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Abstract

There has been a surge of interest in using Electrical Impedance Tomography (EIT) for monitoring
regional  lung  ventilation  however  EIT  is  an  ill-conditioned  problem,  and  errors/noise  in  the
boundary voltages  can  have an  undesirable  effect  on the quality of  the final  image.  Most  EIT
systems in clinical usage use serial data collection hence data used to create a single image will
have been collected at different times. This paper presents a study of the resulting image distortion,
and proposes a method for correcting this lag in situations where the frame rate is insufficient to
prevent significant image degradation.  Significant correlation between the standard deviation of the
time dependent reciprocity error and time delay dLe  between the reciprocal electrode combinations
was found for both adult and neonate data. This was reduced when the data was corrected for dLe.
Original and corrected data was reconstructed with the GREIT algorithm and visible differences
were found for the neonate data. 

Ideally EIT systems should be run at a frame rate of at least 50 times the frequency of the dominant
and interesting physiological signals. Where this is not practical, the intra-frame system timings
should be determined and lag corrected for.

 1.  Introduction

Electrical Impedance Tomography (EIT) measures the internal impedance of a body from a series of
surface electrodes placed on the surface of the body. It is capable of providing real-time spatial
information  related  to  structural  and  physiological  changes.  EIT  offers  the  opportunity  for
continuous, non-invasive, bedside monitoring of lung ventilation (Grychtol  et al 2010).  In recent
years there has been a surge of interest in using EIT for monitoring regional lung ventilation (Adler
et al 2012), with particular interest in it's application to management of acute lung injury (ALI) and
acute respiratory distress syndrome (ARDS). 

EIT  is  an  ill-conditioned  problem,  and  errors/noise  in  the  boundary  voltages  can  have  an
undesirable effect on the quality of the final image. The most successful use of EIT in lung imaging
is based on reconstructed images of normalised difference changes relative to a baseline frame (e.g.
tidal breathing prior to adjustment of ventilator settings), since this approach reduces the effect of
systematic errors in the data (Adler et al 2012). 
 The first EIT images were reconstructed using back projection techniques, and a range of different
algorithms  have  been  used  since.  The  GREIT  reconstruction  algorithm  (Graz  consensus
Reconstruction algorithm for EIT) (Adler et al 2009) set a new standard for clinical EIT. Grychtol
et al (2012) studied the effect of model shape mismatch on reconstruction quality, concluding that
small  shape mismatches were well  tolerated by the GREIT algorithm, but that  using a circular
model had a strong detrimental effect on image quality, building on earlier work by Bayford et al
(2008). Earlier, others have looked at the effect of dynamic non-idealalities in the data collection
hardware (Hahn et al 2008, Hartinger et al 2007), and found that this is only significant if absolute
or frequency difference imaging is to be considered. The exclusion of electrode combinations with



excessive noise or non-physiological artefacts was considered  by the UCL group (Tidswell  et al
2001)  and Adler (2004).
 Gomez-laberge  et al  (2012) have published “a unified approach for EIT imaging ...in acute lung
imaging”, building on recently proposed methods of regional lung volume measurements. These
previous papers all assumed “that a reconstruction algorithm has already computed images from the
voltage measurements” (Gómez-laberge et al (2012), p840), and in most cases this was based on a
backprojection algorithm available with commercial EIT systems. Gomez-Laberge  et al used the
newer  GREIT  reconstruction  algorithm  (Adler  et  al 2009),  recognising  that  the  choice  of
reconstruction  algorithm  affects  the  images  and  thus  the  derived  parameters.  They  state  that
electrode movement was taken into account during the image reconstruction, as facilitated by the
GREIT algorithm, but mention no other  error correction or preprocessing of the EIT boundary
voltage data.  
Whilst the use of new GREIT reconstruction algorithms has improved imaged quality, and provided
a unified approach to reconstructing images, there remains the implicit assumption that all data for a
single image frame is collected from an effectively static measurement state. However most EIT
systems in  clinical  usage  use  serial  data  collection  methods,  collecting  data  for  each  electrode
combination  sequentially,  thus  data  used  to  create  a  single  image  will  have  been  collected  at
different times. Whilst frame rates vary, the 16 electrodes Geo-MF II  operating at 13 frames per
second is not atypical. A healthy adult at rest typically takes 16-18 breaths per minute and has a
pulse rate of 60-80beats per minute (bpm) but a neonate may have a breathing rate in excess of 60
breaths per minute, and an even faster heart rate, therefore physiological changes will occur within
the time it takes to collect one frame of EIT data. Not only could this cause some blurring of the
temporal  information,  but  the  effect  may  vary  across  the  image  leading  to  distortion  and  an
unknown effect upon derived parameters. This paper presents a detailed study of this, examining the
effect on the reconstructed images in a range of clinical situations, and proposing a method for
correcting this lag in situations where the frame rate is insufficient to prevent significant image
degradation.  

