impact 

on quality of life is well documented (10). Around 200,000 patients in the UK have a chronic 

wound of which a significant proportion are arterial in nature. The total cost of maintaining 

these wounds is estimated at around 2.3bn–3.1bn per year (11). It is presumed that there are 

around 64,000 individuals with active foot ulceration at any one time and 2,600 amputations 

are carried out annually as a direct result (12).  

 

The total cost of a major amputation far outstrips that of PTA or reconstructive surgery. This 

is due in part to the lengthy inpatient stay, the cost of physiotherapy, adaption of or re-

housing, drug costs, occupational therapy support and equipment and out of hours care (13). 

The total cost of managing patients with an amputation is in the order of £200 million/ year 

excluding social care (14;14;15). The average medical cost of an amputee in their first year is 

in the order of £3000-12000. This compares to mean angioplasty costs approximately £6600 

and open arterial bypass around £6800 (16;17). 
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1.1.4 Risk factors for Critical Limb Ischaemia 

 

The risk factors for chronic limb ischaemia are the same as for any atherosclerotic disease. 

Management of atherosclerosis assesses these risk factors and aims to reduce their systemic 

effect through behavioural or pharmacological interventions. The management of established 

or symptomatic peripheral atherosclerotic disease is discussed later. 

 

1.1.4.1 Smoking 

 

‘Smoking is the greatest single cause of preventable illness and premature death in the UK.’  

500, 000 deaths of adults aged 35 and over are attributable to smoking in England and Wales 

(18;19).  

 

Around 26% of the British population aged 16 and over are smokers. This equates to around 

11 million with an equal number of ex-smokers. 25% of British men smoke compared with 

23% of women and they also tend to smoke more heavily. The highest prevalence is seen in 

the 20-34 year old age bracket (Information Centre, Independent NHS Special Health 

Authority, Smoking, Drinking and Drug Use among Young People in England in 2006). 

Recent estimates place the real cost of smoking to the NHS at around £1.5 billion annually.  

 

Smokers have a 1.7 - 5.6 fold increase in the development of atherosclerosis and according to 

the American Heart Association, Heart Disease and Stroke Statistics of 2007, the relative risk 

of developing symptomatic peripheral arterial disease is up to tenfold. The Framingham 

Study clearly underlines the importance of smoking cessation.(1;2;2) 
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1.1.4.2 Diabetes 

 

Diabetes mellitus has a similar impact on the chance of developing atherosclerosis, the risk 

increasing by 3.5 fold in men with glycosuria. In older women with glycosuria, the protection 

thought to be conferred by oestrogens is eradicated and their risk rises by 8.6 times, to the 

same level as that of older men. The AHA Atherosclerotic Vascular Disease Conference 2004 

quoted “diabetes adversely modifies the clinical course of PAD [Peripheral Arterial Disease] 

and is the most common cause of amputation in the United States, accounting for 45% to 

70% of all non traumatic amputations.” (6;6;7;20) 

 

1.1.4.3 Abnormal Lipid Profile 

 

The relative risk in causing peripheral arterial disease or claudication, carried by each 

10mg/dL rise in total cholesterol over normal levels is about 1.1 times. Elevated levels of 

triglycerides and Low Density Lipoproteins (LDLs) with reduced levels of High Density 

Lipoproteins (HDLs) are seen in many patients with atherosclerosis and this dyslipidaemia 

contributes further to the development of atheroma and thus PAD (21;22) 

 

1.1.4.4 Hypertension 

 

Hypertension only increases the risk of PAD by 10%. Treating and decreasing hypertension 

rates in a 9 year trial held in the United States lead to lower rates of bypass and amputation. 

The Framingham Study data encourages the requirement of patients to control hypertension 

(1). Up to 5% of hypertensive patients have PAD at presentation and it has been 
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recommended that the optimal treatment targets a blood pressure of 140/85mmHg or 

130/80mmHg if there is concomitant renal disease or diabetes exists (2;23;24).  

 

 

1.1.5 The Clinical Diagnosis of Critical Limb Ischaemia 

 

CLI is a disease characterised by finding the following; poor pulses, ulceration, necrosis, 

alopecia of the limb, muscle atrophy, skin changes, delayed capillary refill and dependant 

hyperaemia (positive Buergers test); all of which are indicative of poor tissue perfusion. To 

quantify this objectively, establishing the ankle brachial pressure index (ABPI) is crucial. An 

abnormal ABPI is indicative of PAD and a value of 0.90 is 90% sensitive and 95% specific 

(3). Low ankle pressures of <50-70mmHg and toe pressures of <30-50mmHg tend to result in 

ischaemic ulcers. Transcutaneous oxygen tension can often be used to quantify CLI, with a 

TcPO2 of <30-50mmHg being indicative (25) 

 

Imaging techniques to confirm the diagnosis and identify areas of stenosis or occlusion 

include Duplex ultrasound, CT Angiography, MR Angiography and Percutaneous 

Angiography. 
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1.1.6 The Management of Critical Limb Ischaemia 

 

The management of critical limb ischaemia is limited and culminates in three endpoints. 

Treatment can be symptomatic and essentially palliative, restoration of in line flow to the 

lower limb can be attempted, or perigenicular amputation could be offered. Therapeutic 

angiogenesis has not yet been established as a viable treatment option. 

 

1.1.6.1 Lifestyle Changes, Medical Management and Palliation 

 

Simple treatment of atherosclerosis requires eradication of risk factors. Lifestyle changes are 

necessary; regular exercise, cessation of tobacco smoking and an improved diet are all proven 

to be of benefit. Smoking cessation reduces not only the risk of progression of PAD to CLI 

but also the likelihood of myocardial infarction (1). Numerous trials have shown statins 

similarly are of great benefit in reducing cardiac events and coronary artery related deaths by 

between 24-34% (22).  

 

The management of peripheral arterial disease requires the use of an antiplatelet (13). Aspirin 

inhibits cyclo-oxygenase and therefore thromboxane A manufacture, as well as prostaglandin 

I2 formation, by its irreversible acetylating actions on COX-1 and –2 (26). Thromboxane A 

receptors, located throughout the vascular endothelia and present on the surface membrane of 

platelets, are responsible for causing their aggregation. Clopidogrel inhibits platelet adenosine 

diphosphate receptors. The CAPRIE (Clopidogrel versus Aspirin for the Prevention of 

Recurrent Ischaemic Events) Trial comparing the two drugs  demonstrated an even greater 

benefit for peripheral arteriopaths compared to cardiac patients taking clopidogrel in that the 

drug reduced their number of cardiovascular events by 7.3% (22;27). Ulcer management 
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without further treatment to blood flow can be ongoing in the community, with opiate pain 

control where required in those patients unsuitable for in line reconstruction. 

 

 

1.1.6.2  Therapeutic angiogenesis 

 

The study of angiogenic inhibition has been the target of cancer research for some time, as 

cancers require a blood supply to grow. The body of research that has resulted from this has 

also lead to a better understanding of pro-angiogenic factors which has resulted in elucidating 

which of those agents which may be administered to improve peripheral circulation. Still in 

its infancy, evidence for therapeutic angiogenesis is encouraging but far from conclusive.  

 

This strategy may be beneficial for those patients who cannot undergo major surgery or even 

PTA to avoid limb loss (28).  The form of administration or vector that these agents require is 

one of the greatest rate limiting steps in the development of therapeutic angiogenesis. 

Attempts have been made by directly introducing recombinant proteins into the bloodstream; 

or even via gene transfer. These methods allow a systemic response and are easy to 

administer (29) but do have implications for co-existing disease, i.e. cancer; large 

intramuscular bolus injections into affected muscle are currently being investigated and these 

have the additional advantage of requiring less recombinant protein and remaining in the 

local environment for sufficient time periods (30). Viral delivery, while potentially accurate, 

can cause harm in the form of inflammation and secondary necrosis (31). DNA-plasmids 

used in animal models have been relatively successful suffer with low tissue permeability due 

to poor cellular penetration (32;33). 
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Hepatocyte growth factor (HGF), Vascular Endothelial Growth Factor (VEGF) (34)and 

Fibroblast Growth Factor (FGF) have all been tested as pro-angiogenic agents in CLI patients 

(35;36). Mostly only small trials have been conducted and therefore no conclusive outcomes 

have been reached. Studies have not been standardised in terms of administration protocols, 

nor measurable outcomes and taken with the often low numbers examined in these studies, 

results have rarely been impressive enough to warrant further investigation (35;36).  

 

The Therapeutic Angiogenesis with FGF-2 for Intermittent Claudication (Traffic) Trial 2002 

was a blinded randomised, placebo-controlled Phase II trial which recruited 190 patients with 

refractory angina or intermittent claudication. The FGF arm was given intra-arterial infusions 

of 30mcg/kg of recombinant basic FGF on day 1 or day 1 and day 30. There was found to be 

a small but significant improvement in ABPI at day 90 following a single dose administration 

of FGF-2 (37). The third phase of the TAMARIS has recently shown that in 525 patients 

given intramuscular injections of FGF, there was no perceivable improvement in mortality or 

major morbidity rates (38).  

 

It is likely that a combination of pro-angiogenic agents or administering them in conjunction 

with stem cells will yield better results than a single agent alone. A great deal of work 

regarding their mode of delivery remains. The correct dosages need to be established and the 

optimal duration of treatment must be established. Reducing the side effects associated with 

pro-angiogenic agents, more efficient gene transfer with greater local expression of agents 

and less systemic effects is required.  
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1.1.6.3  Interventional Techniques to Improve Inline Arterial Flow 

 

1.1.6.3.1 Percutaneous Angioplasty 

 

Open surgery and percutaneous angioplasty are currently the options available to the surgeon 

to combat CLI. Percutaneous methods of treating PAD take the form of balloon angioplasty, 

the placement of stents within the arterial lumen, or subintimal canalisation. Aortoiliac 

stenoses can be treated effectively with PTA and stenting; 5 year patency rates are in the 

order of 60-80%, however reconstructive surgery does offer a better outcome. It has been 

recommended that longer stenoses and occlusions are treated with open surgery and 

endovascular treatment of dense calcifications carries a high risk of rupture or distal 

embolisation. In treating short stenoses of the superficial femoral or popliteal arteries, 

angioplasty has a 5 year patency rate of 70% but much lower rates in longer stenoses or 

occlusions >4 cms (39-42).  

 

1.1.6.3.2 Bypass Surgery 

 

Depending on the position of the stenosis or occlusion in the patient’s vasculature, co-

morbidities, life expectancy and the risks vs the benefits of the procedure itself must all be 

taken into account when devising an appropriate surgical intervention. Aorto-iliac disease is 

best treated with an aorto-bifemoral bypass graft although other options such as ilio-femoral, 

femoro-femoral or even axillo-(bi) femoral bypasses maybe considered. These offer the 

benefits of lesser trauma to the patient but have lower patency rates due to the length of the 

grafts involved. In more distal disease, where there is adequate run off, femoral-popliteal or 
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femoral-distal bypass is required and the greatest patency results are gained through the use 

of vein grafts rather than PTFE or other synthetic grafts (41-43)  

 

Those patients undergoing infrainguinal bypass have a poor post operative outcome, with 5 

year primary patency of grafts particularly grim if the primary presenting complaint was 

gangrene (33%) compared to 52% for ulceration or rest pain. The 5 year cumulative limb 

salvage rates were in the order of 59% for gangrene, 87% for ulceration and 83% for rest pain 

(44).  

 

 

1.1.6.4  Perigenicular Amputations 

 

There is a further subset of patients in whom reconstructive surgery should not be considered 

and for whom amputation is the most suitable procedure. These include those with poor run-

off vessels, fixed flexion deformities, advanced diabetic neuropathy, extensive necrosis and/ 

or infection of the foot. Common sense dictates that bed bound patients or those nearing the 

end of life due to advanced biological (rather than chronological) age, sufferers of dementia 

who are unable to make an informed decision regarding an amputation are all groups who 

would do poorly after reconstructive surgery and who may benefit from a primary amputation 

in the presence of CLI (16). 

 

Around 20% of patients having had a below knee amputation and 50% of patients after an 

above knee amputation do not return to functional mobility. Almost a third of these patients 

require a major amputation of the other limb within 5 years and the mortality rate for these 

patients in the same time frame is around 50% (16). Although the decision to perform a major 
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amputation is never taken lightly, sometimes an early decision regarding level of amputation 

is beneficial, especially considering that a failed infrainguinal bypass may result in an above 

knee amputation when a pre-bypass below knee amputation may have been adequate (45). 

 

 

 

1.1.7 The Pathogenesis of Atherosclerosis 

 

Endothelial dysfunction is present in those patients without obvious atherosclerosis but with 

risk factors for the disease (46;47) and is necessary for atherosclerosis to develop (22;48-51). 

Platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), transforming growth 

factor (TGF)–β, thrombin, and angiotensin II are potent mitogens produced by the activated 

platelets, macrophages and dysfunctional endothelial cells that characterise early 

atherosclerosis and result in local inflammation and thrombosis at sites of endothelial 

disruption due to platelet activation and adherence (46;49;52). Reduced NO, activation of 

platelets and increased vasoconstrictors create an environment more likely to lead to 

atherosclerosis and thrombosis (48). Atherosclerosis is a multifactorial disease involving the 

processes of inflammation, lipid, endothelial and platelet cell dysfunction, altered clotting and 

thrombus formation, extracellular matrix remodelling, oxidative stress, vascular smooth cell 

activation and genetic factors (53). Low Density Lipids, LDLs, penetrate the endothelium and 

are oxidised by macrophages and smooth muscle cells whilst growth factors and cytokines 

recruit further cells such as monocytes, foam cells and more smooth muscle cells. The 

formation of a plaque is initiated and this disrupts endothelial cell function. Lipids are a 

major component in the laminar formation of atherosclerotic plaques and form one of the 

initiating layers accumulating on damaged endothelium (48;54). Platelets become pro-

thrombotic and adhere to the exposed subendothelium after the rupture of a plaque and the 

release of lipids, collagen, von Willebrand and tissue factor into the circulation (22;48-51).  
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1.2 The Structure of Normal Adult Human Skeletal Muscle 

 

1.2.1 The Structure of Normal Adult Human Skeletal Muscle and the 

 Classification of Myofibres 

 

Adult human skeletal muscle is composed of differing fibre types each surrounded by the 

basal lamina and located within a fascicle bordered by the scaffolding of a collagenous 

connective tissue or endomysium, (see Figure 1). The differences in fibre type lie within the 

contractile abilities and fatigue resistance of the myosin heavy chains of the myofilaments 

which make up each myofibril and in turn each myofibre, (see Table 1). As each particular 

muscle varies considerably in its function, its composition of fibre type is thus different due 

to the variation of Myosin Heavy Chains (MHCs) expressed (55). 

 

 

Figure1: Adapted from Rogers 1983 (56) Schematic Diagram Showing Adult Human 

Skeletal Muscle Architecture, A myofibre on the right of the diagram is composed of a 
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syncytial arrangement of myofibrils within a fascicle, surrounded by an endomysium layer 

which is an invaginated extension of the endomysium which covers the whole muscle. A 

myofibre is composed of repeating units called sarcomeres which extend from Z line to Z line 

(also called a Z disc) to which actin and titin (or connectin) molecules are bound. 

 

Muscle fibre type can be classified according to the expression of the Myosin Heavy Chain 

(MHC) which in turn governs the properties of the fibre, as shown in Table 1. A single 

myosin molecule comprises of heavy and light chains of variable number. The head region of 

myosin contains the ability to cross react with actin, hydrolyse ATP and thereby generate the 

contractile function of skeletal muscle by causing a sliding action along actin filaments. In 

mammalian tissue, myosin heavy chains exist in at least eight different myosin heavy chain 

isoforms (57) and are detailed in Table 2. This expression is under the control of muscle 

innervation and altering the nerve supply of a motor unit will change its MHC isoforms 

(58;59). 
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Table 1: Classification of Myofibres By Myosin Heavy Chain Isoform  

and Their Relative Characteristics: 

 
Slow or Type I  

(Soleus) 

Fast or Type IIa 

(Gastrocnemius) 
Fast or Type IIx   

Colour Red Red White 

Maximum Shortening 

Velocity  
Slow Fast Very Fast 

Motor neurone Small Large Very Large 

Resistance to Fatigue 
High (Slow Fatigue 

Resistant) 

Intermediate (Fast 

Fatigue Resistant) 
Low (Fast Fatiguable) 

Activity  Aerobic Anaerobic Anaerobic 

Force production Low High Very High 

Mitochondrial density High High Low 

Capillary density High Intermediate Low 

Metabolism Oxidative 
Oxidative 

Glycolytic 
Glycolytic 

Major storage fuel Triglycerides 
Creatine Phosphate, 

Glycogen 

Creatine Phosphate, 

Glycogen 

Calcium Uptake In SR Slow Fast Fast 

Myofibrillar ATPase 

Activity 
Low High Very High 

 



16 

 

1.2.2 Myosin Heavy Chain Expression in Human Gastrocnemius 

 

In human adult lower limb skeletal muscle, three different muscle fibres have been identified 

according to their myosin heavy chains. These were originally identified and classified 

according to their histochemical and oxidative capabilities and therefore their reaction to 

myofibrillar adenosine triphosphatase (mATPase) and since have been confirmed by 

electrophoresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 2: Comparative Presence of Myosin Heavy Chain Isoforms 

in Rat and Human Species. 

Myosin Heavy Chain 

Isoform (MHC) 

Isoform Present(+) or Absent (-) 

Rat Human 
Adult 

Human 

Adult 
Human 
Skeletal 

α cardiac (Chr. 14) + + v + - 

β cardiac/ I (Chr. 14) + + + + 

MHC IIa (Chr. 17) + + + + 

MHC IIx (Chr. 17) + + + + 

MHC IIb (Chr. 17) + - - - 

MHC-IIm (Chr. 17) + - - - 

Embryonic (Chr. 17) + + - - 

Neonatal (Chr. 17) + + - - 

Extraocular (Chr. 17) + + + - 

Only three isoforms are found in the skeletal muscles of 

the lower limb of humans; Types I, IIa and IIx (57) 
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Gastrocnemius in particular lends itself to study due to its accessibility for biopsy methods 

(open or percutaneous) and displays the greatest morphological change due to the fact that 

this is the commonest site of intermittent claudication symptomology (60). Most studies have 

demonstrated that 50-60% of gastrocnemius fibres are type I and 40-50% are type II 

although, as in many other muscles, the level of cross section through a muscle dictates the 

composition (55) and indeed gastrocnemius has two heads of insertion and these have a 

slightly different function (61). Depth of sample from the surface of organ is also important. 

 

 

Figure 2: Cadaveric Dissection of the Posterior Aspect of the Lower Leg Showing the 

Position of the Medial Head of Gastrocnemius [M]. Adapted from Bojsen-Moller et al 2004 

(61) 

 

 

M 
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Smerdu et al. (62) looked at gastrocnemius samples in a small cohort of young, healthy and 

sedentary individuals (not immobile) and showed the relative proportions of the different 

MHC phenotypes present within the muscle and these are indicated below in Table 3: 

 

 

Table 3:Relative MHC Isoform Proportions in the 

Gastrocnemius Muscles of Sedentary Men 

MHC Isoform Proportion (%) 

Type I 69.7% ± 2.0 

Type IIa 24. 1% ± 1.7 

Type IIx 4.3% ± 0.7 

Hybrid Fibres (Type IIc) 1.8% ± 0.6 

 

 

Smerdu demonstrated a change in fibre composition in that disuse of muscle allows for a 

prevalence of the type I fibre type in gastrocnemius. The medial head of gastrocnemius has 

an equal proportion of type I to type II fibres. Variables such as age, exercise tolerance and 

disuse affect the proportionate mixture of fibre types through plasticity or fibre remodelling, 

discussed later.  

 

Those muscles that cross a single joint contain a relatively high proportion of slow myosin or 

function as anti-gravity muscles are likely to be most affected by immobilisation. In fact, a 

primate study has shown that muscles were more susceptible to the effects of immobility in a 

well described order: soleus; plantaris, vastus intermedius, vastus lateralis, gastrocnemius, 

tibialis anterior, rectus femoris (63). 
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Table 4: Characterisation of Rat Vs Human Tissue: 

Common Antibodies Used for phenotyping and the 

Corresponding MHCs they stain 

 Species and Fixation 

  Rats Humans 

  Frozen Paraffin 

Antibody Fibre Types Stained 

sc75 All but I - 

BAD5 I  - 

M8421 I and I/IIa I and I/IIa 

BFF3 IIb ? 

BF-35 All but IIx ? 

RTD9 IIx and IIb ? 

sc71 IIa ?IIa and ?IIx 

A4.74 IIa IIa and IIx 

 

Table 4: Myosin Heavy Chain Antibodies and Their Use in Tissue Samples; Rat frozen tissue is 

the most frequently characterised whereas human paraffin embedded tissue has the least range of 

commercially available antibodies for MHC analysis. (-) denotes a negative stain and (?) denotes 

no reported use in paraffin embedded tissue. 

 

Reliable immunohistochemistry in paraffin embedded sections is currently limited to 

delineating fibres into fast and slow, or type I and type II, whereas frozen tissue can be more 

easily typed and all fibre types can be identified. The advantage of using paraffin embedded 

tissue is however that its architecture is better preserved and therefore it lends itself to better 

morphological analysis.  

 

The different types of ATPase histochemistry require separate sequential slides are prepared, 

treated individually and analysed in a sequential way to identify fibre type. Behan et al (2002) 

demonstrated that simple differentiation of type I and type II subgroups was possible using 

alkaline phosphatase (ALP) conjugated antibodies and removed the need for several 
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sequential slides but was further limited by the availability of commercially available ALP 

conjugated antibodies. Like ATPase histochemistry however, it was also unable to reliably 

demonstrate hybrid fibres (64) unless sequential slides were utilised and therefore has limited 

value alone. 

 

 

1.2.3 The Blood Supply in Normal Gastrocnemius: 

 

Anatomical studies show a difference in the blood supply of gastrocnemius and soleus; the 

former having capillaries running parallel to the muscle in a straight fashion, whereas the 

richer capillary supply of soleus tends to be more tortuous and have many more branches. 

