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reduction and useful side-effects
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The bias of an estimator is defined as the difference of its expected value
from the parameter to be estimated, where the expectation is with respect to
the model. Loosely speaking, small bias reflects the desire that if an experiment
is repeated indefinitely then the average of all the resultant estimates will be
close to the parameter value that is estimated. The current article is a review of
the still-expanding repository of methods that have been developed to reduce
bias in the estimation of parametric models. The review provides a unifying
framework where all those methods are seen as attempts to approximate the
solution of a simple estimating equation. Of particular focus is the maximum
likelihood estimator, which despite being asymptotically unbiased under the usual
regularity conditions, has finite-sample bias that can result in significant loss of
performance of standard inferential procedures. An informal comparison of the
methods is made revealing some useful practical side-effects in the estimation of
popular models in practice including: (1) shrinkage of the estimators in binomial
and multinomial regression models that guarantees finiteness even in cases of
data separation where the maximum likelihood estimator is infinite and (2)
inferential benefits for models that require the estimation of dispersion or precision
parameters. © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc.
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Supplementary material for this article is available upon request
and includes a script that reproduces the analyses of the gaso-
line yield data using Beta regression models (wireGasoline.R).
The script for the wine tasting data case study with cumula-
tive link models is available at the supplementary material of
Kosmidis30 and can be obtained following the associated DOI
link in the References section. A change in behavior at the latest
version of the ordinal R package at the time of writing (version
2013.9-30) returns nonavailable values for the earlier estimated
standard errors, and Z-values for the parameters of cumulative
link models when at least one infinite estimate is detected. For this
reason, the wine data analyses can be reproduced using version
2012.01-19 of the ordinal package which is available for download
at http://cran.r-project.org/src/contrib/Archive/ordinal/

IMPACT OF BIAS IN ESTIMATION

By its definition, bias necessarily depends on how
the model is written in terms of its parameters

and this dependence makes it not a strong statisti-
cal principle in terms of evaluating the performance
of estimators; e.g., unbiasedness of the familiar sam-
ple variance S2 as an estimator of 𝜎2 does not deliver
an unbiased estimator of 𝜎 itself. Despite this fact, an
extensive amount of literature has focused on unbi-
ased estimators (estimators with zero bias) as the basis
of refined statistical procedures (e.g., finding minimum
variance unbiased estimators). In such work unbi-
asedness plays the dual role of a condition that (1)
allows the restriction of the class of possible estima-
tors in order to obtain something useful (like mini-
mum variance amongst unbiased estimators), and (2)
ensures that estimation is performed in an impartial
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way, ruling out estimators that would favour one
or more parameter values at the cost of neglect-
ing other possible values. Lehmann and Casella1

is a thorough review of statistical methods that
are optimal once attention is restricted to unbiased
estimators.

Another stream of literature has focused in
reducing the bias of estimators, as a means to alleviat-
ing the sometimes considerable problems that bias can
cause in inference. This literature, despite dating back
to the early years of statistical science, is resurfacing as
increasingly relevant as the complexity of models used
in practice increases and pushes traditional estimation
methods to their theoretical limits.

The current review focuses on the latter litera-
ture, explaining the link between the available meth-
ods for bias reduction and their relative merits and
disadvantages through the analysis of real data sets.

The following case study demonstrates the direct
consequences that the bias in the estimation of a
single nuisance (or incidental) parameter can have
in inference, even if all parameters of interest are
estimated with negligible bias.

Gasoline Yield Data
To demonstrate how bias can in some cases severely
affect estimation and inference we follow the gaso-
line yield data example in Kosmidis and Firth2 and
Grün et al.3 The gasoline yield data4 consists of
n= 32 observations on the proportion of crude oil
converted to gasoline after distillation and fraction-
ation on 10 distinct experimental settings for the
triplet (1) temperature in degrees Fahrenheit at which
10% of crude oil has vaporized, (2) crude oil grav-
ity, and (3) vapor pressure of crude oil. The tem-
perature at which all gasoline has vaporized is also
recorded in degrees Fahrenheit for each one of the 32
observations.

The task is to fit a statistical model that links the
proportion of crude oil converted to gasoline with the
experimental settings and the temperature at which
all gasoline has vaporized. For this we assume that
the observed proportions of crude oil converted to
gasoline y1, y2, … , yn are realizations of independent
Beta distributed random variables Y1, … , Yn, where
𝜇i =E(Yi) and var(Yi)=𝜇i(1−𝜇i)/(1+𝜙). Hence, in
this parameterization, 𝜙 is a precision parameter
(i= 1, … , n). Then, the mean 𝜇i of the ith response
can be linked to a linear combination of covariates and
regression parameters via the logistic link function as

log
𝜇i

1 − 𝜇i
= 𝛼 +

9∑
t=1

𝛾tsit + 𝛿ti (i = 1, … ,n) . (1)

In the above expression, si1, … , si9 are the values
of nine dummy covariates which represent the 10
distinct experimental settings in the data set and ti
is the temperature in degrees Fahrenheit at which
all gasoline has vaporized for the ith observation
(i= 1, … , n).

