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Abstract

Topological analysis of the Internet is needed for developments on network planning, optimal routing

algorithms, failure detection measures, and understanding business models. Accurate measurement, in-

ference and modelling techniques are fundamental to Internet topology research. A requirement towards

achieving such goals is the measurements of network topologies at different levels of granularity. In this

work, I start by studying techniques for inferring, modelling, and generating Internet topologies at both

the router and administrative levels. I also compare the mathematical models that are used to characterise

various topologies and the generation tools based on them.

Many topological models have been proposed to generate Internet Autonomous System(AS) topolo-

gies. I use an extensive set of measures and innovative methodologies to compare AS topology gener-

ation models with several observed AS topologies. This analysis shows that the existing AS topology

generation models fail to capture important characteristics, such as the complexity of the local intercon-

nection structure between ASes. Furthermore, I use routingdata from multiple vantage points to show

that using additional measurement points significantly affect our observations about local structural prop-

erties, such as clustering and node centrality. Degree-based properties, however, are not notably affected

by additional measurements locations. The shortcomings ofAS topology generation models stems from

an underestimation of the complexity of the connectivity inthe Internet and biases of measurement tech-

niques.

An increasing number of synthetic topology generators are available, each claiming to produce

representative Internet topologies. Every generator has its own parameters, allowing the user to generate

topologies with different characteristics. However, there exist no clear guidelines on tuning the value of

these parameters in order to obtain a topology with specific characteristics. I propose a method which

allows optimal parameters of a model to be estimated for a given target topology. The optimisation

is performed using the weighted spectral distribution metric, which simultaneously takes into account

many the properties of a graph.

In order to understand the dynamics of the Internet, I study the evolution of the AS topology over a

period of seven years. To understand the structural changesin the topology, I use the weighted spectral

distribution as this metric reveals differences in the hierarchical structure of two graphs. The results indi-

cate that the Internet is changing from a strongly customer-provider oriented, disassortative network, to

a soft-hierarchical, peering-oriented, assortative network. This change is indicative of evolving business

relationships amongst organisations.
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Chapter 1

Introduction

The Internet is vital to the operation of our modern society.As such, it is essential for operators to have

a thorough understanding of their networks and ultimately the Internet operation, in order to meet the

demands of the customers. Dynamic growth and changes in the Internet make it difficult to analyse the

performance of different applications and protocols. Research in the structural properties of Internet

topology is essential for studies such as failure location and fault-finding, virus propagation models,

improving routing algorithms, and analysis of network growth and capacity planning strategies.

In this thesis I provide insight into Internet topology research, focusing on the organisational level

topology (Chapter 2). I highlight a variety of shortcomingswith current topology generators and datasets

(Chapter 3), and present appropriate ways to compare datasets and design generators (Chapter 4). I

demonstrate how additional network measurements can enhance the current view of the Internet topol-

ogy. I also compare the properties of AS topologies relying on different sets of observations, providing

insight into different aspects of the Internet topology andits evolution (Chapter 5).

1.1 Structure of the Internet

The Internet is a large, complex, decentralised and arguably self-organised network, formed of hundreds

of millions of end devices such as computers, mobile phones and sensors, connected together via Internet

Service Providers (ISP) and backbone connectivity providers.

From an operational point of view, the Internet is formed as anetwork of networks. Those con-

stituent networks are referred to as Autonomous Systems (AS), and are often driven by self-interest

economic and fiscal reasons. Although an organisation, suchas a large ISP, can have multiple AS num-

bers in different locations, it may also be the case that a large number of organisations, such as UK

higher education institutes, share an AS number. However, from the inter-AS routing perspective and

traffic engineering, the AS numbers in the routing messages are an important part of the routing process.

Such complications make it difficult to analyse the Internetsize, its topology and the geographic location

of ASes.

Today, the Internet is an essential part of international commerce, trade and culture. The Internet

market is a competitive open market, with many ISPs competing for provisioning of services. Hence, the

Internet is constantly undergoing changes. Edge ISPs aggressively add peering relationships with others
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in order to avoid paying transit charges, while larger ISPs constantly review and reconsider the peering

policies with their neighbours based on the cost, utilisation and Quality of Service (QoS) agreements.

Alongside business relationships, the failure of devices in networks, maintenance operations and addi-

tion of new links and routers all lead to constant changes in the network topology. Understanding these

changes is important for understanding the operation of theInternet and the related applications and pro-

tocols. Hence there has been a great deal of research focusedon analysing the topological characteristics

of the Internet and there is need for further research. trying to characterise the dynamics of the Internet.

1.2 Motivations for Topology Research

Two decades ago one could easily obtain a complete map of the network, showing all the connections

between various institutions and their respective characteristics such as bandwidth. However today the

Internet is formed of about 30,000 organisations1. Each AS typically includes many routers and end

hosts. Clearly, it is no longer possible to visualise the topology of such a large network as graphs of

nodes and links, even if such a topology graph were available.

Today there are a large number of research projects focusingon Internet topology collection, such

as Skitter,2 Dimes [SS05] and RouteViews.3 Such approaches rely on different measurement method-

ologies. Some rely on active probing and measurement, and some use passive collection of routing data.

The availability of such rich data has increased our understanding of the Internet topology. However it

has also become evident that despite all the efforts, researchers still have a limited visibility of the real

Internet topology due to measurement biases. As a result, the Internet topology models which are also

derived form the collected data sets tend to become biased astime goes on, as shown in Sections 3 and 5.

Performance of Internet protocols and applications is alsohighly related to geographic aspects and

the structure of the network [GMZ03]. Treating the Internetsimply as a graph of nodes and edges is

not satisfactory. As I show in this thesis, our knowledge of Internet structure at core and edge is not

comprehensive. In this thesis I focus on characteristics ofthe Internet such as dynamics of growth and

connectivity amongst nodes, visibility of links and graph-related aspects.

1.3 Challenges

Lack of accurate mathematical models and topology maps of the Internet at router and AS level, despite

great efforts by the research community, is due to several challenges. Internet topologies are constructed

typically using passive and active measurements. Same dataare used for many purposes, including

construction ofrealistic simulationsand analysis of business relationships between ISPs. However, the

measurements, and hence the models relying on them, are subject to a large number of artifacts.

The first challenge, and arguably the most difficult one to overcome, is the inference of the actual

topology. At the router level, presence of software and hardware firewalls, and traffic tunnelling services

1Based on assigned AS numbers; It is possible for numerous organisations to share an AS number, or an organisation having

multiple AS numbers. This makes it practically impossible to obtain an accurate number of organisations forming the Internet.
2http://www.caida.org/tools/measurement/skitter/
3http://www.RouteViews.org/

http://www.caida.org/tools/measurement/skitter/
http://www.RouteViews.org/
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have all made it difficult to obtain accurate router level topologies using active measurements. At the AS

level, the routing protocols do not reveal complete information.

Lack of accurate topology data has made it difficult for scientists to accurately model the Internet

topologies. Initial discoveries of the Internet topologies led to researchers modelling the Internet as

scale free networks [BA99]. It was soon discovered that the inaccuracies in measurements may bias

the derived models. Many links such as redundant links between routers, back up links and peering

relationships between ASes where not observed by the passive and active measurement methods. More

importantly, the evolution of the Internet has not been studied intensively and most previous analysis

have focused on addition of nodes and links over time, ratherthan paying attention to the architectural

dynamics. These challenges have started a whole new breadthof research in the topology modelling area

in order to improve on our current understanding of the Internet.

Generation of the Internet topology calls for a model that achieves a good balance between keeping

global (structural) characteristics and more local properties like node degrees and local interconnection

structure. In the topology generation literature, currentresearch focuses on distribution-driven methods,

which capture some global characteristics of the topology.They rule out the randomly generated graphs

and aim at attaching meta-data information (metrics) to thelinks and routers generated in a graph. Infor-

mation about node (e.g., customer and provider) relationships, the delay and bandwidth, would also be

of significant value to researchers using those graphs. Suchinformation is currently not available and it

is difficult to infer using passive and active measurement techniques.

In addition to above challenges, validation of the models isalso difficult due to the constantly

evolving nature of the Internet. Researchers have recentlybeen paying attention to the evolving nature

of the networks and its effects on network planning and provisioning. Another important area of research

is understanding the dynamics and business incentives for addition of nodes (routers or organisations)

and links between them. Gaining insight into the nature of measurement processes and their biases on

the analysis of Internet topology research is another important objective of researchers. The challenges

overviewed in this section are extensively studied in Section 2.2.

1.4 Contributions

The main contributions of this thesis are the following:

• Extensive analysis of currently available Internet topology generators and compare them to a wide

range of observed Internet AS level topologies;

• Demonstrating the improvements in the accuracy of the structural properties of inferred topologies

by additional measurements;

• Proposing a new cost function for analysis of Internet topologies: theweighted spectral distribu-

tion, constructed from the eigenvalues of the normalised Laplacian matrix, or graph spectrum;

• Using the proposed metric to tune parameters for a set of Internet topology generators, enabling

these models to effectively match a particular measured Internet topology.
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• Presenting a study of two views of the evolving Internet AS topology and expose apparent incon-

sistencies between these two inferred AS topologies and their evolution, highlighting structural

dynamics of the Internet.

I illustrate that the core of the Internet is becoming less dominant over time, and that edges at the

periphery are growing instead. I demonstrate a departure from a preferential attachment, tree-like disas-

sortative network, toward a network that is flat, highly-interconnected, and assortative. This challenges

common belief about the Internet being a scale free network,dominated by preferential attachment and

incremental growth of nodes and links. The change in growth trend of the Internet calls for deeper study

into business relationship models of the ISPs. In each of thechapters, I provide a detailed analysis and

breakdown of the above contributions. I also expand on the impact of these contributions further in 6.1.

In this thesis I have focused on Internet AS topologies. However the measures proposed, especially

the Weighted Spectral Distribution, can be used to compare other topologies such as social networks,

web graphs, biological networks and router level topologies. As a future research work I am working

in collaboration with social scientists and computationalbiologists in order to extend the uses of these

methods.

1.5 Thesis Outline

The rest of this thesis is organised as follows. Chapter 2 provides an overview of the latest research in

the field of network topology over the past decade. I also provide insight into the challenges involved

in collecting topology data and providing realistic topology models. I bring together an analysis and

summary of techniques for inference, modelling and generation of the Internet topology at router and

AS level.

In Chapter 3, I perform a thorough comparison of topologies generated from several different mod-

els against a set of measured AS topologies by using a large set of topological metrics in the analysis.

This analysis reveals that current topology generators fail to capture the complexity of the local intercon-

nection structure between ASes, despite matching degree-based properties of the AS topology reasonably

well. Using a collection of AS topologies from many measurement locations, I demonstrate that adding

more measurement locations significantly affects local structure properties such as clustering and node

centrality while not significantly affecting degree-related metrics.

When using the topology generators, I realise that a large number of generators have a number of

parameters, without any guidelines on how to set these parameters to get topologies of various sizes.

Chapter 4 presents the results of optimisation of the parameters of these topology generators to match a

given Internet topology. The optimisation is performed either with respect to the link density, or to the

spectrum of the normalised Laplacian matrix. I show that using this metric the graph properties can be

better represented using most topology generators.

An important requirement of future topology generators is the ability to create dynamics models

of networks that take into account the growth of networks andthe failures of nodes and links. Chap-

ter 5 illustrates the evolution of the AS topology as inferred from two different datasets over a period
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of seven years. I use a variety of metrics to analyse the structural changes in the Internet AS topology.

The results indicate that the Internet is changing from a core-centred, strongly customer-provider ori-

ented, disassortative network, to a soft-hierarchical, peering-oriented, assortative network. The findings

indicate that traceroute-based approaches may fall short in correctly sampling the periphery of the AS

topology, while the inter-domain routing dataset does not perfectly sample the inner-most core of the

network. Such findings call for new efforts in the research community to devise more comprehensive

measurement tools.

Finally, in Chapter 6 I summarise the contributions of the thesis, explain on the limitations of the

work presented, and suggest possible directions for futureresearch.
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Chapter 2

Literature Review

Accurate measurement, inference and modelling techniquesare fundamental to Internet topology re-

search. Spatial analysis of the Internet is needed to develop network planning, optimal routing algorithms

and failure detection measures. A first step towards achieving such goals is the availability of network

topologies at different levels of granularity, facilitating realistic simulations of new Internet systems.

The main objective of this chapter is to familiarise the reader with research on network topology

over the past decade. I study techniques for inference, modelling and generation of the Internet topology

at both router and AS level. I also compare the mathematical models assigned to various topologies and

the generation tools based on them.

2.1 Introduction

The Internet connects millions of computers, sensors, monitoring devices and IP telephony devices to-

gether, offering many applications and services such as theWorld Wide Web, email, and content dis-

tribution networks. Hosts on the Internet are connected viathousands of ISPs. An ISP contains one or

more ASes depending on its size. An AS is a set of routers within a single administration domain, such

as a university or corporate network.

By convention, the Internet is built upon two domain categories, transit andstub. A transit AS

usually carries traffic between other domains. A stub AS, such as a corporate network, is one which has

connections to end hosts and relies on at least one transit ASfor connectivity to the rest of the Internet.

Stub ASes usually do not enable IP packets to transit their networks, if they are not sent or received by

an end host within the network. Figure 2.1 displays a simplified version of this structure.

In Figure 2.1, transit domains carry traffic between customer ASes, ISPs or Stub Domains. The ISPs

may have exchange (peering) relationships among themselves for resilience and cost-saving purposes.

Some ASes of ISPs are attached to more than one transit AS. This is a back-up measure increasingly

being taken by corporate networks and business customers inorder to ensure the existence of alternative

routes to the Internet, should their main provider fail. It is also a technique for traffic engineering,

allowing traffic to be sent over links of different performance. This strategy is called multi-homing and

is also displayed in Figure 2.1.

The growth of the Internet and the overlay networks which rely on it has led to emerging applica-
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Figure 2.1: An abstract part of the Internet, link widths represent relative bandwidth.

tions and properties which have not been considered in the current topology inference and generation

tools. Dynamic reconfiguration of routers and firewalls, changes in routing policies of ISPs, overlay

networks, peer-to-peer networks, increasing use of Virtual Private Networks (VPNs) and protocols such

as Multi-Protocol Label Switching (MPLS) and tunnelling techniques, multi-homing, on-demand circuit

set-up and bandwidth allocation for home entertainment andvideo conferencing and the increased exis-

tence of mobile devices and laptops has caused the topology of networks to be in constant change as a

result of addition, removal and reconfiguration of routers,links, devices and organisations.

In this section, I introduced the basic concepts of the Internet’s operation and the need for network

topology inference, modelling and generation. Section 2.2reviews the challenges of topology inference,

modelling, generation and validation. Section 2.3 describes the inference of router-level topologies of

the ISPs and the AS-level topology of the Internet and the impact of geographical location of the nodes

on inference techniques. Section 2.4 discusses the statistical and hierarchical models which are used

to represent the topologies of the Internet at AS and router-level. In Section 2.5 I overview the tools

available for topology generation. Finally in Section 2.6 Iintroduce possible future research directions

and conclude the chapter.

2.2 Topology Research Challenges

The Internet topology is usually investigated at two levels. The Internet AS-level topology is of interest

to those interested in the relationships between the networks that constitute the Internet. For example,

understanding the global Internet connectivity and the business relationships between ISPs. Within an

AS, the router-level topology map of ISPs is important to perform optimum network planning and to

minimise the impact of router and link failures.

There are many challenges in inferring and generating realistic Internet topologies. Information on

network topology, routing policies, peering relationships, resilience and capacity planning are not usually

publicly available as they are considered sensitive business information by the ISPs. Instead, researchers
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try to infer the required data by using passive and active measurement methods to produce snapshots

of the global Internet or individual ISP topologies. The fundamental problem of these techniques is the

lack of ground truth of the Internet topology. Moreover, theconstant evolution of the Internet leads to

poor perceptions and models, as the underlying measurements are not well understood. In this section, I

discuss these challenges in turn.

2.2.1 Inference of topologies

At the AS-level, it is not possible to obtain a consistent mapof the actual AS-level topology of the In-

ternet due to the constantly changing nature of the Internettopology. Operators are constantly reviewing

their peering agreements. AS operators do not disclose their peering relationships and traffic exchange

policies with other ASes. Connectivity between ASes is instead inferred from inter-domain routing pro-

tocols, primarily the Border Gateway Protocol (BGP) [RLH06a]. However BGP data collected from

various points on the Internet is not enough to provide a userwith a completemap of the Internet at

AS-level.

Challenges also exist when trying to get the router-level topology of a single AS. The router-level

topologies of ISPs are also dynamic and constantly evolvingdue to failures, maintenance and upgrades.

Network operators are not willing to publicly release the maps of their network topology; this is sensitive

information that may reveal strategic planning decisions and may also be used by attackers that may

target the weak points of the network.

The most widely used tool for inference of router-level topologies is thetraceroutetool [Mal93].

One problem with traceroute is that it is known to miss alternative links between routers. Another

problem isaliasing. Routers have multiple interfaces with separate IP addresses. During the inference

process, each of these interfaces may be reported as a different router. This problem is referred to as

aliasing [SMW02]. I will discuss these issues in detail in Section 2.3.

2.2.2 Modelling the Internet

Researchers have made significant efforts to model the characteristics of the Internet. The major problem

currently in this field is the absence of detailed information about inferred topologies. Many of these

models are based on datasets that are known to be incomplete and prone to errors due to the nature of

the collection process involved, discussed in detail in Section 2.3.

Due to above challenges, it is difficult to estimate the growth potential and characteristics of the

internet. This is a vital requirement for network traffic engineering purposes. Section 2.4 describes

many of the widely used models.

2.2.3 Validation of Models

Validation of generated topologies can be done by comparison to real topologies. Another common

method is to compare the statistical characteristics of a generated topology with the input parameters

and requirements such as certain node degree distributionsor connectivity matrices. As there is no

real snapshotof the Internet traffic or its topology, it is difficult to devise a method to benchmark the

success of a topology generator or the inference of a topology, however the topologies are compared
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with incomplete datasets.

When inferring the router-level topology of a medium sized ISP, it may be possible to request

the operator to verify the results, as done by Spring et al. [SMW02]. However, as mentioned before,

operators are unlikely to reveal such information, although they may indicate the success level of an

inference method as a percentage of routers or links discovered [DKF+07]. BGP and AS ownership

data can also be validated by relevant Internet domain registries, although the information held by such

authorities is not continuously updated and is thus often inaccurate.

2.3 Topology Inference

In this section I discuss recent efforts for inference of theAS-level topology of the Internet and router-

level topology of ISPs. It is essential to note the intersection of inference with measurement. Inference-

based statistics are subject to the underlying measurementprocess and the assumptions which have

been made on the level of accuracy and details of the measurement process. Thus, inaccurate inference

methods lead to unrealistic models.

Topology inference works usually fall in two categories: Router-level and AS-level. In related

literature, Donnet and Friedman [DF07] also mention the IP interface and the Point-of-Presence (PoP)

maps. The IP interface addresses are usually aliases for thesame router and I mention the problems

associated with resolving such aliases in this section. Inferring PoP level maps is a difficult task due

to lack of publicly available datasets or tools. Hence they are sometimes made available by network

operators, or inferred indirectly from IGP routing data.

2.3.1 ISP Router-Level Maps

In this part, I discuss the recent efforts and tools for discovering the Internet’s router-level topology,

also known as itsIP layer or layer 3 topology. These methods are usually based on thetraceroutetool.

Traceroute is the basic tool for discovering the paths that packets take in the Internet. Nearly all attempts

to extract routing and topology information of the Internetat router layer use traceroute.

Traceroute works by sending multiple Internet Control Message Protocol (ICMP) [Pos81] packets

with an increasing Time To Live (TTL) field in the IP header. When a packet with a TTL of one reaches

a router, it discards the packet and sends anICMP time exceededpacket to the sender. The traceroute

tool uses the IP source address of these returning packets toproduce a list of routers that the packets

have traversed on their route to the destination. By incrementing the TTL value after each response, the

overall path taken by the packets can be inferred.

Mercator

One of the first tools which relies on traceroute for mapping sections of an ISP isMercator, introduced

by Govindan et al. [GT00]. The aim of Mercator is to build a nearly complete map of the transit portion

of the Internet from any location where Mercator is run, using hop-limited probing [ELR+96]. By using

multiple source points, including source-route probe capable routers, it is possible to find cross links and

avoid discovering only a tree-like structure. Mercator sends a UDP message to a high port number on the

router and receives back an ICMP reply. If two source addresses of the reply message are the same, they
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are from the same router. This operation relies on the requirements for the Internet hosts as described

in [Bra89]. This is a technique for resolving alias, by identifying the interfaces belonging to the same

router.

The challenges faced by Mercator are due to the fact that it does not attempt to cover the whole spec-

trum of a network due to randomised process and the fact that many routers do not forward traceroutes

for source-routing in the way that Mercator requires.

Skitter

One of the most widely used datasets is that collected by theSkitterproject1. Huffaker et al. [HPM+02]

state the project focus as “active measurement of the topology and round trip time (RTT) information

across a wide cross-section of the Internet”.

Probing uses the traceroute tool. IP addresses are then mapped into their corresponding origin AS.

The disadvantage of such a tool is the large amount of data that it produces, from a number of sources

currently placed in over 25 locations worldwide. This leadsto the inherent problems of traceroute such

as aliasing on a wider scale as multiple sources are involved. Skitter does not attempt to resolve aliases.

Rocketfuel

In an attempt similar to Mercator, Spring et al. in the Rocketfuel project [SMW02] try to infer the maps

of ten ISPs, consisting of backbones, access routers and directly connected neighboring domain routers.

Validation is attempted by using some of the ISP’s own topology data. Direct probing techniques are

used to filter the traceroutes on the ISP of interest, using BGP tables information from RouteViews.