This differing capillary structure was first commented on in humans by Sjostrom (65) and 

more recently in rats by Erzen (66) via stereology. Capillary density and topography adapted 

to the needs of the aerobic and predominantly oxidative fibres of soleus (67). Andersen 

showed that age alone does not significantly affect the number of capillaries present in 

muscle (68). 
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1.2.4 The Role of Satellite Cells in the Repair and Regeneration of Normal Skeletal 

Muscle 

 

The existence of satellite cells in skeletal muscle, first identified and named by Alexander 

Mauro in 1961, was initially discovered in the sartorius muscle of the frog (69). They were 

described under electron microscopy, as a distinct population of cells, lying above the muscle 

fibre sarcolemma but beneath the fibre basal lamina, and accounting for up to between 3-6% 

of visible myonuclei seen (70). Their structure clearly intimated that they were completely 

different to muscle cells, being mononucleate, with large nuclei and a relatively small amount 

of independent cytoplasm. Mauro also pointed out that under light microscopy, these would 

therefore appear merely as “a peripheral muscle nucleus proper” (69) although Watkins and 

Cullen claimed even under light microscopy that satellite cells are distinguishable from 

myonuclei due to their smaller size (71). It is reported that a quiescent satellite cell in 

mammalian skeletal muscle is around 25 μms in length, 4 μms in height and 5 μms in width 

(72). 

 

Satellite cells are the myogenic precursor cells of postnatal muscle responsible for the repair 

and regeneration of muscle fibres in adult tissue, either by fusing together and forming new 

fibres or incorporating themselves into damaged muscle cells. They are modulated both by 

inflammatory cells and locally damaged tissue and the release of such mediators as nitric acid 

(NO) or IGF-1(73).  

 

The basal lamina also appears to play its part and in animal models where muscle has been 

crushed (74), frozen (75) or injected with toxins (76), the satellite cell response appears to 

follow two paths, apparently dependant on whether the basal lamina is intact. If this is the 
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case, activated satellite cells contained within this layer migrate to the site of injury in the 

same muscle fibre via chemotaxic stimuli (77;78). Activation of cells has been reported at 

around 6 hours post injury and within 24 hours displays significant mitosis (78). The satellite 

cell then merges with the damaged myofibre and helps repair or regenerate either myofibre 

material or contribute to the myonuclei (79;80). In injuries where there is disruption of the 

basal lamina, satellite cells are able to migrate from adjacent myofibres by projecting across 

tissue bridges initiated from an out pouching process of the satellite cell itself (77;81).  

Little is known of how the cellular machinery alters and morphology of the satellite cell 

changes as the cells perform this active process (82).  

 

 

 

Figure 3: Factors responsible for modulating the activity of satellite cells (83). Adapted from 

Hawke and Garry 2001 
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Destruction of satellite cells in adult small mammals via gamma irradiation leads to retarded 

muscle growth (77;84;85). In animal experiments, it has been shown that endurance exercise, 

or exercise induced ischaemia, increases the proportion of satellite cells and other myonuclei 

(86). The activation of satellite cells in response to such training ensures that the 

proportionate number of myonuclei/ fibre remains constant allowing continuing control 

despite the increase in fibre size and number. This is reflected in the increasing number of 

myonuclei seen in exercise induced cellular hypertrophy, while conversely being lost during 

atrophy (87). 

  



24 

 

1.2.5: Satellite Cell Repair and Regeneration: 

 

 

 

Figure 4: Schematic diagram demonstrating the role of the satellite cell, as a bipotent stem 

cell, contributing to hypertrophied myofibres or self renewing the satellite cell population.  
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1.2.6 Satellite cell numbers and regenerative potential: 

 

In normal muscle, the number of satellite cells is stable in relation to the area of the muscle 

under its sphere of influence and accordingly larger myofibres have more satellite cells 

associated with them (88). Cornelison (1997) et al. found no obvious difference in satellite 

cell numbers around any particular fibre type (89). In vivo studies demonstrate a decline in 

cell population numbers with age (90-92). It has been reported previously that satellite cell 

proliferation is increased in the following: denervation, endurance exercise, low-frequency 

electrical stimulation, stretch, testosterone and immobilization and decreased with age. There 

are few reports of their behaviour in chronic limb ischaemia (83;93-97). 

 

It is clear that nerve degeneration and the reduction in sarcoplasm to nucleus ratio leads to 

volume loss (98;99) but despite this, the number of myonuclei per fibre remains constant. In 

the soleus muscle of rats that Hikida et al (1998) found no statistical evidence to support the 

reduction of myonuclei number/ fibre following atrophy caused by 10 days of space travel on 

the shuttle Endeavour (100), indicating that the satellite cells tightly controlling the myofibre 

domains and replacing nuclei material had been unaffected by altitude or weightlessness.  

 

It is likely that satellite cell numbers vary in any given muscle and in any given subject. Sajko 

suggests inconsistencies in the literature are due to irregular distribution and low numbers of 

identifiable satellite cells in normal tissue (101). It has been demonstrated that with 

advancing age the domains governed by the myonuclei enlarge, satellite cell numbers 

decrease and the tight control seen in the repair and regeneration of more youthful tissue is 

lost (88). Numbers of satellite cells are generally thought to decline throughout the aging 

process, although why this should be remains unclear. Electron microscopy has been used to 
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show that there is no significant difference between the number of satellite cells in young 

compared to older sedentary human subjects (102). Other studies using different techniques 

numbers disagree, with some reporting a decrease in satellite cell number in aged tissue 

(103;104). It has been shown that while the numbers of cells present is important, their 

regenerative potential that may be affected, for instance becoming reduced in old age 

(101;105). The number of times a satellite cell in vivo can undergo cell repair and or 

regeneration using daughter progeny is a contentious issue. Some groups report great success 

at proliferating human skeletal muscle-derived stem cells in vitro and at achieving multiple 

daughter progeny of multiple mesodermal cell types, up to 18 times from a mean donor age 

of 63 years in one study (106). Although the number of divisions that a satellite cell may 

undergo is finite, some models have suggested that age alone does not limit the regenerative 

potential of satellite cells (107;108). Lipofuscin accumulation or limited mitogenesis 

eventually causes delayed or reduced satellite cell function. 
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1.2.7 Myogenesis and the Muscle Regulatory Factors 

 

The complex interaction of the Cyclins, (i.e. Cyclin D3), CDKs (Cyclin Dependant Kinases) 

and the CDKIs (Cyclin Dependant Kinase Inhibitors) controls the myoblast cell cycle (109). 

These CDKIs (Cyclin dependant Kinase Inhibitors) especially p21, greatly expressed in G1, 

establish the post-mitotic state during myogenesis (after withdrawal from cell cycle and 

before differentiation), and essentially halt the cell cycle by blocking the action of the Cyclins 

and CDKs. p21 stops the phosphorylation of pRb by inhibiting CDK action, allowing 

accumulation of its active form, thereby continuing the permanent arrest of the cell cycle 

(109-112). MyoD greatly influences the cell cycle through enhancing the actions of p21, pRb 

and Cyclin D3 (110-112).  

  

Proliferating myoblasts also require myf5 for differentiation (110;111;113) and then later 

MyoD. Expression of myf5 occurs in G0 and MyoD in the G1 stage of the cell cycle 

(110;113). MyoD and myf5 ensure permanent withdrawal from the cell cycle and induce 

specific muscle gene expression. These MRFs confer upon myoblasts their myogenic fate. 

Skeletal muscle differentiation is characterised by terminal withdrawal from the cell cycle, 

muscle specific gene expression and the formation of myotubes. This occurs at the expense of 

further cell proliferation (114). Lassar and Valdez showed that after myf5 and  MyoD 

expression, myogenin is next required for cell differentiation (115). The MRFs also initiate 

the fusion of myotubes later in the process of myogenesis. Kitzmann et al. demonstrated on 

mouse cell lines in vitro that these events must occur in sequence for normal myogenesis.  
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Figure 5: Stages of Normal Myogenesis in Human Skeletal Muscle  

 

 

After muscle gene expression is up-regulated within the myoblast, fusion occurs into 

multinucleated primary myotubules. These cluster together under a basal lamina, whilst the 

recruitment of further myoblasts will lead to the development of secondary tubules as well as 

satellite cells. This is stimulated by nitric oxide. The processes of proliferation and 

differentiation cannot take place concurrently and therefore once myoblast proliferation has 

taken place differentiation may resume only once proliferation signalling pathways are 

switched off.  

 

 

The muscle regulatory transcription factors (MRFs), MyoD, myogenin, MRF4 and Myf5 are 

able to dictate a skeletal muscle phenotype to non-specific progenitor cells. Myostatin acts 

through pax7 to switch on satellite cell driven regeneration and switch off satellite cell 

renewal (116). Proliferating myoblasts express myoD and myf5 before they enter 
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differentiation as do satellite cells (SCs) undergoing differentiation into myofibres or satellite 

cells. (111;113;113) 

 

As long as the basal lamina remains intact in the injury, satellite cells fuse with each other to 

form myotubes, which then mature into a new myofibril or fuse with an existing one (78). 

The regeneration process is identical irrespective of the aetiology of damage (117).  
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1.3 Remodelling of Skeletal Muscle in Response to Ischaemia 

 

The term “plasticity” has been in use since the late 1950s to describe the adaptive change in 

human skeletal muscle fibre type, remodelled to meet physiological or pathological demand. 

Plasticity therefore is a normal characteristic of adult skeletal muscle. Physiological demands 

(endurance training, high altitude and advancing age) and pathological conditions such as 

ischaemia directly affect skeletal muscle architecture and MHC composition, altering 

postural control, strength and function, myogenesis and local nerve and blood supply. Muscle 

can be pre-conditioned with an adaption of fibres, extracellular matrix and angiogenic 

response to a given stimulus and due to the presence of myogenic precursor cells, can also be 

repaired and regenerated to specific requirements. Studying muscle morphology allows the 

plastic response to be quantified.  

 

The pathognomonic changes due to nerve damage are the most striking in ischaemic 

conditions. The presence of (commonly type II) angular fibres, indicates denervation and in 

some studies was seen in 100% of PAD samples. Fibre specific clumping, indicative of 

reinnervation, has been demonstrated in around 50% of PAD biopsies (65;68;118-120). 

Hedberg demonstrated that most reinnervated bundles appear to be type I (120).  

 

The effects of denervation not only result in angular fibres but also cause atrophy, affecting 

both fast and slow muscle fibres. There is an apparent reduction in fibre cross sectional area 

as well as muscle force. Plasticity of fibres similar to that seen in immobile or sedentary 

patients occurs with an overall shift from fast to slow MHC. This direction of plasticity is 

also seen secondary to critical ischaemia which preserves type I fibres and type II fibres 

preferentially atrophy or necrose (44;62;102).  
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Plasticity is influenced locally by satellite cells (SCs) under the control of the Muscle 

Regulatory Factors (MRFs) (60;121;122). These stem cells are probably the only significant 

source of new myoblasts in the adult tissue, but the contribution of bone-derived 

haematopoietic stem cells (HSCs), vascular progenitor cells, or interstitial cells has not been 

fully evaluated (96).
 
In younger adults, this activity is well regulated and controlled, but this 

tight co-ordination (123) breaks down with age (90;124) and it has been proposed that 

individual satellite cells behave independently or do not respond to normal cues and may 

contribute to heterogeneous MHC phenotypes, perhaps accounting for much of the 

conflicting data available. Braun et al. demonstrated an increase in satellite cell derived 

myoblasts following freeze injury and cardiotoxin induced skeletal muscle damage in mice as 

well as an upregulation of the pax7 gene expression in these myoblasts (125). It is thought 

that satellite cells are also modulated by the fibrocyte/ adipocyte progenitor cells that are seen 

in greater numbers in ischaemic muscle. These bipotent FAP cells have been shown to reduce 

haematopoietic stem cell differentiation and have an inhibitory effect on myogenesis 

(126;127). It has been postulated that these cells have not only a regulatory effect but may be 

interchangeable with adipose progenitors, potentially able to form multi-mesenchymal line, 

including haematopoietic stem cells, myogenic precursors, fibrocytes and adipocytes 

(126;127). 

 

The co-ordinated action of SCs is required for the process of plasticity and is also responsible 

for fibre shift in tissue. Quiescent satellite cells are activated by the presence of the damaged 

basal laminar structure and specific extra cellular signals such as Wnt, IL-6 and the IGFs, 

with inhibition of terminal differentiation by the Notch system; leading to myoblastic 

proliferation but differentiation is inhibited.  



32 

 

 

It has been determined that an IGF-1 splice variant known as Mechano Growth Factor (MGF) 

is first expressed by damaged myoblasts and it is this that first activates satellite cells (128). 

The active satellite cells or myogenic precursors will finally contribute to mature post-mitotic 

myofibres and may be stimulated by the release of IGF-1ea another splice variant of IGF1 

(128-130). The cascade that fulminates in the activation of satellite cells is as (128) follows: 

inflammatory reaction, followed by oedema, degeneration and necrosis with ensuing 

phagocytosis of such material and finally the regeneration of muscle fibres (93).  

 

These processes were formalised into the following pathway (131;132)  

 Hypoxia 

 Release of chemo attractive factors. 

 Vasodilatation 

 Leucocyte adhesion 

 Neutrophil and macrophage migration and induced necrosis 

 Activation of satellite cells  

 

Myoblasts closely interact with and are under the control of local inflammatory factors 

and stromal cells. Inflammatory monocytes may be recruited to aid myogenesis 

(129;133). Chronic dysfunction from fatty degeneration due to white adipose cell and 

fibrocyte accumulation, reduces the ability of the muscle to self-renew. These cells derive 

from myogenic precursor cells that fail to undergo normal myogenic differentiation due to 

disease processes or age related limited mitogenesis or lipofuscin accumulation (129). 
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1.4 Myogenesis In Ischaemia 

 

In CLI there is a shift from oxidative phosphorylation to glycolysis and the response to 

diminished reserves of ATP (adenosine triphosphate) is either the arrest of the cell growth or 

programmed cell death, apoptosis.  

 

There appears to be a threshold whereby mild hypoxia (6% O2) actually increases cell 

turnover and survival, as Di Carlo et al. showed this is similar to O2 tension within exercising 

muscle (134). Their work demonstrated a response to greater hypoxia (~1% 02) was found in 

C2C12 mouse myoblast cells in vitro, which block Myf-5. MyoD expression was reduced 

due to the increased rate of degradation by the ubiquitin-protease pathway. Thus the 

recruitment of myogenic cells was reduced; the cell cycle arrested in the G1 phase and 

terminal differentiation inhibited (134).  

 

Hypoxia causes the inhibition of myogenin, p21 and active hypophosphorylated pRb.  The 

induction of pRb by MyoD is a key event (proven both in vivo and vitro) in both arresting the 

cell cycle and causing differentiation. Thus blocking MyoD leads to the inability to withdraw 

from the cell cycle and terminal differentiation (56;164;165;170;173). Genetic and 

biochemical evidence indicates that MyoD and Myf5 establish the myogenic lineage whereas 

myogenin promotes terminal differentiation (111;134;135). 

 

These responses to hypoxia are mediated by the “master mediator” HIF-1, a transcription 

factor itself induced and stabilised by hypoxia (110-112;136). HIF-1, among other roles, acts 

to promote the actions of p21 and p27 (CDKIs discussed earlier) to arrest the cell growth, as 

well as up regulating expression of tumour suppressor factor p53. The action of CDKI p27 
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and myostatin cause an increase in the active hypophosphorylated pRb, again causing the 

inability to withdraw and leading to arrest of differentiation (110-112;136). 

 

The reduction in the expression of the MRFs caused by hypoxia is reversible, with levels of 

MyoD, myf5 and myogenin restored once oxygen tension is restored. Functional pRb is 

required for this arrest, not p21. Hypoxia only temporarily arrests the cell cycle, with normal 

myogenesis recurring after restoration of normoxia (110-112;136). 

 

 

1.5 Fibre Type Shift and Atrophy in Chronic Limb Ischaemia 

 

There is a complex interplay between the susceptibility of differing fibre types to ischaemic 

conditions and the active repair and regeneration of these fibres performed by satellite cells. 

Fibres display plasticity by switching phenotypes, expressing two or more different MHCs 

along the course of their length (spatial transition). These ‘hybrid or jump fibres’ (137) 

identifiable through immunohistochemical techniques are much more prevalent than 

previously thought (68;119;138-140).  

 

Even in the normal aging process, there is a related fibre type change resulting in a gradual 

temporal and spatial transition from fast to slow MHC isoforms; IIx → IIx/a → IIa →IIa/I 

→I (141), with concurrent preferential loss of susceptible Type II fibres and the marked 

atrophy of all those that remain. The opposite shift is seen in bed rest and disuse (140) and 

the fact that age and disuse are both common concomitants with ischaemia clearly confounds 

morphometric analysis to such an extent that there is no consensus on the direction of fibre 

type shift in chronic ischaemia. 
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In conditions such as critical limb ischaemia it is likely that the more susceptible Type II 

fibres either undergo apoptosis, atrophy or display hybrid features as they change into type I 

fibres (119;138) but this has not been fully elucidated. The phenotype changes that occur in 

the ischaemic patient are similar to those seen in age related change but to a much greater 

degree (118).  

 

Calf muscle mass is reduced in the elderly and in PAD (60;139;142). It has been recognised 

for some time that muscle fibres atrophy and via the activation of proteolytic enzymes such 

as the calcium-activated neutral protease family of calpains can be triggered to auto-digest by 

high levels of intracellular calcium (143).  

 

Connective tissue infiltration increases by 30-50% in ischaemic muscle. This is both fibrous 

tissue, presumed secondary to limb disuse, but also likely a result of the activation of 

inflammatory and cellular mediators (120;144).
 
Studies by other groups (145) have suggested 

hypoxia causes an upregulation of the Transforming Growth Factor-β (TGF-β) family which 

is pro-fibrotic and increases deposition of collagen in other progressive muscular dystrophies 

and inflammatory myopathies It is likely that a similar process occurs in CLI (42;146). TGF-

β1 tends to be observed near areas of myofibre damage and necrosis, high TGF-β2 mRNA 

and precursor protein levels have been observed in regenerating muscles after strain injury 

and particularly at the end of motor units as well as in fusing satellite cells and myotubes, 

although levels have been observed to decrease as the fibre matures (147).  

TGF-β3 has also been observed in those damaged regions where macrophages were active in 

phagocytosing necrotic tissue. It appears that pax7 over expression (116;148); and a member 

of the TGF- β family known as Growth Differentiation Factor 8 (GDF8) or myostatin may 
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both act to inhibit the Muscle Regulatory Factors and therefore inhibit myogenesis and 

myogenic differentiation (149) although recent evidence suggests that while myostatin may 

inhibit myofibre differentiation and hypertrophy, it is unlikely to affect satellite cell function 

(150;151). In this way, the MRFs commit satellite cells to their myogenic fate, cause their 

proliferation but hinder normal differentiation leading to muscle weakness and fibrosis. TGF-

β also recruits smooth muscle cells into the capillary walls and leads to the overgrowth of the 

extra cellular matrix. (152;153) 

 

 

1.6 Angiogenic Remodelling in Skeletal Muscle in Chronic Ischaemia 

 

All mammalian cells need oxygen and nutrients to survive and are never more than the 

diffuse limit of oxygen, or 200μms, away from a blood supply that can deliver such 

requirements. In order for tissue to grow, this blood supply must increase proportionately and 

it does this through vasculogenesis, the recruitment of vascular endothelial precursor cells in 

the embryo, or angiogenesis, the formation of new blood vessels. The process of new blood 

vessel formation is in constant flux under the influence of pro and anti angiogenic factors but 

the normal balance between the two groups of molecules leads to no net gain of vessel 

formation (154-157).  

 

Circulating haematopoietic stem cells derived originally from endothelia or bone marrow 

respond to chemotaxic signalling from molecules such as platelet derived growth factor and 

can be directed to contribute to angiogenesis (158). With the correct stimulation, these cells 

are thought to be capable of repairing other mesodermal tissues including skeletal or cardiac 

muscle or even nerve cells (106;157;159;160). 
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Nitric oxide synthesases, VEGF and its receptors, angiopoietins through the Tie system, 

fibroblast growth factors, matrix metalloproteinases and collagen are all products of 

independent hypoxia induced gene action (136;161;162). VEGF and basic fibroblast growth 

factor (bFGF) are both mitogenic for capillary endothelial cells, with the former also 

increasing endothelial permeability and possibly stem cell recruitment and survival 

(163;164). Both factors are essential for angiogenesis and are seen in elevated levels in calf 

and thigh muscles of CLI patients (164-167).  

 

Atherosclerotic induced ischaemia leads to an increased vasculogenic and angiogenic 

response, but arteriogenesis is impaired as is further maturation of new vessels (162). One of 

the key mediators of this hypoxia induced activity is HIF-1α, a DNA binding factor 

(136;157;162;168). As HIF-1α is upregulated, it is amplified by other growth factors, TGF-β, 

VEGF, angiopoietin, CXCR4, VCAM1 and Endothelin-1 stimulate angiogenesis through the 

sprouting, bridging or intussuception of mother vessels (136;157;162;168). HIF-1α has been 

co localised with CD31, a marker of endothelial cells (169). Interestingly, VEGF and 

VEGFR-2 are seen in greater concentrations with increasing degrees of ischaemia or more 

atrophic myofibrils (166;170). 

 

Capillarisation of muscle tissue in ischaemia has been well reported (94). The vast majority 

of papers have looked at the capillary number per fibre (C: F) as well as the number of 

capillaries around a muscle fibre (CAF). Using both methods exclude bias due to any atrophy 

of fibres due to ischaemia. Most morphometric studies show significantly more capillaries 

present in ischaemic tissue (171;172), some authors have even suggested a preponderance of 

capillaries around type I fibres (65;173).
 



38 

 

 

Specific endothelial marker studies have revealed frequent and frustrated attempts at capillary 

maturation in ischaemic tissue. An increase is seen in all immature endothelial cell subtypes 

tested for: CD34- immature haemopoietic stem/ satellite progenitor cells and vascular 

endothelial cells; CD31- all continuous vascular endothelium, including arteries, arterioles, 

venules, veins, non sinusoidal capillaries and lymphatic vessels; PAL-E - capillaries, venules 

and small and medium sized veins. Expression of α-SMA, a marker of pericytes seen in 

mature capillaries, is not increased. This indicates a positive primary angiogenic response in 

hypoxia, however, it is clear that maturation of these novel vessels is lacking (171;174).
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Chapter 2 Hypothesis 

 
Critical limb ischaemia causes altered muscle morphology clinically manifesting as pain, 

tissue loss, decreased exercise tolerance, poor balance, impaired proprioception, muscle 

atrophy and weakness. Therapeutic interventions commonly fail and advanced cases 

eventually necessitate amputation for symptom control. Stimulating the angiogenic pathway 

in CLI has been shown to be ineffectual, reducing the energy requirements of the end organ 

or increasing the effectiveness of satellite cells may provide an effective strategy in treating 

CLI. Little is known about the behaviour of satellite cells in the critically ischaemic leg. 

Greater understanding of myofibre behaviour in CLI and manipulation of multipotent stem 

cells resident in skeletal muscle may provide clues for a therapeutic strategy.  