The parameters 𝜃 = (𝛼,𝛾1, … ,𝛾9,𝛿,𝜙) are esti-
mated using maximum likelihood and the estimated
standard errors for the estimates are calculated using
the square roots of the diagonal elements of the inverse
of the Fisher information matrix for model 1. The
parameter 𝜙 is considered here to be a nuisance (or
incidental) parameter which is only estimated to com-
plete the specification of the Beta regression model.

Table 1 shows the parameter estimates with
the corresponding estimated standard errors and the
95% Wald-type confidence intervals. One immediate
observation from the table of coefficients is the very
large estimate for the precision parameter 𝜙. If this
is merely the effect of upward bias then this bias
will result in underestimation of the standard errors
because for such a model the entries of the Fisher
information matrix corresponding to the regression
parameters 𝛼, 𝛾1, … , 𝛾9, 𝛿 are quantities of the form
‘𝜙 times a function of 𝜃’ (see Refs 2, 3 for expressions
on the Fisher information). Hence, if the estimation
of 𝜙 is prone to upward bias, then this can lead to
confidence intervals that are shorter than expected at
any specified nominal level and/or anti-conservative
hypothesis testing procedures, which in turn result in
spuriously strong conclusions.

To check whether this is indeed the case a small
simulation study has been designed where 50000
samples are simulated from the maximum likelihood
fit shown in Table 1. Maximum likelihood is used to fit
model 1 on each simulated sample and the bias of the
maximum likelihood estimator is estimated using the
resultant parameter estimates. The estimated bias for
𝛼 is 0.010 while the estimated biases for 𝛾1, … , 𝛾9, 𝛿
are all less than 0.005 in absolute value, providing
indications that bias on the regression parameters is of
no consequence. Nevertheless, the estimated bias for
𝜙 is 299.779 which indicates a strong upward bias in
the estimation of 𝜙. To check how the upward bias in
the precision parameter can affect the usual Wald-type
inferences, we estimate the coverage probability (the
probability that the confidence intervals contains the
true parameter value) of the individual Wald-Type
confidence intervals at levels 90, 95, and 99%. Table 2
shows the results. It is clear that the Wald-type
confidence intervals systematically undercover the true
parameter value across parameters.

Such behavior is observed even when the preci-
sion parameter is linked to covariates through a link
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TABLE 1 Maximum Likelihood Estimates for the Parameters of Model 1 with the Corresponding Estimated Standard Errors and the Wald-Type
95% Confidence Intervals (‘estimate’ ± 1.96 ‘estimated standard error’).

Parameter Estimate Estimated Standard Error 95% Confidence Interval

𝛼 −6.160 0.182 −6.517 −5.802
𝛾1 1.728 0.101 1.529 1.926
𝛾2 1.323 0.118 1.092 1.554
𝛾3 1.572 0.116 1.345 1.800
𝛾4 1.060 0.102 0.859 1.260
𝛾5 1.134 0.104 0.931 1.337
𝛾6 1.040 0.106 0.832 1.248
𝛾7 0.544 0.109 0.330 0.758
𝛾8 0.496 0.109 0.282 0.709
𝛾9 0.386 0.119 0.153 0.618
𝛿 0.011 0.000 0.010 0.012
𝜙 440.278 110.026 224.632 655.925

TABLE 2 Estimated Coverage of Wald-Type Confidence Intervals at
Nominal Level 90, 95, and 99%. Estimated Standard Errors Are
Calculated Using the Fisher Information at the Maximum Likelihood
Estimates.

Nominal Level

Parameter 90% 95% 99%

𝛼 80.2 87.2 94.9

𝛿1 80.3 87.3 95.2

𝛿2 80.2 87.1 95.1

𝛿3 80.2 87.1 94.8

𝛿4 80.2 87.5 95.2

𝛿5 80.5 87.5 95.2

𝛿6 80.4 87.4 95.1

𝛿7 80.6 87.4 95.1

𝛿8 80.2 87.3 95.1

𝛿9 80.5 87.3 95.0

𝜙 79.9 87.1 94.9

function, like logarithm (see e.g. Ref 3). More gen-
erally, similar consequences of bias in inference are
present in all exponential family models that involve
the estimation of dispersion (or precision) parameters.

CONSISTENCY, BIAS, AND VARIANCE

Suppose that interest is in the estimation of a
p-vector of parameters 𝜃, from data y(n) assumed
to be realizations of a random quantity y(n) dis-
tributed according to a parametric distribution M𝜃,
𝜃 = (𝜃1, … ,𝜃p)T ∈Θ⊂ℜp. The superscript n here is
used as an indication of the information in the data
and is usually the sample size in the sense that the

realization of Y(n) is y(n) = (y1, … ,yn)T . An estimator
of 𝜃 is a function 𝜃 ≡ t

(
Y(n)) and in the presence of

data the estimate would be t(y(n)).
An estimator 𝜃 = t

(
Y(n)) is consistent if it con-

verges in probability to the unknown parameter 𝜃 as
n→∞. Consistency is usually an essential requirement
for a good estimator because given that the family of
distributions M𝜃 is large enough, it ensures that as n
increases the distribution of 𝜃 becomes concentrated
around the parameter 𝜃, essentially providing a prac-
tical reassurance that for very large n the estimator
recovers 𝜃.

The bias of an estimator is defined as

B (𝜃) = E𝜃

(
𝜃 − 𝜃

)
.