 2. Methodology

Reciprocity theory was used to produce a surrogate measure of lag induced error in the boundary
voltage measurements.
Theoretically the voltage measured using electrodes a & b to inject, and x & y to sense (voltage
measurement)  should be identical to that using x & y to inject and a & b to sense. 
This  phenomena, known as reciprocity can be used to characterise electrode errors,  of specific
measurement systems (Oh et al 2007), and more generically (Hartinger et al 2009) and it is known
that “reciprocity errors” affecting the quality of the reconstructed images (Yerworth & Bayford
2011). EIT systems based on the original Sheffield Mk1 (Brown and Seagar 1987 ) collect data
from both these  reciprocal  electrode  combinations  (reciprocity  pairs)  during  each measurement
frame. Reciprocity errors due to system effects are likely to very only slowly with time. However, if
the  measurement  object  varies  during  one  frame,  true  physiological  changes  will  appear  as
reciprocity errors. Even if the physiological changes are periodic, these 'errors' will vary with time,
since the EIT system is not normally time-locked to the physiological signal and will be sampling it
at differing points each frame. Thus calculating the standard deviation of the reciprocity 'error' will
provide  an  indication  of  the  severity  of  this  issue.  The  time delay,  or  lag,  between  reciprocal
electrode combinations is combination specific. The larger the lag the more opportunity there is for
the physiological signal to change, i.e. one would expect a correlation between lag and the standard
deviation of the reciprocity errors.
If the lags are known and constant, and the physiological signal vary smoothly with time, it is
theoretically possible to correct for this lag, by transforming the data into the frequency domain,
and adding a frequency dependant phase shift.  
Previously  collected  data  from  the  Middlesex  University  (MU)/Great  Ormond  Street  Hospital
(GOSH) group were used. Data was acquired using the VIASYS healthcare EIT system (Viasys



Heathcare, Hochberg, Germany (now Carefusion  http://www.carefusion.com )) using an adjacent
stimulation  and  measurement  pattern.  MatlabR2011b  (www.mathworks.com)  with  Eidors-v3.6
(eidors3d.sourceforge.net)  was  used  for  data  and  image  analysis  and  Minitab  16
(www.minitab.com) for statistical analysis. 

 3. Method

 1. Modelling

A FEM  mesh  of  the  thorax,  incorporating  lungs,  spine/sternum  and  heart  compartments  with
realistic  conductivities  (Minhas  & Reddy 2005) was used to  model  the effect  of lag on image
reconstruction.  Boundary voltages  being calculated  for  the four  scenarios  using Eidors-V3.6 to
solve the forward problem (Table 1). In each case the lung conductivity was uniformly changed, all
other conductivity’s  remaining fixed. In practice 208 simulations were run for “serial-collection”
with the lung conductivity ramped from +0.05 to +10%, and the boundary voltage for one electrode
combination extracted from each. 

Frame Lung conductivity
baseline -10%
static1 +0.05%
static2 +10%
serial_collection Varied for each boundary voltage measurement.

For the nth  electrode combination: +10/208*n% 

Table 1: Simulated data

Data was normalised to 'baseline' and reconstructed using the GREIT algorithm (Adler et al 2009),
using the library model adult male mesh.