 

The hypothesis of this work holds that there is an adaptive response shown by skeletal muscle 

to chronic ischaemia, resulting in marked morphometric changes and tissue remodelling. 

Abnormalities are more pronounced in critical ischaemia, leading to greater dysfunction. The 

stem cell response to ischaemia is poorly coordinated and is insufficient to repair or reverse 

ischaemic damage resulting from CLI.  

 

The aims of this study are as follows: 

 

1) To describe the morphological changes exhibited by human skeletal muscle in response to 

critical limb ischaemia through the use of both light and transmission electron microscopy 

 

2) To quantify those changes morphometrically. 

 

3) To examine the adaptive mechanisms of skeletal muscle; in particular the response of resident 

stem cells to critical limb ischaemia.  
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Chapter 3  Materials and Methods 

 

3.1 Patients 

 

3.1.1  Ethical Approval and Consent 

 

Ethical Approval was approved through the local ethical committee and allowed harvesting 

of human skeletal muscle from patients recruited through the Royal Free Hospital, 

Hampstead and the London Heart Hospital, Marylebone, (see Appendix A). All patients were 

provided with an information sheet explaining the muscle biopsy procedure and the purpose 

of the study (Appendix A, Information Sheet). Informed consent was obtained (Appendix 

A, Consent form). The Research reference number was 29-2000. 

 

 

3.1.2 Patient Demographics 

 

Ten patients undergoing perigenicular amputations for CLI were recruited as the study group 

and ten patients undergoing CABG with no evidence of PAD were recruited as the control 

group. Patients undergoing CABG who suffered with intermittent claudication, rest pain, 

ulcers, gangrene, oedema, peripheral vascular disease including varicose veins or 

lymphoedema, vasculitides or autoimmune disease, or myopathies were excluded. In those 

patients undergoing amputation for CLI, those patients with auto-immune disease or 

myopathies, venous disease or lymphoedema, acute ischaemia or advanced necrosis 

extending near to the medial belly of gastrocnemius were also excluded. Muscle biopsies 
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were taken from the medial head of gastrocnemius from both groups of patients via an open 

surgical approach described later (Section 3.3). 

 

The patients recruited for this study were comparable for age and other characteristics, except 

for the presence of peripheral vascular history, namely lower limb arterial insufficiency. 

 

Table 5: Patient Demographics and Co-morbidities 

Ischaemic n= 10 vs Non-Ischaemic n= 10 

  Ischaemic Control 
Test and 

Significance 

Age 73.60 ± 2.405 N=10 73.20 ± 1.965 N=10 χ
2
 ns 

Sex 8M:2F 9M:1F χ
2 

ns  

Dyscrasias 2 2 Fishers 
 
ns 

Diabetes 6 5 χ
2
 ns 

Heart Disease 7 10 χ
2
 ns 

CVA/ TIA 2 1 Fishers ns 

Cholesterol 8 10 χ
2 

ns 

Hypertension 8 9 χ
2 

ns 

Renal 2 1 Fishers ns 

AAA 2 1 Fishers ns 

Smoking history 9 8 χ
2 

ns 

 

Table 5: Summary of the patient groups and their co-morbidities: none of the control patients 

had symptoms of peripheral arterial insufficiency. Otherwise the cohorts were comparable for 

age, sex, blood dyscrasias (disorders including thrombocytopaenia), diabetes and heart 

disease including arrhythmias, angina or valve disease. Renal disease indicates the presence 

of chronic renal failure and renal artery disease, CVA/TIA also includes any intracranial 

bleed. All patients with hypercholesterolaemia were taking a statin. Any current or past 

history of smoking was counted as equally significant for the purpose of the study. The 

Fishers Exact Test was used to compare the two cohorts where n<5 and the χ
2
 test where n>5. 
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3.1.3  Sample Collection and Preparation 

 

Patients undergoing perigenicular amputations for CLI or long saphenous vein harvesting for 

use in coronary artery bypass grafting were consented pre-operatively with attention paid to 

complications arising; such as bleeding, bruising or infection. This was in fact a minor 

procedure as the intended operation in both sets of patients was much more invasive and 

carried larger risks with greater tissue resection. No complications arose due to this study.  

 

Tissue harvested was approximately 5mm
3 

in size and taken from the medial head of the 

gastrocnemius muscle. Samples were somewhat larger in those patients undergoing 

amputation due to the availability of whole muscle. The same area or level of the medial head 

of gastrocnemius was harvested as it is known that just as in other human skeletal muscles; 

the gastrocnemius is composed of different myosin heavy chains at different levels or depths 

through the muscle (55;98). To therefore avoid this variation confounding data collection, the 

samples were extracted from exactly halfway along the medial head of the gastrocnemius 

muscle for every patient.  

 

In both sets of patients, these samples were taken well away from any areas of ulceration or 

oedema and these biopsies were divided into three sets of tissue. Muscle biopsies were 

processed as follows (91): 

 immersed in formaldehyde to be paraffin embedded and used for histological, 

morphological and immunohistochemical analysis under light microscopy 

 snap frozen in liquid nitrogen and stored at -80ºC for protein analysis  

 1% paraformaldehyde/ 1.5% glutaraldehyde in phosphate buffer for transmission 

electron microscopy (TEM) processing. 
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Figure 6: Schematic Diagram Demonstrating Use of Samples
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3.2 Preparation methods of skeletal muscle for transmission electron microscopy 

(TEM) 

 

The transmission electron microscope (TEM) uses electrons much as a light microscope uses 

light but whilst the latter is limited by the wavelength of light, the TEM using electrons is 

able to define objects at over x1000 greater resolution. The images viewed through the TEM 

are picked up via electromagnets and by adjusting these, the user can magnify images and 

pick up even greater detail. Limitations occur due to the electromagnets inability to focus the 

electron rays to a single focal point and increased refraction of light rays occurs, affecting the 

sharpness of an image, in much the same way that light behaves when passing through a lens. 

This is called spherical aberration. The electron beam must be passed through a vacuum so 

there is no deviation caused by the beam colliding with air. Similarly, the sample to be 

analysed must be dehydrated to avoid interference by the water particles contained within it 

and fixed in glutaraldehyde to avoid damage to the tissue. Preparation of tissue was 

performed to a standard protocol detailed below: 

 

Figure 7: Method of Tissue Preparation for the TEM 

 

  

 

 

 

 

 

 

 

 

 

Primary fixative – glutaraldehyde 

 

Secondary fixative – osmium 

 

Dehydration by alcohol 

 

Permeation with resin 

 

Ultra-thin sections by diamond knife 
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3.2.1 Preparation of skeletal muscle tissue for TEM 

 

Muscle biopsies were immediately placed in 1.5% glutaraldehyde/ 1% paraformaldehyde in 

PBS overnight and stored at -80ºC before further preparation as detailed below (91). 

 

 

3.2.2 Fixation of Tissue for TEM 

 

Although glutaraldehyde stabilises proteins within samples, and so preserves architecture, it 

does not fix lipids for which a secondary fixative must be utilised. Osmium tetroxide was 

used in this study to fix lipid membranes in the muscle samples which after dehydration with 

alcohol and infiltration with resin allow for the sample to be sliced with an ultra tome or 

diamond knife at a thickness of 60 nanometres. These ultra thin sections allow the passage of 

the electron beam and better resolution than the light microscope can obtain. 

 

In this study, immediately after harvesting of tissue, small pieces of gastrocnemius were 

immersed in 1.5% paraformaldehyde/ 1.5% glutaraldehyde in 0.1M PBS pH 7.4 overnight. 

Post fixation was achieved with 1% osmium tetroxide and 1.5% potassium ferricyanide for 

12 hours after thorough washing. The tissue was dehydrated through different concentrations 

of ethanol and then left in 50% epoxy monomeric resin 50% ethanol overnight before finally 

being completely preserved in 100% resin and placed in a 70
o
C for 12 hours. 

 

The final block, embedded in plastic was then stained with 1% toluidine blue and 0.2% 

pyronine in 1% boracic stain. A diatome was used to further slice 60 nm ultra thin sections of 

the prepared block and positioned on a copper mesh 3.05mm diameter x 0.7mls thick. A 

further stain of uranyl acetate in ethanol was applied for 5 minutes to the section followed by 
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lead acetate for 5 minutes. After a further wash with deionised water, the sections were placed 

within the Philips CM120 transmission electron microscope and image capture was performed 

at various magnifications, with note made of muscle architecture, satellite cell and 

mitochondrial number and characteristics. 
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3.3 Preparation of skeletal muscle for histological and immunohistochemical 

staining 

 

Biopsies were placed immediately into Cellstor pots containing 10% neutral buffered 

Formalin (Cellpath UK Ltd) and stored at room temperature until further processing was 

carried out.  

 

For the purposes of light microscopy, formalin fixed tissue was embedded in molten wax and 

applied to a cassette after orientating the tissue so that muscle fibres were perpendicular to 

the face of the block to be cut by microtome. The wax was cooled and the ensuing block was 

placed on a microtome positioned over a water bath. Sections were cut at a thickness of 3μms 

and great care was taken to apply these at the same orientation on polylysine coated slides 

(VWR International, UK). These were stored until use and dewaxing is described in the 

relevant sections (175-177). 

 

Paraffin embedded tissue was used primarily due to the better preservation of tissue, 

especially due to morphometric analysis and it has been reported previously that 

cryoprocessing leads to greater fibre size discrepancy than is seen in paraffin embedding of 

the same tissue samples and is therefore less reliable (178). 

 

Following an initial Haematoxylin and Eosin stain to determine orientation of tissue, 

Picrosirius Red and the following antibodies were used on sequential slides; Slow Myosin, 

Fast Myosin (A4.74, sc71 and BF-35), Embryonic Myosin, Neonatal Myosin, , CD31, CD34, 

pax7, myoD. The protocols used for each and the method of data collection and slide analysis 

are detailed below in Tables 8 and 9.  
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Negative controls for immunohistochemistry to show results were not due to non-specific 

staining, were performed without the primary antibody in each case, as detailed in previous 

studies (179). Except for this omission, the rest of the outlined protocols were followed as 

detailed below. These control samples were performed with runs of the final optimised 

positive samples to ensure no background staining ensued due to the application of the 

secondary antibody or chromagen as a result of the immunohistochemical process. 
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3.3.1 Histological staining of skeletal muscle 

 

A simple haematoxylin and eosin stain was initially performed on each sample for the 

purposes of correctly orientating the skeletal muscle samples. Cross sections perpendicular to 

the muscle fibre were desirable for morphometric analysis. Those samples found to be at the 

incorrect orientation were realigned and cut again until correctly orientated (180;181)  

 

 

3.3.1.1 Haematoxylin and Eosin Protocol 

 

A simple Haematoxylin and Eosin (H&E) stain was used to determine correct tissue 

orientation, crucial for morphometric analysis of tissue. Sections were deparaffinised and 

rehydrated through xylene, ethanol and finally placed into deionised water, the whole process 

taking 10 minutes. Harris Haematoxylin (Surgipath Europe Ltd, Peterborough, UK) was 

poured through filter paper to remove any oxidised particles and sections were placed in a dry 

rack for immersion in the filtered solution for three minutes to stain nuclei Slides were rinsed 

for 5 minutes in tap water allowing development of the haematoxylin. Differentiation of 

sections was achieved with 1% acid ethanol for thirty seconds, before several immersions in 

blueing solution arrested differentiation to give a near colourless background. The slides were 

shaken dry and dipped into 1% aqueous eosin counter stain for 30 seconds before being 

dehydrated through ethanol and xylene for ten minutes.  

 

Sections were mounted with distyrene (a polystyrene), a plasticiser (tricresyl phosphate) and 

xylene (DPX resin, BDH Gurr®). Slides were examined under a light microscope and 

pictures taken with Zeiss Axioskop 2 mot (Carl Zeiss, Gottingen, Germany). 
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3.3.1.2 Picrosirius Red Protocol 

 

Picrosirius Red staining was used first to determine overall architectural differences in the 

muscle sections biopsied from the ischaemic and control muscle and to determine any 

difference in nuclei number and collagen deposition (182). Sections of both control and 

ischaemic muscle tissue were dewaxed and rehydrated through serial immersion in xylene 

and ethanol (100%). Staining with Celestine blue for 1 minute and haematoxylin for 5 

minutes was performed to stain cell nuclei and the slides were next washed for 10 minutes in 

deionised water. Picrosirius Red (Direct Red 80, picric acid 1.3% in water, Sigma Aldrich) 

stain was applied to the slides next to highlight collagenous structures as red and background 

tissue as yellow and was left in situ for 30minutes. Dehydration was then performed using 

serial immersion of the slides in 100% ethanol and finally xylene. The slides were then 

mounted using DPX and analysed for collagen content (red) located around the periphery of 

muscle fibres, arteries and basal lamina. The slides were blinded at this point by assignation 

of a letter. Slides were examined under a light microscope and pictures taken with Zeiss 

Axioskop 2 mot (Carl Zeiss, Gottingen, Germany) (182;183). 
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3.4 Immunohistochemical staining of skeletal muscle to analyse fibre type specific 

morphometry 

 

Standard immunohistochemistry using the avidin-biotin-complex (ABC) technique was used 

to detect and localise relevant antigens in skeletal muscle sections. The ABC technique 

involves three components. The first is the unlabelled primary antibody. The second is a 

biotinylated secondary antibody and the third layer is a complex of avidin-biotin peroxidase. 

The peroxidase is then developed with 3,3'-diaminobenzidine (DAB) (Vector Laboratories, 

UK), to produce a stable, brown chromagen. 

 

 

3.4.1 Sequence of immunohistochemical staining for fibre typing 

 

An initial section of a paraffin prepared block was checked for correct orientation using a 

routine normal haematoxylin and eosin stain. The block was blinded and assigned a letter. 

Once orientation was confirmed through Haematoxylin and Eosin examination, fifteen 

sequential sections of 3μm thickness were sliced using a microtome. These slices were placed 

upon polylysine treated slides (VW International UK) which were marked in series and 

according to the letter used for the blinded sample they were cut from.  
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3.4.2 Pre treatments used for antigen retrieval 

 

There are two common methods for antigen retrieval: 

 

 Heat Induced Epitope Retrieval (HIER) to destroy the cross links formed by formalin 

immersion in a retrieval solution such as TRIS-EDTA (pH=9.0) or Citrate (pH=6.0) 

In this study, TRIS-EDTA was used commonly and samples were heated for 20 

minutes on full power in the microwave 

 

 Proteolytic Induced Epitope Retrieval (PIER) which through enzyme digestion with 

enymes such as proteinase k, trypsin, chymotrypsin and pepsin makes antigenic sites 

available for detection. 

 

 

Serial sections of 3μm thick paraffin embedded muscle were immersed in xylene through 

ethanol to dewax and rehydrate the muscle sections.  The samples were then placed in 590mls 

of methanol with 10mls of 30% Hydrogen peroxide to eradicate endogenous peroxidase 

action. After 10 minutes, the samples were rinsed in PBS and heated in a microwave on full 

power for 20 minutes in pre warmed TRIS/EDTA buffer, pH=9.0 for the purposes of antigen 

retrieval (78;184). This was made up from 12gms TRIS, 1 gm EDTA and the slow addition 

of 1M HCl until monitoring with a pH meter confirmed the solution had a pH=9.0. The 

buffer was then made up to 500mls with deionised water. The whole solution was further 

diluted x10. 

 

For some optimisation experiments only, a citrate buffer pH=6.0 was used for pre-treatment 

instead of EDTA and was made up as follows: 2.1gms of Citric acid monohydrate was added 
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to 950mls of deionised water. 12.5mls of 2M Na OH was later added to this solution with the 

pH of the buffer continually monitored and finally made up to a litre with deionised water. In 

pre treatments with the citrate buffer, sections were placed in a microwave at full power for 7 

minutes. 

 

 

3.4.3  Incubation Conditions of Primary Antibodies 

 

After removal from the TRIS/EDTA buffer, the slides were kept well hydrated and using a 

hydrophobic PAP pen, the sections were circled and 10% Normal Goat Serum (NGS) was 

applied. This reduced the amount of non-specific staining present in the tissue and chosen 

due to the species that the secondary antibody was raised in. The 10% NGS was left in situ 

for 20 minutes before being aspirated. The primary antibodies were applied to sequential 

slides after optimisation of dilution and incubation conditions had been established for each 

MHC antibody. These are laid out in Table 6. 

 

 

3.4.4  Negative Controls 

 

Negative controls were applied by either omitting the primary antibody and using a similar 

volume of PBS but performing the described protocols as outlined previously (179) or by 

exchanging the primary antibody with isotype matched control antibodies, i.e.serum 

immunoglobulins of the species from which the primary antibody was raised. Relevant 

dilutions were performed to ensure comparable concentration of primary antibody used. 
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3.4.5  Secondary Incubation and DAB Development 

 

After the appropriate incubation time, (see Table 6) the slides were washed three times for 

ten minutes in PBS and biotinylated secondary antibodies (all goat anti-mouse species, 1:200 

Vector Laboratories) were applied for 30 minutes. At the same time, the Avidin-Biotin 

Complex (ABC) was made up and left for 30 minutes at room temperature. Following three 

rinses in PBS for 10 minutes, the slides were incubated in the ABC complex for a further 30 

minutes.  

 

A further wash and finally 3, 3’-diaminobenzidine tetrahydrochloride (DAB) as the visible 

stain was applied for ten minutes. 

 

The slides were washed yet again in PBS and for the purpose of counter staining nuclei, 

immersed in Mayer’s Haematoxylin for 50 seconds, then running water, followed by a long 

dip in acid alcohol, running water and finally 5 long dips in blueing solution before a final 

long wash and dehydration through ethanol and xylene. DPX was used as a mounting 

medium. 
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Table 6: All slides were pre treated for antigen retrieval with heat and either citrate buffer or 

EDTA buffers as above. Optimal expression was determined by adjusting the concentrations 

of primary MHC antibodies and incubation conditions which vary by incubation time (1 hour 

to Overnight [ON]) or temperature (4
o
C to Room Temperature [RT]): 

  

Table 6: Optimisation of MHC Antibody Expression. 

MHC Stained 
Clone 

Number 

Supplier Species Type 
Optimised 

Concentration 

Optimised 

Incubation 

Conditions 

Type I and I/IIa M8421 Sigma Aldrich Ms monoclonal IgG 1:4000 RT 1hr 

Type IIa, IIx, IIa/x A4.74 Alexis Biochemicals Ms monoclonal IgG 1:50 4
o
C ON 

Type IIa, IIx, IIa/x sc71 

Professor J. Morgan, MRC, 

Imperial College 

Ms monoclonal IgG 1:20 4
o
C ON 

Neonatal 

NCL-

MHCn 

Novacastra Laboratories Ms monoclonal IgG Variable Variable 

Developmental 

NCL-

MHCd 

Novacastra Laboratories Ms monoclonal IgG Variable Variable 

 All MHCs 

Except IIx 

BF-35 
Professor J. Morgan, MRC, 

 Imperial College 

 Ms monoclonal IgG  Variable  Variable 
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3.5 Sc71: 

 

This was used to corroborate the staining of A4.74 and to ascertain whether the reported 

weak staining of IIx fibres was legitimate (175;185). A third sequential slide after fast and 

slow Myosin Heavy Chain antibodies was utilised and the same 100 fibres previously 

recorded were identified and examined again. It has been previously reported to stain IIa 

strongly and IIx weakly unlike other fast myosin antibodies, but like other fast myosin 

antibodies has no way of distinguishing between IIa and the IIa/x hybrid (57).  

 

 

3.6 Optimisation of BF-35, Neonatal and Embryonic Myosin Antibodies  

 

Although antibody 6H1 has been reported to stain type IIx fibres in frozen mammalian 

muscle sections there is currently no individual antibody to positively identify type IIx fibres 

nor the IIa/x hybrid in paraffin embedded adult human skeletal tissue. An attempt was made 

to identify IIx fibres through use of the “negative” stain with BF-35 (kindly donated by 

Professor Jenny Morgan, MRC Imperial College) although all prior experiments reporting 

this antibody as reliably staining all Myosin Heavy Chains except IIx had only been reported 

in mouse or rat frozen sections only (57). Optimisation was attempted in paraffin embedded 

sections. 

 

Concurrently, muscle sections were also subjected to neonatal and embryonic (NHC-emb and 

NHC-n: Novocastra Laboratories, UK) myosin antibodies to determine whether either of 

these two phenotypes could be detected in adult skeletal muscle, particularly in view of the 

presence of some indeterminable fibres as well as the expected increase in disordered 
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myogenesis. Different pre-treatments for antigen retrieval, EDTA pH=9, citrate pH=6, with 

and without protein kinase, as well as altering incubation conditions such as length of time of 

exposure to the primary antibody, were carried out in order to show positive chromagen 

expression. 

 

 

3.7 CD31 Endothelial Marker 

 

A marker of all vascular endothelium, CD31 was used to compare vessel density in the two 

patient groups. The next sequential 3μm slice after the fibre type antibodies was exposed to 

the same pre-treatment protocol as before EDTA and heated in a microwave for 20 minutes, 

blocked with 10% NGS at room temperature and CD31 antibody (Dako M823), diluted to a 

concentration of 1:100 in Antigen Target Retrieval Solution (Dako) and left in situ on the 

slides for one hour. The rest of the ABC protocol described earlier was followed. After 

development of DAB for 10 minutes, the slides were counterstained with haematoxylin, 

dehydrated and preserved with DPX. Slides were examined under a light microscope and 

pictures taken with Zeiss Axioskop 2 mot (Carl Zeiss, Gottingen, Germany). 
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3.8 Satellite Cell Markers 

 

3.8.1 Satellite cell markers Sequence of Staining 

 

Sequential sections of muscle samples already analysed for fibre type and endothelial cells 

were further analysed for satellite cell markers due to the increased fibre flux and hybrid 

types seen in CLI. An investigation into satellite cells responsible for the increased but 

disordered myofibre regeneration seen in morphometric, light microscopy and TEM 

examination of ischaemic muscle may help elucidate the failure of the myogenic plastic 

response or suggest a source of stem cells that could act as a source of new muscle, adequate 

and maturing angiogenesis or neural repair. 