Loosely speaking, small bias reflects the desire
that if an experiment that results in data y(n) is repeated
indefinitely, then the long-run average of all the resul-
tant estimates will not be far from 𝜃. Small bias is
a much weaker and hence less useful requirement
than consistency. Indeed, one may get an inconsis-
tent estimator with zero bias or a consistent estima-
tor that is biased. For example, if Y(n) = (Y1, … ,Yn)T ,
with Y1, … , Yn mutually independent random vari-
ables with Yi ~ N(𝜇,𝜎2) then t(Y(n))=Y1 is an unbi-
ased but inconsistent estimator of 𝜇. On the other
hand, t

(
Y(n)) = ∑n

i=1Yi + 1∕n is a consistent estima-
tor for 𝜇 but has bias B(t(Y(n)))= 1/n. So, bias becomes
relevant only if it is accompanied by guarantees of con-
sistency, or more generally when the variability of V
around 𝜃 is small (see Ref 5, § 8.1 for a discussion
along this lines).

The bias function also appears directly in the
expression for the lowest attainable variance of an
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estimator. The Cramér-Rao inequality states that the
variance of any estimator 𝜃(n) satisfies

var
(
𝜃(n)

)
⪰
{

1p + 𝛻𝜃B (𝜃)
}T {F (𝜃)}−1 {1p + 𝛻𝜃B (𝜃)

}
,

(2)
where 1p is the p×p identity matrix and the
inequality A⪰C means that A−C is a positive
semidefinite matrix. The matrix F(𝜃) is the Fisher
(or expected) information matrix which is defined as
F(𝜃)=E𝜃{S(𝜃)S(𝜃)T}, where S(𝜃)=𝛻𝜃l(𝜃) and l(𝜃) is
the log-likelihood function for 𝜃. The Cramér-Rao
inequality shows what is the ‘lowest’ attainable vari-
ance for an estimator in terms of the derivatives of its
bias and the Fisher information.

Maximum Likelihood Estimation
Denote f (y;𝜃) the joint density or probability mass
function implied by the family of distributions M𝜃.
The maximum likelihood estimator 𝜃 is the value
of 𝜃 which maximizes the log-likelihood function
l(𝜃;y(n))= logf (y(n);𝜃). Given that the log-likelihood
function is sufficiently smooth on 𝜃, 𝜃 can be obtained
as the solution of the score equations

S (𝜃) = 𝛻𝜃l (𝜃) = 0,

provided that the observed information matrix I (𝜃) =
−𝛻𝜃𝛻

T
𝜃

l (𝜃) is positive definite when evaluated at 𝜃. An
appealing property of the maximum likelihood esti-
mator is its invariance under one-to-one reparameter-
izations of the model. If 𝜃′ = g(𝜃) for some one-to-one
function g :ℜp →ℜp, then the maximum likelihood
estimator of 𝜃′ is simply g

(
𝜃
)

. This result states that
when obtaining the maximum likelihood estimator of
𝜃, we automatically obtain the maximum likelihood
estimator of g(𝜃) for any function g that is one-to-one,
simply by calculating g

(
𝜃
)

without the need of max-
imizing the likelihood on g(𝜃).

It can also be shown that the maximum likeli-
hood estimator 𝜃 has certain optimality properties if
the ‘usual regularity conditions’ are satisfied. Infor-
mally, the usual regularity conditions imply, among
others, that (1) M𝜃 is identifiable (i.e., M𝜃 ≠ M𝜃′ , for
any pair (𝜃,𝜃′) such that 𝜃 ≠ 𝜃′, apart from sets of prob-
ability zero), (2) p is finite, (3) that the parameter
space Θ does not depend on the sample space (which
implies that p does not depend on n and iv) that there
exists a sufficient number of log-likelihood derivatives
and expectations of those under M𝜃. A more tech-
nical account of those conditions can be found in
McCullagh6, § 7.1,7.2, or equivalently in Cox and
Hinkley5, §9.1.

If these conditions are satisfied, then 𝜃 is consis-
tent and has bias of asymptotic order O(n−1), which
means that its bias vanishes as n→∞. Moreover,
the maximum likelihood estimator has the property
that as n→∞ its distribution converges to a multi-
variate Normal distribution with expectation 𝜃 and
variance-covariance matrix {F(𝜃)}− 1. Hence, the vari-
ance of the asymptotic distribution of the maximum
likelihood estimator is exactly the Cramér-Rao lower
bound {F(𝜃)}− 1 given in Eq. (2).

Reducing Bias
All the above shows that under the usual regularity
conditions as n→∞, the maximum likelihood estima-
tor 𝜃 has optimal properties, a fact that makes it a
default choice in applications. However, for finite n
these properties may deteriorate, in some cases causing
severe problems in inference. Such an effect has been
seen in the gasoline yield data case study where the
bias of 𝜃 affects the performance of tests and the con-
struction of confidence intervals based on the asymp-
totic normality of 𝜃.

Before reviewing the basic methods for reducing
bias, it is necessary to emphasize again that bias neces-
sarily depends on the parameterization of the model;
if the bias of any estimator 𝜃 is reduced resulting
to a less biased estimator 𝜃, then it is not necessary
that the same will happen for the estimator g

(
𝜃
)

.

