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Abstract

Background: Despite an intense interest in the biological functions of the phosphoinositide 3-kinase (PI3K) signalling
enzymes, little is known about the regulation of PI3K gene expression. This also applies to the leukocyte-enriched p110d
catalytic subunit of PI3K, an enzyme that has attracted widespread interest because of its role in immunity and allergy.

Principal Findings: We show that p110d expression is mainly regulated at the transcriptional level. In fibroblasts,
lymphocytes and myeloid cells, p110d gene transcription appears to be constitutive and not subject to acute stimulation.
59RACE experiments revealed that p110d mRNA transcripts contain distinct upstream untranslated exons (named exon -1, -
2a, -2b, -2c and -2d), which are located up to 81 kb upstream of the translational start codon in exon 1. The levels of all the
different p110d transcripts are higher in leukocytes compared to non-leukocytes, with the p110d transcript containing exon
-2a most abundantly expressed. We have identified a highly conserved transcription factor (TF) binding cluster in the p110d
gene which has enhanced promoter activity in leukocytes compared to non-leukocytes. In human, this TF cluster is located
immediately upstream of exon -2a whilst in mouse, it is located within exon -2a.

Conclusion: This study identifies a conserved PIK3CD promoter region that may account for the predominant leukocyte
expression of p110d.
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Introduction

Phosphoinositide 3-kinases (PI3Ks) generate lipid second

messengers that regulate a broad variety of cellular responses

such as growth, cell cycle progression, differentiation, vesicular

traffic and cell migration [1]. PI3K activity is critical in a wide

variety of normal and pathological physiological responses,

including immune regulation, metabolic control and cancer.

However, despite the importance of this signalling system, very

little is known about the regulation of PI3K gene expression under

normal and disease conditions.

The PI3K family is divided into 3 classes [2]. Class I PI3Ks are

acutely activated upon receptor stimulation and are heterodimers

consisting of a p110 catalytic subunit in complex with a regulatory

subunit. The class I PI3Ks are further subdivided into class IA and

IB, depending on whether the catalytic subunit is in complex with

an SH2-domain containing regulatory subunit (collectively called

‘p85’) or with the p101 or p84 regulatory subunits, which lack SH2

domains. Mammals have 3 class IA p110 catalytic subunits,

p110a, p110b and p110d, encoded by 3 distinct genes, PIK3CA,

PIK3CB and PIK3CD, respectively. These p110 isoforms interact

with p85, of which there are at least five different species, called

p85a, p55a and p50a (encoded by the PIK3R1 gene) and p85b

and p55c (encoded by PIK3R2 and PIK3R3, respectively). p110c is

the only class IB PI3K catalytic subunit and occurs in complex

with p101 [3,4] or p84 [5,6], which have no homology to p85.

Class I PI3Ks can be activated by tyrosine kinases (p110a, p110d)

or GPCRs (p110b and p110c) [1,7–9].

Tissue distribution and the regulation of PI3K expression has

recently been reviewed [10]. Whereas p110a and p110b appear to

have a broad tissue distribution [11–15], p110d is highly expressed

in leukocytes [12,13,16], found at intermediate levels in neurons

[17] and present at low levels in most other cell types [13,18].

p110d is also expressed at moderate levels in some cancer cells of

non-leukocyte origin such as melanoma and breast cancer cells,

often with large differences in expression levels in cell lines of the

same tissue origin [18], for reasons that are unclear at the moment.

Like p110d, p110c is highly enriched in leukocytes [19–21] but is

also found at lower levels in other cell types such as cardiomy-

ocytes [22–24], endothelial cells [25], pancreatic islets [26,27] and

smooth muscle cells [28].

Expression of the class IA catalytic isoforms can be altered

during physiological and pathological processes, including differ-

entiation (p110a and p110b) [29], regeneration (p110a) [30,31]

and hypertension (p110b and p110d) [32–34]. PI3K expression,

especially of p110a, is also very frequently increased in cancer.
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Insulin and nuclear receptor ligands can induce expression of the

class I regulatory subunits [35–39]. Other documented mecha-

nisms of p85 regulation are through the transcription factors (TF)

STAT3 (p55a and p50a) [40], EBNA-2 (p55a) [41] and SREBP

(p55c) [42] and through targeted degradation of p85a and p85b
by microRNAs [43,44] (reviewed in [10]).

Three recent studies have identified a transcription regulatory

region for the human p110a gene, PIK3CA. The PIK3CA locus

gives rise to two alternative transcripts which each contain a

distinct 59 untranslated exon (exon -1b or -1a) that is spliced onto

the first translated (ATG-containing) exon. The genomic position

of these 59 untranslated exons is about 50 kb upstream of the

translation start site [45,46]. TF binding sites for p53 [45]),

FOXO3a [46]) and NF-kB [47] have been mapped in close

proximity to the most 59 untranslated exon (called exon -1b).

Whereas p53 might inhibit transcription of p110a, evidence for a

positive regulation by NF-kB and FOXO3a has been presented.

