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ABSTRACT  

The poor performance of GNSS user equipment in urban 

canyons is a well-known problem and is particularly 

inaccurate in the cross-street direction. However, the 

accuracy in this direction greatly affects many applications, 

including vehicle lane identification and high-accuracy 

pedestrian navigation. Shadow matching was proposed to 

help solve this problem by using information derived from 

3D models of buildings. Though users of GNSS 

positioning typically move, previous research has focused 

on static shadow-matching positioning. In this paper, for 

the first time, kinematic shadow-matching positioning is 

tackled. Kalman filter based shadow matching is proposed 

and also, in order to overcome some of its predicted 

limitations, a particle filter is proposed to better solve the 

problem.  

Real-world kinematic experiments were conducted using a 

smartphone, with four different walking routes taken in a 

built-up area in London. Conventional GNSS solution 

exhibits a mean error of 11.25m, compared with single-

epoch shadow matching’s 6.54m (a 42.0% reduction) and 

particle filter shadow matching’s 2.41m (a 78.6% 

reduction). The new particle filter shadow-matching 

algorithm achieves 2-meter accuracy 72.4% of the time 

and 5-meter accuracy 90.7% of the time. The results also 

show, as expected, that Kalman filter shadow matching 

smooths the cross-street positioning error as compared 

with single-epoch shadow matching, but does not 

consistently nor significantly improve the accuracy. The 

accuracy improvement when using the proposed particle 

filter, on the other hand, shows its potential to improve 

urban positioning from street level to lane level. 

1. INTRODUCTION 

GNSS positioning in urban canyons is inaccurate, 

particularly in the cross-street direction. This is because 

the high-rise buildings along the streets block the line-of-

sights to GNSS satellites (Groves, 2011). Figure 1 

illustrates this. However, the accuracy in the cross-street 

direction is important to lane detection in vehicle 

navigation, pedestrian navigation, intelligent transportation 

systems (ITS) and many other applications (You et al., 

2008, Broll et al., 2008, Rashid et al., 2005). As 3D 

building models are becoming more accurate and widely 

available (Bradbury et al., 2007), some research uses 3D 

city models to detect and eliminate non-line-of-sight 

(NLOS) or multipath errors, in order to improve GNSS 

positioning accuracy (Peyraud et al., 2013, Groves et al., 

2012, Obst et al., 2012, Peyret et al., 2011); some research 

further uses them to correct NLOS or multipath errors 

(Bourdeau and Sahmoudi, 2012, Suzuki and Kubo, 2013). 

3D models can also be used to render scenes and match 

with the real-world images for localization (Chen et al., 

2012). Another line of research that use 3D city models 

evaluates GNSS performance by employing 3D ray tracing 

or ray intersection techniques (Ji et al., 2010, Kim et al., 

2009, Kleijer et al., 2009 , Suh and Shibasaki, 2007, 

Bradbury, 2007, Bradbury et al., 2007, Wang et al., 2012).  

Shadow matching has been proposed to improve the GNSS 

accuracy in the cross-street direction using buildings 

shadows as signals of opportunity for positioning (Groves, 

2011, Tiberius and Verbree, 2004, Yozevitch, 2012). The 

expectation for which signals are available can be 

predicted using a 3D city model. Consequently, by 

determining whether a signal is being received from a 

given satellite, the user can localize their position to within 

one of two areas of the street. Figure 2 illustrates the 

concept of this solution.  

 

Figure 1: In urban areas, the GNSS positioning inaccuracy 

results from poor satellite geometry  

Signals 

blocked

Signals 

available

Signals 

available

Signals 

blocked

User

Buildings

Satellites

mailto:lei.wang.10@ucl.ac.uk


 

 

Figure 2: The shadow-matching concept: using direct 

signal reception to localise position (adapted from Groves 

(2011)). 

 

Figure 3 Flowchart of single-epoch shadow matching  

The work of this paper is based on the author’s doctoral 

research since 2010, when the shadow matching principle 

was proposed at UCL (Groves, 2011). The performance of 

GNSS in urban canyons was first evaluated and verified by 

3D city models (Wang et al., 2012). Then, a preliminary 

shadow-matching algorithm was developed and 

demonstrated the ability of identifying the correct side of 

the street (Wang et al., 2011). Furthermore, a scoring 

scheme has been proposed to account for the effects of 

satellite signal diffraction and reflection. A full search grid 

was also implemented and tests were conducted at over 40 

locations (Wang et al., 2013b). Moreover, shadow 

matching has been adapted to work with post-processed 

smartphone GNSS data (Wang et al., 2013a). Recently, a 

real-time prototype system has been developed for the 

Android mobile operation system, which demonstrates the 

efficiency of the shadow-matching algorithm (Wang et al., 

2013c). 

