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Abstract

In this thesis, we focus on the optimization of the two-way relay channel (TWRC), which can double

the data rate of communications comparing to the traditional one-way relay channel (OWRC). Because

of the broadcasting nature of wireless transmissions, secure transmission is an appealing research topic.

We take secrecy rate consideration into the optimization of the TWRC. Overall we provide near-optimal

solutions for the secrecy rate maximization problems of the TWRC with imperfect channel state in-

formation (ICSI). A much lower complexity optimal SOCP solution is provided for SNR balancing of

the TWRC without secrecy consideration. We first look at a flat fading TWRC network model with a

multiple-input multiple-output (MIMO) relay where perfect channel state information (CSI) is assumed

available. We then formulate an optimization problem, with the objective to minimize the relay’s power

usage under the constraints that the signal-to-noise ratio (SNR) of the two transceivers should exceed

a preset threshold. A low-complexity optimal beamforming solution is provided to this optimization

problem by reformulating it in the form of second-order cone programming (SOCP). Later in the thesis,

we consider the presence of an eavesdropper and address the beamforming optimization for minimiz-

ing the relay’s power with the constraints of the secrecy rates of the two transceivers. A semi-definite

programming (SDP) based searching algorithm is proposed to find a near-optimal solution. For each

search of the proposed approach, the previous non-convex optimization problem is transferred into an

SDP problem, which can guarantee the optimality of the beamforming matrix. Afterwards, more realis-

tic imperfect CSI (ICSI) situations are considered for the TWRC network models. As ICSI completely

changes the structure and the property of the optimization problems, we reformulate the optimization

problems into two scenarios. For the first case, we consider that the relay is an untrusted eavesdropper

and in this case an SDP solution is provided to maximize the joint-decoding sum-secrecy rate. For the

second case, we investigate the robust beamforming problems where the relay is trusted but there is an

external eavesdropper, another SDP solution is provided to maximize the sum-secrecy rate.
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Chapter 1

Introduction

1.1 Wireless Networks

Ever since the wireless telegraph was invented by Guglielmo Marconi [2] in 1896, wireless communica-

tions have dramatically changed the way people communicate. Compared to traditional wired networks,

wireless networks provide flexibility and mobility, either to users or the service providers because some

areas are difficult or too expensive to deploy network connection. In these cases, wireless communication

is attractive. Besides, wireless communications provide the flexibility for quick and temporary network

connections. For example, for exhibition or activity in an open area which has no network coverage, it

would be cost ineffective to deploy cables to building a wired connection.

Also, the maintenance and upgrade of a wireless network is more convenient, time-effective and

cost-effective. To upgrade the communication speed of wired network, sometimes new transmission

hardware such as optical cable are required for replacement. It will take a long time to upgrade, and

at the same time will cause in many cases interruptions to the existing services, and possibly bring

inconvenience to the residences at that area. In contrast, the maintenance and management of wireless

networks are much simpler. For this reason and with the fast developing wireless technologies, wireless

networks are fast deployed to cover wide areas. Nowadays, information and communication can be

provided conveniently into people’s daily life. At the same time, people’s requirement and expectation

on wireless communications are increasing rapidly. Researchers and engineers are therefore working

hard to improve the information rates given the precious spectrum and energy resources.

According to the differences from service range, mobility and transmission data rate, there are

4 different categories of wireless networks: wireless personal area network (WPAN), wireless local

area network (WLAN), wireless metropolitan area network (WMAN) and wireless wide area network

(WWAN).

1.1.1 WPAN

A WPAN is a personal area network connects devices within a short distance, usually several meters, of

a person’s walking range. It usually connects peripheral devices such as a printer, an IPAD or a mobile

phone to a computer. The transmission rate of a WPAN connection varies from low to high, with different
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technologies and standards. IEEE 802.15 is the standard for WPANs by IEEE Standards Association [7],

including 7 task groups with transmission speed up to 3 Gbits/s. It uses Bluetooth ( also known as

IEEE 802.15.1) as the main technology, which provides low-rate transmission services with low-power

consumption between devices. Another low-rate technology, ZigBee (IEEE 802.15.4), is intend to be less

expensive and more simple than Bluetooth. WiMedia (IEEE 802.15.3) is the specification for high-rate

applications of WPANs.

1.1.2 WLAN

A WLAN is a small local communication network connected by a series of devices and offering intra-

network data exchange. The first workshop of WLANs was held in 1991by IEEE Standards Associ-

ation [6] and had IEEE802.11 as its media access control and physical layer specification. Complex

technical solutions, such as IEEE 802.11, 802.11a, 802.11b, 802.11g, 802.11n, and 802.11ac are ap-

plied to different geographic scopes of WLANs. Usually, a WLAN is spanned within one or several

buildings owned by the same organisation. The transmission rate of a WLAN usually is much greater

than a WPAN. Among all the WLAN standards, 802.11n offers high transmission speed at 100Mbits/s -

200Mbits/s, by using multiple-input multiple-output through (MIMO) spatial division multiplexing, and

supports up to four spatial streams technique. Publication scheduled for early 2014, the IEEE 802.11ac

is a WLAN standard providing high throughput on the 5 GHz band. It is expected that this specification

will provide at least 1Gbits/s throughput of multi-stations, and at least 500Mbits/s throughput of a sin-

gle link. MIMO (up to eight spatial streams) and beamforming functions are used by IEEE 802.11ac.

Apple’s new generation of airport is already supporting the 802.11ac.

1.1.3 WMAN

A WMAN is a comparably larger area of network than a WLAN by IEEE Standards Association [5] in

2002. A WMAN uses technologies different with WLANs and is specified under IEEE802.16 standards,

offering high data rates (approximate 40Mbits/s of every channel) with guaranteed quality of service

(QoS) to a potentially large customer base (up to tens of miles from the base station). There are two main

drawbacks of the WMAN. One is that it is currently lack of mobility. The other one is its requirements

of light of sight (LOS). If a customer does not have a clear LOS to the base station of the WMAN, the

connection between the customer and the network can not be established.

1.1.4 WWAN

A WWAN network uses cellular network technologies to provide local, national and global voice and

date services. The WWAN has been developed and deployed rapidly since 1980s. In 1981, the first

generation (1G) mobile system was deployed. The second generation (2G) mobile system started to

take place the 1G in 1992. Both the 1G and the 2G systems primarily focus on voice services. The

third generation (3G) mobile system was developed and deployed in 2001. The focus of the 3G mobile

system is on the data transmission rate, which is from 2Mbits/s and up to 14.4Mbits/s for stationary

users. For high-speed moving users, the data transmission speed is up to 348Kbits/s. Since 2011, the

fourth generation (4G) mobile system started to deployed globally, with a data transmission rate up to
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1Gbps for stationary users and 100Mbits/s for high-speed mobile users.

1.2 Motivation and Objectives

Due to the harsh wireless signal’s propagation environment which is constantly troubled by interference

and fading, providing a stable high data rate for wireless services is a very challenging task. Along-

side with already existed resource problems, such as the radio spectrum and the utilization of power,

interference and fading are two fundamental problems raised from the broadcasting nature of wireless

transmissions. These two factors make wireless transmission channels have an uncertainty issue.

We aim to optimize wireless networks, to properly design and deploy wireless networks which can

maximize the usage of spectrum and power, and to reduce the influence of interferences and fadings.

Of particular interest in recent years is the emerging two-way relay channel (TWRC) (first proposed by

Zhang et al. [94]) which can extend wireless coverage using an intermediate relaying terminal as well

as shorten the time by half for exchanging of messages between two terminals. Note that normally, for a

half-duplex relay, it takes 4 time slots for two transceivers to exchange messages but with the two-way

technologies, it is possible to take only 2 slots to accomplish this communication. An example of TWRC

is shown in Fig.1.1

Figure 1.1: An example of TWRC.

The focus of this thesis is on the TWRC and in particular, our interest is on the use of a multiple-

antenna (Roy et al. [66]) relaying terminal and we address several important optimization problems for

the TWRC to enhance its reliable and secure information rate proposed at first by Shannon [71]. In 1988,

Veen [81] took an overview of beamforming from the signal-processing’s perspective. Beamforming is a

linear signal processing technique used in sensor arrays for directional signal transmission or reception.

It makes signals from particular angles have constructive interference and others experience destructive

interference. It is also an approach of spatial filtering. The beamforming optimization for the two-

way relay is not well known and this thesis has made three major contributions. In the first problem,

our objective is to optimise the beamforming matrix at the relay for minimising the sum-power of the

transceivers such that the received signal-to-noise ratios (SNRs, a measurement describing the level

of designed signal to the level of background noise) of the transceivers exceed prescribed thresholds,

given that the channel state information (CSI) (describes the signal’s propagation from the transmitter
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to the receiver) is perfectly known at the relay. Our contribution is the second-order cone programming

(SOCP), a convex solution described by Boyd et al. [14] that finds the optimal beamforming matrix at the

relay which is computationally with much lower complexity than the semidefinite programming (SDP,

described by Boyd et al. [14]) solution in the literature. In addition, motivated by the great potential

of providing security in the physical layer, widely known as physical layer security explained in details

by Zhang et al. [1] (a scheme guarantees the message can not be decoded by illegal receivers through

physical layer’s transmission) , we also look at several optimization problems for securing the TWRC

by optimising the beamforming matrix at the relay, with consideration of perfect CSI and imperfect CSI

(ICSI) (only partial of the CSI is available, there is an uncertainty of the CSI ) at the relay. In these cases,

the sum-secrecy rate of the two transceivers is the performance metric. These optimizations permit us to

keep the messages confidential from an eavesdropper by degrading the wiretap channel.

1.3 Overview of the Thesis and Contributions

The rest of the thesis is organised as follows. The introductory chapter is of Chapters 2 where the TWRC

model and the researches to enhance secrecy during transmission at the physical layer, respectively,

reviewed. The technical contributions of the thesis are in Chapters 3– 6.

In Chapter 3, our TWRC network model contains two single-antenna source nodes and a multiple-

input multiple-output (MIMO) relay node. Perfect CSI is known at the relay node. This chapter’s aim

is to minimise the transmit power of the relay node while keeping the SNR at the end nodes higher than

a preset threshold value. We propose an optimal low-complexity SOCP solution for the two-way relay

beamforming. Computation complexity advantage of the SOCP solution is analysed.

Chapter 4 – Chapter 6 all address the TWRC with emphasis of enhancing not only the capacity but

also the security. In Chapter 4, the TWRC in Chapter 3 is considered in the presence of a single-antenna

passive eavesdropper. Again, perfect CSI is assumed for the optimization of the two-way beamforming

matrix at the relay. Our problem of interest is to minimise the relay’s transmit power subject to the

secrecy rate constraints of the two transceivers. A 2D searching algorithm is proposed to find the near

primal solution for this optimization problem. In each search, the previous non-convex optimization

problem is being converted into an SDP problem, which can guarantee the optimality of the beamforming

matrix.

ICSI situation, due to channel estimation errors or Doppler spread, is considered for the TWRC in

Chapters 5 and 6. ICSI completely changes the structure and property of the optimal two-way relaying

matrix, Chapter 6 reformulates the optimization problem to cope with bounded CSI errors that leads to

the robust optimal solution in the presence of a passive external eavesdropper, while Chapter 6 deals with

the same problem but the eavesdropper is the relay itself. Future work is given in the final chapter 7.

Our contributions have led to the following list of publications:

• H. Chen and K.-K. Wong, ”Optimal two-way beamforming with perfect CSI: An SOCP formula-

tion,” in London Commun. Sym. 2011, UCL, London.
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• L. Chen, K.-K. Wong, H. Chen, J. Liu, and G. Zheng, “Optimizing transmitter-receiver

collaborative-relay beamforming with perfect CSI,” IEEE Commun. Letters, vol. 15, no. 3, pp.

314–316, Mar. 2011.

• J. Ni, K.-K. Wong, Z. Fei, C. Xing, H. Chen, K.-F. Tong and J. Kuang, ”Secrecy-rate balancing

for two-user MISO interference channels,” to appear in IEEE Wireless Commun. Letters, 2013.

• H. Chen and K.-K. Wong, ”Optimal two-way beamforming with perfect CSI: An SOCP formula-

tion,” submitted to Journal of Optimization.

• H. Chen and K.-K. Wong, ”Robust two-way relay-beamforming: An external eavesdropper case,”

submitted to IEEE Trans. Signal Process..

• H. Chen and K.-K. Wong, ”Robust two-way relay-beamforming: An untrusted relay case,” to be

submitted to IEEE Trans. Wireless Commun..



Chapter 2

Background

This chapter reviews the basic background of wireless communications and gives a short introduction

for the related concepts, such as TWRC, physical-layer security and beamforming optimization.

2.1 Wireless Communication System
Wireless communication corresponds to a message passing between a transmitter and a receiver over

a wireless medium. Given a message for transmutation, the general function of a transmitter includes,

but not limited to, (1) source coding (data compression) which maps the message from an information

source to a sequence of alphabets (usually bits) such that the source symbols can be exactly recovered

from the binary bits (lossless source coding) or recovered within some distortion (lossy source coding);

(2) encryption which processes and encodes the alphabets to increase security and prevent it from illegit-

imate decoding; (3) channel coding which adds redundancy to the bit sequence for error protection due

to noise, fading and interference; (4) modulation which converts the digital bit sequence into a proper

waveform for efficient transmission, and (5) finally transmission from antenna. At the receiver side, it

takes the radio signal and converts it back into electrical signal. Then the processing at the transmitter is

reversed to recover the original message. Fig. 2.1 illustrates such a chain of processes.

Figure 2.1: The processing of a typical wireless communication system.
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In this thesis, we mainly focus on the influence of channel fading and additive noise in wireless com-

munications system for optimization of wireless network (Power mimization, maximize the minimum

SNR etc.). The above mentioned signal processing is presented in a simplified input-output relationship.

Mathematically, it can be written as

y = hx+ n, (2.1)

where x is the transmit information-bearing digital symbol for the transmission antenna, h is the wireless

channel coefficient, n is the additive white Gaussian noise with zero mean and power σ2, and y is the

received signal of the reciving antenna for further processing before decoding the original message. The

channel characteristics is reviewed below.

2.1.1 Wireless fading channel

In wireless communication, the term ”fading” refers to the deviation of attenuation of wireless signals

after transmission, caused by multi-path propagation in the physical space. Precise mathematical expres-

sion of fading channel is unknown, as various environments (sometime intractable) make it too complex

to describe with precision. Statistical models are therefore commonly used instead. There are currently

various statistical models suitable for different propagation environments.

Fading can be classified either as fast and slow according to the speed of fluctuation compared to

the speed of transmission, and can also be regarded as flat or selective in the frequency domain. In

the work of this thesis, our emphasis is on slow frequency-flat fading channels because (1) slow fading

is considered more challenging as channel coding would be ineffective without imposing severe delay,

and (2) a frequency-selective fading channel can be easily converted into multiple parallel frequency-flat

channels using technologies such as orthogonal frequency division multiplexing (OFDM).

The following models are commonly used for describing fading channel:

• Rayleigh fading occurs when the attenuation is a result of the superposition of infinitely many

paths between the transmitter and the receiver, but none of the paths has a dominant signal, such

as the signal via a line-of-sight (LOS) path. It is regarded as the worst-case scenario for wire-

less communications. This model also implies that the radio environment has a large number of

scatterers. More accurately, Rayleigh fading also implies a complex Gaussian process where the

amplitude is Rayleigh distributed but the phase is uniformly distributed. The probability density

function (pdf) of the Rayleigh fading amplitude, α, is given by

p(α) =
2α

Ω
exp(−α

2

Ω
), for α ≥ 0, (2.2)

where Ω = E(α2) is an important parameter determining the strength of the channel.

• Rician fading occurs when there is a dominant path such as LOS which is mixed with other

indirect multiple paths. The parameter K is defined to characterise such channel:

K =
power in the dominant path
power in the scattering paths

. (2.3)
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When K = 0, the channel is reduced to a Rayleigh fading channel, while if K = ∞, the channel

becomes a simple additive white Gaussian noise channel.

2.1.2 Performance Metrics

In this subsection, we review a number of popular metrics which will be useful in this thesis.

2.1.2.1 Capacity or Achievable Rate

Channel capacity is defined as the highest achievable rate that can be reliably decoded at the receiver

over the channel. According to Shannon’s Coding Theorem [72], if the information’s transmission rate,

denoted as R, is equal to or lower than the channel capacity C, then there exists scheme that can decode

without any error the information. Conversely, if the information’s transmission rate, R, is higher than

the channel capacity C, the probability of decoding the information in error is close to 1.

For additive white Gaussian noise (AWGN) channels, channel capacity can be expressed as

CAWGN = log

(
1 +

P |h|2
σ2

)
, (2.4)

where P is the transmission power of the signal from the sender, σ2 is the noise power and the channel

fading coefficient h is considered fixed during the entire Gaussian noise process.

2.1.2.2 SNR

The received SNR, denoted as γ, is a useful metric that quantified the quality of the received signal. In

(2.1), the SNR is simply given as

γ =
Power of the desired signal at the output

Power of the noise at the output
=
P |h|2
σ2

. (2.5)

Sometimes, it is measured in decibels, or dB. That is,

SNRdB = 10 log10 γ (in dB). (2.6)

More precisely, γ is regarded as the instantaneous SNR which depends on the channel realisation h and

varies if the channel changes. Therefore, it is also useful to define the average SNR, γ̄, which is averaged

over the fading channels, i.e.,

γ̄ =

∫ ∞

0

γp(|h|)d|h|. (2.7)

2.1.2.3 Signal-to-Interference Plus Noise Ratio (SINR)

In wireless communication systems, co-channel interferences generally exist. For example, in a wireless

ad-hop network, a node can receive signals simultaneously from its neighbours. Therefore, besides the

desired signal, there are interference signals as well. Consider the received signal at a node as

y = hx1 + gx2 + η, (2.8)
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in which x1 is the desired signal, x2 is the interference signal and η is the noise. Then the SINR, denoted

as β, can be defined as

β =
Power of the desired signal at the output

Power of the interference signal and noise at the output
=

P1|h|2
P2|g|2 + σ2

, (2.9)

where P1 is the transmission power of the desired signal, P2 is the transmission power of the interference

signal, and σ2 is the noise power at the receiver side. Similar to SNR, SINR can be averaged over the

channel fading coefficients, h and g, to provide more meaningful reference in practical systems.

2.1.2.4 Outage Probability

Maintaining a high level of quality-of-service (QoS) is always the aim of wireless network. One useful

metric, which is increasingly popular due to its accurate reflection to user experience, is outage prob-

ability. Within this, various outage events can be defined appropriately and popular examples include

rate outage, SNR outage and so on. As an example, let us consider the outage rate probability. All other

outage probability of other metrics can be defined similarly.

Given a threshold value for the transmission rate, r0, the outage probability can be found by

Outage Probability = Prob(Achievable Rate < r0). (2.10)

2.1.2.5 Mean-Square-Error or MSE

MSE is another important metric which directly gives a measure for the accuracy of estimation. For

instance, if we denote s1 as the message sending out by the source node, and ŝ1 is the estimated message

derived from the destination node. Then the MSE is obtained as

MSE = E[|s1 − ŝ1|2],

where E[·] returns the expectation of an input random entity. Minimising the MSE, widely known as

MMSE, is one of the most sought criteria for designing communications systems.

2.2 Cooperative Relay Network

2.2.1 Network Coding (NC)

In traditional computer networks, switching is functioned by nodes relaying their received messages to

one or multiple links. When a switching node works as an encoder (this function can achieved through

a powerful processing function of the antennas in Fig. 2.1) , it is known that network capacity can

be significantly improved Ahlswede et al. [4]. To further increase the transmission rate, Ahlswede et

al. [4] proposed the concept of NC (network coding). According to Shannon, the maximum channel

capacity can be achieved through the “max-flow min-cut” theorem by Elias et al. [26]. However, with

the traditional switching and routing scheme, information can only be stored and forwarded separately

without any functional process at the medium access control (MAC) layer, but with the proposed NC

method, network nodes are designed to code the incoming data with appropriate coding methods, such
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as exclusive-or (XOR) operation, linear operation by Li et al. [75] and so on, so that the maximum

transmission capacity defined by the “max-flow min-cut” theorem of Shannon can be achieved.

In [38], an algebraic framework of NC using discrete random process was proposed and it was

shown that sink nodes can reconstruct the original data from the source accurately as long as the system

transfer matrix has full rank. NC can take place either at upper layers by Katti et al. [13, 74], or at the

physical layer by Zhang et al. [94]. This thesis falls into the latter case where a network of signals are

processed in the physical layer.

2.2.2 Relaying Technologies

Distance and interference set limitation for wireless transmission, and extending the range or coverage

of wireless communications has been an important problem since the signal’s power decreases polyno-

mially as the distance goes. There is always a case that the receiver is outside the transmitter’s reliable

transmission range. However, with the broadcast nature of wireless communications, it is possible that

nodes close to the transmitter or the receiver can help relay the message that is not intended for them.

This is usually referred to as a cooperative relay network [68, 69] where in the half-duplex setting, the

relay node processes and forwards the message-bearing signal it received at the previous time slot to

enhance the signal quality of others. The processing at the relay can vary.

• Amplify-and-forward (AF)—The relay amplifies the received signal and sends it. For AF, there

is generally no requirement of the relay to know the CSI. It is therefore comparatively a straight-

forward relaying scheme. Statistical properties of AF relay fading channels were studied by Patel

et al. [63], and by Chen et al. [16] studied the block-fading multiple-access channel using AF

relaying.

• Compress-and-forward (CF)—In CF, the relay quantises the received message and then forwards

the quantised signal. As compression is needed, it requires higher computation than AF and at the

destination side, additional information may be needed to uncompress the signal.

• Decode-and-forward (DF)—The relay first decodes the received message at first and then re-

encode it before forwarding. In the case, the CSI of the source-relay channel is expected to be

available at the relay so that it can decode the message properly before re-encoding it. Gomadam

et al. [32], SNR maximisation was considered to determine the optimal relaying function. Secrecy

is a setback for DF relaying. As the relay node is not the intended destination, its capability

of decoding the message facilitates overhearing of the message. Thus, if using DF, some other

schemes such as jamming should be provided to overcome the possibility of leaking the message.

In this thesis, motivated by the complexity advantage, we will only consider the use of AF relaying.

In wireless communications, user cooperation can provide diversity using efficient protocols such

as Laneman et al. [49]. The cooperative strategies and capacity theorems for relaying networks were

studied by Kramer et al. [29]. Detailed performance analysis of the AF, CF and DF relaying schemes

was presented by Cui et al. [24]. Generally, there are two types of relaying channels: one way relay

channel (OWRC) and TWRC (two-way relay channel).
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Consider a simple cooperative relay network model with 3 nodes. Nodes S1 and S2 are source

nodes, and node R is the relaying node. In TWRCs, the two transceivers send messages to each other

through a relay node or multiple relays. In this thesis, we focus on the case where there is only one relay

but the relay is equipped with multiple antennas. In this 3-node network, depending on how the message

is exchanged in time, there are typically 3 types of transmission schemes, as depicted in Fig. 2.2.