 2. Data collection

Sixteen electrodes (Philips 13953D neonatal ECG electrodes) were attached, equally spaced, around
the thorax of a subject, on a plane between the apex of the axillae and the nipple line. Electrodes
were numbered in a counter-clockwise manner such that electrode one was placed on the sternum,
and  electrode  5  on  the  left  mid-axcillary  line.  A ground  electrode  was  placed  on  the  anterior
abdominal wall. An adjacent drive and receive protocol was used.
Sets of boundary voltages were collected in 1 minute blocks at a rate of 13 frames a second, 208
electrode combinations per frame, from two subjects, one adult female and one un-sedated neonate,
each subject was positioned first on their left side and then on their right. The adult was instructed
to  perform  30s  of  tidal  breathing  followed  by  3  maximal  breaths,  the  neonate  was  left  to
spontaneous quiet breathing (being too young to comply with instructions) (Yerworth & Bayford
2007). 

 3. Reciprocity and phase correction

For each data set the first 2^7 frames were considered, in each case this consisted of tidal breathing,
the  largest  tidal  breathing  sample  available,  satisfying  the  2^n  data  point  requirement  of  Fast
Fourier transforms (FFT)
Relative delay on each data point was estimated as a linear function of the data collection order,
with  a  delay (Le)  of  0ms  on  the  1st electrode  combination  and  76.6ms  for  the  208th electrode
combination, based on the stated frame rate of 13Hz. The time difference (dLe) for each reciprocity
pair was calculated from this.
A Fast Fourier Transform was applied to the data set then correction for lag was made by applying a
frequency dependant phase adjustment [1]. 

http://www.carefusion.com/


2∗ pi∗ f ∗Le∗F

27 [1]

where F is the system frame rate (13Hz) and f is the frequency of each point in the transformed
data, up to the Nyquist frequency.
This  was  followed  by application  of  an  inverse  Fourier  transform was  then  performed  on the
corrected frequency spectrum, and the real part of this formed the lag-corrected time series data. 
Reciprocity errors (Re) were calculated [2] for each electrode combination (e) and it's reciprocity
pair (er)

Re=∣ ve−ver

(ve+ver) /2∣∗100 [2]

The standard deviation (std) of the time dependent reciprocity error was calculated and correlated
with the time delay dLe.( Fig.1).
Normalised time-difference images were reconstructed, for the original (Io) and corrected (Ic) data,
using the GREIT algorithm (Adler  et al 2009), using the library model neonate and adult male
meshes respectively for the neonate and adult data. In both cases the noise regularisation parameter
was set to 0.6 (Gómez-laberge et al 2012). The dc component of the frequency spectrum was used
as the reference, which was equivalent to using the mean frame. 
The difference between the original  and corrected images  was assessed by subtracting the two
image sets on a pixel by pixel basis to create a difference image set (Id). A mean difference image
(mId) and one of the standard deviation of the differences (sId) were then calculated. 

 4. Results

Images of both the static and serial simulation data show two clearly defined lungs, with intensity
peak at the centre of each. In both 'static1' and 'static2' the lung to the right of the image shows
slightly larger changes,  however in the 'serial_collection'  image this  is  reversed (Fig.2).  The 5th

image is the difference between static1 and serial_collection.   

The frequencies of the main respiratory and cardiac related signals were obtained from peaks in the
frequency domain spectrum (Table 2)

Respiratory frequency (Hz) Cardiac Frequency (Hz)
Neonate 0.91 2.4
Adult 0.2 1.4-1.7

Table 2: Main Respiratory and cardiac frequencies in the data used

Original and lag-corrected data, from the neonate, for one pair of reciprocity measurements, where
the 2nd measurement is taken 62.9ms after the first, shows the temporal shifting of the signal and
improved correspondence of the lag corrected data (Fig.3). For the normal electrode arrangement,
changes of up to 10% of the peak-to-peak voltage can be seen, and lag correction has shifted the
peak inspiration and expiration by one measurement frame for the raw data, to be in synchrony with
the data for the reciprical pair.

Correlation between Standard deviation of reciprocity errors (std(Re )) and the time lag between data
collection  for  each  reciprocity  pair  (dLe)  are  given  for  neonate,  and  adult  data  (Table2).  The
correlation coefficient was highest for the uncorrected neonate data and lowest for the corrected
adult data. In both cases the corrected data showed less correlation than the uncorrected data. The
correlations for the corrected data show a non-linear component (Fig.4)

Uncorrected Lag Corrected
Mean (Re ) 
(median, 
interquartile range)

Std (Re )
(median, 
interquartile range)

Correlation
 std (Re ) & (dLe)

Std  (Re ) 
(median, 
interquartile range)