A BGP table maps destination IP address prefixes to a set of AS paths that can be used to reach that

destination. Public traceroute servers are used as vantagepoints for the traceroutes.

Rocketfuel uses the direct probing method, as suggested by Govindan and Tangmunarunkit [GT00].

In order to ensure correct resolution of aliases, Rocketfuel also uses theIP ID2 field of the router’s

responses to probe packets, which is incremented by the router. The source sends two probe packets

to the two interfaces that are thought to be aliases of the same router. If consecutive responses from

the interfaces increment theIP ID by a small value, it indicates that the same IP stack is running on

the same router with multiple interfaces, hence the interfaces are believed to belong to the same router.

Otherwise, the interfaces belong to two distinct routers.

Network cartographer

Another tool for inference and mapping of a network topologyis thenetwork cartographer(nec) map-

ping software introduced by Magoni and Hoerdt [MH05]. Thenec tool is a traceroute-based mapper

from multiple traceroute servers, finding routers and linksand producing router-level connectivity graph.

The major difference betweennecand Rocketfuel [SMW02] is thatnechas wider scope while Rocket-

fuel focuses on a single ISP. Unlike Rocketfuel, where few hosts target thousands of IP addresses,nec

uses many traceroute webservers to a limited set of chosen IPaddresses. Figure 2.2 displays the steps

involved in annecmapping query, sent to two traceroute serversA andB.

1http://www.caida.org/tools/measurement/skitter/
2The identification field in the IP header is used to aid in assembling the fragments of a datagram.

http://www.caida.org/tools/measurement/skitter/
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Figure 2.2: nec mapping steps, figure courtesy of [MH05]

In the first stage, the queries are sent from the workstationsto the traceroute servers. In the second

stage, traceroute servers query the selected IP addresses.In the final stage the results of the traceroutes

are sent back to thenecmapping workstations.

DIMES

The DIMES project [SS05] attempts to build a router-level map of the Internet. In this project, the

DIMES agent, which can be installed on any computer connected to the Internet, performs Internet

measurements such as traceroute and ping at a low rate, sending the results to a central collection station

at regular intervals. The advantage of the DIMES approach over previous traceroute based mapping tools

is that the probing process is done across many locations in the world, giving a more complete map of

the Internet router-level topology. However, due to the large number of vantage points and collection of

overlapping measurements, removing the redundancies in the data is a complicated process. Moreover,

DIMES also does not attempt to resolve router aliases.

2.3.2 Comparison of traceroute-based methods

In this section I have listed a number of methods for inferring router-level connectivity information.

These methods have evolved over time from single source traceroute probes to universally distributed

probing agents. Table 2.1 displays a summary of the characteristics of these methods.

It can be observed that the trend of inference tools has movedfrom single-source, static maps to

those spread across many sites and constantly updating their database. It is interesting to note that there

are no maintained maps with alias resolution and this may lead to incorrect assumptions about the growth

of the Internet router level topology.



2.3. Topology Inference 29

Table 2.1: Comparison of traceroute based methods

Tool Released Alias resolution Updated Probes

Mercator 1999 YES NO Single

Skitter 1999 NO YES Multiple

Rocketfuel 2002 YES NO Single

nec 2003 NO NO Multiple

DIMES 2004 NO YES Multiple

2.3.3 Accuracy of traceroute maps

Most of the work in discovering router-level topology of ISPs relies on the traceroute tool. Achlioptas et

al. [ACKM05] discuss some of the problems associated with traceroute. They explore the mathematics

of the sampling bias of traceroute, confirming that even whena given node degree distribution is Poisson,

after traceroute sampling, the inferred node degree distribution exhibits power law properties. It is

difficult to remove this bias as shown by Clauset and Moore [CM05], as the number of sources required

to compensate for the bias in traceroute sampling grows linearly with the mean degree of the network.

Lakhina et al. [LBCX03] analyse the effects of such traceroute sampling techniques on random

graphs and conclude that when graphs are sampled using traceroute-like methods, the resulting degree

distribution can differ significantly from the the underlying graph. For example, given a sparse Erdös-

Rényi random graph, the subgraph formed by a collection of shortest paths from a small set of random

sources to a larger set of random destinations can exhibit a degree distribution remarkably like a power-

law. The implementation of sampling in the paper is performed on the measurements from Skitter,

Mercator, the dataset used by Faloutsos et al. [FFF99] and the Pansiot-Grad [PG98]. In studies of the

four traces, the sampled subgraph shows differences in degree distribution and other characteristics from

the original graph.

Teixeira et al. [TMSV03] look at path diversity (number of available paths) in the Sprint network3

and ISPs explored by Rocketfuel. The Rocketfuel path diversity discovery is found to be at extreme

cases, either over-estimating or finding very little diversity, again due to the use of traceroute. The dif-

ferences between the Sprint data and Rocketfuel inferred maps are due to non discovery of backup links,

lack of vantage points, incomplete traceroute information, path changes in a traceroute and incorrect

DNS names.

Deploying a large number of monitors usually results in having to process large datasets from each

monitor. Donnet et al. [DRFC06] try to find out the amount of redundancy across datasets, focusing on

the CAIDA Skitter datasets. They discover that around 86% ofa given monitor’s probes are redundant in

a sense that they visit router interfaces which have alreadybeen visited by the monitor, especially those

closer to the monitoring station. It is also observed that many of the probes are redundant in a monitor’s

dataset as they already have been visited by the other monitors, particularly those at an intermediate

distance (between 5 and 13 hops).

3http://www.sprintlink.net/

http://www.sprintlink.net/
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As a result of the traceroute sampling bias, there has been ongoing effort in order to modify tracer-

oute behaviour. Augustin et al. [ACO+06] proposeParis traceroute, which is a modified version of

traceroute with ability to discover redundant paths. One ofthe issues when using traceroute arises due

to the Equal Cost Multi Path (ECMP) load balancing deployed by multi-homed stubs and network op-

erators. This leads to traceroute taking different paths oneach occasion as shown in Figure 2.3. Paris

traceroute looks into the effects of load balancing and its frequency on traceroute anomalies. Load

balancing can be done per packet, per flow or per destination IP address.
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Figure 2.3: Traceroute false reporting, Figure provided by[ACO+06]

Augustin et al. show that by manipulating the ICMP sequence number and checksum in the ICMP

packet header, it is possible to ensure that all the packets on traceroute take the same path. This leads to

discovery of more possible routes. With this method it is also possible to report on the loops and cycles

in ordinary traceroute reports. Paris traceroute is suggested as an alternative to the ordinary traceroute,

rather than as a topology mapping tool, hence it does not attempt to resolve any router aliases.

Dall’Asta et al. [DAHB+06] find that the node and link detection probability dependson statisti-

cal properties of elements such as betweenness centrality.Hence the shortest path routed sampling, or

sampling the network from a limited set of sources as performed by traceroute, provides a better charac-

terisation of underlying graphs with broad distributions of connectivity, such as the Internet. The studied

model analyses the efficiency of sampling in graphs with heavy-tailed connectivity distributions and

looks at metrics such as the node degree distribution. The conclusion drawn is that unlike homogeneous

graphs, in those with heavy-tailed degree distribution such as the Internet, major topological features are

easily captured though details such as the exponent of the power laws. However this behaviour appears

to suffer from biases which are result of the sampling process and affect the accuracy of results.

The studies in this section may imply that traceroute is not asuitable tool for detailed analysis of the

Internet router-level maps. However it is still widely usedfor topology measurement and it is in reality

the only scalable and available tool.

2.3.4 AS-Level Internet maps

The other important level of the Internet topology is the AS-level topology. The freedom of AS adminis-

trators to change their traffic exchange relationships withother providers has led to a constantly evolving

Internet topology at router and AS level. Obtaining the AS graph can enable better design of routing

algorithms and traffic engineering between various ASes.

BGP information at border routers is kept consistent by receiving BGP update messages from other

ASes. BGP updates contain multiple route announcements andwithdrawals. These announcements
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indicate that new network sections are available to the routers or a policy change is enforced to prefer an

alternative path over an existing one. Withdrawals occurs when an existing route is replaced by a new

route to a destination prefix by means of a withdrawal message. These messages inform the withdrawal

of links and addition of new links and contain theAS-Pathtravelled by the advertisement. Each router

along the path prepends its own AS number to the AS-path in theBGP message.

The AS-path is needed to avoid loops in the BGP route selection process. The AS-paths, in con-

junction with the AS prefix, are also used to decide on what is the best next hop to use for sending a

packet to a destination. An edge-router may not have complete view of the BGP status of the Internet

and may have a default path to a tier-1 provider. Tier-1 providers have default-free BGP information so

that they can forward all the packets to the correct destination. IP forwarding requires that all routers

within an AS are aware of all the prefixes which are learned by the edge routers from other ASes.

Some attempts on AS-level topology discovery were based on using traceroute data. Inference

of AS-level maps from traceroute data includes problems notimmediately noticed. Mapping of an IP

address to the correct AS number incorporates challenges which are discussed by Mao et al. [MRWK03].

They propose techniques for improving mapping of IP addresses to the corresponding ASes. These

techniques rely on a measurement methodology for collecting both BGP and traceroute paths at multiple

vantage points and using an initial IP-to-AS mapping derived from a large collection of BGP routing

tables.

The difficulties arise due to the fact that the BGP table data and the actual path taken by packets

can be inconsistent due to new route aggregation/filtering and routing anomalies [GW02]. The WHOIS

data is also not always up to date due to company mergers, break ups and IP address re-allocations. An

improvement can be made by collecting a large amount of information from BGP routing tables, BGP

update messages and reverse DNS lookups in order to help traceroute build a more accurate AS-level

map of the Internet.

Gao’s seminal paper [Gao01] is one of the first attempts to present an AS graph inferred from the

Oregon RouteViews BGP data. The provision of such a map has enabled classification of AS relation-

ships into customer-provider, peering and sibling relationships. Figure 2.4 displays examples of the types

of relationship between different ISPs.

A customer pays its provider for Internet connectivity and does not transit any traffic between its

providers. A pair of peers agree to exchange traffic between their customers by sharing the cost of the

peering links and eliminating traffic charges between each other. A pair of small ISPs may provide addi-

tional connectivity or backup connectivity to the Internetto each other in form of a sibling relationship.

Despite the presence of such contractual agreements, thereis little publicly available information

about inter-AS relationships. The Routing Policy Specification Language [AVG+99] can be used to

register information about peering relationships but thisinformation is not always accurately published

due to its sensitive business nature. However it is possibleto infer such information from the BGP

routing tables. Gao proposed heuristic algorithms for suchdiscovery, and then validated some of the

results by using a Tier1 ISP’s internal information. The discovery of the relationships is based on the
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Figure 2.4: Commercial relationships between ISPs.

BGP routing update export rules that are different for the individual relationships. The proposed solution

by Gao is based on forming annotated graphs of the network andmaking sure the AS paths areValley-

Free, i.e., after traversing a provider-to-customer or peer-to-peer edge (link), the AS path cannot traverse

a customer-to-provider or peer-to-peer edge. The Valley-Free criteria holds only when the following

conditions are met:

• A provider-to-customer edge can be followed by only provider-to-customer or sibling-to-sibling

edges.

• A peer-to-peer edge can be followed by only provider-to-customer or sibling-to-sibling edges.

Subramanian et al. [SARK02] focused on peering relationships between ASes from a commercial

relationship point of view. They combined BGP data from multiple vantage points to construct a view

of the Internet topology, using BGP routing tables from 10Telnet Looking Glassservers.4 The proposed

algorithm ranks each AS from each of the vantage points basedon the number ofup-hill anddown-hill

portions. The results suggest the design of a topology generator based on directed graphs, as opposed to

degree-based methods, as the directed graphs make distinction between edge ASes, connecting to several

transit core ASes.

This work led to many other interesting findings about AS-level relationships. Batista et

al. [BEH+07] took this approach further by proving that identifying AS relationships from BGP data,

especially when measured from multiple sources, is an NP-complete problem. The suggested solution

is a linear time algorithm for determining the AS relationships in the case in which the problem admits

a solution without anomalies for large portions of the Internet (e.g., data obtained from single points of

view). The solution is performed by starting from a set of AS paths, so that the number of invalid paths

is kept small. This method can be applied on the address prefixof the hosts within an AS.

4http://www.traceroute.org/#LookingGlass

http://www.traceroute.org/#Looking Glass
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When looking at the path taken between ASes, direct access to end points is not always possible.

The approach of using multiple sources of data is an extremely useful method in such scenarios. It

enables a more detailed analysis of the possible paths between two end nodes (ASes in this case). Mao et

al. [MQWZ05] explored the feasibility of inferring AS paths by using BGP tables from multiple vantage

points, router-level paths from traceroute servers, and AS-level paths from Looking Glass sites.

One of the inherent issues of inference of AS-level topologyof the Internet by use of mapping

node IP addresses to registered AS numbers is that sibling relationships are missed. Dimitropoulos et

al. [DKF+07] proposed an alternative solution to AS-level map inference which attempts to find sibling-

to-sibling (s2s) relationships, as well as customer-to-provider (c2p) or provider-to-customer (p2c). The

proposed inference model avoids the mistake of consideringsiblings as customers or peers, which in turn

may result in wrong inference of a provider as a customer, or the other way round, while still rendering

a path as valid. The inference of s2s links plays an importantrole when looking at corporate networks,

where multiple ASes belong to the same organisation. In order to look at the s2s relationships, the IRR

databases are consulted and dictionary of synonymous organisations is manually created. Although a

disadvantage of this approach is that the IRR are not always up-to-date.

Using public BGP data and validating their results against cooperating ISPs, the author’s main

conclusion is that with BGP derived inference, it is possible to identify less than 50% of peer to peer

links. Another conclusion is that nearly all relationshipsare p2p and c2p, as confirmed by the conducted

survey.

When focusing on AS-level graphs of the Internet, peering relationships play an important role

in providing alternative routing and resilience. Muhlbauer et al. [MFM+06] focus on the connections

between the ASes within the Internet, due to the importance of the inter-AS relationships. Peering

relationship are difficult to infer due to the business nature of this information, and the limited ability of

methods to correctly identify such peering relationships.However their importance is significant as they

affect inter-domain routing policies. They build a simple model that captures such relationships by using

BGP data from observation points such as Routeviews and RIPE. They then use simulations to provide

an AS-level map which they compare with the BGP data from other vantage points.

In a view inspired by the business relationships of providers, Chang et al. [CJW06] present a model

of economic decisions that an ISP or AS has to make in order to peer with other ASes, or with transit

tier-1 ASes. The economic decisions which have to be considered by an ISP are of three types: peering,

provider and customer. In each case, the cost-centric multilateral decision, as referred to by the providers,

has to bring mutual benefits for both parties. The gravity model [Poy63] has been used to describe

decisions on traffic demand and exchange. The distance of ASes from each other plays the critical role

in the decision made by an AS to peer with another. They use BGPdata to form node degree distributions

to infer peering relationships. An important result of their work is an analysis of changes in the topology

of a network, by introduction of new peering relationships and updates to the current ones.

Muhlbauer et al. [MUF+07] investigated the role and limitations of business relationships as a

model for routing policies. They observe that popular locations for filtering correspond tovalleyswhere
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no path should be propagated according to inferred businessrelationships. This result reinforces the

validity of the valley-free property used for business relationship inference. This work reveals two di-

mensions to policies: (i) which routes are allowed to propagate across inter-domain links (route filtering);

and (ii) which routes among the most preferred ones are actually chosen (route choice) and thus observed

by BGP monitors. They use BGP data from more than 1,300 BGP observation points, including Route-

views. The observation points are connected to more than 700ASes with some feeds from multiple

locations. They provide a model of ASes and have identified sets of per-prefix policies in order to obtain

agreement between the routes selected in their model and those observed in the BGP data.

2.4 Models of Internet Topology

Mathematical modelling of the characteristics of the Internet is a key stage for successful generation of

realistic topologies. These mathematical models can rangefrom geographical distance and clusters to

distribution of nodes with different degrees of connectivity. In reality, the constant change in the Internet

topology makes it difficult to obtain a single topology of theInternet and instead it is more appropriate

to refer to the obtained maps asInternet topologies.

This section presents some of the models of the Internet topologies. The objective of this section

is to familiarise the reader with the common methods of characterising the topology of a network and

provide a basic understanding of the most common terms used in this context.

2.4.1 Random graphs

Complex networks such as the Internet have traditionally been described using the random graph theory

of Erdös and Ŕenyi [ER85]. In a simple model, for a given number of nodesn, edgesm and the average

degreēk = 2m/n, one can construct the class of random graphs having the sameaverage degreek by

connecting every pair of nodes with probabilityp = k/n.

Despite the ease of use of the random network model, and theirability to produce some of the

required metrics for a generator such as average node degree, they were abandoned in favour of models

that capture the statistical characteristics of the Internet as discussed in the next section.

2.4.2 Power laws in topologies

Power laws are one of the most widely used notions in the context of topology analysis of the Internet.

Power laws are seen in statistical distributions where there is no concept of scale variance, i.e., a property,

such as a distribution of nodes in a network, follows the samerules at different scales or resolutions. In

a seminal paper, Faloutsoset al. [FFF99] stated that certain properties of the AS-level Internet topology

are well described by power laws. In this work, the authors use three Internet instances (topologies

inferred from BGP tables). Three specific power laws were observed and these were believed to hold for

the Internet:

• Rank exponent: Out-degree of a node is proportional to its rank to the powerof a constant.

• Out-degree exponent: The frequency of an out-degree is proportional to the out-degree to a con-

stant power.
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Figure 2.5: A power law network of 200 nodes

• Eigen-exponent: The eigenvalues of the adjacency graph are proportional tothe orderi to a con-

stant power.

One of the classic models that is used in this context is theBA model, introduced first by Barabási

and Albert [BA99]. This model is based on the incremental growth of networks, by addition of new

nodes and preferential attaching nodes to well-connected ones. They also reported that Internet has

power law characteristics, alongside the findings of Faloutsos et al. Barab́asi and Albert focus on WWW

webpages and links between them as an alternative measurement of the Internet.

Figure 2.5 shows a network of 200 nodes connected based on theBA model. Such a graph will

have power law characteristics, and a tree-like structure due to its scale-free nature. If one relies on

the traceroute tool, it is difficult to infer the cross links between the nodes. A scale-free network is not

a homogeneous network as the nodes have a very heavy-tailed distribution. Despite the small size of

the Internet at the time of observations of Faloutsoset al., these observations were believed to hold in

future growth stages of the Internet. This hypothesis intrigued Siganoset al.to repeat the above analysis

again [SFFF03]. They prove the existence of power laws in Internet at AS-level, looking at two topology

measurements, at few snapshots over five years, one from Oregon RouteViews and another is the dataset

used by Chenet al. [CCG+02]. The test for the existence of power laws is carried on themetrics such

as rank exponent, degree exponent and eigenvalues. The conclusions are that the power laws exist over

a five year period and they are an efficient way to describe metrics of topology graphs.

Figure 2.6 displays the node degree distribution of the power law network in Figure 2.5, plotted on

a log-log graph. Existence of a straight line indicates the existence of a power law distribution of node

degrees.
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Figure 2.6: Power law node degree distribution.

The existence of power laws in the Internet is interesting asthe Internet is formed from smaller

networks which are self-managed. Medinaet al. [MMB00] look at four factors in formation of Internet

topologies which may cause various power laws inferred on the Internet:

1. Preferential connectivity of nodes to nodes with more connections.

2. Incremental growth of the networks.

3. Distribution of nodes in space (random or heavy-tailed).

4. Locality of edge connections (preference to connect to nearby nodes).

The BRITE topology generator[MLMB01] was used by Medina et al. to test these hypothesis.

Topologies of between 500 to 15,000 nodes were considered, with and without incremental growth and

preferential connectivity.

The final conclusions are that the rank and out-degree power laws are more effective in distin-

guishing topologies than the number of hops between nodes and eigenvalue power laws which are ob-

served similarly in all topologies. Preferential connectivity and incremental growth are found to be the

main causes for all power laws in the simulations. They establish that for best correlation coefficients

(approaching 1) and slope of linear fits for rank exponents (approaching 0.5 observed by Faloutsos et

al. [FFF99]) both preferential connectivity and incremental growth must be present. This methodology

can be extended by grouping nodes into administrative domains.

The findings in this section indicate the existence of power laws in various statistics extracted from

the Internet. However the inferred statistics are not always perfect as one cannot obtain a single snapshot

of the Internet topology and must rely on various measurement techniques. I now present results which

indicate that the existence of power laws are merely a side-effect of poor inference techniques.



2.4. Models of Internet Topology 37

2.4.3 Arguments against power laws

The inherent biases of traceroute sampling and collection of BGP data from limited vantage points

made researchers question the true existence of power laws in the Internet AS-level topology. Chenet

al.. [CCG+02] state that BGP data represents a partial view of the Internet, hence power laws may not

exist in the strict form suggested by Faloutsoset al. [FFF99] for the degree distribution. This argument

is based on their findings that BGP AS paths do not completely capture the topology and the data from

Routeviews suggest that the node degree distribution is perhaps heavy-tailed (close to Weibull distribu-

tion) and perhaps only the tail exhibits power laws. The authors use BGP routing tables of 41 ASes and

information from Looking Glass websites to infer the local AS connectivity map and compare it to the

one achieved by Routeviews. Data from the European Internetrouting registry (RIPE), which has the

peering relationships of most European ASes, is used in order to find relationships which are not seen

from BGP inference, such as siblings [CGJ+04].

Another observation in conflict with the existence of power laws is the important observation made

by Mahadevan et al. [MKF+06]. For a comparative study, three distinct data source areused:

1. Traceroute data from the CAIDA Skitter project, using the31 daily graphs for the month of March

2004.