 

Sections were stained in the sequence following CD31, CD34, pax7 and finally MyoD and 

the same five randomly generated fields were analysed as Figure 28 illustrates.  

  



 

59 

 

 

Figure 8a-d: Sequence of Staining of Satellite Cells: of Patient A (Control Group) 

illustrating sequence of antibodies raised against the following antigens in each patient. 8a: 

CD31 Included to show continuity of sequential slides. 8b:CD34, a marker of haematopoietic 

stem cells and quiescent satellite cells was included to quantify the presence of these cells 

(186) 8c:pax7 a marker of satellite cells 8d: myoD, a marker of differentiation, myoblast 

activity and active satellite cells. 

 

3.8.2 Immunohistochemical recognition of satellite cell markers on sequential slides 

 

The same five fields used in previous analysis for Picrosirius Red, MHC isoforms and CD31 

expression were identified and further analysed in sequential blinded slides using pax7, CD34 

and MyoD antibodies as outlined above. The same method of ABC and DAB chromagen 

Fig 

8d  

Fig 

8c 

Fig 

8b 

Fig 

8a  
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staining was utilised as described in Section 3.4.2 and optimisation of the antibodies is 

displayed in Table 7. 

 

 

 

Pre blinded slides were analysed using the Zeiss Axiosopp 2 light microscope at x200 

magnification coupled with an Olympus camera. Image capture was performed and JPEGs 

generated were stored to be analysed. Positive stains for each antibody were recorded in five 

previously randomly generated fields per patient sample and subjected to data analysis as 

outlined later. The number of cells or nuclei staining positively for each field per sample was 

recorded in the sequential areas of assessable muscle per patient biopsy and a comparison 

was made in each group using the Mann Whitney U Test. 

  

Table 7: Antibodies used for tissue analysis and satellite cell recognition  

Optimal expression was determined by adjusting the concentrations of primary MHC antibodies and 

incubation conditions. Incubation Conditions Vary by Incubation time (1 hour to Overnight [ON]) or 

Temperature (4o
C to Room Temperature [RT]): 

Ab Clone Source Species Conc. 

Pre-

Treatment 

Incubation 

CD34 QBEnd-10 Dako 

Mouse  

monoclonal IgG 

1:50 EDTA 20m RT 1 hour 

Pax7 QC2152 

Aviva 

Systems 

Rabbit Polyclonal 1:200 No PT 4
o
C ON 

MyoD 5.8A Dako 

Mouse  

monoclonal IgG 

1:50 EDTA 20m 4
o
C ON 
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3.9 Data Collection 

 

3.9.1 Orientation of Samples 

 

Skeletal muscle sections were first stained with a simple H&E stain to determine correct 

orientation of the myofibres in each sample. It was ensured that all samples had fibres 

presented perpendicular to the microtome with the resulting tissue presented in cross section 

as shown below in Figure 9. 

 

 

Figure 9: Orientation of Samples x200 magnification.  9a: shows longitudinal preparation of 

the tissue for TGF-β antibody. Z lines are apparent; nuclei are generally located in lines 

parallel to the myofibres and at junctions. 9b illustrates the correct plane suitable for 

morphometry, perpendicular to the myofibres as described previously (176;181;187;188). 

  



 

62 

 

 

Figure 10: Methods of Morphometric Data Collection 

 

 

 

Confirmation of Correct Orientation 

Adequate Tissue throughout all Slides 

Blinded Slides 

• Map at x25 magnification 

• 3 Randomised fields analysed 

 

x100 magnification 

• 100 fibres identified per sample 

• Abnormal features 

• (Slow Myosin) 

x400 magnification 

• CSA measured for each fibre 

• Myonuclei and capillaries counted 

x100 magnification 

Sequential Fast Myosin to allow fibre typing 
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3.9.2 Blinding of Samples 

 

All samples were blinded and assigned a unique coded identifier. This was performed by an 

independent observer who retained the identity of the samples until after the analysis. This 

reduced bias in data collection. 

 

3.9.3 Randomisation 

 

Randomisation was achieved through the use of www.random.org an online random number 

generator. Each section was divided into 9 fields and examined based on the result of the 

random generator. 

 

3.9.4 Morphometric Analysis 

 

Slides were analysed using the Zeiss Axioskop 2 MOT microscope (Carl Zeiss, Gottingen, 

Germany) and the computer operating system used for analysis of slides was the Axiovision 4 

system. 100 random fibres were identified at x100 magnification in each sample and 

numbered as previously described (175;180;180;181;189-191). The total number of fibres per 

five fields at x100 magnification was also noted.  

 

As described by Gosker, only fibres without artefacts that were part of a cluster of ≥30 fibres 

were included (181). Each fibre was marked and recorded from 1-100, on a “map” at x2.5 

magnification. Using the semi automated spline measuring function of Axiovision v4, both 

http://www.random.org/
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the features and cross sectional area (CSA) of each fibre was noted alongside its number. 

This semi-automation as previously described allowed for the rejection from the study of 

those fibres affected by artefact (192;193).  

 

The cross sectional area of each of these fibres was then measured at x400 magnification 

using the Axiovision v.4 computer analysis software program and the result recorded in µms. 

Care was taken to measure the inner surface of the basal lamina to avoid including thickened 

or collagenous tissue associated with muscle damage. The following were also recorded: 

 

 Myonuclei/ fibre 

 Fibres/ field 

 Central nuclei 

 Angular fibres 

 Fibre type 

 CSA (µms) 

 

 

3.9.5 Fibre Typing With Sequential anti-MHCs 

 

Blinded 3μm thick sequential sections were stained for type I/IIa and type II myosin heavy 

chains with M8421 and A4.74 antibodies respectively (175;176;194). Three different 

randomised fields per patient biopsy, containing a total of 100 fibres were analysed as per 

previously described protocols (180;181). Positively staining myofibres for each antibody 

raised against a fast or slow myosin were recorded (191-193;195) as positive or negative 

cytoplasmic brown DAB stain was anticipated to be apparent for each phenotype.  
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Slides were examined under a light microscope and pictures taken with Zeiss Axioskop 2 mot 

(Carl Zeiss, Gottingen, Germany). The same one hundred fibres identified and recorded 

above were examined and fibre typed according to the positive brown DAB stain exhibited in 

none, one or both sequential slides. A note was also made of the intensity of staining for each 

antibody. The first slide in the sequence was stained using the Avidin-Biotin Complex 

method to recognise those fibres containing type I (or slow) MHC. The M8421 (Sigma-

Aldrich) clone also recognises those fibres containing type I/IIa (or hybrid type IIc) MHCs. A 

positive result was visualised through the brown DAB chromagen in the sarcoplasm. This 

was found to be very specific with little background signal. It was followed by the anti-fast 

MHCs A4.74 and sc71 according to previous optimisation.  Neither anti-fast MHC labelled 

type I MHC. Whilst the A4.74 antibody was specific and displayed little background 

expression, it also appeared to differentiate between type IIa and type IIx fibres, with a 

stronger chromagen signal (dark brown) displayed from the former and a weaker signal 

displayed from the IIx fibres. No distinction could be made regarding type IIa/x hybrid fibres. 

 

Optimisation of BF-35(all MHCs but IIx), neonatal and embryonic myosin in paraffin 

embedded tissue with attempts to change pre-treatment, concentration of antibody and 

variation in incubation times. No staining was achieved under any conditions. 
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Table 8 :MHC Isoform Identification 

 

Chromagen Expression In 

Sequential Slides 
MHC Isoform Expressed 

 

 

Corresponding 

Fibre (As 

Labelled Below) 
Slow (M8421) Fast (A4.74) 

++ - I C 

++ ++ I/IIa A 

- ++ IIa B 

- ++ IIa/x B 

- Weak IIx D 

Table 8: Identification of Myosin Heavy Chains Using Sequential Slides Stained with Fast (A4.74) 

and Slow (M8421) anti-Myosin Heavy Chain Antibodies and the Fibre Type generated by the two 

results as shown in Figures 11i and 11ii with a corresponding letter to indicate MHC isoform 

identified:  

 

 

 

 

 

 

 

 

 

 

Figure 11: Reactivity of skeletal muscle fibres in human gastrocnemius muscle with 

monoclonal antibodies directed against MHC isoforms. Three randomly generated areas in 

sequential slides were stained for Fast (i) and Slow (ii) Myosin Heavy Chain (MHC) 

isoforms. Corresponding fibres in sequential slides were identified and following established 

protocols (57;177;185;196) were labelled according to specific chromagen expression and 

marked using Table10 above as: A: IIc if there was expression demonstrated with both 

antibodies. B: IIa or IIa/x if there was expression only in the Fast Myosin slide. C: Type I if 

only Slow Myosin was expressed D: IIx if there was weak expression of Fast Myosin only. 

  

 

A 

B 
C D 

 

A 

B 
C D 

Figure 11ii: Slow Myosin (M8421) Figure 11i: Fast Myosin (A4.74) 
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3.9.6 Characterisation of active and quiescent satellite cells 

 

In order to assess the number and activity of satellite cells in the two sample groups, 

frequency of pax7 antibody positive nuclei were evaluated to determine the overall number of 

satellite cells present. CD34 was utilised as a marker of haematopoietic stem cells. When 

pax7 was found to be co expressed with CD34 in sequential slides but not MyoD, these cells 

were identified as quiescent satellite cells.  

 

Those cells co expressing pax7 and MyoD on sequential slides were identified as 

differentiating (or active) satellite cells. Other cells present in the tissue undergoing 

differentiation were myoblasts and a sarcoplasmic pattern of labelling was seen. The numbers 

of each group were assessed for five fields per sample and compared using the Mann 

Whitney U Test. 
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3.10 Protein Analysis of Satellite Cell Markers via Western Blot 

 

Protein expression was quantified was using Western blotting with isoenzyme specific 

antibodies. Detection is based on antigenic molecular weight and interaction of the primary 

antibody with the antigen. The process of gel electrophoresis employs polyacrylamide gels 

and buffers loaded with sodium dodecyl sulfate (SDS).  

 

SDS-PAGE (SDS- polyacrylamide gel electrophoresis) allows separation of proteins by 

molecular weight, maintaining polypeptides in a denatured state once they have been treated 

with reducing agents to remove secondary and tertiary structures. SDS confers a negative 

charge to the sampled proteins which then migrate to the positively charged electrode through 

the polyacrylamide structure of the gel. Smaller proteins migrate faster and the proteins fan 

out according to size. The higher the concentration of acrylamide, the better the resolution of 

lower molecular weight proteins as the pore size in the gel decreases. A lower acrylamide 

concentration allows better resolution of higher molecular weight proteins due to a larger 

pore size.  

 

 

3.10.1 Preparation of Skeletal Muscle Tissue for Protein Analysis 

 

Muscle biopsies measuring 5mm
3
 were immediately snap frozen in liquid nitrogen after 

harvesting and stored at -80ºC until further use. 
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3.10.2 Homogenisation of Skeletal Muscle  

 

Protein expression of pax7 in both sample groups was quantified using the Western blot 

technique with the aforementioned specific primary antibodies probing for their particular 

antigens and detection via densitometry of the ensuing chemiluminescence was used to 

quantify the difference in protein levels between the two groups.  

 

All muscle samples were homogenised in short bursts to avoid heat damage to the proteins, 

by an electric homogeniser, (Ultra-Turrax T8, IKA Werke GmbH & Co. KG, Staufen, 

Germany).with the samples immersed in ice at all times. This was performed using a 

homogenising buffer which was made up from Tris/HCl, (25mM at pH=7.4) EDTA (1mM) 

and EGTA (1mM). 50µls was added to each sample. This was then centrifuged at 13,000 rpm 

for 10 minutes as per previously described experiments (148). The supernatant was drawn off 

and added to 20µls of x4 Laemelli or loading buffer (20% sodium dodecyl Sulphate, 1M 

Tris/HCl pH6.8, glycerol, mercaptoethanol, 0.2% bromophenol blue and deionised water) 

and added to a water bath at 90˚C for 5 minutes. 10μls of a molecular weight marking ladder 

to confirm the molecular weight of probed bands was then loaded into the first well of a pre 

prepared 4%:20% Tris glycine polyacrylamide gel.  

 

 

3.10.3 Electrophoresis 

 

A running buffer of PBS Tween, which allows for a constant current, was then added and a 

current of 125mV was applied across the polyacrylamide gel for 90 minutes to separate the 

proteins within the lysate according to their molecular weight, the smaller molecules moving 
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further across the gel. Once the visible Laemelli buffer was visualised at the bottom of the 

wells, the current was switched off. 

 

 

3.10.4 Electrotransfer 

 

The cassette containing the gel was opened, the latter transferred onto a nitrocellulose 

Hybond C-Extra membrane (Amersham Biosciences UK) and between a sandwich of blotting 

paper and bubble free sponges in a transfer buffer made up of 50mls methanol, 20mls 25x 

Tris Glycine Buffer, made up to 500mls with deionised water. Using transfer apparatus, 

35mV were applied across the sandwich for 1.5hours and in this way, proteins already 

separated by electrophoresis were transferred from the polyacrylamide gel to the Hybond C-

Extra membrane.  

 

 

3.10.5 Probing With Primary Antibodies  

 

The membrane was then blocked with 2.5gms of milk to 50mls PBS/Tween for an hour to 

eliminate any non-specific binding of primary antibodies. The primary antibody (pax7 

1:2000) was diluted in PBS/Tween then applied to the membrane overnight at 4ºC. After 

three further rinses with 0.05% PBS/Tween for half an hour, the appropriate secondary 

horseradish peroxidase-conjugated affinity purified goat anti-rabbit (pax7) or anti-mouse 

(CD34/MyoD) secondary antibody (Vector Laboratories) was added to the membrane at 

room temperature for an hour at the concentration of 1:3000 in each case before being 

washed finally in PBS/Tween for another half hour to avoid background chemiluminescence.  
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3.10.6 Development and Densitometry of Detected Bands 

 

The membranes were finely covered with a luminol chemiluminescence detection reagent 

(Enhanced Chemiluminescence ECL Kit, Amersham Biosciences) and the membranes were 

wrapped in cling film and finally transferred in a dark room onto ECL Hyperfilm inside an X-

ray cassette case for an optimal time (between 30 seconds and 5 minutes) to gain optimal 

bands with minimal overexposure from the chemiluminescent signal. Once achieved, the 

Hyperfilm was washed in water, fixative and finally developing fluid before being left to air 

dry.  

 

Due to the poor or non-specific signalling of CD34 and myoD antibodies, the above method 

used for pax7 was modified as follows. The membrane was blocked in 5% bovine serum 

albumin (BSA) for an hour before the primary antibodies CD34 or myoD were placed on the 

membrane and these were incubated at the following concentrations overnight at 4°C: 2.5μls 

CD34 in 5mls of 1x TRIS buffered saline (TBS) [1:2000]; 5μls of MyoD in 1x TBS [1:1000].  

The membrane was then thoroughly rinsed three times for 10 minutes in TBS. The secondary 

antibody (HRP-conjugated goat anti mouse) was applied at 1:2000 dilution for an hour. This 

was washed off in TBS three times over half an hour and developed as outlined above. 

 

 

3.10.7 Internal Control of Protein Concentration 

 

To confirm equal loading between samples, membranes were stripped by washing in PBS-

Tween. Mouse monoclonal primary antibody GAPDH (Abcam 1:10,000) was applied to the 

membrane for an hour, followed by a goat anti- mouse HRP linked secondary antibody 
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(1:10,000), following the same steps outlined above. The western blot images were analysed 

and quantified by densitometry using Biospectrum® Imaging System and VisionWorks®LS 

Software (UVP). Quantification of the probed antigens was expressed in relative density units 

(RDU) according to the strength of the luminescence. 

 

 

3.11      Statistical Analysis of Results 

 

Patient demographics were compared using Fisher’s Exact Test if n<5 or χ
2
 if n>5. χ

2
 is 

useful to analyse binary or categorical data and compares associations between proportions.  

Continuous quantitative data were expressed as median values and, for non-parametric data 

and mean and standard deviations for parametric data from experiments using human skeletal 

muscles inter-quartile ranges were included in the appendices.  

 

Single comparisons between values in the two patient groups for non parametric two 

independent samples were performed using two-tailed Mann-Whitney U test using Graph Pad 

Prism v4.0 software p.<0.05was taken to be statistical significance with p.<0.0001inferred as 

highly significant . 
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Chapter 4: Results 

 

Qualitative description of ischaemic muscle morphology through the use of light and 

transmission electron microscopy: 

 

4.1 Introduction 

 

Ischaemic tissue displays characteristic and pathognomonic changes arising from local effects 

on myofibres or due to damage on their nerve supply. Atrophy has been reported as common, 

although there is no consensus as to which fibre types are more susceptible to damage. The 

deposition of fibrofatty tissue and disordered myogenesis has been reported before. There is 

little evidence regarding the number of myonuclei pee fibre in CLI nor regarding the numbers 

of regenerating, angular fibres nor hybrid fibres. The body of research into fibre type shift 

and plasticity under ischaemic conditions is contradictory in its findings. 

 

In this present study, Transmission Electron Microscopy was first used to confirm that there 

is a change in skeletal muscle architecture. This was later confirmed by light microscopy and 

morphometric data was collected through the use of both histological and 

immunohistochemical means. This study aims to show the adaptive potential displayed by the 

human gastrocnemius muscle in response to chronic ischaemia, demonstrated by 

histochemical, immunohistochemical and morphometric means.  
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The aims of this study were as follows: 

 

4) To describe the morphological changes exhibited by human skeletal muscle in response to 

critical limb ischaemia through the use of both light and transmission electron microscopy 

 

5) To quantify those changes morphometrically. 

 

 

6) To examine the adaptive mechanisms of skeletal muscle; in particular the response of 

resident stem cells to critical limb ischaemia. 

 

In pursuing these questions, multiple modalities were undertaken. In particular, to assess the 

architectural changes seen in chronically ischaemic tissue, observations regarding the 

morphology of the tissue can be made through the use of both electron as well as light 

microscopy to assess the “end-organ”, or skeletal muscle.  
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Figure 12: Transmission Electron Microscopy of CLI Tissue 
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4.1.1 TEM Examination of Ischaemic Adult Human Skeletal Muscle Tissue Reveals 

Disorder in Ultrastructure Morphology 

 

Muscle samples were harvested and prepared (as described in Section 3.2) after informed 

consent was gained., TEM was used to examine differences in the ultrastructure of ischaemic 

compared to non ischaemic samples. 

 

 

 

Figure 13b: 

Figure 13a: 

N 

N 

M 



 

77 

 

 

 

 

 

Figure 13: TEM examination of CLI Muscle 13a,b: x5120 and x8500 magnification. 13c,d: 

Ischaemic Muscle at x 5120 and x 6570. Nuclei in Control tissue were uniform and ovoid 

(N). Lipofuscin droplets (L) can be seen in ischaemic muscle with increased numbers of 

oedematous mitochondria (M), particularly towards the sarcolemma. Fibrocollagenous 

deposition is also observed particularly around capillaries (Fc). Disorganised myofilaments 

were seen in abundance (D).  

  

Figure 13d: 

Figure 13c: 
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Myofilaments were found to be highly disorganised in areas, consistent with the loss of 

normal polygonal architecture visualised in conjunction with the loss of orientation 

sometimes seen in light microscopy of ischaemic muscle. This may also account for some of 

the increased variability in fibre size. Two types of inclusion bodies of the sarcoplasmic 

reticulum were noted. The first were light, featureless and amorphous and the second type 

were dark aggregated structures with associated granules. Mitochondria, dark ovoid bodies, 

were seen to be swollen in ischaemia and occupied areas near satellite cells, the basal lamina 

and capillaries.  

 

Ischaemic muscle examined under TEM reveals occasional internalised or central nuclei, also 

visible in light microscopy. There were also found to be numerous multilobed myonuclei 

indicating mitogenesis and often with thick nuclear membranes and less dense chromatin 

contained within, features not observed in control muscle. All the above features correlate 

well with previous findings (82;197;198). 

 

Lipid or lipofuscin droplets, by products of mitochondrial metabolism and lipid peroxidation 

(199-201), can be commonly seen as light circles resident between ischaemic myofilaments, 

and the increased fibrocollagenous structures around capillaries and between fascicles 

correlates well with the fibrofatty infiltration seen on light microscopy of similar tissue. Most 

ischaemic samples contained more mitochondria, seen as dark ovoid structures between 

fibres (see Figure 13d) 
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4.1.2 TEM Examination of Satellite Cell Characteristics in Ischaemic Tissue 

 

Quiescent satellite cells are in the order of 6.5μms in length, 2.9μms in width and generally 

oval in shape. They were found to contain a large rounded/oval nucleus occupying 

approximately 60% of the total transverse area of each cell (see Figure 14a). In primates, 

quiescent satellite cells are significantly smaller than those seen in ischaemia (p < 0.01), with 

a smaller percentage of nuclear to cellular area (p < 0.01) than active cells (82). The quiescent 

satellite cells were noted to have no projections and there was little electron-dense material 

present in the intercellular gap as described by Gregory and Mars (2004). Active cells are 

reported as larger than quiescent satellite cells with a more pronounced nucleus, often lobular 

in appearance. Unlike the quiescent cells, the active cell has projections via the basal lamina 

into the substance of the myofibre. They also display the well defined nucleolus noted also by 

Dedkov (124). 

 

Transmission Electron Microscopy was used to determine whether there was any noticeable 

difference in the numbers of satellite cells observed in ischaemic compared to non-ischaemic 

muscle. To this end, tissue was prepared as described earlier (section 3.2) and examined with 

the TEM. Representative images are recorded below. Of note, an area of three ischaemic 

samples and five control samples, measuring approximately 1mm x 1mm was visualised.  