Figure 2.2: Various schemes for the cooperative relay channels.

2.2.3 The System Model for OWRC

The OWRC is a straightforward relaying scheme as illustrated in Fig. 2.2. If time division duplex (TDD)

transmission is used, then 4 time slots will be required for the two nodes to exchange a message with

each other. In Step 1, S1 transmits message s1 to the relay in the first time slot. Then R receives it as

r1 = hs1 + ηr1 , (2.11)

where h is a vector channel if R has multiple antennas, and ηr1 denotes the received noise. In Step

2, R processes the received signals with a matrix W (performs beamforming function of the relay by

multiplying the received signal with matrix W) and transmits it to S2. Then S2 receives the processed

signal as

y2 = gTWr1 + ηs2 , (2.12)

where g is the vector channel between the relay and node S2. After that, S2 sends its message like S1

just did, to yield the received signal at R:

r2 = gs2 + ηr2 , (2.13)

where ηr2 denotes the corresponding noise at the relay. Also, R will process the received vector signal

by the same or different matrix W′ and send it to S1 over the channel hT , i.e.,

y1 = hTWr2 + ηs1 . (2.14)

This is the scheme (a) in Fig. 2.2.
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The scheme (b) in Fig. 2.2 is another form of OWRC which however can shorten the time required

to accomplish the message exchange. In particular, at the first 2 time slots, S1 and S2 transmit messages

s1 and s2 to the relay separately. Then R receives the signals yr1 and yr2 , respectively, as

yr1 = hs1 + ηr1 , (2.15)

yr2 = gs2 + ηr2 . (2.16)

After receiving yr1 and yr2, R then processes the two signals jointly with a beamforming matrix W, and

broadcasts the processed signal to both S1 and S2 which then receive:

y1 = hTWhs1 + hTWgs2 + hTWηr + ηs1, (2.17)

y2 = gTWhs1 + gTWgs2 + gTWηr + ηs2. (2.18)

The optimization problem for OWRC has been well studied. For example, [27] provided a convex

optimization solution for the relay power minimization, with multiple relays and SNR constraints of a

number of source-destination OWRC pairs.

2.2.4 The System Model for TWRC

Traditionally, a node cannot receive 2 different messages at the same time, and it is regarded as corruption

of messages. However, Yuen et al. [90] presented the idea of physical layer NC and TWRC which uses

this corruption of message instead of avoiding it, this resolves the problem and a node can receive

different messages at the same time . With the mobile stations as the end nodes, and the base station

as the relay node, In 2006, Larsson et al. [50] gave examples of the detailed transmission process of

such TWRC and showed the gain improvement of the TWRC. Later in 2007, Kim et al. [47] introduced

protocols for bidirectional relaying.

TWRC is a class of bidirectional channels that has received enormous attention recently, due to its

high spectral efficiency of exchanging information between two terminals with the aid of an intermediate

relaying terminal. The scheme (c) in Fig. 2.2 is a simple model of TWRC. It takes only 2 time slots for

the two transceivers to exchange message with each other.

• Step 1: The two transceivers S1 and S2 transmit their messages simultaneously to R;

• Step 2: The relay R processes the received signal and broadcasts it in the next time slot.

For the scheme (c) in Fig. 2.2, there are 2 time slots required for the exchange of information, and

the transmission rate of of S1 and S2 are:

R1 =
1

2
log

(
1 +

P2|hTWg|2
‖ηr‖2 (‖hTW‖2 + 1)

)
, (2.19)

R2 =
1

2
log

(
1 +

P1|gTWh|2
‖ηr‖2 (‖gTW‖2 + 1)

)
. (2.20)

The detailed capacity region of TWRC for various scenarios was discussed in Rankov et al. [65, 78, 82,
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86].

Veen et al. [81] introduced beamformimg which is a linear signal processing function of the an-

tenna (adjust amplitude or /and phase of the signals) for directional single transmission or reception and

is attractive for improving the performance of wireless communications systems. By beamfrorming op-

timization in this thesis we mean choosing proper beamforming variables to satisfy some preset network

matrics. Beamforming optimization gained huge attention recently from wireless networks ’ research

area. For example, downlink beamforming optimization problems were studied by Chalise et al. and

Bengtsson et al. [10, 15]. Beamforming at the relay has also attracted much attention in recent years

and has been addressed for the TWRC, which is the aim of this thesis. In particular, Zhang et al. [93]

provided a thorough design for two-way beamforming for the case where a single multi-antenna relaying

terminal forwards the array of the received noisy signals from the senders to the destination terminals

in the AF fashion. Also, Havary-Nassab et al. [36] provided optimal cooperative beamfoming solutions

for the TWRC with a number of single-antenna relays. It is worth pointing out here that there is fun-

damental difference between the literature and the work in this thesis. While Chapter 3 addresses the

same optimization problem as by Zhang et al. [93], our contribution is to provide a much less complex

optimal solution. On the other hand, Chapters 4–6 investigate the beamforming optimization problems

for the TWRC with a single multi-antenna relay for enhancing the secrecy rates (to be introduced in

Section 2.3) where physical layer security is considered at the same time. This formulation is novel and

the proposed solutions are all not known before. We note that there has been early work for maximising

secrecy rates for the TWRC using relay selection very recently by Cui et al. [23], but beamforming at a

multiple-antenna relay was not considered in their work.

2.2.5 Robust Beamforming

Beamforming-based optimization is based on the assumption that exact knowledge of the CSI is available

for the design. However, CSI is deemed to be imperfect due to estimation errors and exact CSI will be

unavailable. In this case, the performance of the beamforming techniques designed for perfect CSI but

operated using ICSI will be severely degraded. For this reason, robust optimization is required. Two

robust approaches are commonly used. Ben-Tal et al. [9] studied these two approaches in details. In

the first approach, the perturbation is assumed bounded with a maximum norm, and the constraints

must be satisfied with the largest possible error, which leads to the worst-case optimization. The other

approach considers the case in which the error is unbounded but statistically understood, which leads

to robustness in the form of confidence level measured by probability. As a related work, the influence

of CSI for TWRC was studied by Hammerstrom et al. [35]. Now, let us review the literature of using

perfect CSI or ICSI for the TWRC.

2.2.5.1 TWRC with Perfect CSI

In TWRC, one problem of interest is to maximize the minimum of the SNRs from the two transceivers.

Under the assumption of perfect CSI, for the network model that all the nodes are with multiple antennas,

Wang et al. [85] provided a generalized fractional programming solution with constrained relay power.

For the network models that the two transceivers nodes are with single antenna and the relay node is with
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multiple antennas, Zhang et al. [93] provided an SDP solution to maximize the minimum of the SNRs.

Besides, for the sum-rate maximization of the MIMO relay, Zhang et al. [93] provided a sub-optimal

solution and Khabbazibasmenj et al. [3] provided a polynomial time solution. The optimal beamforming

solution for sum-rate optimization of the MIMO relay is still an unsolved problem.

For the case of multiple single-antenna relays, Zeng et al. [59] presented the optimal weighted

beamforming solution for maximising the sum-rate. Havary et al. [36] provided optimal coopera-

tive beamfoming solutions (an optimal power minimization solution under the SNR constraint of each

transceiver and an optimal SNR balancing solution) for the TWRC. A closed form solution for the relay

power minimization with the SNR constraint to each transceiver is provided by Shahbazpanahi et al. [70]

for the TWRC. For the second broadcasting stage of the TWRC with a single MIMO relay, a closed form

sum-MSE minimization solution is provided by Kron et al. [48]. A selection of a relay out fromK relays

to achieve the best required performance metric is studied by Bletsaset al. [12] with an optimal solution

provided to minimize the outage probability.

For the case that there are multiple-pair of AF TWRCs in the network, the sum rate maximization of

the multi-pair TWRCs network with a total power constraint is studied by Zhang et al. [92]. A monotonic

solution is provided to the optimization problem and a polyblock approximation algorithm for obtaining

the global optimum is proposed. Wang et al. [83] considered the network optimization of K users each

equipped with a single antenna and communicating via a relay with multi antennas. An unified approach

is provided for the weighted sum MSE minimization and the sum-rate maximization with the constrained

relay power.

Form the information theory side, the detailed capacity region of the TWRC in various scenarios

was discussed by Rankov et al. [65, 78, 82, 86]. Achievable rate regions for the TWRC are presented by

Ranhov et al. [65] with different cooperation schemes such as DF. Nam et al. [86] studied the capacity

region especially for the Gaussian TWRC and an achievable scheme is provided. An unbound of the

capacity for the TWRC is given by Zhang et al. [78]. Heath et al. [82] proved the linear scaling behaviour

of the MIMO two-way relay channel with the increasing number of relay nodes.

2.2.5.2 TWRC with ICSI

The robust-optimal beamforming solution for collaborative-relays with imperfect but bounded CSI was

investigated by Zheng et al. [34]. While using the MMSE as criterion, Xing et al. [25] provided an itera-

tive algorithm (where each step is a quadratic matrix programming problem) to minimize the MMSE. In

addition, Ubaidulla et al. [80], by modelling the CSI errors within an ellipsoidal region, a robust design

which ensures the SNR constraint was presented. Recently, Aziz et al. [8] provided a robust beam-

forming approach under ICSI for a two-way relay system with analog NC. By using the S-procedure,

the original constraints with infinite dimensions were converted into several linear matrix inequalities

(LMIs) and the relaxed SDP was solved by applying rank-one relaxation. A principle eigenvector based

rank-one reconstruction approach was proposed to reconstruct the solution. To reduce the outage proba-

bility, a hybrid approach that incorporates the non-robust approach when robust problem formulation is

infeasible, was also presented.
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On the other hand, Gharavol et al. [30] provided an iterative algorithm to minimize the sum MSE

for joint optimization of the source precoders, the relay beamformer, and the destination equalisers for

a two-way MIMO relay network with imperfect but bounded CSI. Moreover, Jun et al. [96] considered

a stochastic model of the channel uncertainties in non-generative MIMO two-way relay network, and

provided two algorithms for the robust joint source and relay optimization problem based on the MMSE

criterion. A sub-optimal solution was also provided Tao et al. [56] for maximising the minimum worst-

case SNR of the two sources subject to a total relay power budget. Ubaidulla et al. [80], with ICSI being

bounded in an ellipsoidal area, a robust design which ensures that the SNR constraint is satisfied was

presented. In addition, et al. Gharavol et al. [31] provided a set of LMIs that can be solved iteratively

for the joint optimization of the source precoder, the relay beamformer and the destination equaliser in a

non-regenerative relay network with norm bound CSI error matrix.

2.3 Physical Layer Security
For a message’s transmission from the sender to the receiver(s), there is always possibility that the

message can be overheard by any nodes (eavesdroppers) besides the legitimate receiver, as shown in

Fig. 2.3. Therefore, security is always an issue, especially for wireless, where the signals are exposed.

Figure 2.3: A basic model of a wiretap channel.

Prefect secrecy, which was first defined by Shannon [71], is said to be achieved when the transmitter

delivers a positive information rate to the legitimate receiver that the eavesdropper cannot reveal any

information. The first information-theoretic definition of secrecy rate of a wiretap channel was defined

by Wyner [87], by measuring the conditional entropy through the equivocation-rate which is defined as

1

n
H(W1|Zn), (2.21)

where H stands for the entropy (see definition of information theory in more details in [21]).

Due to the broadcast nature in wireless communications, nodes within the transmission distance can

receive the information-bearing signals. The nodes other than the desired receiver that can overhear the
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message, are called eavesdroppers. In certain cases, the messages are required to be private and not be

ciphered by others. Traditional ways to guarantee secrecy are by using cryptographic methods. A secret

key is added to the original message and then sent out. The length of the key varies, but it requires either

a comparable high level of computation power to decode the crypto-graphed message, or a key to decode

it. The key is usually sent separately to the receiver, and thus once received the message, the legitimate

receiver can decrypt it properly. This method is usually based on the upper layer’s manipulation and not

related to physical layer transmission. However, recent researches focus on manipulating the physical

signals for providing an additional layer of security by degrading the signal quality of the eavesdropper.

Physical-layer security was first introduced by Wyner in the 70s [87]. With a degraded wiretap

channel, he defined the notion of secrecy capacity to measure the maximum transmission rate from the

source to the legitimate destination while the information leakage to the eavesdroppers is negligible.

In 1978, Csiszar et al. [22] studied the secrecy capacity region for the discrete memoryless broadcast

channel (BCC) with confidential messages. At the same year, Leung et al. [51] tudied the secrecy

capacity region for the Gaussian wiretap channel. For BCC, subsequent researches in Liang and Liu

[53, 54] presented the secrecy capacity region in Gaussian BCC and fading BCC, and exploiting fading

to achieve secrecy. The secrecy region for other channels, such as multi-access channels, interference

channels and relay channels has been widely studied in various papers by Liang et al. [33, 45, 46, 52,

53, 55, 60, 62], and more progress is being made. The secrecy capacity for single-input multiple-output

(SIMO) slow fading channels is studied in Parada et al. [62]. The secrecy rate region for generalised

MAC channel is studied by Liang et al. [52]. For a secure fading BCC channel with perfect CSI ,

the optimization problem about the minimal power that can minimize the outage probability, is derived

by Liang et al. [53]. In the presence of an eavesdropper, the capacity region of the ergodic fading

channel is explored with the consideration of both perfect CSI and ICSI cases by Gopala et al. [33].

The secrecy region of the Gaussian MIMO wiretap channel is studied by Khisti et al. [46], The role of

multiple antennas for the secure transmission is studied by Khisti et al. [45], for the multiple-input single-

output multiple-eavesdropper (MISOME) wiretap channel with both the sender and the eavesdropper

have multiple antennas.

For the optimization of multiple-input single-output (MISO) channels using ICSI, Huang et al. [40]

provided an SDP solution for maximising the MISO channel’s secrecy rate, which is mathematically

the difference of two log of the generalised Rayleigh quotient problems, and this type of problems

can be solved by bisection searching methods. Beamforming strategies by Jing et al. [42] were also

used to improve secrecy for various wiretap channels. In Mukherjee et al. [58], the authors discussed

beamforming strategies for the MIMO wiretap channel. While for OWRC, Zhang et al. [43, 91] tackled

the secrecy rate optimization using a null-space beamforming method.

2.3.1 Physical Layer Security of TWRC

The secrecy rate results mentioned above have in recent years attracted much attention in redefining

wireless systems optimization, such as network secrecy sum-rate maximisation for TWRCs in Mukherjee

et al. [57] and secrecy rate maximisation for OWRCs in Gan et al. [95]. From the information theory
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point of view, coding theorems for perfect secrecy of TWRC were discussed by Schnurr et al. [67]

with a result of an achievable region of half-duplex TWRC with CF relay nodes. However, achievable

rate region for the TWRC under secrecy criterion is still an open problem. In Pierrot et al. [64], the

rate region for strong secrecy with cooperative jamming was derived. He et al. [37] looked into the

relationship between the feedback and the cooperative jamming of the TWRC and concluded that there

was no difference between these two cases except the case that the channel performed the feedback

functionality itself. According to their observation, feedback can increase the secrecy rate of the TWRC.

For the two-way relay AF MIMO relaying network, sum-rate maximization problems with or with-

out secrecy consideration belong to the difference-of-convex (DC) programming problem. In Agis et

al. [61], the authors analysed the sum-rate problem without secrecy consideration and provided two al-

gorithms that can solve the problem in polynomial time. In addition, Mo et al. [41] derived the optimal

structure to jointly optimize the source and relay beamformers in the two-phase TWRC with an untrusted

relay. When the relay is unreliable, secure TWRC transmission was discussed in Luo et al. [20].

Friendly jammer discussed in Zhang et al. [1] is also a method to improve the secrecy rate of

TWRC. The probability of successful detection for the system experiencing exponential path loss of

TWRC was used as a security constraint in Fu et al. [28], and the optimization of minimizing the relay

power based on this constraint was solved by searching methods. Chen et al. [18] proposed a cooperative

jamming algorithm to select two or three intermediate nodes to enhance the security against the malicious

eavesdropper, for a TWRC network model with a number of intermediate nodes and an eavesdropper.

A two-phase distributed beamforming scheme is provided by Wang et al. [84] to maximize the secrecy

rate for the TWRC with the existence of an extra eavesdropper. Secret key agreement schemes of the AF

TWRC with the existence of artificial noises is studied by Shimizu et al. [73].



Chapter 3

SNR Maximisation for TWRCs

In this chapter, we investigate the optimisation of the relay beamforming for TWRCs. We use relay

beamforming to achieve SNR balancing of the two source nodes of the TWRC network, assuming that

perfect CSI is available for the optimisation. The aim is to minimise the relay transmission power, subject

to the SNR constraints of the two transceivers. We prove that the objective function corresponding to

this minimisation problem has a unique minimum and that the problem can be solved using SOCP.

Beamforming optimisation has been studied in the literature. For example, [36] considered the net-

work model where all the nodes have only single antenna but there are multiple relays working together

to form a two-way signal beam. In the case of multiple single-antenna relays, the relay beamforming

matrix is a diagonal matrix. A semi-closed-form solution for this type of network was given in Shah-

bazpanahi et al. [70]. More relevant to this thesis, however, is the work by Zhang et al. [93] which

provided a thorough design for two-way beamforming for the TWRC in which a single multi-antenna

relaying node operating in an AF fashion was used. Their solution is globally optimal but relies on SDP

with rank relaxation. The only drawback for their solution is that the computational complexity is still

considerable.

The main contribution of this chapter is a SOCP formulation of the optimisation problem in Zhang

et al. [93], which we show can be used to obtain the exact optimal two-way beamforming solution but

at much less complexity than the SDP method. Such SOCP approach for the TWRC was not known

before.

3.1 Problem Formulation
Consider the TWRC operating in TDD mode as shown in Fig. 3.1 in which we have two transceivers,

labeled as S1 and S2, communicating with each other via an M -antenna relaying terminal, labeled as

R. It is assumed that there is no direct link between S1 and S2. Denote the vector channels from S1

and S2 to R, respectively, as h and g, which represent the flat-fading complex channel coefficients.

Communications for the TWRC is achieved by two non-overlapping time slots.

During the first time slot, both S1 and S2 simultaneously transmit their messages to R. The signals

received at R can be represented in vector form as

x =
√
P1hs1 +

√
P2gs2 + v, (3.1)
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Figure 3.1: The TWRC Time-Slot Transmission.

where P1 and P2 are the respective transmit power of S1 and S2, s1 and s2 denote the symbols transmitted

by S1 and S2, respectively, and v ∈ CM is the complex noise vector at R with independent and identically

distributed (i.i.d.) zero-mean entries and E[vv†] = σ2I where (·)† denotes the complex conjugate

transposition. At the second time slot, R transforms x by a complex matrix W ∈ CM×M to give Wx

and forwards it back to S1 and S2. As such, the signals received at S1 and S2 are given by

y1 = hTWx + η1

= P1h
TWhs1 + P2h

TWgs2 + hTWv + η1, (3.2)

y2 = gTWx + η2

= P1g
TWhs1 + P2g

TWgs2 + gTWv + η2, (3.3)

in which η1 and η2 denote the respective noise at S1 and S2 and they are assumed to be i.i.d. with zero

mean and variance of σ2.

In TWRCs, s2 is intended for S1. As s1 is known for S1 and with perfect CSI, the term carrying s1

can be removed from y1 to give

ỹ1 =
√
P2

(
hTWgs2 + hTWv

)
+ η1. (3.4)

Similarly for S2, we have

ỹ2 =
√
P1

(
gTWhs2 + gTWv

)
+ η2. (3.5)

As a result, the SNRs at the terminals S1 and S2 are given by

SNR at S1 ≡ γ1 =
P2|hTWg|2

σ2 (‖hTW‖2 + 1)
, (3.6)

SNR at S2 ≡ γ2 =
P1|gTWh|2

σ2 (‖gTW‖2 + 1)
, (3.7)

where ‖ · ‖ returns the Euclidean norm of a vector.

Our goal is to optimally obtain the beamforming weight coefficients as well as the transceiver’s

transmit powers, for minimising the total transmit relay power subject to the SNR constraints for the
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transceivers. This consideration leads to the SNR balancing problem:

min
W

P1‖Wh‖2 + P2‖Wg‖2 + trace(WW†)σ2

s.t.




γ1 ≥ Γ1,

γ2 ≥ Γ2,

(3.8)

where Γ1 and Γ2 are the respective target SNRs at S1 and S2.

3.2 An SOCP Formulation

In this section, we present a SOCP formulation to obtain the optimal solution to (3.8). To do so, firstly,

we study the structure of the beamforming matrix W. In our network model, W is only operated with

the channel vectors h and g. Therefore, we find it useful to define

A = [h g] ∈ CM×2 (3.9)

and as in [93] we write the SVD of A as

UΣV†, (3.10)

where U = [U‖ U⊥] ∈ CM×M is a unitary matrix with U‖ ∈ CM×2 and U⊥ ∈ CM×(M−2), V ∈
C2×2 is another unitary matrix and

Σ =




λ1 0

0 λ2

0 0
...



∈ CM×2, (3.11)

in which λ1 ≥ λ2 ≥ 0 are the singular values of A. Since U is a unitary matrix, we have U−1 = UT ,

and we can find a similar matrix of W = U∗AU. As a result, W can be expressed as [93]

W = [(U‖)∗ (U⊥)∗]


 B C

D E


 [U‖ U⊥]†, (3.12)

where B ∈ C2×2, C ∈ C2×(M−2), D ∈ C(M−2)×2 and E ∈ C(M−2)×(M−2).

Without loss of generality, from (3.12), W can be expressed as

W = [(U‖)∗ (U⊥)∗]


 B C

D E


 [U‖ U⊥]†

= (U‖)∗B(U‖)† + (U‖)∗C(U⊥)† + (U⊥)∗D(U‖)† + (U⊥)∗E(U⊥)†. (3.13)
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First, from (3.13), it can be shown that

|hTWg|2

=|hT (U‖)∗B(U‖)†g + hT (U‖)∗C(U⊥)†g + hT (U⊥)∗D(U‖)†g + hT (U⊥)∗E(U⊥)†g|2

=|hT (U‖)∗B(U‖)Hg|2,

(3.14)

and

|gTWh|2

=|gT (U‖)∗B(U‖)†h + gT (U‖)∗C(U⊥)†h + gT (U⊥)∗D(U‖)†h + gT (U⊥)∗E(U⊥)†h|2

=|gT (U‖)∗B(U‖)Hh|2.

