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A detailed description of macromolecular assemblies in multiple conformational states can be very valuable
for understanding cellular processes. At present, structural determination ofmost assemblies in different bio-
logically relevant conformations cannot be achieved by a single technique and thus requires an integrative
approach that combines information from multiple sources. Different techniques require different computa-
tional methods to allow efficient and accurate data processing and analysis. Here, we summarize the latest
advances and future challenges in computational methods that help the interpretation of data from two tech-
niques—mass spectrometry and three-dimensional cryo-electron microscopy (with focus on alignment and
classification of heterogeneous subtomograms from cryo-electron tomography). We evaluate how new
developments in these two broad fields will lead to further integration with atomic structures to broaden
our picture of the dynamic behavior of assemblies in their native environment.
Cellular processes, from signaling to metabolic pathways,

molecular transport, and gene expression, are governed by

interactions of proteins and nucleic acids often forming macro-

molecular assemblies. Detailed structural characterization of

such assemblies is essential for gaining a deeper understanding

of how cells operate and how they evolved. At present, subunit

compositions, topology, overall architectures, and conforma-

tional dynamics of most assemblies are unknown. It is becoming

clear that the integration of data derived from a variety of bio-

physical techniques at multiple levels of resolution can achieve

structural analysis of large assemblies that are otherwise refrac-

tory to high-resolution structure determinationwith X-ray crystal-

lography or nuclear magnetic resonance (NMR) spectroscopy

(Alber et al., 2008; Karaca and Bonvin, 2013; Lander et al.,

2012; Ward et al., 2013). Naturally, some of these techniques

have become more prominent in recent years, especially due

to their complementary nature as well as their ability to deal

with large heterogeneous complexes.

One such example is mass spectrometry (MS). MS measures

the mass-to-charge ratio (m/z) of ionized species from which the

mass of a particular ion can be determined. In the past two

decades, MS has become a key technology in proteomics,

where measuring masses of peptides and their fragments com-

bined with detecting their identity by database searches is used

to identify proteins in the sample on a molecular, cellular, or

organismal level (Angel et al., 2012; Cox andMann, 2011; Kühner

et al., 2009). In parallel, MS is increasingly used for analyzing

intact proteins (often referred to as native MS) and their assem-

blies with other proteins, DNA, RNA, and small molecules

because it is possible to maintain such interactions during the

transfer to the gas phase (Heck, 2008; Sharon and Robinson,

2007). It can reveal the oligomerization state of the protein, the

number of ligands bound to it, and, for protein complexes, their

overall composition, subunit stoichiometry, as well as its archi-

tectural organization. Additionally, insights into the conforma-
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tional dynamics of the system can be obtained by combining

MS analysis with sample preparation approaches such as chem-

ical crosslinking, hydrogen-deuterium exchange, as well as

other gas-phase separation approaches such as ion-mobility

MS (Hyung and Ruotolo, 2012; Walzthoeni et al., 2013).

A second example is three-dimensional (3D) cryo-electron

microscopy (3D EM). Because of advances in cryogenic

methods, instrumentation, and image processing, 3D EM has

demonstrated many biological objects in a close to native,

hydrated state (Orlova and Saibil, 2011). In single-particle cryo-

EM, the general assumption is that the studied objects in the

sample (‘‘particles’’) are identical and therefore their images

can be classified and averaged (to improve signal-to-noise ratio)

into different two-dimensional (2D) ‘‘views’’ and subsequently

reconstructed into a 3D map. In cryo-electron tomography

(cryo-ET), a tomogram is reconstructed from a set of 2D cryo-

electron micrographs, which are collected by tilting one sample

around a single rotational axis. Therefore, this technique depicts

pleomorphic biological specimens (Leis et al., 2009). Cryo-ET

has revealed low-resolution ultra-structures of whole cells and

the distributions of large complexes inside them (Beck et al.,

2009; Yahav et al., 2011; Gan and Jensen, 2012). Increasingly,

the single-particle approach is also used in cryo-ET (via subto-

mogram averaging) to generate higher resolution 3D density

maps of individual assemblies, and therefore is becoming partic-

ularly popular in studying large assemblies, including those

bound to membranes (Al-Amoudi et al., 2011; Briggs, 2013;

Maurer et al., 2013).