A promoter region for murine p110c has also been identified

[19]. Multiple transcriptional start sites exist for p110c, resulting in

transcripts with varying 59 untranslated regions (59UTRs), up to

874 bp in length. Analysis of the genomic p110c DNA up to

1.2 kb upstream from the transcription start site revealed that the

putative promoter region contains consensus sites for housekeep-

ing TFs such as AP1 and SP1, as well as several putative binding

sites for leukocyte-specific TFs [19]. Functional analysis of this

p110c putative promoter region revealed enhanced promoter

activity in the U937 myeloid cell line compared to the HeLa

epithelial cell line [19].

In this study, we have investigated the regulation of p110d gene

expression. We have documented that p110d protein expression

largely correlates with the level of p110d mRNA in numerous cell

types, indicating that p110d expression is predominantly regulated

at the level of transcription. We have found multiple mouse and

human p110d transcripts that contain distinct upstream untrans-

lated exons, which we have named exon -1, -2a, -2b, -2c and -2d,

located up to 81 kb upstream of the translational start codon in

exon 1. Furthermore, we have identified a highly conserved TF-

binding cluster that is located within mouse exon -2a and located

immediately 59 upstream of human exon -2a. This TF-binding

cluster has enhanced promoter activity in leukocytes compared to

non-leukocytes. Out of the 7 different TF binding sites in the TF-

binding cluster, 4 are associated with regulation of haematopoiesis

and expression of leukocyte-specific genes. These findings are the

first to identify a PIK3CD promoter and offer a rationale for the

leukocyte-enriched expression of p110d.

Results

p110d protein expression is not altered in fibroblasts, B-
lymphocytes and myelomonocytic cells upon acute
stimulation with various agonists

We first investigated whether p110d expression can be induced

by several acute cellular stimuli. In NIH-3T3 fibroblasts, which

contain very low levels of endogenous p110d compared to

leukocytes, p110d could not be induced by TNF, the proteasome

inhibitor PS-341, UV irradiation, osmotic stress or the glucocor-

ticoid dexamethasone (data not shown). p110d protein levels were

also unaffected during different phases of the cell cycle in these

cells (data not shown). In B lymphocytes, p110d expression was not

affected by stimulation of the antigen receptor using anti-IgM

antibodies. In U937 myelomonocytic cells, p110d levels were

unaltered by treatment with retinoic acid, in contrast to the p110c
protein which was induced effectively (data not shown), the latter

in line with previously published data [48,49]. Taken together,

p110d expression appears not to be regulated in an acute manner

in response to extracellular stimuli, at least in the cell types and

conditions investigated.

Correlation between p110d mRNA and protein levels in
cell lines

We next assessed the levels of p110d protein and mRNA, using

immunoblotting of total cell lysates and real time RT-PCR,

respectively, in a panel of murine and human cell lines

(Figure 1A,B). p110d mRNA and protein were found in all cell

lines investigated but in widely varying amounts. In line with

published data [12,13,16,18], leukocytes expressed high levels of

p110d while non-leukocytes expressed intermediate to low levels.

In line with previous data [12], a good correlation was found

between p110d mRNA and protein levels in most cell lines tested,

indicating that p110d protein expression is mainly regulated at the

level of transcription.

DNA methylation and histone acetylation are unlikely to
be key mechanisms to control PIK3CD expression

DNA methylation and histone acetylation are important

epigenetic mechanisms that control gene expression by dictating

transitions between transcriptionally active or transcriptionally

silent chromatin states [50,51]. L929 fibroblasts, which express low

levels of p110d mRNA and protein, were treated with 59-

azacytidine or trichostatin A, agents known to cause DNA (hemi-)

demethylation and histone hyperacetylation, respectively, creating

open configurations of genomic DNA to allow binding of TFs. As

a positive control, we monitored the previously documented

induction in these cells of mRNA expression of the cytokines IL-6

and IFN-b by 59-azacytidine and trichostatin A [52,53]. As can be

seen from Figure 2, p110d mRNA expression levels were not

dramatically altered by any of these treatments, with a maximum

increase in p110d mRNA of around 2-fold, which was not

accompanied by an induction of p110d protein expression.

The presence of high p110d mRNA levels is not a
consequence of leukocyte-specific p110d mRNA stability

To assess whether high expression of the p110d protein in cells

is due to increased mRNA stability, cells were treated with

Actinomycin D, an inhibitor of de novo RNA synthesis, followed by

measurement of mRNA decay over time. As can be seen from

Figure 3A, leukocyte (A20 and EL4) and non-leukocyte (B16-BL6,

3LL and NIH-3T3) cell lines displayed very similar rates of mRNA

degradation upon inhibition of mRNA synthesis, indicating that

there is no difference in p110d mRNA stability between cell types

expressing high or low levels of p110d protein. Also p110d protein

levels were not affected by Actinomycin D treatment, both in

leukocytes and non-leukocytes (Figure 3B).