In fact, the bias of the g
(
𝜃
)

as an estimator of g(𝜃)
may be considerably inflated. Hence, correction of the
bias of the maximum likelihood estimator comes at
the cost of destroying its invariance properties under
reparameterization. Therefore, all the methods for
bias reduction that are described in the current review
should be seen with scepticism if invariance is a neces-
sary requirement for the analysis. On the other hand if
the parameterization is fixed by the problem or practi-
tioner, one can do much better in terms of estimation
and inference by reducing the bias. Furthermore, as it
will be seen later, for some models reduction of bias
produces useful side-effects which in many cases have
motivated its routine use in applications. A thorough
discussion on considerations on bias and variance
and examples of exactly unbiased estimators that
are useless or irrelevant can be found at Cox and
Hinkley5 §8.2 and Lehmann and Casella1 § 1.1.

BIAS REDUCTION—A SIMPLE RECIPE
WITH MANY DIFFERENT
IMPLEMENTATIONS
For a general not necessarily the maximum likelihood
estimator 𝜃 taking values in Θ⊂ℜp, consider the
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solution of the equation

𝜃 − 𝜃 = B (𝜃) , (3)

with respect to a new estimator 𝜃. Equation (3) is a
moment-matching equation which links the proper-
ties of the estimation method to the properties of M𝜃

through 𝜃 and B(𝜃), respectively. If both the function
B(𝜃) and 𝜃 were known then it is straightforward
to show that 𝜃 = 𝜃 − B (𝜃) has zero bias and hence,
smaller mean squared error than 𝜃. If, in addition, the
initial estimator 𝜃 has vanishing variance-covariance
matrix as n→∞ then an application of Chebyschev’s
inequality shows that 𝜃 is consistent, even if 𝜃 is not.
Of course, if 𝜃 is known then there is no reason for
estimation, and furthermore, usually the function B(𝜃)
cannot be written in closed-form. The importance of
Eq. (3) is that, despite of its limited practical value,
all known methods to reduce bias can be usefully
thought of as attempts to approximate its solution.
These methods can be distinguished into explicit and
implicit.

EXPLICIT METHODS

Explicit methods rely on an one-step procedure where
B(𝜃) is estimated and then subtracted from 𝜃 resulting
in the new estimator 𝜃. The most popular explicit
methods for reducing bias are the jackknife, the boot-
strap, and methods which use approximations of the
bias function through asymptotic expansions of B(𝜃).

Jackknife
For many common estimators including the maxi-
mum likelihood estimator, the bias function can be
expanded in decreasing powers of n as

B (𝜃) =
b (𝜃)

n
+

b2 (𝜃)
n2

+
b3 (𝜃)

n3
+ O

(
n−4) , (4)

for an appropriate sequence of functions b(𝜃), b2(𝜃),
b3(𝜃), … , and so on, that are O(1) as n→∞.. From
Eq. (4), the estimator 𝜃(−j) which results from leaving
the jth random variable out of the original set of n
variables has the same bias expansion as in Eq. (4) but
with n replaced with n− 1. In light of this observation,
Quenouille7 noticed that the estimator

𝜃 = n𝜃 − (n − 1) 𝜃,

where 𝜃 is the average of the n possible leave-one-out
estimators 𝜃(−1), … , 𝜃(−n), has bias expansion
− b2(𝜃)/n2 +O(n−3) which is of smaller asymptotic

order than the O(n−1) bias of 𝜃. This procedure
is called jackknife (see Ref 8 for an overview of
jackknife). Efron9 §2.3 shows the basic geometric
argument behind the jackknife; the jackknife is esti-
mating the bias based on a linear extrapolation of
the expected value of the estimator as a function
of 1/n. The same procedure can be carried out for
correcting bias in higher orders essentially replacing
the linear extrapolation by quadratic extrapolation
and so on. Schucany et al.10 give an elegant way of
deriving such higher order corrections in bias with
the jackknife being a prominent special case of their
method. The jackknife is an explicit method because
the new estimator 𝜃 is simply

𝜃 = 𝜃 − B(jack),

where B(jack) = (n − 1)
(
𝜃 − 𝜃

)
is the jackknife estima-

tor of the bias.

Bootstrap
Another class of popular explicit methods for the
correction of the bias comes from the bootstrap frame-
work. Bootstrap is a collection of methods that can be
used to improve the accuracy of inference and operates
under the principle that the ‘bootstrap sample is for the
sample, what the sample is for the population’. Then
the same procedures that are applied on the sample can
equally well be applied on the bootstrap sample giving
direct access to estimated sampling distributions of
statistics (see Ref 11 for an overview of bootstrap).
The two dominant ways to obtain a bootstrap sample
are (1) by sampling from the empirical distribution
function (hence sampling with replacement from the
original sample) giving rise to nonparametric boot-
strap methods, and (2) by sampling from the fitted
parametric model giving rise to parametric bootstrap
methods. In all cases, the bias of an estimator can
be estimated by B(boot) = 𝜃

∗
− 𝜃, where 𝜃

∗
is the

average of the estimates based on each of the boot-
strap samples. Efron and Tibshirani12 and Davison
and Hinkley13 are thorough treatments of bootstrap
methodology. Under general conditions Hall and
Martin14 showed that, if 𝜃 has a bias of O(n−1) which
can be consistently estimated, then the estimator