This paper is built on the previous work, but it presents a 

significant progress for shadow matching: two new 

filtering schemes are proposed that enable the shadow-

matching technique to deal with dynamic scenarios. The 

motivation of the work in this paper comes from the fact 

that navigation is typically kinematic, whereas the single-

epoch shadow-matching algorithm is valid for static 

positioning, but not optimized for kinematic cases. This is 

because in single-epoch shadow matching, GNSS data in 

each epoch is individually processed, without taking 

advantage of any knowledge from previous epochs. 

Previous research (Suzuki and Kubo, 2012) on multi-

epoch shadow-matching positioning is not optimized for 

kinematic positioning. Given that the update rate of a 

mobile GNSS device is normally 1 Hz, pedestrians and 

vehicles are not likely to move so fast that the 

environments change dramatically between consecutive 

epochs. The single-epoch shadow-matching techniques are 

thus ignoring important information. In summary, the 

single-epoch shadow matching techniques are not suitable 

for kinematic positioning. This is also the scope of this 

paper, which proposes and implements two different 

estimation schemes, the Kalman filter and the particle 

filter, for kinematic shadow-matching positioning. 

A new kinematic shadow-matching technique is presented 

in Section 2. Detailed algorithms descriptions of the 

Kalman filter and the particle filter are given in Section 3 

and 4, respectively. A comprehensive assessment of real-

world experiments is presented in Section 5, with different 

criteria applied to compare the performance between the 

conventional GNSS navigation solution, the single-epoch 

shadow-matching system solution, and the two new 

shadow-matching system solutions. Finally, in Section 6 

and Section 7, conclusions are drawn and future work is 

discussed. 

2. KINEMATIC SHADOW MATCHING 

The single-epoch shadow-matching algorithm, which is 

suitable only for static positioning scenarios, is briefly 

reviewed in Section 2.1. Section 2.2 then introduces the 

system architecture and algorithm flowchart of kinematic 

shadow matching. Finally, Section 2.3 gives detailed 

descriptions of the kinematic shadow-matching system. 

2.1 Single-epoch shadow matching  

The single-epoch shadow matching is valid for static 

positioning. There are two phases in the single-epoch 

shadow-matching positioning algorithm – the offline phase 

(the preparation step), as illustrated in Figure 3 in grey, 

and the online phase (the positioning process), as 

illustrated in Figure 3 in red. The input/output are noted in 

blue. More details of the single-epoch shadow matching 

can be found in an earlier paper (Wang et al., 2013c). 

2.2 Kinematic shadow-matching system architecture 

and algorithm overview 

There are different implementations of a kinematic shadow 

matching system. In a full implementation, there is a 

server interacting with a smartphone user. The smartphone 

first sends a positioning request with an initial position to 

the server. The initial position may come from GNSS, or 

Wi-Fi positioning, assuming its accuracy is a few tens of 

meters. The server then gathers the enhanced map data 
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(building boundary) that enables in shadow-matching 

positioning, according to the user’s initial position, and 

sends them to the user. Finally, the smartphone performs 

the shadow-matching algorithm to acquire a positioning 

solution. The overall architecture of the shadow-matching 

system is illustrated in Figure 4.  

In the kinematic shadow-matching algorithm, a Kalman 

filter and a particle filter are added. This new flowchart of 

the shadow matching algorithm is illustrated in Figure 5. 

 

Figure 4: The overall system architecture design 

 

Figure 5 Flowchart of kinematic shadow matching 

(proposed steps in the paper are surrounded by red frames)  

 

Figure 6: An example of a building boundary as azimuth-

elevation pairs in a sky plot. (The centre of the plot 

correspond to a 90º elevation or normal incidence) 

2.3 Kinematic shadow-matching algorithm  

This subsection introduces detailed algorithm design of the 

new kinematic shadow-matching algorithm. There are two 

phases in the algorithm. The off-line phase generates a grid 

of building boundaries. The boundaries are from a GNSS 

user’s perspective, with the building’s edge determined for 

each azimuth (from 0 to 360°) as a series of elevation 

angles. The results from this step show where the building 

edges are located within an azimuth-elevation sky plot. 

Figure 6 shows an example of a building boundary 

computed from a candidate user location. Once the 

building boundary has been computed, it may be stored 

and reused in the online phase to predict satellite visibility 

by simply comparing the elevation of a satellite with the 

elevation of the building boundary at the same azimuth.  

There are four steps in the online phase. At the beginning 

of the online phase, the search area is defined for the 

shadow-matching position solution, based on an initial 

GNSS/Wi-Fi position. A simple implementation might 

draw a fixed-radius circle centred at the initialized 

position, but more advanced algorithms might use the 

knowledge of satellite geometry to optimize the search 

area.  