Identification of multiple distinct p110d mRNA
transcripts with alternate first 59 untranslated exons

In order to identify the PIK3CD promoter, we set out to identify

the transcriptional start site of the p110d mRNA. Rapid

amplification of 59 cDNA ends (59RACE) was used to identify

the 59UTR. BLAT alignment of the 59RACE products led to three

main observations: (1) multiple distinct p110d transcripts exist

within each cell line investigated; (2) most transcripts contains two

untranslated exons (Figure 4A), which we have named exon -1 and

-2 (to indicate their relative locations with respect to exon 1, which

contains the putative ATG translation start site as defined in

[13,54]). The -1 and -2 exons are located 11 kb and .35 kb 59 of

exon 1 in murine cells, and 19 kb and .59 kb 59 of exon 1 in

PIK3CD Promoter Identification
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human cells; (3) exon -1 can occur together with one of 4 identified

second untranslated exons (exons -2a, -2b, -2c or -2d) in mouse

cells, and with one of two -2 exons (-2a or -2b) in human cells.

Thus, mouse and human PIK3CD can give rise to at least 4 and 2,

respectively, distinct p110d transcripts.

Human and mouse p110d exon 1 contains an in-frame stop

codon immediately upstream of the p110d start codon (for

sequences, see Supporting Information, File S1), ruling out the

possibility that the newly identified upstream exons are translated

as part of the p110d protein. In other words, the -1 and -2 exons

form the 59UTR of the PIK3CD transcripts.

The -1 exons identified in human and mouse show a high

degree of homology (data not shown) and likewise the -2a exons

share a region of high homology (Figure 4B). Human exon -2a

is approximately half the length of mouse exon -2a (72 bp

compared to 144 bp), and its first part (1–49 bp) is homologous

to the last part of mouse exon -2a (96–144 bp). Interestingly,

the intronic DNA immediately upstream of human exon -2a is

highly homologous with the first part of mouse exon -2a

(Figure 4B). In contrast the -2b exons for human and mouse are

not homologous, which may indicate that the -2b exon

identified in human may not be the equivalent -2b exon

identified in mouse.

Database information provides independent confirmation of

several of the untranslated exons identified in this study (-1, -2a, -

2b and -2c in the mouse; and -1, -2a in human), as well as

additional -2 exons in the mouse (labeled with an arrowhead in

Figure 4B) which we have thus far not found by 59RACE both in

Figure 1. Correlation between p110d protein and mRNA expression levels in murine and human cell lines. (A) Total cell lysates from the
indicated cell lines were immunoblotted with antibodies to the distinct p110 isoforms or b-actin. One representative immunoblot of three
independent experiments is shown. The bars represent quantification of the relative amounts of p110d protein in mouse and human cell lines, as
determined in 3 independent experiments (for each cell line, the ratio of the OD of the p110d immunoblot signal was determined, relative to that of
b-actin in this cell line. This value was then expressed relative to the p110d/b-actin ratio found in B16-BL6 (for the mouse lines) or HeLa (for the
human lines). Values are averages of three independent experiments. (B) Quantification of p110d mRNA levels by real time RT-PCR using primers in
the p110d coding region. Signals are normalised to b-actin mRNA in each cell line. Data shown are the averages of three independent experiments.
doi:10.1371/journal.pone.0005145.g001

PIK3CD Promoter Identification
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mouse and human (.50 independent 59RACE products se-

quenced; detailed data not shown).

The p110d transcripts identified by 59RACE always contained

exon -1, and further incorporated a single -2 exon in all cases. We

have found two instances where the -1/-2 exon of the p110d
mRNA configuration does not seem to occur. Firstly, during the

cDNA cloning of human p110d [13], we identified one clone

(called o5) which did not contain exon -1, and which has exon -2a

directly spliced onto exon 1, giving rise to a p110d transcript that

encodes full length p110d protein (data not shown). Secondly, 2

out of 48 transcripts identified by 59RACE in the mouse EL4

leukocyte cell line did not have -2 exons, and started with an exon

-1. As shown in Table 1, all -2 and -1 exons contain a classical

splice donor sequence (GT), whereas exon -1 only contains a splice

acceptor sequence (AG). This is in line with the observation that

each p110d transcript identified by 59RACE contains a single -2

exon and further indicates that the different p110d transcripts arise

individually and not from a ‘master’ p110d transcript by

alternative splicing. The presence of a splice acceptor sequence

in exon -1 indicates that the p110d transcript starting at this exon

(as revealed by 59RACE) found in mouse EL4 cells could in fact be

an artefact, due to RNA degradation during the RACE

experiments.

Cell type-specific usage of the multiple PIK3CD
transcription start sites

We next used RT-PCR to confirm the presence of the different

p110d transcripts identified by 59RACE and to determine which

of these can be found in a panel of murine leukocyte and non-

leukocyte cell lines. Forward primers, specific for each of the 59

untranslated exons were designed, and used in combination with a

common reverse primer in exon 2 (schematically shown in

Figure 5A). PCR products of the predicted size were purified by

agarose gel electrophoresis and verified by DNA sequencing (data

not shown).

All cell lines tested (except CT26 colon carcinoma) expressed at

least one type of transcript containing a -2 exon (Figure 5B).