(3.15)

Furthermore, we also have

‖WHh∗‖2 = ‖BH(U‖)Th∗‖2 + ‖CH(U‖)Th∗‖2 + ‖DHU⊥h∗‖2 + ‖DHU⊥h∗‖2

= ‖BHUTh∗‖2 + ‖CHUTh∗‖2,
(3.16)

and

‖WHg∗‖2 = ‖BH(U‖)Tg∗‖2 + ‖CH(U‖)Tg∗‖2 + ‖DHU⊥g∗‖2 + ‖DHU⊥g∗‖2

= ‖BH(U‖)Th∗‖2 + ‖CH(U‖)Th∗‖2.
(3.17)

Since the vector of U⊥ is the null-space of A, which is the vector span space of h and g, we have

U⊥h = U⊥g = 0. (3.18)

Substituting this structure into the SNR constraints, it can be easily seen that γ1 and γ2 are not related to

D and E and furthermore for minimising the relaying power, the matrices C, D and E should all be set

to zeros. Hence, we can write

W = (U‖)∗B(U‖)†. (3.19)

Apparently, rank(W) = 2 or the optimal W lies on the vector span of hand g. Now, by stacking all the

elements of B into a vector, we define

w , vec(B) ∈ C4×1. (3.20)
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Also, h1 , (U‖)†h ∈ C2×1, g1 , (U‖)†g ∈ C2×1, and let

f1 , vec(h1g
T
1 ) (3.21)

f2 , vec(g1h
T
1 ) (3.22)

U1 , P1h1h
†
1 + P2g1g

†
1 + σ2I (3.23)

U2 , [diag(UT
1 ,U

T
1 )]

1
2 (3.24)

H ,


 [h1]1 0 [h1]2 0

0 [h1]1 0 [h1]2


 (3.25)

G ,


 [g1]1 0 [g1]2 0

0 [g1]1 0 [g1]2,


 (3.26)

where the notation “[a]n” returns the nth entry of a (a similar notation is also used for denoting the entry

of a matrix). Thus, (3.8) becomes

P 7→





min
w
‖U2w‖2

s.t.




P2|fT1 w|2 ≥ Γ1

[
σ2
(
‖Hw‖2 + 1

)]
,

P1|fT2 w|2 ≥ Γ2

[
σ2
(
‖Gw‖2 + 1

)]
.

(3.27)

The rest of this section is devoted to show that (3.27) has a SOCP solution and such solution is optimal.

To do so, we consider the following SOCP problem:

PSOCP 7→





min
w
‖U2w‖2

s.t.





P2(fT1 w)2 ≥ Γ1

[
σ2
(
‖Hw‖2 + 1

)]
,

P1(fT2 w)2 ≥ Γ2

[
σ2
(
‖Gw‖2 + 1

)]
,

Im(fT1 w) = Im(fT2 w) = 0.

(3.28)

The additional constraints in (3.28) can be rewritten as

Re([W]1,2)− Re([W]2,1)

Im([W]1,2)− Im([W]2,1)
= −Re([h1]2[g1]1)− Re([h1]1[g1]2)

Im([h1]2[g1]1)− Im([h1]1[g1]2)
= a. (3.29)

To facilitate our analysis for the SOCP problem, we re-express (3.28) into the form of real vectors and
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matrices by defining

w̃ = [Re(w)T Im(w)T ]T , (3.30)

F1 =


 Re(f1) −Im(f1)

Im(f1) Re(f1)



T 
 Re(f1) −Im(f1)

Im(f1) Re(f1)


 , (3.31)

F2 =


 Re(f2) −Im(f2)

Im(f2) Re(f2)



T 
 Re(f2) −Im(f2)

Im(f2) Re(f2)


 , (3.32)

H̃ =


 Re(H) −Im(H)

Im(H) Re(H)



T 
 Re(H) −Im(H)

Im(H) Re(H)


 , (3.33)

G̃ =


 Re(G) −Im(G)

Im(G) Re(G)



T 
 Re(G) −Im(G)

Im(G) Re(G)


 , (3.34)

Ũ2 =


 Re(U2) −Im(U2)

Im(U2) Re(U2)



T 
 Re(U2) −Im(U2)

Im(U2) Re(U2)


 . (3.35)

As a result, PSOCP becomes

PSOCP 7→





min
w

w̃T Ũ2w̃

s.t.





w̃T Ã1w̃ ≥ Γ1σ
2,

w̃T Ã2w̃ ≥ Γ2σ
2,

[w̃]2 − [w̃]3
[w̃]6 − [w̃]7

= a,

(3.36)

where Ã1 = P2F1 − Γ1σ
2H̃ and Ã2 = P1F2 − Γ2σ

2G̃.

Theorem 3.2.1. The problem P in (3.8) has an SOCP optimal solution which is the optimal solution to

PSOCP in (3.28) or (3.36).

Proof. Given the optimal solution to P, say x, we create a vector, y, which differs only on the second,

third, sixth and seventh elements. We prove our result by showing that it is feasible to find a suitable y

that satisfies the SOCP constraints in (3.36) and achieves the same minimum objective value, i.e.,





dTUd + dTu = 0,

dT Ã†1d + dTa1 ≥ 0,

dT Ã†2d + dTa2 ≥ 0,

[d]3 − [d]2 = a([d]6 − [d]7 + [x]7 − [x]6) + [x]2 − [x]3,

(3.37)
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where

d =




y2 − x2

y3 − x3

y6 − x6

y7 − x7



, (3.38)

U is the sub-matrix of Ũ2 extracting the (i, j)th entries for i, j = 2, 3, 6, 7, Ã1
†

and Ã†2 are matrices

defined in a similar way from Ã1 and Ã2, respectively. Likewise, u is defined as the column vector with

the entry being the product of the ith row vector of Ũ2 and x for i = 2, 3, 6, 7, and the vectors a1 and a2

are defined similarly with the entries of Ã1 and Ã2, respectively, instead of Ũ2.

Apparently, there are four variables in d, which are required to meet two equality and two inequality

constraints, totally four independent conditions. Therefore, it is feasible to find the solutions for d to

achieve this and as a result, there are SOCP solutions that can achieve the same minimum objective value

for P. Now, given the optimal solution to P, say x, we create a vector, y,

y = x + y′ (3.39)

where [y′]n = [y]n − [x]n. We prove our result by showing that it is feasible to find a suitable y that

satisfies the SOCP constraints in (3.36) and achieves the same minimum objective value, i.e.,

xT Ũ2x = yT Ũ2y, (3.40)

yT Ã1y ≥ xT Ã1x ≥ Γ1σ
2, (3.41)

yT Ã2y ≥ xT Ã2x ≥ Γ2σ
2, (3.42)

[y]2 − [y]3
[y]6 − [y]7

= a. (3.43)

Apparently, (3.40) and (3.43) are necessary conditions for the optimality of the SOCP solution, whereas

(3.41) and (3.42) are the sufficient conditions rather than necessary. Taking [y′]n = [y]n − [x]n into

(3.40)–(3.42), we get

∥∥∥Ũ
1
2
2 y′ + Ũ

− 1
2

2 c1

∥∥∥
2

= cT1 Ũ−1
2 c1, (3.44)

∥∥∥Ã
1
2
1 y′ + Ã

− 1
2

1 a1

∥∥∥
2

≥ aT1 Ã−1
1 a1, (3.45)

∥∥∥Ã
1
2
2 y′ + Ã

− 1
2

2 a2

∥∥∥
2

≥ aT2 Ã−1
2 a2, (3.46)

where c1 = Ũ2x, a1 = Ã1x and a2 = Ã2x. The cone ‖x‖ ≤ t with x ∈ R2 is illustrated in Fig. 3.2.

It is apparent that ‖Ũ
1
2
2 y′+Ũ

− 1
2

2 c1‖2 = cT1 Ũ−1
2 c1, ‖Ã

1
2
1 y′+Ã

− 1
2

2 a1‖2 ≤ aT1 Ã−1
1 a1 and ‖Ã

1
2
2 y′+

Ã
− 1

2
2 a2‖2 ≤ aT2 Ã−1

2 a2 are three cones originated from Ũ
− 1

2
2 c1, Ã

− 1
2

1 a1 and Ã
− 1

2
2 a2, respectively, and

with height
√

cT1 Ũ−1
2 c1,

√
aT1 Ã−1

1 a1 and
√

aT2 Ã−1
2 a2, respectively, in the 3D case. From this, we can

see the intersection (3.44)–(3.46). We can thus simply prove that the intersection of (3.44) and (3.48) is
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x1
x2

t

−1

0

1

−1

0

1
0

0.5

1

Figure 2.10 Boundary of second-order cone in R3, {(x1, x2, t) | (x2
1+x2

2)
1/2 ≤

t}.

It is (as the name suggests) a convex cone.

Example 2.3 The second-order cone is the norm cone for the Euclidean norm, i.e.,

C = {(x, t) ∈ Rn+1 | ‖x‖2 ≤ t}

=

{[
x
t

] ∣∣∣∣∣

[
x
t

]T [
I 0
0 −1

][
x
t

]
≤ 0, t ≥ 0

}
.

The second-order cone is also known by several other names. It is called the quadratic
cone, since it is defined by a quadratic inequality. It is also called the Lorentz cone
or ice-cream cone. Figure 2.10 shows the second-order cone in R3.

2.2.4 Polyhedra

A polyhedron is defined as the solution set of a finite number of linear equalities
and inequalities:

P = {x | aT
j x ≤ bj , j = 1, . . . ,m, cT

j x = dj , j = 1, . . . , p}. (2.5)

A polyhedron is thus the intersection of a finite number of halfspaces and hyper-
planes. Affine sets (e.g., subspaces, hyperplanes, lines), rays, line segments, and
halfspaces are all polyhedra. It is easily shown that polyhedra are convex sets.
A bounded polyhedron is sometimes called a polytope, but some authors use the
opposite convention (i.e., polytope for any set of the form (2.5), and polyhedron

Figure 3.2: The SOC cone.

not empty:

‖Ũ
1
2
2 y′ + Ũ

− 1
2

2 c1‖2 = cT1 Ũ−1
2 c1, (3.47)

qy′ = b, (3.48)

where Ũ2x = c1; q = [0, 1,−1, 0, 0,−a, a, 0]T , and b = (x3 − x2) + a(x6 − x7).

Each of the constraints is a feasible problem: (3.44) is an SOC, which is ∈ Rn and the hyperplane

(3.48) ∈ Rn−1 is also a feasible problem. Now, rewrite U
1
2
2 = [uT1 ,u

T
2 ,u

T
8 ]T . Then we can recast

(3.48) into y′2 = b+ y′3 + ay′6 − ay′7 and taking it into (3.44), we get

∥∥∥Ũ3[y′1, y
′
3, y
′
4, y
′
5, y
′
6, y
′
7, y
′
8] + (buT2 + Ũ

− 1
2

2 c1)
∥∥∥

2

= cT1 Ũ−1
2 c1, (3.49)

where Ũ3 = [uT1 ,u
T
3 ,u

T
4 ,u

T
5 , (au2 + u6)T , (u7 − au2)T ,uT8 ]T . As a result, (3.44) is still feasible,

which completes the proof. The intersection is shown in Fig. 3.3.

Note that Theorem 3.2.1 is unique for TWRCs with only one relaying terminal and if there are more

than one relays, then the SOCP solution will no longer be optimal. This can be explained by adding one

more inequality constraint similar to (3.41) and (3.42). In that case, we will have 3 hyperplane equality

requirement qiy
′ = bi, for i = 1, 2, 3, the intersection of the 3 hyperplanes puts a special requirement of

the channel coefficient vectors between the source nodes and the relay. Because of co-phasing, we have

vectors q1 = q2 = q3. The intersectional area only exists if b1 = b2 = b3; otherwise, the 3 hyperplanes

will have to be parallel with each other and the intersection will be empty. Therefore, we can see that

our SOCP solution is specially fit for two inequality requirements (3.41) and (3.42).



3.2. An SOCP Formulation 37

Figure 3.3: The intersection.
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3.3 Complexity Analysis

For the SDP method with relaxiation in Zhang. [93], the worst case complexity is O(mn3 +m2n2) for

computing trace(CX) [14] using general SDP solvers such as SEDUMI [76] and CVX, where C is an

n × n symmetric matrix, and m is the number of the constraints. Generally, the worst case complexity

for SDP and SOCP can both be regarded as O(N3.5) with N being the number of variables involved.

Note that Zhang [93] always has 8×8 symmetric matrices Ã†1 and Ã†2 soN = 8. However, in our SOCP

optimisation, we always have m = 2 and two asymmetric 4× 8 matrices in the form of


 Re(H) −Im(H)

Im(H) Re(H)


 and


 Re(G) −Im(G)

Im(G) Re(G)


 . (3.50)

Methods Number of Variables Order dim blocks
SDP N = 36 l = 11 dim=67 2

Methods Complexity nnz(A) nnz(ADA) nnz(L)
SDP O(363.5) 84 1296 666

Methods No. of Variables Order dim blocks
SOCP N= 12 l = 13 dim=30 6

Methods Complexity nnz(A) nnz(ADA) nnz(L)
SOCP O(83.5) 96 118 65

Table 3.1: Complexity comparisons for SDP in [93] and the proposed SOCP using SEDUMI.

3.4 Simulation Results

Table 3.3 lists the simulation related parameters for SDP and SOCP using SEDUMI. The rank-one

approaching algorithm in [93] has r parallel inequalities with one variable each and can be computed in

O(r). We simulated 500 times for each (m,R) pair for the SDP solution with the number of antennas

m = [2, 12], SNR threshold R = [2, 20], and the probability of getting a rank-1 solution appears to be

0 for each pair of (m,R) and all the rank are 8. Based on these, the matrix decomposition complexity

is O(512) and the rank-one approaching complexity is O(8). For [93], the SDP optimisation dominates

the computation time and our SOCP optimisation solution is much faster than [93].

For P1 = P2 = 10db, we simulated 1000 independent channel realisations for each (m,R) pair

for the SDP solution in Zhang et al. [93] with the number of antennas m = [2, 12], SNR threshold

R = [1, 10], and the probability of getting rank-1 solution is provided in Table 3.4. In this table, r

shows the average rank of the solution and it indicates that with the increment of the antenna number

of the relay, it is highly likely that SDP gives a non rank-one solution. In contrast, as our SOCP can

always get the rank-1 optimal solution, Zhang et al. [93] will suffer even higher complexity of O(r3)

for additional matrix decomposition and the rank-one approaching with additional complexity of O(r).

Fig. 3.4 illustrates the average relay transmit power performance against the source SNR for various

number of antennas at the relay.
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HH
HHHR

m
2 4 6 8 10 12

r=1(2db) 100% 87.3% 64.5% 89.7% 71.2% 55.7%
r(2db) 1 1.5 2.6 1.6 2.9 5.7

r=1(4db) 82.3% 100% 62.3% 95.3% 90.8% 92.5%
r(4db) 2.1 1 4 1.2 1.3 1.9

r=1(6db) 93.4% 51.2% 92.7% 50.3% 91.2% 33.7%
r(6db) 1.2 2.5 2.6 5.8 1.7 6.2

r=1(8db) - 100% 79.8% 72.7% 90.3% 81.2%
r(8db) - 1 3.4 4 1.6 2.6

r=1(10db) - 74.3% 69.8% 97.3% 100% 77.5%
r(10db) - 2.8 3.2 1.1 1 3

r=1(12db) - 87.7% 37.4% 62.7% 80.3% 72.7%
r(12db) - 4.5 2.6 2.9 1.7 2.9

r=1(14db) - 94.2% 62.7% 100% 51.8% 52.7%
r(14db) - 1.2 4.8 1 2.9 3.4

r=1(16db) - - 100% 33.8% 80.3% 45.3%
r(16db) - - 1 6.3 2.1 3.7

r=1(18db) - - 89.6% 72.3% 56.9% 75.80%
r(18db) - - 1.4 2.3 2.9 2.2

r=1(20db) - - 67.5% 81.5% 78.3% 47.8%
r(20db) - - 4.6 2.3 2.9 5.7

Table 3.2: SOCP and SDP Simulation rank-one solution comparation

3.5 Conclusion
This chapter has presented an SOCP method for determining the optimal relay beamforming matrix for

the SNR balancing problem in the TWRC with the assumption that the perfect CSI is available to all the

nodes within the network. The objective function of the SNR balancing problem is to minimize the relay

power, based on the constraints that SNR of each terminal nodes are above a preset threshold value. And

considering the SNR balancing issue, we set the SNR threshold value of the two transceivers nodes to

be the same.

Besides proved that the optimal beamforming matrix of the relay is a 2 by 2 matrix. We also proved

that the optimization problem has a set of optimal beamforming solutions and at least one of them is our

SOCP solution. The main advantage of SOCP over the existing SDP methods is that it yields a much

lower complexity for obtaining the optimal solution.
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Figure 3.4: Relay Beamforming Optimization at P1 = P2 = 10db.



Chapter 4

Secrecy Rate Maximisation for TWRC with

Perfect CSI

Physical-layer security was first introduced by Wyner et al. [87] in 1975 and his results have recently

attracted much attention in redefining wireless systems optimization, such as, network secrecy sum-

rate maximisation for TWRCs by Mukherjee et al. [57], secrecy rate maximisation for OWRCs by Gan

et al. [95] and joint relay and jammer selection for secure TWRC networks of Chen et al. [17]. In

this chapter, we revisit the beamforming optimization problem for TWRCs with a multi-antenna AF

relay, with the presence of a single antenna eavesdropper. We assume that perfect CSI is available in

this network model. We are looking for the optimal solution for minimising the relay power and with

the secrecy constraints of the two source nodes. This formulation permits us to keep the messages

confidential to the eavesdropper in the information-theoretic sense.

Secrecy related TWRC beamforming optimization is increasingly popular in recent years. A closed-

form distributed solution for the TWRC network with multiple single-antenna relays was studied in

Wang et al. [84]. In this case, the structure of the optimal beamforming matrix can be mathematically

formed. Recently, Mo et al. [41] discussed the secrecy rate constrained optimization for TWRCs with

an untrusted MIMO relay, which is also acted as an eavesdropper. They decomposed this non-convex

optimization problem into several sub-problems which can be solved using an iterative algorithm.

Our contribution in this chapter is that the optimal two-way beamforming (TWBF) for minimising

the required transmit power of the relay that achieves the target secrecy rates of the two source terminals

is determined by solving an SDP in combination with a two-dimensional search. In addition, the optimal

two-way zero-forcing (TWZF) solution that places a signal null at the eavesdropper can be obtained from

a convex SDP. Results also demonstrate that the optimal TWZF is near-optimal.

4.1 The Wiretap TWRC Model
We consider the TWRC wiretap system as shown in Fig. 4.1 in which we have two transceivers: source

nodes S1 and S2, each with one antenna, an M -antenna AF-operated relay R, and a single-antenna

eavesdropper E. In this network, S1 and S2 exchange messages with the aid of R and their messages

are required to be kept confidential from E. Communications between S1 and S2 takes place in two
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Figure 4.1: The TWRC wiretap model.

consecutive time slots k and k + 1. This chapters considers just the first two time slots, i.e., k = 1.

During the first time slot, both S1 and S2 simultaneously transmit their messages to R. The signals

received at R and E can be, respectively, expressed as

x =
√
P1hs1 +

√
P2gs2 + v (at R), (4.1)

xe =
√
P1hes1 +

√
P2ges2 + ηe (at E), (4.2)

in which P1 and P2 are the respective transmit power of S1 and S2, s1 and s2 are the symbols from S1

and S2, respectively, and v ∈ CM is the additive Gaussian noise vector at R while ηe is the zero-mean

Gaussian noise at E such that E[vv†] = σ2I and E[|ηe|2] = σ2. The vectors h ∈ CM and g ∈ CM , are

the forward channels from S1 and S2 to R, respectively, while the overhearing channels from S1 and S2

to E are, respectively, he and ge.

At the second time slot, R transmits a beamformed version of x by a complex weight matrix W ∈
CM×M , Wx, back to S1 and S2, which is overheard by E . As such, we have

y1 = hTWx + η1 (at S1) (4.3)

y2 = gTWx + η2 (at S2) (4.4)

ye = eTWx + η′e (at E) (4.5)

in which η1, η2 and η′e denote the respective noises at S1, S2 and R and they are assumed to be i.i.d. with

zero mean and variance of σ2. Also, e ∈ CM denotes the wiretap channel from R to E. In our model,

we have assumed that the backward channels from R to S1 and S2 are the same as the respective forward

channels and they remain static over the period during which our optimization problem is considered.

In TWRCs, s2 is intended for S1 with the prior knowledge of its own transmitted message s1.

Therefore, assuming perfect CSI available, S1 can, after removing the term of s1, obtain

ỹ1 =
√
P2h

TWgs2 + hTWv + η1. (4.6)
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Similarly, for S2 intending to get s1, we have

ỹ2 =
√
P1g

TWhs1 + gTWv + η2. (4.7)

At the eavesdropper E, it receives

ẽ = eTWX = eTW(
√
P1hs1 +

√
P2gs2 + v + η′e

√
P1e

TWhs1 +
√
P2e

TWgs2 + eTWv + η′e.

After removal of self interference, it can be seen that the end-to-end channel is reduced to two parallel

Gaussian channels. Note that if the self interference is not eliminated, the channel is a broadcast channel

(BC). In this case, the achievable coding scheme for the BC (see, e.g., [21] for superposition coding,

or [89] for dirty-paper coding) has been well understood.

In the presence of an eavesdropper, a proper performance metric is secrecy information rate which

measures the achievable rate for error-free communication that is not decodable by the eavesdropper as

Wyer et al. [87]. The secrecy capacity region for TWRCs is unfortunately unknown. However, as in

Mukherjee et al. [57, 95], we use the achievable secrecy rate in the form

RS = RD −RE (4.8)

as the measure of the maximum achievable rate with physical-layer security protection, the difference of

the capacity of the main channel and that of the wiretap channel. In particular, RE in (4.8) can be viewed

as the capacity of a virtual MIMO multiple-access channel (MAC) which is formed by the wiretapper

signal over the two time slots. The same argument has been used in Mukherjee et al. [57] et al. to justify

the metric (4.8). The secrecy rates at S1 and S2 are then given, respectively, as

Rs1 =
1

2
log2

[
1 +

P2|hTWg|2
σ2 (‖hTW‖2 + 1)

]

−1

2
log2

[
1 +

P2|eTWg|2 + P2|ge|2
P1|eTWh|2 + P1|he|2 + σ2(‖eTW‖2 + 2)

]
,

(4.9)

Rs2 =
1

2
log2

[
1 +

P1|gTWh|2
σ2 (‖gTW‖2 + 1)

]

−1

2
log2

[
1 +

P1|eTWh|2 + P1|he|2
P2|eTWg|2 + P2|ge|2 + σ2(‖eTW‖2 + 2)

]
.

(4.10)

4.2 Relay Power Minimisation

Our objective is to minimise the required transmitted power of the relay R subject to individual secrecy

rate constraints ε1 and ε2, respectively, at S1 and S2 by optimising W. That is,

min
W

PR ≡ P1‖Wh‖2 + P2‖Wg‖2 + trace(WW†)σ2

s.t.




