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Abstract

Topological analysis of the Internet is needed for develepis on network planning, optimal routing
algorithms, failure detection measures, and understgrulisiness models. Accurate measurement, in-
ference and modelling techniques are fundamental to letéopology research. A requirement towards
achieving such goals is the measurements of network tos@g different levels of granularity. In this
work, | start by studying techniques for inferring, modadjj and generating Internet topologies at both
the router and administrative levels. | also compare thénemastical models that are used to characterise
various topologies and the generation tools based on them.

Many topological models have been proposed to generatméit@utonomous System(AS) topolo-
gies. | use an extensive set of measures and innovative dwtgies to compare AS topology gener-
ation models with several observed AS topologies. Thisyaismkhows that the existing AS topology
generation models fail to capture important charactegssuch as the complexity of the local intercon-
nection structure between ASes. Furthermore, | use rowiitg from multiple vantage points to show
that using additional measurement points significantigafbur observations about local structural prop-
erties, such as clustering and node centrality. Degreedh@®perties, however, are not notably affected
by additional measurements locations. The shortcomingssdabpology generation models stems from
an underestimation of the complexity of the connectivityhia Internet and biases of measurement tech-
nigues.

An increasing number of synthetic topology generators aedlable, each claiming to produce
representative Internet topologies. Every generatorthasin parameters, allowing the user to generate
topologies with different characteristics. However, thexist no clear guidelines on tuning the value of
these parameters in order to obtain a topology with spedificacteristics. | propose a method which
allows optimal parameters of a model to be estimated for angtarget topology. The optimisation
is performed using the weighted spectral distribution metrhich simultaneously takes into account
many the properties of a graph.

In order to understand the dynamics of the Internet, | sthdyetolution of the AS topology over a
period of seven years. To understand the structural changks topology, | use the weighted spectral
distribution as this metric reveals differences in thedniehical structure of two graphs. The results indi-
cate that the Internet is changing from a strongly custopnevider oriented, disassortative network, to
a soft-hierarchical, peering-oriented, assortative ngtwThis change is indicative of evolving business

relationships amongst organisations.
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Chapter 1

| ntroduction

The Internet is vital to the operation of our modern sociétysuch, it is essential for operators to have
a thorough understanding of their networks and ultimatiety Internet operation, in order to meet the
demands of the customers. Dynamic growth and changes imtlét make it difficult to analyse the
performance of different applications and protocols. Regein the structural properties of Internet
topology is essential for studies such as failure locatiod fault-finding, virus propagation models,
improving routing algorithms, and analysis of network gtio&nd capacity planning strategies.

In this thesis | provide insight into Internet topology rasgh, focusing on the organisational level
topology (Chapter[2). I highlight a variety of shortcomingth current topology generators and datasets
(Chapter 8), and present appropriate ways to compare datase design generators (Chapter 4). |
demonstrate how additional network measurements can eelthe current view of the Internet topol-
ogy. | also compare the properties of AS topologies relyinglifferent sets of observations, providing

insight into different aspects of the Internet topology &mdvolution (Chapter 5).

1.1 Structureof thelnternet

The Internet is a large, complex, decentralised and argsai-organised network, formed of hundreds
of millions of end devices such as computers, mobile phondsansors, connected together via Internet
Service Providers (ISP) and backbone connectivity praside

From an operational point of view, the Internet is formed amtwvork of networks. Those con-
stituent networks are referred to as Autonomous System3, @&l are often driven by self-interest
economic and fiscal reasons. Although an organisation, asiehlarge ISP, can have multiple AS num-
bers in different locations, it may also be the case thatgelaumber of organisations, such as UK
higher education institutes, share an AS number. Howexam the inter-AS routing perspective and
traffic engineering, the AS numbers in the routing messagearaimportant part of the routing process.
Such complications make it difficult to analyse the Intesieg, its topology and the geographic location
of ASes.