Leukocytes contained a broader variety of p110d transcripts than

non-leukocytes, with an average number of distinct p110d
transcripts of 4.3 versus 2.4 in leukocytes and non-leukocytes,

respectively (summarized in bottom panel of Figure 5B).

To more accurately quantify the amount of each p110d
transcript, we next used real time RT-PCR (Figure 6). For each

transcript, the PCR reaction consisted of a forward and reverse

primer, which were designed to amplify a cDNA sequence of

,100 bp spanning an exon boundary specific to the transcript,

and a dye-emitting probe, which bound at a sequence overlaying

this exon boundary. During amplification of the cDNA sequence,

cleavage of a reporter dye from the probe results in fluorescence

emission, which can be directly correlated with the level of each

particular p110d transcript. For example, to measure the amount

of p110d transcripts containing exon -2a, a PCR was performed

using a forward primer in exon -2a and a reverse primer in exon -

Figure 2. DNA methylation and histone acetylation do not alter
p110d expression in mouse L929 fibroblasts. (Top panel) L929
cells were treated with 59-azacytidine (5AC,;5 mM) for 72 h and/or
trichostatin A (TSA; 100 nM) for 6 h, with or without 6 h co-treatment
with TNF (100 IU/ml)). mRNA levels of p110d, IL-6 and IFN-b were
quantified by real time RT-PCR. Samples were normalised for GAPDH
and are relative to p110d mRNA amounts in the unstimulated samples
(set as 1). Shown is the average of three independent experiments).
(Lower panel) Representative immunoblot (of three) of p110d protein.
doi:10.1371/journal.pone.0005145.g002

Figure 3. Equal p110d mRNA stability in leukocytes and non-
leukocytes. The indicated cell lines were treated with Actinomycin D
(4 mg/ml), an inhibitor of de novo RNA synthesis, for the indicated time
points followed by quantification of either p110d mRNA (A) or p110d
protein (B). p110d mRNA was quantified by real time RT-PCR, using
normalisation for 18S RNA. p110d mRNA levels are presented in a semi-
log plot.
doi:10.1371/journal.pone.0005145.g003

PIK3CD Promoter Identification
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1, while the dye-emitting probe bound at this exon-exon

boundary. The fluorescence detected from this PCR reaction

therefore represents the amount of all transcripts specifically

containing exons -2a and -1.

These experiments revealed that leukocytes express significantly

higher amounts of the different p110d transcripts than non-

leukocytes (Figure 6), indicating that leukocytes are likely to be

more efficient at using p110d gene promoters than non-leukocytes.

In all cell lines, the transcript containing the first coding exon

(exon 1; Figure 6A) was expressed at similar levels as the transcript

containing the exon -2a/exon -1 boundary, which is the most

abundantly expressed -2 exon (Figure 6C).

Surprisingly, the transcripts containing the exon -1/exon 1

boundary (Figure 6B) were two-fold more abundant than the

transcripts containing the exon 1/exon 2 boundary (Figure 6A). This

indicates that shorter but still fully processed mRNAs (i.e. with a poly

A tail since oligo d(T) was used for reverse transcription) are made.

These would contain a 59UTR with at least the untranslated exon -1

and the coding exon 1, but without any of the other coding exons.

Database analysis also provided evidence for such shorter p110d
transcripts (marked with asterisks in Figure 4A). These may belong to

the recently identified new class of mRNA transcripts that initiate

near the expected transcription start sites, upstream of protein

encoding sequences [55–59].

In silico analysis of PIK3CD promoter
Alignment of the genomic sequence of flanking (and including)

the 59UTR exons of mouse PIK3CD with 8 other species revealed

high homology in specific areas, indicative for functionally

conserved DNA sequences, including 4 CpG islands but no

TATA boxes (Figure 7A; Supporting information, File S2).

For each of the murine untranslated exons, the region spanning

500 bp upstream and 100 bp downstream of the first nucleotide

were analysed for TF-binding sites and the transcription start site

(TSS) prediction score within this region was assessed (Figure 7B).

TF-binding sites were identified in the vicinity of all mouse

untranslated exons, however a particularly condensed cluster of

TF-binding sites was identified within exon -2a (Figure 7B, C).

Interestingly, in human, this TF-binding cluster lies 59 of the TSS

(Figure 7C; schematically shown in Figure 7D). It is unusual, but

not unheard of, that promoter regions are contained within exons.

Indeed, recent work from the ENCODE project (http://www.

genome.gov/10005107 and http://genome.cse.ucsc.edu/EN-

CODE/) has revealed that proximal TF binding sites usually fall

within 1 kb of both sides, 59 and 39, of the transcription start site

[60].

The TF-binding cluster of murine exon -2a was located within a

CpG island (Figure 7A); was associated with a good TSS

prediction score (0.9/1.0; Figure 7B) and was highly conserved

across 28 species (Supporting information, File S2; Figure 7C

shows the high degree homology of this region across 8 species,

Figure 7D schematically shows the homology between human and

mouse in this area). Collectively, these observations indicate the

presence of a putative promoter region in/around exon -2a.