In the second step, performed at each candidate position, 

each satellite’s elevation is compared with the building 

boundary elevation at the same azimuth. The satellite is 

predicted to be visible if the satellite is above the building 

boundary. With pre-computed building boundaries, this 

step is computationally efficient. 

For the third step, the similarity between predictions and 

observations of the satellite visibility is evaluated. The 

candidate positions with the better matches will then be 

weighted higher in the shadow-matching positioning 

solution. There are two stages for calculating a score for a 

candidate position. Firstly, each satellite above the 

elevation mask angle is given a score, calculated based on 

the predicted and observed visibility. Secondly, the 

position scoring function evaluates the overall degree of 

match between predicted and observed satellite visibility 

for each possible user position. This is illustrated in (1).  

 
1

( ) ( , , )
n

pos sat

i

f j f i j SS  (1) 

where ( )posf j  is the position score for grid point j ; 

( , , )satf i j SS  is the score of satellite i  at grid point j  

using a scoring scheme SS . SS  is the scoring scheme 

which defines a score based on predicted and observed 

satellite visibility.  is the number of satellites above the 

elevation mask angle.  

Different scoring schemes can be applied at this stage, 

discussed in (Wang et al., 2013b). Essentially, they are 

designed to mitigate the effect of NLOS reception to 
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shadow matching. However, they are all based on 

empirical values and thus may not be appropriate. 

A new scoring scheme trained from large amount of real 

GNSS data is designed (Wang et al.). In this new scheme, 

the probability of a received signal being a LOS signal is 

modelled using its SNR value with quadratic fitting. 

 

min min
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2 1 0 min max
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where 
min

oP  and 
max

oP  is the minimum and maximum 

percentage of ( )P LOS , respectively; iS  is SNR of the 

satellite of interest, minS  and maxS is the minimum and 

maximum SNR with values outside of this range being 

assigned the closest value; 0 1 2, ,a a a  are parameters trained 

from the large datasets. In this work, the values of these 

parameters are set as follows: min 20%P , max 90%P , 

min 17S , max 41S , 0 1.3a , 1 0.11a , 2 0.0013a . 

The probability that a satellite prediction matches with the 

observation can be computed using the following formula: 

 
1 ( ) ( ) 2 ( ) ( )m o p o pP P LOS P LOS P LOS P LOS

 (3) 

where mP  represents the probability that the observation 

matches the prediction; ( )oP LOS  is the probability that an 

observed signal is a line-of-sight (LOS) signal; ( )pP LOS  

is the probability that the signal is predicted to be a LOS 

signal.  

The values of ( )pP LOS  is set to be 90% if the satellite is 

predicted to be visible, and 20% if it is predicted to be 

invisible. 

After obtained the probability that a satellite prediction 

matches with the observation, the scoring result can be 

calculated using the following formula:  

 min

max min

log( ) log( )

log( ) log( )

p

m
sat p p

P P
f

P P
 (4) 

where min

pP  and max

pP are the minimum and maximum 

probability that a signal is predicted to be a LOS signal;  

The last step of the shadow-matching algorithm is to 

generate a positioning solution using the scores from each 

candidate position. A Kalman filter and a particle filter are 

used in this step to generate positioning solution. The 

detailed design of both filters are introduced in Section 3 

and 4, respectively. 

 

3. KALMAN FILTER DESIGN 

A Kalman filter is used to conduct kinematic shadow-

matching positioning over multiple epochs. Combining 

noisy measurements observed over time should typically 

be more accurate than using a single noisy measurement. 

Among the methods that combine multiple measurements, 

there are two reasons why Kalman filters are firstly chosen 

in this work to solve the kinematic shadow-matching 

positioning problem. Firstly, Kalman filters are commonly 

used in the navigation community to integrate consecutive 

measurements or data from different sensors, and are 

proven to be efficient and effective (Groves, 2013). On the 

other hand, it is frequently observed that in the shadow-

matching algorithm, the candidate positions (those that 

best match predictions) tend to form an approximation of 

an ellipse, as illustrated in Figure 7. Thus, a Kalman filter 

should be able to represent this. 

The Kalman filter is a state estimation algorithm invented 

by R. E. Kalman (Kalman, 1960, Brown and Hwang, 

1996, Groves, 2013). It is often used to estimate real-time 

states. In this work, the Kalman filter designed for 

kinematic shadow-matching positioning consists of 10 

steps, as illustrated in Figure 8. There are three phases: 

initialization, state system propagation and measurement 

updating, all of which are explained in detail below. 

Initialization phase 

Step 0: Calculate initial states: 
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where 1

1

g

k

g

k

n

e
 is the last shadow matching solution. When 

1 0k , it is the conventional GNSS positioning solution. 