𝜃 = 𝜃 − B(boot) = 2𝜃 − 𝜃
∗

has O(n− 2)bias.
The estimates of the bias in the gasoline yield

data case study were obtained by simulation from
the fitted model in Table 1, and thus are parametric
bootstrap estimates of the bias.
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Asymptotic Bias Correction
Another widely used class of explicit methods involves
the approximation of B(𝜃) by b

(
𝜃
)
∕n which is the

first-term in the right hand side of Eq. (4) evaluated
at 𝜃. Cox and Snell,15 in their investigation of higher
order properties of residuals in general parametric
models, derive an expression for the first-order bias
term b(𝜃)/n in Eq. (4), when 𝜃 is the maximum
likelihood estimator. That expression has sparked a
still-active research stream in correcting the bias by
using the estimator

𝜃 = 𝜃 − b
(
𝜃
)
∕n.

Efron16 showed that 𝜃 has bias of order o(n−1) which
is of smaller order than the O(n−1) bias of the
maximum likelihood estimator and that the asymp-
totic variance of any estimator with O(n− 2) bias
is greater or equal to the asymptotic variance of 𝜃

(second-order efficiency). For the interested reader,
Pace and Salvan17 give a thorough discussion of those
properties.

Landmark studies in the literature for asymp-
totic bias corrections are Cook et al.18 who investi-
gate correcting the bias in nonlinear regression models
with Normal errors and Cordeiro and McCullagh19

who treat generalized linear models with interesting
results on the shrinkage properties of the reduced-bias
estimators in binomial regression models and an
attractive implementation through one supplementary
reweighted least squares iteration. Furthermore, Bot-
ter and Cordeiro20 and Cordeiro and Toyama Udo21

extend the results in Cordeiro and McCullagh19 and
derive the first-order biases for generalized linear and
nonlinear models with dispersion covariates.

The general form of the first-order bias term of
the maximum likelihood estimator can be found in
matrix form in Kosmidis and Firth22. Specifically,

b (𝜃)
n

= −{F (𝜃)}−1 A (𝜃) ,

where A(𝜃) is a p-dimensional vector with compo-
nents

At (𝜃)=
1
2

tr
[
{F (𝜃)}−1{Pt (𝜃) + Qt (𝜃)

}]
(t = 1, … ,p),

(5)
and where

Pt (𝜃) = E𝜃

{
S (𝜃) ST (𝜃) St (𝜃)

}
(t = 1, … ,p) ,

Qt (𝜃) = −E𝜃

{
I (𝜃) St (𝜃)

}
(t = 1, … ,p) ,

are higher order joint null moments of the gra-
dient and the matrix of second derivatives of the
log-likelihood.

Breslow and Lin23 derive the expressions for the
asymptotic biases in generalized linear mixed models
for various estimation methods and used those to
correct for the bias. Higher order corrections have
also appeared in the literature24 where expressions
for b(𝜃)/n+b2(𝜃)/n2 in Eq. (4) are obtained. The
expressions involved for such higher order corrections
are too cumbersome requiring enormous effort in
derivation and implementation, and there is always
the danger that the benefits in estimation from this
effort are only marginal, if any, compared to methods
that are based on simply removing the first-order
bias term.

Advantages and Disadvantages of Explicit
Methods
The main advantage of all explicit methods is the
simplicity of their application. Once an estimate of
bias is available, reduction of bias is simply a matter
of an one-step procedure where the estimated bias is
subtracted from the estimates. Nevertheless because
of their explicit dependence on 𝜃, explicit methods
directly inherit any of the instabilities of the original
estimator. Such cases involve models with categorical
responses where there is a positive probability that
the maximum likelihood estimator is not finite (see
Ref 25 for conditions that characterize when infinite
estimates occur in multinomial response models) and
have been the subject of study in works like Mehrabi
and Matthews,26 Heinze and Schemper,27 Bull et al.,28

Kosmidis and Firth,29 Kosmidis and Firth,2 and
Kosmidis.30 In particular, Kosmidis30 relates to the
case study of the proportional odds models, discussed
below.

Furthermore, asymptotic bias correction meth-
ods have the disadvantage that are only applicable
when b(𝜃)/n can be obtained in closed-form, which can
be a tedious or even impractical task for many models
(see, e.g., Ref 3 where the expressions for b(𝜃)/n are
given for Beta regression models).

IMPLICIT METHODS

Implicit methods approximate B(𝜃) at the target esti-
mator 𝜃 and then solve Eq. (3) with respect to 𝜃.
Hence, 𝜃 is the solution of an implicit equation.

Indirect Inference
Indirect inference is a class of inferential proce-
dures that appeared in the Econometrics literature in
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Gourieroux et al.31 and can be used for bias reduction.
The simplest approach to bias reduction via indirect
inference attempts to solve the equation

𝜃 = 𝜃 − B
(
𝜃
)
,

by approximating B(𝜃) at 𝜃 through parametric boot-
strap. Kuk32 independently produced the same idea
for reducing the bias in the estimation of general-
ized linear models with random effects and Jiang and
Turnbull33 give a comprehensive review of indirect
inference from a statistical point of view. Furthermore,
Gourieroux et al.34 and Phillips35 discuss bias reduc-
tion through indirect inference in econometric appli-
cations. Pfeffermann and Correa36 give an alternative
approach to bias reduction which is in line with the
basic idea of indirect inference.