Interestingly, 4 of the 7 different TFs identified within this binding

cluster, namely ETS, IRF, NFAT and LEF (indicated by an

Figure 4. PIK3CD transcripts, assessed by 59RACE and database analysis. (A) Top panel, Schematic representation of the different p110d
mRNA transcripts in their genomic context as found by 59RACE in murine and human cell lines. Bottom panel, the different p110d transcripts as found
in the Ensembl database (release 52, 9 December 2008) for both species. Arrowheads indicate -2 exons present in the database which we have not
found by 59RACE. Asterisks indicate short PIK3CD transcripts (which do not encode full length p110d protein) found in the Ensembl database. (B)
Region of homology between mouse and human exon -2a. Exons 1 which contain the transcription start sites are indicated with a vertical arrow.
doi:10.1371/journal.pone.0005145.g004

PIK3CD Promoter Identification
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asterisk in Figure 7C), have previously been associated with

haematopoiesis and expression of leukocyte-specific genes (dis-

cussed in more detail below), suggesting that this TF-binding

region may be involved in the high p110d expression in leukocytes.

Functional analysis of putative PIK3CD promoter
elements using reporter assays

We next cloned intronic genomic DNA sequences that flank

mouse exons 1, -2a and -2b (including exons -2c and -2d) at their

59 end (Figure 7A,B; referred to as DNA fragments A–I) as well as

mouse exon -2a itself (Figure 7B, DNA fragment J, which contains

the TF-binding cluster), into the pGL3 reporter vector to drive

expression of firefly luciferase. Vectors were transiently transfected

in leukocyte and non-leukocyte cell lines and the promoter

activities of the different PIK3CD DNA fragments were compared

to that of the established leukocyte-specific promoter of Vav [61],

and of the SV40 promoter, which is active in all cell types. The

pGL3-Basic vector, which does not contain a promoter sequence

upstream of firefly luciferase, was used to assess the basal level of

luminescence.

The intronic genomic DNA fragments A–I did not possess

significantly higher promoter activity in A20 leukocytes compared

to NIH 3T3 fibroblasts (Figure 8B). This is in contrast to DNA

fragment J (mouse exon-2a containing the TF-binding cluster)

which had significantly higher promoter activity in the mouse

macrophage cell line RAW 264.7 than in NIH 3T3 fibroblasts

(Figure 8C), which was significantly higher than the leukocyte-

specific Vav promoter (Figure 8C). The exon -2 fragment has also

higher activity in the THP-1 monocytic cell line compared to the

HEK293 (embryonic kidney) and CT26 (colon carcinoma) cell

lines, again with higher activity compared to the Vav promoter

(Figure 8C). Taken together with the relatively high abundance of

the -2a transcripts (Figure 6C) over the other p110d exon -2

transcripts (Figure 6D–F), these data indicate that the TF binding

cluster of exon -2a is the predominant promoter of p110d
expression in leukocytes.

Discussion

In this study, we have explored the mechanisms by which the

well-documented leukocyte-enriched expression of p110d might be

Table 1. Splice donor and acceptor sites in the 59 introns/exons of PIK3CD.

Human

Exon Size (bp) Splice acceptor 59 end exon 39 end exon Splice donor Intron (bp)

-2b 251 cgggggtca GAGGCGCCCA ACTCTGACAG gtgagtcta

61,243

-2a 59 gcgcccagc GCAGTCGCTC CGCCGGGACG gtaagcgat

39,665

-1 105 ccccaacag ATAAGGAGTC TTCCAGAGAG gtaggttgg

18,852

1 173 catttttag GACAACTGTC CATCAAGCAG gtatggcct

4,944

2 229 tccctccag CTGCTGTGGC ATCGGCAAAG gtagctctg

Uppercase letters represent exon sequences, lowercase letters represent intron sequences.

Murine

Exon Size (bp) Splice acceptor 59 end exon 39 end exon Splice donor Intron (bp)

-2d 150 cttccgggc TAGGACTTCT GGAGCAGTTC gttttattta

28,348

-2c 78 gagagaga ATCAGAAACC CTACTCAAAT gtcagattt

28,270

-2b 117 ttgagcggt AAGAAAGCAG ATGTAGAAGT gtaagccaa

27,309

-2a 144 gttgttttt CCTGTTATCT TGCTGGACCG gtaagtgct

24,360

-1 119 ttctttcag ACATCTAAGG TACCAAACAG gtaggttgg

10,759

1 173 ttcccacag GAAAACAGAC CATCAAGCAG gtagagcca

2,913

2 229 ctctcccag GTGCTGTGGC ATTGGCAAAG gtatactta

Uppercase letters represent exon sequences, lowercase letters represent intron sequences.

Splice donor and acceptor sites in p110d exons. Splice acceptor and splice donor sequences of human (top panel) and murine (lower panel) p110d exons. The
untranslated exons as well as exons 1 and 2 are represented. Uppercase letters represent exon sequences, lowercase letters represent intron sequences. AG/GT splice
donor/acceptor sequences are in bold. All other coding exons of p110d follow the same AG/GT splicing rule (not shown).
doi:10.1371/journal.pone.0005145.t001

PIK3CD Promoter Identification
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achieved. We present evidence that p110d expression is mainly

regulated at the transcriptional level arising from different

transcripts. PIK3CD transcription appears to be constitutive and

not responsive to acute cellular stimuli, at least using the agonists

tested in the three cell types (NIH 3T3 and L929 fibroblasts,

primary B cells and U937 myelomonocytic cells) used in our study.