Today, the Internet is an essential part of internationairoerce, trade and culture. The Internet
market is a competitive open market, with many ISPs comgétinprovisioning of services. Hence, the

Internet is constantly undergoing changes. Edge ISPs sgjgedy add peering relationships with others
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in order to avoid paying transit charges, while larger IS&tsstantly review and reconsider the peering
policies with their neighbours based on the cost, utilsatind Quality of Service (QoS) agreements.
Alongside business relationships, the failure of devicesdtworks, maintenance operations and addi-
tion of new links and routers all lead to constant changelemetwork topology. Understanding these
changes is important for understanding the operation ditteenet and the related applications and pro-
tocols. Hence there has been a great deal of research foousedlysing the topological characteristics

of the Internet and there is need for further research. griorcharacterise the dynamics of the Internet.

1.2 Motivationsfor Topology Research

Two decades ago one could easily obtain a complete map ofetinork, showing all the connections
between various institutions and their respective charetics such as bandwidth. However today the
Internet is formed of about 30,000 organisa@)nEach AS typically includes many routers and end
hosts. Clearly, it is no longer possible to visualise theotogy of such a large network as graphs of
nodes and links, even if such a topology graph were available

Today there are a large number of research projects focwosirigternet topology collection, such
as SkittegDimes [SS05] and RouteVie\gsSuch approaches rely on different measurement method-
ologies. Some rely on active probing and measurement, and ase passive collection of routing data.
The availability of such rich data has increased our undedihg of the Internet topology. However it
has also become evident that despite all the efforts, relseia still have a limited visibility of the real
Internet topology due to measurement biases. As a resaltnternet topology models which are also
derived form the collected data sets tend to become bias@dagoes on, as shown in Sectibns 3fahd 5.

Performance of Internet protocols and applications is higbly related to geographic aspects and
the structure of the network [GMZ03]. Treating the Interaghply as a graph of nodes and edges is
not satisfactory. As | show in this thesis, our knowledgerdéinet structure at core and edge is not
comprehensive. In this thesis | focus on characteristidh®internet such as dynamics of growth and

connectivity amongst nodes, visibility of links and graggated aspects.

1.3 Challenges

Lack of accurate mathematical models and topology mapsedittiernet at router and AS level, despite
great efforts by the research community, is due to seveddlariges. Internet topologies are constructed
typically using passive and active measurements. Sameaglatased for many purposes, including
construction ofealistic simulationsand analysis of business relationships between ISPs. Howée
measurements, and hence the models relying on them, aeestda large number of artifacts.

The first challenge, and arguably the most difficult one taroceme, is the inference of the actual

topology. At the router level, presence of software andWward firewalls, and traffic tunnelling services

1Based on assigned AS numbers; It is possible for numerousieag@ms to share an AS number, or an organisation having

multiple AS numbers. This makes it practically impossible taaban accurate number of organisations forming the Internet.
2http: // www. cai da. or g/ t ool s/ measur enent/ skitter/
Shtt p: // www. Rout eVi ews. or g/
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have all made it difficult to obtain accurate router leveldimgiies using active measurements. At the AS
level, the routing protocols do not reveal complete infatiora

Lack of accurate topology data has made it difficult for sigt& to accurately model the Internet
topologies. Initial discoveries of the Internet topolagied to researchers modelling the Internet as
scale free networks [BA99]. It was soon discovered that tiaeduracies in measurements may bias
the derived models. Many links such as redundant links betweuters, back up links and peering
relationships between ASes where not observed by the paasiactive measurement methods. More
importantly, the evolution of the Internet has not been istidntensively and most previous analysis
have focused on addition of nodes and links over time, rédtraar paying attention to the architectural
dynamics. These challenges have started a whole new brefa@search in the topology modelling area
in order to improve on our current understanding of the hraéer

Generation of the Internet topology calls for a model thaiees a good balance between keeping
global (structural) characteristics and more local proesitike node degrees and local interconnection
structure. In the topology generation literature, curresearch focuses on distribution-driven methods,
which capture some global characteristics of the topoldggy rule out the randomly generated graphs
and aim at attaching meta-data information (metrics) tdittks and routers generated in a graph. Infor-
mation about node (e.g., customer and provider) relatipsskhe delay and bandwidth, would also be
of significant value to researchers using those graphs. fmtmation is currently not available and it
is difficult to infer using passive and active measuremestiniejues.