Naturally, cryo-EM/ET methods can capture complexes dur-

ing vitrification in different conformational states, which are often

biologically relevant (Fourniol and Moores, 2011). In cryo-EM,

statistical analysis and classification methods have been applied

with great success in detecting conformational differences

in assembly structures (Agirrezabala et al., 2012; Clare et al.,

2012). In cryo-ET, there is great potential, as the technique
eserved
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explores macromolecular assemblies in their natural environ-

ment (Beck et al., 2004). However, many challenges remain,

not only due to lower resolution and lower signal-to-noise ratio,

but also due to distortions in the sample as a result of themissing

wedge effect and the increase in computational costs when pro-

cessing 3D instead of 2D images.

Indeed, progress in sample preparation, instrumentation, as

well as data processing and interpretation in both 3D EM and

MS has had a tremendous impact in studying the architecture

ofmacromolecular assemblies in a complementary fashion (Ortiz

et al., 2010; Lasker et al., 2012; Malet et al., 2012; Noble et al.,

2013; Anger et al., 2013; Housden et al., 2013). Yet this progress

has brought with it many new challenges, especially regarding

the analysis of conformational states in assemblies. This

Perspective aims to specifically address this latter issue. We

discuss recent developments and future challenges in computa-

tional methods that aid the analysis of these techniques and the

integration with atomic models to enable detailed insights into

the dynamic nature of macromolecular assemblies.

Probing the Dynamics of Assemblies with Mass
Spectrometry
Computational methods are at the heart of proteomics research

as the vast amount of data generated need to be processed,

searched against protein databases, quantitated, efficiently

stored, and linked to public pathway and interaction databases.

There are numerous programs, both commercial and free, devel-

oped for such a purpose, but the type of sample preparation,

experimental design, and particular MS instrument used for the

analysis often dictate which programs are to be used.

Chemical crosslinking coupled to MS (XL-MS) reveals not only

which proteins interact in the sample, but also which specific

parts are involved in the interaction (Rappsilber, 2011;

Figure 1A). A challenge arises because crosslinked peptides

are usually in much lower abundance compared to non-cross-

linked ones; therefore, protein fractionation steps, based on

strong cation exchange, are often used to circumvent this prob-

lem (Leitner et al., 2012b). The number of possible crosslinked

peptide combinations, from even a small number of proteins, is

very high. This problem drastically increases the search space

of the database to be considered, because each peptide from

a given protein needs to be in silico crosslinked with every

other peptide from the other proteins in the database (Rap-

psilber, 2011). As a result, the false discovery rate increases.

Additionally, the fragmentation of crosslinked peptides gives

rise to complex tandem mass spectra (further complicating

database searches). Programs have recently been developed

to circumvent some of these issues (Walzthoeni et al., 2012;

Yang et al., 2012).

Despite these challenges, XL-MS has been successfully used

to capture the dynamics of large protein complexes because

crosslinking can freeze transient protein interactions. An

example is the study of ribosomal protein S1 by Lauber and col-

leagues, which revealed that the N-terminal part of the protein

binds the ribosome while the C-terminal part is very dynamic

and used as an mRNA catching arm (Lauber et al., 2012).

Another recent example has used comparative crosslinking to

study the dynamics of chloroplast ATPase upon phosphorylation

(Schmidt et al., 2013). The study was able to shed light on how
Structure
phosphorylation changes subunit interactions in the complex

thereby regulating nucleotide binding.