2. Routeviews BGP data for March 2004, including static table and updates.

3. RIPE WHOIS database dump for April 07, 2004.

The findings confirm that the Skitter data displays power law characteristics [FFF99], however

the WHOIS graph has an excess of medium degree nodes and hence its node degree distribution does

not follow power laws. They also compared many metrics of theSkitter and RouteViews graphs to

those graphs generated based on Power-law Random Graphs (PLRG) [ACL00] and it is observed that

the PLRG model fails to accurately capture the important properties of the skitter or RouteViews BGP

graphs. Similarly, the PLRG model fails to recreate the WHOISgraph since its node degree distribution

does not follow a power law at all.

Krishnamurthy et al. [KFC+05] introduce graph sampling, in order to reduce the size of inferred

topologies for analysis while preserving metrics, in this case power laws and slope of graphs. They

model the network as an undirected graph at AS-level. They propose sampling the graph by deleting

nodes and links probabilistically, or by contracting the graph at steps, or by generating a subset of graphs

from traceroute paths. They perform probabilistic deletion of nodes and edges and can reduce the graphs

by about 50-70% while keeping metrics such as power laws within an acceptable range.

2.4.4 Alternative topology models

Power laws were not the only point of interest for network researchers who used datasets from vari-

ous inference projects. For example the graphs produced by Rocketfuel and Skitter consist of physical

connectivity of Internet routers for an ISP or a section of the Internet. However for an improved under-

standing of the physical infrastructure of the Internet, itis essential to have more information about the
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common characteristics of links such as the link bandwidth,router capacities and etc. These concerns

were first raised by Alderson et al. [ALWD05], where they focuson annotated graphs of the Internet at

the IP layer with addition of bandwidth and buffer sizes. TheAbilene5 and Rocketfuel maps are used

to look at various differences between network models, by use of a metric proposed asnetwork per-

formance, defined as the maximum throughput of a network under a gravity model of end user traffic

demands. Hence their proposed design for designing an ISP network graph is referred to asHeuristi-

cally Optimal Topologywhich is based on having sparsely connected high speed routers at the core of

the network, supported by hierarchical tree-like structure at the edges. This is similar to the proposed

Highly Optimised Toleranceapproach suggested by Carlson and Doyle et al. [CD00] andHeuristically

Optimised tradeoffsconsidered by Fabrikant et al. [FKP02].

The authors propose that detailed study of the technological and economic forces shaping the router-

level topology of a single ISP provides convincing evidencethat the Internet is not necessarily formed

of highly connected routers in the core of the network. They expect border routers again to have a few

relatively high bandwidth physical connections supporting large amounts of aggregated traffic. In turn,

high physical connectivity at the router-level is again expected to be confined to the network edge. They

also note that modelling router-level robustness requiresat a minimum adding some link redundancy

(e.g., multi-homing) and incorporating a simple abstraction of IP routing that accounts for the feedback

mechanisms that react to the loss or failure of a network component.

2.4.5 Structural models of the Internet

Alongside power laws, other metrics of network topologies have been studied extensively in the litera-

ture. One of the most important factors that has already beenexplained in this section is the clustering

of nodes. Clustering has been widely studied using techniques of finding the clustering coefficient of

the nodes in a network. An alternative to this method isspectral filtering. Gkantsidis et al. [GMZ03]

perform a comparison of clustering coefficients, by using eigenvalues of adjacency matrices from var-

ious BGP data of networks, and also on methods of topology generation, such as BRITE. This work

identifies a global problem with topology generators; inability to generate representative topologies. Use

of a small topology leads to concentrating only on degree distribution power laws in AS and router-level

geographic topologies, as opposed to looking into the peering relationships, clustering and amount of

traffic on the links. They have introduced the basics of degree-based graph generation and conditions

that the links and nodes are attached to ensure connectivity, using a Markov-chain-based algorithm.

They believe that degree-sequence is not sufficient for topology generation that matches the real

data. They use clustering methods and eigenvalues to analyse the generated topologies and compare

with real data from NLANR6. The generation methods that meet a degree-sequence while incorporat-

ing clustering are suggested by the researchers. Good clustering methods are also needed in topology

generators, as both the degree-sequence and the clusteringare found in real networks [GMZ03].

Li et al. [LAWD04] discuss the need for topology inference andgeneration at different levels. For

5http://abilene.internet2.edu/
6http://www.nlanr.net/

http://abilene.internet2.edu/
http://www.nlanr.net/
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congestion control protocols, IP level connectivity with bandwidth and buffer sizes is needed, while for

attack assessment and network planning a detailed map of node and router capacities is required. For

routing protocols one needs a graph of AS-level connectivity and peering information. The authors focus

on node degree distribution and their heavy-tailed characteristics and whether the node degree distribu-

tion is the most important objective of a topology. They discourage the use of random generators as

they do not produce power laws in node degrees, so they have been replaced by degree-based generators.

The proposedfirst principles approachfocuses more on physical layer, router and links. In the context

of network engineering for an ISP, physical metrics such as performance and likelihood are used to for

graph generations. They observe that simple heuristicallydesigned and optimised models that reconcile

the tradeoffs between link costs, router constraints, and user traffic demand, result in configurations that

have high performance and efficiency.

The Internet has a hierarchical structure in the form of different tiers. Jaiswal et al. [JRT04] look

at comparing the structure of power-law graph generators and that of the Internet AS graph. This is

an important step in proving the existence of power laws. By decomposing graphs of the Internet at

different levels, the authors establish the properties of power-law graphs and the Internet graph and find

skewed distributions in degree connectivity, i.e., a largenumber of less-connected nodes connect to the

well-connected ones, and well-connected ones tend to interconnect more closely.

Carmiet al. [CHK+06] use the data from the DIMES project, combined with AS-level maps from

the RouteViews project, to form a map of the Internet. The mapformation method is based onk-shell

decomposition, which involves removing nodes in groups based on number of connections they have, to

form shells of nodes. In the first step, thek-pruning technique is performed by removing all the nodes

with only one neighbour recursively, as well as removing thelink to that neighbour along with the node.

The nodes removed in this step are called the1-shell. This process carries on with indexk to form

shells of higher connectivity degree. The last nonemptyk-core will be, by definition, the backbone of

a network such as Internet. Figure 2.7 displays a sketch of the k-core decomposition for a small graph

from Alvarez-Hamelinet al. [AHDBV06]. Each closed line contains the set of vertices belonging to a

givenk-core, while colours on the vertices distinguish differentk-shells.

Carmi et al.found that for the DIMES data used, the size of eachk-shell decreases with a power

law distribution,n(k) ∝ k−δ, where the exponentδ is about2.7.

Node clustering techniques have also been used to characterise Internet topologies. Wool and

Sagie [SW04] propose a clustering method that enables the view of Internet topology as AS-graphs

in different granularity levels. They find few main dense cores, which inter-connect the regional cores.

They compare various degree-based generators and state theneed to consider power laws and clustering

coefficients when generating topologies in BRITE and Inet. They use the densek-subgraph approach for

clustering in different levels.

Yook et al. at [YJB02] propose a model of networks based on fractals. They find that the physical

layout of nodes form a fractal set, determined by populationdensity patterns around the globe. The

placement of links is driven by competition between two models: preferential attachment and linear
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Figure 2.7: Example ofk-core decomposition [AHDBV06]

distance dependence. Preferential attachment assumes that the probability that a new node will link to

an existing node withk links depends linearly onk. The nodes with higher connectivity degree are more

desirable for attachment by new nodes. Preferential attachment is believed to be one of the main reasons

for power-law properties of the Internet. Linear distance dependence is due to the fact that the further

the nodes are from each other, the less likely it is for them tohave a direct connection.

The Internet, like many complex networks, is believed to have small world characteristics. Such

characteristics are important for delivery of messages andcontent on networks. Jin and Bestavros [JB06]

consider the small world characteristics when generating topologies at router-level and AS-level. At AS-

level, the high variability in node degree, and at router-level the preference for local connectivity results

in this phenomena. They use simulation of multicast trees ondifferent models. They also use AS

graphs of the University of Michigan AS graph dataset (RouteViews plus Looking Glass), and various

router-level graphs including Skitter. They use these to get the statistics such as node degree and local

connectivity in order to evaluate their model. They suggestsimulators taking into consideration vertex

degree distributions as well as preference for local connectivity and suggest improvement by considering

scale-free characteristics as well.

The Internet architecture and structure is constantly evolving. Pastor-Satoras and Vespig-

nani [PSV04] highlight the self-organising nature of the Internet and its evolution since birth from

a statistical and physical view point. Their conclusion is that the Internet can be modelled as a network

of nodes and links growing in a scale-free manner. However the growth and death rates of ISPs and

ASes and predictions for future trends on the Internet remain open issues.

This section has gathered various models that are presentedfor the Internet at physical and routing

levels. The variety of models is an indication of the complexstructure of the Internet which makes

it difficult to capture all the characteristics with a simplemodel. Based on these models, researchers

develop topology generators which are discussed in Section2.5.
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2.4.6 Comparison of topology generation models

Despite the availability of many topology models, there hasnot yet been an agreement between re-

searchers on a single standard method of modelling and generation of Internet or ISP network topolo-

gies. This inconsistency is due to the many aspects that one has to consider when studying a topology.

In addition, different models may be used by researchers depending on the level of complexity required.

Chang et al. [CJW03] look at the problem of generating AS-level topology of the Internet. They

discuss the weakness of current power-law based generatorsand BGP-inferred AS topologies in detect-

ing AS peering and business relationships. The authors focus on the optimisation of a topology based

on AS geography, business model and evolution in time, usingthe RouteViews data plus inferred infor-

mation from Looking Glass sites to form two datasets. For simplicity, all multi-homing and multiple

connections of ASes are removed by choosing just one link based on criteria such as lowest average hop

distance. The final graph is one which is 50% of the size of original dataset, with similar node degree

distribution.

Alderson et al. [ADGW03] discuss generating topologies using the Highly Optimised Tolerance

concept. In this strategy, the focus of the generator is the economic trade-offs, such as cost and perfor-

mance, and technical barriers faced by an ISP when designingits own network. This would allow for a

focus into economical challenges faced by network operators. These issues are important for backbone

service providers, which must ensure optimised use of the network capacity.

Mahadevan et al. [MKFV06] discuss the lack of analysis and topology generation tools that can

focus on specific requirements of metrics of a graph, focusing on degree correlations of subgraphs of a

graph that represents a network or Internet. However this method becomes extremely complex as the

number of correlated nodes increases. In a basic model, a setof subgraphs are defined with various

distributions and are used to define a topology. The metrics considered for analysis are: spectrum,

distance distribution, betweenness, node degree distribution, likelihood (sum of products of degrees of

adjacent nodes) and clustering. However in practice, the focus has been put on connectivity as the other

metrics are hard to compare and classify. They focus on reproducing a given network topology and

compare their results with the Skitter dataset and BGP data from RouteViews.

Mahadevan et al. believe an improvement in topology generation can be achieved by focusing on

peering relationships and graph annotations such as bandwidth, latency and etc. In Orbis [MHK+07],

the aim is to produce a random graph of desired size while keeping the characteristics of the input graph.

They allow a user to feed in average degree, node degree and joint degree distributions from a measured

topology, and the tool should also annotate the routers withAS memberships and annotate the AS links

with type of relationship between them.

They observe that the AS-level topologies can be approximated by power laws. However the router-

level topology does not fit strict power laws. The observed maximum degree at router-level does not

increase significantly by increasing the size of the graph. In 1k-rescaling, they attempt to preserve the

shape of the PDF of the graph’s degree distribution. In2k-rescaling, they try to preserve the degree

correlation profile. They encourage the addition of latencyand bandwidth distribution as another metric
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for rescaling for realistic topology generation.

One of the objectives of generation of topologies which closely map those of Internet is to arm net-

work researchers with tools with which they can analyse various issues in and around the Internet, such

as congestion, optimal routing and fault finding. Spring et al [SMA03] look at traceroute measurements,

usingscriptroute, from around 40 vantage points on planetlab to look at topology and routing policies

internal and between ISPs to analyse the causes of path inflation, and find that inter-domain routing and

peering policies have significant effect on the inflation. They suggest improvements to BGP policies to

look after routing across ISPs, as the ISPs have to use minimum AS hop-count which may take longer

sometimes. They compare the taken routes to the topology that they inferred using Rocketfuel.

2.5 Topology Generation

For successful simulations of traffic and network events, any generated network model must be topology

aware. Topology generation is an area which researchers have been actively working on in the last

decades. The first generated topologies were randomly generated by selecting a certain number of nodes

and randomly assigning links between them. This was due to the lack of understanding of the architecture

of the Internet and the lack of validation tools. In this section, some of the popular network topology

generators are discussed.

2.5.1 Waxman

The Waxman model of random graphs is based on a probability model for interconnecting nodes of the

topology given by:

P (u, v) = αe−d/(βL) (2.1)

where0 < α, β ≤ 1, d is the Euclidean distance between two nodesu andv, andL is the network

diameter, i.e., the largest distance between two nodes. Note thatd andL are not parameters for the

Waxman model. The Internet is known not to be a random networkbut I include the Waxman model as

a baseline for comparison purposes. Figure 2.8 displays a topology generated by the Waxman model. It

can be seen that some nodes are not connected to others.

2.5.2 GT-ITM

With the explosion of the Internet, researchers realized that they need to capture the structural properties

and attempted to model the design of the Internet. The hierarchical modelling of the Internet topology

was originally done by the transit-stub models. Calvert et al. [CDZ97] presented one of the first results in

this field by focusing on the graph-based models to representthe topology. The parameters used include

the number of transit and stub domains, number of Local Area Networks (LANs) per stub domain,

and the number of edges (links) between transit and stub domains, to initialise the topology generator.

Then the transit domains, transit nodes and their inter-connecting edges are placed and similarly the

stub domains. The Transit-Stub model produces connected subgraphs by repeatedly generating a graph

according to the edge count and checking the graph for connectivity. Unconnected graphs are discarded.
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Figure 2.8: A topology generated by the Waxman model.

This method ensures that the resulting subgraph is taken at random from all possible (connected) graphs;

however, it may take a long time to generate a connected graphif the edge count is relatively small

compared to the number of nodes. Extra edges from stub domains to transit nodes are added by random

selection of the domains and nodes.

Georgia Tech Internetwork Topology Models (GT-ITM), also known as theTransit-Stubgenerator,

is capable of producing several forms of network topologies:

• Flat random graphs: GT-ITM has five models of topology embedded within it including pure

random model and varieties of the Waxman [Wax88] model. These are not hierarchical models.

• N-Level model: The N-Level model constructs a topology recursively. In this method, a graph

is made by dividing the Euclidean plane into equal-sized square sectors, and then each sector is

divided into smaller sectors in the same manner, so the scaleof the final graph is equivalent to that

of the individual levels.

• Transit-Stub model: This model produces interconnected transit and stub domains. This model

is controlled by number of domains, average node per transitdomain, average stub domains per

transit domain, and average nodes per stub domain.

In the transit-stub domain, care has been taken to ensure that the paths are similar to those of the

Internet, for example the path between two stub domain goes through one or more transit domains and

not any stub domains and not the other way round. This is done by assigning appropriate weights to the

interdomain edges.

The transit-stub model is comparable to theTiersmodel [Doa96], in which the three levels of hier-

archy, or tiers, are referred to as Wide Area Network (WAN), Metropolitan Area Network (MAN), and
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LAN levels, corresponding to the transit domains, stub domains, and LANs of the transit-stub method.

The Tiers model produces connected subgraphs by joining allthe nodes in a single domain using a min-

imum spanning tree algorithm, a popular method used as the basis for laying out large networks. This

generation method has been tried in two implementations of Transit-Stub (TS) model, part of GT-ITM.

2.5.3 BA and AB

These models are inspired by the Barabasi and Albert [BA99] model of networks, and the Albert and

Barabasi (AB) model based one evolving networks [AB00] which incorporate preferential attachment

and incremental growth factors. Starting with a network ofm0 isolated nodes,m ≤ m0 new links are

added with probabilityp. One end of each link is attached to a random node, while the other end is

attached to a node selected by preferring the more popular, i.e., well-connected, nodes with probability

Π(ki) =
ki + 1

∑

j kj + 1
(2.2)

wherekj is the degree of nodej, with probabilityq, m links are rewired and new nodes are added with

probability1 − p − q. A new nodem hasm new links that, with probabilityΠ(ki), are connected to

nodesi already present in the system.

2.5.4 GLP

The Generalised Linear Preference model (GLP) [BT02] focuses on matching characteristic path length

and clustering coefficients. It uses a probabilistic methodfor adding nodes and links recursively while

preserving selected power law properties. In the GLP model,when starting withm0 links, the probability

of adding new links is defined asp wherep ∈ [0, 1]. Let Π(di) be the probability of choosing nodei.

For each end of each link, nodei is chosen with probabilityΠ(di) defined as:

Π(di) = (di − β)/
∑

j

(dj − β) (2.3)

whereβ ∈ (−∞, 1) is a tunable parameter indicating the preference of nodes toconnect to existing

popular nodes.

2.5.5 Inet

Inet produces random networks using a preferential linear weight for the connection probability of nodes

after modelling the core of the generated topology as a full mesh network. Inet sets the minimum number

of nodes at 3037, the number of ASes on the Internet at the timeof Inet’s development. By default, the

fraction of degree 1 nodesα is set to 0.3, based on measurements from Routeviews7 and NLANR8 BGP

table data in 2002.

2.5.6 The Positive Feedback Preference (PFP)

In the Positive Feedback Preference (PFP) model [Zho06], the AS topology of the Internet is considered

to grow by interactive probabilistic addition of new nodes and links. The PFP model starts with a random

network of sizen. At each time step:

7http://www.routeviews.org/
8http://www.nlanr.net/

http://www.routeviews.org/
http://www.nlanr.net/


2.6. Summary 45

1. With probabilityp, a new node is attached to a host node, and at the same time a newinternal link

appears between the host node and a peer node.

2. With probabilityq ∈ [0, 1 − p], a new node is attached to a host node, and at the same time two

new internal links appear between the host node and two peer nodes.

3. With probability1 − p − q, a new node is attached to two host nodes, and at the same time anew

internal link appears between one of the host nodes and a peernode.

2.5.7 IGen

Another generator which aims to generate topologies which have the geographical problems associated

with network design is the Igen generator. Quoitin [Quo05] explains why it is difficult to infer topologies

and thus proposes the generation of topologies based on network design parameters. He argues why

pure degree-based generators such as BRITE or GT-ITM fail tocapture real optimisation challenges

faced by network designers. The metrics such as latency minimisation, dimensioning and redundancy

are discussed. IGen first creates PoPs to look like the Sprintnetwork, then it make connected trees based

on the Highly Optimised Tolerance methodology [ADGW03].

2.6 Summary
Internet’s complex architecture and organisational structure hinders the construction of accurate maps of

the network and makes it nearly impossible to propose definitive mathematical models. Understanding

the network at the physical layer is essential for routing and resilience purposes. understanding the higher

layers, the virtual types of connectivity structures are very different when studied from different sources

of data and a correct understanding of the nature of these connections is essential for traffic engineering

and economic modelling of the network.

The research efforts towards mapping the internet have focused on trying to get a map at router and

AS level. Researchers try to understand routing policies and provide connectivity maps, by focusing on

the router and AS-level graphs.

The development of the above works suggest that realistic topology generators will benefit from

taking link bandwidth and geographic distribution of the nodes into consideration. It is also becoming

increasingly important for network researchers to take into consideration the evolution and structure of

networks and Internet as a whole over time and the presence ofannotated links plays an important role

in this context.

In this chapter I have briefly introduced the challenges in different areas of Internet topology re-

search. In Chapter 3, I put the available AS topology models under test, comparing them at different

network sizes with observed Internet topologies. In Chapter 4, I introduce a new metric for tuning the

parameters of topology models in order to be comparable to observed datasets from different measure-

ment infrastructures. I also study the evolution of the Internet in Chapter 5, analysing the effects of

measurement biases on our understanding of the Internet topology.
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Chapter 3

Understanding Internet AS Topology Models

Many models have been proposed for generating Internet Autonomous System (AS) topologies, most of

which make structural assumptions about the AS graph. In this chapter I compare topologies generated

from several different models against a set of measured AS topologies. In contrast to past work, I avoid

making assumptions about which topological properties areimportant for characterising the AS topology

by using a large set of topological metrics in the analysis.

In this chapter I show that current topology generators failto capture the complexity of the local

interconnection structure between ASes, despite matchingdegree-based properties of the AS topology

reasonably well. Using a collection of BGP topologies from many measurement locations, I also analyse

the reference datasets. I observe that adding more measurement locations significantly affects, especially

in the core, local structure properties such as clustering and node centrality while not notably affecting

degree-related metrics. The failure of topology generators thus stems from an underestimation of the

importance of the complexity of connectivity in the core caused by inappropriate use of BGP data.

3.1 Introduction

For many years, researchers have modeled the Internet’s Autonomous System (AS) topology1 using

graphs obtained via various measurement techniques such asBGP routing tables [Hal97, RLH06b] and

traceroute maps [HPM+02]. The AS topology is an abstraction of the Internet commonly used to analyse

its characteristics such as size and connectivity patterns, and to simulate the effects and performance of

new protocols.

Figure 3.1 illustrates the relationship between the real Internet topology, measurements of it and the

topology generation models which are discussed in this chapter. Observations of the AS topology suffer

from two problems: a given set of observation points has onlylimited visibility of the topology, and each

observation technique suffers from measurement artifacts. In this chapter I treat observations from BGP

and traceroute as samples of reality, accepting that they suffer from biases and reveal different partial

truths about the properties of the Internet.