Rs1 ≥ ε1,

Rs2 ≥ ε2.

(4.11)
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4.2.1 SDP Reformulation

Here, we present an SDP reformulation of (4.11). The rank of optimal matrix is rank(W) = 3, the

detailed proof is provided in the appendix. Now, we define:

w , vec(W) ∈ CM2×1, (4.12)

f1 , vec(hgT ), (4.13)

f2 , vec(ghT ), (4.14)

f3 , vec(ehT ), (4.15)

f4 , vec(egT ), (4.16)

U1 , P1hh† + P2gg† + σ2I, (4.17)

U2 , [diag(UT
1 ,U

T
1 )]

1
2 , (4.18)

where the notation vec(·) represents a column vector formed by stacking up all the columns of the input

matrix in order. Further, we define the effective main and wiretap channels

H , f(h) ≡ 1M×1 ⊗ h, (4.19)

G , f(g) ≡ 1M×1 ⊗ g, (4.20)

E , f(e) ≡ 1M×1 ⊗ e, (4.21)

As such, (4.11) can be rewritten as (4.22),

min
W

P1‖Wh1‖2 + P2‖Wg1‖2 + trace(WB†)σ2

s.t.





log2

[
1 +

P2|hTWg1|2
σ2 (‖hTW‖2 + 1)

]
≥ 2ε1 + log2

[
1 +

P2|eTWg|2 + P2|ge|2
P1|eTWh1|2 + P1|he|2 + σ2(‖eT1 W‖2 + 2)

]
,

log2

[
1 +

P1|gTWh1|2
σ2 (‖gTW‖2 + 1)

]
≥ 2ε2 + log2

[
1 +

P1|eTWh1|2 + P1|he|2
P2|eTWg1|2 + P2|ge|2 + σ2(‖eT1 W‖2 + 2)

]
.

(4.22)

Also, by introducing two auxiliary variables

t1 =
P2|eTWg|2 + P2|ge|2

P1|eTWh|2 + P1|he|2 + σ2(‖eTW‖2 + 2)
, (4.23)

t2 =
P1|eTWh|2 + P1|he|2

P2|eTWg|2 + P2|ge|2 + σ2(‖eTW‖2 + 2)
, (4.24)

and defining

ε̃1 , 22ε1+log2(1+t1) − 1, (4.25)

ε̃2 , 22ε2+log2(1+t2) − 1, (4.26)
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we can rewrite (4.22) as

min
w,t1,t2

‖U2w‖2

s.t.





P2|fT1 w|2 ≥ ε̃1σ
2
(
‖Hw‖2 + 1

)
,

P1|fT2 w|2 ≥ ε̃2σ
2
(
‖Gw‖2 + 1

)
,

P2|fT4 w|2 = t1P1|fT3 w|2 + σ2t1
(
‖Ew‖2 + 2

)
+ t1P1|he|2 − P2|ge|2,

P1|fT3 w|2 = t2P2|fT4 w|2 + σ2t2
(
‖Ew‖2 + 2

)
+ t2P2|ge|2 − P1|he|2.

(4.27)

We proceed to illustrate that (4.27) has an optimal SDP solution for a given (t1, t2). The two equality

constraints in (4.27) can be combined into one equality constraint as

P1

(
1 +

1

t2

)
|fT3 w|2−P2

(
1 +

1

t1

)
|fT4 w|2 = P2

(
1 +

1

t1

)
|ge|2−P1

(
1 +

1

t2

)
|he|2 ≡ c. (4.28)

Then we define

E0 , U†2U2, (4.29)

E1 ,
P2

ε̃1σ2
f∗1 fT1 −H†H, (4.30)

E2 ,
P1

ε̃2σ2
f∗2 fT2 −G†G, (4.31)

E3 , P1

(
1 +

1

t2

)
f∗3 fT3 − aP2

(
1 +

1

t1

)
f∗4 fT4 . (4.32)

Also, we define X , [Re{w}; Im{w}][Re{w}; Im{w}]T ,

F0 ,


 Re(U2) −Im(U2)

Im(U2) Re(U2)



T 
 Re(U2) −Im(U2)

Im(U2) Re(U2)


 , (4.33)

and similarly have F1, F2 and F3, respectively, from e, E2 and E3, and F0 from U2:

F1 ,


 Re(E1) −Im(E1)

Im(E1) Re(E1)



T 
 Re(E1) −Im(E1)

Im(E1) Re(E1)


 ,

F2 ,


 Re(E2) −Im(E2)

Im(E2) Re(E2)



T 
 Re(E2) −Im(E2)

Im(E2) Re(E2)


 ,

F3 ,


 Re(E3) −Im(E3)

Im(E3) Re(E3)



T 
 Re(E3) −Im(E3)

Im(E3) Re(E3)


 .
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After rank relaxation, (4.27) becomes

min
X

trace(F0X)

s.t.





trace(F1X) ≥ 1,

trace(F2X) ≥ 1,

trace(F3X) = 0.

(4.34)

The above is an SDP which can be solved optimally (introduced in dedetails by Boyd et al. [14]). As in

Zhang et al. [93], even if the rank of the optimal solution to (4.34) is greater than one, it will always be

possible to obtain a rank-one solution from the higher-rank SDP solution which has the same objective

value. Details are given in the appendix.

4.2.2 Optimal TWBF

The optimal TWBF can be obtained by repeatedly solving the SDP in (4.34) in combination with an

exhaustive search over (t1, t2) according to their definitions. It is easily seen that (4.35) applies,





0 ≤ t1 ≤ t̄1,

0 ≤ t2 ≤ t̄2,
(4.35)

where t̄1 and t̄2 are the defined according to:

λmax(P2f
∗
4 fT4 + P2|ge|2I, P1f

∗
3 fT3 + σ2E†E + (σ2 + P1|he|2)I) ≡ t̄1,

λmax(P1f
∗
3 fT3 + P1|he|2I, P2f

∗
4 fT4 + σ2E†E + (σ2 + P2|ge|2)I) ≡ t̄2,

where λmax(Z1,Z2) denotes the maximum eigenvalue of the Raleigh quotient, i.e.,

max
c

cTZ1c

cTZ2c
s.t. ‖c‖ ≤ 1. (4.36)

4.2.3 Optimal TWZF

Due to the complexity of the exhaustive search involved in finding the optimal TWBF, we here propose

a low-complexity suboptimal solution based on placing a signal null at E for relay power minimisation.

Then the structure of W is that

W ‖ S ⊥ e

and we have We = 0. In this case, the secrecy rates of S1 and S2 are, respectively, given by

Rs1 =
1

2
log2

{
1 +

P2|hTWg|2
σ2 (‖hTW‖2 + 1)

}
, (4.37)

Rs2 =
1

2
log2

{
1 +

P1|gTWh|2
σ2 (‖gTW‖2 + 1)

}
. (4.38)
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which through the null-space aligned zero-forcing method, we have

P2|eTWg| = P1|eTWh| = 0, |fT3 w| = |fT4 w| = 0. (4.39)

This means that the beamforming matrix W is at the null-space of the eavesdropper’s channel e. Next,

taking the above discussion in to the optimization problem, we have

Fw = 0. (4.40)

In this case, (4.27) can be simplified to

min
w
‖U2w‖2 s.t.





P2|fT1 w|2 ≥ ε̃1σ
2
(
‖Hw‖2 + 1

)
,

P1|fT2 w|2 ≥ ε̃2σ
2
(
‖Gw‖2 + 1

)
,

Fw = 0.

(4.41)

Define F4 from F as for F0 from U2 in (4.33). Then the SDP (4.27) after rank relaxation and the TWZF

constraint become
min
X

trace (F0X)

s.t.





trace(F1X) ≥ 1,

trace(F2X) ≥ 1,

trace(F4X) = 0.

(4.42)

In Appendix I, we prove that the optimal TWZF solution can be exactly found from solving the above

SDP and the detailed matrix structure of zero-forcing is discussed in Appendix (A.4).

4.3 Algorithm and Simulation Results

4.3.1 Algorithm

For the TWBF scenario, we use a two-dimensional search algorithm over all possible pairs (t1, t2) to

achieve the minimum PT . Define

t1,u = λmax(P2f
∗
4 fT4 + P2|ge|2I, P1f

∗
3 fT3 + σ2E†E + (σ2 + P1|he|2)I), (4.43)

t2,u = λmax(P1f
∗
3 fT3 + P1|he|2I, P2f

∗
4 fT4 + σ2E†E + (σ2 + P2|ge|2)I). (4.44)

Also, define the resolution ∆t =
t1,u
N for some large N as the iteration index. For X corresponding to

a given t1,u, we can compute a corresponding t2, denoted as t2,l. Taking t1 = t1,u, t2 = t2,l into (A-

33), we get an optimal objective value and can serve it as our achievable relay power PT,opt. Initialise

t1,o = t1,u, t2,o = t2,l, and i = N as the iteration index and ∆t =
t1,u
N . We then use a brute force

strategy to check each point iteratively staring from t1,u down to 0. In each iteration, (A-33) is an SDP,

and we can use the bisection search over t2 to check (A-33) and at the end the bisection search will

provide a smaller objective value than the one saved before. Thus, the value at the end of the algorithm
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is a global minimum of the relay power based on the secrecy rate constraints.

Algorithm 1 Proposed 2D Bisection Algorithm
1: Initialize t1,min = t2,min = 0,t1,max = t1,u, t2,max = t2,u;
2: while t1,max − t1,min ≥ ε do
3: while t2,max − t2,min ≥ ε do
4: t2 =

t2,min+t2,max

2 .
5: Solve problem (A-33) with the above t1 and t2 and get optimal objective value PT
6: Solve problem (A-33) with the above t1 and t2 = t2 +∆t for ∆t > 0 and get optimal objective

value P
′

T

7: if PT > P
′

T then
8: t2,min = t2
9: else

10: t2,max = t2
11: end if
12: end while
13: Set t1 = t1 + ∆t with ∆t > 0
14: while t2,max − t2,min ≥ ε do
15: t2 =

t2,min+t2,max

2 .
16: Solve problem (A-33) with the above t1 and t2 and get optimal objective value PT1

17: Solve problem (A-33) with the above t1 and t2 = t2 +∆t for ∆t > 0 and get optimal objective
value PT1

18: if PT1 > P
′

T1 then
19: t2,min = t2
20: else
21: t2,max = t2
22: end if
23: end while
24: if PT1 > P

′

T1 then
25: t1,min = t1
26: else
27: t1,max = t1
28: end if
29: end while

4.3.2 Analysis and Simulation

Simulations are conducted to evaluate the performance of the proposed systems. In the simulations, it

is assumed that P1

σ2 = P2

σ2 = 10 and that the channels are all complex Gaussian with zero means and

unit-variances. Results in Fig. 4.2 are provided for the average transmit relay SNR against the secrecy

rate requirements, ε1 = ε2 = ε > 0, for various number of antennas at the relay, M . Results indicate

that the performance of TWZF is very close to that of the optimal TWBF and the required SNR increases

with the target secrecy rate. On the other hand, results in Fig. 4.3 show the probability of the problem

being feasible or not. As expected, we see that the probability that the given target secrecy rates are

feasible decreases if the targets increase.

4.4 Conclusion
In this chapter, beamforming for AF relaying has been studied under secrecy constraints in TWRC. The

relay of this TWRC is a MIMO really which performs beamforming function through beamforming

matrix W. We consider that the single secrecy rate for each transceiver nodes S1 and S2, with the
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Figure 4.2: Transmit relay SNR versus the secrecy rate requirements.
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Figure 4.3: Outage probability of secrecy rate.

existence of an extra eavesdropper E. A optimisation problem is formed with the objective to minimize

the relay power and two constraints that single secrecy rates of S1 and S2 are satisfied with a pre-set

threshold positive value. Besides, we also considered that the power allocated to S1 and S2 and the

same. We assumed that all the nodes within the network have the perfect CSI of the others as well.

For the original non-convex optimization problem, we have presented an SDP formulation based

2D searching algorithm, under which optimal beamforming designs that maximise secrecy rates were

provided under the relay power constraints, if perfect CSI is exploited. A low-complex TWZF solution

based on generalised Raleigh quotient was also obtained achieving near-optimal performance.



Chapter 5

Robust Secure TWRC Beamforming

In this chapter, we revisit the same optimization problem of relay beamforming for TWRC in Chapter 5

except that we have this time ICSI where the errors are assumed bounded by ellipsoids. Our contribution

is the maxmisation of the sum secrecy rate under the total power constraints by solving an SDP after

transferring the optimization constraints into LMIs, under a rank relaxation condition.

5.1 Network Model

Consider the same network model as in Chapter 5, S1 and S2 exchange messages with the aid of R and

their messages are required to be kept confidential from E. Communications between S1 and S2 takes

place in every two consecutive time slots. As before, after two time slots of transmission, we have

y1 = hTWx + η1 (at S1), (5.1)

y2 = gTWx + η2 (at S2), (5.2)

ye = eTWx + ηe (at E), (5.3)

where η1, η2 and ηe denote the respective noise at S1, S2 and R and they are assumed to be i.i.d. with

zero mean and variance of σ2. Also, e ∈ CM denotes the wiretap channel from R to E. In our model,

same as before, we have assumed that the backward channels from R to S1 and S2 are the same as the

respective forward channels and they remain static over the period of optimization of interest.

However, the CSI is considered to be imperfect and modelled as

h = ĥ + h̃, (5.4)

g = ĝ + g̃, (5.5)

e = ê + ẽ, (5.6)

where h and g are the true CSI, ĥ, ĝ and ê are the imperfect CSI available at the relay nodes, and h̃,

g̃ and ẽ, represent the additive errors in the CSI. Further, we assume that ‖h̃‖ ≤ εh, ‖g̃‖ ≤ εg and
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‖ẽ‖ ≤ εe. In other words, h, g and e belong to the uncertainty sets Rh, Rg and Re, respectively,

Rh =
{
ζ|ζ = ĥ + h̃, ‖h̃‖ ≤ εh

}
, (5.7)

Rg = {ζ|ζ = ĝ + g̃, ‖g̃‖ ≤ εg} , (5.8)

Re = {ζ|ζ = ê + ẽ, ‖ẽ‖ ≤ εe} . (5.9)

Taking this imperfect CSI model into (5.1)–(4.5), we have

y1 =
√
P1(ĥTWĥ + h̃TWĥ + ĥTWh̃ + h̃TWh̃)s1

+
√
P2(ĥTWĝ + h̃TWĝ + ĥTWg̃ + h̃TWg̃)s2 + (ĥTW + h̃TW)v + η1, (5.10)

y2 =
√
P1(ĝTWĥ + g̃TWĥ + ĝTWh̃ + g̃TWh̃)s1

+
√
P2(ĝTWĝ + g̃TWĝ + ĝTWg̃ + g̃TWg̃)s2 + (ĝTW + g̃TW)v + η2, (5.11)

ye =
√
P1e

TW(ĥ + h̃)s1 +
√
P2e

TW(ĝ + g̃)s1 + eTWv + ηe. (5.12)

5.2 Problem Formulation

In TWRCs, s2 is intended for S1 with the prior knowledge of its own transmitted message s1. The

influence of the second order CSI errors compared to the first-order is negligible. Therefore, with the

imperfect CSI model, we can obtain

ỹ1 =
√
P1(h̃TWĥ + ĥTWh̃)s1︸ ︷︷ ︸

remaining-self-interference

+
√
P2(ĥTWĝ + h̃TWĝ + ĥTWg̃ + h̃TWg̃)s2︸ ︷︷ ︸

designed-signal

+ (ĥW + h̃W)v + η1︸ ︷︷ ︸
noise

. (5.13)

Similarly, for S2 intending to get s1, we have

ỹ2 =
√
P2(g̃TWĝ + ĝTWg̃)s2︸ ︷︷ ︸

remaining-self-interference

+
√
P1(ĝTWĥ + g̃TWĥ + ĝTWh̃ + g̃TWh̃)s1︸ ︷︷ ︸

designed-signal

+ (ĝTW + g̃TW)v + η2︸ ︷︷ ︸
noise

. (5.14)

At the eavesdropper E, it receives

ye =
√
P1(ê + ẽ)TW(ĥ + h̃)s1 +

√
P2(ê + ẽ)TW(ĝ + g̃)s1︸ ︷︷ ︸

signal

+(ê + ẽ)TWv + ηe︸ ︷︷ ︸
noise

. (5.15)

Once the self interference is removed at both terminals, we can see that the end-to-end channel

now is essentially two parallel Gaussian channels. If the self interference were still present, the channel

is still the BC. This is because in the achievable coding scheme for the BC (see, for example [21] for
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superposition coding, or [89] for DPC), it is assumed that the broadcast signal is made of several parts,

and each part is meant for a terminal to decode. This enables us to view the broadcast signal from the

viewpoint, as being made up of the part destined for that terminal to decode plus interference.

As in [57, 95], we use the achievable secrecy rate in the form

RS = RD −RE (5.16)

as the measure of the maximum achievable rate with physical-layer security protection, which is the

difference of the capacity of the main channel and that of the wiretap channel. RE is formed by forming

the wiretapper signal over 2 time slots and it considers the effect of the wiretapper over 2 time slots as a

virtual MAC over the 2 time slots. RE is then found by the capacity of the MIMO-MAC. Details using

this argument can be found in the work by Mukherjee et al. in [57]. The perfect secrecy rates at S1 and

S2 are given, respectively, as

R1 =
1

2
log (1 + SNR1)− 1

2
log (1 + SNRe1) , (5.17)

R2 =
1

2
log (1 + SNR2)− 1

2
log (1 + SNRe2) . (5.18)

However, the secrecy capacity region for each end node in the TWRCs is still unknown. Obviously,

it is relevant to consider the case that the eavesdropper is trying to decode both the signals s1 and s2.

Therefore, the information sum-rate achieved at the eavesdropper over the 2 time slots can be expressed

as the maximum sum-rate of a two-user MIMO MAC.

Here, we consider the case that the eavesdropper performs joint decoding from


 xe

ye


 =


 he ge
√
P1e

TWh
√
P2e

TWg




 s1

s2


+


 ηe

eTW + η′e


 . (5.19)

In [79], the achievable secrecy rate region for using Gaussian inputs and stochastic encoders for the

wiretap TWRC is given as
∑

n

Rsn ≤
[∑

n

I(yn; sn)− I(ye; sn)

]
. (5.20)

Given that the eavesdropper performs joint decoding, the achievable sum secrecy rate can be found as

Rssum = [I(ỹ1; s2) + I(ỹ2; s1)− I(ỹe; s1, s2)]
+
, (5.21)

where [a]+ = max(0, a).
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The eavesdropper’s rate based on joint decoding is given by

Re =
1

2
log




1 +


 he ge
√
P1e

TWh
√
P2e

TWg



† 
 he ge
√
P1e

TWh
√
P2e

TWg





 ηe

eTW + η′e



† 
 ηe

eTW + η′e







(5.22)

and

Rs = R1 +R2 −Re =
1

2
log (1 + SNR1) +

1

2
log (1 + SNR2)− 1

2
log (1 + SNRe) , (5.23)

where

SNR1 =
P2|ĥTWĝ + h̃TWĝ + ĥTWg̃ + h̃TWg̃|2

P1|h̃TWĥ + ĥTWh̃|2 + σ2(‖ĥTW + h̃TW‖2 + 1)
, (5.24)

SNR2 =
P1|ĝTWĥ + g̃TWĥ + ĝTWh̃ + g̃TWh̃|2

P2|g̃TWĥ + ĝTWg̃|2 + σ2(‖ĝTW + g̃TW‖2 + 1)
, (5.25)

SNRe =
P1|(ê + ẽ)TW(ĥ + h̃)|2 + P2|(ê + ẽ)TW(ĝ + g̃)|2 + P1|he|2 + P2|ge|2

σ2(‖ê + ẽTW‖2 + 2)
. (5.26)

Our objective is to maximise the sum secrecy rate Rs subject to the total power constraint, i.e.,

max
W

Rs s.t. P1‖Wh‖2 + P2‖Wg‖2 + trace(WW†)σ2 ≤ PR. (5.27)

5.3 An SDP Solution

Our objective is to transfer the constraint of the above optimization problem into LMIs. To do so, we

find it useful to first define the following list of vectors:

h̄ = ĥ⊗ 1M×1 =




ĥ11M
...

ĥm1M


 , (5.28)

ȟ = 1M×1 ⊗ ĥ =




ĥ
...

ĥ


 ; (5.29)

∆h̄ = h̃⊗ 1M×1 =




h̃11M
...

h̃m1M


 , (5.30)
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∆ȟ = 1M×1 ⊗ h̃ =




h̃
...

h̃


 , (5.31)

ḡ = ĝ ⊗ 1M×1 =




ĝ11M
...

ĝm1M


 , (5.32)

ǧ = 1M×1 ⊗ ĝ =




ĝ
...

ĝ


 , (5.33)

∆ḡ = g̃ ⊗ 1M×1 =




g̃11M

. . .

g̃m1M


 , (5.34)

∆ǧ = 1M×1 ⊗ g̃ =




g̃
...

g̃


 , (5.35)

ē = ê⊗ 1M×1 =




ê11M
...

êm1M


 , (5.36)

ě = 1M×1 ⊗ ê =




ê
...

ê


 , (5.37)

∆ě = ẽ⊗ 1M×1 =




ẽ11M
...

ẽm1M


 , (5.38)

∆ě = 1M×1 ⊗ ẽ =




ẽ
...

ẽ


 . (5.39)

Instead of treating the CSI errors of h,h and e separately, we combine them by defining:

c = vec(h,g, e), (5.40)

∆c = vec(h̃, g̃, ẽ). (5.41)
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In addition, to reach the SDP form of the optimization problem, we also define the following parameters:

w = vec(W), (5.42)

W̄ = ww†, (5.43)

G1 =
[

IM OM OM

]
∈ RM×3M , (5.44)

G2 =
[

OM IM OM

]
∈ RM×3M , (5.45)

G3 =
[

OM OM IM

]
∈ RM×3M , (5.46)

DR = IM ⊗ 1M×1 =




1M×1 0M×1 . . . 0M×1

0M×1 1M×1 . . . 0M×1

...
...

. . .
...

0M×1 0M×1 0 1M×1



∈ RM2×M , (5.47)

Dl = 1M×1 ⊗ IM =




IM

IM
...

IM



∈ RM2×M , (5.48)

where OM is an all-zero M ×M matrix , and IM denotes an M ×M identity matrix. Using the above

definitions, we can see that

DRG1∆c =




1M×1 0M×1 . . . 0M×1

0M×1 1M×1 . . . 0M×1

...
...

. . .
...

0M×1 0M×1 0 1M×1




[
IM OM OM

]



h̃

g̃

ẽ




=




1M×1 0M×1 . . . 0M×1

0M×1 1M×1 . . . 0M×1

...
...