All cell types can express the distinct p110d mRNA transcripts but

leukocytes express a greater diversity of transcripts and signifi-

cantly higher amounts of the individual transcripts. In particular,

the p110d transcript containing the untranslated exon -2a, was

expressed at similar levels to the transcript containing coding exon

1 in a panel of murine leukocyte cell lines (compare Figure 6A with

Figure 6C), indicating that the majority of p110d transcripts in a

cell contain exon -2a.

We have identified a region within mouse exon -2a that contains

a cluster of TF-binding sites. This TF-binding cluster is highly

conserved between species and found immediately upstream of

human exon -2a in human. This TF binding cluster contains at

least 4 leukocyte-related TFs sites and was found to display higher

promoter activity in leukocyte cell lines compared to non-

leukocyte cell lines. Given that the majority of PIK3CD transcripts

contain exon -2a, these data indicate that the promoter region

identified within mouse exon -2a is likely to be sufficient in

mediating the majority of leukocyte-specific PIK3CD gene

expression.

4 of the 7 TFs identified within this binding cluster, namely

ETS, IRF, NFAT and LEF have previously been associated with

regulation of haematopoiesis and expression of leukocyte-specific

genes. Indeed, the ETS family of TFs play important roles in the

regulation of haematopoiesis [62–68]. IRF family members are

highly expressed, but not exclusively, in cells of the immune system

and play a pivotal role in the induction of type I IFN signalling

pathways [69], proinflammatory cytokines and expression of

macrophage and B cell specific genes [69,70]. NFAT family

proteins are also mainly found in cells of the immune system, such

as T cells, mast cells, NK cells and monocytes [71] and play a role

in the regulation of various cytokines [72]. Finally, the LEF family

of TFs, which are highly expressed in pre-B and T lymphocytes

[73], have been linked to the regulation and expression of a

number of lymphoid-specific genes [74–79].

High expression levels of p110d are also frequently observed in

some non-leukocyte cancer cell lines, such as in breast carcinoma,

melanoma and glioma [18]. It is possible that cancer cells

upregulate or aberrantly express TFs which are, in non-cancer

cells, more specific for leukocytes. It is of interest to note that a

number of the TFs that bind in the exon -2a cluster have indeed

been implicated in breast cancer progression, including LEF [80–

83], ETS-1 [84,85], ETS-2 [86] and NFAT3 [87]. Recently, all

four of these leukocyte-associated TF were identified as the most

frequently differentially activated TFs in breast cancer based on a

large microarray dataset [88].

We have found evidence that, among the multiple p110d
transcripts, there may be mRNAs that do not encode full length

p110d. Indeed, transcripts containing the exon -1/exon 1

Figure 5. PIK3CD transcripts in murine cell lines and tissues, as assessed by RT-PCR (A) Schematic representation of PCR primers used to
detect distinct murine PIK3CD transcripts. In each case, a reverse primer in exon 2 and a forward primer in exon 1, -1, -2a, -2b, -2c or -2d, was used. (B)
Agarose gel analysis of PCR products generated by RT-PCR (40 cycles) using primers for the different p110d mRNA transcripts in panel of murine cell
lines and tissues, with the observations summarized underneath.
doi:10.1371/journal.pone.0005145.g005

PIK3CD Promoter Identification

PLoS ONE | www.plosone.org 7 April 2009 | Volume 4 | Issue 4 | e5145



boundary are more abundant than those covering the exon 1/

exon 2 boundary (compare Figure 6B to Figure 6A). Current

database information supports the presence of such shorter p110d
transcripts (marked with an asterisk in Figure 4A). Indeed, several

recent studies have reported the discovery of a new class of short

promoter-associated RNA transcripts that initiate near the

expected transcription start sites upstream of protein-encoding

sequences [56–58] (reviewed in [55]). It remains to be seen

whether these RNAs have a function, but their prevalence suggests

that their synthesis may serve a functional role.

Further work is required to understand the precise mechanism

of p110d gene expression. The complexity of gene regulation has

been exemplified by examination of 400 protein-coding genes in

1% (30 million bases) of the human genome as part of the

ENCODE project [60], which revealed that 80% of these genes

had additional exons, many of which were located thousands of

bases away from the coding exons. Also many novel transcription

start sites were found, many located thousands of bases away from

the known start sites, while 25% of the promoters discovered were

at the 39 end of the genes rather then at the 59 end. It is therefore

highly likely that p110d expression will be subject to additional

levels of control rather than by simple proximal promoter

elements.

The data presented are the first to shed light onto the leukocyte-

enriched expression of PI3KCD. Further investigations are needed

to identify which TF-binding sites are critical in driving PIK3CD

gene expression and whether cells of non-leukocyte origin, such as

breast cancer cells, are able to utilize this putative promoter.