At the same time, the models which underlie topology generators make simplifying assumptions

about the topology [BT02, MKFV06, Zho06] based on prior observations. At present, the main widely-

1Note that the AS topology does not represent the data-plane topology. Many organisations are permanently connected to their

providers, sharing an AS number [SBCC98]. Alternately, an organisation may use many AS numbers for controlling routing.
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Figure 3.1: Internet topology generation

held assumptions are that the AS topology has a hierarchicalstructure and its node-degree distribution

obeys a power-law. Note that correct reproduction of the hierarchical structure can be achieved simply by

following degree-related distributions [TGJ+02], although both the node degree distribution and the joint

degree distribution must be reproduced [MKF+06]. Thus, by comparing different observed topologies

with different levels of incompleteness, with topologies generated from different models, I learn about

the limitations of particular assumptions about the Internet’s AS topology. The direction of these biases

and limitations gives us insight into the actual propertiesof the AS topology.

In this chapter I show that current topology generators capture the node degree distributions quite

well, but fail to account either for the complex local interconnection structure between ASes, or the

highly meshed structure of the core AS topology. Such failures can affect the performance of protocols

and applications when simulated using synthetic topologies. For example a routing protocol can demon-

strate different convergence times on a random graph when compared to a graph with high number of

alternative paths between nodes.

Different metrics are considered important by different topology generatorion models, so comparing

topologies from different generators requires taking a broad perspective. A key principle underlying this

work is to be agnostic about the topological properties of the Internet. To this end I use many topological

metrics, hoping to cover a large enough set of properties of the true AS topology to reveal as many biases

in observations as possible. I do not claim that the set of metrics used captures all important aspects of

the AS topology. However, using such an extensive set of topological metrics allows one to observe

even subtle differences between synthetic topologies and observed ones. Also, I use statistical measures

for comparing distributions of some metrics, allowing us toobjectively compare the similarity of two

topologies.

The primary purpose of topology generators is to providerealistic topologies for simulation, where

this means that their properties should be as close as possible to those of the real AS topology. This is

typically tested by comparison with measured topologies, which suffer from the biases discussed above.

A further problem is that the true topology is itself dynamic: it changes due to routing dynamics, mis-
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configuration [FB05], and the long-term evolution of the Internet. This results in problems for BGP-

based observations, as well as traceroute-based observations. For example, traceroute can report AS

paths hops that do not map to a unique AS number [MRWK03]2. Thus, alongside comparison among

generators based on different underlying assumptions, I contrast the results with measurements made at

different times using different techniques and observation points.

In summary, the measurements suggest that using additionalBGP peers for collecting connectivity

information greatly affect important characteristics such as power laws and measures of centrality, while

having little affect on basic degree-related properties. This suggests that to understand the nature of the

Internet topology, one should only use rich datasets which capture a large portion of peering links.

The key contributions of this chapter are to characterise the existing generators across a large set of

metrics, and to compare them to numerous available measureddatasets. I show thatpower lawsare not

strictly adhered to in today’s Internet AS topology. My results also indicate that the AS topology is best

modeled by matching node degree distributions while takinginto consideration the meshed core formed

by the many peering links between ASes. I also give insight into the effect of varying the number of

observation points for capturing the AS topology.

The rest of this chapter is structured as follows. In Section3.2, I contrast past work with my analysis.

I revisit current AS topology models and describe their underlying assumptions in Section 3.3, present a

collection of observed AS topologies collected using different methodologies from various locations in

the world in Section 3.4. In Section 3.5, I describe commonlyused metrics for topology characterisation.

In Section 3.6 I discuss the appropriate statistical measures of similarity and then in Section 3.7, I present

the results of the analysis. I discover that synthetic topologies and observed topologies record biases due

to the nature of the data collection processes. Hence I conduct an intensive analysis of the topology

dataset collected from a large number of measurement locations and analyse the impact of increasing

the number of BGP peering vantage points. Alongside a description of my methodology, the results

in Section 3.8 show that the importance of preferential attachment has weakened while peering links,

underestimated in the past, are now far more critical. As well as concluding, Section 3.9 discusses

potential improvements in the field.

3.2 Related Work

Zeguraet al.[ZCD97] analyse topologies of 100 nodes generated using pure random, Waxman [Wax88],

exponential and several locality based models of topology such as Transit-Stub. They use metrics such

as average node degree, network diameter, number of paths between nodes. They find that pure random

graphs produce topologies that represent expected properties such as locality very poorly and so I exclude

pure random graphs from the comparisons. They suggest that the Transit-Stub method should be used

due to both its efficiency and the realistic average node degree its topologies achieve.

Faloutsoset al.[FFF99] state that three specific properties of the AS-levelInternet topology are well

described by power laws: rank exponent, out-degree exponent and eigen exponent (graph eigenvalues).

2This effect is also seen in CAIDA’s Skitter dataset, where a number of possible AS numbers are recorded for a router on the

traceroute path.
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This work parallelled development of many models based on power laws, such as the Barabási and

Albert [BA99] model, based on incremental growth by addition of new nodes and preferential attachment

of new nodes to existing well-connected nodes.

Later, Bu and Towsley [BT02] used the empirical complementary distribution (ECD) rather than

standard histograms to generate new nodes. They showed the variability in graphs from different gener-

ators using the same heuristics using characteristic path length and clustering coefficients.

Tangmunarunkitet al. [TGJ+02] provide a first point of comparison of the underlying character-

istics of degree-based models against structural models. Amajor conclusion is that the degree-based

model, in its simplest form, performs better than random or structural models at representing all the

studied parameters. They compare three categories of modelgenerators: the Waxman model of random

graphs, the Tiers [Doa96] and Transit-Stub structural models, and the simplest degree based generator,

called the power-law random graph (PLRG) [ACL00]. They compare under three metrics: expansion,

resilience and distortion. It was found that the PLRG performs better than the random or structural mod-

els in reproducing these parameters. Based on their defined metrics, they conclude that the hierarchy

present in the measured networks is stricter than in degree-based generators. However, they leave many

questions unanswered about the accuracy of degree-based generators and the choice of metrics.

Zhou and Mondragon [Zho06] propose models based on several mathematical features, such as rich-

club, interactive growth and betweenness centrality. Theyuse AS data from the CAIDA Skitter project

to examine the JDD and rich-club connectivity. They show that for these data, rich-club connectivity and

the JDD are closely linked for a network with a given degree distribution.

In this chapter, I consider many more recent degree-based generators using a larger set of graph-

theoric metrics to give better insight into correct understanding of the AS topology. I make a detailed

comparison with a range of different Internet AS topologiesat national and international level obtained

from traceroute and BGP data. When choosing the metrics, I considered both metrics used by the

topology generator designers and those used more widely in graph theory. A particular point to note is

that I chose not to use the three metrics of Tangmunarunkitet al. for two reasons. First, computation of

both resilience and distortion are NP-complete, requiringuse of heuristics. In contrast, all the metrics

used in this chapter are straightforward to compute directly. Second, although accurate reproduction

of degree-based metrics is well-supported by current topology generators, my hypothesis was that local

interconnectivity was poorly supported, and so I chose to use several metrics that focus on exactly this,

e.g., assortativity, clustering, and centrality.

3.3 AS Topology Models
There are many models available that claim to describe the Internet AS topology. Several of these are

embodied in tools built by the community for generating simulated topologies. In this section I describe

the particular models whose output is compared in this section. The first are produced from the Waxman

model [Wax88], derived from the Erdös-Ŕenyi random graphs [ER85], where the probability of two

nodes being connected is proportional to the Euclidean distance between them. The second come from

the Barabasi and Albert (BA) [BA99] model, following measurements of various power laws in degree
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distributions and rank exponents by Faloutsoset al. [FFF99]. These incorporate common beliefs about

preferential attachment and incremental growth. The thirdare from the Generalised Linear Preference

model [BT02] which additionally model clustering coefficients. Finally, Inet [WJ02] and PFP [Zho06]

focus on alternative characteristics of AS topology: the existence of a meshed core, and the phenomenon

of preferential attachment respectively. Each model focuses only on particular metrics and parameters,

and has only been compared with selected AS topology observations.

3.4 AS Topology Observations

The Internet AS topology can be inferred from various sources of data such as BGP routing or tracer-

oute [Mal93] at the network (IP) layer. Using just BGP routing data suffers from incompleteness, no

matter how many vantage points are used to collect observations. In particular, even if BGP updates

are collected from multiple vantage points and combined, many peering and sibling relationships are

not observed [FMM+04]. Conversely, traceroute data misses alternative pathssince routers may have

multiple interfaces which are not easily identified, and multi-hop paths may also be hidden by traffic tun-

nelled via Multi-Protocol Label Switching (MPLS) pathways. Combining these data sources does not

solve all problems since mapping traceroute data to AS numbers is not always accurate [MRWK03]. In

this chapter I attempt to avoid these problems by comparing against many measurement-derived datasets

giving a diverse spatial and temporal comparison across different continents and years of measurement.

3.4.1 Chinese AS topology

The first dataset is a traceroute measurement of the Chinese AS Topology collected from servers within

China in May 2005. It reports 84 ASes, representing a small subgraph of the Internet. Zhouet

al. [ZZZ07] maintain that the Chinese AS graph presents all the major topology characteristics of the

global AS graph. The presence of this dataset enables us to compare the AS topology models at smaller

scales. Further, this dataset is believed to be nearly complete, i.e., it contains very little measurement

bias and accurately represents the true AS topology for thatregion of the Internet.

3.4.2 Skitter

The second dataset comes from the CAIDA Skitter project3. CAIDA computes the adjacency matrix of

the AS topology from the daily Skitter measurements. These are obtained by running traceroutes over

a large range of IP addresses and mapping the prefixes to AS numbers using RouteViews BGP data.

Since the Skitter data represents paths that have actually been traversed by packets to their destinations,

rather than paths calculated and propagated by BGP system, it is more likely to faithfully represent the

IP topology than the BGP data alone. For this study, I used thegraphs for March 2004 as used by

Mahadevanet al. [MKF+06]. This dataset reports 9,204 unique ASes across the Internet.

3.4.3 RouteViews

The third dataset I use is derived from the RouteViews BGP data. This is collected both as static snap-

shots of the BGP routing tables and dynamic BGP data in the form of BGP message dumps (updates

3http://www.caida.org/tools/measurement/Skitter/

http://www.caida.org/tools/measurement/Skitter/
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and withdrawals). I have used the topologies provided by Mahadevanet al. [MKF+06] from two types

of BGP data from March 2004: one from the static BGP tables andone from the BGP updates. In both

cases, they filter AS-sets and private ASes and merge the 31 daily graphs into one. This dataset reports

17, 446 unique ASes across43 vantage points in the Internet.

3.4.4 UCLA

The fourth dataset comes from the Internet topology collection4 maintained by Oliveiraet al. [OZZ07].

These topologies are updated daily using the data sources such as BGP routing tables and updates from

RouteViews, RIPE5, Abilene6 and LookingGlass servers. Each node and link is annotated with the times

it was first and last observed. I use a snapshot of this datasetfrom November 2007 computed using a

time window on the last-seen timestamps to discard ASes which have not been seen for more than 6

months. The resulting dataset reports 28,899 unique ASes.

3.5 Topology Characterisation

In this section I provide a large set of topological metrics.Taken individually, those metrics do not

define adistancein graph space, i.e. how two graphs look like each other. However, once combined,

they can identify the failures of topology models and highlight the potentials for improvements. The

topological metrics are computed for the synthetic and measured topologies, modeled as graphs with

a collection of nodes and undirected links that connect pairs of nodes,G = (N ,L) with N = |N |
nodes andM = |L| links. In the remainder of this thesis, I consider the networks formed by the largest

connected component. Consequently, the computation of thetopological metrics is restricted to those

largest connected components of the inferred topologies.

3.5.1 Degree

The degreek of a node is the number of links adjacent to it. Theaverage node degreēk is defined as

k̄ = 2M/N . Thenode degree distributionP (k) is the probability that a randomly selected node has

a given degreek and is defined asP (k) = n(k)/N , wheren(k) is the number of nodes of degreek.

Thejoint degree distribution(JDD)P (k, k′) is the probability that a randomly selected pair of nodes has

degreesk andk′. A summary measure of the joint degree distribution is the average neighbour degree

of nodes with a given degreek, knn(k) =
∑kmax

k′=1 k′P (k′|k). The maximum possibleknn(k) value is

N −1 for a maximally connected network, i.e. a complete graph. Hence, I represent JDD by normalised

valuesknn(k)/(N − 1) [MKF+06].

3.5.2 Assortativity

Assortativity is a measure of the likelihood of connection of nodes of similar degrees [New02]. This

is usually expressed by means of the assortativity coefficient r: assortative networks haver > 0 (dis-

assortative haver < 0 respectively) and tend to have nodes that are connected to nodes with similar

(dissimilar respectively) degree.

4http://irl.cs.ucla.edu/topology/
5http://www.ripe.net/db/irr.html/
6http://abilene.internet2.edu/

http://irl.cs.ucla.edu/topology/
http://www.ripe.net/db/irr.html/
http://abilene.internet2.edu/
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3.5.3 Clustering

Local clusteringC(k) is the ratio ofm̄nn(k), the average number of links over all the connected com-

ponents between the neighbours ofk-degree nodes, and the maximum possible number of such links

C(k) = 2m̄nn(k)/(k(k − 1)). I use distribution of clustering coefficientsC, which is the proportion of

triangles (nodes with two connected neighbours) among all connected node triplets in the entire network

which gives the same weight to each triangle in the network irrespective of degree of the nodes.

3.5.4 Rich-Club

The rich club coefficientφ(ρ/n) is the ratio of the number of links in the component induced bytheρ

largest-degree nodes to the maximum possible linksρ(ρ − 1)/2 whereρ = 1...n are the firstρ nodes

ordered by their non-increasing degrees in a network of sizen nodes [CFSV06].

3.5.5 Shortest path length distribution

The shortest path length distributionS(h), as commonly computed using Dijkstra’s algorithm, is the

probability distribution of two nodes being at minimum distanceh hops from each other. From the

shortest path length distribution, the average node distance in a connected network is derived asH̄ =
∑hmax

h=1 hS(h), wherehmax is the the shortest paths between any pair of nodes with the greatest number

of hops.hmax is also referred to as the diameter of a network.

3.5.6 Centrality measures

Betweenness centrality is a measure of the number of shortest paths passing through a node or link,

a centrality measure of a node or link within a network. The betweenness for a node isB(v) =
∑

s 6=v 6=t∈V
σst(v)

σst
whereσst is the number of shortest paths froms to t andσst(v) is the number of

shortest paths froms to t that pass through a nodev [HKYH02]. The average node betweennessB̄ is

the average value of the node betweenness over all nodesB̄ =
∑n

v=1 B(v).

Closeness is another measure of the centrality of a node within a network and is defined as the

average length of the shortest paths to and from all the othernodes in a graph. The closenessS(v) for a

nodev is the reciprocal of the sum of shortest paths to all other reachable nodes (connected component)

V in a networkS(v) = 1
P

v,t∈N
V . A high closeness of a node is indicative of it having short geodesic

distance to other nodes [Sab66].

3.5.7 Coreness

The l-core of a network is the maximal component in which each nodehas at least degreel. In other

words, thel-core is defined as the component of a network obtained by recursively removing all nodes

of degree less thanl. A node has corenessl if it belongs to thel-core but not to the(l + 1)-core. Hence,

the l-core layer is the collection of all nodes having corenessl. The core of a network is thel-core such

that the(l + 1)-core is empty [BBGW04].
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3.5.8 Top clique size

A clique in a network is a set of pairwise adjacent nodes, i.e., a component which is a complete graph.

The top clique size, also known as the graph clique number, isthe number of nodes in the largest clique

in a network [Woo97].

3.5.9 Spectrum

The spectrum is the set of eigenvalues of the adjacency matrix of a graph. Recently, it has been observed

that eigenvalues are closely related to almost all criticalnetwork characteristics [Chu97]. For example,

Tangmunarunkitet al.[TGJ+02] classified network resilience as a measure of network robustness subject

to link failures, resulting in a minimum balanced cut size ofa network. Spectral graph theory enables

studying network partitioning problem using eigenvalues [Chu97].

In the graph theory literature, one usually considers the adjacency or the Laplacian matrix [Mer95,

CDGT88], which employ different normalisation and therefore lead to different spectra. In this chapter

I focus on the spectrum of thenormalised Laplacian matrix[Chu97], where all eigenvalues lie between

0 and 2, allowing easy comparison of networks of different sizes.

3.6 Measures of Similarity
To compare the distributions of various metrics I use the following statistics to determine how close two

distributions are to each other. I perform the calculationsfor each synthetic topology instance separately

and compare them to observed topologies of the same size. Note that distances are relative to the metric

and the topology size, and so the distances of one metric for aparticular sized topology cannot be

compared either to distances of another metric for the same sized topology, or to distances for the same

metric for different sized topologies.

3.6.1 Kolmogorov-Smirnov (KS) distance

Given samples of two random variables,X1 andX2, the KS distance is the maximum empirical distri-

bution difference defined as:

Dmax = sup|Fn1
(x) − Fn2

(x)|

wheresup S is the supremum of setS andFni
(x) is the empirical distribution ofXi(i = 1, 2):

Fni
(x) = 1

ni

ni
∑

j=1

IXj≤x for i=1,2

wheren1 andn2 are the number of samples fromX1 andX2 andIXj
is the indicator function.

The closely related 2-sample KS test tests the null hypothesis thatX1 andX2 share a (true)common

distribution based on the KS distance (Dmax). However, it is misleading to use this test to indicate if

two distributions aresimilar, as it is highly sensitive to large sample sizes, and also as the particularx1

andx2 compared here are not strictly independent variables since, for example, nodes with high degrees

tend to occur together. InsteadDmax alone is used in this chapter to indicate therelativecloseness of

distributions.
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3.6.2 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is also proposed as a suitable metric7 for comparing network

distributions. The KL divergence between two discrete random variablesX1 andX2 is defined as:

DKL(X1,X2) =
∑

i P (X1 = Xi)log
P (X1=Xi)
P (X2=Xi)

whereP (x) is the probability ofx.

The KL divergence takes account of the difference between the distributions at all points rather

than simply at the maximum point. In this chapter, Gaussian kernel density estimation using fixed

bins centred around data in the observed data set were found to perform well for as a non-parametric

way of estimating the probability density function, although other methods do exist. There are other

distance estimation measures also available such as Chi-square statistic, quadratic form distance and

match distance which we do not use in this chapter, as most of them rely on the assumption of the

underlying sample’s distribution.

3.7 Results and Discussion

Most past comparisons of topology generators have been limited to the average node degree, the node

degree distribution and the joint degree distribution. Therationale for choosing these metrics is that

if those properties are closely reproduced, then the value of other metrics will also be closely repro-

duced [MKFV06].

In this section I show that current topology generators are able to match first and second order

properties well, i.e., average node degree and node degree distribution, but fail to match many other

topological metrics. I also discuss the importance of various metrics in the analysis.

3.7.1 Methodology

For each generator I specify the required number of nodes andgenerate 10 topologies of that size in

order to provide confidence intervals for the metrics. I thencompute the values of the metrics introduced

in Section 3.5 for the generated and observed AS topologies.It is important to note that all topologies

studied in this thesis are undirected. Using undirected graphs prevents us from considering peering

policies and provider-customer relationships. This is a limitation that is forced upon us by the design of

the generators as they do not take such policies into account.

Each topology generator uses several parameters, all of which could be tuned to best fit a particular

size topology, e.g., the Skitter dataset. However, there are two problems with attempting this tuning.

First, doing so requires selection of an appropriate goodness-of-fit measure of which there are many,

e.g., as noted in Section 3.5. Second, in any case tuning parameters to a particular dataset is of question-

able merit since, as I argue in Section 3.1, each dataset is only a sample of reality with multiple biases

and inaccuracies. Nonetheless, I made a preliminary attempt at tuning in this way for node degree and

joint degree distribution in the Waxman model, but it provedof little value with insignificant impact on

subsequent results. Consequently, I chose not to pursue this further in this chapter and simply use the

7The KL divergence is not strictly a metric asDKL(X1, X2) 6= DKL(X2, X1)
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Table 3.1: Comparison of AS level dataset with synthetic topologies.
Topology Links Avg. deg. Max. Top clique Max. Max. Assort. Clust. Max.

degree size betweenness coreness coef. coef. closeness

Chinese(n=84) 211 5.02 38 2 1,324 5 -0.32 0.188 <0.01

Waxman 252 6 18 2 404 4 0.039 0.117 0.506

BA 165 3.93 19 3 1,096 2 -0.096 0.073 0.515

GLP 151 3.6 44 3 2,391 5 -0.257 0.119 0.643

PFP 250 5.95 37 10 849 9 -0.38 0.309 0.638

Skitter(n=9204) 28,959 6.3 2,070 16 10,210,533 28 -0.23 0.026 <0.01

Waxman 27,612 6 33 0 474,673 4 0.205 0.002 0.264

BA 18,405 4 190 0 5,918,226 2 -0.05 0.001 0.315

GLP 16,744 3.64 2,411 2 34,853,544 5 -0.089 0.003 0.496

INET 18,504 4.02 1,683 3 15,037,631 7 -0.195 0.004 0.514

PFP 27,611 6 3,000 16 13,355,194 24 -0.244 0.012 0.588

RouteViews(n=17446) 40,805 4.7 2,498 9 30,171,051 28 -0.19 0.02 <0.01

Waxman 52,336 6 35 0 1,185,687 4 0.205 0.001 0.25

BA 34,889 4 392 3 33,178,669 2 -0.04 0.001 0.33

GLP 31,391 3.6 4,226 4 127,547,256 6 -0.08 0.002 0.48

INET 43,343 4.97 2,828 6 31,267,607 14 -0.258 0.006 0.522

PFP 52,338 6 4,593 23 39,037,735 30 -0.252 0.009 0.564

UCLA(n=28899) 116,275 8.05 4,393 10 76,882,795 73 -0.165 0.05 0.32

Waxman 86,697 6 40 0 3,384,114 4 0.213 <0.001 0.246

BA 57,795 4 347 0 52,023,288 2 -003 <0.001 0.3

GLP 52,456 3.63 7391 2 371,651,147 6 -0.08 <0.001 0.486

INET 91,052 6.3 6,537 12 88,052,316 38 -0.3 0.01 0.55

PFP 86,696 6 8076 26 123,490,676 40 -0.218 0.01 0.57

default values embedded within each generator. This corresponds to the way in which such generators

are generally used. I address the problem of parameter optimisation in Chapter 4.