 

Figure 7. A shadow matching scoring map that shows 

unambiguous highest-score area, marked in red. (The data 

was collected at 11:40:57 on 26
th

, October 2012.)  
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Calculate error covariance matrix of initial position: 

 

2

1, 1,

1 2

1, 1,

k n k ne

k

k ne k e

P  (6) 

where 2

1,k n
 and 2

1,k e
are the variance of initial position  

in two horizontal axes (northing and easting), and 
1,k ne

is 

the covariance between the two horizontal axes. E.g. 2

1,k n  

and 2

1,k e
 can be initialized to be 40 meters, and 

1,k ne
 

are initialized to be 0. This only applies in initialization 

when 1 0k . 

System propagation phase 

Step 1: State vector time propagation: 

In this step, the transition matrix is calculated. The 

transition matrix is the identity matrix because the states 

are independent to each other. 

 
1

1 0

0 1
kΦ  (7) 

Step 2: Error covariance matrix time propagation: 

In order to account for the user’s movement and for system 

noise, the error covariance matrix need to be calculated. It 

can be modelled as: 

  

 1

0

0

vx s

k

vy s

S

S
Q  (8) 

where vxS  and vyS  are the velocity power spectral 

densities (PSD), for x and y respectively; and s  is the 

time between epochs. In this work, the vxS  and vyS  are set 

to be 2m
2
/s (since the user is assumed to be a pedestrian), 

and s  is 1 second. 

Step 3: State propagation: 

The state vector time propagation can then be conducted 

using the following formula. 

 1 1
ˆ ˆ

k k kx Φ x  (9) 

Step 4: Covariance propagation: 

 
T

1 1 1 1k k k k kP Φ P Φ Q  (10) 

Measurement update phase 

Step 5: Calculate measurement matrix: 

The measurement matrix models how the measurement 

vector varies with respect to the state vector. 

 

Figure 8: The proposed Kalman filter architecture for 

kinematic shadow-matching positioning (adapted from 

(Groves, 2013)) 
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Step 6: Calculate measurement variance matrix: 
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where kμ  is the averaged candidate grid position; ,C ir  is 

the i-th candidate grid position, these are defined as 

positions with the highest score in shadow matching; xr  is 

the mean of ,C ir , n  is the number of candidate positions, 

which is defined as the grid point that has the highest 

shadow matching score, and 
kR  is the measurement 

variance calculated from high score points,  
2

,k e  and 
2

,k n

are the calculated variance of measurement in two 

horizontal axes, and ,k en is the calculated covariance 

between the two horizontal axes. 

Step 7: Calculate Kalman gain matrix: 
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Step 8: Formulate measurement: 

 

s

k

k s

k

n

e
z  (15) 

where 
s

k

s

k

n

e
 is the shadow matching positioning solution 

at the k-th epoch. This shadow matching solution is 

calculated using the shadow-matching algorithm described 

in Section 3, except in step 4, where the positioning 

solution is generated using a k-nearest neighbour method, 

as described in more details in a previous paper (Wang et 

al., 2013c).  

Step 9: Update state vector: 

 ˆ ˆ ˆ
k k k k k kx x K z H x  (16) 

Step 10: Update error covariance matrix: 

 k k k kP I K Η P  (17) 

Repeat 1 – 10. 

4. PARTICLE FILTER DESIGN 

As well as the Kalman filter, a particle filter based 

algorithm is used in this paper to improve kinematic 

shadow-matching positioning. Unlike the Kalman filter, 

the particle filter is a nonlinear non-Gaussian Bayesian 

estimation technique (Gordon, 1993, Gustafsson, 2002, 

Thrun et al., 2005).  

The standard Kalman filter is a linear Gaussian estimation 

algorithm. Although extended Kalman filters (EKF) and 

unscented Kalman filters (UKF) can adapt the Kalman 

filter to nonlinear systems, the shadow matching system is 

not only nonlinear, but also multimodal distributed, i.e. 

there could be ambiguity from the existence of multiple 

matching areas. This is illustrated in Figure 7, where there 

are two main best matching areas, marked in red. A 

multiple-hypothesis Kalman filter may account for this 

situation, but the Gaussian approximation to the 

measurement noise and system noise distribution is still a 

rough approximation, and it is sometimes difficult to 

determine how many hypotheses models are needed. For 

example, it can be seen in Figure 9 that apart from there 

being two major matching areas, there are also several 

minor matching areas. 

Particle filters have a strong potential to better solve the 

kinematic shadow-matching problem, because addition to 

non-linear non-Gaussian nature, more importantly, particle 

filters can estimate multiple hypothesis models. In fact, 

each particle can be regarded as a hypothesis model. Thus, 

a particle filter is used in this work for kinematic shadow-

matching positioning. 