Bias-Reducing Adjusted Score Equations
For the case where 𝜃 is the maximum likelihood
estimator and under the usual regularity conditions,
Firth37 and Kosmidis and Firth29 investigate what
penalties need to be added to S(𝜃) in order to get an
estimator that has asymptotically smaller bias than
that of the maximum likelihood estimator. In its
simplest form such an approach requires finding 𝜃 by
solving the adjusted score equations

S
(
𝜃
)
+ A

(
𝜃
)
= 0, (6)

with A(𝜃) as given in Eq. (5). Then 𝜃 is an estimator
with o(n−1) bias. Equation 6 can be rewritten as

{
F
(
𝜃
)}−1

S
(
𝜃
)
=

b
(
𝜃
)

n
,

which reveals that 𝜃 is another approximate solution
to Eq. (3) because b (𝜃) ∕n approximates B (𝜃) up to
order O(n− 2) and {F(𝜃)}− 1S(𝜃) is the O(n− 1/2) term in
the asymptotic expansion of 𝜃 − 𝜃 evaluated at 𝜃 ∶= 𝜃.

An important property of the estimator based
on adjusted score functions, which is also shared
by the estimator from asymptotic bias correction,
is that it has the same asymptotic distribution as
the maximum likelihood estimator, namely a Normal
distribution centered at the true parameter value with
variance-covariance matrix the Cramér-Rao lower
bound {F(𝜃)}− 1. Hence, the first-order methods that
are used for the maximum likelihood estimator, like
Wald-type confidence intervals, score tests for model

comparison, and so on, are unaltered in their form and
apply directly by using the new estimators.

It is noteworthy that in the case of full expo-
nential families (e.g., logistic regression and Poisson
log-linear models) the solution of Eq. (6) can be
obtained by direct maximization of a penalized likeli-
hood where the penalty is the Jeffreys38 invariant prior
(see Ref 37 for details). It should also be stressed that
not all models admit a penalized likelihood interpre-
tation of bias reduction via adjusted scores. Kosmidis
and Firth29 give an easy-to-check necessary and suffi-
cient condition that identifies which univariate gener-
alized linear models admit such penalized likelihood
interpretation and provide the form of the resultant
penalties when the condition holds. That condition is
a restriction on the variance function of the responses
in terms of the derivative of the chosen link function.

Advantages and Disadvantages
The main disadvantage of implicit methods is that
their application requires the solution of a set of
implicit equations which in most of the useful cases
requires numerical optimization. This task is even
more computationally demanding for indirect infer-
ence approaches in general models because of the
necessity to approximate the bias function in a
p-dimensional space. Furthermore, indirect inference
approaches inherit the disadvantages of explicit meth-
ods because they explicitly depend on the original esti-
mator.

The approach in Firth37 and Kosmidis and
Firth,29 on the other hand, does not directly depend
on 𝜃 and hence has gained considerable attention com-
pared to the other approaches. Another reason for
the considerable adaptation of this method are recent
advances which simplify application through either
iterated first-order bias adjustments (see Refs 3, 22)
or iterated maximum likelihood fits on pseudo obser-
vations (see Refs 2, 29, 30). Of course, as for the
asymptotic bias correction methods the adjusted score
equation approach to bias reduction has the disadvan-
tage of being directly applicable only under the same
conditions that guarantee the good limiting behav-
ior of the maximum likelihood estimator and only
when the score functions, Fisher information and the
first-order bias term of the maximum likelihood esti-
mator are available in closed-form.

PROPORTIONAL ODDS MODELS

This example was analyzed in Kosmidis.30 The data
set in Table 3 is from Randall39 and concerns a
factorial experiment for investigating factors that
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TABLE 3 The Wine Tasting Data (Randall39).

Bitterness Scale

Temperature Contact 1 2 3 4 5

Cold No 4 9 5 0 0

Cold Yes 1 7 8 2 0

Warm No 0 5 8 3 2

Warm Yes 0 1 5 7 5

affect the bitterness of white wine. There are two
factors in the experiment, temperature at the time
of crushing the grapes (with two levels, ‘cold’ and
‘warm’) and contact of the juice with the skin (with
two levels ‘Yes’ and ‘No’). For each combination of
factors two bottles were rated on their bitterness by a
panel of nine judges. The responses of the judges on
the bitterness of the wine were taken on a continuous
scale in the interval from 0 (‘None’) to 100 (‘Intense’)
and then they were grouped correspondingly into five
ordered categories, 1, 2, 3, 4, 5.

The task of the analysis is to test whether there
are departures from the assumption of proportional
odds. For performing such a test we use the more
general partial proportional odds model of Peterson
et al.40 with

log
𝛾rs

1 − 𝛾rs
=𝛼s−𝛽swr − 𝜃zr (r = 1, … ,4; s = 1, … ,4),

(7)
where wr and zr are dummy variables represent-
ing the factors temperature and contact, respectively,
𝛼1, 𝛼2, 𝛼3 𝛼4, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝜃 are model parameters and
𝛾rs is the cumulative probability for the sth category
at the rth combination of levels for temperature and
contact. Then we can check for departures from the
proportional odds assumption by testing the hypoth-
esis 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4, effectively comparing Eq. (7) to
the proportional odds nested model that is implied by
the hypothesis.