. . .
...

0M×1 0M×1 0 1M×1




h̃ =




h̃1

...

h̃1

...

h̃m
...

h̃m




= h̃⊗ 1M×1, (5.49)

and

DLG1∆c =




IM

IM
...

IM




[
IM OM OM

]



h̃

g̃

ẽ


 =




IM

IM
...

IM




h̃ =




h̃
...

h̃


 = 1M×1 ⊗ h̃. (5.50)
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Similar to (5.49) and (5.50) above, we can also rewrite the channel uncertainty parameters as

∆h̄ = h̃⊗ 1M×1 = DRG1∆c; (5.51)

∆ȟ = 1M×1 ⊗ h̃ = DLG1∆c; (5.52)

∆ḡ = g̃ ⊗ 1M×1 = DRG2∆c; (5.53)

∆ǧ = 1M×1 ⊗ g̃ = DLG2∆c; (5.54)

∆ē = ẽ⊗ 1M×1 = DRG3∆c; (5.55)

∆ě = 1M×1 ⊗ ẽ = DLG3∆c. (5.56)

Now, we consider the signal part of SNR1, which can be re-expressed as

hTWg =

m∑

i,j=1

higjwij =




g̃1

...

g̃1

...

g̃m
...

g̃m




⊗




h̃1

...

h̃m
...

h̃1

...

h̃m




vec(W) = [(g ⊗ 1M×1)� (1M×1)⊗ h)]T vec(W).

(5.57)

Also, we can rewire the numerator of SNR1 and denote it as a1:

a1 =P2|ĥTWĝ + h̃TWĝ + ĥTWg̃ + h̃TWg̃|2

=P2|(ḡ � ȟ + ∆ḡ � ȟ + ḡ �∆ȟ)Tw|2

=P2|(ḡ � ȟ + diag(ȟ)DRG2∆c + diag(ḡ)DLG1∆c)Tw|2

=P2

(
(ḡ � ȟ)TW̄(ḡ � ȟ)∗

+ ∆cTGT
2 DT

Rdiag(ȟ)W̄diag(ȟ∗)DRG2∆c + ∆cTGT
1 DT

Ldiag(ḡ)W̄diag(ḡ∗)DLG1∆c

+ ∆cTGT
2 DT

Rdiag(ȟ)W̄diag(ḡ∗)DLG1∆c + ∆cTGT
1 DT

Ldiag(ḡ)W̄diag(ȟ∗)DRG2∆c

+ 2(ḡ � ȟ)TW̄diag(ȟ∗)DRG2∆c∗ + 2(ḡ � ȟ)TW̄diag(ḡ∗)DLG1∆c∗

)
.

(5.58)

Then we further define

Q1 = P2G
T
2 DT

Rdiag(ȟ)W̄diag(ḡ∗)DLG1 + P2G
T
1 DT

Ldiag(ḡ)W̄diag(ȟ∗)DRG2

+ P2G
T
2 DT

Rdiag(ȟ)W̄diag(ȟ∗)DRG2 + P2G
T
1 DT

Ldiag(ḡ)W̄diag(ḡ∗)DLG1; (5.59)

q†1 = P2(ḡ � ȟ)TW̄diag(ȟ∗)DRG2 + P2(ḡ � ȟ)TW̄diag(ḡ∗)DLG1; (5.60)

k1 = P2(ḡ � ȟ)TW̄(ḡ � ȟ)∗. (5.61)
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As a consequence, we have

a1 = ∆cTQ1∆c∗ + 2Re(q†1∆c∗) + k1. (5.62)

For the denominator of SNR1, denoted as b1, we have

b1 = P1|h̃TWĥ + ĥTWh̃|2 + σ2(‖ĥTW + h̃TW‖2 + 1)

= P1|(h̄�DLG1∆c)Tw + (DRG1∆c� ȟ)Tw|2

+ σ2
(
‖ĥTW‖2 + ‖h̃TW‖2 + 2Re(ĥTWW†h̃∗) + 1

)
. (5.63)

Similary, we define

Q2 =P1G
T
1 DT

Rdiag(ȟ)W̄diag(h̄∗)DLG1 + P1G
T
1 DT

Ldiag(h̄)W̄diag(ȟ∗)DLG1

+ P1G
T
1 DT

Rdiag(ȟ)W̄diag(ȟ∗)DRG1 + P1G
T
1 DT

Ldiag(h̄)W̄diag(h̄∗)DLG1

+ σ2GT
1 DT

LE� W̄DLG1; (5.64)

q†2 =σ2∆ȟTE� W̄DLG1; (5.65)

k2 =σ2
(
ȟTE� W̄ȟ∗ + 1

)
, (5.66)

where E = IM ⊗ (1M×11
T
M×1). Consequently, we get

b1 = ∆cTQ2∆c∗ + 2Re(q†2∆c∗) + k2. (5.67)

Furthermore, we can also define:

Q3 =P1G
T
1 DT

Rdiag(ǧ)W̄diag(h̄∗)DLG2 + P1G
T
2 DT

Ldiag(h̄)W̄diag(ǧ∗)DRG1

+ P1G
T
1 DT

Rdiag(ǧ)W̄diag(ǧ∗)DRG1 + P1G
T
2 DT

Ldiag(h̄)W̄diag(h̄∗)DLG2; (5.68)

q†3 =P1(h̄� ǧ)TW̄diag(ǧ∗)DRG2 + P1(h̄� ǧ)TW̄diag(h̄∗)DLG1; (5.69)

k3 =P1(h̄� ǧ)TW̄(h̄� ǧ)∗. (5.70)
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The numerator of SNR2, denoted as a2, can also be written as

a2 =P1|ĝTWĥ + g̃TWĥ + ĝTWh̃ + g̃TWh̃|2

=P1|(h̄� ǧ + ∆h̄� ǧ + h̄�∆ǧ)Tw|2

=P1|(h̄� ǧ + diag(ǧ)DRG1∆c + diag(h̄)DLG2∆c)Tw|2

=P1

(
(h̄� ǧ)TW̄(h̄� ǧ)∗

+ ∆cTGT
1 DT

Rdiag(ǧ)W̄diag(ǧ∗)DRG1∆c + ∆cTGT
2 DT

Ldiag(h̄)W̄diag(h̄∗)DLG2∆c

+ ∆cTGT
1 DT

Rdiag(ǧ)W̄diag(h̄∗)DLG2∆c

+ ∆cTGT
2 DT

Ldiag(h̄)W̄diag(ǧ∗)DRG1∆c + 2(h̄� ǧ)TW̄diag(ǧ∗)DRG1∆c∗

+ 2(h̄� ǧ)TW̄diag(h̄∗)DLG2∆c∗

)

=∆cTQ3∆c∗ + 2Re(q†3∆c∗) + k3.

(5.71)

The denominator part of SNR2, b2, is then expressed as

b2 = P2|g̃TWĝ + ĝTWg̃|2 + σ2(‖ĝTW + g̃TW‖2 + 1)

= P2|(ḡ �DLG2∆c)Tw + (DRG2∆c� ǧ)Tw|2

+ σ2
(
‖ĝTW‖2 + ‖g̃TW‖2 + 2Re(ĝTWWdagg̃∗) + 1

)

= ∆cTQ4∆c∗ + 2Re(q†4∆c∗) + k4, (5.72)

where

Q4 =P2G
T
1 DT

Rdiag(ǧ)W̄diag(ḡ∗)DRG1 + P2G
T
1 DT

Ldiag(h̄)W̄diag(ǧ∗)DLG1

+ P2G
T
1 DT

Ldiag(ǧ)W̄diag(ǧ∗)DRG1 + P2G
T
1 DT

Rdiag(h̄)W̄diag(h̄∗)DLG1

+ σ2GT
1 DT

LE� W̄DLG1; (5.73)

q†4 =σ2ǧTE� W̄DLG1; (5.74)

k4 =σ2(ǧTE� W̄g̀∗ + 1). (5.75)



5.3. An SDP Solution 60

Then, the numerator of SNRe, denoted as ae, can be found as

ae =P1|(ê + ẽ)TW(ĥ + h̃)|2 + P2|(ê + ẽ)TW(ĝ + g̃)|2 + P1|he|2 + P2|ge|2

=P1|êTWĥ + ẽTWĥ + êTWh̃ + ẽTWh̃|2

+ P2|êTWĝ + ẽTWĝ + êTWg̃ + ẽTWg̃|2 + P1|he|2 + P2|ge|2

=P2|(ḡ � ě + ∆ḡ � ě + ḡ �∆ě)Tw|2 + P1|(h̄� ě + ∆h̄� ě + h̄�∆ě)Tw|2 + P1|he|2 + P2|ge|2

=P2

(
(ḡ � ě)TW̄(ḡ � ě)∗

+ ∆cTGT
3 DT

Rdiag(ě)W̄diag(ě∗)DRG3∆c + ∆cTGT
1 DT

Ldiag(ḡ)W̄diag(ḡ∗)DLG1∆c

+ ∆cTGT
2 DT

Rdiag(ȟ)W̄diag(ḡ∗)DLG1∆c + ∆cTGT
1 DT

Ldiag(ḡ)W̄diag(ě∗)DRG2∆c

+ 2(ḡ � ě)TW̄diag(ě∗)DRG2∆c∗ + 2(ḡ � ě)TW̄diag(ḡ∗)DLG1∆c∗

)

+ P1

(
(h̄� ě)TW̄(h̄� ě)∗

+ ∆cTGT
2 DT

Rdiag(ē)W̄diag(ē∗)DRG2∆c + ∆cTGT
2 DT

Ldiag(h̄)W̄diag(h̄∗)DLG2∆c

+ ∆cTGT
1 DT

Rdiag(ě)W̄diag(h̄∗)DLG2∆c

+ ∆cTGT
2 DT

Ldiag(h̄)W̄diag(ȟ∗)DRG2∆c + 2(h̄� ě)TW̄diag(ě∗)DRG1∆c∗

)

=∆cTQ5∆c∗ + 2Re(q†5∆c∗) + k5,

where

Q5 =P1G
T
1 DT

Rdiag(ě)W̄diag(h̄∗)DLG3 + P1G
T
3 DT

Ldiag(h̄)W̄diag(ě∗)DRG1

+ P1G
T
1 DT

Rdiag(ǧ)W̄diag(ě∗)DRG1 + P1G
T
3 DT

Ldiag(h̄)W̄diag(h̄∗)DLG3

+ P2G
T
2 DT

Rdiag(ě)W̄diag(ḡ∗)DLG3 + P2G
T
3 DT

Ldiag(ḡ)W̄diag(ě∗)DRG2

+ P2G
T
2 DT

Rdiag(ě)W̄diag(ě∗)DRG2 + P2G
T
3 DT

Ldiag(ḡ)W̄diag(ḡ∗)DLG3; (5.76)

q†5 =P1(h̄� ě)TW̄diag(ě∗)DRG2 + P1(h̄� ě)TW̄diag(h̄∗)DLG1

+ P2(ḡ � ě)TW̄diag(ě∗)DRG2 + P2(ḡ � ě)TW̄diag(ḡ∗)DLG1; (5.77)

k5 =P1(h̄� ě)TW̄(h̄� ě)∗ + P2(ḡ � ě)TW̄(ḡ � ě)∗ + P1|he|2 + P2|ge|2. (5.78)

In addition, the denominator part of SNRe, denoted as be, can be obtained as

be = σ2(‖ê + ẽ)TW‖2 + 2)

= σ2
(
‖êTW‖2 + |ẽTW‖2 + 2Re(êTWW†ẽ∗) + 2

)

= ∆cTQ6∆c∗ + 2Re(q†6∆c∗) + k6, (5.79)
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where

Q6 =GT
3 DT

Rdiag(ě)W̄diag(ē∗)DRG3 + GT
3 DT

Ldiag(ē)W̄diag(ě∗)DLG3

+ GT
3 DT

Ldiag(ȟ)W̄diag(ě∗)DRG3 + GT
3 DT

Rdiag(ē)W̄diag(ē∗)DLG3

+ σ2GT
3 DT

LE� W̄DLG3; (5.80)

q†6 =σ2ěTE� W̄DLG3; (5.81)

k6 =σ2(ěTE� W̄ě∗ + 1). (5.82)

For the relay power’s constraint. First generate matrix K as the commutation matrix such that

vec(W̄T ) = Kvec(W̄), we can define

QR = P1G
T
1 DT

LE� (KW̄KT )DLG1 + P2G
T
2 DT

LE� (KW̄KT )DLG2; (5.83)

q†R = P1ȟE� (KW̄KT )DLG1 + P2ǧE� (KW̄KT )DLG2; (5.84)

kR = P1ȟE� (KW̄KT )h̄∗ + P2ǧE� (KW̄KT )ǧ∗ + trace(W̄), (5.85)

which allows us to write

PR = ∆cTQR∆c∗ + 2Re(q†R∆c∗) + kR. (5.86)

Now, we go back to our optimization problem in (5.27), and define Γ̃1 = 22Γ1 − 1, Γ̃2 = 22Γ2 − 1 and

Γ̃3 = 22Γ3 − 1. Therefore, the secrecy rate based optimization problem can be rewritten as

max
W

Γ1 + Γ2 − Γ3

s.t.





SNR1 ≥ Γ̃1,

SNR2 ≥ Γ̃2,

SNRe ≤ Γ̃3,

PT ≥ P1‖Wh‖2 + P2‖Wg‖2 + trace(WW†)σ2.

(5.87)

Considering the ICSI, the first constraint in (5.87) for SNR1 is equivalent to





∆cT (Q1 − Γ̃1Q2)∆c + 2Re
(

(q1 − Γ̃1q2)†∆c∗
)

+ k1 − Γ̃1k2 ≥ 0,

∆cTG†1G1∆c∗ ≤ ε2
h,

∆cTG†2G2∆c∗ ≤ ε2
g.

(5.88)

Furthermore, the second constraint in (5.87) can be expressed in a similar way as





∆cT (Q3 − Γ̃1Q4)∆c + 2Re
(

(q3 − Γ̃1q4)†∆c∗
)

+ k3 − Γ̃1k4 ≥ 0,

∆cTG†1G1∆c∗ ≤ ε2
h,

∆cTG†2G2∆c∗ ≤ ε2
g.

(5.89)
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For the third constraint in (5.87), we also have





∆cT (Q5 − Γ̃1Q6)∆c + 2Re
(

(q5 − Γ̃1q6)†∆c∗
)

+ k5 − Γ̃1k5 ≥ 0,

∆cTG†1G1∆c∗ ≤ ε2
h,

∆cTG†2G2∆c∗ ≤ ε2
g,

∆cTG†3G3∆c∗ ≤ ε2
e.

(5.90)

Finally, we can write the replay power constraint as





−∆cTQR∆c∗ − 2Re(q†R∆c∗)− kR + PT ≥ 0,

∆cTG†1G1∆c∗ ≤ ε2
h,

∆cTG†2G2∆c∗ ≤ ε2
g.

(5.91)

Here, we use S-lemma to continue our transformation of the optimization problem. Using Lemma

1 and Lemma 2, as presented in Chapter 3, we can get the following LMIs:

E1 =


 Q1 − Γ̃1Q2 + λ1G

†
1G1 + λ2G

†
2G2 q1 − Γ̃1q2

q†1 − Γ̃1q
†
2 k1 − Γ̃1k2 − λ1ε

2
h − λ2ε

2
g


 � 0,

(5.92)

E2 =


 Q3 − Γ̃2Q4 + λ3G

†
1G1 + λ4G

†
2G2 q3 − Γ̃2q4

q†3 − Γ̃2q
†
4 k3 − Γ̃2k4 − λ3ε

2
h − λ4ε

2
g


 � 0,

(5.93)

E3 =


 Q5 − Γ̃3Q6 + λ5G

†
1G1 + λ6G

†
2G2 + λ7G

†
3G3 q5 − Γ̃3q6

q†5 − Γ̃3q
†
6 k5 − Γ̃3k4 − λ5ε

2
h − λ6ε

2
g − λ7ε

2
e


 � 0,

(5.94)

E4 =


 −QR + λ8G

†
1G1 + λ9G

†
2G2 −qR

−q†R PR − kR − λ8ε
2
h − λ9ε

2
g


 � 0.

(5.95)

As a result, we can rewrite our optimization problem as

max
W̄,λi,i=1,...,9

Γ1 + Γ2 − Γ3

s.t.





E1 � 0,

E2 � 0,

E3 � 0,

E4 � 0,

rank(W̄) = 1.

(5.96)
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Due to the constraint rank(W̄) = 1, the problem is still not convex. However, if we relax the rank-1

constraint, we obtain the following SDP optimization problem:

max
W̄,λi,i=1,...,9

Γ1 + Γ2 − Γ3

s.t.





E1 � 0,

E2 � 0,

E3 � 0,

E4 � 0.

(5.97)

The objective is to find the maximum value of a linear function. As SEDUMI [76] only takes the

minimisation of an objective function, we rewrite the problem as

min
W̄,λi,i=1...9

Γ3 − Γ1 − Γ2

s.t.





E1 � 0,

E2 � 0,

E3 � 0,

E4 � 0,

(5.98)

which can be computed as an SDP problem by standard convex optimization tools.

5.3.1 Rank-One Approximation

As (5.98) is an SDP problem, we can use SEDUMI to obtain the optimal solution. However, the optimal

solution W̄∗ may not be a rank-one matrix. Recalling from (5.58)–(5.63), we can define

F1 =P2(ḡ � ȟ + diag(ȟ)DRG2∆c + diag(ḡ)DLG1∆c)(ḡ � ȟ + diag(ȟ)DRG2∆c + diag(ḡ)DLG1∆c)T

−Γ1

(
(h̄�DLG1∆c + DRG1∆c� ȟ)(h̄�DLG1∆c + DRG1∆c� ȟ)T

+σ2(1M×1 ⊗ ĥ + DLG1∆c)(1M×1 ⊗ ĥ + DLG1∆c)T

)
.

Similarly, from (5.71)–(5.72), we can F2 as

F2 =P1(h̄� ǧ + diag(ǧ)DRG1∆c + diag(h̄)DLG2∆c)(h̄� ǧ + diag(ǧ)DRG1∆c + diag(h̄)DLG2∆c)T

−Γ2

(
(ḡ �DLG2∆c + DRG2∆c� ǧ)(ḡ �DLG2∆c + DRG2∆c� ǧ)T

+σ2(1M×1 ⊗ ĝ + DLG2∆c)(1M×1 ⊗ ĝ + DLG2∆c)T

)
.
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Also, from (5.76)–(5.79), we define

Fe = P2(ḡ � ě + ∆ḡ � ě + ḡ �∆ě)(ḡ � ě + ∆ḡ � ě + ḡ �∆ě)T

+ P1(h̄� ě + ∆h̄� ě + h̄�∆ě)(h̄� ě + ∆h̄� ě + h̄�∆ě)T

− Γ3

(
σ2(1M×1 ⊗ ĝ + DLG2∆c)(1M×1 ⊗ ĝ + DLG2∆c)T

)
.

For the relay power, we can define the matrix

FR = P1(1M×1 ⊗ ĥ)(1M×1 ⊗ ĥ)T + P2(1M×1 ⊗ ĝ)(1M×1 ⊗ ĝ)T + σ21. (5.99)

With the above matrix definitions, we can rewrite the constraints of (5.97) into trace functions as





trace(F1W) ≥ 0,

trace(F2W) ≥ 0,

trace(FeW) = 0,

trace(FRW) ≤ PR.

(5.100)

For the case that the optimal solution of (5.98) is not a rank-1 matrix, we provide algorithms to generate

a rank-one matrix that satisfy (5.100). The rank-one decomposition method of optimal W to get a

rank-one solution is presented in Appendix II.

5.4 Simulation Results and Analysis
We assumed that the same power has been allocated to nodes S1 and S2. For P1 = P2 = [5, 20] dB,

we simulate 1000 independent channel realisations for each (m,PR) pair for the SDP solution in (5.98)

with the number of antennas beingM = {2, 4, 6}. With the CSI errors ε2
h = ε2

g = ε2
e ∈ {0.1, 0.2, 0.25},

we set the relay’s power constraint from 0 dB to 35 dB. For the case when M = 2, P1 = P2 = 10 dB,

the sum-secrecy rate results versus the relay power constraint are provided in Fig. 5.1. Similar results

are provided in Figs. 5.2–5.5, for the settings, (M = 4, P1 = P2 = 5 dB), (M = 4, P1 = P2 = 5 dB),

(M = 4, P1 = P2 = 10 dB), (M = 4, P1 = P2 = 20 dB), (M = 6, P1 = P2 = 10 dB).

Results illustrate that generally if the relay power increases, the secrecy rate will increase but at some

point it will go flat because it is limited by the transmit power of the source nodes. Also, we can see a

clear performance separation between robust and non-robust approaches, which shows that the proposed

robust optimization is important.

As we see from Fig.5.1, for the scenario that the relay has 2 MIMO antennas and the transmission

power P1 = P2 = 10 dB, the optimal secrecy rate has a similar trend, with the error bound of CSI

increasing from 0 to 0.25. The simulation results show the robust beamforming scheme of the relay

always out-performs the non robust scheme. With the increase of the relay power from 5 dB to 15 dB,

the maximum secrecy rate increases almost linearly with the relay power. For the case that relay power

is above 15 dB, the maximum secrecy rate almost stays the same. The maximum power relay needed to
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Figure 5.1: Joint decoding secrecy rate of MIMO TWRC, M = 2, P1 = P2 = 10 dB.
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maximise the secrecy rate is proportional to the power of P1 and P2. The maximum secrecy rate scales

with the P1 and P2 as well.
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Figure 5.2: Joint decoding secrecy rate of MIMO TWRC, M = 4, P1 = P2 = 5 dB.

Fig.5.2 to Fig.5.4 show the maximal achievable secrecy rates of the scenarios that the relay has 4

MIMO antennas and the transmission power increases from P1 = P2 = 5 to P1 = P2 = 20 dB, and

with the error bound of CSI increasing from 0 to 0.25. The larger the gap we have of the CSI error, the

more reliable the robust beamforming optimization scheme is, compared to the non robust scheme. We

also can see that with the same relay power constraint, the maximal achievable secrecy rate increases

with the increase of the power of P1 and P2, which is because the SNRs of S1 and S2 increase lineally

with the increase of P1 and P2. Also, the minimal power of the relay for the maximum secrecy rate is

proportional to the power of P1 and P2.

Fig.5.5 shows the maximal achievable secrecy rate of the scenario that the relay has 6 MIMO

antennas and the transmission power P1 = P2 = 10 dB, the optimal secrecy rate has the similar trend,

secrecy decreases with the with the error bound of CSI increasing from 0 to 0.25. We can see that the

robust beamforming scheme of the relay always out-performs the non robust scheme. With the increase

of the relay power from 5 dB to 20 dB, the maximum secrecy rate increases almost linearly with the

relay power and becomes stable above that value. As we observe from M = 4 cases that there’s a

minimal usage of relay power to maximise secrecy rate and the minimal relay power is proportional to
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Figure 5.3: Joint decoding secrecy rate of MIMO TWRC, M = 4, P1 = P2 = 10 dB.

the power of P1 and P2.