 

 

Figure 9. Shadow matching scoring maps that show two 

ambiguous high-score areas, both marked in red. In this 

situation, a single-model Kalman filter is not an adequate 

representation of the multiple distributions; whereas 

particle filters are adequate. (The data was collected at 

11:41:34 on 26
th

, October 2012.) 

 

Figure 10: The proposed particle filter architecture for 

kinematic shadow-matching positioning 

An architectural overview of the particle filter is shown in 

Figure 10. There are four phases, comprising initialization, 

system updating, measurement updating and resampling. 

These are detailed in the following descriptions. 

Initialization phase 

Step 1: Initialization:  
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Generate n  random particles 
1

0 0
ˆ ˆ[ ,..., ]n
x x  in a Gaussian 

distribution, based on the initial conventional GNSS 

positioning solution 0

0

g

g

n

e
:  

 0

0

0

ˆ
g

g

n

e
x  (18) 
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0 2
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n ne
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P  (19) 

 1

0 0 0 0
ˆ ˆ ˆ[ ,..., ]~ N ,n
x x x P  (20) 

where in the Gaussian distribution, the initial mean 

position 0x̂  is denoted as 0

0

g

g

n

e
, and the error covariance 

0P  is denoted as

2

0, 0,

2

0, 0,

n ne

ne e

. In this work, the 2

0,n  and 

2

0,e  are set to be 20, and 
0,ne

 is set to be 0. 

System update phase 

Step 2: Generate random noises to account for user motion 

In order to account for user motion and unknown changes 

to the true state, such as mis-modelling and GNSS receiver 

noise, in the importance weight sampling, random noises 
1

1 1[ ,..., ]n

k kr r  for each particle 
1

1 1 1
ˆ ˆ ˆ[ ,..., ]i n

k k kx x x  are 

generated, obeying a Gaussian distribution 1,, k rΝ 0 P , 

where 1,k rP  is the covariance matrix. 
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, , , ,
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, , , ,
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P  (21) 

 
1

1 1[ ,..., ]n

k kr r ~ 1,, k rΝ 0 P  (22) 

Step 3: The random noises 
1

1 1[ ,..., ]n

k kr r  are then added to 

the particles 
1

1 1
ˆ ˆ[ ,..., ]n

k kx x  to update their state. 

 
1 1 1

1 1 1 1
ˆ ˆ ˆ ˆ[ ,..., ] [ ,..., ] [ ,..., ]n n n

k k k k k kx x x x r r  (23) 

Measurement update phase 

Step 4: for the k -th epoch, perform the GNSS shadow 

matching algorithm, which is initialized at the last particle-

filter positioning solution 1
ˆ

kx . For the first epoch, i.e. 

1k , this is the initial conventional GNSS positioning 

solution 0x̂ . A grid of m  candidate positions with the 

highest matching scores are chosen from shadow 

matching, noted as 
1

1 1[ ,..., ]m

k kc c . 

Step 5: compute the particle weights based on the shadow 

matching scoring outputs (candidate points). For each 

particle (1 )i

k i nx , its weight (1 )i

kw i n  is defined 

inversely to the shortest Euclidean distance (1 )i

kd i n

between this particle and the candidate positions 
1

1 1[ ,..., ]m

k kc c , which have been generated in step 4. When 

the nearest candidate is within 1 meter to the current 

particle of interest, its distance is considered to be 1 meter. 

 
1, ( 1 )

    (1 )
, ( 1 )

i

i k

k i i

k k

d meter
w i n

d d meter
 (24) 

Step 6: Normalize the weights of each particle, so that 
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k k
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Importance weight resampling 

Step 7: Incrementally sort the particles 
1ˆ ˆ[ ,..., ]n

k kx x  

according to their normalized weights (1 )i

kw i n , and 

compute the cumulative density function (CDF), noted as 
1[ ,..., ]n

k kcdf cdf , using the following formula: 

 
1

i
i j

k k

j

cdf w  (27) 

Step 8: Generate n random variables 
1[ ,..., ]n

k ks s   in a 

uniform distribution: 

 
1[ ,..., ]n

k ks s ~ U(0,1)  (28) 

For each 
1[ ,..., ]i n

k k ks s s , find the corresponding particle 

by choosing the first particle in  
1ˆ ˆ[ ,..., ]n

k kx x  for which its 

i

kcdf  is bigger than 
i

ks ; as a result,  a new set of particles 

1ˆ ˆ[ ,..., ]n

k kx x  is generated. 

Step 9: The average position of these new particles is 

deemed the positioning solution: 

 
1

1
ˆ ˆ

n
i

k k

in
x x  (29) 

Repeat 2 – 9. 