Hydrogen-deuterium exchange coupled to MS (HDX-MS) can

provide information regarding the flexibility of certain parts of a

protein. For example HDX-MS experiments can reveal protein

dynamic events during protein folding/unfolding, conformational

changes (e.g., induced by ligand binding), hydrogen bonding, or

solvent exposure. While HDX experiments are not trivial, recent

developments in both automated sample preparation, MS

instrumentation, and enhanced data analysis algorithms

(Kazazic et al., 2010; Pascal et al., 2009; Zhang et al., 2012b)

have increased the use and reliability of the technique (Iacob

and Engen, 2012). Because the buried residues generally ex-

change hydrogens more slowly than the surface residues,

HDX-MS results reflect differences in solvent exposure by com-

parison of the same peptide segments from free and bound

proteins in a complex (Noble et al., 2013). The resolution of the

approach is limited by the size and overlap of the identified pep-

tides generated after proteolysis of the labeled proteins. In some

reports, near-amino acid resolution has been achieved (Hu et al.,

2013). While initially limited to analysis of small proteins, recently

HDX-MS has been used to study the dynamics of large protein

complexes such as GroEL-nucleotide binding (Zhang et al.,

2013) and antibody-antigen binding in viral capsids (Bereszczak

et al., 2013).

Ion-mobility MS (IM-MS) allows one to separate coexisting

forms of the same protein/protein complex that would otherwise

be indistinguishable using MS alone. The time it takes an ion to

traverse the ion mobility cell is related to its mass, charge, and

rotationally averaged collision cross-section (CCS), the latter

being a measure of the overall shape of the ion (Bohrer et al.,

2008). Because of these capabilities, IM-MS has been used to

study a number of challenging dynamic systems (Beveridge

et al., 2013; Hilton et al., 2013) including aggregating proteins

(Bernstein et al., 2009; Smith et al., 2010) and viruses (Uetrecht

et al., 2011). Advances in computational tools to analyze the

IM data have been limited; however, a program that aids such

analysis has recently been developed (Sivalingam et al., 2013).

Additionally, CCS measurements obtained from IM-MS ex-

periments have been used as constraints to model protein

complexes (Politis et al., 2010).

Thus far, only a few attempts have been made to use a com-

bination of the above MS approaches in the context of protein

modeling. In a recent example, a combination of XL-MS and

HDX-MS was used to describe structural differences of NKR-

P1A receptor (Rozbesky et al., 2012, 2013). Yet, it is still chal-

lenging for all the different MS approaches to be used for the

study of a single system because each approach requires

different sample preparation methods, mass spectrometers,

and software setups for processing the raw data. Computational

methods to make use of all different, but often complementary,

MS information will also need to be developed.

Detecting Conformational States of Assemblies in
Cryo-ET Image Analysis
Cryo-EM has emerged as an important tool for studying struc-

tures of macromolecular complexes in different conformational

states. Several successful applications performed 3D recon-

structions of conformational states based on a reference-free
21, September 3, 2013 ª2013 Elsevier Ltd All rights reserved 1501



Figure 1. Diverse Types of Information Calculated Based on Data from Various Techniques about a Dynamic Complex
(A–C) Information based on MS techniques, including peptides indicating crosslinks, solvent exposure information from HDX-MS, and arrival time distributions
from IM-MS that can be used to calculate CCSs (A), 3D densitymaps of two conformational states detected from cryo ET classifications (B), and atomicmodels of
the complex resulting from X-ray crystallography, NMR spectroscopy, or structure prediction methods (C).
(D) The information can be combined to provide pseudo-atomic models of the complex in multiple conformations.
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classification of 2D images (Scheres et al., 2005; Spahn and

Penczek, 2009; Elad et al., 2008). In such a procedure, the initial

classification of particles is directly derived from the input data

and does not rely on an initial knowledge of a template complex

structure. Such reference-free methods are computationally

significantly more challenging, but are essential for providing un-

biased structural categorization of the complexes and their

conformational states.