Correlation 
std (Re ) & (dLe)

Neonate 1.2 (0.4-2.7) 0.32 (0.17-0.47) 0.701* 0.17 (0.08-0.22)0.491*



Adult 1.6 (0.6-4.2) 0.26 (0.12-0.40) 0.525* 0.16 (0.07-0.27)0.267*

Table 2: Median and interquartile range of Mean and Std of reciprocity error (Re  ) for the 208
electrode combinations, and the Correlation coefficient of std reciprocity and the time lag (dLe)
between data collection for each reciprocity pair (* denoted p<0.001)

Reconstructed images of the neonate data are shown in Fig.5, and for the adult data in Fig.7. 

The peak of the mean difference image (Fig.6a) is -4% of the maximum intensity of the original
image, for the neonate and -0.4% for the Adult. The standard deviation of the difference images
( Fig.6b), ranges from 0 to 26% of the maximum intensity of the original image for the Neonate,
and 0 to 8% for the Adult. 

 5. Discussion 

The images generated for the simulated data (Fig.2) demonstrate that serial data collection affects
the  images  in  a  non-uniform manner.  In  this  case  the  lung  conductivity  was  increasing  (and
impedance decreasing) over time, from that in static1 to that in static2. The serial-collection image
is not, however a simple average of the start and end conductivities, instead the right had lung
resembles the initial  conductivity (static1)  whilst  the left  hand lung is  much closer to the final
conductivity. This makes sense, given that, for this data collection protocol, the drive combination
rotates clockwise round the body starting at the sternum. So we have a problem, at least in theory,
but how significant is it in clinical practice?

A significant correlation was found between the standard deviation of the reciprocity errors and dLe

using lung ventilation data of neonate and adults (Table2).  In both cases the standard deviation of
the reciprocity errors was reduced when the phase correction was applied, to approximately the
level achievable in a saline filled tank. It was predicted that the effect of dLe would be highest in the
data set with the fastest changing physiological signals, i.e. the neonate data, and indeed higher
standard deviation of the reciprocity errors was seen in the neonate data set than in the adult.

Looking at the original and dLe corrected data for a representative reciprocity pair (Fig.3), it can be
seen that one of the uncorrected data traces lags behind the other, which is not the case for the two
corrected traces. Combined with the reduction in standard deviation of the reciprocity error, this
indicates that the phase correction counteracted some of the errors caused by the serial nature of the
data collection. The question however, is does this make any difference to the reconstructed images,
and parameters derived from the images? 

Visible differences can be seen between the original and uncorrected neonate images (Fig.5a&b),
though the adult images show almost no differences. This provides reassurance that frame rates as
slow as 13Hz are likely to be sufficient for monitoring respiration in unventilated adults, but gives
cause for concern with respect to higher frequency events, such as neonate respiration. It is perhaps
surprising  that  the  adult  images  showed  so  little  difference  due  to  the  lag  correction,  as  the
correlation of the standard deviation of the reciprocity error and dLe was reduced by approximately
the same amount as for the neonate data.  A possible explanation for this is that the images are
dominated by the relatively slow, respiratory frequency signal; if the adult images were filtered to
highlight perfusion effects differences between the corrected and uncorrected images may become
apparent. 

Using a linear function to determine the delay on each electrode combination is sensible  for this
system,  is it has been confirmed by Carefusion ( http://www.carefusion.com ) that the extra delay
when the drive combination is switched, every 13 electrode combinations, is trivial compared to
when only the sense electrode combination is changed, as is the pause at the end of the data frame.
It  was  initially  thought  that  such  pauses  could  be  the  cause  of  the  non-linear  component  of
correlation in the corrected data (Fig.4), but it now appears unlikely. 

http://www.carefusion.com/


It  should be noted  that,  at  least  in  theory,  the  data  collection  order  could  be altered such that
reciprocal measurements were consecutive,  resulting in a much lower standard deviation of the
reciprocity errors. This however would not improve image accuracy, and could actually make it
worse since the temporal averaging, provided by reciprocal pairs, has been removed. 

Often sets of images are averaged to reduce noise related artefacts, whilst this has not been tested in
this paper it should be noted that the errors are not spatially uniform and it cannot be assumed that
errors will average out. Errors are lower where changes slower, e.g. peak inspiration and expiration,
but these points are not always the focus of a study, and as previously noted, the peak may be
detected a data frame later in some electrode combinations than others, even within one reciprocity
pair. 