3.7.2 Topological metrics

In this section I discuss the results for each metric separately and analyse the reasons for differences

between the observed and the generated topologies.

Table 3.1 displays the values of various metrics (columns) computed for different topologies (rows).

Blocks of rows correspond to a single observed topology and the generated topologies with the same

number of nodes as the observed topology. Bold numbers represent nearest match of a metric value

to that for the relevant observed topology. Rows in each block are ordered with the observed topology

first followed by the generated topologies from oldest to newest generator. Each metric’s value is the

calculated value for the observed topology, and the averageof the 10 synthetic topologies for each

generator. Note that Inet requires the number of nodes to be greater than 3037 and hence cannot be

compared to the Chinese topology.

I observe a small but measurable improvement from older to newer generators in how well they

match some measures such as maximum degree, maximum coreness, and assortativity coefficient. This

suggests that topology generators have been successively improved to better match some properties of the

observed topologies. However, the number of links in the generated topologies may differ considerably

from the observed topology due to the assumptions made by thegenerators.

Waxman and BA models fail to capture the maximum degree, the top clique size, maximum be-
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Figure 3.2: Comparison of node degree CCDFs.

tweenness and coreness. Those two generators are too simplistic in the assumptions they make about the

connectivity of the graphs to generate realistic AS topologies. Waxman relies on a random graph model

which cannot capture the clique that is known to exist between tier-1 ASes, nor the heavy tail of the node

degree distribution. BA tries to reproduce the power law node degrees with its preferential attachment

model but fails to reach the maximum node degree by far as it only adds edges between new nodes and

not between existing ones. Hence neither of these two modelsis able to create the highly-connected core

of tier-1 ASes.

PFP and Inet manage to come closer to the values of the metricsof the observed topologies. For

Inet this is due to the fact that nodes are fully meshed (at thecore), whereas for PFP it is its rich-club

connectivity model that allows it to add edges between existing nodes. Based on the observations, I

conclude that the core of the Internet is tending towards a fully meshed network.

Node degree distribution

Figure 3.2 shows the CCDF of the node degree for all topologies on a log-log scale. We observe that

the Chinese topology does not exhibit power law scaling due to its limited size, whereas all the larger

AS topologies do exhibit power law scaling of node degrees. The Waxman generator completely fails to

capture this behaviour as it is based on a random-graph model, but recent topology generators do capture

this power law behaviour of the node degrees quite well. In the case of the RouteViews and UCLA

datasets, Inet and PFP outperform other topology generators. Note that, contrary to RouteViews where

the degree distribution displays strict power law scaling,the UCLA dataset has a slightly concave shape.

In summary, more recent generation models reproduce node degree distribution well, as expected since
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Figure 3.3: Comparison of average neighbour connectivity CCDFs.

most focus has been on this metric.

Average neighbour connectivity

Neighbour connectivity has been far less studied than node degree, although it is very important to match

local interconnection among a node’s neighbours when reproducing the topological structure of the In-

ternet [MKF+06]. Figure 3.3 shows the CCDF of the average neighbour degrees for all topologies. We

observe that Waxman, BA and GLP all underestimate the local interconnection structures around nodes

due to their simplistic way of modelling node interconnections. Note that BA and GLP typically gen-

erate graphs with far fewer links than the observed topologies so they underestimate neighbour degrees

on average. For the larger topologies, i.e., RouteViews andUCLA, PFP and Inet typically overestimate

the neighbour connectivity, as they both place a large number of inter-As links at the core. In addition,

the shapes of the neighbour connectivity CCDF differ for thelarger topologies: Inet and PFP have two

regimes, one for high-degree nodes, and another for low-degree nodes. On the other hand, observed

topologies have a smooth region for the high-degree nodes, followed by a rather stable region which

caused by similar degree nodes. We observe that the highest degree nodes in the UCLA topology have

very high values of neighbour connectivity. This is consistent with the belief that tier-1 providers are

densely meshed. In summary, existing topology generators do not reproduce local interconnection be-

haviour well, but it is an important aspect of today’s AS topology and may significantly alter the quality

of results from simulations relying on the AS topology.
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Figure 3.4: Comparison of clustering coefficients.

Clustering coefficients

Like the average neighbour connectivity, the clustering coefficient gives information about local connec-

tivity of the nodes. It is important to reproduce clusteringdue to its impact on the local robustness in

the graph: nodes with higher local clustering have increasing local path diversity [MKF+06]. Clustering

properties of a graph can directly affect simulation on performance of multipath and resilience of overlay

routing.

Figure 3.4 displays the clustering coefficients of all nodesin the topologies. Error bars indicate95%

confidence intervals around the mean values of the10 topologies from each generator. We observe that

Waxman and BA significantly underestimate clustering, which is again consistent with their simplistic

way of connecting nodes. GLP approximates the clustering ofthe Chinese topology quite well but fails

in the case of the larger observed topologies. PFP and Inet capture clustering reasonably well compared

to the other topology generators. However, Inet does not reproduce the tail of the distribution well due

to the randomness factor in its model for edge addition once the core is fully meshed.

We also observe that for medium degree nodes, clustering coefficients display rather high variability

which increases with the size of the observed topologies. This behaviour seems to be a property of the

observed AS topology of the Internet (Section 3.8), and not just an artifact of the incompleteness of

observed AS topologies.

In summary, all topology generators fail to properly capture the clustering of the AS topology. Gen-

erators typically underestimate the local connectivity. Only Inet for the UCLA topology overestimates

connectivity of low-degree nodes while underestimates it for high-degree nodes. The current topology
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Figure 3.5: Comparison of rich-club connectivity coefficients

generators do not seem to have a proper model of local node connectivity.

Rich-club connectivity

Rich-club connectivity gives information about how well-connected among themselves are the nodes of

high degree. Figure 3.5 makes it clear that the cores of the observed topologies are very close to a full

mesh, with values close to 1 on the left of the graphs. The error bars again indicate the95% confidence

intervals around the mean values of the different instancesof the generated topologies. Waxman and BA

perform poorly for this measure in general. Only PFP and Inetgenerate topologies with a dense enough

core compared to the observed topologies. However, PFP overestimates the rich-club connectivity of the

Chinese and RouteViews topologies which is consistent withthe emphasis that PFP gives to the rich-club

connectivity in its design. Inet performs well due to its emphasis on a highly connected core, especially

for larger topologies where data has been collected across multiple peering points.

In summary, most topology generators underestimate the importance of rich-club connectivity of

the AS topology. PFP is the only topology generator that emphasises the importance of the dense core

of the AS topology.

Shortest path distributions

Figure 3.6 displays the distributions of shortest path length. Apart from BA, most topology generators

approximate the shortest path length distribution of the Chinese graph quite well due to its small size

and thus limited scope for error. For the other topologies, PFP and Inet generally underestimate the

path length distribution while Waxman and BA overestimate.Particular generators seem to capture the

path length distribution for particular topologies well: PFP matches that for Skitter well and GLP is
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Figure 3.6: Comparison of shortest path distributions (number of hops).

close for Routeviews. Inet and PFP both do a better job for UCLA than for RouteViews but both still

underestimate the distribution.

In summary, shortest path length is not well captured by any topology generator. Given the poor

match of generators on local connectivity metrics, it is notsurprising.

Spectrum

The spectrum of the normalised Laplacian matrix is a powerful tool for characterising properties of a

graph. If two large graphs have the same spectrum, they have the same topological structure.

Figure 3.7 displays the CDF of the eigenvalues computed fromthe normalised Laplacian matrix of

each topology.

As with other topological metrics, Inet and PFP perform best. The difference between the topol-

ogy generators is most easily observed around the eigenvalues equal to 1. These eigenvalues play a

special role as they indicate repeated duplications of topological patterns within the network. By du-

plication, I mean different nodes having the same set of neighbours giving their induced subgraphs the

same structure. Through repeated duplication, one can create networks with eigenvalue 1 of very high

multiplicity [BJ07]. In addition, we observe that the spectra have a high degree of symmetry around

the eigenvalue 1. If a network is bipartite, i.e., it consists of two connected parts with no links between

nodes of the same part, then its spectrum will be symmetric about 1. Consequently, the observed AS

topologies appear close in spectral terms to a bipartite graph, another phenomenon that arises through

repeated structure duplication. In the AS topology many ASes share a similar set of upstream ASes

without being directly connected to each other. Inet and PFPare good examples of topology generators
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where this strategy is implemented. Note that the simple preferential attachment model of BA does not

reproduce the eigenvalues around 1 very well. In the simple BA model, new nodes connect randomly

to a given number of existing nodes, favouring connections to high degree nodes. In the Internet in

contrast, although small ASes may tend to connect to large upstream providers, they might not connect

preferentially to the largest ones, connecting instead to national or regional providers. In summary, these

results provide further evidence that the interconnectionstructure of the AS topology is more complex

than current models assume.

3.7.3 Measures of similarity

In Section 3.7.2, I presented visual evidence for the (dis)similarity both among topology generators and

between generators and observed topologies. In this section I present a more objective approach, based

on the statistical distance measures described in Section 3.6: the Kolmogorov-Smirnov (KS) distance

and the Kullback-Leibler (KL) divergence.

In the following tables, the values of the distances and the standard deviations are shown for the

topological metrics with distributions: node degree, neighbour connectivity, clustering coefficient, and

rich-club coefficient. I provide the average values of the statistical distances and the standard deviation

around the average over the10 topologies generated by each topology generator. When no deviation is

shown, it was< 0.01.

Both statistical measures globally confirm the visual inspection of Section 3.7.2: more recent topol-

ogy generators produce topologies whose properties are closer to the observed topologies. Table 3.2
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Table 3.2: Statistical distances for Chinese vs. synthetictopologies.
Node degree Neighbour connectivity

KS KL KS KL

distance divergence distance divergence

Waxman 0.27±0.07 0.6±0.1 0.75±0.03 27.4±4.1

BA 0.12±0.03 3.5±1.8 0.74±0.07 18.4±8.1

GLP 0.24±0.08 0.64±0.31 0.41±0.08 1.18±0.72

PFP 0.17±0.04 1.45±0.48 0.51±0.07 0.85±0.25

Clus. Coefficients Rich-Club Coefficients

KS KL KS KL

distance divergence distance divergence

Waxman 0.61±0.03 22.31±4.5 0.22±3.5 4.2±2.8

BA 0.65±0.1 13.5±5.2 0.28±0.01 2.78±1.4

GLP 0.31±0.05 1.08±.6 0.26±0.04 0.34±0.19

PFP 0.32±0.11 0.34±0.14 0.12±0.01 0.11±0.02

Table 3.3: Statistical distances for Skitter vs. synthetictopologies.
Node degree Neighbour connectivity

KS KL KS KL

distance divergence distance divergence

Waxman 0.54±0.04 2.27±0.15 0.99±0.01 44.48±0.08

BA 0.41±0.02 17.1±2.6 0.99±0.01 44.7±0.25

GLP 0.31±0.06 17.42±4.1 0.31 2.16

Inet 0.075±0.02 4.13 0.40±0.02 1.82±0.31

PFP 0.13±0.03 18.2±2.31 0.13±0.05 18.2±2.21

Clust. Coefficients Rich-Club Coefficients

KS KL KS KL

distance divergence distance divergence

Waxman 0.91±0.02 40.62±1.2 0.2±0.05 6.75±1.3

BA 0.9±0.05 44.62±0.12 0.37±0.09 7.34±1.21

GLP 0.7±0.02 19.12±1.8 0.3±0.01 4.34±.45

INET 0.74±0.01 11.34±1.23 0.25 3.82±0.2

PFP 0.09±0.02 0.59±0.19 0.03 0.91±0.14

provides the KS and KL results for topology generators against the Chinese topology for the four chosen

topological metrics. Topology generators do not show improvement for the node degree. However, for

the other three metrics successive topology generators do show improvement. Overall, the PFP and GLP

model both have small relative distances to the Chinese dataset, due to the small size of the dataset, the

presence of high degree nodes as core ASes and fewer inter-ASconnections.

Table 3.3 displays the results of the statistical measures for results against the Skitter topology.

We observe a particularly good match of the node degree distribution by Inet. PFP outperforms all

other topology generators for the clustering coefficients and the rich-club coefficients, consistent with

the visual inspection.

Statistical distances for RouteViews (Table 3.4) show thatInet again better matches the node degree

distribution. GLP and Inet both perform better than other generators for neighbour connectivity. PFP

performs better than the others on the clustering coefficients. On the other hand, none of the generators

manages to obtain a close distance for the rich-club coefficients. On Figure 3.5, Inet seemed to be close to
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Table 3.4: Statistical distances for RouteViews vs. synthetic topologies.
Node degree Neighbour connectivity

KS KL KS KL

distance divergence distance divergence

Waxman 0.5±0.03 50.77±0.01 0.94±0.01 42.68±0.25

BA 0.2±0.02 50.74±0.01 0.94±0.01 42.91±0.34

GLP 0.18±0.03 50.73±0.01 0.12±0.02 0.1±0.02

Inet 0.07 9.92 0.23±0.02 0.2±0.01

PFP 0.11±0.03 50.7 0.62±0.02 1.25±0.07

Clust. Coefficients Rich-Club Coefficients

KS KL KS KL

distance divergence distance divergence

Waxman 0.83±0.05 39.4±1.2 0.97 42.23±0.43

BA 0.96±0.01 44.08±0.21 0.97 43.07±0.6

GLP 0.58±0.02 12.9±0.65 0.96 40.7±0.9

INET 0.39±0.01 1.35±0.2 0.93 34.18±1.1

PFP 0.32±0.06 0.21±0.03 0.92 27.4±2.45

Table 3.5: Statistical distances for UCLA vs. synthetic topologies.
Node degree Neighbour connectivity

KS KL KS KL

distance divergence distance divergence

Waxman 0.52±0.01 1.33±0.9 0.99±0.01 46.31±1.3

BA 0.17±0.03 2.15±0.8 0.99±0.01 46.42±0.7

GLP 0.18±0.05 2.21±0.7 0.32±0.03 0.63±0.04

Inet 0.2±0.02 5.34 0.29±0.01 0.41±0.01

PFP 0.12±0.03 2.17±0.8 0.48±0.05 0.83±0.21

Clust. Coefficients Rich-Club Coefficients

KS KL KS KL

distance divergence distance divergence

Waxman 0.93±0.02 44.2±0.34 0.31 14.5±4.32

BA 0.99±0.01 45.42 0.5 14.32±2.3

GLP 0.82±0.01 33.32±0.9 0.42±0.01 8.9±1.2

INET 0.38±0.01 0.53±0.01 0.13 2.85±0.12

PFP 0.38±0.02 0.79±0.15 0.16 3.23±0.4

RouteViews for rich-club coefficients, but this is not supported by the statistical distances. The behaviour

for rich-club connectivity is surprising, especially for PFP which is highly biased towards reproducing

rich-club connectivity. I believe this is due mainly to the addition of many extra peering links in this

dataset, which was not captured by model designers.

Statistical tests results for UCLA (Table 3.5) reveal a morecomplex picture. For node degrees, no

generator seems to outperform the others, although Inet performs worst. GLP, Inet and PFP perform

equally well on the neighbour connectivity. For clusteringcoefficients and rich-club connectivity, Inet

and PFP perform better than the others.

Visual inspection of Section 3.7.2 seemed to suggest that each successive topology generator in-

troduced improvements in their matching of observed AS topologies. Waxman and BA perform poorly

both in visual inspection and in the statistical distances.The KL divergences clarify the difference of

the two distributions across all the values and hence minimise the effects of local differences at certain
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Table 3.6: Comparison of AS topology datasets from multiplepeering points.
Topology Nodes Links Avg. deg. Max. Top clique Max. Max. Assort. Clust. Max.

degree size betweenness coreness coef. coef. closeness

1 peer 17,952 34,617 3.86 980 4 35,069,182 9 -0.18 0.008 <0.01

10 peers 27,838 64,717 4.65 2,731 7 52,862,315 20 -0.18 0.007 <0.01

25 peers 27,885 67,659 4.85 2,808 7 49,798,002 25 -0.19 0.01 <0.01

All peers 27,924 70,064 5.02 3,371 7 70,142,726 30 -0.18 0.01 <0.01

values.

The statistical measures show that apparent visual closeness of two distributions does not mean

close distance in distributional terms, due partly to the use of logarithmic scale axes. Improvements in

successive topology generators are not consistent across all metrics and across all observed topologies.

Nonetheless, most of the time the most recent generators, Inet and PFP, do outperform the other topology

generators. This indicates that more attention should be given on capturing the effects of peering links

in the core and at the edge of the AS topology, as this is the significant difference between these two

generators and the older Waxman and BA generators.

3.8 Multiple Vantage Points

The previous section studied in detail how well topology generators capture the properties of observed

AS topologies. In this section, I will argue about why topology generators capture different properties of

observed AS topologies with varying degrees of success. To that end I examine the impact on the metrics

of the number of vantage points from which BGP data is collected. For the analysis I used collected BGP

data from over 40 RouteViews peering points, for a period of 6months from May 2007. This time period

was chosen to be the same as that used to build the UCLA dataset.

Table 3.6 shows the values of the topological metrics the same way as in Table 3.1, for AS topologies

obtained from different numbers of observation points. Whencomparing the AS topologies using 1

(average value amongst all peers) and 10 random observationpoints, we see a significant increase in the

number of nodes and links. Hence, one might also expect a significant difference in the other metrics, and

indeed, the maximum node degree almost triples and the number of fully-meshed nodes almost doubles.

As a consequence, the size of the core increases as indicatedby the maximum coreness value. In turn,

the number of shortest paths crossing the core also increases as indicated by the maximum betweenness.

On the other hand, we see that going from 1 to 10 observation points slightly decreases the value of

the clustering coefficient. Most probably this is because with 10 observation points we discover more

of the core than the edge of the network, which does not contribute to increase the overall value of the

clustering coefficient. With 25 or more observation points the links on the edge of the network are also

discovered more, contributing to the increase of the value of the clustering coefficient. This behaviour

is confirmed by a slight decrease of the value of the maximum betweenness from 10 to 25 observation

points.

Preferential attachment models originate in the belief that small ASes tend to connect to large

upstream ASes, leading to a disassortative network. Although the value of the assortativity coefficient
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Figure 3.8: Comparison of effects of the number of peering points.

Recent work [RTM08] estimates that more than 700 observations may be needed in order to discover

nearly all missing links. However even this figure is an estimate and may not able to find the ground

truth.

is negative for the AS topology, it is not affected by an increase in the number of observation points.

The links added by increasing the number of observation points seem to be neutral for the assortativity

of the AS topology. One implication is that the links that canbe discovered by using more observation

points do not preferentially interconnect ASes of any particular degree. I conjecture that this is due to

the type of peering relationships that are missed. If node degrees give an indication of the likely type of

peering relationship, then I suggest that BGP does not preferentially miss peer-peer relationships, which

are believed to be more difficult to observe that customer-provider ones due to the nature of BGP path

advertisements [CGJ+04].

I now turn in more detail to the effect of the number of peeringpoints on four particular topological

metrics (see Figure 3.8). The addition of observation points mostly affects node degree distribution for

high degree nodes. As I increase the number of observation points, on average the neighbours of a node

will have a higher degree. However, this does not hold for nodes whose neighbours already have high

degrees (left part of the average neighbour degree curves).Those nodes correspond to stub networks

connected to very well interconnected upstream providers.For the clustering coefficient, when moving

from one to several observation points, the difference is striking. For all node degrees, the clustering

coefficient significantly increases. On the other hand, whenmoving from a few peerings to many, the

difference appears most for high degree nodes. This illustrates the better observability of links in the
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core compared to the edge of the network. Rich-club connectivity confirms the previous observations in

that adding a few observation points is enough to discover the core links.

In this section I have illustrated the importance of relyingon a sufficiently large number of obser-

vation points in order to properly capture the actual properties of the AS topology. Using only a few

observation points has led researchers to simplify the complexity of the interconnection structure be-

tween ASes. The improper AS topology on which researchers have relied has caused the creation of

topology generators that underestimate this interconnection structure between ASes. The results show

that researchers must use rich datasets for an accurate understanding of the Internet AS topology.

3.9 Conclusions and Contributions
In this chapter, I provide insight into the Internet’s AS topology. I compare multiple synthetic topologies

from generators based on different models, both among themselves and to several observed AS topolo-

gies collected at different times using different methods.I base this comparison on numerous topological

metrics, and use statistical measures to perform this comparison objectively.

My analysis revealed that current topology models do not faithfully represent the reality of the Inter-

net AS topology. Current models over-emphasise node degreedistribution and preferential attachment,

while failing to reproduce local connectivity metrics. Although I observe that more recent topology

generators generally perform better than older ones, I find that metrics giving information about local

connectivity properties were not well captured by any existing topology generator. In addition to clus-

tering and centrality properties, the highly meshed core ofthe Internet AS topology must be considered

in order to generate representative synthetic topologies,increasing the quality of simulations based upon

them.

I also compared the properties of AS topologies relying on different sets of observations. I observed

that, in contrast to structural metrics, node degree-related properties are not greatly affected by the ad-

dition of more vantage points as they add only a small percentage of peering links. On the other hand,

the power-law nature of the node degree distribution seems questionable, as increasing the number of

observation points causes deviation from strict power-lawscaling.