Interference with PIK3CD expression at the promoter level may

offer a novel therapeutic target in cases of aberrant p110d
overexpression, as observed in some cancers [18].

Materials and Methods

Antibodies and reagents
Antibodies to class IA PI3Ks were generated in-house or

purchased from Santa Cruz Biotechnology (p110b, sc-602). Cell

culture reagents were purchased from Invitrogen, recombinant

mouse TNF was provided by Peter Brouckaert (Ghent University,

Belgium), other reagents were from Sigma: Actinomycin D

(856258), 59-azacytidine (A2358), trichostatin A (T8552), antibod-

ies to b-actin (A5441).

RNA extraction, 59Rapid Amplification of cDNA Ends
(59RACE), Reverse Transcription (RT)-Polymerase Chain
Reaction (PCR) and Real Time RT-PCR

Total RNA was extracted from cells using the RNeasy mini kit

(Qiagen, 74104). mRNA was subsequently reverse transcribed

using SuperScript II Reverse Transcriptase (Invitrogen, 18064)

and oligo d(T) primers, and subsequently used in 59RACE, RT-

PCR or real time PCR.

For 59RACE, the FirstChoiceH RLM-RACE kit (Ambion,

1700) was used following the manufacturer’s protocol using the

following outer primers: murine 59-CAGATCAGCTCCTCA-

TTGGCACT-39, human 59-GCTTCTTCACGCGGTCGCCC-

39 and inner primers: murine 59-ACTTGAACTTCCCCGTG-

Figure 6. PIK3CD transcripts in murine cell lines, as determined by real time PCR. Absolute quantification of the different p110d transcripts
in a panel of murine cell lines by real time RT-PCR (3 experiments) using primer mixes containing a forward primer in the first exon of each transcript,
a reverse primer in the subsequent exon and a probe overlaying the exon/exon boundary. Copy numbers were calculated using a standard curve
with the different transcripts cloned into a plasmid, and used as a control template for PCR. Samples were normalized to the levels of b-actin mRNA.
The different panels represent amplification of the boundaries of (A) exon 1/exon 2; (B) exon -1/exon 1; (C) exon -2a/exon -1 (D) exon -2b/exon -1 (E)
exon -2c/exon -1 (F) exon -2d/exon -1.
doi:10.1371/journal.pone.0005145.g006
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TCCCG-39, human 59-CGGGACACAGGGAAGTTCAGGT-

39. Products were cloned into pGEM-Teasy (Promega) for

sequencing. RT-PCR for mouse p110d was carried out using a

common reverse primer in exon 2 (59-TGCCAATGAG-

GAGGCTGATCTG-39) in combination with exon-specific for-

ward primers, as follows: for exon 1: 59-CGTGGTTGTTGA-

CTTCTTGC-39; for exon -1: 59-GAGAGCCAGGCAGAAGT-

GGGAT-39; for exon -2a: 59-GAAGTGGAGTGTGCG-

GACTGTC-39; for exon -2b: 59-GCATCAACTCCTGCCCT-

GTGTG-39; for exon -2c: 59-GCCATGCTATCGGGAACTT-

GAG-39; for exon -2d: 59-CAGAGTGCTTCCGGTGGTATCC-

39. For RT-PCR of human p110d, the following primers were

used: common reverse primer in exon 1: 59-CGGGACACAGG-

GAAGTTCAGGT-39 in combination with the following exon-

specific primers: for exon -1: 59-TAAGGAGTCAGGCCAGGG-

CGG-39, for exon -2a: 59-AGTCGCTCCGAGCGGCCGCG-39,

for exon-2b: 59-CGAGGTTGGGAGAGGAGTGTG-39. RT-

PCR products were cloned into pGEM-Teasy vector (Promega)

and sequenced using the T7 primer.