For P1 = P2 = 10 dB cases with different antenna numbers of the relay (M = 2, 4, 6), the

simulation shows the maximum sum-secrecy rate increases with the increase of the number of the relay’s

antenna. Because the more antennas the relay has, the more elements it can adjust from the relay’s

beamforming matrix to maximize the sum-secrecy rate.

Finally, we investigate the probability that the optimization problem in (5.98) is infeasible or the

optimal sum rate is non-positive. For M = 4, P1 = P2 = 10 dB, with ε = {0.1, 0.2}, we simulate

the outage probability of relay power constraint. The results are shown in Fig. 5.6. It is found that the

total relay transmit power required to achieve the positive sum-secrecy rate increases with increase in the

CSI error norm bound. The robust beamformer design problem becomes infeasible for the relay power

beyond a threshold. From the results, we can observe that this threshold increases with increase in the

error norm bound.

5.5 Conclusion
In this chapter, robust beamforming for two-way AF relaying was studied under secrecy constraints. The

relay of this TWRC is a MIMO relay which performs beamforming function through its beamforming

matrix W. We considered the strict secrecy rate definition of TWRC, which assumes that the eavesdrop-
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Figure 5.4: Joint decoding secrecy rate of MIMO TWRC, M = 4, P1 = P2 = 20 dB.

per is able to jointly decode the message received. Under these assumptions, we considered to optimize

the network to achieve the maximal joint-decoding sum-secrecy rate of S1 and S2.

The optimization problem we solved is with an objective function to maximize the joint-decoding

secrecy rate of the network and the relay power constraint. ICSI is considered in this chapter, we use an

ellipsoid norm bound to describe the ICSI model. And we assumed that the allocation of the power to

S1 and S2 are the same. For the original non-convex optimization problem, we have presented an SDP

formulation, under which optimal beamforming designs that maximize secrecy rates are provided under

the relay power constraints, if imperfect CSI is exploited.
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Figure 5.5: Joint decoding secrecy rate of MIMO TWRC, M = 6, P1 = P2 = 10 dB.
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Figure 5.6: Transmit relay power outage probability versus the sum secrecy rate.



Chapter 6

Robust TWRC Beamforming with Untrusted

Relay

In this chapter, we revisit the optimization problem of TWBF as in Chapter 6 but instead of having an

external eavesdropper, the MIMO relay is considered to be an eavesdropper at the same time, which

the message is to be kept confidential from. The formulation is quite similar and our contribution is

again that we are able to formulate the optimization problem into an SDP with LMIs and using a rank

relaxation method can be solved optimally.

6.1 Network Model
Consider the same TWRC network as before except in the absence of an external eavesdropper. Com-

munications between S1 and S2 still takes place in two consecutive time slots but this time the messages

are supposed to be kept confidential to the relay. The network model is shown as Fig. 6.1.

Figure 6.1: The TWRC transmission with an untrusted relay.

During the first time slot, both S1 and S2 simultaneously transmit their messages to R. The signals

received at R can be represented in vector form as

x =
√
P1hs1 +

√
P2gs2 + v, (6.1)

in which P1 and P2 are the respective transmit power of S1 and S2, s1 and s2 denote the symbols

transmitted by S1 and S2, respectively, and v ∈ CM is the Gaussian noise vector at R and E[vv†] = σ2I.
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The vectors h ∈ CM , g ∈ CM , are the forward channels from the source nodes to the untrusted relay.

At the second time slot, R transmits a beamformed version of x by a complex weight matrix W ∈
CM×M , Wx, back to S1 and S2. As such, we have the received signals

y1 = hTWx + η1 (at S1), (6.2)

y2 = gTWx + η2 (at S2), (6.3)

where η1, and η2 denote the respective noise at S1, and S2 and they are assumed to be i.i.d. with zero

mean and variance of σ2. In our model, we have assumed that the backward channels from R to S1 and

S2 are the same as the respective forward channels and they remain static over the period of optimization

of interest. Our CSI error model is the same as before, i.e.,

h = ĥ + h̃, (6.4)

g = ĝ + g̃, (6.5)

where h and g are the true CSI, ĥ, ĝ are the imperfect CSI available at the relay nodes, and h̃, g̃ represent

the additive errors in the CSI. Further, we assume that ‖h̃‖ ≤ εh, ‖g̃‖ ≤ εg. Equivalently, h belongs to

the uncertainty set Rh, and g belongs to the uncertainty set Rg , where

Rh =
{
ζ|ζ = ĥ + h̃, ‖h̃‖ ≤ εh

}
, (6.6)

Rg = {ζ|ζ = ĝ + g̃, ‖g̃‖ ≤ εg} . (6.7)

Take the imperfect CSI model into (6.2)-(6.3), we have

y1 =
√
P1(ĥTWĥ + h̃TWĥ + ĥTWh̃ + h̃TWh̃)s1

+
√
P2(ĥTWĝ + h̃TWĝ + ĥTWg̃ + h̃TWg̃)s2 + (ĥTW + h̃TW)v + η1, (6.8)

y2 =
√
P1(ĝTWĥ + g̃TWĥ + ĝTWh̃ + g̃TWh̃)s1

+
√
P2(ĝTWĝ + g̃TWĝ + ĝT = Wg̃ + g̃TWg̃)s2 + (ĝTW + g̃TW)v + η2. (6.9)

6.2 Optimal Beamforming

As before, we assume that the second order CSI error can be neglected. Therefore, after self interference

cancellation, the perfect secrecy rates at S1 and S2 are given, respectively, as

R1 =
1

2
log (1 + SNR1)− 1

2
log (1 + SNRe1) , (6.10)

R2 =
1

2
log (1 + SNR2)− 1

2
log (1 + SNRe2) . (6.11)
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We assume that the untrusted relay does the joint decoding for s1 and s2. Therefore, the rate based on

joint decoding is given by

Rr =
1

2
log

(
1 +

P1‖h‖2 + P1‖g‖2
σ2

)
(6.12)

and therefore, we get

Rs = R1 +R2 −Rr

=
1

2
log (1 + SNR1) +

1

2
log (1 + SNR2)− 1

2
log (1 + SNRr) , (6.13)

where

SNR1 =
P2|ĥWĝT + h̃WĝT + ĥWg̃T + h̃Wg̃T |2

P1|h̃WĥT + ĥWh̃T |2 + σ2(‖ĥW + h̃W‖2 + 1)
, (6.14)

SNR2 =
P1|ĝWĥT + g̃WĥT + ĝWh̃T + g̃Wh̃T |2

P2|g̃WĥT + ĝWg̃T |2 + σ2(‖ĝW + g̃W‖2 + 1)
, (6.15)

SNRr =
P1‖h‖2 + P2‖g‖2

σ2
≡ Γ. (6.16)

As a result, the joint decoding based secrecy rate is given by

Rs =
1

2
log

{
1 +

P2|ĥWĝT + h̃WĝT + ĥWg̃T + h̃Wg̃T |2
P1|h̃WĥT + ĥWh̃T |2 + σ2(‖ĥW + h̃W‖2 + 1)

}

+
1

2
log

{
1 +

P1|ĝWĥT + g̃WĥT + ĝWh̃T + g̃Wh̃T |2
P2|g̃WĥT + ĝWg̃T |2 + σ2(‖ĝW + g̃W‖2 + 1)

}
− 1

2
log(1 + Γ).

(6.17)

Our objective is to maximize the sum secrecy rate Rs subject to the relay power constraint, i.e.,

max
W

Rs

s.t.
{
P1‖Wh‖2 + P2‖Wg‖2 + trace(WW†)σ2 ≤ PT .

(6.18)

The above problem is again a non-convex problem. To solve the problem, it is necessary to rewrite the

constraints into LMIs. Doing so will require the same definitions as in Section 6.3. In addition, we have

slightly different definitions as follows:

c = vec(h,g), (6.19)

∆c = vec(h̃, g̃), (6.20)

G1 =
[

IM OM

]
∈ RM×2M , (6.21)

G2 =
[

OM IM

]
∈ RM×2M . (6.22)

After these definition, we can easily check that

DRG1∆c = h̃⊗ 1M×1 (6.23)
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and

DLG1∆c = 1M×1 ⊗ h̃. (6.24)

Then we define the following vectors:

∆h̄ = h̃⊗ 1M×1 = DRG1∆c; (6.25)

∆ȟ = 1M×1 ⊗ h̃ = DLG1∆c; (6.26)

∆ḡ = g̃ ⊗ 1M×1 = DRG2∆c; (6.27)

∆ǧ = 1M×1 ⊗ g̃ = DLG2∆c. (6.28)

For SNR1, we can, as in Chapter 6, express the signal part as

hTWg = [(g ⊗ 1M×1)� (1M×1)⊗ h)]T vec(W). (6.29)

Furthermore, we can work out the numerator and the denominator of SNR1, respectively, in the form:

a1 = ∆cTQ1∆c∗ + 2Re(q†1∆c∗) + k1, (6.30)

b1 = ∆cTQ2∆c∗ + 2Re(q†2∆c∗) + k2. (6.31)

Also, we can do the same for SNR2 to have

a2 = ∆cTQ3∆c∗ + 2Re(q†3∆c∗) + k3, (6.32)

b2 = ∆cTQ4∆c∗ + 2Re(q†4∆c∗) + k4. (6.33)

The relay power constraint can also be rewritten as

PR = ∆cTQR∆c∗ + 2Re(q†R∆c∗) + kR. (6.34)

The secrecy rate based optimization problem can therefore be recast into

max
W

Γ1 + Γ2 − Γ3

s.t.





SNR1 ≥ Γ̃1,

SNR2 ≥ Γ̃2,

PT ≥ P1‖Wh‖2 + P2‖Wg‖2 + trace(WW†)σ2PT .

(6.35)
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Now, managing the ICSI errors in the same way as in Chapter 6, we get the optimization problem

max
W̄,λi,i=1,...,6

Γ1 + Γ2 − Γ3

s.t.





E1 � 0,

E2 � 0,

E3 � 0,

rank(W̄) = 1,

(6.36)

where the LMI constraints are due to the S-Lemmas, or

E1 =


 Q1 − Γ1Q2 + λ1G

†
1G1 + λ2G

†
2G2 q1 − Γ̃1q2

q†1 − Γ̃1q
†
2 k1 − Γ̃1k2 − λ1ε

2
h − λ2ε

2
g


 � 0, (6.37)

E2 =


 Q3 − Γ2Q4 + λ3G

†
1G1 + λ4G

†
2G2 q3 − Γ̃2q4

q†3 − Γ̃2q
†
4 k3 − Γ̃2k4 − λ3ε

2
h − λ4ε

2
g


 � 0, (6.38)

E3 =


 −QR + λ5G

†
1G1 + λ6G

†
2G2 −qR

−q†R PT − kR − λ5ε
2
h − λ6ε

2
g


 � 0. (6.39)

Due to the constraint rank(W̄) = 1, the problem (6.36) is not convex. However, if we remove the

rank-1 constraint, we get the SDP optimization problem:

max
W̄,λi,i=1...6

Γ1 + Γ2 − Γ3

s.t.





E1 � 0,

E2 � 0,

E3 � 0.

(6.40)

To facilitate optimization using SEDUMI, we rewrite the problem as

min
W̄,λi,i=1...9

Γ3 − Γ1 − Γ2

s.t.





E1 � 0,

E2 � 0,

E3 � 0.

(6.41)

6.3 Optimal Structure with Perfect CSI

In this section, we present the optimal structure of relay beamforming matrix, assuming that perfect CSI

is available for all the nodes within the network. In this case, recall that

Rs =
1

2
log

{
1 +

P2|hTWg|2
σ2 (‖hTW‖2 + 1)

}
+

1

2
log

{
1 +

P1|gTWh|2
σ2 (‖gTW‖2 + 1)

}
. (6.42)
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Note that the beamforming matrix only influences the transceivers’ rate R1 and R2, and has no influence

on the joint decoding rate of the untrusted relay node. Therefore, the relay beamforming matrix which

maximizes the secrecy rate is actually the same as the one that maximizes the sum-rate of R1 + R2.

Moreover, the optimal beamforming matrix takes the form as (3.19) in Chapter 3: W = (U‖)∗B(U‖)†.

As a result, the optimization problem becomes

P 7→





min
B

1

2
log

{
1 +

P2|hT1 Bg|2
σ2
(
‖hT1 B‖2 + 1

)
}

+
1

2
log

{
1 +

P1|gT1 Bh1|2
σ2
(
‖gT1 B‖2 + 1

)
}

s.t. P1‖Bh1‖2 + P2‖Bg1‖2 + trace(BB†)σ2 ≤ PT ,
(6.43)

in which h1 , (U‖)†h ∈ C2×1, g1 , (U‖)†g ∈ C2×1. The objective function of (6.43) is not convex,

although the constraint is convex. Here, we use the traditional weighted sum rate method to look for an

upper-bound of the sum-secrecy rate. Let β1 ≥ 0 and β2 ≥ 0 be the weighting factors of R1 and R2,

and express the weighted sum-secrecy rate as

RWSR =
β1

2
log

[
1 +

P2|hT1 Bg1|2
σ2
(
‖hT1 B‖2 + 1

)
]

+
β2

2
log

[
1 +

P1|gT1 Bh1|2
σ2
(
‖gT1 B‖2 + 1

)
]
. (6.44)

Since (6.44) is still non-convex, we let

α1 =
R1

Rs
, and α2 =

R2

Rs
. (6.45)

For a given α = [α1, α2]T , consider the following sum-secrecy-rate optimization problem :

P 7→





min
B,Rs

Rs

s.t.





β1

2
log

{
(1 +

P2|hTBg|2
σ2 (‖hTB‖2 + 1)

}
≥ α1Rs

β2

2
log

{
(1 +

P1|gTBh|2
σ2 (‖gTB‖2 + 1)

}
≥ α2Rs

P1‖Bh‖2 + P2‖Bg‖2 + trace(BB†)σ2 ≤ PR.

(6.46)

To solve (6.46), we can solve the bellowing problem at first:

P 7→





min
B

P1‖Bh1‖2 + P2‖Bg1‖2 + trace(BB†)σ2

s.t.





1

2
log

{
(1 +

P2|hT1 Bg1|2
σ2
(
‖hT1 B‖2 + 1

)
}
≥ α1r,

1

2
log

{
(1 +

P1|gT1 Bh1|2
σ2
(
‖gT1 B‖2 + 1

)
}
≥ α2r.

(6.47)

For the given α and r = Rs, if (6.46) is solvable, then the optimal relay power, denoted as P ∗R , is

the minimum relay power that support the given pair (α, Rs), we have the optimal beamforming matrix

W corresponding to the boundary of R = (P1, P2, PR). Otherwise, there is no finite relay power that
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can support α and r = Rs rate pair.

Combining the problems (6.46) and (6.47) together, we have given values of PR, α and r = Rs.

If the optimal solution of (6.47) satisfying P ∗R > PR, it means that the Rs obtained in (6.47) is not a

feasible solution for (6.46). Otherwise, the value we used for Rs in (6.47) is a feasible point for (6.46),

or it is within the sum-secrecy-rate boundary achieved by the optimization problem (6.47). Based on this

observation, we use the algorithm below to solve (6.46).

Algorithm 2 Algorithmic to find optimal Sum-secrecy Rate of (6.46)

1: Rs ∈ [0, Řs], α
2: Initialize Rs,min = 0,Rs,max = Řs;
3: while Rs,max −Rs,min ≥ ε do
4: Rs =

Rs,min+Rs,max

2 .
5: Solve problem (6.47) with the above t1 and t2 and get optimal objective value P ∗R
6: check the optimal objective solution P ∗R with the PR in (6.46)
7: if PR > P ∗R then
8: Rs,min = Rs
9: else

10: Rs,max = Rs
11: end if
12: end while
13: The Rs,min of (6.47) then is the optimal solution of Rs of problem (6.46)

In addition, we also provide a low complexity sub-optimal solution of (6.46), using the dominant

eigenvalue method in [19] which is presented in Appendix V.

6.4 Simulation Results
Our simulation results illustrate the optimization results for (6.47). For P1 = P2 = {5, 10, 20} dB, we

simulated 1000 independent channel realisations for each PR ∈ [0, 35] dB pair for the SDP solution with

antenna number M = {2, 4, 6}, CSI errors ε2
h = ε2

g ∈ {0, 0.1, 0.2, 0.25}. Specifically, Figs. 6.2–6.6

provide similar results but for the settings, respectively, (M = 2, P1 = P2 = 10 dB), (M = 4, P1 =

P2 = 5 dB), (M = 4, P1 = P2 = 10 dB), (M = 2, P1 = P2 = 20 dB), and (M = 6, P1 = P2 =

5 dB). Results in these figures demonstrate that generally the higher the relay transmit power the better

the secrecy rate. However, at some point, it will saturate because of the limit in the source transmit

power and the secrecy rate will not get higher. Also, we can see that for larger CSI errors the secrecy

rate achievable is lower. Results also clearly show that there is a performance gap between the robust

optimal solution and the non-robust one.

As we see from Fig.6.2.For the scenario that the relay has 2 MIMO antennas and the transmission

power P1 = P2 = 10 dB, the optimal secrecy rate decreases, with the error bound of CSI increasing

from 0 to 0.25. The simulation result shows the robust beamforming scheme of the relay is always out-

perform the non robust scheme. With the increase of the relay power from 5 dB to 15 dB, the maximum

secrecy rate increases almost linearly with the relay power. But for the increase of relay power above the

minimal required relay power, the maximum secrecy rate almost stays the same. The maximum power

the relay needs to maximal secrecy rate is proportional to the power of P1 and P2.

Fig.6.3 to Fig.6.5 show the maximal achievable secrecy rates of the cases that the relay has 4 MIMO
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Figure 6.2: Secrecy rate of MIMO TWRC with an untrusted relay, with M = 2, P1 = P2 = 10 dB.

antennas and the transmission power increases from P1 = P2 = 5 to P1 = P2 = 20 dB, and with the

error bound of CSI increasing from 0 to 0.25. Observing from the simulation results, with the same

relay power constraint, the maximal achievable secrecy rate increases with the increase of the power of

P1 and P2, which is because the SNR of S1 and S2 increase proportionally with the increment of P1

and P2. Also, the maximum power of the relay needs to achieve maximum secrecy rate scales with the

power of P1 and P2. From Fig.6.6 we can see that for the scenario that the relay has 6 MIMO antennas

and the transmission power P1 = P2 = 10 dB, the optimal secrecy rate has the similar trend. The

maximum secrecy rate decreases with the error bound of CSI increasing from 0 to 0.25. As predicted,

robust beamforming scheme of the relay always out-performs the non robust scheme. With the increase

of the relay power from 5 dB to 20 dB, the maximum secrecy rate increases almost linearly with the

relay power. But when the increase of relay power is above 15 dB, the maximum secrecy rate becomes

stable. Because there is a minimal power relay to the maximal secrecy rate and the minimal relay power

is proportional to the power of P1 and P2. For the case that P1 = P2 = 10db, simulations results show

that the maximum sum-secrecy rate increases with the increase of the number of the relay’s antenna.

Because the more antennas the relay has, the more elements it can adjust from the its beamforming

matrix to maximize the sum-secrecy rate.

Finally, we provide the outage probability results for the optimization problem in Fig. 6.7 and results
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Figure 6.3: Secrecy rate of MIMO TWRC with an untrusted relay, with M = 4, P1 = P2 = 5 dB.

in 6.8 are provided for the required relay transmit power against the secrecy rate requirements. For the

results in Fig. 6.7, we investigate the probability that (6.41) is infeasible or the optimal sum rate is non-

positive. In the simulations, we considered that M = 4, P1 = P2 = 10 dB, with ε = {0.1, 0.2}. It is

found that the total relay transmit power required to achieve the positive sum-secrecy rate increases with

increase in the CSI error norm bound. The robust beamformer design problem becomes infeasible for

the relay power beyond a threshold. From the results, we can observe that this threshold increases with

increase in the error norm bound.

On the other hand, in Fig. 6.8, we considered P1 = P2 = 10 dB and simulated for each (m,PR)

pair for the problem (6.47) with α1r = α2r, for the non-robust perfect CSI (ε2
h = ε2

g = 0) network

model by using the bisectional searching algorithm. The minimal relay power required is linear with the

secrecy rate’s threshold value. While with the same secrecy rate constrain threshold value, the more the

number of antennas the relay has ,the less power it needed, due to the fact that it has more elements in

its beamforming matrix to control the amplitude and angle of the received signals.

6.5 Conclusion

In this chapter, beamforming for AF relaying is studied under secrecy constraints in TWRC. The relay

is an unreliable relay with multiple antennas for input and output signal processing. Under this assump-
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Figure 6.4: Secrecy rate of MIMO TWRC with an untrusted relay, with M = 4, P1 = P2 = 10 dB.

tion, we targeted to optimize the network to achieve a maximal joint-decoding secrecy rate (with the

consideration of strict secrecy rate definition of TWRC) with a relay power constraint. We assumed that

the allocation of the power to S1 and S2 are the same.

For the original non-convex optimization problems, we have presented an SDP formulation, un-

der which optimal beamforming designs that maximize secrecy rates are provided under relay power

constraint, with either the cases perfect CSI is available or the case of ellipsoid norm bound ICSI.
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Figure 6.5: Secrecy rate of MIMO TWRC with an untrusted relay, with M = 4, P1 = P2 = 20 dB.
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Figure 6.6: Secrecy rate of MIMO TWRC with an untrusted relay, with M = 6, P1 = P2 = 10 dB.
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Figure 6.7: Transmit relay power versus the sum secrecy rate.
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Figure 6.8: Transmit relay SNR versus the secrecy rate requirements.



Chapter 7

Conclusions and Future Works

TWRC is one form of physical layer NC that allows simultaneous transmission of messages. Due to

beamforming at the relay, it can largely improve the channel capacity comparing to the OWRC. However,

although optimisation of TWRC has been widely studied, for TWRC with a MIMO relay, the secrecy

rate based optimisation was not understood, which has set the objective of this thesis. In this thesis,

There are two major foci: first the TWRC with perfect CSI and second the TWRC with ICSI, both with

consideration of a MIMO relay. Our contributions are summarised in the following section.

7.1 Summary of Contributions

Our contributions are included in Chapters 3–Chapter 6. In Chapter 3, we have investigated the structure

of the relay beamforming matrix, if perfect full CSI is available throughout the whole network model. It

was proved that the optimal beamforming matrix can be reduced to a rank-2 structure, regardless of the

number of antennas at the relay. The outcome is that we are able to provide an SOCP formulation which

can obtain the optimal relay beamforming solution at much lower complexity than any existing solutions

for the SNR balancing problem of the TWRC.