Finally, I wish to point out that the AS topology, useful as itis, provides only limited information

about the Internet’s size and other properties. When creating AS topologies, not all ASes should be

considered equal. Some networks may contain thousands of routers and links and be represented by a

single AS number, whereas others may have their own AS numberbut contain just a single router. Future

AS topology generators should permit the addition of metadata such as peering relationship and relative

importance of nodes8.

8The work presented in this chapter is the result of collaboration with Damien Fay, Steve Uhlig, Olaf Maennel and my advisors.

Damien Fay was mainly responsible for the accuracy of use of statistical measures. Steve Uhlig contributed to the use of spectrum.

Olaf Maennel provided the BGP data. All authors collaborated on the writing. However, the largest part of the underlyingideas

behind the work and methodological comparison approach, all the code and the detailed analysis of the collected traces have been

done by me.
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Chapter 4

Tuning Topology Generators

An increasing number of synthetic topology generators are available, each claiming to produce repre-

sentative Internet topologies. Every generator has its ownparameters, allowing the user to generate

topologies with different characteristics. However, there exist no clear guidelines on tuning the value of

these parameters in order to obtain a topology with specific characteristics.

In this chapter I tune the parameters of several topology generators to match a given Internet topol-

ogy. The optimisation is performed either with respect to the link density, or to the spectrum of the

normalised Laplacian matrix. Contrary to approaches in theliterature that rely only on the largest eigen-

values, I take into account the distribution of eigenvalues. However, I show that on their own the eigen-

values cannot be used to construct a metric for optimising parameters. Instead I use a weighted spectral

method which simultaneously takes into account all the properties of the graph.

4.1 Introduction

Today’s Internet is formed from more than 25,000 ASes, each of which can contain few or hundreds of

routers. Constant evolution and change in the Internet, dueto failures and router configuration bugs in

the short term, and growth and death of networks in the long term, has made it difficult for scientists to

produce representative Internet topologies at either AS orrouter level. However, such maps are essential

for the simulation and analysis of ideas including new and improved routing protocols, and peer-to-

peer or media-streaming applications. Since obtaining accurate, timely maps of the Internet topology is

difficult, and development of new protocols and systems requires understanding their performance over

a range of scenarios, researchers use synthetic topology generators.

There are many such generators, each of which is parameterised, often with multiple parameters,

giving rise to a plethora of potential synthetic graphs. Understanding and generating those graphs, use-

ful because they accurately represent features of the true underlying Internet graph, is difficult. Existing

approaches to tuning the generator parameters range from selection of particular metrics of interest,

e.g., link count, and tuning to match that particular metric, to simply using the default parameters en-

coded in the particular release of the generator package in use.

The core problem is to select an appropriate cost function which reflects those aspects of the graph

that are important to the user and weights those aspects accordingly. Such a selection process is inher-
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ently subjective: there is no “best” cost function in general. Once a suitable cost function is selected,

it is a simple matter to tune the available parameters of the topology generator to produce output that

optimally matches said cost function.

In the light of this, the contributions in this chapter are asfollows:

• I propose a new cost function, theweighted spectrum, constructed from the eigenvalues of the

normalised Laplacian matrix, or graph spectrum;

• I demonstrate that the graph spectrum alone is unsatisfactory as a cost function;

• I use an efficient approximation of the weighted spectrum which favours the more significant

eigenvalues;

• I use this approximation to tune parameters for a set of Internet topology generators, enabling us

to use these generators to effectively match a particular measured Internet topology.

The graph spectrum is a useful starting point for such a cost function as it yields a set of invariants

about a graph that encode all the properties of that graph [Chu97]. The proposed cost function improves

on the simple graph spectrum because it incorporates the knowledge that not all eigenvalues are equally

important, and weights toward those that are considered to encode more significant aspects of the graph’s

structure. The basis of the algorithm is to provide a way to measure the difference between two graphs

with respect to a common reference, a suitable regular graph.1

After reviewing related work in Section 4.2, I outline background theory in Section 4.3. In Sec-

tion 4.4 I present the results of the analysis and in Section 4.5 I compare topologies generated at optimal

values of the parameters with an observed dataset. Finally,I conclude the chapter in Section 4.6 and

discuss future work.

4.2 Related Work
Zeguraet al.[ZCD97] analyse topologies of 100 nodes generated using pure random, Waxman [Wax88],

exponential and several locality based models of topology such as Transit-Stub [CDZ97]. They use

metrics such as average node degree, network diameter, and number of paths between nodes, and use the

number of edges as the metric of choice for optimisation of the tuning parameter. However as I show

in this chapter, the number of links is not an ideal choice particularly in random networks, due to the

network structure only resembling the observed Internet topology at link counts much higher than those

suggested by the optimisation process.

Tangmunarunkitet al. [TGJ+02] provide a first point of comparison of the underlying character-

istics of degree-based models against structural models. Amajor conclusion is that the degree-based

model in its simplest form performs better than random or structural models at representing all the stud-

ied parameters. They compare three categories of model generators: the Waxman model of random

graphs, the TIERS [Doa96] and Transit-Stub structural models, and the simplest degree based gener-

ator, called the Power-Law Random Graph [ACL00]. They compare under three metrics: expansion,

1A regular graph is one where all nodes have the same degree.
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resilience and distortion and conclude that the hierarchy present in the measured networks is more strict

than in degree-based generators. However, they leave many questions unanswered about the accuracy of

degree-based generators and their choice of metrics and parameter values.

Heckmannet al. [HPSS03] discuss different types of topologies and presenta collection of real-

world topologies that can be used for simulation. They then define several similarity metrics, such as

the shortest path distributions, node degree distributions and node rank exponents, to compare artificially

generated topologies with real world topologies from AT&T’s network. They use these to determine the

input parameter range of the topology generators of BRITE [MLMB01], TIERS and GT-ITM [CDZ97]

to create realistic topologies.

Gkantsidiset al. [GMZ03] perform a comparison of clustering coefficients using the eigenvectors

of thek largest eigenvalues of the adjacency matrices of BGP topology graphs. However, the selected

eigenvectors are all given equal importance. They do not take into account the rest of the spectrum,

although it has recently been shown that the eigenvalues of either the adjacency matrix or the normalised

Laplacian matrix can be used to accurately represent a topology and some specific eigenvalues provide

a measure of properties such as robustness of a network to failures [But06, JU07].

Vukadinovicet al. [VHE02] used the normalised Laplacian spectrum for analysis of AS graphs.

They propose that the normalised Laplacian spectrum can be used as a fingerprint for Internet-like

graphs. Using the Inet [WJ02] generator and AS graphs from BGPdata, they obtain eigenvalues of

the normalised Laplacian matrix. The differences between synthetic and observed topologies indicate

that the structural properties of the Internet should be included in an Internet AS model alongside power

law relationships. They believe that the graph spectrum should be considered an essential metric when

comparing graphs. I expand on this work by demonstrating howan appropriate weighting of the eigen-

values can be used to reveal structural differences betweentwo topologies.

Use of spectrum for graph comparison is not limited to Internet research. Hanna [Han07] uses

graph spectra for numerical comparison of architectural space in large building plans. By defining space

as a graph, he shows that the spectra of two plan types can be used effectively to judge the effects of

global vs. local changes to, and hence the edit distances between, the plans. Hanna believes spectra give

a reliable metric for capturing the local relationships andcan be used to guide optimisation algorithms

for reproducing plans.

4.3 Weighted Spectral Distribution

I use the Weighted Spectral Distribution (WSD), which is related to another common structural metric,

the clustering coefficient, for examining the characteristics of networks with different mixing properties.

Denote an undirected graph asG = (V,E) whereV is the set of vertices (nodes) andE is the set of

edges (links). The adjacency matrix ofG, A(G), has an entry of one if two nodes,u andv, are connected

and zero otherwise

A(G)(u, v) =











1, if u, v are connected

0, if u, v are not connected
(4.1)
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Let dv be the degree of nodev andD = diag(sum(A)) be the diagonal matrix having the degrees

along its diagonal. Denoting byI the identity matrix(I)i,j = 1 if i = j, 0 otherwise, the Normalised

LaplacianL associated with graphG is constructed fromA by normalising the entries ofA by the node

degrees ofA as

L(G) = I − D−1/2AD−1/2 (4.2)

or equivalently

L(G)(u, v) =



























1, if u = v anddv 6= 0

− 1√
dudv

, if u andv are adjacent

0, otherwise

(4.3)

As L is a real symmetric matrix there is an orthonormal basis of real eigenvectorse0, . . . , en−1

(i.e.,eie
T
j = 0 andeie

T
i = 1) with associated eigenvaluesλ0, . . . , λn−1. It is convenient to label these

so thatλ0 ≤ . . . ≤ λn−1. The set of pairs (eigenvectors and eigenvalues ofL) is called the spectrum of

the graph. It can be seen that

L(G) =
∑

i

λieie
T
i (4.4)

The eigenvaluesλ0, . . . , λn−1 represent the strength of projection of the matrix onto the basis el-

ements. This may be viewed from a statistical point of view [SR03] where eachλieie
T
i may be used

to approximateA(G) with approximation error inversely proportional to1 − λi. However, for a graph,

those nodes which are best approximated byλieie
T
i in fact form a cluster of nodes. This is the basis

for spectral clustering, a technique which uses the eigenvectors ofL to perform clustering of a dataset

or graph [NLCK05]. The first (smallest) non-zero eigenvalueand associated eigenvector are associated

with the main clusters of data. Subsequent eigenvalues and eigenvectors can be associated with clus-

ter splitting and also identification of smaller clusters [NJW02]. Typically, there exists what is called

a spectral gapin which for somek and j, λk ≪ λk+1 ≈ 1 ≈ λj−1 ≪ λj . That is, eigenvalues

λk+1, . . . , λj−1
2 are approximately equal to one and are likely to represent noise in the original dataset,

i.e., links in a graph which do not belong to any particular cluster. It is then usual to reduce the dimen-

sionality of the data using an approximation based on the spectral decomposition. However, in this work

I am interested in representing the global structure of a graph (e.g. I am interested in the presence of

many small clusters), which is essentially the spread of clustering across the graph. This information is

contained in all the eigenvalues of the spectral decomposition.

A full derivation of WSD is present in [HFU+08]. To summarise: the eigenvalues ofL lie in the

range 0 to 2 (the smallest being 0), i.e.,0 = λ0 ≤ . . . ≤ λn−1 ≤ 2, and their mean is 1.

The distribution of then numbersλ0, . . . , λn−1 contains useful information about the network, as

will be seen. In turn, information about this distribution is given by its moments in the statistical sense,

where theN th moment is1/n
∑

i(1 − λi)
N . These moments have a direct physical interpretation in

terms of the network, as follows. WritingB for the matrixD−1/2AD−1/2, so thatL = I − B, then

2i.e., the eigenvalues at the centre of the spectrum.
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by (4.3) the entries ofB are given by

(D−1/2AD−1/2)i,j =
Ai,j√
di

√

dj

(4.5)

Now the numbers1−λi are the eigenvalues ofB = I−L, and so
∑

i(1−λi)
N is justtr(BN ).3 Writing

bi,j for the(i, j)-th entry ofB, the(i, j)-th entry ofBN is the sum of all productsbi0,i1bi1,i2 . . . biN−1iN

where i0 = i and iN = j. But bi,j , as given by (4.5), is zero unless nodesi and j are adjacent.

So we define anN -cycle in G to be a sequence of verticesu1u2 . . . uN with ui adjacent toui+1 for

i = 1, . . . , N − 1 and withuN adjacent tou1. (Thus, for example, a triangle inG with vertices set

{a, b, c} gives rise to six 3-cyclesabc, acb, bca, bac, cab andcba. Note that, in general, anN -cycle

might have repeated vertices.) We now have

∑

i

(1 − λi)
N = tr(BN ) =

∑

C

1

du1
du2

. . . duN

(4.6)

the sum being over allN -cyclesC = u1u2 . . . uN in G. Therefore,
∑

i(1 − λi)
N counts the number of

N -cycles, normalised by the degree of each node in the cycle.

The number of N-cycles is related to various graph properties. The number of 2-cycles is just

(twice) the number of edges and the number of 3-cycles is (sixtimes) the number of triangles. Hence
∑

i (1 − λ)3 is related to the clustering coefficient, as discussed below. An important graph property

is the number of 4-cycles. A graph which has the minimum number of 4-cycles, for a graph of its

density, is quasi-random, i.e., it shares many of the properties of random graphs, including, typically,

high connectivity, low diameter, having edges distributeduniformly through the graph, and so on. This

statement is made precise in [Tho87] and [CGW89]. For regulargraphs, (4.6) shows that the sum
∑

i (1 − λ)4 is directly to the number of 4-cycles. In general, the sum counts the 4-cycles with weights:

for the relationship between the sum and the quasi-randomness of the graph in the non-regular case, see

the more detailed discussion in [Chu97, Chapter 5]. The right hand side of (4.6) can also be seen in

terms of random walks. A random walk starting at a vertex withdegreedu will choose an edge with

probability1/du and at the next vertex, sayv, choose an edge with probability1/dv and so on. Thus the

probability of starting and ending randomly at a vertex after N steps is the sum of the probabilities of all

N -cycles that start and end at that vertex. In other words exactly the right hand side of (4.6). As pointed

out in [WL06], random walks are an intricate part of the Internet AS structure.

The left hand side of Equation (4.6) provides an interestinginsight into graph structure. The right

hand side is the sum of normalisedN -cycles whereas the left hand side involves the spectral decomposi-

tion. We note in particular that the spectral gap is diminished because eigenvalues close to one are given

a very low weighting compared to eigenvalues far from one. This is important as the eigenvalues in the

spectral gap typically represent “random” links in the network and are not therefore important parts of

the larger structure of the network.

Next, I consider the well-known clustering coefficient. It should be noted that there is little con-

nection between the clustering coefficient, and cluster identification, referred to above. The clustering

3Trace of a square matrix is the sum of the elements in the main diagonal
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coefficient,γ(G), is defined as the average number of triangles divided by the total number of possible

triangles

γ(G) = 1/n
∑

i

Ti

di(di − 1)/2
, di ≥ 2 (4.7)

whereTi is the number of triangles for nodei anddi is the degree of nodei. Now consider a specific

triangle between nodesa, b andc. For the cluster coefficient, noting that the triangle will be considered

three times, once from each node, the contribution to the average is

1

da(da − 1)/2
+

1

db(db − 1)/2
+

1

dc(dc − 1)/2
(4.8)

However, for the weighted spectrum (withN = 3), this particular triangle gives rise to six 3-cycles and

contributes
6

dadbdc
(4.9)

So, it can be seen that the clustering coefficient normaliseseach triangle according to the total number

of possible triangles while the weighted spectrum (withN = 3) instead normalises using a product of

the degrees. Thus, the two metrics can be considered to be similar but not equal. Indeed, it should be

noted that the clustering coefficient is in fact not a metric in the strict sense. While two networks can

have the same clustering coefficient they may differ significantly in structure. In contrast, the elements

of
∑

i (1 − λ)3 will only agree if two networks are isomorphic.

Theweighted spectrumis formally defined as the normalised sum ofN -cycles as

W (G,N) =
∑

i

(1 − λi)
N (4.10)

However, calculating the eigenvalues of a large (even sparse) matrix is computationally expensive. In

addition, the aim here is to represent theglobal structure of a graph and so precise estimates ofall the

eigenvalue values are not required. Thus, the distribution4 of eigenvalues is sufficient. In this chapter the

distribution of eigenvaluesf(λ = k) is estimated using pivoting and Sylvester’s Law of Inertia [Syl52]

to compute the number of eigenvalues that fall in a given interval. A measure of the graph can then be

constructed by considering the distribution of the eigenvalues as

ω(G,N) =
∑

k∈K

(1 − k)Nf(λ = k) (4.11)

where the elements ofω(G,N) form theweighted spectral distribution:

WSD : G → ℜ|K|{k ∈ K : ((1 − k)Nf(λ = k))} (4.12)

In addition, a metric can then be constructed fromω(G) for comparing two graphs,G1 andG2, as

ℑ(G1, G2, N) =
∑

k∈K

(1 − k)N (f1(λ = k) − f2(λ = k))2 (4.13)

wheref1 andf2 are the eigenvalue distributions ofG1 andG2 and the distribution of eigenvalues is

estimated in the setK of bins ∈ [0, 2]. Equation (4.13) satisfies all the properties of a metric (see

Appendix A).

4The eigenvalues of a given graph are deterministic and sodistributionhere is not meant in a statistical sense.
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Haddadiet al. [HFJ+08] consider 3 and 4 to be suitable values ofN for the current application:

N = 3 is related to the well-known and understood clustering co-efficient; andN = 4 as a 4-cycle

represents two routes (i.e., minimal redundancy) between two nodes. For other applications, other values

of N may be of interest.

4.4 Tuning the Topology Models

The aim of this section is to examine how well the topology generators match the Skitter topology for

different values of their parameters. To facilitate this comparison, grids are constructed over the possible

values of the parameter spaces and various cost functions are evaluated as follows:

1. A cost function measuring the matching between the numberof links in skitter and the generated

topologies:

C1(θ) = (lt(θ) − lskitter)
2 (4.14)

whereC1 is the first cost function,θ are the model parameters (which differ for each topology

generator),lt is the number of links (which is a function of the parameters)and lskitter is the

number of links in the Skitter dataset.

2. A cost function measuring the matching between the spectra of the Skitter network and of the

generated topologies:

C2(θ) =
∑

i

(P (Λ ≤ λt,i) − P (Λ ≤ λskitter,i))
2 (4.15)

whereλt,i is theith eigenvalue for topologyt.

3. A cost function measuring the matching of the weighted spectra:

C3(θ) =
∑

i

((w ∗ P (Λ = λt,i) − w ∗ P (Λ = λskitter,i))
2 (4.16)

where weightw = (1 − i)4.

The objective of the optimisation is to minimise the sum squared errors between the cost function

for skitter and the generated topology. In addition to examining different parameter values across a grid,

the optimum parameters with respect toC3(θ) are estimated using the Nelder Meade simplex search

algorithm [NM65, DW87]. Note that the topologies generated by the topology generators are random

in a statistical sense, due to differing random seeds for each run. Ten topologies are generated for each

value ofθ and the average spectral distribution is calculated. I found that the variance of the spectral

distributions was sufficiently low to allow reasonable estimates of the minima in each case.

4.4.1 Link Densities

Figure 4.1 displays the value of the cost functionC1(θ) as a function of the topology generator param-

eters. On the upper and lower left graphs, the grayscale colour indicates the value of the cost function.
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Figure 4.1: Topology generator parameter grid for sum squared error from number of links.

The darker the region is, the closer the value is to optimal. For Inet (lower right) there is only one pa-

rameter,p, so it is plotted as a curve in Figure 4.1(d). Figure 4.1 showsthat a minimum exists for each

topology in approximately the same regions as the default values of each generator.5

For the BA generator it is known that for values ofp andq above the line shown in Figure 4.1(b), the

topologies generated follow an exponential node degree distribution while those below follow a scale-

free distribution. It is encouraging to note that the valuesof C1(θ) are large in the exponential region

and the minimum is in the scale-free region as the node degreedistribution of the Internet is known to be

approximately scale free [AB00]. Overall the results obtained by tuning the parameters based onC1(θ)

appear reasonable. For link density matching it is possibleto obtain parameter values which match the

link densities exactly. Indeed, there is a ridge of parameters for BA, GLP and Waxman for which the

link densities can be matched. However, as noted in the introduction, there is no control over any other

characteristic of the graph using this method.

4.4.2 Spectra PDF

Figure 4.2 shows the spectral PDF of the Skitter dataset and the four topology generators calculated at

three parameters values in each grid (the parameter values are indicated in brackets in the legends). The

aim is to illustrate how much the spectral PDFs change with the values of the parameters. The spectral

5Some of these default values are listed in table 4.1.
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Figure 4.2: PDF of Spectra

PDFs of Waxman (Figure 4.2(a)) vary significantly for different values ofα andβ. Furthermore, none

of the Waxman PDFs match well the spectral PDF of the Skitter graph. The BA PDFs vary to a lesser

extent (Figure 4.2(b)) and appear to give a much better matchthan the Waxman model, especially around

eigenvalue1 (λ = 1). This better match of BA is not surprising as the Waxman model is not a good model

for the Internet as noted in Section 3.3. GLP (Figure 4.2(c))and Inet (Figure 4.2(d)) give similar results

to BA, with a poor match outside eigenvalue1. The better match of the BA model around eigenvalue1 is

interesting. As noted in Section 4.3 the regions away from eigenvalue1 are far more important than the

region aroundλ = 1. However, what is required is a technique that reveals the differences with distance

from one as these are more important. Thus it would appear difficult to evaluate which model, or even

which parameter, is better based on the PDFs alone. This point is now further explored by analysis of

the grids calculated with respect toC2(θ).

4.4.3 Limitations of Spectra CDF

Figure 4.3 shows the value of the second cost functionC2(θ) as a function of the topology generator

parameters, in the same way as Figure 4.1. As can be seen in Figure 4.3, there are many islands corre-

sponding to local minima. The variance in the PDFs referred to in this section is actually greater than

any gradient that might exist in the grid. This means that it is not possible to estimate the minimum with

respect toC2(θ). Figure 4.3 shows that the spectrum on its own is not sufficient to identify the optimum

parameters of any of the topology generators. This is because each eigenvalue inC2(θ) is weighted
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Figure 4.3: Parameter grid for sum of absolute differences of spectra CDFs.

equally. As noted in Section 4.3, the eigenvalues close to 1 are more likely to be affected by the random

seeds for each topology generator and are the source of the noise on the grid.