 

It was observed that while there were abundant satellite cells noted throughout all the 

ischaemic samples, they were not seen in 4 out of 5 control samples and only occasional cells 

seen in one sample. This concurs with observations in the literature by previous groups that in 

normal muscle, satellite cells are rarely seen (202). 
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Figure 14a: TEM Quiescent Satellite Cell contains unremarkable organelles, has a smooth 

ovoid shape, well defined basal lamina with no projections Figure 14b: Mobilising satellite 

cell, with nucleus appearing to become bilobar. Figure 14c: Multiple mitochondria seen in 

satellite cell with enlarging nucleolus and lobular nucleus as previously described (82) 
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4.2 Light Microscopy 

4.2.1 Figure  15: Histological Examination  
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4.2.2 Picrosirius red stained ischaemic adult human skeletal muscle confirms changes 

seen under TEM  

 

The hypothesis that there is a change in skeletal muscle morphology and morphometry as a 

result of critical limb ischaemia led to the need for an overall analysis of harvested tissue 

through a non-immunologically based stain. Sequential sections were thus stained as 

described earlier with Picrosirius Red (Section 3.3.1.2) to observe this basic tissue 

morphology and morphometric changes visible in CLI skeletal muscle compared to control 

muscle from patients undergoing coronary artery bypass grafting.  

 

Picrosirius Red staining was utilised primarily to determine the correct orientation of tissue, 

but also to determine some basic morphological data. It was chosen to demonstrate the 

increase in collagenous content in ischaemic tissue and over Masson’s Trichrome due to the 

finding of some researchers that the latter tends to underestimate collagen deposition (183).  

Nuclei were observed stained in black, cytoplasmic/ sarcoplasmic contents as yellow and 

collagen appeared red in colour. Myosin heavy chains have not been reported to differ with 

this stain and therefore morphometrics were carried out on these samples so bias was not 

introduced when measuring CSA. 

 

The most striking aspect of the tissue is the loss of the normal tight polygonal architecture 

seen in normal skeletal muscle. 70% (n=7) of ischaemic samples displayed this loss, yet only 

10% (n=1) of the control group did so. Fibres, in yellow, appear to be smaller and there is a 

much greater diversity in size and shape with cellular atrophy and regeneration occurring in 

greater number. This is similar to the effects seen in muscular dystrophy. 
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Figure 16: Picrosirius Red Staining of 16i: Control Muscle: uniform architecture with little 

collagen deposition, regular polygonal fibres, few central nuclei, rare small rounded fibres 

and flattened fibres. Capillaries can also be clearly seen surrounded by a thin collagenous 

compartment. Figures 16ii-iv: Picrosirius Staining of Ischaemic Muscle with: a. Central 

nuclei b. Small rounded fibres c. Flattened or angular Fibres d. Increased fibro fatty 

infiltration e. Increased adipose cell numbers f. Distracted and irregular tissue g. Increased 

Fibre Size Diversity h: Increased collagen around capillaries 
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4.2.3 Loss of Polygonal Structure is observed in Critical Ischaemia 

 

70% (n=7) of ischaemic samples displayed these characteristics, yet only 10% (n=1) of the 

control group did so. This is in part perhaps due to the severity of the ischaemia affecting 

muscle innervation later in its natural history. Sample from patients with muscular dystrophy 

and an ischaemic sample have a similar loss of structure likely due to the effects of nerve 

damage common to both disorders (see Figure 44). There is the same atrophy of fibres, 

distraction of the normally tight syncytial arrangement, wide diversity of fibre size, as well as 

loss of polygonal structure. 

 

The obvious fibro-collagenous overgrowth of the extracellular matrix is synonymous with 

ischaemic damage and also appears more commonly in severely ischaemic tissue samples 

than those of the control group who must have a degree of atherosclerosis on a microscopic 

level but have no clinical manifestations. Other features observed in the picrosirius red 

stained samples include the presence of adipose cells within the ischaemic samples as well as 

angular and small rounded cells.  

 

As shown in Figure 17, there was a significant (p=0.0001; 95% CI) increase in the number of 

fibres seen per 400 x 300µm field across five different areas per sample in the ischaemic 

group compared to the control group indicating general atrophy and/ or increased 

regeneration of myofibres: 
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Table 9: Mean Number of Fibres/ 5 x Fields 

 Control 
 

Ischaemia 

 
A 28.8 

  
C 69.4 

 
B 32 

  
D 84.2 

 
F 25.8 

  
E 75 

 
I 27 

  
G 37.8 

 
J 23.5 

  
H 49.4 

 
L 24.6 

  
K 18.2 

 
N 22.6 

  
M 57.6 

 
O 16.2 

  
R 32.4 

 
P 35.2 

  
S 35 

 
T 21.6 

  
U 45 

Mean: 25.73 
 

Mean: 50.4 

 

 

Figure 17: Table and Graph showing the mean number of fibres counted in five randomly 

determined fields per sample performed at x200 magnification. A significant difference was 

observed between the ischaemic vs control (CABG) group with more fibres seen per 

400x300µms field; (*p=0.0001; 95% CI).  
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4.2.4 Cross Sectional Area of Myofibres is significantly reduced in CLI  

 

Greater amounts of red staining collagenous tissue surrounding each myofibril, capillary and 

fascicle are seen in the ischaemic samples. Cross sectional area (CSA), as measured in 100 

fibres per sample was found to be significantly greater in control samples than the more 

ischaemic samples (x1.5 fold; p=0.0147: 95% CI). 

 

Table 10: Average CSA (All Fibres) 

 Control 
 

Ischaemia   

 
A 3643.08 

  
C 3901.1 

 
B 4215.51 

  
D 2364 

 
F 4687.53 

  
E 1628.64 

 
I 3929.25 

  
G 3071.74 

 
J 6136.58 

  
H 3418.47 

 
L 3782.83 

  
K 5621.05 

 
N 5532.44 

  
M 1661.21 

 
O 6709.32 

  
R 3171.94 

 
P 3732.51 

  
S 3508.46 

 
T 5201.86 

  
U 2719.81 

Mean: 4757.091 
 

Mean: 3106.642 

 

Figure 18: Table and Graph to illustrate the mean cross sectional area (CSA) of 100 fibres 

per patient biopsy measured at x400 magnification.  x1.5 fold significant decrease (* 

p=0.0147; 95% CI) in the CSA of ischaemic myofibrils was observed compared to the 

Control  Group showing not only general atrophy of fibres but also increased regeneration of 

fibres occurring. 
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Greater diversity of size of the fibres in the ischaemic muscle was observed, as well as 

evidence of ongoing atrophy, regeneration and denervation. An increase in fibrofatty 

infiltration can be observed with loss of the normal polygonal architecture of the muscle 

fascicles. 
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4.2.5 Central Nuclei Are Indicative of Regenerating Muscle 

 

Central nuclei, a feature of regenerating myofibres, were observed in both ischaemic and 

control samples with no significant difference in frequency observed between the two 

cohorts. 

 

Figure 19: Graph to illustrate the mean number of central nuclei observed in 100 myofibrils 

per biopsy sample counted at x200 magnification. There was no significant difference 

between the two groups 
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4.2.6 Myonuclei Number Remains Static Despite Fibre Loss and Atrophy 

 

Certainly at first glance there is an abundance of nuclear material evident in ischaemic tissue. 

However, most of these nuclei belong to migratory cells, in particular leucocytes, 

macrophages and neutrophils. Importantly, although there was established atrophy of 

ischaemic fibres as detailed earlier in this section, the number of myonuclei per fibre 

identified at x400 magnification for 100 fibres per sample, did not differ significantly despite 

the previous observations in atrophied muscle (100;100;203), although this loss has been 

reported in soleus. However, the static number of myonuclei has been a reported 

phenomenon seen in hypertrophy of muscle (150). 

. 

Figure 20: Graph to show the mean number of myonuclei counted per 100 fibres per patient 

biopsy measured at x400 magnification in both cohorts. Interestingly, there was no significant 

difference between the two groups.  
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4.2.7 Angular fibres are indicative of denervation and are observed in greater 

numbers in CLI 

 

Angular fibres, as seen in Figure 15, however, were significantly raised in ischaemic muscle 

with a tenfold increase (*p=0.0002: 95% CI). 

 

Figure 21: Graph to show the mean number of angular fibres occurring within 100 fibres 

assessed per patient biopsy, collected at x200 magnification. A x2 fold significant increase in 

the occurrence of angular fibres was observed in the CLI patient samples compared to the 

Control Group; (*p=0.0002; 95% CI). 
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4.3 Figure 22: Fibre Typing using Sequential Slides
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Slides were stained in sequence (as described in Section 3.6) and shown in Figure 23 below. 

Sequential slides reacting with DAB chromagen were typed as described previously (Section 

3.5).  

 

 

Figure 23: Sequence of Staining for Morphometry (after initial H&E stain for orientation). 

23a: Picrosirius Red Showing Black Nuclei, Yellow cytoplasm and Red collagen. 23b: Slow 

Myosin (M8421) staining all Type I and Type IIc fibres brown.23c: Fast Myosin (A4.74) 

staining Type IIa MHC dark brown and Type IIx MHC light brown. 20d: Fast Myosin (sc71) 

staining all Type II MHCs brown.  

23a

a 

23c

c 

23b 

23d 
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4.3.1  Reliability of Fast Myosin Antibodies (sc71 and A4.74) 

 

Recent studies have suggested that sc71 is specific for IIa only yet A4.74 also weakly stains 

type IIx fibres when subjected to microwave antigen retrieval with pH=9 TRIS-EDTA. This 

reported staining was however observed in fixed frozen tissue and has yet to be reported in 

paraffin embedded sections (57;177;185).  

 

There was no significant difference in staining between the two fast antibodies in recognising 

type II fibres overall. The reported differentiation in intensity of staining of type IIa and type 

IIx in frozen muscle by sc71was not reproducible in this study, which used formalin fixed 

paraffin embedded tissue.  

 

 

Figure 24a: A4.74 (Fast) specificity compared to sc71 anti-fast MHC in both  Control 

(CABG) and CLI tissue  
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The A4.74 fast anti-myosin antibody however was able to reliably distinguish between the 

pure fast myosin fibres with IIa staining more strongly and IIx less so. 

 

25a:

 

 25b:  

 

Figure 25: Intensity of Fast Myosin Stains: a:A4.74 stain  b: sc71 stain; A comparison of the 

pattern of myosin staining showed similar specificity in labeling fibres, but background and 

poor signal in sc71 were such that it was unreliable to gauge a weak or strong chromagen 

expression for the purposes of identifying IIa or IIx MHC. 
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4.3.2 Fibre type proportion display a shift towards type I in CLI 

 

The proportions of each fibre type; I, IIc, IIx and IIa but except IIa/IIx, were recorded in a 

total of 100 fibres per patient sample in three different fields and the two cohorts were 

compared as described previously. The graphs below show the relative proportions of myosin 

heavy chains.  

 

In this study, there was a significant shift (p=0.0288; 95% CI) in fibre proportion to slow 

myosin, or type I fibres by 75%. Most interestingly, there was a significant increase in the 

number of hybrid I/IIa or IIc fibres in the ischaemic samples. On average there was a 2.4 fold 

rise in these fibres (p=0.0147; 95% CI). These relative increases in type I fibres and hybrid 

IIc fibres seem to be at the expense of IIx fibres, which were significantly less common in 

ischaemic tissue. Six times fewer type IIx fibres were seen in ischaemic tissue (p=0.0039; 

95% CI). There was no significant difference in the proportion of IIa fibres or those fibres 

that did not stain and were therefore unidentifiable.  

 
Figure 26: Mann Whitney U test to assess relative proportions of MHC expression in 100 

Fibres per sample in ischaemia vs control samples: There was a significant shift (p=0.0288; 

95% CI) to type I fibres by 75%. There was 2.4 relative rise in llc fibres (p=0.0147; 95% CI). 

IIx fibres were six times less abundant in ischaemic tissue (p=0.0039; 95% CI). There was no 

significant difference in the proportion of IIa fibres or those fibres that did not stain.  
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Figure 27: Showing the separate relative fibre type proportions (%) present in Control (CABG) 

patients Vs CLI patients. 27a. Type I slow MHC fibre proportion was significantly raised in ischaemia 

(*p=0.0288; 95% CI). 27b. Type IIa Fast MHC fibres were unaltered significantly. 27c. Type IIx 

staining fibres were significantly decreased in ischaemia (p=0.0039; 95% CI). 27d. Type IIc fibres 

were significantly increased in ischaemia (*p=0.0147; 95% CI). 27e. Unidentifiable Fibres were 

unaltered in proportion in ischaemic muscle  

27a. 27b. 

27c. 
27d. 

27e. 

Control 

Control 
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   Control vs CLI 
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4.3.3 Individual fibre type atrophy in response to CLI 

 

Muscle sections were harvested and immediately preserved in formalin and wax embedded, 

not only because this technique affords better preservation of the architecture but also for the 

following reasons laid out by Behan: “[Formalin fixed tissue] has other advantages [that] 

include the ability to study both fibre types on the same preparation, economy of use, and the 

production of permanent and colourful preparations so that image analysis is easy. Economy 

of tissue use is important now that needle biopsies are becoming routine and micromethods 

for all parameters, including gene analysis, are available (193).”  

 

After identifying 100 random fibres per sample and classifying them according to their type, 

each cross sectional area was measured at x400 magnification allowing fibre cross sectional 

area (CSA) to be assessed for each fibre type in both ischaemic and control groups and later 

analysed. 

 

Of the fibres that did not stain for all antibodies and were therefore unidentifiable, there was 

no significant fibre atrophy with no statistical difference between the size of the fibres in 

control nor ischaemic muscle (p=0.0892) 

 

Type IIc fibres were found to be the only other fibre group that showed no significant change 

in fibre diameter in either group (p=0.315) and therefore are the least susceptible to fibre 

atrophy. All other identifiable groups, i.e. types I (p=0.0185; CI=95%), IIa (p=0.0089; 

CI=95%) and IIx (p=0.0029; CI=95%) all showed a significant decrease in fibre size. 

However, of these, type I fibres were the most resistant to atrophy. Type IIx as previous 
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studies have suggested was the most susceptible to damage due to ischaemia and indeed 

displayed the greatest atrophy across all fibre types.  

 

 

 

 

Figure 28: Significant Atrophy was demonstrated in all fibre types except for type IIc hybrid 

fibres. Type I (p=0.0185; CI=95%), IIa (p=0.0089 CI=95%) and IIx (p=0.0029; CI=95%) all 

showed a significant decrease in fibre size, Type IIc and unidentifiable fibres did not show a 

significant change in CSA and may therefore be more resistant to ischaemia induced atrophy. 

This data was analysed using the Mann Whitney U Test. 
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Figure 29: Mean CSA (µm
2
); Comparison between Control and Ischaemic Tissue. 29a:Type I fibres 

significantly reduced in CSA (*p=0.0185; CI=95%), 29b:Type IIa Fibres significantly reduced in 

CSA(* p=0.0089 CI=95%). 29c: Type IIx Fibres significantly reduced in CSA (*p=0.0029; CI=95%) 

29d: Type IIc Fibres did not display a significant change in size in ischaemia, 23e: Unidentifiable 

fibres did not significantly alter in size in ischaemia.  

Figure 29d: Figure 29c: 

Figure 29a: 

Figure 29e: 

Figure 29b: 
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Figure 30: Angiogenic Response in CLI 
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4.3.4 Endothelial Cell Density Is Increased In CLI, Indicating a Stimulated Angiogenic 

Response 
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Figure 31: 31a. CD31 Microvessel Density in CLI: significantly increased in ischaemic 

muscle (*p=0.0001). Figure 31b: Microvessel/ Myofibre Density significantly increased in 

ischaemic tissue (*p=0.035). Figure 31c: CD31 expression of endothelial cells in control 

muscle compared to 31d: CD31 expression in ischaemia muscle, the latter displaying many 

more positive cells. 

 

CD31 is a marker of continuous endothelia and establishing capillarisation in muscle is an 

important part of morphometric analysis. Positive staining cells were counted in five fields,  

measuring 400 x 300μms, for each sample at x200 magnification, these fields being those  

analysed sequentially after the previously fibre typed fields. A clean and reliable stain was 

* * 

31a 31b 

31c 31d 
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achieved with an obvious increase in the number of CD31 positive cells. This was quantified 

as a 3.7 fold increase in the density of CD31 positive nuclei (p=0.0001) in the ischaemic 

samples compared to the control group.  

 

To ensure that there were not more positive cells per field simply due to shrinkage of tissue 

due to the general atrophy of the muscle fibres and the extracellular matrix, the number of 

cells per myofibre was also calculated. Despite the significant increase in number of fibres 

per field discussed earlier, there was still a significant increase in the number of CD31 

positive cells by over two fold (p=0.035).  

 

The parameters in general use by researchers to assess fibre morphometry and thus fibre type 

changes include; overall calf muscle circumference, total fibre number, type specific fibre 

numbers (often expressed as a % of the total), fibre type area (% coverage of each MHC 

isoforms/ total fibre area), individual fibre size and fibre size diversity, connective tissue 

cover, capillary to fibre ratio (C:F), the number of capillaries in contact with each muscle 

fibre, location of central nuclei (regenerating fibres), angular/ flattened fibres, small rounded 

fibres (regenerating) and fibre type grouping known as clumping, indicating reinnervation.  
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4.3.5 Summary of Morphometry Findings Observed In CLI 

 

 Loss of tight polygonal architecture. 

 More fibres/ field. 

 Increased adipofibrocytes. 

 Increased collagen. 

 Increased capillarisation. 

 Increased cell size variability. 

 Increased incidence of fibre clumping. 

 Angular cells indicating denervation are more frequent. 

 Central nuclei, indicative of regenerating myoblasts, are no more abundant in CLI 

 Myonuclei number per fibre is not affected by CLI 

 Type I and IIc MHC fibre proportions significantly increase. 

 Type IIx proportion significantly decreases.  

 Type IIa fibre proportion stays the same. 

 Significant atrophy demonstrated by decreased CSA in I, IIa and IIx fibres 

 Type IIc hybrid fibres do not display significant atrophy. 

 Endothelial cell presence in ischaemia is significantly increased. 

 Some fibres remain unidentified. 

 Type IIa/x hybrid fibres remain unaccounted for. 

 BF35, neonatal and embryonic myosins were undetected. 

 Electron microscopy can be used to differentiate between active and quiescent 

satellite cells. 
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4.4 Figure 32: Sequence staining of satellite cell markers  
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4.4.1 Satellite cell numbers as determined by pax7 staining are significantly increased 

in CLI muscle 

 

The majority of satellite cells express pax7 and previous studies show pax7 is not expressed 

by any other cell type in adult human skeletal muscle. This makes using pax7 alone as a sole 

marker of satellite cells tempting. There was a certain number of positive nuclei expressing 

pax7 in control tissues (mean = 21.8 nuclei staining for pax7/field) and these were certainly 

specific with little background staining.  

 

Figure 33: Anti-pax7 antibody positive staining indicating total satellite cell numbers in 33a: 

Control vs 33b: Ischaemic muscle. In CLI samples, there was marked over expression of 

chromagen throughout the muscle tissue. This was not apparent in the Control samples 

analysed. 

 

 

 

 

 

Figure 33a: pax7 expression in 

Control Muscle 

Figure 33b: pax7 over 

expression in Ischaemic Muscle 
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Figure 34: Graph Showing Mean Frequency of Pax7 positive Nuclei in Ischaemic vs Control 

Muscle samples: per 5 random sequential 400x300μms fields/ patient biopsy There was a 

significant x2.4 fold increase p<0.0001; 95%CI. 

 

There was a significantly higher expression of pax7 throughout the ischaemic samples with 

apparent over expression. Those nuclei clearly staining positive for the transcription factor 

were also found to be significantly raised, with a x2.4 fold increase seen in ischaemic tissue 

(p<0.0001; 95%CI). A typical sample of each is shown in figure 33 above: 
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4.4.2 Haematopoietic Stem Cells (HSCs) are present in greater numbers in CLI tissue: 

 

Stem cells capable of forming blood cells are defined as haematopoietic stem cells or HSCs 

(204) and this group of cells was identified using the CD34 antibody  (186;205;206) and are 

the precursors of many types of mesodermal cells in adult skeletal muscle including neural, 

muscle and adipofibrocytes. Their daughter cells, myogenic precursor cells or satellite cells 

are capable of self renewing the satellite cell pool or forming myoblasts, although other 

research groups have postulated that it is a separate subset of satellite cells that are in fact 

responsible for renewing the satellite cell pool, these are all still identifiable using an anti-

CD34 stain (186). It has also been suggested that this renewal of the satellite cell population 

is due to circulating haematopoietic cells derived from bone marrow or blood (158) and 

indeed these cells have been proven to be multipotent and capable of forming many different 

mesodermal progeny, including blood cells (red, white, platelets), endothelial cells, skeletal 

muscle cells and immune system lineages.(186;204;207;208) 
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Figure 35: CD34 positive staining nuclei in 35a. Control Tissue compared to 35b. Ischaemic 

Tissue after immunostaining; mean number per five random sequential fields per sample. 

Figure 35c Graph to demonstrate significantly more CD34+ve nuclei in Ischaemic tissue 

(*p<0.0001) compared to Control tissue indicating a twofold rise in HSCs and quiescent 

satellite cells. CD34 staining was specific and the number of positively staining nuclei per 

five 400x300μms fields at x200 magnification were assessed per patient biopsy. There was a 

two fold increase (p<0.0001) in the number of CD34 positive cells observed staining in the 

ischaemic tissue compared to the control tissues. 
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4.4.3 Expression of MyoD in ischaemic adult human skeletal muscle is significantly 

reduced 

 

MyoD, a marker of myoblast and activated satellite cells, but not myotubes nor mature 

muscle cells (209;210) as used to assess myogenic activity in muscle samples. There was a 

significant decrease x1.75 in those satellite cells staining for myoD in ischaemic tissue 

(p<0.0001). This shows that while pax7 is evident in promoting cell proliferation, fibre type 

shift and haemopoietic stem cell recruitment, pax7 does not lead to an increase in myoD in 

satellite cells and there is in fact reduced differentiation. In fact, there appears to be an 

inhibitory effect on myoD by pax7 (148). 

 

 

 

 

 

 

 

 

 

Figure 36: Graph representing mean number of MyoD positive satellite cells per 5 random  

sequential 400x300μms fields/ patient biopsy in control vs ischaemic tissue. There was a 

significant decrease in MyoD expression in the ischaemic muscle when compared to control 

tissue = x1.75 p<0.0001) 
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Figure 36: MyoD Expression in 36a: Control vs 36b: Ischaemic Muscle Tissue (x200 

Magnification) MyoD cytoplasmic staining indicates differentiating myoblasts and nuclear 

staining highlights active satellite cells. There was almost no chromagen expression in the 

ischaemic tissue (36b). 