In Chapter 4, in the presence of an external eavesdropper, we considered the optimisation of the

relay beamforming matrix for maximising the secrecy rate assuming perfect CSI. We studied the problem

and showed that the optimal relay beamforming matrix has at most rank of 3. Also, we have provided a

2D search method to obtain the optimal beamforming solution and a suboptimal TWZF solution.

In Chapter 5, we further studied the TWRC system but with ICSI where the errors are bounded

by ellipsoids. We considered the optimisation of the relay beamforming matrix, with the objective to

maximise the joint-secrecy rate. A major effort has been done to rewrite the secrecy constraints with

ICSI into LMIs using S-Lemmas. The significant contribution is that it then allows to rewrite the non-

convex optimisation problem into an SDP form which after rank relaxation can be solved using standard

convex optimisation algorithms. The robust optimal relay beamforming matrix can therefore be obtained

for the first time, for the secrecy rate maximisation with ICSI. Chapter 6 repeats the effort but for the case

that the relay is the eavesdropper, and the LMIs were derived to obtain the SDP for finding the robust

optimal relay beamforming matrix.
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7.2 Furture Works
While the solutions derived from convex optimisation are highly attractive, not only because it is optimal,

but also that it is computationally efficient. One more steps derived from the robust problems in Chapter

5 and Chapter 6 are closed-form solutions or partial close-form solution for the beamforming matrix of

the relay. It would be worth future efforts to investigate whether this is possible in any of the problems

studied in this thesis.

From the constrains of the optimisation problems in Chapter 5 and Chapter 6 , a feasible beamformg

matrix solution could be derived, and the optimal bemmforming matrix solution could be presented

mathematically within this feasible value range. Zero-forcing methods for the optimisation problems in

Chapter 5 and Chapter 6 could also been discussed as a low-complexing sub-optimal solution.

Besides, the worst-case approach requires the norms to be bounded, which is usually not satisfied in

practice. Also, this approach is too pessimistic since the probability of the worst-case may be extremely

low. Hence, statistical approach is a good alternative in certain scenarios.

Taking the optimisation problem in Chapter 4 as an example,

ỹ1 =
√
P2h

TW(g + ∆g)s2 + hTWv + η1. (7.1)

For S2, we have

ỹ2 =
√
P1g

TW(h + ∆h)s1 + gTWv + η2. (7.2)

Similarly for eavesdropper node E, we have

ẽ =
√
P1e

TW(h + ∆h)s1 +
√
P2e

TW(g + ∆g)s2 + eTWv + ηe. (7.3)

By applying the statistical approach, we require the probability of the non-outage for secrecy trans-

mission is greater than the predefined threshold ε by imposing

min
W

P1‖Wh1‖2 + P2‖Wg1‖2 + trace(WW†)σ2 (7.4a)

s.t.




Pr
{
Rs,1 ≥ Γ1

}
≥ ε,

Pr
{
Rs,2 ≥ Γ2

}
≥ ε,

(7.4b)

Statistical approach for robust beamforming for the optimisation problems in chapter 5 and chapter

6 can also be a interesting future research steps for TWRC.
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A.1 Appendix I
Given X∗ as the optimal solution of the SDP (A-33), we can apply the algorithm in [77] to decompose

X∗ into

X∗ =

r∑

i=1

xix
T
i s.t. xTi (F2 − F1)xi ≥ 0 for i = 1, . . . , r, (A-1)

where r = rank(X∗). Further, define yij , xTj Fixj for i = 0, 1, 2, 3, 4 and j = 1, . . . , r. The following

linear program

min
t1,...,tr≥0

r∑

j=1

y0jtj

s.t.





r∑

j=1

y1jtj ≥ 1,

r∑

j=1

y2jtj ≥ 1,

r∑

j=1

y3jtj = 1


or

r∑

j=1

y4jtj = 1




(A-2)

has the same optimal objective value as (A-33) .

Since xTi (F2 − F1)xi ≥ 0 for all i, y2j ≥ y1j for all j. Therefore,
∑r
j=1 y1jtj ≥ 1 implies

∑r
j=1 y2jtj ≥ 1.

For r ≥ 2, we can always decrease the number of {tj} to be r−1 from the equality constraint and (A-2)

becomes

min
t1,...,tr≥0

r∑

j=1

y0jtj s.t.
r∑

j=1

y1jtj ≥ 1, (A-3)

which was proved in [88] that there is a tk > 0 for k ≤ r and tj = 0, for j 6= k and j ≥ 1 and that

there exists an optimal rank-one solution for the SDP problem (A-33). For r = 1, the SDP solution is of

rank-one and the relaxation is exact.

A.2 Appendix II
In the following sections, we introduce an algorithm to generate a rank-one solution from the optimal

solution W̄∗ of (5.97).

As the optimal beamforming matrix W̄∗ is a Hermitian matrix, by Eigen value decomposition,we
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have

W̄∗ = UΣU†,

After that, we generate a set of vectors {wk} through the blow process:

wk = UΣ
1
2 vk,

where vk is a circularly symmetric complex Gaussian random variable which has zero mean and an

identity covariance matrix. Create W∗ as

W∗ = ivecwk

Take W∗ into the relay power constraint to check the relay power’s feasibility with W∗. Best

solution of wk is selected through this feasibility check.

We also introduce an algorithm to prove a rank-one solution exists from the optimal solution W̄∗ of

(5.97). Consider that the rank of the optimal solution W̄∗ and with rank(W̄∗) = r. First, we decompose

W̄∗ as

find W̄∗ =

r∑

i=1

wiw
T
i

s.t.





wT
i F1wi ≥ 0,

wT
i F2wi ≥ 0,

wT
i Fewi ≥ 0,

wT
i FRwi ≥ PR,

(A-4)

where r = rank(W̄∗). Further, define yij , wT
j Fiwj for i = 0, 1, 2, 3, 4 and j = 1, . . . , r. The

following linear program

min
t1,...,tr≥0

r∑

j=1

y0jtj

s.t.





r∑

j=1

y1jtj ≥ 1,

r∑

j=1

y2jtj ≥ 1,

r∑

j=1

y3jtj = 1


or

r∑

j=1

y4jtj = 1




(A-5)

has the same optimal objective value as (5.97). Since wT
i (F2 −F1)wi ≥ 0 for all i, y2j ≥ y1j for all j.

Therefore,
∑r
j=1 y1jtj ≥ 1 implies

∑r
j=1 y2jtj ≥ 1. For r ≥ 2, we can always decrease the number of

{tj} to be r − 1 from the equality constraint and (A-5) becomes

min
t1,...,tr≥0

r∑

j=1

y0jtj s.t.
r∑

j=1

y1jtj ≥ 1. (A-6)
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A.3 Appendix III

To do so, we set A = [h g e] ∈ CM×3. Then we write the SVD of A as

A = UΣV†, (A-7)

where U = [U‖ U⊥] ∈ CM×M is a unitary matrix with U‖ ∈ CM×3 and U⊥ ∈ CM×(M−3), V ∈ C3×3

is another unitary matrix and

Σ =




λ1 0 0

0 λ2 0

0 0 λ3

0 0 0
...

...
...

0 0 0




∈ CM×3, (A-8)

in which λ1 ≥ λ2 ≥ 0 are the singular values of A. As a consequence, W can be expressed as

W =[(U‖)∗ (U⊥)∗]


 B C

D E


 [U‖ U⊥]†

= (U‖)∗B(U‖)† + (U‖)∗C(U⊥)† + (U⊥)∗D(U‖)† + (U⊥)∗E(U⊥)†.

(A-9)

From (A-9), we can get

|hTWg|2

=|hT (U‖)∗B(U‖)†g + hT (U‖)∗C(U⊥)†g + hT (U⊥)∗D(U‖)†g + hT (U⊥)∗E(U⊥)†g|2

=|hT (U‖)∗B(U‖)†g|2, (A-10)

|gTWh|2

=|gT (U‖)∗B(U‖)†h + gT (U‖)∗C(U⊥)†h + gT (U⊥)∗D(U‖)†h + gT (U⊥)∗E(U⊥)†h|2

=|gT (U‖)∗B(U‖)†h|2 (A-11)

|eTWh|2

=|eT (U‖)∗B(U‖)†h + eT (U‖)∗C(U⊥)†h + eT (U⊥)∗D(U‖)†h + eT (U⊥)∗E(U⊥)†h|2

=|eT (U‖)∗B(U‖)†h|2 (A-12)
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|eTWg|2

=|eT (U‖)∗B(U‖)†g + eT (U‖)∗C(U⊥)†g + eT (U⊥)∗D(U‖)†g + eT (U⊥)∗E(U⊥)†g|2

=|eT (U‖)∗B(U‖)†g|2. (A-13)

Also, we have

‖W†h∗‖2 = ‖B†(U‖)Th∗‖2 + ‖C†(U‖)Th∗‖2 + ‖D†U⊥h∗‖2 + ‖D†U⊥h∗‖2

= ‖B†UTh∗‖2 + ‖C†UTh∗‖2 (A-14)

‖W†g∗‖2 = ‖B†(U‖)Tg∗‖2 + ‖C†(U‖)Tg∗‖2 + ‖D†U⊥g∗‖2 + ‖D†U⊥g∗‖2

= ‖B†(U‖)Tg∗‖2 + ‖C†(U‖)Tg∗‖2 (A-15)

‖W†e∗‖2 = ‖B†(U‖)Te∗‖2 + ‖C†(U‖)Tg∗‖2 + ‖D†U⊥e∗‖2 + ‖D†U⊥e∗‖2

= ‖B†(U‖)Te∗‖2 + ‖C†(U‖)The∗‖2, (A-16)

where (·)∗ represents the conjugate operation, and B ∈ C3×3, C ∈ C3×(M−3), D ∈ C(M−3)×3 and

E ∈ C(M−3)×(M−3) are matrices of appropriate sizes. Using this structure onto the constraints in (4.11),

it can be easily observed that they are not related to D and E and further, for minimising the relaying

power, D and E should all be set to zeros. Also, consider the influence of C for Rs1, Rs2 and PR which

is proved in detail in Appendix IV, C should not be 0. Taking Rs1 as example,

Rs1 =
1

2
log(1 +

P2|hT (U‖)∗B(U‖)†g|2
σ2(‖B†UTh∗‖2 + ‖C†UTh∗‖2 + 1)︸ ︷︷ ︸

A1

)

− 1

2
log(1 +

P1(|eT (U‖)∗B(U‖)†g|2 + |ge|2)

P1(|eT (U‖)∗B(U‖)†h|2 + |he|2) + σ2(‖B†UTe∗‖2 + ‖C†UTe∗‖2 + 2)︸ ︷︷ ︸
A2

).

(A-17)

Then set

Q = (U‖)∗B(U‖)†, (A-18)

q = vec(Q), (A-19)

K = (U‖)∗C(U‖)†, (A-20)

k = vec(K). (A-21)
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Taking the above definition into A1 of (A-17), we get

A1 =
P2|fT1 q|2

σ2(‖Hq‖2 + ‖Hk‖2 + 1)
, (A-22)

A2 =
P1(|fT4 q|2 + g2

e)

P1(|fT3 q|2 + h2
e) + σ2(‖Eq‖2 + ‖Ek‖2 + 2)

. (A-23)

Now, letting

a2 = ‖Hk‖2, for a ≥ 0, (A-24)

b2 = ‖Ek‖2, (A-25)

q1 = [q, 1], (A-26)

K1 ,


 P2f1 ∗ fT1 0

0 0


 , (A-27)

K2 , σ2


 H†H 0

0 a2 + 1


 , (A-28)

K3 ,


 P1f4 ∗ fT4 0

0 g2
e


 , (A-29)

K4 ,


 P1f3 ∗ fT3 + σ2E†E 0

0 h2
eP1 + σ2b2 + 2σ2


 , (A-30)

we get

A1 =
qT1 K1q1

qT1 K2q1
, (A-31)

A2 =
qT1 K3q1

qT1 K4q1
. (A-32)

Let L be the Cholesky decomposition of H†H, L1 be the Cholesky decomposition of K2, L3 be the

Cholesky decomposition of matrix P1f3 ∗ fT3 + σ2E†E, and L4 be the Cholesky decomposition of K4.

Then we have

L1 , σ


 L 0

0
√
a2 + 1


 (A-33)

and

L−1
1 , σ


 L−1 0

0 1√
a2+1


 . (A-34)

Also, define

L2 , L∗−1
1 K1L

−1
1 ,


 P2σH†Hf1 ∗ fT1 0

0 0


 (A-35)
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y = L1q1, and

L3 , σ


 L3 0

0
√
h2
eP1 + σ2b2 + 2σ2


 (A-36)

and

L−1
4 , σ


 L−1

3 0

0 1√
h2
eP1+σ2b2+2σ2


 . (A-37)

Furthermore, define

L2 , L∗−1
1 K1L

−1
1 ,


 P2σH†Hf1 ∗ fT1 0

0 0


 (A-38)

and z = L4q1. As a result, we get

A1 =
yTL2y

yTy
, (A-39)

A2 =
zTL4z

zT z
. (A-40)

Since L2 is not related to a, and L4 is related to b, we are unable to set C = 0. Hence,

W = (U‖)∗B(U‖)† + (U‖)∗B(U⊥)†. (A-41)

Thus the rank of optimal matrix is generally rank(W) = 3.

A.4 Appendix IV

From the zero-forcing constraint for the eavesdropper’s signal’s in (4.22), i.e., eTW = 0, and as W ∈
CM×M , we can conclude that rank(W) = 1 and every vector of W is perpendicular to e1. Define

e⊥1 = [e1 e2]T , such that eT1 e⊥1 = 0. Without loss of generosity, ‖e⊥1 ‖2 = 1. As a result, we can rewrite

W as:

W =
[
le⊥1 ke⊥1

]
(A-42)

where l, k are complex coefficient numbers.

Now, define h1 , (U‖)†h ∈ C3×1, g1 , (U‖)†g ∈ C3×1 and e1 , (U‖)†e ∈ C3×1. Take (A-42)
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and consider:

a(W) = |hT1 Wg1|2 =
∣∣∣hT1

[
le⊥1 ke⊥1

]
g1

∣∣∣
2

=
∣∣∣
[
lhT1 e⊥1 khT1 e⊥1

]
g1

∣∣∣
2

= (lg11h
T
1 e⊥1 + kg21h

T
1 e⊥1 )2

= (hT1 e⊥1 )2(lg11 + kg21)2 (A-43)

b(W) = |gT1 Wh1|2 =
∣∣∣gT1

[
le⊥1 ke⊥1

]
h1

∣∣∣
2

=
∣∣∣
[
lgT1 e⊥1 kgT1 e⊥1

]
h1

∣∣∣
2

= (lh11g
T
1 e⊥1 + kh21g

T
1 e⊥1 )2

= (gT1 e⊥1 )2(lh11 + kh21)2 (A-44)

c(W) = σ2
(
‖hT1 W‖2 + 1

)
= σ2

(∥∥∥
[
lhT1 e⊥1 khT1 e⊥1

]∥∥∥
2

+ 1

)

= σ2
(
(lhT1 e⊥1 )2 + (khT1 e⊥1 )2 + 1

)
(A-45)

d(W) = σ2
(
‖gT1 W‖2 + 1

)
= σ2

(∥∥∥
[
lgT1 e⊥1 kgT1 e⊥1

]∥∥∥
2

+ 1

)

= σ2
(
(lgT1 e⊥1 )2 + (kgT1 e⊥1 )2 + 1

)
(A-46)

x(W) = ‖Wh1‖2 = ‖
[
le⊥1 ke⊥1

]
h1‖2

=

∥∥∥∥∥∥


 le1 ke1

le2 ke2




 h11

h21



∥∥∥∥∥∥

2

= (le1h11 + ke1h21)2 + (le2h11 + ke2h21)2

= (e2
1 + e2

2)(lh11 + kh21)2 (A-47)

y(W) = ‖Wg1‖2 = ‖
[
le⊥1 ke⊥1

]
g1‖2

=

∥∥∥∥∥∥


 le1 ke1

le2 ke2




 g11

g21



∥∥∥∥∥∥

2

= (le1g11 + ke1g21)2 + (le2g11 + ke2g21)2

= (e2
1 + e2

2)(lg11 + kg21)2. (A-48)

Also, we can get x(W)a(W)d(W)
y(Wo)b(W)c(W) as

x(W)a(W)d(W)

y(W)b(W)c(W)
=

(e2
1 + e2

2)(lh11 + kh21)2(hT1 e⊥1 )2(lg11 + kg21)2
(
(lgT1 e⊥1 )2 + (kgT1 e⊥1 )2 + 1

)

(e2
1 + e2

2)(lg11 + kg21)2(gT1 e⊥1 )2(lh11 + kh21)2
(
(lhT1 e⊥1 )2 + (khT1 e⊥1 )2 + 1

)

=
(hT1 e⊥1 )2

(
(gT1 e⊥1 )2(l2 + k2) + 1

)

(gT1 e⊥1 )2
(
(hT1 e⊥1 )2(l2 + k2) + 1

)

≡ f1

(A-49)



A.5. Appendix V 94

and
a(W)

y(W)c(W)
=

(hT1 e⊥1 )2(lg11 + kg21)2

σ2(e2
1 + e2

2)(lg11 + kg21)2
(
(lhT1 e⊥1 )2 + (khT1 e⊥1 )2 + 1

)

=
(hT1 e⊥1 )2

σ2
(
(hT1 e⊥1 )2(l2 + k2) + 1

)

≡ f2.

(A-50)

As l2 + k2 = ‖W‖, without loss of generality, we normalised W as l2 + k2 = 1 to get

R
′o
s =

1

4f1
((PT − σ2)f2 + f1 + 1)2. (A-51)

A.5 Appendix V

Af first, define

x = vec(B) (A-52)

f1 , vec(h1g
T
1 ) (A-53)

f2 , vec(g1h
T
1 ) (A-54)

U1 , P1h1h
†
1 + P2g1g

†
1 + σ2I (A-55)

U2 , [diag(UT
1 ,U

T
1 )]

1
2 (A-56)

H ,


 [h1]1 0 [h1]2 0

0 [h1]1 0 [h1]2


 (A-57)

G ,


 [g1]1 0 [g1]2 0

0 [g1]1 0 [g1]2


 (A-58)

where the notation ”[a]n” returns the nth entry of a (a similar notation is also used for denoting the entry

of a matrix). Thus, (6.43) becomes

P 7→





max
x

log

{
1 +

P2|fT1 x|2
σ2 (‖Hx‖2 + 1)

}
+ log

{
1 +

P1|fT2 x|2
σ2 (‖Gx‖2 + 1)

}

s.t. ‖U2x‖2 ≤ PR.
(A-59)

By using the decomposition methods described at Appendix IV, we could rewrite 1 +
P2|fT1 x|2

σ2(‖Hx‖2+1) and

1 +
P1|fT2 x|2

σ2(‖Gx‖2+1) into the format as

f(x1) = 1 +
P2|fT1 x|2

σ2 (‖Hx‖2 + 1)
=

x†B2x

x†B1x + σ2
=

x†1E1x1

x†1x1

, (A-60)

f(x2) = 1 +
P1|fT2 x|2

σ2 (‖Gx‖2 + 1)
=

x†B4x

x†B3x + σ2
=

x†2E2x2

x†2x2

, (A-61)
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where x1, x2,Bi, i = 1, . . . , 4, E1and E1 are defined following Appendix IV’s generalised Raleigh

quotient transformation. Suppose that after the transformation, we have

x1 = S
1
2
1 x, (A-62)

x2 = S
1
2
2 x. (A-63)

Then we define Ξ = S−1
1 B2+S−1

2 B4, and based on [44], a suboptimal solution of (A-59) can be derived

by solving the subspace-averaging problem:

P 7→





max
x

x†Ξx

s.t. ‖U2x‖2 ≤ PR.
(A-64)
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Appendix Math

In this part, we introduce the mathematical tools which are much used in this thesis, and they are matrix

manipulation, convex optimization and robust optimization. For convex optimization, we review the

basic concepts such as the property of convex set, Euclidean balls and ellipsoids. Finally, from various

types of convex optimization problems, we focus on SDP, SOCP problems for further reference of later

chapters. General conic data uncertainty type of optimization is then discussed in the context of robust

optimization, together with basic stochastically robust solutions for data uncertainty problems. The

materials regarding matrix analysis in this chapter are largely based on [39].

B.1 Matrix Manipulation
First, we introduce some frequently used matrix definitions in our thesis.

Definition 1. Given a matrix A ∈ Cn×n, it is said to be a non-singular matrix if

Av = 0, only when v = 0. (A-1)

Then A is a singular matrix, if

∃v 6= 0, s.t. Av = 0. (A-2)

Definition 2. A matrix A ∈ Cn×n is said to be a Hermitian matrix if A = A∗.

Definition 3. A matrix A ∈ Cn×n is a positive definite matrix, if

v∗Av ≥ 0 (A-3)

for any non-zero complex vector v, where v∗ denotes the conjugate transpose of v. Note that the quantity

v∗Av is always real because A is a Hermitian matrix.

B.2 Eigenvalue and Eigenvector
For almost all vectors, their directions are changed once multiplied by a matrix A, but there are some

special vectors that stay their original directions. We define these vectors as follows.
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Given an n× n matrix A with entries in field F (real or complex), any vector v that satisfies

Av = λv, for some λ, (A-4)

is called the eigenvector of A, and the corresponding λ is the eigenvalue. The eigenvalue set of A is

called the spectrum of A. When A is square, the eigenvalue and eigenvector of A2 can be found as

A2v = Aλv = λAv = λ2v. (A-5)

That is, for the matrix Ak, the eigenvector stays the same but the eigenvalue becomes λk.

Of field Fn, a subspace S is a closed subset which satisfies:

∀x,y ∈ S,∀a, b ∈ F : (ax + by) ∈ S. (A-6)

A vector set {x1, . . . ,xl} with elements of v, and that every element of S can be written as a linear

combination of x1, . . . ,xl is a spanning set of S. In other words, S is the column space of matrix

{x1, . . . ,xl}. The kernel of a matrix B represented as ker(B) is the subspace spanned by vectors x that

satisfies Bx = 0, which is the formed by the eigenvectors of B.

Given two matrices of Cn×n, A and B, if there exists (λ,v) that

Av = λBv, (A-7)

then we say that (λ,v) is an eigen-pair of the pencil (A,B). The generalised eigenvalue problem is

exactly finding the eigen-pair of a matrix pencil.

B.3 Matrix Diagonalisation and Similar Matrices

For matrix A with rank r, and the eigenvectors v1, . . . ,vr, the eigenvector matrix of A is defined as

V = (v1 . . .vr). We can get a diagonal eigenvalue matrix Σ = V−1AV.

Definition 4. Let S be any invertible matrix. Then matrix B = S−1AS is similar to matrix A.