4.4.4 Weighted Spectra

The previous section illustrated the limitations of using the raw eigenvalues to find optimal topology

generator parameters to match the Skitter topology. Figure4.4 shows a plot of the weighted spectra of

the same topologies as those shown on Figure 4.2. As it can be seen the results are quite different from

those shown in Figure 4.2. The Waxman weighted spectra stillshows a bad fit with respect to the Skitter

data (mainly around0 and2) compared to the other generators. The other generators (BA, GLP and

Inet) now show that they are capable of matching the weightedspectra of the Skitter topology, especially

around the point of greatest weight (λ = 0.4 or 1.6). The difference between the weighted spectra around

1 is no longer of importance (in contrast to Figure 4.2), reflecting that the weights here approach zero

as we approach eigenvalue1. In the next section the optimum values and the resulting weighted spectra

will be compared.

4.4.5 Weighted Spectra Comparison

Figure 4.5 shows the grids associated withC3(θ). Unlike the spectra in Figure 4.3 where it was difficult

to find an optimum minima, the weighting process, hence giving less importance to noisy eigenvalues

in the middle and more importance to the significant ones, hasmade it possible to get get an optimum

region for the parameters. As can be seen the grids show that there is a region with a minima in each case
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Figure 4.4: Weighted spectra grid for generator parameters.
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Figure 4.5: Grid of sum squared error of weighted spectra fortopology generators
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Table 4.1: Optimum parameter values for matching Skitter topology.
Waxman α = 0.08 (default= 0.15) β = 0.08 (default= −0.2) C3(θ) = 0.0026 C3(θ) = 0.0797

BA p = 0.2865 (default= 0.6) q = 0.3145 (default= 0.3) C3(θ) = 0.0014 C3(θ) = 0.0300

GLP p = 0.5972 (default= 0.45) β = 0.1004 (default= 0.64) C3(θ) = 0.0021 C3(θ) = 0.0446

Inet α = 0.1013 (default= 0.3) − C3(θ) = 0.0064 C3(θ) = 0.0150

PFP − − C3(θ) = 0.0014 C3(θ) = 0.0371
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Figure 4.6: Comparison of the weighted spectra.

and in addition, comparing Figure 4.5 and Figure 4.1 it can beseen that these minima lie in a region close

to those forC1(θ). However, it should be noted that the weighted spectra will try to fit more than just the

number of links in a topology. This demonstrates the inherent trade-off. Also of note is that the region

of interest for the BA model lies inside the region of scale-free behaviour as shown in Figure 4.5(b).

4.5 Generating Topologies with the Optimum Value Parameters

Table 4.1 displays the optimum values for the topology generators for generating networks that are close

to the Skitter graph. In addition, I give the values forC3(θ), which show that PFP gives the closest fit

followed by BA, GLP, Waxman and finally Inet. While these results are mostly expected, the ranking

of Inet as the worst topology generator is surprising. I havealso listed some of the default parameters

used in certain generators such as BRITE [MLMB01]. While manyof the optimised parameters are

close to the default values, which is encouraging, it shouldbe noted that the default parameters given

by designers are for atypical graph and are not selected for any particular situation (e.g., Skitter in this

example). Thus a direct comparison is meaningless and it canbe seen that optimum parameters are

sometimes significantly different from the default ones.

Figure 4.6(a) shows the weighted spectra for each of the topology generators and inspection of this

figure goes some way to explaining the discrepancy in the results. As can be seen the main peak in the

weighted spectra for the Skitter data occurs at a value ofλ = 0.4. The Waxman generator peak occurs

at λ = 0.6 which is closer to 1 demonstrating the greater amount ofrandom structure in the Waxman

topologies. However, for the Inet generator the peak occursat the correct point (λ =0.4) but the weighted

power at this point is far greater than in the skitter topology. By normalising the weighted spectrum this
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Figure 4.7: Comparison of topology generators and Skitter topology.

point becomes clear:

C3(θ) =
∑

i

((wi ∗ P (Λ = λt,i))
∑

i

((wi ∗ P (Λ = λt,i))
− ((wi ∗ P (Λ = λskitter))
∑

i

((wi ∗ P (Λ = λskitter))
(4.17)

Using the normalised weighted spectrum the results in Figure 4.6(b) show that Inet is the best match

for the Skitter data while the Waxman model still performs worse than the other models. Further research

is required before stating which version ofC3 is superior.

Figure 4.7 shows a comparison of the optimised topologies with respect to four typical network

metrics: the node degree distribution, the average neighbour connectivity, the clustering coefficient and

the rich-club connectivity [Zho06]. As can be seen PFP givesthe best match for these metrics in agree-

ment with the proposed metricC3(θ). The performance of the other topologies is mixed showing that

while one topology is able to match one metric it fails to match another. For example, the GLP generator

achieves a reasonable match for the node degree distribution but fails to match the average neighbour

connectivity. This demonstrates that for a weak underlyingmodel (e.g., Waxman) the optimisation can

not significantly improve its performance when compared to the Internet AS topology.

4.6 Conclusions and Contributions

Comparison of graph structures is a frequently encounteredproblem across a number of problem do-

mains. To perform a useful comparison requires definition ofa cost function that encodes which features

of the graphs are considered important. Although the spectrum of a graph is often claimed to be a way

to encode a graph’s features, the raw spectrum contains too much noise to be useful on its own. In this
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chapter I have introduced a new cost function, theweighted spectral distribution, that improves on the

graph spectrum by discounting those eigenvalues that are believed to be unimportant and emphasising

the contribution of those believed to be important.

I use this cost function to optimise the selection of parameter values within the particular problem

domain of Internet topology generation. The weighted spectrum was shown to be a useful cost function

in that it leads to parameter choices that appear sensible given prior knowledge of the problem domain,

i.e., are close to the default values and, in the case of the BAgenerator, fall within the expected region.

In addition, as the metric is formed from a summation, it is possible to go further and identify which

particular eigenvalues are responsible for significant differences. Although it is currently difficult to

assign specific features to specific eigenvalues, it is hopedthat this feature of the cost function will be

useful in the future6.

6The work presented in this chapter is the result of collaboration with Damien Fay, Steve Uhlig and my advisors. Damien Fay

was mainly responsible for the theory behind weighted spectral distribution. Steve Uhlig contributed to the use of the weighted

spectral distribution. However, the largest part of the underlying ideas behind the work and tuning approach, the simulation code

and the detailed analysis of the results have been done by me.



Chapter 5

Evolution and Scaling of Internet Topologies

In this chapter I study the evolution of the AS topology as inferred from two different datasets over a

period of seven years. To focus on structural changes in the topology, I use theweighted spectral distri-

butionas this metric reveals differences in the hierarchical structure of two graphs. The results indicate

that the Internet is changing from a core-centred, stronglycustomer-provider oriented, disassortative net-

work, to a soft-hierarchical, peering-oriented, assortative network. In addition, I use a variety of other

metrics to analyse the structural disagreement revealed inthe AS topologies inferred from the two dif-

ferent datasets. This disagreement is due to the nature of the measurement techniques. I find that the

traceroute dataset has increasing difficulty in sampling the periphery of the AS topology, while the BGP

dataset does not sample the inner-most core of the network.

5.1 Introduction

The Internet continuously evolves: new networks are created, old ones disappear, and existing ones grow

or merge. At the same time, business dynamics cause interconnections between networks to change.

Both these effects cause the underlying topology of the Internet to be in a constant state of flux. Studying

the evolution of this topology is important as it impacts a variety of factors relevant to network users and

application designers, such as scalability, performance and business incentives. For example, different

network structures affect the propagation of both legitimate (e.g., routing) and illegitimate (e.g., viruses)

information.

Most efforts to understand the structure of the Internet have focused on the AS topology. There are

over 25,000 ASes, each representing a single administrative authority with its own network and peering

policies. Thus, the AS topology is a graph reflecting the interconnections between the networks that

compose the Internet. Relationships between ASes are typically classified as either customer-provider or

peer-peer. Note that as the Internet has grown, many larger networks have come to be represented as more

than one AS (i.e., to advertise more than one AS number). As a result, the AS topology may contain

edges that do not directly represent a business relationship between two distinct networks. However,

the AS topology serves as an available, albeit approximate,measure of the complexity of the Internet’s

structure at a network level.

Characterising the structure of the AS topology has proved difficult, but it is usually simplified to:
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a richly connected core, including the fully meshed tier-1 Internet Service Providers (ISPs), providing

connectivity for the huge number of smaller ISPs and customer networks at the periphery of the network.

These edge ISPs may connect to only a single upstream provider, or may connect to many for resilience,

performance and cost reasons. Recent work has shown that thetrend is for networks to try to connect di-

rectly in the periphery of the Internet, rather than to the core, bypassing the largest providers [GALM08].

In this chapter I analyse the evolution of the AS topology using two significant datasets, each

generated by a different measurement technique: the Skitter dataset using traceroute, and the UCLA

dataset using BGP. I focus on the overall structure of the topology, rather than local features such as

node degree, using a recently introduced metric called theweighted spectral distribution(WSD). This

allows us to distinguish topologies with different mixing properties, i.e., how much the core can be

differentiated from the periphery of the topology [HFU+08]. A clear distinction between the core and

the periphery is believed to be one of the strongest featuresof the Internet topology [SARK02, Zho06].

This chapter makes three contributions. First, I demonstrate how WSD, as explained in Section 4.3,

depicts the mixing between core and periphery in the AS topology in Section 5.3. Second, I find that

the AS topology has evolved from a highly hierarchical graphwith a clearly distinct core towards a

“softer” hierarchy where the core and non-core parts of the topology are less distinct (Section 5.4). Third,

I show how the two different measurement techniques, traceroute and BGP, both provide limited but

complementary coverage of the AS topology: the traceroute dataset has increasing difficulty sampling

the periphery, while the BGP dataset does not sample the Internet’s core (Section 5.5).

5.2 Related Work
In this section I outline related work, classified into threegroups: evolution of the AS topology, spectral

graph analysis of the AS topology, and analysis of the clustering features of the AS topology.

Shyuet al.[SLH06] study the evolution of a set of topological metrics computed on a set of observed

AS topologies. The authors rely on monthly snapshots extracted from BGP RouteViews from 1999 to

2006. The topological metrics they study are the average degree, average path length, node degree,

expansion, resilience, distortion, link value, and the Normalised Laplacian Spectrum. They find that the

metrics are not stable over time, except for the Normalised Laplacian Spectrum.

Oliveira et al. [OZZ07] look at the evolution of the AS topology as observed from BGP data. Note

that they do not study the evolution of the AS topology structure, only the nodes and links. They propose

a model aimed at distinguishing real changes in ASes and AS edges from BGP routing observation

artifacts. I use the extended dataset made available by the authors, in addition to 7 years of AS topology

data from an alternative measurement method.

Latapy and Magnien [LM08] address the question of studying the relation between the size of

a measurement sample and the corresponding topological properties. Based on AS topologies built

from IP-level measurements from Skitter for a period from January 2005 to May 2006, they observe an

increase in the average degree and the clustering coefficient when a larger dataset is used.

Wang and Loguinov [WL06] propose the Wealth-Based Internet Topology (WIT) model. Interest-

ingly, central to their model is the notion that each AS picksits connections to maximise local random
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walks. This characteristic of the structure of the AS topology is particularly targeted by the WSD. How-

ever, as this model is not publicly available it is not included in our comparisons

The graph spectrum has been used for a variety of purposes in addition to characterisation of

Internet topologies, including space comparison [Han07],graph matching [LH01], cluster identifica-

tion [NJW02] and topology generator tuning [HFU+08]. Gkantsidiset al. [GMZ03] perform a compari-

son of clustering coefficients using the eigenvectors of thek largest eigenvalues of the adjacency matrices

of AS topologies.k is chosen to retain the strongest eigenvectors discarding most of the others. Those

retained are then shown to represent finer elements of the Internet structure. The rest of the spectrum is

considered unimportant, even though other works have shownthat the eigenvalues of the adjacency ma-

trix or the normalised Laplacian matrix can be used to accurately represent a topology [But06], and some

specific eigenvalues provide a measure of properties such asrobustness of a network to failures [JU07].

Vukadinovicet al. [VHE02] were the first to investigate the properties of the AStopology based on

the normalised Laplacian spectrum. They observe that the normalised Laplacian spectrum can be used

to distinguish between synthetic topologies generated by Inet [WJ02] and AS topologies extracted from

BGP data. This results indicates that the normalised Laplacian spectrum reveals important structural

properties of the AS topology. However, as noted by Haddadiet al. [HFU+08], the spectrumalone

cannot be used directly to compare graphs as it contains too detailed information about the network

structure. I expand on this work by demonstrating how appropriate weighting of the eigenvalues can

reveal the structural differences between two topologies.

Wool and Sagie [WS04] propose several clustering algorithmsto explore the AS topology using

just a snapshot of the Skitter data. They focus on identification of the dominant clusters, although their

result is sensitive to the parameters chosen such as the minimum cluster size. The technique I use, the

WSD, differs in that it focuses on random cycles instead of clusters and does not require any parameter

estimation. In addition, I use the k-core decomposition to analyse the core of the Internet AS topology.

Li et al.[LCMF08] perform a similar study to the one presented here. In their work they use several

different clustering methods to identify the distributionof clustering features throughout a network. In-

terestingly, their clustering metric gives similar results for the skitter and routeviews (here called UCLA)

datasets, while WSD shows differing results reflecting directly the differing sampling characteristics of

these two measurement techniques.

5.3 Mixing Properties of Networks

The synthetic topology generator introduced in this section is intended as a strawman tool that can be

adjusted to show the effect of different parts of a topology on the resulting WSD. These topologies are

generated using a simple model based on the existence of a network core and a periphery, as do most

generative models of the Internet. Figure 5.1 shows a small topology of 500 nodes. AllM nodes within

the graph are first assigned locations using a uniform distribution. Nodes within a circle of diameterD

are then defined as thecoreand nodes outside a circle of diameterD × (1 − m) as the periphery, where

m ≤ 1 is a factor called the mixing factor. Connections are then assigned between the core nodes using
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Figure 5.1: Synthetic topology.

a Waxman model:

P (u → v) = αcore exp
−dβcore

D (5.1)

whereαcore andβcore are the Waxman coefficients for the core, andd is the distance between two nodes

u and v. Subsequently, connections are also assigned in the periphery1 using a Waxman model but

one with different coefficients,αper andβper. After this process, isolated nodes are connected to their

nearest neighbour.2 Figure 5.2 shows the WSD (usingN = 4) for a topology generated withM = 2000

nodes,D = 0.25, αcore = 0.08, βcore = 0.08, αper = 0.06, βper = 0.7, andm = 0.95 (i.e., 5%

mixing), resulting in a small (relatively) meshed core witha less well connected periphery. There are

several things to note in Figure 5.2. Ignoring the asymmetrical part of the curve, which is due to a small

number of disconnected components, the peak of the weightedspectrum of the periphery alone lies at

λ = 0.7 while that for the core lies at 0.5. The spectrum for the overall network hastwo peaksat these

points. This is a direct result of the fact that the spectrum of a graph is the union of the spectra of its

disconnected subgraphs [Chu97]. In terms of the WSD, the union of spectra is equivalent to a weighted

average of the WSD. That is, for a graphG + H composed of two disconnected subgraphsG andH:

ω(G + H,N) = |G + H|
(

ω(G,N)

|G| +
ω(H,N)

|H|

)

(5.2)

where |.| denotes volume (number of vertices). Although there is 5% mixing between the core and

peripheryω(G + H,N) results in an close estimate of the network WSD (see Figure 5.2, denoted

Σ||E(1 − λi)
4||). As m → 0 (i.e., the core and periphery become less and less connected) this estimate

becomes more accurate and is exact atm = 0.
1Note that nodes lying betweenD andD × (1 − m) are members of the coreand the periphery and will be connected twice.
2Note that there are likely to be some disconnected components in the resulting graphs giving asymmetrical spectra, but this

does not affect the main results.
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Figure 5.2: Synthetic topology spectra.

Figure 5.3 shows the effect of increasing the mix between theperiphery and the core.3 As can be

seen the core becomes less distinct in the resulting spectrum, and has practically disappeared with 40%

mixing. Increasing the mixing effectively adds edges connecting the core and periphery, which results

in a spreading of the eigenvalues and thus a spreading of the WSD, resulting in less distinct peaks. This

result is a consequence of the following theorem from [But07]:

Let G be a weighted graph andH a subgraph on the vertices ofG with t non-isolated vertices. If

{λ0 ≤ λ1... ≤ λm−1} and{θ0 ≤ θ1... ≤ θn−1} are the eigenvalues ofL(G) andL(G+H) respectively,

then fork = 0, 1, . . . , n − 1 we have:

λk+t−1 ≤ θk ≤











λk−t+1, H is bipartite,

λk−t otherwise
(5.3)

In the current context, the new edges in the mix are being added to t nodes causing the eigenvalues

to spread by at mostt places. It should be noted that although this makes the core peak less distinct this

does not mean that the core is more difficult to detect, ratherthat the core itself is now less distinct from

the periphery.

The statistical properties of the WSD are examined by examplein Figure 5.4. This plot was created

by generating 50 topologies using the AB model with the optimum parameters usingdifferent initial

conditionsand recording the resulting spectra and weighted spectra (as explained in Section 4.4). As

the underlying model (i.e. the AB model) is the same for each run, thestructuremight be expected to

remain the same and so any structural metric should be relatively robust in the face of varying initial

conditions. As can be seen the standard deviation4 of the (unweighted) spectrum is significantly higher

3Again the large peaks before 0.2 represent isolated subgraphs and are ignored.
4multiplied by a factor of ten for clarity
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Figure 5.3: Effect of a change inm on the spectrum of the overall network.

at the centre of the spectrum reflecting that the spectral gapcontains random connections. However, for

the WSD the standard deviation peaks at the same point as the WSD; the noise in the spectral gap having

been suppressed.

5.4 Evolution of the Internet

In this section I look at the evolution of the Internet seen through the two datasets using a number of

topological metrics. Section 5.4.1 studies the evolution of the AS topology seen in the Skitter dataset,

and Section 5.4.2 then studies the evolution of the AS topology seen in the UCLA dataset. We consider

the discrepancies between these views in Section 5.5, whereI also discuss the likely evolution of the real

AS topology.

5.4.1 Skitter topology

The first dataset I study consists of7 years of traceroute measurements, starting in January2001, col-

lected by the CAIDA Skitter project [HAA+07]. Traceroutes are initiated from several locations in the

world towards a large range of destination IP addresses. TheIP addresses reported in the traceroutes are

mapped to AS numbers using RouteViews BGP data. I use a monthly union of the set of all unambiguous

links collected on a daily basis by the project.5

Figure 5.5 presents the evolution over the7 years of a set of topological metrics computed on the

AS topology of Skitter.

The number of ASes seen by Skitter exhibits abrupt changes during the first40 months. At the end

5A link may be ambiguous for a variety of reasons, principally due to problems resolving an IP address to its AS; we ignore

such links.
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Figure 5.4: Mean and standard deviations for WSD and spectrumfor the optimised AB model.
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Figure 5.5: Topological metrics for Skitter AS topology.
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of those first40 months, changes were made in the way probing was performed.6 The large increases in

the number of ASes, observed during the first40 months, are due to new monitors being added to the

system. After each increase in the number of ASes a smooth decrease follows, corresponding to a subset

of the IP addresses of the Skitter list that no longer respondto probes, e.g., because a firewall starts

blocking the probes. The variations in the number of ASes seen by Skitter are not caused by changes in

the AS topology itself, but are artifacts of the probing.

The number of AS edges and the average node degree both followthe behaviour of the number of

ASes seen. I only observe a large increase in the number of links during the first few months, during

which new monitors are added resulting in new regions of the Internet being covered by Skitter measure-

ments. As the list of destinations used by Skitter does not cover the global set of ASes well [BHM+07],

and the same list is shared by all monitors, a new monitor willtypically discover new ASes close to its

location. However, most of the AS edges close to the destination IP addresses have probably already

been discovered by existing monitors [LBCX03].

The AS edges that Skitter no longer observes probably still exist but can no longer be seen by

Skitter due to its shrinking probing scope. To be effective in observing topology dynamics, traceroute

data collection must update destination lists constantly to give optimal AS coverage. This limitation of

Skitter is visible in the decreasing average node degree. Wewould normally expect to see a net increase

in the average node degree as ASes tend to add rather than remove peerings, and the results of the BGP

data support this view. If the coverage of the Skitter measurements was not worsening, we should see an

increasing node degree.

The lower three graphs of Figure 5.5 present the evolution ofthe clustering coefficient, the assorta-

tivity coefficient and the weighted spectrum withN = 3, ω(G, 3) (related to the topology’s clustering).

We observe that changes were made to the way Skitter probes the Internet around month 40: the metrics

take an unusual value, very small for the clustering and veryhigh for assortativity. The values of the

clustering and the assortativity coefficients randomly fluctuate over the7 years, as if the sampling of

the AS topology by Skitter is not stable. Neither the clustering nor the assortativity seem to decrease

or increase over the7 years. The value ofω(G, 3) shows a long-term increasing trend, similar to the

decreasing trend in the average node degree. Although related to the clustering,ω(G, 3) gives different

weights to different parts of the topology. The subset of thetopology that corresponds to duplicated

structures (e.g., the periphery) receives a smaller weightthan the rest. The increasingω(G, 3) reflects

the increasing bias of Skitter toward sampling the core, rather than the periphery, of the Internet.

Figure 5.6 presents four WSDs spanning the entire duration ofthe Skitter dataset. Notice the eigen-

values at zero, indicating the presence of several disconnected components. The WSD in January 2002

shows a single peak atλ = 0.4. As time passes, a second peak appears aroundλ = 0.3. Thus the

sampling resulting in the Skitter data shows an Internet moving from a less hierarchical to more hierar-

chical topology. This contradicts current observations that AS topology is becoming less hierarchical,

with increasing numbers of ASes peering at public Internet Exchange Points (IXPs) to bypass the core

6These changes were subject to caveats and bugs affecting measurements, and hence the resulting metrics, at month 40. For

more information refer tohttp://www.caida.org/data/active/skitter_aslinks_dataset.xml/

http://www.caida.org/data/active/skitter_aslinks_dataset.xml/
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Figure 5.6: Weighted Spectral Distribution, Skitter AS topology.

of the Internet.