5. EXPERIMENTS AND RESULTS ANALYSIS 

To evaluate the performance of the proposed new 

algorithms, a number of kinematic experiments were 



 

conducted in central London using a smartphone. Section 

5.1 outlines the 3D city model and the experimental routes, 

and describes the configuration of the shadow-matching 

algorithm. Section 5.2 compares positioning results 

between the conventional GNSS positioning, the single-

epoch shadow matching, Kalman filter shadow matching 

and particle filter shadow matching. 

5.1 Experimental configurations 

A 3D city model of the Aldgate area of central London, 

supplied by ZMapping Ltd, was used. The model has a 

high level of building details and decimeter-level accuracy. 

Figure 11 shows part of the city model used in this work.  

Four experimental routes were selected on Fenchurch 

Street and Leadenhall Street, a built-up area. Figure 12 

shows photos taken at the street, showing the urban 

environments. Two of the routes, numbered route 1 and 2, 

were located on opposite sides of Leadenhall Street. The 

other two routes, named route 3 and 4, were on opposite 

sides of Fenchurch Street. These routes allow system 

performance comparison between users at different sides 

of street. Thus, if the proposed algorithm can determine 

the user’s position no matter which side the user is at, it is 

probable that the algorithm is not producing the correct 

answer by chance. All routes were selected on the footpath 

close to the traffic lanes. Figure 13 shows an aerial view of 

the experimental routes in a satellite image from Google 

Earth. The truth model in this experiment is set using the 

3D city model. A pedestrian walked in steady speed from 

the start to the end of each route. Table 1 summarises the 

experimental configurations for each of the four routes. 

Before the experiment, the offline phase generated a grid 

with 1-meter spacing. Indoor points were then eliminated 

and building boundaries were determined at outdoor 

points. The building boundaries were stored in a database. 

Using the GNSS data-recording app adapted from earlier 

work (screenshot shown in Figure 14), a Samsung Galaxy 

S3 smartphone was used to record GNSS data with a 

frequency of 1Hz. Both GPS and GLONASS observations 

were recorded, including satellite visibility information 

and positioning results from the smartphone GNSS chip. 

500 particles are used in the particle filter. 

5.2 Positioning performance assessment 

In this section, the overall performance of the shadow-

matching positioning system is assessed and compared 

with the conventional GNSS solution from the GNSS chip 

in the Samsung Galaxy S3 smartphone.  

To compare the performance of shadow matching against 

the conventional GNSS positioning solution, the position 

errors are transformed from local coordinates (northing 

and easting) to the along-street and across-street directions. 

The cross-street direction is the main concern in this paper, 

because the sensitivity in this direction matters to many 

applications, including pedestrian navigation, vehicle 

navigation, and intelligent transportation systems. 

Figure 15 (left) shows the positioning results of the 

conventional GNSS navigation solution from the 

smartphone GNSS chip, compared with the three shadow 

matching algorithms: single-epoch shadow matching, 

Kalman filter shadow matching, and particle filter shadow 

matching, expressed as errors in the cross-street direction. 

The right graphs in the same figure shows the histogram of 

the error distribution. 

There are a few interesting points that can be observed 

from this figure. Firstly, the overall characteristics of 

shadow matching and conventional GNSS solutions are 

very different. The conventional GNSS solutions are 

smoother, as smoothing algorithms are commonly used in 

navigation GNSS chipsets. However, the shadow matching 

solutions, no matter which version, tend to be closer to 

zero, which means their accuracy is better, though their 

consistency is less stable. 

Secondly, the Kalman Filter shadow matching sometimes 

outperforms single epoch shadow matching by smoothing 

out anomalies, but not consistently better. The Kalman 

Filter shadow matching is more like a smoother, which in 

many cases has fewer variations compared to the single-

epoch shadow matching. When considering all routes 

taken in kinematic experiments, the smoothing effect 

frequently achieves a better accuracy, showing the benefit 

of using the Kalman Filter shadow matching. In other 

words, the improvement of the Kalman filter compared to 

single-epoch shadow matching is in smoothing, though not 

very significantly in accuracy. 

Thirdly, the particle filter shadow matching significantly 

outperforms all three other methods, including the Kalman 

filter shadow matching. For all the routes, the particle filter 

shadow matching positioning results show a clear peak at 

zero-error. 

 

Figure 11. The 3D city model used in shadow matching 

experiments. The area marked in red is where the four 

routes of experiments were conducted. 