Table 4 shows the maximum likelihood esti-
mates for model Eq. (7) and the corresponding esti-
mated standard errors as reported by the clm func-
tion of the R package ordinal.41 It is directly apparent
that the absolute value of the estimates and estimated
standard errors for the parameters 𝛼4, 𝛽1 and 𝛽4 is
very large. Actually, these would diverge to infinity
as the stopping criteria of the iterative fitting proce-
dure used become stricter and the number of allowed
iterations increases. The estimates for the remaining
parameters are all finite and will preserve the value
shown in Table 4 even if the number of allowed iter-
ations increases. This is an instance of the problems

TABLE 4 The Maximum Likelihood and the Reduced-Bias Estimates
for the Parameters of Model (7), the Corresponding Estimated Standard
Errors (in parenthesis) and the Values of the Corresponding Z-Statistic
for the Hypothesis that the Corresponding Parameter is zero. The
Maximum Likelihood Estimates and Z-statistics are as Reported by the
clm R Package Ordinal41.

Maximum Likelihood Adjusted Score Equations

Parameter Estimates Z-Statistic Estimates Z-Statistic

𝛼1 −1.27 (0.51) −2.46 −1.19 (0.50) −2.40

𝛼2 1.10 (0.44) 2.52 1.06 (0.44) 2.42

𝛼3 3.77 (0.80) 4.68 3.50 (0.74) 4.73

𝛼4 28.90 (193125.63) 0.00 5.20 (1.47) 3.52

𝛽1 25.10 (112072.69) 0.00 2.62 (1.52) 1.72

𝛽2 2.15 (0.59) 3.65 2.05 (0.58) 3.54

𝛽3 2.87 (0.82) 3.52 2.65 (0.75) 3.51

𝛽4 26.55 (193125.63) 0.00 2.96 (1.50) 1.98

𝜃 1.47 (0.47) 3.13 1.40 (0.46) 3.02

that practitioners may face when dealing with categor-
ical response models. Using a Wald-type statistic based
on the maximum likelihood estimator for testing the
hypothesis of proportional odds would be adventur-
ous here because such a statistic explicitly depends on
the estimates of 𝛽1, 𝛽2, 𝛽3 and 𝛽4. Of course, given
that the likelihood is close to its maximal value at
the estimates in Table 3, a likelihood ratio test can be
used instead; the likelihood ratio test for this particular
example has been carried out in Christensen.42

Note here that methods like the bootstrap and
jackknife would require special considerations for
their application in a well-designed experiment like
the above, the question to be answered being what
comprises an observation to be resampled or left-out.
Even if such considerations were resolved, bootstrap
and jackknife would be prone to the problem of
infinite estimates. The latter is also true for the
estimator based on asymptotic bias corrections and for
indirect inference.

Kosmidis30 derives the adjusted score equations
for cumulative link models, and uses them to cal-
culate the reduced-bias estimates shown in the right
of Table 4. The reduced-bias estimates based on the
adjusted score functions are finite and, through the
asymptotic normality of the reduced-bias estimator,
they can form the basis of a Wald-test for the hypoth-
esis 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4. This test has been carried out in
Kosmidis30 and gives a p-value of 0.861, providing no
evidence against the hypothesis of proportional odds.

Furthermore, the values of the Z-statistics for
𝛼4, 𝛽1 and 𝛽4 in Table 4 are essentially zero when
based on the maximum likelihood estimator. This is
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typical behavior when the estimates diverge to infinity
and it happens because the estimated standard errors
diverge much faster than the estimates, irrespective of
whether or not there is evidence against the individual
hypotheses. This is also true if we were testing indi-
vidual hypothesis at values other than zero, and can
lead to invalid conclusions if the maximum likelihood
output is interpreted naively; as shown in Table 4, the
Z-statistics based on the reduced-bias estimates are far
from being zero.

Such inferential pitfalls with the use of the max-
imum likelihood estimator are not specific to partial
proportional odds models. For most models for cat-
egorical and discrete data (binomial-response models
like the logistic regression, multinomial response mod-
els, Poisson log-linear models, and so on) there is a
positive probability of infinite estimates. Bias reduc-
tion through adjusted score functions has been found
to provide a solution to those problems and the cor-
responding methodology is quickly gaining in popu-
larity and has found its way to commercial software
like Stata and SAS. Open-source solutions include the
logistf R package43 for logistic regressions which is
based on the work in Heinze and Schemper,27 the
pmlr R package44 for multinomial logistic regressions
based on the work of Bull et al.28 and the brglm R
package45,46 which at the time of writing handles all
binomial-response models. At the time of writing, the
brglm R package is being extended for the next major
update which will handle all generalized linear models,
including multinomial logistic regression2 and ordinal
response models.30

GASOLINE YIELD DATA REVISITED

In this section, the reduced-bias estimates for the
parameters of model 1 are calculated using jack-
knife, bootstrap, asymptotic bias correction, and the
approach of bias-reducing adjusted score functions.
The full parametric bootstrap estimate of the bias
has been obtained in our earlier treatment showing
that the bias on the regression parameters is of no
consequence. A fully nonparametric bootstrap where
the bootstrap samples are produced by sub-sampling
with replacement the full response-covariate com-
binations (yi,si1, … ,si9,ti) (i= 1, … , n) is not advis-
able here because the 9 dummy variables si1, … , si9
are representing 10 distinct experimental settings and
sub-sampling those will result in singular fits with high
probability (see also Ref 13, § 6.3 for a description
of such problems in the simpler case of multiple lin-
ear regression). An intermediate sub-sampling strategy
is to resample residuals and use them with the orig-
inal model matrix to get samples for the response.