Also, we can use eigenvalue to detect the characteristic of a matrix. A symmetric matrix is positive

semidefinite if all its eigenvalues are nonnegative: A � 0. Similarly, A � 0, A ≺ 0 and A � 0 means

that A is positive definite, negative semidefinite, and negative definite, respectively.

B.4 Hadamard Product

Given two matrices A ∈ Rn×n and B ∈ Rn×n, the Hadamard product is defined as

(A�B)ij = (Aij)× (B)ij , for i, j = 1, . . . , n. (A-8)
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B.5 Kronecker Product

Given two matrices A ∈ Rm×n and B ∈ Rp×q , their Kronecker product, denoted as A⊗B, is

A⊗B =




a11B · · · a1nQ
... · · ·

...

an1B · · · annQ


 . (A-9)

B.6 Singular Value Decomposition (SVD)

Given a matrix A ∈ CM×N , M ≥ N and r , rank(A) ≤ min(M,N), for two sets of vectors u’s

which are the eigenvectors of AA∗ and v’s the eigenvectors of A∗A, as AA∗ and A∗A are symmetric

matrices, we can choose u’s and v’s to be orthogonal vectors. As A(AA∗) = (A∗A)A, we have

Av1 = σ1u1, . . . ,Avr = σrur. (A-10)

Accordingly, we have

A (v1 · · ·vr) = (u1 · · ·ur)




σ1

. . .

σr


 . (A-11)

Besides, for the null-space of A, denoted as N(A), which has the n− r eigenvectors vr+1, . . . ,vn, and

for the null-space of AT N(AT ), which has the m− r eigenvectors ur+1, . . . ,um−r, we define

V = (v1 · · ·vn) , and U = (v1 · · ·vm) , (A-12)

and V and U are unitary matrices. We have the SVD of A as

A = UΣV†, (A-13)

where Σ is a diagonal matrix with diagonal entries σn ≥ · · · ≥ σ1 ≥ 0 which are called the singular

values of A. Also, U,V are referred to as the left and right singular vectors of A.

B.7 Commutation Matrix

Given a matrix A ∈ Rm×n, define the commutation matrix of A as K ∈ Rmn×mn

Kvec(A) = vec(AT ), (A-14)

where

vec(A) = (A11, . . . ,Am1, . . . ,A1n, . . . ,Amn)T ∈ Rmn×1, (A-15)
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with Ai,j , for i ∈ (1,m), j ∈ (1, n), gives the (i, j)th entry of the matrix A. Moreover,

K =

m∑

i=1

n∑

j=1

(Hij ⊗H
′

ij), (A-16)

where Hij ∈ Rm×n has the (i, j)th entry being 1 with other entries being 0’s.

B.8 Rayleigh Quotient
Given a symmetric matrix A and a positive definite matrix B, and that λ1 ≤ · · · ≤ λn being the

eigenvalues of pencil (A,B), the generalised Rayleigh quotient problem is defined on the set of all n×p
full-rank matrices as:

f(x) =
xTAx

xTBx
. (A-17)

Defining x∗ is a global minimiser of (A-17), then we have:

(i) span(x∗) is the leftmost invariant subspace of (A,B);

(ii) f(x) =
∑p
i=1 λi.

B.9 Mathematical Optimization
A mathematical optimization problem is a problem with a well-defined objective and a list of well-

defined constraints in mathematical form. We use an example below to introduce it in details. Consider

a mathematical optimization problem, which has the form:

min
x

f0(x)

s.t.




fi(x) ≤ bi, for i = 1, . . . ,m

hj(x) = 0, for j = 1, . . . , n,

(A-18)

where the vector x contains the unknown decision variables of the optimization problem, f0(x) is the

objective function which maps the variable x ∈ Rn to f0(x) ∈ R, the functions fi(x) : Rn are the

inequality constraint functions, and b1, . . . , bm are constant values which are the limits, or bounds, for

the constraints. Likewise, the functions hj(x) : Rn 7→ R, for j = 1, . . . , n, are the equality constraint

functions. If there exist some x that satisfies all the constraints, then we say that the problem is feasible;

otherwise, it is infeasible. A vector x∗ is called the optimal solution of (A-18), if it has the smallest

objective value among all those vectors that satisfy the constraints. Mathematically, that is, for any z

with f1(z) ≤ bz, . . . , fm(z) ≤ bm, h1(z) = 0, . . . , hn(z) = 0, we have f0(z) ≥ f0(x∗).

Generally, the optimization problems can be very difficult to solve or compute, even if solvable.

However, a class of optimization called convex optimization is proved to be solvable and easy to compute

the optimal solution. In this thesis, motivated by the power of convex optimization, we always seek to

convert our optimization problems in the TWRC into some forms of convex optimization problems,

which can lead to efficient computation of the global optimal solutions.



B.10. Lagrange Duality Problem 100

A convex optimization function as shown in Fig. B.1 is the one in which the objective and constraint

functions are all convex, which means that they satisfy the inequality:

fi(αx + βy) ≥ αfi(x) + βfi(y) (A-19)

for all x,y ∈ Rn and all α, β ∈ R with α+ β = 1, α ≥ 0, β ≥ 0.

Figure B.1: An illustration of a convex function.

Besides the methods described in (A-19), the convexity of a function f(x) can also be checked by

the first order and second order conditions. This is described in the following.

• First order condition—For a differentiable function f(x), whose gradient ∇f(x) exists for all

x ∈ dom(f), then f(x) is convex if and only if don(f) is a convex set, and for all x1 and

x2 ∈ dom(f), the following inequality holds true:

f(x2) ≥ f(x1) +∇f(x1)T (x2 − x1). (A-20)

• Second order condition—For a twice differentiable function f , if its second derivative ∇2f(x)

exists and satisfies that:

∇2f(x) ≥ 0, (A-21)

then f(x) is a convex function. For a function f(x) with x ∈ Rn, it is equivalent to f
′′
(x) ≥ 0,

which means that the derivative of f(x) is either constant or increasing.

The convexity property can make optimization in some sense “easier” than the general case. Ac-

cording to its convexity, any local minimum must be a global minimum. Once a problem is proved to be

convex or can be recast into a convex problem, it can be directly solved by existing convex optimization

tools, such as SEDUMI or CVX. For the rest of this section, we describe some important examples of

convex sets which we will encounter in this thesis.

B.10 Lagrange Duality Problem
Regarding the original optimization problem as the primary problem, we can formulate a dual problem

of the primary one. Generally, the solution of the dual problem and that of the primary problem would

not be the same. To find the dual of an optimization problem, we look at the optimization problem from



B.11. Euclidean Balls and Ellipsoids 101

a different perspective. Particularly, the aim is to seek a lower bound of the original problem. However,

for convex optimization problems, it is proved that the solution of the dual problem is also the solution

of the primary problem. For the optimization problem (A-18), the Lagrangian function is defined as

Λ(x, λ, ν) = f0(x) +

m∑

i=1

λifi(x) +

n∑

j=1

νjhj(x), (A-22)

where Λ = (λ1, . . . ) and ν = (ν1, . . . ) are called the dual variables or Lagrange multiplier vectors of

the Lagrange function. We define the Lagrange dual function g as

g(λ, ν) = inf
x∈D



f0(x) +

m∑

i=1

λifi(x) +

n∑

j=1

νjhj(x)



 . (A-23)

From (A-23), we can see that the Lagrange dual function is a concave function, and assuming that popt

is the optimal solution of the primary function (A-18), and p∗ is the solution of (A-23), and with Λ ≥ 0

and ν ≥ 0, we always have

p∗ ≤ popt.

Now, we introduce the Slater’s condition, which says that: The difference between the dual opti-

mum and the primary optimum is called the duality gap. If there exists x ∈ dom =
⋂m
i=0 f(i) that

satisfies the constraints of (A-18), then there’s a 0 duality dap between the primary and dual problems,

which means that the value of the primal and dual problems are equal. This is called the strong duality.

B.11 Euclidean Balls and Ellipsoids
A (Euclidean) ball (or just ball) inRn is of the form

B(xc, r) = {x | ‖x− xc‖ ≤ r} = {x |(x− xc)
T (x− xc) ≤ r2}, (A-24)

where r ≥ 0, and ‖ · ‖2 denotes the Euclidean norm, i.e., ‖u‖2 = (uTu)1/2.

The vector xc is the centre of the ball and the scalar r is its radius; B(xc, r) consists of all points

within a distance r from the center xc. Another common representation for the Euclidean ball is:

B(xc, r) = {xc + ru | ‖u‖ ≤ 1}, (A-25)

and a Euclidean ball is a convex set.

A related family of convex sets is the ellipsoids which has the form

ε = {x|(x− xc)
TP−1(x− xc) ≤ 1}, (A-26)

where P = PT � 0 is symmetric and positive definite. Again, xc ∈ Rn is the center of the ellipsoid.

The matrix P determines how far the ellipsoid extends in every direction from xc; the lengths of the

semi-axes of ε are given by
√
λi, where λi are the eigenvalues of P. A ball is an ellipsoid with P = r2I.
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Another common representation of an ellipsoid is

ε = {xc + Au, | ∀‖u‖ ≤ 1}. (A-27)

where A is square and nonsingular. In this representation, we can assume, without loss of generality,

that A is symmetric and positive definite. By taking A = P1/2, this representation gives (A-27).

Figure B.2: The positive semidefinite cone.

B.12 The Positive Semidefinite Cone

The set of all symmetric positive semidefinite matrices of particular dimension is called the positive

semidefinite cone. It can be formed by intersection of an infinite number of half-spaces in the vectorised

variable matrix (as shown in the figure), each half-space having partial boundary containing the origin in

an isomorphic subspace. Hence the positive semidefinite cone is convex. It is a unique immutable proper

cone in the ambient space of symmetric matrices. The positive definite (full-rank) matrices comprise the

cone interior, while all singular positive semidefinite matrices (having at least one 0 eigenvalue) reside

on the cone boundary. The only symmetric positive semidefinite matrix having all eigenvalues resides at

the origin. In low dimension, the positive semidefinite cone is shown to be a circular cone by way of an

isometric isomorphism relating matrix space to vector space.

For a 2× 2 symmetric matrix such as


 x y

y z


 ∈ S2

+, (A-28)

the positive semidefinite cone is as shown in Fig. B.2. In one dimension with 1× 1 symmetric matrices,

the nonnegative ray is a circular cone.
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B.13 Examples for Quadratic Convex optimization Problem
We use the definition of quadratic program (QP) from [14]. A quadratic program is a convex optimiza-

tion problem with a quadratic convex objective function and linear constrained functions. The standard

format of a QP is expressed as

min
x

1

2
xTPx + qTx + r

s.t.





Gx ≤ h,

Ax = b,

(A-29)

where P ∈ Sn+, G ∈ Rm×n, and A ∈ Rp×n. If the objective function, the inequality constrained func-

tions are all convex quadratic functions, then we call this type of problem the quadratically constrained

quadratic program (QCQP). The general QCQP form is

min
x

1

2
xTPx + qTx+ r

s.t.





1

2
xTPix + qTi x+ ri ≤ 0, for i = 1, . . . ,m,

Ax = b,

(A-30)

where Pi ∈ Sn+, for i = 0, 1, . . . ,m.

Now, we introduce SOCP and SDP, the two types of problems that are closely related to QCQP

problems and that our optimization problems in TWRC take such forms (see later chapters).

B.14 SOCP
Consider a typical form of an SOCP problem as :

min
x

fT (x)

s.t.




‖Aix + bi‖ ≤ cTi + di, for i = 1, . . . ,m,

F (x) = g,

(A-31)

where f ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, and di ∈ R, with x being the optimising variable.

Also, fT (x) is a convex function and F (x) is a linear function of x. Such problem is considered as

SOCP since it has second-order cone constraints. When Ai = 0 for i = 1, . . . ,m, SOCP is reduced

to a general linear program. When ci = 0 for i = 1, . . . ,m, SOCP is equivalent to a convex QCQP.

As SOCP constraints can be written as LMIs, the problem can be reformulated as an instance of SDP.

SOCPs can be solved with great efficiency by interior point methods.

B.15 SDP
SDP is a subfield of convex optimization concerned with the optimization of a linear objective function

with linear inequality constraints, and a non-negative matrix constraint. The constraints of a standard

SDP are the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spec-

trahedron. SDP is a relatively new field of optimization. Besides its convexity property, it is of growing
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interest for several reasons. In reality, many practical problems in field such as engineering, control, and

combinatorial optimization, can be formulated or approximated as SDP problems. In automatic control

theory, SDPs are used in the context of LMIs. SDPs are in fact a special case of cone programming

and can be efficiently solved by interior point methods. All linear programs can be reformulated as

SDPs. Also, using the hierarchies of SDPs, the solutions of polynomial optimization problems can be

approximated. Also, SDP has been used in the optimization for numerous complex systems.

Denote SN as the space of all N × N real symmetric matrices. The space is equipped with the

inner product (where trace denotes the trace function):

〈A,B〉 = trace(ATB) =

n∑

i,j=1

AijBij . (A-32)

Denote by SN+ the convex cone of positive semidefinite N × N matrices. This cone defines a partial

order for A, B ∈ SN by A � B whenever A−B is positive semidefinite.

Linear SDP deals with optimization problems of the type:

min
X∈SN

trace(CTX)

s.t.





trace(AT
i X) = bi, for i = 1, . . . ,m,

X ≥ 0.

(A-33)

We refer to this as the primal SDP. Similar to linear programming, we can have a dual SDP:

max
y∈Rm

bTy

s.t.
m∑

i=1

yiAi � C.
(A-34)

For convenience, an SDP will often be presented in a slightly different but equivalent form. For

example, linear expressions involving nonnegative scalar variables can be added to the SDP specification

and it remains as an SDP because each variable can be incorporated into the matrix X as a diagonal entry

(Xii for some i). To ensure that, constraints Xij = 0 can be added for all. As another example, note

that for any positive semidefinite matrix X, there exists a set of vectors vi such that the (i, j)th entry of

X is Xij = (vi,vj) the scalar product of vi and vj . Therefore, SDPs are often formulated in terms of

linear expressions on scalar products of vectors. Given the solution to the SDP in the standard form, the

vectors vi can be recovered in O(n3) time (e.g., by using a Cholesky decomposition of X).

The strong duality mentioned above holds true for all linear programs; however, not every SDP

satisfies the strong duality. In general, the value of the dual may lie strictly below that of the primal.

(i) Suppose the primal SDP problem (A-33) is lower bounded and strictly feasible. Then there is an

optimal solution y∗ to the dual and

trace(CTX) = bTy. (A-35)
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(ii) Suppose the dual problem is upper bounded and strictly feasible. Then there is an optimal solution

X∗ to the primal SDP problem (A-33) and (i) holds the equality.

The weak duality theorem of SDP is that the value of the primal SDP is at least the value of the dual

SDP. Therefore, any feasible solution to the dual SDP is a lower bound of the primal SDP value, and

equivalently, the feasible solution to the primal SDP is an upper-bound of the dual SDP value. As such,

trace(CTX)− bTy ≥ 0, (A-36)

where the inequality holds because both of the matrices are positive semidefinite.

B.16 Optimization with Uncertainty
When we use mathematic methods to model a system, there would be uncertainty of certain parameters.

For example, in wireless communication system, there is fluctuation of channel coefficients during trans-

mission, so the channel factor may not be known exactly for network optimization. The uncertainty in

the parameters will dramatically change the final optimal solution.

There are two typical methods for dealing with uncertainty. One tackles the case when the uncer-

tainty factors have bounded perturbation. Robust optimization provides robustness in the optimization

in these situations. Another one is stochastic optimization which is based on probability distribution of

the uncertainty. Linear and conic data uncertainty in optimization has been studied in [9, 11].

B.17 Robust Optimization
The uncertainty of data can be characterised by a bounded uncertainty data set. Optimization of these

problems is to find the optimal results for the worst case. Suppose that we have a linear programming

optimization problem which contains the uncertain linear inequality:

min
x

cTx + d (A-37)

s.t. Ax ≤ b, (A-38)

where we have c ∈ Rn, d ∈ R, b ∈ Rm and A ∈ Rm×n belong to the uncertainty domain, which is

defined by a set U through the perturbation set Z:

U =






 cT d

A b


 =


 cT0 d0

A0 b0




︸ ︷︷ ︸
nominal data D0

+

L∑

l=1

ζl


 cTl dl

Al bl




︸ ︷︷ ︸
basic shift Dl

: ζ ∈ Z ⊂ RL





. (A-39)

Within the uncertainty domain, we can see that although the uncertainty of d affects the optimal

results, but has no influence on the optimal solutions, so we can ignore d in the remaining discussion

below. Considering these uncertainty, we can write a robust counterpart of the optimization problem
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(A-37) as

min
x

cTx

s.t.





Ax ≤ b,

∀(c,A,b) ∈ U .

(A-40)

B.18 Conic Uncertainty Set
In this thesis, we focus on uncertain conic problems. Consider a conic optimization problem as:

min
x

cTx + d (A-41)

s.t. Ax ≤ K (A-42)

where x ∈ Rn is the optimising variable and K is a closed convex cone, which could be:

• A positive orphanRm+ , which is of the form {aTi x− bi ≥ 0, 1 ≤ i ≤ m};

• A Lorentz (second-order cone), which is of the form {‖Aix− bi‖ ≤ cTi x− di, 1 ≤ i ≤ m};

• A semidefinitite cone Sk+, in the form of {Aix−Bi ≥ 0, 1 ≤ i ≤ m}.

The uncertain conic problem of (A-41) is the problem with fixed structure and uncertain data pa-

rameterised by a perturbation vector ζ ∈ RL through a known perturbation set Z ∈ RL

(c, d, {Ai,bi}mi=1) =
(
c0, d0, {A0

i ,b
0
i }mi=1

)
+

L∑

l=1

ζl
(
cl, dl, {Al

i,b
l
i}mi=1

)
. (A-43)

B.19 The Worst-Case Model
Here we present a few important lemmas which facilitate robust optimization.

Lemma 1. S-Lemma 1: Letting Hermitian matrices Aj ∈ Cn×n, vectors bj ∈ Cn, and scalars cj ∈ C,

we define the following functions: fj(x) = xHAjx + 2R(bHx) + cj , for j = 0, 1, 2, . . . , n. Then the

following 2 conditions are the same:

1. f0(x) ≥ 0 for every x ∈ Cn such that fi(x) � 0, for i = 1, . . . , n;

2. There exists λi ≥ 0, for i = 1, . . . , n, and


 A0 b0

bH0 c0


 ≥∑i=n

i=1 λi


 Ai bi

bHi ci


 � 0.

Lemma 2. S Lemma 2: Let P be a symmetric matrix and A be a rectangle matrix. Then

P−ATA � 0 (A-44)

if and only if 
 P AT

A I


 � 0. (A-45)
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In matrix theory, the definition of Schur component of a block matrix

A =


 PT QT

Q R


 (A-46)

is P−QTR−1A, and we have Lemma 3 as follows.

Lemma 3. Schur Component Lemma: Let A be a symmetric block matrix

A =


 P QT

Q R


 . (A-47)

Then R � 0 if and only if

P−QTR−1Q � 0. (A-48)

Proof. This result can be proved by performing Gaussian elimination on matrix A by right multiplexing

a lower triangle matrix, i.e.,

AL =


 PT QT

Q R




 Ip 0

−R−1C Iq




=


 P−QTR−1Q QT

0 R




=


 Ip QTR−1

0 Iq




 P−QTR−1Q 0

0 R


 .

(A-49)

Also, we have A = AT � 0. Therefore, we also get

⇐⇒ uTPu + 2uTQTv + vTRv,∀u,v

⇐⇒ ∀u : 0 ≤ min
v
{uTPu + 2uTQTv + vTRv} = uTPu + 2uTQTR−1Qu.

(A-50)

Now, consider the uncertainty QCQP:

P 7→





min
x

CTx

s.t.





xTATAx− 2bTx ≤ Γ

∀(A,b,Γ) ∈ U,

(A-51)

where U = {(A,b,Γ) = (A0,b0,Γ0) +
∑N
k=1 uk(Ak,bk,Γk)|‖u‖ ≤ 1}. Let:

F(x) = (A0x,A1x, . . . ,Akx). (A-52)
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The constraint can be rewritten as (A-53):

− xTATAx + 2bTx + Γ =


 1

u



T







Γ0 + 2xTb0
Γ1

2 + xTb1 . . . Γk

2 + xTbk
Γ1

2 + xTb1 0 . . . 0

. . . . . . . . . . . .

Γk

2 + xTbk 0 . . . 0



− F(x)TF(x)





 1

u


 ≥ 0,

∀


 1

u



T 
 1 0

0 −I




 1

u


 ≥ 0. (A-53)

B.20 Statistical Model
For stochastic uncertainty, the uncertainty is random, but follows a certain probability distribution. In the

simplest case, the pdf is considered known. If it is only partially known, this will be much more difficult.

The stochastic optimization model for (A-37) can be constructed in the form as:

min
x

cTx

s.t. Prob {Ax ≤ b} ≥ 1− ε.
(A-54)

Also,

A(ζ)x + b(ζ)︸ ︷︷ ︸
α(x)+β(x)∈Q ∀ζ∈Z

, (A-55)

where A(ζ) ∈ Rk×n and b(ζ) ∈ Rk are affine in ζ. Thus, α(x) and β(x) are affine in x as well.

Consider the perturbation set Z as a side-wise set Z = Z left × Z right, i.e., a product of two sets

Z left and Z right, and corresponding to two perturbation vectors u ∈ Z left and v ∈ Z right, with the left

side of conic inequality constraint depending on u, and the right side of the conic inequality constraint

depending on v. Therefore, we have:

‖A(u)x + b(u)︸ ︷︷ ︸
≡α(x)u+β(x)

‖ ≤ cT (v)x + d(v)︸ ︷︷ ︸
≡σ(x)v+δ(x)

∀(u ∈ Z left,v ∈ Z right). (A-56)

Also, we have the norm-bounded perturbation left-side set as

Z left = {u ∈ Rp×q : ‖u‖ ≤ 1}. (A-57)

B.21 Bisection Methods
Given a continuous function f(x) on the interval [a, b], and f(a)f(b) < 0, bisection methods can be

used to find a root solution of this function, i.e.,

f(x) = 0. (A-58)
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Bisection method, also called binary search method, is based on intermediate value theory, which as-

sumes that there exists a unique t such that

f(t̂) = 0,∃t ∈ [a, b]. (A-59)

A bisection method is presented here as Algorithm 1 to find the unique root of the function f(t).

Algorithm 3 Bisection method
1: Set t1 = a, t2 = b;
2: Let t = t1+t2

2 ;
3: Calculate f(t);
4: if f(t) = 0, then
5: t̂ = t;
6: else
7: Check the sign of f(t)
8: if f(t) has the same sign as f(a) then
9: t̂ ∈ [t, b], set t1 = t and go back to Step 2;

10: else
11: t̂ ∈ [a, t], set t2 = t and go back to Step 2;
12: end if
13: end if
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