Recently, such methods have been extended to cryo-ET,

opening new exciting opportunities for in situ analysis of com-

plexes (Figure 1B). However, image analysis in cryo-ET is more

challenging in comparison to single-particle reconstructions

mainly due to higher noise levels (Frangakis and Förster, 2004)

and lower nonisotropic resolution (Förster et al., 2005; Luci�c

et al., 2005). Among other issues, the ‘‘missing wedge effect’’

causes severe distortions in tomograms as a result of a maximal

microscope tilt range from �70 to 70 degrees when collecting

images. These missing data lead to anisotropic resolution and

different kinds of artifacts that depend on structure and orienta-

tion of the object. In addition, difficulties arise in detecting and

masking complexes in crowded and heterogeneous cellular to-

mograms (Beck et al., 2004; Brandt et al., 2010). Due to the

higher noise level and lower resolution, it is crucial to classify

and average a relatively large number of particles (Liu et al.,

2012). However, the processing of 3D images is computationally

more intensive. High-throughput classification of tens of thou-

sands of subtomograms is not trivial and will demand novel,

more efficient methods in several areas, including faster 3D

alignment and classification methods together with automatic

particle selection (Zhu et al., 2004), as well as the masking of

target complexes from cellular tomograms (Xu and Alber, 2013).

Several types of reference-free subtomogram classification

strategies have been adapted to cryo-ET analysis, including

methods based on maximum likelihood approaches (Scheres

et al., 2009) and methods that rely on iterative successive align-

ment and classification steps (i.e., the alignment-through-classi-

fication approach; Bartesaghi et al., 2008;Winkler, 2007;Winkler

et al., 2009). In all these approaches, aligning the 3D subtomo-

grams is one of the limiting factors in terms of computational

efficiency. The alignment relies on the search for the rigid trans-

formation of one subtomogram with respect to the second that

maximizes the similarity measure between them. Several similar-

ity measures take into account the missing wedge effects by

using a constrained similarity score (Bartesaghi et al., 2008;

Förster et al., 2008; Volkmann, 2010; Amat et al., 2010).

To find the optimal alignment, many existing methods use an

exhaustive 3D scanning over all rotations/translations of one

subtomogram relative to the second (Förster et al., 2008; Volk-

mann, 2010; Amat et al., 2010). Such methods are computation-

ally intensive, which limits their applicability when dealing with

large data sets. This problem becomes even more severe with

increasing cryo-ET resolutions (Murata et al., 2010) and the

resulting larger subtomogram volumes. Therefore, the develop-

ment of new algorithms that improve speed and accuracy of

high-throughput alignment is essential for increasing resolution

and accuracy in structural characterization of complexes by

cryo-ET. Recently, fast subtomogram alignment methods have

been proposed to significantly speed up the alignment step.

To enhance computational efficiency, they use a rapid computa-
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tion of the best rotational transformation (Bartesaghi et al., 2008;

Xu et al., 2012; Chen et al., 2013; Xu and Alber, 2013). These

methods all rely in different ways on spherical harmonics-based

fast rotational matching. They can enhance computational

speed by more than three orders of magnitude in comparison

to exhaustive scanning methods (Xu et al., 2012). Several other

methods improved alignment accuracy by applying refinements

given initial alignments (Bartesaghi et al., 2008; Xu and Alber,

2012; Kuybeda et al., 2013; Hrabe et al., 2012).

Fast and accurate subtomogram alignments are only one

component for the successful classification of complexes in

cryo-ET. Other challenges remain, which we cannot describe

here in detail. Such challenges are for instance efficient and scal-

able approaches for dimension reduction (Heumann et al., 2011),

which allow focusing on the information that is most relevant for

discriminating the aligned subtomograms. Also methods are

needed for automatic particle picking and masking from highly

crowded cell tomograms (Xu and Alber, 2013), which is a prereq-

uisite for generating the large amount of particles necessary for

accurate classification and averaging of subtomograms to

reconstruct density maps of assemblies in different states.

As an emerging and important imaging technique, the cost of

3D EM imaging is decreasing quickly. Combined with new

detector technology and automation in data acquisition and

analysis, it is becoming easier to generate large data sets of

cryo-EM images or subtomograms of macromolecular com-

plexes, which opens new opportunities to study large complexes

at multiple conformations. Despite these advances (which in sin-

gle-particle cryo-EM studies enabled the reach of near-atomic

resolution; Hryc et al., 2011), in cryo-ET (Briggs, 2013) and

most cryo-EM studies, the level of resolution that can be

achieved is still far from allowing an atomic model to be directly

constructed from the density.