 

 

4.4.4 Pax7 and CD34 co localize to show a significant increase in quiescent satellite cell 

numbers on sequential slides in CLI tissue 

 

As co-localisation of CD34 and pax7 via double staining was unsuccessful, the fact that both 

these antibodies had been developed with DAB on sequential slides still allowed for the 

recognition of quiescent satellite cells by using x200 magnification photographs of the same 

five 400x300μms fields previously stained separately with pax7 and CD34. These were 

superimposed upon each other and the number of cells, quiescent satellite cells, staining 

positive for both pax7 and CD34 were compared across the two patient groups. 

 

 

Figure 36a: MyoD Expression in 

Control Muscle 

Figure 36b: MyoD Expression in 

Control Muscle 
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Figure 37: Mean number of quiescent or pax7 +/CD34 +/ MyoD - satellite cells as per 5 

400x300μms fields of control vs  ischaemic muscle; There were significantly more satellite 

cells, a 2.9 fold increase in ischaemic muscle, staining positively for CD34 and pax7 

*p<0.0001: 95% CI 

 

There was a mean of 6.3 cells staining positive for both CD34 and pax7 per 400x300μms 

field in control tissue compared with 18.46 cells per field in ischaemic tissue, a x2.9 fold 

increase (p<0.0001). 
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4.4.5 Pax7 and MyoD co expressing nuclei are indicative of active SCs and are 

significantly reduced in ischaemic compared to control muscle 

 

MyoD and pax7 are co-expressed by active satellite cells (159;211;212). Using the same 

methodology that was applied to counting the pax7/CD34 positive cells, JPG photographs 

previously taken of sequential sections stained for pax7 and myoD were superimposed upon 

each other. The number of cells staining in five fields was recorded as a mean number for 

each patient and was analysed using the Mann Whitney U test at 95% confidence intervals. 
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Figure 38: Sequential staining of active and quiescent satellite cells (sample L, section ii); 

Figure38a: CD34 stains quiescent satellite cells and are indicated by white arrows. Two have 

been identified in this section at x400 magnification. Figure 38b: pax7 stains all satellite cells, 

indicated by white arrows. Figure 38c: MyoD stain for active satellite cells, positive cell 

indicated by a white arrow, negative cell expression of MyoD as would be expected in 

quiescent SCs (213). A positive result in all three sections was rare and indicates the presence 

of an active satellite cell. If a cell stained for CD34 and pax7 alone, it indicates a quiescent 

satellite cell. 

 

 

 

 

 

 

 

 

Figure 39: Mean number of pax7+/MyoD+ cells seen per 400 x 300μms field at x200 magnification 

In comparison, ischaemic sections displayed significantly less active satellite cells than control tissue 

(*p=0.0089; CI=95%). There was a x2.08 fold decrease in the number of pax7+/MyoD+ cells. 
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4.4.6 Figure 40: Protein analysis of satellite cell markers via western blotting 
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4.4.7 Protein analysis of satellite cell markers via western blotting 

 

Nuclear extracts were used to confirm the elevated chromagen levels visualised by 

immunohistochemistry in the samples analysed previously.  

 

 

4.4.8 CD34 and pax7 levels are significantly raised in ischaemic adult human skeletal 

muscle, indicating greater numbers of quiescent SCs 

 

To try and quantify the differences in expression of CD34, pax7 and MyoD protein analysis 

via Western Blot was performed and both pax7 and CD34 were found to be significantly 

raised while MyoD was significantly decreased in CLI. This also verified 

immunohistochemistry and electron microscopy observations. Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was used as a loading control for the samples and was found to be 

comparable throughout the samples as shown below. Lanes 1-6 were control samples, 7-12 

were ischaemic. 

 

 

 GAPDH  

       GAPDH 

  pax7 

       CD34 

  MyoD     pax7 

        

       MyoD 

Figure 41: Densitometry of Satellite Cell Markers: 

Ischaemic Control 

1   2   3  4  5   6  7 8  9 10 1112 
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To determine CD34 expression, Western blots of the samples were performed as described 

previously. There was a significantly stronger expression observed from the CLI group tissue 

(7-12) than the control group samples (1-6) at the expected molecular weight of CD34, or 

116kDa. 

 

The molecular weight of MyoD is 45kD. There was no significant difference in MyoD 

expression in Control tissue when compared to Ischaemic tissue. A clean band was observed 

in both experiments when repeated. 

 

The molecular weight of Pax7 is 57 kDa. It can be seen that the pax7 band is expressed 

strongly in the ischaemic samples and less so in the control tissue at the expected molecular 

weight. This was confirmed by relative densitometry as a nine fold increase. This experiment 

was repeated twice 

 

 

 

 

 

 

Figure 42a: MyoD 

Protein Expression 

Is Similar in CLI 

Figure 42b: pax7 

Protein Expression Is 

nine fold higher in CLI 

*p<0.05) 

Figure 42c: Expression of 

CD34 in ischaemia is 

raised significantly, a x2 

fold increase over control 

tissue; (p<0.05) 
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4.4.9 Pax7 Elevation 

 

 Ischaemic 

 Control  

 

Figure 43: Pax7 Expression is clearly greater in pax7 as shown here in Ischaemic muscle and 

as shown earlier in RDUs. There is a nine fold increase in pax7 in CLI. (p<0.05) 
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4.4.10    Summary of satellite cell findings 

 

 The muscle response to ischaemia is an attempt to overcome adverse conditions but 

the myogenic response, like the angiogenic response, never fully matures. 

 CD34 a marker of HSCs and quiescent satellite cells is significantly elevated in CLI 

 Pax7+CD34+MyoD- mark quiescent satellite cells and these were significantly 

increased in Critically Ischaemic Human Adult Skeletal Muscle. 

 Pax7 a transcription factor necessary for the myogenic fate of satellite cell progeny is 

elevated in CLI as shown by immunohistochemistry and protein analysis via Western 

Blot (a nine fold increase) and it may be over expression of this inhibiting 

differentiation of myoblasts and the activation of satellite cells as has been postulated 

by other authors. 

 MyoD expression in satellite cells is significantly reduced in staining frequency, but 

in  protein analysis, due to its presence in large amounts in cell sarcoplasm, there was 

no quantifiable difference in protein expression overall. 

 Pax7+MyoD+ positive or active satellite cells were significantly less abundant in CLI 
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Chapter 5 Discussion 

 

5.1 Morphology and Morphometry of Skeletal Muscle in CLI 

 

This study generally concurs with previous studies that show ischaemic muscle displays 

specific pathognomonic changes. Great disorder is apparent in CLI. This disordered 

architecture is not only seen in ischaemic myopathy but also in conditions such as Duchenne 

muscular dystrophy (DMD) which affects innervation as demonstrated in DMD, see Figure 

44. The variability in fibre size is an indication of ongoing regeneration and degeneration is 

also typical of the muscular dystrophies (150).  Interestingly in both CLI and DMD, there is a 

well reported increase in fibrofatty tissue and the number of type II fibres is markedly 

reduced and  those type II fibres left actually have a much larger cross sectional area (CSA) 

than type I fibres (214).  

 

 

Figure 44i: Comparison of Duchenne Muscular Dystrophy (adapted from Behan (215) to 

44ii: Ischaemic Muscle  

 

 

 

44ii 
 

44i 
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As may be expected, both conditions display some morphology in common. Small rounded 

fibres can be seen with increased fibre size diversity, resulting from atrophy of myofibres and 

the more dynamic process of myoblast differentiation and maturation into newly formed 

myotubes.  

 

The muscle fibres display plasticity through apoptosis and fibre type shift and in this way 

remodel to the conditions required of them. While the end organ atrophies and undergoes 

apoptosis to reduce its energy requirements, the capillary network supplying it inversely 

increases, demonstrating such remodelling is an active process (200). Some fibre types are 

more resistant to atrophy and ischaemia than others and in this study there was a reduction in 

fibre CSA of around x 1.5 fold, in line with previous findings (198;200). Even taking this 

atrophy into account, myonuclei per fibre ratio was not found to significantly differ in either 

between fibre types nor after exposure to CLI and this concurs with previous studies that 

have suggested that both satellite cells (SCs) and myonuclei have a domain of influence 

which remains stable despite injury or disease (88). In younger adults, the regenerative 

activity of SCs is well regulated, but this tight co-ordination breaks down in advancing 

disease and individual satellite cells may act independently of normal cues in advancing  

(107). Regenerating fibres have been described frequently and are small with central nuclei 

(65;118;216). In this study, there was no significant difference observed between numbers of 

centrally occurring nuclei in either the CLI or control groups and this may suggest that the 

process of regeneration occurs at the same frequency despite the severity of ischaemia. 

  



 

122 

 

5.2 Fibre Type and Plasticity 

 

It has been established that the human genome codes for four myosin heavy chain genes, but 

the fibre type IIb is not expressed in humans as it is in lower order mammals. In the rat, 

which has the most characterised skeletal muscle, IIb is an important fast twitch muscle and 

confers a “relatively fast stride frequency” in small mammals, being present even in 

proportionally slow twitch muscles such as soleus (196). Some confusion arises due to the 

historical mislabelling of mammalian type IIb MHC which has a similar reactivity to human 

IIx and was identified as such until relatively recently (62;177;185). 

 

Historically ATPase enzyme histochemistry has been used to assess cross sections to identify 

fibre types in muscle and the correlation between ATPase and Myosin Heavy Chains is well 

described (175).  However, ATPase histochemistry does not allow for hybrid fibres or those 

undergoing active plasticity (217) and most studies did not examine samples longitudinally 

which may have identified a dynamic process of changing MHCs along a single fibre length. 

Only small studies have performed comparisons between IHC and ATPase techniques but 

immunohistochemistry is as accurate in differentiating type fibres I from II and may also 

show better correlation for type IIx than ATPase histochemistry. ATPase is unsuitable for 

staining fixed formalin tissues due to enzymatic degradation and also has well reported 

problems in reproducibility due to variations in temperature, pH and incubation time as well 

as the degradation of stained samples over relatively short periods of time (64;218). IHC  

lends itself well to the analysis of both fixed formalin and frozen muscle, however as 

mentioned above, commercially available antibodies are at present unable to reliably 

distinguish between those fibres that contain IIa/x. Serial sections are required to identify 

these hybrid fibres, they can only be seen in frozen muscle and only by exclusion.  
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Similarly, there is no antibody which solely stains MHC IIx in paraffin embedded human 

tissue. Smerdu used the BF-35 antibody  to distinguish IIx and IIa in canine gracilis muscle 

(185). The same group later showed in frozen rat and human tissues that some MHC type II 

antibodies displayed a strong signal when reacting with MHC type IIa, yet a weak signal was 

exhibited by MHC IIc and IIx and on these grounds made a distinction between type IIa and 

IIx positively staining fibres (57). The fast myosin antibody BF-35 stains ALL MHCs BUT 

IIx in frozen muscle and identifying the phenotype via sequential slides. Unfortunately, this 

antibody was not reliable in paraffin fixed human skeletal muscle sections (see Appendix B). 

Therefore the IIa/x hybrid fibre types are currently almost indistinguishable from IIa or IIx 

fibres. With no microscopic features to distinguish between these two fibre types, IIa and 

IIa/IIx, the latter can confound results and it is difficult to be sure how many of these fibres 

are present and how they respond to ischaemia (185). 

 

Type I fibres are thought to be protected from free radicals by higher concentrations of 

antioxidants (219) but are also thought to be more vulnerable to ischaemic injury as they have 

a predominantly oxidative metabolism. Type II fibres are innervated by large motor neurones 

which are more readily affected by ischaemia (144) but other studies suggest they may also 

be relatively well protected due to their anaerobic metabolism of glycogen (220). This study 

concurs with the body of evidence that suggests IIx fibres are the most susceptible to CLI. 

 

Previous work into the morphometry type II muscles of the elderly (hamstrings, vastus 

lateralis, gluteus and tensor fascia lata)  demonstrated a decrease in the numbers of all fibre 

types, with a corresponding size and fibre diameter decrease  (144). Type II fibres in this 

study into ischaemia were also seen to diminish, but as a much faster rate than if age alone 

had been the causative factor. There was no statistical difference between the ages of the 
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cohorts.  Possibly these fibres are more susceptible to ischaemic damage because of their 

large neurones or their anaerobic metabolism of glycogen (118;119;138). In ischaemia, the 

number and proportion of type I fibres either remain the same or even increase (221). 

Regensteiner et al. (119) noted no significant change in type I fibres, either in number, size or 

average area in the calf muscles of 26 adult humans with CLI compared to those examined in 

6 control patients. They found that none of the fibres examined displayed a significant size or 

number difference, but type II fibres did appear reduced in their average area coverage 

throughout the muscle. This preferential atrophy of type II fibres concurs with other reports 

(60;65;68;118;119;222).  

 

Other authors do not describe significant relative changes in type II MHCs 

(60;65;118;119;172). Williamson et al. found that in resistance training, hybrid fibres are in 

fact reduced (223). In this study, chronic ischaemia led to a significant increase in hybrid 

fibres, despite similar conditions to resistance training being replicated in the tissues. 

However, the ischaemia observed in resistance exercise is intermittent and therefore muscle 

respond in a different way to constant ischaemia. 

 

Previous work has shown that resident satellite cells form type II fibres in normal muscle. 

The perceived increase in type I fibre proportion may indicate that while the larger type II 

fibres are preferentially lost, CLI may stimulate SCs to form type I fibres instead. There may 

also be an increase in fibre type shift, with greater flux from type II fibres to type I fibres. 

(101;224).  

 

All fibre types showed a significant reduction in CSA, except for the hybrid IIc fibres, which 

were not only significantly more numerous in number in the CLI patients (x2.4 fold increase, 
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p=0.0147; 95% CI) but also were the only group of muscle fibres not to display significant 

atrophy. Type IIx fibres were preferentially lost in ischaemic muscle, with a significant x4.67 

fold reduction in fibre proportion (p=0.0039). They also displayed the greatest cross sectional 

area atrophy. The morphology and morphometric findings of this study have been outlined 

and compared to previous work in Table 11 below: 

 

The diagram below illustrates the relative fibre shift caused by various pathological and 

physiological conditions including the fibre type shift of this study which highlight the 

preferential shift to type I fibres which suggests these fibres are more resistant to ischaemia. 

Such increased activity as displayed by regeneration of fibres, fibre type shift and increased 

hybrid fibres indicates the dynamic process of plasticity. 

 

 

I        IIc       IIa               IIa/x   IIx 

 

Denervation(124), Inactivity (221;225-229), Low-Gravity (114) COAD (187;188;230)  

Sprinters/ Weightlifters (221), Intermittent Ischaemia (229) 

 

 

 

 

I        IIc                    IIa         IIa/x   IIx        

  

 

Critical Limb Ischaemia (60;98;231;232), Endurance Exercise (44;62;62;221), Age 

(228;233-235) 

 

 

 

Figure 45: Plasticity of Myofibrils: fibre type shift as governed by physiological or 

pathological condition 
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Table 11: Morphometric differences between healthy and ischaemic human skeletal muscle [A Review of Previous Findings]. 

CLI:  Limb Ischaemia (varying severity)    C:F  Capillary to Fibre Ratio 

Con:  Healthy Controls (not age-matched in all cases)

 Hart et al. 
Hedberg et al. 
[20] 

Sjostrom (65) 
Regensteiner (119) McGuigan 

(172) Askew(60) Albani(118) 

 Human Ischaemic 

Tissue Gastroc 10 

CLI vs 10 Con 

Human Ischaemic 

Tissue Gastroc 

5 CLI vs 5 Con 

Human Ischaemic 

Ant Tibial 22 CLI 

Human Ischaemic 

Calf Muscles  26 

CLI vs 6 Con 

Human Ischaemic 

Gastroc 14 CLI vs 

8 Con 

Human Ischaemic 

Gastroc 16 CLI vs 

13 Con 

 

Human  Ischaemic 

Tissue  Ant Tibial 

9 CLI  

Fibre Size 

Diversity 

Increased Increased Increased N/A N/A Increased Increased 

Fibre Type I 

Diameter 

↓ ↔ ↔ ↔ ↓  ↓ ↓/↔ 

Fibre Type II 

Diameter 

↓ ↓ ↔  ↓ ↓ ↓ ↓ 

Total Fibre 

Number 

↑ ↓ ↔ ↔ N/A ↓ N/A 

No. Fibre Type I  ↑ ↑ ↔ ↔  ↑ ↑ ↑ 

No. Fibre Type 

II  

↓ ↓  ↔ ↔ a: ↔ 

x: ↓ 

a: ↓ 

x: ↔  

↔ 

Fibre Type I (%) 

area  

N/A N/A ↔ ↔ ↓ ↓ ↔ 

Fibre Type II 

(%) area  

N/A N/A ↔ ↓ 

Atrophy 

↓ ↓ ↔ 

Connective 

Tissue 

↑ ↑ ↑ (30%) ↔ N/A N/A N/A 

Angular Fibres ↑ ↑ ↑ ↑ N/A N/A ↑ 

Central Nu  ↔ N/A ↑ N/A 

 

N/A N/A ↑ 

Fibre Type 

Clumping 

↑ ↑ ↑ ↑ N/A N/A ↑ 

C:F Ratio  ↑ N/A N/A N/A ↑ (23%)  ↓ (20-25%) N/A 
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5.3 Satellite cell number and behaviour in CLI 

 

There has been little data published on the numbers and activity of satellite cells in response 

to ischaemia. The co-ordinated action of these cells is required for the process of plasticity in 

the form of pre-conditioning, remodelling of muscle through fibre shift and the efficient 

repair of damaged myofibres. This resident group of bipotent stem cells and have shown 

themselves to be capable of self renewal or myoblast, myonucleus or myotubes formation 

(205). It has been suggested that the renewal of the satellite cell population may result from 

the increased number of circulating haemopoietic cells derived from bone marrow or blood 

(158;162;163). There was an increase in the number of circulating bone marrow derived 

haematopoietic stem cells (HSCs) which reliably express CD34 (186).  

 

These cells are implicated in the process of angiogenesis in CLI skeletal muscle as well as the 

repair and regeneration of muscle by replenishing the satellite cell population. SCs have been 

transplanted into the heart with a regeneration of cardiomyocytes seen around them 

(83;106;159;236). The possibility remains that under the certain conditions, with the correct 

transcription factors they may be encouraged to form any mesodermal tissue, given that they 

are or can be stimulated to become multipotent cells. Circulating Bone Marrow derived HSCs 

expressing CD34 were certainly observed in this study to be much more numerous in 

ischaemic muscle (x2 fold increase; p<0.0001, 95% CI), this was also demonstrated via 

protein analysis (p=0.05).  

 

Pax7 is a transcription factor expressed by most SCs, active and quiescent; it was consistently 

raised in CLI muscle as demonstrated through morphometric analysis, immunohistochemistry 

and protein analysis. Immunohistochemistry and morphometric analysis demonstrated  x2.4 
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fold increase in pax7 positive nuclei. In control muscle, there was a relatively clean and 

specific chromagen signal, however in ischaemic muscle, there was generalised over 

expression of pax7 throughout the samples. This may be as a result of ectopic expression in 

the tissues although some authors believe that there is little expression of pax7 except from 

satellite cells or perhaps myonuclei “in distress” (73;213). Others report that pax7 may be 

expressed by immature satellite-cell derived myoblasts (237). Protein analysis demonstrated a 

significant x9 fold increase (p=0.05).  

 

Pax7 delays the expression of myogenin for terminal differentiation, does not actually 

prevent the latter nor does it promote the quiescent state (237). While many satellite cells 

continued to express both pax7 and MyoD, some stop expressing the latter and withdraw to a 

quiescent state. Pax7 in vitro causes increased self-renewal of satellite cells and reduced 

myogenic progression and differentiation (116). However, in the environment of CLI, over 

expression of pax7 may well have a further effect on the MRFs, inhibiting their action. 

 

Due to the increased activity seen in the morphometric analysis of the CLI muscle, an 

increase in fibre numbers per field, regenerating fibres and hybrid fibres in ischaemia, it was 

hypothesised that the distribution of MyoD as marker of activated satellite cells would be 

increased accordingly (210). Interestingly, MyoD positive nuclei were not increased in 

ischaemic muscle, but showed a significant decrease from control samples (p<0.001) perhaps 

indicative of the reduction in fast twitch fibres. Also, significantly fewer cells (x2.1 fold 

decrease) co stained positive for pax7 and myoD on sequential slides. This is a novel finding 

that would infer that activated satellite cells are significantly reduced in number in ischaemic 

tissue and this may be due to over-expression of pax7 (148). Zammit et al. (2006) had 
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observed in pax7-null C2C12 cells undergoing normal myogenesis that ectopic pax7 could 

stimulate MyoD expression and was able to act both up and downstream of MyoD.  

 

Previously it has been demonstrated that myogenin levels are higher in slow-twitch muscles, 

while MyoD is associated with fast-type fibres and it has been proposed that myogenin and 

MyoD may function as intermediaries to selectively regulate fibre-type-dependent contractile 

gene expression. Specifically, because myogenin controls expression of a battery of muscle-

specific genes, including slow MHC expression (238), MyoD may control fast twitch fibres 

and myogenin control slow MHC gene expression (175). Consequently, an increase in the 

myogenin to MyoD ratio would preferentially drive expression of slow-type contractile 

proteins in skeletal muscle.  

 

Active satellite cells, those expressing pax7 and MyoD have been shown in previous studies 

to be more abundant in oxidative muscle compared to glycolytic muscle. Indeed the 

composition of muscle is crucial to its response to the MRFs and satellite cell activity 

(73;239). However, in this study, there was no obvious correlation between fibre type and the 

presence of SCs. There was also a pattern of cytoplasmic staining with MyoD which 

represents myofibre differentiation. Protein analysis of MyoD did not show a significant 

difference expression between control or CLI tissue 

 

Pax7 and CD34 expression determines the presence of a quiescent satellite or myogenic 

precursor cells. These have the ability to form either myofibres or self renew and are greatly 

increased in ischaemia but exist in an inactive state and have stopped expressing MyoD. 

Local SCs are probably the only significant source of new myoblasts in the adult tissue, but 

the contribution of bone-derived haematopoietic cells, vascular progenitor cells, or interstitial 
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cells has not been fully evaluated (213). Analysis of these cells in sequential slides revealed a 

significantly higher frequency of quiescent satellite cells observed in the CLI specimens (x2.9 

fold increase; p<0.0001: 95% CI). Due to the increased numbers of SCs seen in ischaemic 

skeletal muscle, it is clear that the exhaustion of satellite cell mitogenesis is not the primary 

cause for failed regeneration but more their failure to mature and differentiate. This appears 

to be the case in other chronic illnesses such as Duchenne muscular dystrophy (212).  