 

Experimental area



 

Table 1 Summary of experimental configurations 

Route 

name 

Start time Start position End time End position Azimuth 

(Degree) 

Route 1 12:06:39 A (-0.07889849, 51.51333651) 12:08:06 B (-0.07806907 51.51329938) 97.6 

Route 2 11:34:25 C (-0.07891204, 51.51325212) 11:36:11 D (-0.07802733 51.51320084) 97.6 

Route 3 11:47:17 E (-0.07903944, 51.51256939) 11:49:23 F (-0.07819828 51.51299566) 62.0 

Route 4 11:57:40 G (-0.07899008 51.51250454) 11:59:37 H (-0.07812412 51.51291452) 62.0 
 

 

Figure 12 A photo taken at the experimental area, showing 

that it is an urban environment 

 

Figure 13 The 4 experimental routes illustrated in a 

satellite image 

 

Figure 14 A screen shot of the developed Android app 

which is used to record GNSS data for shadow matching 

(including satellite PRN, signal-to-noise ratio, azimuth, 

elevation and conventional GNSS positioning solution).  

It is clearly demonstrated that the particle filter shadow 

matching solution has improved on the conventional 

positioning error, in the across-street direction, from 

typically 10 - 40 meters to within 2-3 meters in route 1, 2, 

and 4. In route 3, the particle filter shadow matching is 

also better than conventional GNSS solutions in most 

epochs.  

In order to evaluate the performance across all of the 

epochs, a statistical analysis was performed. Two 

indicators, mean absolute deviation (MAD) and standard 

deviation (SD), were used to evaluate the performance 

from a statistical perspective. MADs for conventional 

GNSS and shadow matching (single epoch, Kalman filter, 

particle filter) are compared in Figure 16. Bars in the left 

sub-figure show MADs for each route and the right sub-

figure shows the mean MADs over all routes. The error are 

shown for using the conventional GNSS, single epoch 

shadow matching, Kalman filter shadow matching, and 

particle filter shadow matching algorithms, respectively. It 

should be noted that the statistics typically cover a 2-

minute (120 seconds) observation period, during which the 

constellation geometry changes slowly, so the results are 

highly correlated, temporally, allowing consistency of the 

system to be evaluated in a constantly changing 

environmental layout.  
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where ix  is the cross-street positioning error at the epoch, 

x  is the mean cross-street positioning error, and n  is the 

number of epochs in that route. 

It is shown in Figure 16 that the across street positioning 

performance of particle filter shadow matching is 

significantly better than the conventional GNSS 

positioning. The single epoch shadow-matching algorithm 

reduced the mean cross-street error, compared with 

conventional GNSS solutions, from 11.25m to 6.54m – by 

42.0%, averaged over routes 1, 2, 3, and 4. Kalman filter 

shadow matching has similar performance to single epoch 

shadow matching. The particle filter shadow-matching 

algorithm reduced the mean cross-street error to 2.41m – 

by 78.58%, compared with conventional GNSS 

positioning solutions. 



 

 

Figure 15 Positioning error of conventional GNSS, shadow 

matching, Kalman filter and particle filter, in cross-street 

direction. 

In Table 2, the standard deviation (SD) is compared 

between different methods, showing the new particle filter 

shadow matching solution also outperforms the other 

methods. Since the standard deviations of single epoch 

shadow matching and Kalman filter shadow matching are 

larger than their averaged MADs, the latter are 

insignificant, given that the datasets of this experiment are 

not very large.  

Further statistical comparisons were conducted to assess 

the positioning performance as success rate of achieving a 

threshold of certain accuracy in the cross-street direction, 

and the results are shown in Figure 17. As the street is 

around 10m wide, a positioning accuracy of less than 5m 

is considered good enough to distinguish sides of streets, 

while a positioning accuracy better than 2m is considered 

good enough to distinguish the footpath from a traffic lane. 

  

Figure 16 Mean absolute deviation (MAD) of cross-street 

positioning errors using different methods 

 

Figure 17 Success rate comparison between different 

positioning methods in each route 

Table 2 Comparison of cross-street error standard 

deviation between different methods 

Route Convent

ional 

GNSS 

(m) 

Shadow matching 

Single 

epoch(m) 

Kalman 

filter(m) 

particle 

filter(m)  

Route 1 2.32 16.97 17.01 1.92 

Route 2 8.76 6.94 9.96 2.15 

Route 3 3.04 8.07 7.06 5.92 

Route 4 3.43 3.50 3.34 1.34 

Average 4.39 8.87 9.34 2.83 

 

It can be seen from Figure 17, Table 3 and Table 4 that,  

Kalman filter shadow matching performs similarly to 

single epoch shadow matching, but both better than 

conventional GNSS. Particle filter shadow matching 

performs best as, for determining the correct side of a 

street, its success rate in these results is 72.4%, while for 

Kalman filter shadow matching it is 65.8%, and for 

conventional GNSS it is a poor 1.40%. The success rate of 

distinguishing a footpath from a traffic lane is 90.7% for 

particle filter shadow matching, 77.0% for Kalman filter 

shadow matching, and merely 18.2%, for conventional 

GNSS positioning. 