Pseudo-Atomic Models of Assemblies at Multiple
Conformations Using EM Data
Generating a pseudo-atomic assembly model from most 3D EM

density maps at intermediate to low resolution (�5–25 Å)

currently involves a series of steps, which often include segmen-

tation (Pintilie et al., 2010) and fitting of multiple atomic models

from either X-ray crystallography, NMR spectroscopy, structure

simulation, or prediction methods (Esquivel-Rodrı́guez and

Kihara, 2013; Degiacomi et al., 2013; Figures 1C and 1D). Iden-

tifying the optimal fit from a gamut of solutions is a challenging

task, depending on the map resolution, the accuracy of the fitted

model, the complexity of their representation, and the scoring

function. Rigid fitting uses a global search in six translation/

rotation degrees of freedom to get the best configuration of the

atomic model in the map (Chacón and Wriggers, 2002; Volk-

mann and Hanein, 1999). For assembly modeling, multiple com-

ponents have to be fitted, making it a multibody optimization

problem that increases the search space exponentially with the

number of components. So far, only a handful of assembly-fitting

approaches have been developed that simultaneously optimize

the position and orientation of the components within the 3D

map (Kawabata, 2008; Lasker et al., 2009; Rusu and Birmanns,

2010; Zhang et al., 2010).

Because 3D EM maps can represent multiple conformational

states, the conformation of the fitted components frequently
21, September 3, 2013 ª2013 Elsevier Ltd All rights reserved 1503
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has to be changed to gain insight into the dynamic properties

of the assembly. Flexible fitting addresses this problem by

improving the goodness-of-fit while simultaneously ‘‘flexing’’

the atomic structure in the map. Due to the complexity of the

problem, this step is typically performed either by following the

segmentation of the map after detecting the coarse assembly

positions (Seitsonen et al., 2012) or in the context of the map

using the internal symmetry (if the component approximate

position is known and symmetry can be applied; Chan et al.,

2011; Chapman et al., 2013).

Over the past decade, real-space refinement approaches

have become very popular, using rigid-fragment fitting, low-

parameter deformations, and fully flexible, all-atom gradient-

descent and molecular dynamics optimizers (Chapman et al.,

2013; Roseman, 2000; Schröder et al., 2007; Tama et al.,

2004; Topf et al., 2008; Trabuco et al., 2008; DiMaio

et al., 2009; Grubisic et al., 2010). These methods typically rely

on a standard molecular mechanics force field with an additional

biasing force calculated from the density map. They have been

applied successfully, primarily at the intermediate resolution

range, to a number of dynamic systems, including translocation

intermediates in ribosomes (Agirrezabala et al., 2012) and ATP-

triggered intermediates of the GroEL chaperonin (Clare et al.,

2012). However, with the appropriate coarse-graining approach,

they in principle can be applied to lower resolution maps, also

coupled with hierarchical refinement at multiple stages to reduce

overfitting (Pandurangan and Topf, 2012). Flexible fitting in com-

bination with normal mode analysis (Tama et al., 2004; Suhre

et al., 2006) has also been successful, mainly due to the ability

to capture large-scale conformational changes, and is likely to

play an important role in exploring the conformational states

from multiple low-resolution maps. This approach helped for

example in analyzing the dynamic toxic complex of anthrax at

18 Å resolution (Tama et al., 2006). An interesting recent devel-

opment by Zhang and co-authors was to incorporate information

from 2D classification of the electronmicrographs into the refine-

ment process without the need to include a 3D model of the

density (Zhang et al., 2012a).

In sum, a wide selection of methods is available to model mul-

tiple conformations from intermediate- to low-resolution 3D EM

maps. Mostly, the choice of the method depends on the size

of the system under consideration, the level of flexibility, and

other characteristics, such as the resolution and symmetry.

The development of general flexible fitting methods robust

enough to deal with different systems and with low-resolution

maps remains a challenge. Moreover, progress in the develop-

ment of new scoring functions (Vasishtan and Topf, 2011) and

validation methods (Henderson et al., 2012) as well as in the inte-

gration of additional data from multiple sources (see below) will

allow better characterization of the conformational states. Inter-

estingly, a recent study demonstrated that the use of multiple

flexible fitting approaches to achieve a consensus fit could aid

in improving and qualitatively assessing such fits (Ahmed and

Tama, 2013).