 

Active SCs assessed through the use of anti- MyoD and pax7 antibodies were  sparsely 

present and may represent a small isolated sub population which is responsible for renewing 

the satellite cell pool (148). These active SCs may be derived from local skeletal tissue or 

from circulating haematopoietic cells that become committed to a myogenic fate due to pax7 

present. It is unclear as yet whether all satellite cells are capable of self renewal or this is a 

function of an undiscovered subset (73;148), which are similar to mitotically quiescent 

satellite cells and that do not express myogenic differentiation factor or pax7. Some have 

postulated these constitute a group of cells responsible for replenishing the satellite cell pool 

(148;240;241). Yoshida et al 1998 named these “reserve cells” (242), Rudnicki labelled them 

“side population” cells (243).  

 

Therapeutic potential arises from the extraordinary ability of skeletal muscle to repair and 

regenerate. It is clear that the resident population of quiescent satellite cells or a circulating 

haematopoietic stem cell population that can be recruited to assist in the processes of 

myogenesis or angiogenesis. Indeed in ischaemia, both of these processes actually show an 

increased frenetic activity, but often disordered and unable to achieve maturity. Stem cells 

may have the potential to repair all mesodermal tissue either once stimulated in native muscle 

or by invasive introduction and help provide an answer to remodelling or preconditioning 
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human skeletal muscle. Satellite cells may be capable of differentiating into multiple 

mesodermal tissues and the selective inhibition of pax7 and the MRFs may yield a different 

fate for these cells and allow them to contribute to angiogenesis or even neurogenesis (9). 

 

 

5.4   Limitations of the study 

 

There are areas of limitation with this study, not least that it is observational and not 

interventional. The number of patients within each cohort numbered only 10 in number due 

to accessibility to tissue, patient choice and patient suitability for the study. The tissue 

samples were carefully vetted for architectural integrity and nec rotic samples as discussed 

below were deemed unsuitable.  

 

In addition to the CLI and the Control (CABG) groups there was a role for further cohorts to 

be analysed, in particular completely fit and healthy patients or those with less severe 

peripheral disease, i.e. those with intermittent claudication. Risk factors were comparable 

across both groups but diabetics were included in both groups and these may suffer from a 

different disease process than atherosclerotics (16). 

 

Following a cohort of cardiac patients prospectively until they displayed PAD symptomology 

would have been ideal to gain an understanding of how the increasing impact of 

atherosclerosis affects muscle and satellite cell (SC) structure and function during disease 

progression. This was impossible due to time constraints of the thesis, the massive number of 

patients that would have to be recruited and the repeated biopsies required and the 

accumulated risk of complications. Percutaneous biopsies would have been one alternative 
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solution but these yield small samples and are quite painful and inconvenient for the patients. 

A further cohort of patients would have been useful for this study, those with no global 

atherosclerosis. Although these patients are not comparable in risk factors or pathology, they 

would have allowed comparison to “normal” tissue and levels of stem cells and antibodies. 

 

Proliferation markers could have been used to confirm the suitability of samples and affirm 

proliferation of muscle tissue or satellite cells. However, the presence of positively staining 

sarcoplasmic MyoD and nuclear pax7 through immunohistochemistry confirmed that active 

processes were occurring within harvested tissue. Any harvested tissue that displayed the 

features of necrosis such as loss of nuclei, loss of normal surface membrane integrity and loss 

of polygonal architecture was excluded from the study. At the time of harvesting, it would 

have been useful to have collected snap frozen tissue, prepared it with OCT and use those 

antibodies not suitable for paraffin fixed tissue analysis, such as the embryonic myosin or 

BF-35.  

 

The use of such preservation would have allowed the verification of type IIx fibres and 

possibly the identification of IIa/x hybrid fibres but the same fields could not have been 

analysed. Although paraffin embedded samples display superior preservation of muscle 

architecture, this process of preservation precludes the use of many antibodies. The inability 

of the study to correctly identify IIa/x hybrid fibres means that there is some confounding of 

data. It is unclear just how numerous these hybrid fibres are in ischaemic (or even normal) 

muscle and may be present in significant numbers. Indeed the hybrid IIc fibres were not 

thought to be numerous for many years. 
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There were minor, but very time consuming, problems with reproducibility in that slides were 

sequential and therefore, in most immunohistochemistry experiments, at least 5 viable areas 

were required on each sequential slide, a sequence numbering eight in total. In particular, 

areas of analysis in the larger biopsy samples were difficult to identify and morphometric 

analysis of these was also extremely time consuming. Due to artefact and the required 

precision of measurements, automating this process was just not viable (192;215). 

 

Western Blotting depends on the specificity of an antibody to recognise an epitope. Due to 

the use of tissue rather than cultured cells, the achieved chemiluminescent signal can be 

affected by non specific binding of other proteins causing false positives. Protein expression 

could have been augmented with RT PCR to assess RNA and therefore gene expression. 

 

 

5.5 Future Work 

 

Ischaemia as a driving force for fibre type change can be difficult to separate from other co 

existing factors. It can be safely assumed that those with symptomatic disease of chronic 

disease have a more sedentary life style. Those with angina or heart failure similarly have 

reduced exercise tolerance, however this was not objectively measured in this study. The shift 

towards type II fibres due to inactivity (221) is at odds with that seen due to increasing age or 

ischaemia. This could potentially confuse data collection, but using two cohorts with such 

similar demographics negates the effects of age and the overall effect of CLI on adult human 

skeletal muscle seems to indicate that type I fibres are least affected by worsening ischaemia 

and there appears to be a preferential loss of type II myofibres in CLI. Perhaps because of 

these difficulties, previous studies vary in their findings regarding which fibres are the most 
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resilient in the face of advancing ischaemia, certainly they all agree that the regenerative 

capacity of muscle becomes exhausted with worsening disease (83;92;108;233;244). It is 

important to highlight that this study, unlike those that have gone before, has used a 

comparable population in demographics and comorbidities. There may be less variation in 

results than if the control group used was perfectly healthy. The fact these populations were 

comparable allows a better understanding of the timeline of pathognomonic and fibre type 

changes that occur in the advanced stages of atherosclerosis.  

 

Homogeneity in muscle morphometry research is difficult to achieve, due to the variety and 

complexity of normal skeletal muscle structure and function, but meta-analysis of current 

experimental data is difficult. In human tissue certainly, more work on single muscles, such 

as gastrocnemius or perhaps the biceps femoris would certainly help elucidate the processes 

of repair and regeneration and allow for manipulation to improve CLI outcomes. All muscle 

groups differ in their myosin composition and this may alter with age and other co-

morbidities. Samples from groups with similar age, sex, past medical history, medications 

and smoking history will also reduce the amount of  variables that may confound data (94). 

Patient selection based on the severity of symptoms including exercise tolerance would be 

useful, as it is becoming clear that changes are linked with clearly defined stages of disease 

(60) 

 

In data collection and interpretation, both cross-sectional and longitudinal biopsies both yield 

useful information required for detailed analysis. Behan et al. used 80 fibres per sample (215) 

and  Lexell and Taylor suggested that a minimum number of 25 myofibres are assessed per 

biopsy, and that single biopsies are to be avoided if possible (otherwise a minimum of 100 
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should be analysed for cross sectional area (CSA) and other morphometric measurements 

(189;190).  

 

Further, improvements to SDS-Page techniques originally suggested by Talmadge and further 

improved by Bammam, have clarified the interpretation of data by adequately separating the 

MHC isoforms IIa and IIx (245;246). Electrophoretic methods indicate an overall shift in 

MHC type from type II fibres to type I fibres, but exact results are still obscured by the 

presence of hybrid or jump fibres, particularly IIa/x. More data regarding the comparative 

reliability of all of the above experimental techniques is also required. 

 

Commercially available antibodies for both frozen and paraffin embedded tissue would be 

helpful to specifically identify the MHC composition of any given fibre and allow a more 

accurate assessment of its response to a given environmental stimulus (101). There is 

currently no single marker that will universally recognise all satellite cells, active or 

quiescent, nor able to differentiate between stem cell populations and consensus needs to be 

reached upon the simplest solution to this problem. There is evidence to both support and 

refute the notion that circulating bone marrow derived stem cells (247) are the source of 

satellite cells and/ or endothelial cells (158;248) and work continues to try and elucidate the 

origin of satellite cells and whether they themselves are responsible for self renewal, 

circulating bone derived haematopoietic stem cells or a combination of both.  

 

Isolation of satellite cells from muscle or even C2C12 cell cultures and then subjecting them 

to hypoxia with the addition of various angiogenic or myogenic mediators will help elucidate 

the pathways required to form ischaemia resistant muscle. It may be more revealing to inhibit 

combinations of myogenic committing factors such as the MRFs or pax7 preventing their 
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action on SCs and their precursors. It is already known resident SCs can be induced to form 

cardiomyocytes and neural lineages (106;159;236;249).  

 

Perhaps there exists a mechanism to recruit or even inject these pluripotent mesodermal cells 

to provide a therapeutic option which can promote a collateral circulation, reinnervate tissue, 

activate satellite cells and improve muscle composition, thereby reversing the effects of 

atherosclerosis and CLI (250;251). Indeed, the harnessing of satellite cells and their 

multipotent mesodermal potential may hold the answer in the treatment of this devastating 

disease. 
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Chapter 6     Conclusion 

 

 

Human Critical Limb Ischaemia (CLI) is associated with an increase in cell regeneration and 

remodelling with an increase in myofibres, myofibre plasticity, angiogenesis and proliferation 

of satellite cells. There is a marked alteration in muscle morphology in CLI compared to 

asymptomatic atherosclerosis. 

 

Both type I and type II fibre types atrophy in the face of CLI. Type I fibres are more 

numerous and seem to be the least susceptible in the face of overwhelming chronic 

ischaemia. The greater proportion of type I fibres through the preferential atrophy of type II 

fibres, in CLI leads to the perceived fibre type shift. However, more type IIc hybrid fibres are 

present in greater degrees of ischaemia, indicating active plasticity of myofibres and this is 

the only identified group of fibres seemingly resistant to atrophy. 

 

There is an abundance of satellite cells in CLI, confirmed by electron microscopy. This is 

also apparent through the use of markers such as pax7 and CD34. There is massive over 

expression of pax7 in CLI and even when co localised with CD34, a marker of 

haematopoietic stem cells, there is still a dramatic increase in the number of positively 

staining nuclei, indicating an increase in quiescent satellite cells. Those satellite cells also 

expressing MyoD and thus activated satellite cells, become more scarce in ischaemic tissue. 

Over expression of pax7 may account for this, down regulating activation of satellite cells 

and leaving them in a dormant state. It is possible that the insufficient response of satellite 

cells in the CLI environment is in part due to this overexpression. 

 



 

138 

 

The results of this study suggest an incomplete response to ischaemia and an attempt at 

adaptation by both the angiogenic and myogenic pathways which is insufficient to meet the 

demands of tissue repair and regeneration. It is perhaps premature to base large assumptions 

on such a small study, but there is evidence that larger observational and interventional 

studies are required to elucidate further the role of pax7 and the possibility that 

overexpression of pax7 has an inhibitory effect on stem cells of all types. 
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Appendix A: 

 

 

 

Patient Information Sheet 

 

A study of blood vessel growth in peripheral vascular disease  

You are being invited to take part in a research study. Before you decide it is important for 

you to understand why the research is being done and what it will involve. Please take time to 

read the following information carefully and discuss it with friends, relatives and your GP if 

you wish. Ask us if there is anything that is not clear or if you would like further information. 

Take time to decide whether or not you wish to take part. Consumers for Ethics in Research 

(CERES) publish a leaflet entitled Medical Research and You. This leaflet gives more 

information about medical research and looks at some questions you may want to ask. A copy 

maybe obtained from CERES, P0 Box 1365, London N16 OBW. 

 

WHAT IS THE PURPOSE OF THE STUDY?  

Heart attacks and stroke are major cause of disability and death in the western world. They 

are usually caused by atherosclerosis, a disease of the blood vessel which causes the 

narrowing of blood vessel lumen and subsequently impairment of blood flow to the organs 

affected. This can also affect the leg, a condition known as peripheral vascular disease, in 

which the impaired blood flow result in calf pain on exertion, also know as intermittent 

claudication. This can progress to end stage of the disease, known as critical limb ischaemia, 

which has a high rate of leg amputation. This research aims to study the molecular changes 

which stimulate blood vessel formation that occur in the skeletal muscles of the legs by 

comparing the legs with impaired blood flow to the unaffected legs.  

 

WHY HAVE I BEEN CHOSEN? You have been chosen because you are going for surgery 

involving your leg.  

Academic Division of Surgical Specialties 

Royal Free Campus, 

University Department of Surgery, 

The Royal Free Hospital 

Pond Street, 

London NW3 2QG. 

 

Telephone: 020 77940500 

Facsimile: 020 74726711 
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DO I HAVE TO TAKE PART? It is up to you to decide whether to take part. If you decide 

to take part you will be given this information sheet to keep and be asked to sign a consent 

form. If you decide to take part you are still free to withdraw at any time and without giving a 

reason. This will not affect the standard of care you receive. 

 

WHAT WILL HAPPEN TO ME IF I TAKE PART 

On admission for operation, details will be obtained from you about your medical history, 

medication history, and examination of your legs will be performed. After your agreeing to 

the consent to enter the study, a small sample will of your leg muscle measuring 

approximately 1x1x1cm will be obtained during the operation. 

 

WHAT DO I HAVE TO DO?  

You need to do nothing additional apart from preparing for your planned operation. 

 

WHAT ARE THE SIDE EFFECTS OF TAKING PART? 

There is no additional side effects apart from that from your operation itself which will have 

been explained by the doctors caring for you. 

 

WHAT ARE THE POSSIBLE DISADVANTAGES AND RISKS IN TAKING PART? 

There is no major risk involved apart from the risks from the operation you are going for.  

 

WHAT ARE THE POSSIBLE BENEFITS OF TAKING PART? 

The information we get from this study may help us in the future to assess and treat patients 

with the similar conditions like yourself in the future. 

  

WHAT IF NEW INFORMATION BECOMES AVAILABLE? 

Sometimes during the course of a research project, new information becomes available about 

the treatment that is being studied. It usually applies to ongoing research project which 

involves treatment for a period of time. This does not affect you because your participation 

ends after you have completed the operation. 
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WHAT IF SOMETHING GOES WRONG? 

If you are harmed by taking part in this research project, there are no special compensation 

arrangements. If you are harmed due to someone’s negligence, then you may have grounds 

for legal action but you may have to pay for it. Regardless of this, if you wish to complain 

about any aspect of the way you have been approached, or treated during the course of the 

study, the normal National Health Service complain mechanisms may be available to you.  

 

WILL MY TAKING PART IN THIS STUDY BE KEPT CONFIDENTIAL? 

All information which is collected about you during the course of the research will be kept 

strictly confidential. Any information about you which leaves the hospital / surgery will have 

your name and address removed so that you cannot be recognized from it. 

 

WHAT HAPPENED TO THE RESULTS OF THE RESEARCH STUDY? 

The results of the study will be presented at scientific meetings and published in medical 

journals. To get a copy of the results, you can contact the trial co-ordinators whose name and 

addresses are outlined below. You will be told which arm of the study they were in. 

However, you will not be identified in any report / publications. 

 

 

WHO IS ORGANISING AND FUNDING THE RESEARCH? 

We have applied to a research charity / university for some money to sponsor this study. 

 

WHO HAS REVIEWED THIS STUDY? 

The study will be reviewed by the Royal Free Hospital and Medical School Ethics 

Committee. 

 

CONTACT FOR FURTHER INFORMATION 

Mr TK Ho, Clinical Research Fellow In Surgery, Royal Free Campus and University College, 

London, Rowland Hill, London NW3 2PF. Telephone: 02077940500 Extension: 5414 

E-mail: t.ho@medsch.ucl.ac.uk or c.hart@medsch.ucl.ac.uk 

 

Thank you for taking part in this study. You will be given a copy of the information 

sheet and a signed consent form to keep.  

mailto:t.ho@medsch.ucl.ac.uk
mailto:c.hart@medsch.ucl.ac.uk
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CONSENT FORM 

 

 
Title of Project: Study of Blood Vessel Growth In Peripheral Vascular Disease 

Name of Researcher: Mr TK Ho/ Mr CA Hart  

               Please initial  

  box 
 

1. I confirm that I have read and understand the information sheet  

dated ............................  (version ............) for the above study and  

 have had the opportunity to ask questions. 

 

2. I confirm that I have had sufficient time to consider whether or not  

 I want to be included with the study. 

 

3. I understand that my participation is voluntary and that I am free to withdraw at 

any time, without giving any reason, without my medical care or legal rights 

being affected. 

 

4. I understand that sections of any of my medical notes may be looked at by 

responsible individuals from NHS or from regulatory authorities where it is 

relevant to my taking part in research.  I also understand that samples of my 

muscles may be kept up to 6 months before analysed.  

 

5. I agree to take part in the above study.      

        

 

_________________________ _________ ____________________ 

Name of Patient Date Signature 

 

 

_________________________ _________ ____________________ 

Name of Person taking consent Date Signature 
 

 

Researchers:  Mr TK Ho/ Mr CA Hart, Dept of Surgery, Royal Free Hospital, Pond Street, London NW3 2QG 

 

 

 

 

 

 

Academic Division of Surgical Specialties 

Royal Free Campus, 

University Department of Surgery, 

The Royal Free Hospital 

Pond Street, 

London NW3 2QG. 

 

Telephone: 020 77940500 

Facsimile: 020 74726711 
 

 

 

 

ROYAL FREE AND UNIVERSITY COLLEGE MEDICAL SCHOOL 

UNIVERSITY COLLEGE LONDON 
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159 

 

Appendix B: 

 

BF35, Neonatal and Embryonic Myosin Were not Recognisable In Formalin Fixed 

Paraffin Embedded Adult Human Skeletal Muscle 

 

The BF-35, neonatal and embryonic antibodies did not stain paraffin embedded human 

adult skeletal tissue after any applied pre treatment, at any concentration nor with any of 

the specified incubation conditions as listed below. 

 

 

BF-35, Neonatal and Embryonic Myosin  

Pre-Treatment Used: 

Non
e 

Protein 
Kinase 

EDTA 
20m 

Citrate 
10m 

EDTA 
PK 

Citrate 
PK 

Concentrati
on        

of Antibody       

[1:1] 0 0 0 0 0 0 

[1:10] 0 0 0 0 0 0 

[1:100] 0 0 0 0 0 0 

       

 Performed at Room Temperature for I hour and 4
o
C Overnight 

 

Optimisation of BF-35(all MHCs but IIx):, neonatal and embryonic myosin in paraffin embedded 

tissue with attempts to change pre-treatment, concentration of antibody and variation in 

incubation times. No staining was achieved under any conditions (0 = no stain). 
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Appendix B: Satellite Cell Markers Identified by Immunofluorescence 

 

The process of dewaxing and rehydration of the samples, the blocking of endogenous 

peroxidases and microwave EDTA pH=9 pre treatment was followed as previously described 

(184) 

 

Blocking of non-specific antigens was performed with 10% NGS for 30 minutes at room 

temperature before washing well with PBS three times for ten minutes. The primary antibody 

MyoD was incubated for an hour at a concentration of 1:50 before the slides were washed 

well again using PBS. All remaining steps were performed in the dark to avoid loss of the 

fluorescent signal. The secondary antibody, a red Fit C Goat anti Mouse (Vector 

Laboratories) was applied at a concentration of 1:200 for 30 minutes. A further wash was 

repeated before application of DAPi counterstaining for 10 minutes to mark nuclei (blue). 

PBS was used to wash the slides again and an aqueous mounting solution was used before 

application of the coverslip. 
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Appendix B: Satellite Cell Immunofluorescence of Satellite Cells 

 

Although an immunofluorescent technique was attempted to investigate the number of active 

satellite cells present in the muscle sections by the use of MyoD as a marker. Although 

successful in marking satellite cells, this methodology was abandoned due to the brevity of 

signal life. There was simply not enough time to perform an adequate morphometric analysis 

of sections prepared in this way before signal was lost and the repetition of results was not 

helpful.  

 

 

 

Figure 32: Immunofluorescent labelling of MyoD marking active satellite cells in ischaemic 

tissue. All nuclei emit a blue stain and MyoD positive nuclei are associated with a red stain, 

as indicated by white arrow heads (x200 magnification). 
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Appendix B: Alkaline Phosphatase Co-localisation Experiments 

 

To demonstrate pax7 positive satellite cells under the basal lamina using a laminin antibody 

or CD34 to label satellite cells on the same slides to determine the number of quiescent cells, 

colocalisation via alkaline phosphatase immunohistochemistry was attempted.  

 

Sections were rehydrated through xylene and ethanol over 10 minutes. Endogenous 

peroxidases were blocked in a bath of methanol with 3% hydrogen peroxide and sections 

were immersed in Tris/EDTA pH=9 and heat treated in the microwave for 20 minutes (184). 

2.5 % Normal Horse Serum was added to the PAP encircled sections and flicked off. The 

primary antibody CD34 raised in mice was incubated on the tissue at a concentration of 1:50 

for an hour at room temperature as previously described. After a good wash with PBS, the 

secondary antibody (horse anti-mouse alkaline phosphatase conjugated, Vector Laboratories, 

UK) was applied at [1:50] for an hour. After a further PBS wash as described, 10μls of A, B 

and C (Vector Laboratories, UK) was added to 1ml of 0.1mM HCl/TRIS (pH=8.2) 1:100. 

Vector red substrate was added for 30 minutes.  

 

The slides were further washed in PBS and the slides were then blocked with 10% Normal 

Goat Serum for 30 minutes. Pax7 was incubated on the sections at [1:200] overnight at 4
o
C 

and then washed in PBS. A Goat anti-rabbit secondary antibody (Vector Laboratories) at 

1:200 was applied for 30 minutes and the remaining steps using the ABC method described 

earlier was performed. 
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Appendix B: ALP Colocalisation  

 

This was attempted to colocalise CD34 and pax7 to examine the number of quiescent satellite 

cells present in each cohort of tissue. 