More work is needed to determine how fast a frame rate is needed, relative to frequencies of the
physiological signals,  for the lag effect to become insignificant.  This could include looking for
variation in derived parameters, such as those proposed by Gómez-laberge et al (2012). However a
conservative estimate is that 65 frames per cycle is sufficient (13Hz frame rate / adult breathing rate
0.2Hz), but 15 frames per cycle is insufficient (13Hz frame rate / neonate breathing rate 0.91Hz).
Ideally a frame rate should be chosen to reduce lag errors to less than the quantisation error of the
system. For a  system with 12 bit  analogue to digital  conversion,  with the gain adjusted so the
maximum boundary voltage in the baseline frame is 80% of the dynamic range,  maximum tidal
breathing changes are of the order of 1% of the dynamic range. Approximating breathing as a sine
wave, the frame-rate required to limit  the maximum change between frames to the quantisation
error  (1/2^12)  is  52  frames  per  cycle. It  should  be  noted  that  requirement  applies  to  the
physiological signal of interest and any other physiological signal which may be large enough to
affect the reconstruction. Thus if only the tidal breathing respiratory signal is to be considered, and
the cardiac frequency signal is negligible compared to this, a slower frame rate may be acceptable
than for a study of blood perfusion, where the images will be filtered to highlight the small cardiac
signal. Where signals that are not period sinusoids, the highest frequency component of interest
needs to be considered.

Thus the required frame will vary widely depending on the age of the subject and the signals of
interest.  Where it  is not practical to achieve a sufficiently fast  frame rate, and for retrospective
analysis of previous data, lag correction is a viable alternative – as long as the EIT system used is
well characterised. Some EIT systems, like the one used here, have a single current source and
measurement  circuit,  others,  like  the  Sheffield  Mark3.5  (Wilson  et  al  2001)  are  semi-parallel,
applying current to each drive electrode combination in turn, but collecting from all the associated
receive electrodes combinations simultaneously. Even in this semi-parallel set up, lags of up to F/(n-
2) will be present, where n is the number of electrodes and F the frame rate of the system, but the
distribution of these lags will be totally different to that of a fully serial system. Thus lag correction
needs to  be tailored  to  each EIT system. With systems that  inject  multiple  current  frequencies
simultaneously, such as the Sheffield Mark3.5, the same approach can be used, with lag correction
applied individually to data from individual current frequencies.  

In this study frequency domain lag correction was applied. An alternative, time domain, approach
would be interpolation, however the relative merits of this, with respect to speed and accuracy is
beyond the scope of this paper.

In conclusion, this lag effect cannot safely be ignored. Ideally EIT systems should be run at a frame
rate which reduces lag to less than the quantisation error, i.e. for a 12 bit system, greater than 50
times  the  frequency  of  the  dominant  and  interesting  physiological  signals.  Where  this  is  not
practical, the intra-frame system timings should be determined and lag corrected for, as described in
this paper. It is likely that both approaches will have their place, depending on system availability
and the physiological signal of interest.  
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Fig. 1: Flowchart of lag correction and analysis

Fig.2: images reconstructed from normalised simulated data, with changes occurring only in the 



lung regions (scale arbitrary units): a)baseline b)static1, c)static2, d)serial-collection, e)difference 
between static1 and serial-collection images (d-b)

Fig.3: Effect of lag correction on one pair of reciprocity measurements, widely separated in time

Fig.4: Correlation between Standard deviation of reciprocity errors and time lag between data
collection, for Neonate data a) uncorrected data, b) lag corrected data

Fig.5: images reconstructed from the Neonate data, displayed using the same impedance change
scale (arbitrary units) a)uncorrected b) lag corrected, c) difference (b-a)

Fig.6: a) mean and b) standard deviation of differences between original and lag-corrected images
for neonate  (arbitrary units)

Fig.7: images reconstructed from the Adult data, displayed using the same impedance change scale
(arbitrary units) a)uncorrected b) lag corrected, c) difference (b-a)

Fig.8: a) mean and b) standard deviation of differences between original and lag-corrected images
for Adult, (arbitrary units)