Integrative Modeling
When refining assembly models in low-resolution density

maps, the scoring function can also be expanded using spatial

restraints generated from MS (Benesch and Ruotolo, 2011;
1504 Structure 21, September 3, 2013 ª2013 Elsevier Ltd All rights r
Walzthoeni et al., 2013; Figure 1). Integration of data from multi-

ple sources for assembly modeling has recently been imple-

mented in a number of software packages (Loquet et al., 2012;

Russel et al., 2012; Karaca and Bonvin, 2013). With XL-MS,

data can be directly translated into distance restraints and

combined with the 3D density fitting (as demonstrated by the

structure determination of the 26S proteasome; Bohn et al.,

2010; Lasker et al., 2012) or with 2D class-average images

(Velázquez-Muriel et al., 2012). Systematic integration of XL-

MS data with various complementary data types also assisted

in the modeling of the bacterial signal recognition particle in

complex with its receptor (Chu et al., 2004), and more recently,

RNA polymerases (Chen et al., 2010; Blattner et al., 2011) and

TRiC/CCT chaperonins (Herzog et al., 2012; Kalisman et al.,

2012; Leitner et al., 2012a). HDX-MS, which can reveal relative

solvent accessibility, has been used, for example, to study a

multidomain kinase (Engen et al., 2013). Potentially, this method

can probe the conformational dynamics of a wide range of other

assemblies (Engen et al., 2013). Because the resolution of the

method dictates the type of restraint that can be designed, which

is clearly a nontrivial task, it is easier to use this information in the

context of model assessment. Such an approach was taken

recently to validate a pseudo-atomic model of the COPII cage

assembly, which was flexibly fitted into an intermediate-resolu-

tion cryo-EM map (Noble et al., 2013). IM-MS data can be

used to calculate CCSs and compared to the theoretical values

calculated from models (Politis et al., 2010). A number of

methods to calculate the theoretical CCS have been developed

(Bleiholder et al., 2011; Mesleh et al., 1996; Shvartsburg and Jar-

rold, 1996). This information could be helpful, for example, in

determining assembly component conformations (Hall et al.,

2012).

With advances in the use of MS techniques to tackle heteroge-

neous samples of large complexes, including in situ (Zhang et al.,

2009), it is likely to play an important role in modeling macromo-

lecular assemblies in combination with 3D EMdata, not only with

respect to the overall architecture, but also to the conformational

flexibility. However, many challenges in such data integration still

remain. These include the difficulty in designing an accurate

scoring function, the complexity of the conformational space

to be sampled, the treatment of ambiguous input data, and

model assessment. Moreover, it is necessary that all the exper-

iments are performed at similar conditions to prevent differences

in conformational dynamics between them. This may not always

be the case. Future cryo-ET studies on specific tagged assem-

blies are likely to use XL-MS and other proteomics approaches

to enable direct identification of specific assembly components

captured in different conformations. Such methodology was

recently proposed for identifying binding partners bound to ribo-

some dimers in situ (Ortiz et al., 2010).

Summary
Cryo-EM/ET and MS can provide complementary information

about macromolecular assembly structures in different confor-

mational states. Computational methods have been an integral

part of the acquisition and analysis of data originating from these

techniques. In this Perspective, we have provided a brief

description of the type of data obtained and the relevant compu-

tational methods used.We focused on XL-MS, HDX-MS, IM-MS,
eserved
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alignment, and classification methods of heterogeneous sam-

ples of cryo-ET subtomograms as well as the fitting of atomic

models from various sources into 3D EM maps. We touched

upon future developments that will push the boundaries of infor-

mation gained from such approaches and will help capture the

dynamics of assemblies. Finally, we discussed some of the chal-

lenges involved in the integration of this information. Such inte-

gration promises to increase our understanding of numerous

biological processes.
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