To further investigate this surprising result, I next introduce supporting evidence using thek-core

measure. Ak-core is defined as the maximum connected subgraph,H, of a graph,G, with the property

that dv ≥ k ∀v ∈ H. As pointed out by Alvarez-Hamelinet al. [AHDBV08] the k-core exposes the

structure of a graph by pruning nodes with successively higher degrees,k, and examining the maximum

remaining subgraph; note this is not the same as simply pruning all nodes with degreek or less. Fig-

ure 5.7 shows the proportion of nodes in eachk-core as a function ofk. There are 84 plots shown but

as can be seen there is little difference between each of themdemonstrating that the proportion of nodes

in each core is not changing over time. This is not surprisingdue to the nature of the Skitter sampling

process: the Skitter data set is composed of traceroutes rooted at a limited set of locations, so thek-core

is expected to be similar topeeling the layers from an onion[AHDBV08]. From an evolution point of

view this result shows that, although the number of nodes being sampled by Skitter is decreasing, the

hierarchy of the Internet as observed by Skitter is not changing. This also implies that Skitter is not

sampling AS edges and so cannot see evolutionary changes there.

5.4.2 UCLA

I now examine the evolution of the Internet using52 snapshots, one per month, from January2004 to

April 2008. This dataset, referred to in this chapter as the UCLA dataset, comes from the Internet topol-

ogy collection7 maintained by Oliveiraet al. [OZZ07]. These topologies are updated daily using data

sources such as BGP routing tables and updates from RouteViews, RIPE,8 Abilene9 and LookingGlass

7http://irl.cs.ucla.edu/topology/
8http://www.ripe.net/db/irr.html
9http://abilene.internet2.edu/

http://irl.cs.ucla.edu/topology/
http://www.ripe.net/db/irr.html
http://abilene.internet2.edu/
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Figure 5.7:k-core proportions, Skitter AS topology

servers. Each node and link is annotated with the times it wasfirst and last observed.

Figure 5.8 presents the evolution of the same set of topological metrics as Figure 5.5, over the 4

years of AS topologies in the UCLA dataset.

The UCLA AS topologies display a completely different evolution to the Skitter dataset, more

consistent with expectation. As the three upper graphs of Figure 5.8 show, the number of ASes, AS

edges, and the average node degree are all increasing, as expected in a growing Internet.

The increasing assortativity coefficient indicates that ASes increasingly peer with ASes of similar

degree. The preferential attachment model is thus becomingless relevant over time. This trend towards

a less disassortative network is consistent with more ASes bypassing the tier-1 providers through public

IXPs [GALM08], hence connecting with nodes of similar degree. Another explanation for the increasing

assortativity is an improvement in the visibility of non-core edges in BGP data. I will demonstrate in

Section 5.5 that the sampling of core and non-core edges by UCLA and Skitter biases the observed AS

topology structure. Contrary to Skitter,ω(G, 3) for UCLA decreases over time. As a weighted clustering

metric,ω(G, 3) indicates that the transit part of the AS topology is actually becoming sparser over time

compared to the periphery. Increasing local peering with small ASes in order to reduce the traffic sent

to providers decreases both the hierarchy induced by strictcustomer-provider relationships, and in turn

decreases the number of 3-cycles on whichω(G, 3) is based.

If we look closely at Figure 5.9, we see a spectrum with a largepeak atλ = 0.3 in January2004,

suggesting to a strongly hierarchical topology. As time passes, the WSD becomes flatter with a peak at

λ = 0.4, consistent with a mixed topology where core and non-core are not so easily distinguished.

Figure 5.10 shows the proportion of nodes in eachk-core as a function ofk. There are52 plots

shown as a smooth transition between the first and last plots,emphasised. As can be seen, the distribution
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Figure 5.8: Topological metrics for UCLA AS topology.
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Figure 5.10:k-core proportions, UCLA AS topology.

of k-cores moves to the right over time, indicating that the proportion of nodes with higher connectivity

is increasing over time. This adds further weight to the conclusion that the UCLA dataset shows a

weakening of hierarchy in the Internet, with more peering connections between nodes. Note that the

UCLA data set was not examined in [AHDBV08].

5.5 Reconciling the Datasets

The respective evolutions of the AS topology visible in the Skitter and UCLA datasets differ. Skitter

shows an AS topology that is becoming sparser and more hierarchical, while UCLA shows one that is

becoming denser and less hierarchical. Can we reconcile those differing views? One must first under-

stand that Skitter and UCLA sample different parts of the AS topology: Skitter sees a far smaller fraction

of the real AS topology than UCLA, and even UCLA does not see the whole AS topology [OPW+08].

To check how similar the AS topologies of Skitter and UCLA are, I computed the intersection and

the difference between the two datasets in terms of AS edges and ASes. I used a two-years period from

January 2006 until December 2007. In Table 5.1 I show the number of AS edges and ASes that Skitter

and UCLA have in common during some of these monthly periods (labelled ”intersection”), as well as

the number of AS edges and ASes contributed to the total and coming from one of the two datasets only

(labelled ”Skitter-only” or ”UCLA-only”). I observe a steady increase in number of total ASes and AS

edges seen by the two datasets. At the same time, the intersection between the two datasets decreases.

Due to the wide coverage of the UCLA dataset, few ASes and AS edges are contributed by Skitter only.

From Table 5.1, we may conclude that the Skitter dataset is uninteresting. To the contrary, the

relatively constant, albeit decreasing, sampling of the Internet core by Skitter gives us a clue about

which part of the Internet is responsible for its structuralevolution.



5.5. Reconciling the Datasets 95

Autonomous Systems AS Edges

Time Total Intersection Skitter-only UCLA-only Total Intersection Skitter-only UCLA-only

Jan. 2006 25,301 32.6% 0% 67.4% 114,847 15.4% 5.3% 79.3%

Mar. 2006 26,007 31.6% 0% 68.4% 118,786 14.9% 4.4% 80.7%

May. 2006 26,694 30.5% 0% 69.5% 124,052 13.8% 4.6% 81.5%

Jul. 2006 27,396 29.5% 0% 70.5% 128,624 13.2% 3.7% 83.1%

Sep. 2006 28,108 28.7% 0% 71.3% 133,813 12.6% 3.4% 84.0%

Nov. 2006 28,885 27.9% 0% 72.1% 139,447 12.4% 3.4% 84.2%

Jan. 2007 29,444 27.2% 0% 72.8% 144,721 11.6% 3.1% 85.3%

Mar. 2007 30,236 26.5% 0% 73.5% 151,380 11.2% 3.0% 85.8%

May. 2007 30,978 25.6% 0% 74.4% 157,392 10.5% 2.7% 86.8%

Jul. 2007 31,668 25.9% 0% 86.1% 166,057 10.0% 3.8% 86.2%

Sep. 2007 32,326 24.5% 0% 75.5% 168,876 9.7% 2.5% 87.8%

Nov. 2007 33,001 23.9% 0% 76.1% 174,318 9.5% 2.2% 88.3%

Table 5.1: Statistics on number of ASes and edge counts for datasets

Table 5.2 shows the number of AS edges belonging to the tier-110 mesh (labelled ”T1 mesh”) as

well as other AS edges where a tier-1 appears. More than30% of the AS edges sampled by Skitter cross

at least a tier-1 AS, against about15% for UCLA. Both dataset see almost all AS edges from the tier-1

mesh. Note that the decrease in the number of tier-1 edges in Skitter is partly related to IP to AS mapping

issues for multi-origin ASes [GALM08].

Skitter UCLA

Time Total T1 mesh Other T1 Total T1 mesh Other T1

Jan. 2006 23,805 66 7,498 108,720 64 19,149

Mar. 2006 22,917 66 7,289 113,555 64 19,674

May. 2006 22,888 64 7,504 118,331 64 20,143

Jul. 2006 21,740 65 7,192 123,842 64 20,580

Sep. 2006 21,400 65 6,974 129,228 64 21,059

Nov. 2006 22,034 66 7,159 134,636 65 21,581

Jan. 2007 21,345 65 6,898 140,216 65 22,531

Mar. 2007 21,366 65 6,774 147,000 65 23,194

May. 2007 20,738 65 6,694 153,156 65 23,769

Jul. 2007 22,972 65 6,838 159,792 65 24,310

Sep. 2007 20,570 64 6,510 164,770 65 24,888

Nov. 2007 20,466 64 6,430 170,431 65 25,480

Table 5.2: Coverage of tier-1 edges by Skitter and UCLA.

10I rely on the currently accepted list of 12 tier-1 ASes that provide transit-only service: AS174, AS209, AS701, AS1239,

AS1668, AS2914, AS3356, AS3549, AS3561, AS5511, AS6461, and AS7018.
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The evolution of the AS topology observed by the Skitter and UCLA datasets is not inconsistent as

it first appeared from Section 5.4. Rather, the two datasets sample differently the AS topology, leading

to different bias. A large fraction of the AS topology sampled by Skitter relates to the core, i.e., edges

containing at least a tier-1 AS. With its wider coverage, UCLA observes a different evolution of the AS

topology, with a non-core part that grows more than the core.The evolution seen from the UCLA dataset

seems more likely to reflect the evolution of the periphery ofthe AS topology. The non-core part of the

Internet is growing and is becoming less and less hierarchical. Despite a common trend towards making

a union of the datasets in this field, such simple addition is not appropriate for the UCLA and Skitter

datasets. Each dataset has its own biases and measurement artifacts. Mixing them together will only add

these biases together, potentially leading to poorer quality data. Further research is required in order to

devise a correct methodology that takes advantage of different datasets obtained from different sampling

processes.

The above observations suggests that the Internet, once seen as a tree-like, disassortative network

with strict power law properties [FFF99], is moving towardsan assortative and highly inter-connected

network. Tier-1 providers have always been well connected,but the biggest shift is seen at the Internet’s

periphery where content providers and small ISPs are aggressively adding peering links among them-

selves using IXPs to avoid paying transit charges to tier-1 providers. However, a different view of the

Internet evolution can be obtained using the WSD, shown in Figures 5.6 and 5.9. As seen in Section 5.3,

one possible cause for this behaviour is increased mixing ofthe core and periphery of the network, i.e.

the strict tiered hierarchy is becoming less important in the network structure. This is given further

weight by studies such as [OPW+08] which show that the level of peering between ASes in the Internet

has greatly increased during this period, leading to a less core-dominated network.

5.6 Conclusions and Contributions
In this chapter I presented a study of two views of the evolving Internet AS topology, one inferred from

traceroute data and the other from BGP data. I exposed discrepancies between these two inferred AS

topologies and their evolution. I reconciled these discrepancies by showing that the topologies are not

directly comparable as neither method sees the entire Internet topology: BGP data misses some peerings

in the core which traceroute observes; traceroute misses many more peerings than BGP in the periphery.

However, traceroute and BGP data do provide complementary views of the AS topology.

To remedy the problems of decreasing coverage by the Skittertraceroute infrastructure and the lack

of visibility of the core by UCLA BGP data, significant improvements in fidelity could be achieved with

changes to the existing measurement systems. The quality ofdata then collected by the traceroute infras-

tructure would benefit from greater AS coverage, while the BGP data would benefit from data showing

intra-core connectivity. I acknowledge the challenges inherent in these improvements but emphasise that,

without such changes, the study of the AS topology will forever be subject to the vagaries of imperfect

and flawed data. Availability of traceroute data from a larger number of vantage points, as attempted by

the Dimes project, will help remedy these issues. However even such measurements have to be done on

a very large scale, and ideally performed both from the core of the network (like Skitter), as well as the
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edge (like Dimes).

To provide an objective analysis of the changing structure of the AS topology, I used a wide range

topological metrics, including the weighted spectral distribution. I find that the core of the Internet is

becoming less dominant over time, and that edges at the periphery are growing instead. The practice

of content providers and content distribution networks seeking connectivity to greater numbers of ISPs

at the periphery, and the rise of multi-homing, both supportthese observations. Further, I observe a

move away from a preferential attachment, tree-like disassortative network, toward a network that is

flatter, highly-interconnected, and assortative. These findings are also indicative of the need for more

detailed and timely measurements of the Internet topology,in order to build up on works such as [Eco05],

focusing on the economics of the structural changes such as institutional mergers, dual homing and

increasing peering relationships.11

11The work presented in this chapter is the result of collaboration with Damien Fay, Andrew G. Thomason, Steve Uhlig and my

advisors. Damien Fay and Andrew G. Thomason were mainly responsible for the theory behind weighted spectral distribution.

Steve Uhlig contributed to the use of the weighted spectral distribution and helped with understanding of the Internet evolution.

However, the largest part of the underlying ideas behind thework and the ideal approach, analysis code, collection and preparation

of the traces and the detailed analysis of the results have been done by me.
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Chapter 6

Contributions and Future Work

This chapter concludes this thesis by summarising the work carried out, the contributions and suggesting

areas of future work.

6.1 Conclusions and Contributions
My main contributions include analysis of popular AS topology generators, comparing them with nu-

merous observations, and highlighting appropriate metrics for comparing the models through long term

observations of the evolution of the Internet. The conclusions and contributions can be broken down into

categories listed in this section.

6.1.1 Identifying Modelling Challenges

In Chapter 3, I provided insight into the Internet AS topology. I evaluated various models for gener-

ating synthetic topologies and compared them to observed AStopologies collected at different times

using different measurement methods. I based this comparison on numerous topological and statistical

measures.

My analysis revealed that current topology models do not accurately represent the observed Internet

AS topology. Although current models accurately preserve the degree-related properties and preferential

attachment, they fail to reproduce local connectivity metrics. At the same time, I observe that more

recent topology generators generally perform better than older ones. This is partly due to the availability

of better observed topologies. I believe that, in addition to degree-related, clustering and centrality

properties, the highly meshed core of the Internet AS topology must be considered in order to generate

representative synthetic topologies.

I also compared the properties of AS topologies relying on different sets of observations. It was

observed that, in contrast to structural metrics, node degree-related properties are not greatly affected by

the addition of more vantage points as they add only a small percentage of peering links. On the other

hand, the power-law nature of the node degree distribution seems questionable, as increasing the number

of observation points causes deviation from strict power-law scaling.

6.1.2 Tuning Topology Generators

A new cost function, the weighted spectral distribution (WSD), was introduced in Chapter 4. The WSD

improves on the graph spectrum by discounting those eigenvalues that are believed to be unimportant
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and emphasising the contribution of those believed to be important.

I used this cost function to optimise the selection of parameter values within the particular problem

domain of Internet topology generation. Optimal parameters relative to this cost function were then

estimated for Internet topology generators. The WSD was shown to be a useful cost function in that

it leads to parameter choices that appear sensible given prior knowledge of the problem domain. It

capture wells the clustering characteristics and it is sensitive to mixing between the core and edge ASes.

In addition, as the metric is formed from a summation, it is possible to go further and identify which

particular eigenvalues are responsible for significant differences. Due to high computational cost of

calculating the eigenvalues, it is currently difficult to assign specific features to specific eigenvalues, it is

hoped that this feature of the cost function will be useful inthe future.

6.1.3 Analysis of the Internet Evolution

In Chapter 5 I presented a study of two views of the evolving Internet AS topology, one inferred from

traceroute data and the other from BGP data. I exposed inconsistencies between these two inferred AS

topologies and their evolution. I reconciled these inconsistencies by showing that the topologies are not

directly comparable as neither method sees the entire Internet topology: BGP data misses many peerings

in the core which traceroute observes; traceroute misses many more peerings than BGP in the periphery.

However, traceroute and BGP data complement each other.

To remedy the problems of decreasing coverage by Skitter traceroute infrastructure and lack of

visibility of the core by UCLA BGP data, significant improvements in fidelity could be achieved with

changes to the existing measurement systems. The quality ofdata then collected by the traceroute infras-

tructure would benefit from greater AS coverage, while the BGP data would benefit from data showing

intra-core connectivity. I acknowledge the challenges inherent in these improvements but emphasise that,

without such changes, the study of the AS topology will forever be subject to the vagaries of imperfect

and flawed data.

To provide an objective analysis of the changing structure of the topology, I used a wide range of

topological metrics, including the WSD. I observed that the core of the Internet is becoming less domi-

nant over time, and that edges at the periphery are growing instead. The practice of content providers and

content distribution networks seeking connectivity to greater numbers of ISPs at the periphery, and the

rise of multi-homing, both support this hypothesis. Further, I observe a move away from a preferential

attachment, tree-like disassortative network, towards a network that is flat, highly-interconnected, and

assortative

6.2 Discussions and Future Work

Valuable future work in this area is to consider the analysisfor router-level topologies. Such an analysis

of router-level topologies is bound to differ greatly from AS-level ones, as network operators have tight

control over router interconnects and are subject to different constraints from the AS-level connectivity.

The control plane at the router level has different characteristics to those seen at the AS level. At the

router level, the dynamics are more frequent and tend to havea shorter durations. Regular maintenance
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works, router and link failures, traffic engineering, firewall misbehaviours and other factors all effect the

routing at the IP layer. Operators do not disclose information about routing changes and link failures.

This has made it difficult to model the behaviour of router level Internet topology. I am currently infer-

ring the characteristics of router level topologies of a major tier-1 ISP, looking at short term and long

terms trends, while considering the effects of failures on the ISP network topology. This will also allow

researchers to build a model for dynamic topology generation at the router level.

Today, topology generators are tightly bound to the observed data used to validate them. Given

that the actual properties of the Internet topology are not known, topology generators should strive to

reproduce the variability that characterises the evolution of the Internet topology over time. Future

topology generators should be able to express the variations in local connectivity that makes today’s

Internet: peering relationships, internal AS topology androuting policies each changing over time due

to failures, maintenance, upgrades and business strategies of the network. Topology generators should

capture those dimensions, by allowing a certain level of randomness in the outcome, rather than enforcing

structural assumptions as the truths about Internet’s evolving structure, which may never be discovered.

If incorrect AS interconnections or policies are used for simulation purposes, then the resulting routes

might be far from realistic [MFM+06, MUF+07].

The Internet is not a static network. At the AS level, there isa constant growth in the number of

peering links between ISPs [OZZ07]. Also, due to policy routing and hot potato routing, the changes

at the IP level affect the AS level [TSGR04]. Simulation for applications such as routing protocols and

analysis such as studies in prefix hijacking would benefit from topologies which take into account the

changes of the network over time, similar to real network behaviour. I believe that using static topologies

does not fully exploit the potential scenarios that one should consider in simulations. Another important

aspect of the networks that is not captured by current modelsis the move of the Internet AS topology

towards having a meshed core of tier-1 ISPs, alongside multiple peering relationships between edge

ASes, and an atypical connection models of some ASes such as the content providers which form many

peering connections with as many ASes as possible in order toavoid high transit charges [OPW+08].

In addition to information about peering links, the availability of models of growth and evolution of

networks will enable us to include dynamic models for generating synthetic AS topologies. Pursuing

this goal, I aim to form a collaboration with network operators, alongside topology generator designers,

to provide a representative dynamic topology generator to the research community.

Finally, the metric used in chapter 5, WSD, can be used for analysis of a wide range of topologies

and it is not necessarily bound to Internet topologies. As such, I am looking at using the WSD for

exploiting the hierarchy and structural characteristics of social networks and protein-protein interaction

networks. If successful, this can be a very efficient yet accurate method of categorising such large

networks which may be formed of millions of links.
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Appendix A

WSD Metric Proof

The WSD metric proposed in Chapter 4 for obtaining a best fit is:

J(Gx, Gy) =
∑

k∈K

(1 − k)4(fx(λ = k) − fy(λ = k))2 (A.1)

We now show that
√

J(Gx, Gy) is a metric in the mathematical sense. The difference between
√

J(Gx, Gy) andJ(Gx, Gy) is similar to the difference between the sum squared error and the root

mean squared error. We prefer the sum squared error (i.e.,J(Gx, Gy)) in this application as it provides

the well known minimum variance-bias trade-off.

A metric satisfies the following four conditions:

(a) J(Gx, Gy) ≥ 0 (non-negativity)

(b) J(Gx, Gy) = 0 ⇔ x = y (identity of indiscernibles)

(c) J(Gx, Gy) = J(Gy, Gx) (symmetry)

(d) J(Gx, Gz) ≤ J(Gx, Gy) + J(Gy, Gz) (triangle inequality)

(a) and (c) follow directly from (A.1). Noting that all the elements ofthe sum inJ(Gx, Gy) are

positive =⇒ J(Gx, Gy) = 0 if and only if fx(λ = k) = fy(λ = k) ∀k. Arranging (and increasing the

number of bins if necessary) thek bins such that each bin contains at most 1 eigenvalue RequiresGx to

be co-spectral and isomorphic toGy. Two graphs may beco-spectral, i.e., they share the same spectrum

but are not isomorphic. However, studies have shown [ZW05] that the number of co-spectral graphs falls

dramatically with the number of vertices in the graph. For example, only 0.05% of all graphs with 21

vertices are co-spectral and not isomorphic; this number isthought to decrease with increasing number

of vertices [ZW05]. Thus, condition (b) is truealmost certainly, in the statistical sense.
√

J(Gx, Gy) defines the standard metric spaceRK
2 [KF75]. This can be seen by distributing the

weights(1 − k)4 as:

√

J(Gx, Gy) =

(

∑

k∈K

(hx(λ = k) − hy(λ = k))2

)1/2

(A.2)

where

hx(λ = k) = (1 − k)2fx(λ = k) (A.3)
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and hy(λ = k) is similarly defined. The triangle inequality holds for (A.2). For a detailed proof

see [KF75] Chapter 2, Section 5.
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