For real time RT-PCR amplification TaqMan Universal PCR

Mastermix (4304437) and primer mixes containing a FAM

reporter probe (TagMan Gene Expression Assay) were obtained

from Applied Biosystems. SYBR Green (Qiagen, 204143) was

used for quantifying 18S RNA. Exon-specific primer sets and

probes were designed to identify transcripts containing exon -1,

-2a, -2c and -2d. For exon -2a the following primer sequences were

used; forward primer 59-TCGCGCCTAGCCTTGG-39, reverse

primer 59-GGCATCAGCGGGCTTCA-39 and FAM reporter

sequence 59CTCAGCTCCTTAGATGTCGGTC-39. For exon

-2b the following primer sequences were used; forward primer

59-AGTGTCTGTCCTGACTTCCTAAGAA-39, reverse primer

59-CGGGCTTCATCCCACTTCTG-39 and FAM reporter

sequence 59- CAGCTCCTTAGATGTACTTCTACA-39. For

each transcript of interest, known amounts of plasmids with

this transcript were used to create a standard curve. Real-time

PCR generated a series of CT values (the PCR cycle at

which amplification of each target gene is first detected) for

endogenous and plasmid-born cDNA, which allowed for

Figure 7. Bioinformatic analysis of potential promoter elements and TF binding sites in PIK3CD. (A) Schematic representation of the
murine p110d 59UTR. The upper panel shows the five untranslated murine p110d exons (and exon 1) in their genomic context, with below (in
descending order): the mouse RefSeq genes, CpG islands, homology with 9 species (rat, human, chimp, rhesus, dog, cow, armadillo, elephant, tenrec,
plotted against the murine sequence) and the genomic fragments that were subcloned for use in gene reporter assays. (B) Locations of the conserved
TF binding sites in the 600 bases (500 upstream to 100 downstream of the transcript start site) in the forward strand flanking the different
59untranslated exons of mouse p110d gene. The exon start sites are indicated by the vertical arrows, the TF binding sites found on the forward strand
are shown as blue boxes above the TSS score graphs. Also shown is the degree of cross species (28 species) genomic conservation as calculated by
the phastCons program [94] from a minimum of 0.0 to a maximum of 1.0. The genomic DNA fragments subcloned into the PGL3 reporter vector are
shown underneath. (C) Alignment and conservation of the TF binding cluster identified in mouse exon -2a with genomic sequences upstream of the
translation start site of PIK3CD of 7 other species. (D) Schematic representation of TF binding cluster location in relation to exon -2 in human and
mouse.
doi:10.1371/journal.pone.0005145.g007
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the determination of mRNA copy numbers for each individual

gene.

Western blot
Cells were lysed and immunoblotted for PI3K expression as

described before [89]. Primary antibodies were detected using

fluorescently-labeled species-specific secondary antibodies (anti-

mouse IRDye 800-conjugated (Rockland) and anti-rabbit Alexa-

Fluor 680-conjugated (Molecular Probes). Quantification was

done using an Odyssey infrared scanner (LICOR) using the

manufacturer’s software. Signal intensities were normalized for an

internal loading control such as b-actin or GAPDH.

Bioinformatic analysis of putative promoter elements in
PIK3CD genes

The upstream sequences for the five untranslated exons of the

murine p110d gene were inspected within the February 2006

(NCBI build 36) assembly of the Mouse genome using the UCSC

genome browser [90]. Regions spanning 500 bp upstream and

100 bp downstream of the first nucleotide of each exon were

analysed. The corresponding multiple species alignment was

extracted using the Vertebrate Multiz Alignment & Conservation

track [91] within the UCSC genome browser. The alignments

were then screened for conserved TF binding sites using

MatInspector [92] and a vertebrate factors subset of a of a

proprietary database of Genomatix. In addition the candidate

regions were inspected with Eponine [93], a probabilistic method

for detecting transcription start sites, using a threshold of 0.9.

Reporter gene assays
PCR amplification of genomic DNA from C57Bl/6 mice was

used to generate fragments for the reporter assays. The amplified

PCR products were inserted into the pGL3 reporter vector

(Promega). Transfections of NIH3T3 and A20 cells were

performed using Qiagen Superfect or electroporation, respectively.

Equal number of cells were washed and lysed, using Promega lysis

buffer (to normalize for transfection efficiency) and then assayed

for luciferase activity using the firefly luciferase substrate from

Promega on the MicroBeta workstation (Perkin Elmer). The

luciferase activity was normalized using a luciferase gene in a

pGL3 reporter vector under the control of the SV40 promoter as

well as a promoterless luciferase/pGL3 reporter vector. DNA of

the lymphocyte-specific Vav promoter (construct HS21 mentioned

in Ref. [61], which we cloned from the original b-galactosidase

Figure 8. PIK3CD promoter analysis by reporter gene assays. (A) Schematic representation of the genomic PIK3CD DNA fragments (A–I) cloned
upstream of firefly luciferase in the pGL3 reporter vector. (B) Promoter activity of each of the potential promoter regions (A–I) in A20 leukocytes and
NIH-3T3 fibroblasts, as determined by luciferase reporter assays. The promoter activity of each PIK3CD region and the Vav promoter are expressed as
a percentage of the SV40 promoter activity after subtraction of basal luminescence. (C) Promoter activity of mouse PIK3CD exon -2a DNA in
leukocytes (RAW 264.7 and THP-1) versus non-leukocyte cell lines (NIH 3T3, HEK 293, and CT26), in two independent experiments. The promoter
activity of exon -2a and Vav promoter are expressed as a percentage of the SV40 promoter activity after subtraction of basal luminescence. Each
transfection was carried out in triplicate with the error bars indicating the standard deviation.
doi:10.1371/journal.pone.0005145.g008
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reporter construct into a pGL2 luciferase reporter vector) was used

as a positive control.

Supporting Information

File S1 59 RACE product sequences Sequences of the different

murine (Mm) and human (Hs) p110d transcripts as identified by

59RACE.

Found at: doi:10.1371/journal.pone.0005145.s001 (0.03 MB

DOC)

File S2 Annotated multiple species alignments. This file shows

the conserved TF binding sites for the different murine and human

p110d mRNA transcripts as identified by 59 RACE.

Found at: doi:10.1371/journal.pone.0005145.s002 (0.19 MB

DOC)
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