  

Figure 35a: CD34/pax7 Co expression in Control Tissue; 35b: CD34/pax7 in Ischaemic Tissue:  

 

Background staining made this co-localisation technique too non specific and unreliable. The 

thin sections were also prone to damage through the vigorous pretreatment epitope retrieval 

and then long incubation periods made meaningful analysis impossible. 
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Appendix C: 

 

 
 
Number of Fibres/ Field 

    

       CABG 
   

Ischaemia 
 

 
A 28.8 

  
C 69.4 

 
B 32 

  
D 84.2 

 
F 25.8 

  
E 75 

 
I 27 

  
G 37.8 

 
J 23.5 

  
H 49.4 

 
L 24.6 

  
K 18.2 

 
N 22.6 

  
M 57.6 

 
O 16.2 

  
R 32.4 

 
P 35.2 

  
S 35 

 
T 21.6 

  
U 45 

 

Proportion of Fibres 
    

       Control 
 

I II IIc IIx 0 

 
A 73 27 0 0 0 

 
B 48 15 10 23 4 

 
F 51 24 15 10 0 

 
I 55 18 3 18 6 

 
J 17 51 4 12 16 

 
L 61 21 1 6 11 

 
N 42 47 1 9 1 

 
O 51 24 0 15 10 

 
P 50 30 5 9 6 

 
T 40 27 25 7 0 

 

 

 

 

 

 

       CLI 
      

  
I II IIc IIx 0 

 
C 76 7 14 1 2 

 
D 57 39 4 0 0 

 
E 58 12 16 14 0 

 
G 60 9 25 5 1 

 
H 93 0 7 0 0 

 
K 49 41 10 0 0 

 
M 80 16 0 0 4 

 
R 75 13 8 3 1 

 
S 42 31 22 1 4 

 
U 68 20 12 0 0 
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Average CSA (All Fibres) 
    

       Control 
   

CLI   
 

 
A 3643.08 

  
C 3901.1 

 
B 4215.51 

  
D 2364 

 
F 4687.53 

  
E 1628.64 

 
I 3929.25 

  
G 3071.74 

 
J 6136.58 

  
H 3418.47 

 
L 3782.83 

  
K 5621.05 

 
N 5532.44 

  
M 1661.21 

 
O 6709.32 

  
R 3171.94 

 
P 3732.51 

  
S 3508.46 

 
T 5201.86 

  
U 2719.81 

 

 

 

 

 

 

Average CSA by Fibre Type 
    

       Control 
 

I II IIc IIx 0 

 
A 3989.29 2707 0 0 0 

 
B 3827.12 5291.29 3530.76 4674.13 3916.92 

 
F 4405.33 4618.51 3186.03 8924.83 0 

 
I 3532.73 4070.82 2962.77 4336.74 6400.12 

 
J 4837.17 6488.62 5761.12 6848.32 5955.13 

 
L 3942.76 3470.86 5969.37 3419.09 3442.68 

 
N 7118.53 4480.17 4504.88 3933.48 3791.73 

 
O 6239.94 6890.25 0 8134.81 6530.7 

 
P 3687.76 3354.67 1489.33 6531.45 3665.58 

 
T 6087.11 4689.84 3367.67 8779.79 0 

 

 

 

       Ischaemic   I II IIc IIx 0 

 
C 4054.3 3598.36 3274.72 3664.52 3642.37 

 
D 3189.82 1271.49 1248.09 0 0 

 
E 1813.54 1421.89 1383.6 1319.85 0 

 
G 3322.62 3889.09 2502.95 1806.89 1207.19 

 
H 3543.68 0 1754.94 0 0 

 
K 5976.24 5548.56 4177.84 0 0 

 
M 1715.32 1339.37 0 0 1866.53 

 
R 3219.86 3070.38 2461.87 4036.85 3983.66 

 
S 4324.96 2756.34 3092.76 4028.54 2920.39 

 
U 3013.35 2145.25 2014 0 0 
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Myonuclei/ 100 Fibres 
     

       Control 
   

CLI   
 

 
A 3.77 

  
C 3.24 

 
B 7.8 

  
D 6.97 

 
F 4.73 

  
E 4.12 

 
I 3.05 

  
G 9.73 

 
J 5.64 

  
H 4 

 
L 3.42 

  
K 4.68 

 
N 3.51 

  
M 7 

 
O 4.87 

  
R 4.4 

 
P 4.6 

  
S 4.39 

 
T 3.64 

  
U 4.11 

 
 
 
 

      Pathognomonic Changes 
    

       Control 
      

  
Angular 
Fibres Central Nuclei 

Clumping Polygon 
Loss 

Connective 
Tissue Giant Cells 

A 0 0 Y N  0 0 

B 1 9 N N  0 0 

F 2 11 
N 

N  0 
1 type I 1 

type II 

I 0 5 N N  0 0 

J 0 16 N N  0 1 type I    

L 0 1 N N  0 0 

N 1 2 N N  0 0 

O 0 14 N N  0 0 

P 0 6 N N  0 0 
T 2 13 N N  0 6 type I N 

 

 

         

         CLI 
       

 
  

Angular 
Fibres 

Central 
Nuclei Clumping 

Polygon 
Loss 

Connective 
Tissue Giant Cells 

Z line 
loss 

 
C 4 7 Y Y 1 4 type I Y 

 
D 1 5 Y Y 0 0 N 

 
E 2 6 N N  0 0 N 

 
G 3 15 Y N 1 0 Y 

 
H 11 18 Y Y 1 0 Y 

 
K 11 3 Y Y 1 

4 type I 3 
type II Y 

 
M 7 13 Y Y 1 0 Y 

 
R 7 20 Y Y 1 0 N 

 
S 2 3 N N 0 0 N 

 
U 12 3 N Y 0 0 N 
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CD31 Endothelial Cell Marker 
   

       Control 
   

CLI 
 

 
A 6.2 

  
C 62.8 

 
B 13.2 

  
D 43.6 

 
F 26 

  
E 101.2 

 
I 6.6 

  
G 24.4 

 
J 28 

  
H 78.4 

 
L 1 

  
K 45.2 

 
N 24.2 

  
M 63.2 

 
O 9.4 

  
R 69.8 

 
P 6.6 

  
S 27 

 
T 56.4 

  
U 78.2 

 

 

 

CD34 
Haemopoietic Stem Cell 

Marker 
   

       Control 
   

CLI 
 

 
A 46.6 

  
C 69 

 
B 41.8 

  
D 112.8 

 
F 22.2 

  
E 105.8 

 
I 36.8 

  
G 49.8 

 
J 34.6 

  
H 86.4 

 
L 9.2 

  
K 54.8 

 
N 29.8 

  
M 52.8 

 
O 36.4 

  
R 78.2 

 
P 49 

  
S 70.4 

 
T 40 

  
U 90 

 

 

 

 

 

pax7 Satellite Cell Marker (Quiescent AND Activated) 
 

       Control 
   

CLI 
 

 
A 25.4 

  
C 50 

 
B 13.2 

  
D 34 

 
F 24.4 

  
E 48.2 

 
I 27 

  
G 74.4 

 
J 20.2 

  
H 61 

 
L 17.4 

  
K 56.6 

 
N 27.2 

  
M 41 

 
O 17.6 

  
R 48.2 

 
P 23 

  
S 41.8 

 
T 22.4 

  
U 58.4 
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MyoD Myogenic Differentiation Marker 
   

       CABG 
   

Ischaemia 
 

 
A 28.8 

  
C 16.2 

 
B 17.6 

  
D 8.4 

 
F 41 

  
E 18.4 

 
I 21.2 

  
G 7 

 
J 40.2 

  
H 27.4 

 
L 13.3 

  
K 22.2 

 
N 27 

  
M 1.4 

 
O 20 

  
R 32 

 
P 35 

  
S 9.2 

 
T 36.6 

  
U 18.2 

       

       

       CD34/ 
pax7 

 
Quiescent SC 

   

       CABG 
   

Ischaemia 
 

 
A 6 

  
C 17.4 

 
B 6.8 

  
D 16.8 

 
F 6.2 

  
E 20.2 

 
I 6.8 

  
G 17 

 
J 3.2 

  
H 19.4 

 
L 3.6 

  
K 21 

 
N 10 

  
M 15.2 

 
O 4.8 

  
R 19 

 
P 6.8 

  
S 18.6 

 
T 8.8 

  
U 20 

 

 

 

 

 

MyoD/pax7   Activated/Proliferating SCs 
  

       CABG 
   

Ischaemia 
 

 
A 9 

  
C 3.4 

 
B 6 

  
D 2.4 

 
F 14.6 

  
E 3.8 

 
I 3 

  
G 3 

 
J 8.6 

  
H 6.2 

 
L 4 

  
K 4 

 
N 8.6 

  
M 0.4 

 
O 3.4 

  
R 6.4 

 
P 6 

  
S 1.4 

 
T 6.6 

  
U 2.6 
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Sample 
No 

fibres Nu/F Slow Fast sc71 
Hybrid 

IIc CD31 CD34 pax7 MyoD pax7 

           
CD34 MyoD 

             

           
    

A1 33 86/33 21 12 11 0 5 43 10 21 2 3 

A2 32 94/32 29 7 9 2 4 58 34 37 5 14 

A3 22 79/22 17 7 11 2 11 45 24 24 7 7 

A4 23 107/23 18 5 9 0 7 38 36 34 7 11 

A5 34 106/34 27 7 8 0 4 49 23 28 9 10 

        
    

  
9 

             B1 30 115/30 22 8 9 0 13 27 8 6 4 0 

B2 29 91/29 9 20 22 0 16 31 10 18 7 5 

B3 29 106/29 24 5 10 4 16 43 13 27 4 10 

B4 35 113/35 24 11 11 3 3 53 23 17 9 11 

B5 37 106/37 17 9 12 0 18 55 12 20 10 4 

   
  

    
        6 

             C1 47 111/47 32 15 13 9 34 75 24 18 8 5 

C2 38 141/38 21 17 16 7 45 50 63 8 22 2 

C3 54 138/54 36 18 17 3 56 68 46 14 21 3 

C4 59 147/59 41 18 18 8 58 79 65 19 20 4 

C5 49 102/49 30 19 19 12 64 73 52 22 16 3 

        
        3.4 

             D1 93 251/93 57 36 36 0 64 86 37 2 16 0 

D2 52 183/52 38 14 14 0 24 112 24 9 16 2 

D3 92 213/92 56 46 47 11 44 94 26 14 10 4 

D4 86 209/83 53 56 56 17 33 133 28 12 19 4 

D5 98 263/98 30 74 74 6 53 139 55 5 23 2 

        
  

   
2.4 

             E1 79 117/79 46 35 35 2 83 101 33 12 16 1 

E2 89 234/82 57 47 20 0 115 148 63 16 34 4 

E3 74 238/74 59 33 36 6 116 90 53 14 14 3 

E4 59 207/59 41 33 50 5 85 66 50 28 16 6 

E5 74 214/74 53 33 51 4 107 124 42 22 21 5 

 
375 

      
        3.8 

             F1 26 102/26 8 20 21 3 32 26 33 46 4 18 

F2 21 
 

104/21 8 10 12 0 20 18 14 48 4 16 

F3 22 96/22 8 18 21 6 21 22 13 42 3 12 

F4 24 112/24 10 14 15 1 36 26 29 26 12 15 

F5 36 124/36 16 18 18 5 21 19 33 43 8 12 

        
        14.6 

             G1 45 234/45 32 17 16 2 52 39 62 12 16 4 

G2 40 242/40 27 16 19 8 65 60 81 4 21 3 

G3 44 239/44 32 15 14 9 48 52 86 5 15 3 

G4 25 210/25 21 11 13 7 55 57 65 5 17 3 

G5 35 270/35 26 23 21 12 46 41 78 9 16 2 

        
        3 

             H1 84 249/84 84 25 25 25 77 94 65 34 20 8 

H2 40 160/40 40 2 15 2 77 83 67 32 21 8 

H3 34 193/34 34 3 5 3 76 64 56 24 18 4 

H4 37 148/37 36 2 9 1 64 70 41 21 15 6 

H5 52 179/52 52 13 11 8 98 121 76 26 23 5 

        
        6.2 
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Sample 
No 

fibres Nu/F Slow Fast sc71 
Hybrid 

IIc CD31 CD34 pax7 MyoD pax7 

           
CD34 MyoD 

I1 21 70/21 7 14 8 0 17 27 27 27 4 5 

I2 25 110/25 21 5 8 1 3 41 33 13 10 4 

I3 27 118/27 19 11 7 2 5 47 18 23 6 1 

I4 29 66/29 14 15 7 1 4 37 33 20 7 2 

I5 33 103/33 16 9 9 0 4 32 24 23 7 3 

        
        3 

             J1 11 70/11 3 10 10 2 15 32 7 33 2 3 

J2 28 112/28 9 19 15 0 33 42 23 50 1 10 

J3 18 94/18 7 11 8 1 35 30 25 36 4 8 

J4 29 115/29 19 10 6 2 19 38 19 43 6 10 

J5 25 103/25 16 8 6 0 26 31 27 39 3 12 

        
        8.6 

             K1 19 98/19 19 5 5 5 49 57 48 21 22 7 

K2 18 87/18 18 4 4 4 46 50 56 24 25 3 

K3 16 96/16 16 6 4 6 50 61 63 30 21 4 

K4 21 79/21 20 1 1 0 39 57 67 17 18 2 

K5 17 83/17 16 1 0 0 43 49 49 19 19 4 

             

           
  

 L1 17 71/17 15 2 4 0 1 13 5 9 4 4 

L2 24 105/24 15 9 11 0 0 7 34 11 1 4 

L3 25 71/25 13 12 12 0 1 5 25 21 3 7 

L4 28 118/28 20 8 11 0 0 13 9 13 6 3 

L5 29 102/29 23 4 6 0 3 8 14 14 4 2 

        
        4 

             M1 68 230/68 68 6 5 6 54 63 50 1 13 1 

M2 59 184/59 57 6 7 1 48 71 47 0 20 0 

M3 51 169/51 50 1 2 2 63 51 36 2 16 0 

M4 52 162/52 47 7 9 2 46 36 26 0 12 1 

M5 58 166/58 56 2 1 0 57 43 46 4 15 0 

        
        0.4 

             N1 27 63/27 9 18 11 0 15 24 25 24 8 5 

N2 14 81/14 9 6 4 1 19 32 24 36 8 15 

N3 22 101/22 5 17 14 1 19 30 28 28 14 11 

N4 26 84/26 8 18 14 0 23 31 31 14 11 3 

N5 24 62/24 20 4 6 0 25 32 28 33 9 9 

        
        8.6 

             O1 16 60/16 16 1 2 1 13 33 24 14 7 3 

O2 19 63/19 16 3 3 0 19 48 16 24 6 2 

O3 16 83/16 6 10 9 0 3 42 18 23 2 2 

O4 14 77/14 7 7 5 0 9 37 17 26 5 7 

O5 16 74/16 3 11 5 0 3 22 13 13 4 3 

         
      4.8 
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Sample 

No 
fibres Nu/F Slow Fast sc71 

Hybrid 
IIc CD31 CD34 pax7 MyoD pax7 

           
CD34 MyoD 

P1 40 84/40 19 21 20 1 12 7 40 25 51 9 8 

P2 32 62/32 12 22 22 2 15 5 62 16 36 6 7 

P3 38 123/38 22 17 17 1 18 6 57 28 18 6 5 

P4 28 103/28 14 15 15 1 27 7 33 30 38 7 4 

P5 38 119/18 18 22 22 2 21 8 53 16 32 6 6 

         
      6.8 6 

              R1 38 200/38 31 7 6 0 25 95 104 55 42 21 9 

R2 31 135/31 29 6 4 4 27 44 48 71 31 14 5 

R3 36 
 

171/36 35 3 4 2 24 90 91 32 32 24 7 

R4 24 119/24 20 6 5 2 32 37 50 49 26 14 7 

R5 33 164/33 30 6 7 3 23 83 98 34 29 22 4 

         
      19 6.4 

              S1 29 87/29 18 22 22 11 15 23 64 36 12 13 1 

S2 36 103/36 16 21 21 5 17 24 62 58 3 19 0 

S3 27 91/27 21 12 13 6 6 33 53 38 6 21 2 

S4 42 115/42 16 36 34 10 14 17 80 40 9 18 2 

S5 41 137/41 19 29 28 7 19 38 93 37 16 22 2 

         
      18.6 1.4 

              T1 16 123/16 11 10 10 7 24 40 39 25 41 5 7 

T2 20 98/20 14 15 14 9 24 45 29 23 34 7 8 

T3 25 113/25 18 19 17 12 21 34 43 20 39 7 6 

T4 20 104/20 12 17 17 9 20 38 44 21 32 16 5 

T5 27 86/27 17 17 16 7 18 36 45 23 37 9 7 

         
      8.8 6.6 

              U1 43 103/36 22 20 18 6 18 85 82 83 17 18 1 

U2 51 121/51 42 16 18 7 22 76 84 56 22 17 2 

U3 38 145/38 28 12 10 2 21 78 93 49 19 26 2 

U4 48 128/48 37 20 18 8 25 72 98 52 18 19 5 

U5 52 117/52 32 34 31 14 19 55 93 52 15 20 3 
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Addendum to MD Thesis  

   

The Effect of Critical Limb Ischaemia on Adult Human Skeletal Muscle 

 

There have been a few areas of weakness of this thesis which have not been addressed in the 

Limitations Chapter. Some subjects have been incompletely detailed or in some cases omitted 

in the bulk of the thesis. These are described below and any shortcomings of the written 

thesis raised in the final viva voce examination are recognised and addressed here: 

 

 

Immunohistochemistry: 

 

One of the most obvious omissions was the failure to discuss the confirmation of successful 

immunohistochemical methodology through the use of positive controls in the assessment of 

muscle slides. Whilst the inclusion of Chapter 3.4.4 discusses Negative Controls, there is no 

mention in the text of the Positive Controls. This was performed at an early stage and 

certainly should have been included in the bulk of the text. Positive controls were 

recommended by the manufacturers of the antibodies used for the most part. The pax7 

antibody from Aviva Biosystems did not have a recommended positive control from its data 

sheet but having discussed this with the company they advised the use of either cell lysates 

obtained from the company or the use of human bladder tissue. The latter was used as this 

tissue was cheaper to access and easier to analyse. 

 

Myosin staining and correct identification, including that of sc71, was confirmed via personal 

communications with two experts in the field. The first, Simon M. Hughes, Professor of 
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Developmental Cell Biology, Medical Research Council Career, Kings College London, who 

not only looked over some of my slides but also very kindly suggested the Fast A4.74 myosin 

antibody in the first place and Dr Vika Smerdu of the Institute of Anatomy, University of 

Ljubljana, Slovenia who sent me some extremely helpful advice regarding the labelling of 

myosin fibre types. Both of researchers looked over examples of immunohistochemical stains 

sent to them electronically. Although these expert opinions were sought, these should have 

been formalised in some way and there should have been a discussion between us regarding 

validation of the results commented upon in the thesis. 

 

Positive control tissue to ensure correct staining of satellite cell markers was obtained and 

prepared according to the guidelines set out by the manufacturers of the individual antibodies 

and the tissue used to confirm these were laid out below: 

 

Pax7   Aviva Biosystems Human bladder tissue  

CD34  Dako   Human tonsil tissue  

CD31   Dako   Human tonsil tissue 

MyoD   Dako   Human rhabdomyosarcoma 

 

 

 

Power: 

 

Whilst an attempt was made to ensure that there were adequate numbers of muscle biopsies 

obtained, there were only n=10 in each group. This was clearly not a large number and this 

point has been raised as an issue in the Limitations Chapter.  The number of fields and 
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measurements taken was felt to be adequate due to similar sample sizes quoted in the 

literature. Certainly before embarking on the project there should have been a greater attempt 

at ensuring the study was adequately powered and that samples were analysed in sufficient 

numbers. Although some papers that have been quoted have described methods of collecting 

morphometric data or quantifying nuclei counts via immunohistochemistry, many do not 

appear to be powered. This may be due to the fact that these are observational rather than 

interventional studies, or it may be a simple omission.  

 

Whilst some papers advocate the optimum number of biopsy fields, or fibre characteristics to 

be measured [Garton, Smerdu, Behan] for the analysis of muscle in the clinical setting others 

are vague regarding the validation of their results. The use of the Mann Whitney U Test to 

compare two sets of continuous independent data in this work was correct and reduced the 

effect of any outliers due to the analysis of median rather than mean, other groups have used 

χ
2
 and degrees of freedom to analyse and even validate results. Validation is a separate issue 

and is discussed below.  

 

 

 

Validation of results: 

 

The above was not well described in the bulk of the thesis and certainly should have been 

addressed more clearly. In this study, the morphometric analysis of ten fibres of each sample 

was undertaken at a later date and compared to the original data set. However, the Mann 

Whitney U Test was utilised for this task and there was no significant difference was found 

between the original data set and that collected afterwards for validation purposes but it must 
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be acknowledged here that this was not the correct test for validation. The Analysis Of 

Variance (ANOVA) test or an F-Test would have been the correct test to validate my results.  

 

One of the weak points of this thesis was the lack of advice from a medical statistician. If 

such had been employed from the beginning of the project, this would have thus prevented  

criticism of the collected data, which would have stood up to greater scrutiny and would have 

been much more credible, with the correct validation performed of the collected data. 

 

 

 

Western Blots: 

 

These were found to be extremely difficult and the experimental technique took some time to 

optimise. In fact, a satisfactory conclusion to the question of whether satellite cell protein 

expression could be quantified was achieved by visiting an experienced research group based 

at Leicester University. They made the following modifications to the methodology I had 

employed (acknowledgements to Dr Nisha Patel), which involved the use of TBS rather than 

PBS and the use of bovine serum albumin as well as evaporated milk to block the membrane. 

This group also recommended the use of commercially sourced 4%:20% gels rather than 

those made up locally.  

1. Block the membrane in 5% BSA for 1 hour. 

2. Incubate the membrane in 1 in 2000 dilution of primary antibodies overnight - e.g 2.5 

microlitres in 5mls of 1XTBS. 

3. Wash the membrane 3x for 10 minutes in 1x TBS. 
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4. Incubate the membrane in secondary antibody (mouse 1 in 2000 dilution) again for 1 hour. 

5. Wash the membrane 3x for 10 minutes in 1 x TBS. 

6. Develop the membrane. 

 

The Western blots were therefore prepared in this optimised way and yielded a much better 

result with much cleaner signalling. 
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