Route 1

Route 2

Route 4

Route 3

Route 1 Route 2

Route 3 Route 4



 

Table 3 Success rate of achieving the 2-meter accuracy 

threshold in cross-street direction comparison between 

different methods 

Route Convent

ional 

GNSS 

Shadow matching 

Single 

epoch 

Kalman 

filter  

particle 

filter  

Route 1 0 0.716 0.614 0.955 

Route 2 0.056 0.981 0.991 0.607 

Route 3 0 0.181 0.213 0.520 

Route 4 0 0.847 0.814 0.814 

Average 0.014 0.681 0.658 0.724 

 

 

Table 4 Success rate of achieving the 5-meter accuracy 

threshold in cross-street direction comparison between 

different methods 

Route Convent

ional 

GNSS 

Shadow matching 

Single 

epoch 

Kalman 

filter  

particle 

filter  

Route 1 0.114 0.750 0.693 1 

Route 2 0.159 0.991 1 1 

Route 3 0.457 0.276 0.386 0.646 

Route 4 0 1 1 0.983 

Average 0.182 0.754 0.770 0.907 

 

6. CONCLUSIONS 

While single-epoch shadow matching works only for static 

applications, now, for the first time, the kinematic shadow 

matching is tackled in this paper. Two approaches are 

proposed: using a Kalman filter and using a particle filter. 

Compared with single-epoch shadow matching, both 

enable position estimation of moving objects (pedestrians 

or vehicles with GNSS enabled devices) using data from 

multiple epochs.  

Real-world kinematic experiments were conducted in an 

urban area in London, UK. An Android application was 

developed to record the GNSS data stream on a 

smartphone. Four different routes, on two different streets, 

were tested by a pedestrian, providing a performance 

assessment of the new system. Evaluation and comparison 

between four methods (conventional GNSS, conventional 

single-epoch shadow matching, Kalman filter shadow 

matching, and particle filter shadow matching) was 

conducted. 

Compared with single-epoch shadow matching, the 

Kalman filter is proven able to smooth the results, as can 

be seen in Figure 15. In terms of accuracy, Kalman filter 

shadow matching is similar to single epoch shadow 

matching. Compared with conventional GNSS, it reduces 

the mean cross-street positioning error from 11.25m to 7m 

– by 37.8%. It also improves the success rate of 

distinguishing the footpath from a traffic lane (2-meter-

error) from 1.40% to 65.8%, and the success rate of 

distinguishing sides of streets (5-meter-error) from 18.2% 

to 77.0%.  

Since a Kalman filter has its limitations, including linear 

and Gaussian distribution assumptions, a particle filter, a 

non-linear non-Gaussian estimator, is tested. Experimental 

results from the particle filter show a clear boost in 

positioning performance. Compared with Kalman filter 

shadow matching (which is very similar in performance to 

single-epoch shadow matching), particle filter shadow 

matching increases the 2-meter-error success rate from 

65.8% to 72.4%, and the 5-meter-error success rate from 

77.0% to 90.7% – and reduces the average cross-street 

positioning error to 2.84m – by 74.8% compared to 

conventional GNSS. 

In summary, the four experimental routes together prove 

that the Kalman filter can smooth single-epoch shadow 

matching, though accuracy is no better than for single-

epoch shadow matching. The proposed particle filter, in 

contrast, boosts positioning accuracy significantly 

compared with conventional GNSS. Thus, particle filter 

shadow matching has the potential to improve mobile 

device positioning in urban areas from street level to lane-

level. 

7. DISCUSSIONS AND FUTURE WORK 

As discussed in the introduction, meter-level cross-street 

accuracy for GNSS positioning in urban areas would 

benefit a variety of applications from Intelligent 

Transportation Systems (ITS) and lane identification in 

navigation systems, higher resolution location-based 

advertisement (LBA), step-by-step guidance (for the 

visually impaired and for tourists) to many other location-

based services (LBS).  

It should also be noted that the system does not require 

real-time rendering of 3D scenes or any additional 

hardware, making it power-efficient and cost-effective. As 

shadow matching is a highly parallelizable algorithm, 

parallel processing techniques can be applied to it, 

exploiting the increasing availability of multi-core 

processors in smartphones. The system is also extensible 

to work with Galileo and Beidou (Compass). 

The shadow matching positioning system is a suitable 

complementation to conventional GNSS positioning. As 

shadow matching improves the cross-street accuracy 

significantly, it shows a high potential to be combined with 

conventional GNSS for better overall performance (Groves 

et al., 2012). 

In the future, shadow matching can be implemented as part 

of an intelligent positioning system (Groves et al., 2012), 

along with techniques including Wi-Fi positioning, IMU, 

gyroscopes, pressure sensors, Bluetooth low energy, and 

context-aware techniques (Groves et al., 2013), in order to 

improve the overall positioning performance. 
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