This strategy lies between fully nonparametric boot-
strap and fully parametric bootstrap (see Ref 13, § 7).
Residual resampling works well in multiple linear
regression because the response is related linearly to
the regression parameters, which is not true for Beta
regression. For more complicated models like general-
ized linear models and Beta regression, an appropri-
ate residual definition has to be chosen. Because Beta
responses are restricted in (0,1), the best option is to
resample residuals on the scale of the linear predictor
and then transform back to the response scale using
the inverse of the logistic link, obtaining bootstrap
samples for the response (see Ref 13 expression (7.13)
for rationale and implementation). In the current case
we choose the ‘standardized weighted residual 2’ of
Espinheira et al.47 because it appears to be the one
that is least sensitive to the inherent skewness of the
response.

The reduced-bias estimates of 𝜙 using jack-
knife, residual-resampling bootstrap (with 9999
bootstrap samples), asymptotic bias correction and
bias-reducing adjusted score functions are 165.682,
236.003, 261.206, and 261.038, respectively, all indi-
cating that the maximum likelihood estimator of 𝜙

is prone to substantial upward bias. The simulations
in Kosmidis and Firth22 illustrate that asymptotic
bias correction and the bias-reducing adjusted score
functions, correctly inflate the estimated standard
errors to the extent that almost the exact coverage
of the first-order Wald-type confidence intervals is
recovered.

DISCUSSION AND CONCLUSION

As can be seen from the earlier case-studies,
reduced-bias estimators can form the basis of
asymptotic inferential procedures that have better
performance than the corresponding procedures
based on the initial estimator. Heinze and Schemper,27

Bull et al.,48 Kosmidis,49 Kosmidis and Firth,22,29

and Grün et al.3 all demonstrate that such improved
procedures are delivered either by using the penalized
likelihood that results from the approximation of
Eq. (3), or by replacing the initial estimator with the
reduced-bias estimator in Wald-type pivots, as was
done in the case-studies of this review.

At the time of writing the current review there is
no general answer to which of the methods that have
been reviewed here produces better results. All meth-
ods deliver estimators that have o(n− 1) bias which
is asymptotically smaller than the O(n−1) bias of
the maximum likelihood estimator. In models with
categorical or discrete responses, the adjusted score
equations approach is preferable to the other bias
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reduction approaches because the resultant estimates
appear to be always finite, even in cases where the
maximum likelihood estimates are infinite (see, e.g.,
Refs 27, 48, 29, 2, 30 for generalized linear and non-
linear models with binomial, multinomial, and Pois-
son responses). This has led researchers to promoting
the routine use of the adjusted score equations in such
models as an improved alternative to maximum like-
lihood.

The general use, though, of the adjusted score
equations approach is limited by its dependence on
a closed-form expression for the first-order bias of
the maximum likelihood estimator which may not be
readily available or even intractable (e.g., generalized
linear mixed effects models).

At this point, we should also stress that improv-
ing bias does not always have desirable effects; an
improvement in bias can sometimes result in infla-
tion of the mean squared error, through an inflation
in the estimator’s variance. The use of simple simula-
tion studies, similar to the one in Kosmidis and Firth22

is recommended for checking whether that is the case.
If that is the case then the use of reduced-bias estimates
in test statistics and confidence intervals is not recom-
mended.

Furthermore, bias is a parameterization-specific
quantity and any attempt to improve it will violate

the invariance properties of the maximum likelihood
estimator. Hence, bias-reduction methods should be
used with care, unless the parameterization is fixed
either by the context or by the practitioner.

All the discussion in the current review has
focused on the effect that bias can have and the bene-
fits of its reduction in cases where the usual regularity
conditions are satisfied. An important research avenue
is the reduction of bias under departures from the reg-
ularity conditions and especially when the dimension
of the parameter space increases with the sample size.
Lancaster50 gives a review of the issues that econo-
metricians and applied statisticians face in such set-
tings. A viable route toward reduction of bias in such
cases comes from the use of modified profile likelihood
methods (see, Ref 51 for a brief introduction), which
have been successfully used for reducing the bias in the
estimation of dynamic panel data models in Bartolucci
et al.52 Another route is the appropriate adaptation of
indirect inference approaches or of other approximate
solutions of Eq. (3) in such settings. The Econometric
community is currently active in this direction, with a
recent example being Gouriéroux et al.53 where indi-
rect inference is applied to dynamic panel data models.
These early attempts are only indicative that, there is
still much to be explored and much work to be done on
the topic of bias reduction in parametric estimation.
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