In addition to above challenges, validation of the modelals® difficult due to the constantly
evolving nature of the Internet. Researchers have recbetin paying attention to the evolving nature
of the networks and its effects on network planning and gioning. Another important area of research
is understanding the dynamics and business incentivegdfiiti@n of nodes (routers or organisations)
and links between them. Gaining insight into the nature csneement processes and their biases on
the analysis of Internet topology research is another itapbobjective of researchers. The challenges

overviewed in this section are extensively studied in $eti.2.
1.4 Contributions
The main contributions of this thesis are the following:

e Extensive analysis of currently available Internet togglgenerators and compare them to a wide

range of observed Internet AS level topologies;

e Demonstrating the improvements in the accuracy of the stralproperties of inferred topologies

by additional measurements;

e Proposing a new cost function for analysis of Internet topws: theweighted spectral distribu-

tion, constructed from the eigenvalues of the normalised Légulamatrix, or graph spectrum;

¢ Using the proposed metric to tune parameters for a set aflettéopology generators, enabling

these models to effectively match a particular measuremiet topology.
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e Presenting a study of two views of the evolving Internet Agology and expose apparent incon-
sistencies between these two inferred AS topologies arid eékielution, highlighting structural

dynamics of the Internet.

| illustrate that the core of the Internet is becoming lessithant over time, and that edges at the
periphery are growing instead. | demonstrate a departane & preferential attachment, tree-like disas-
sortative network, toward a network that is flat, highlyeirtonnected, and assortative. This challenges
common belief about the Internet being a scale free netvamkinated by preferential attachment and
incremental growth of nodes and links. The change in growetind of the Internet calls for deeper study
into business relationship models of the ISPs. In each ofhiagters, | provide a detailed analysis and
breakdown of the above contributions. | also expand on tipaahof these contributions further/in 6.1.

In this thesis | have focused on Internet AS topologies. Hawvthe measures proposed, especially
the Weighted Spectral Distribution, can be used to comptrer dopologies such as social networks,
web graphs, biological networks and router level topolsgi@s a future research work | am working
in collaboration with social scientists and computatidnialogists in order to extend the uses of these

methods.

1.5 ThesisOutline

The rest of this thesis is organised as follows. Chapter 2iges an overview of the latest research in
the field of network topology over the past decade. | alsoigminsight into the challenges involved
in collecting topology data and providing realistic topgyomodels. | bring together an analysis and
summary of techniques for inference, modelling and geiweradf the Internet topology at router and
AS level.

In Chapter 3, | perform a thorough comparison of topologEsagated from several different mod-
els against a set of measured AS topologies by using a latge t@pological metrics in the analysis.
This analysis reveals that current topology generatortofaapture the complexity of the local intercon-
nection structure between ASes, despite matching degeediproperties of the AS topology reasonably
well. Using a collection of AS topologies from many measueetriocations, | demonstrate that adding
more measurement locations significantly affects locaicstire properties such as clustering and node
centrality while not significantly affecting degree-reldimetrics.

When using the topology generators, | realise that a largebeum@f generators have a number of
parameters, without any guidelines on how to set these peamto get topologies of various sizes.
Chapter 4 presents the results of optimisation of the paemef these topology generators to match a
given Internet topology. The optimisation is performedhertwith respect to the link density, or to the
spectrum of the normalised Laplacian matrix. | show thatgishis metric the graph properties can be
better represented using most topology generators.

An important requirement of future topology generatorshis ability to create dynamics models
of networks that take into account the growth of networks tnedfailures of nodes and links. Chap-

ter[5 illustrates the evolution of the AS topology as infdrfeom two different datasets over a period
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of seven years. | use a variety of metrics to analyse thetanalcchanges in the Internet AS topology.
The results indicate that the Internet is changing from &-o@ntred, strongly customer-provider ori-
ented, disassortative network, to a soft-hierarchicadripg-oriented, assortative network. The findings
indicate that traceroute-based approaches may fall shadrrectly sampling the periphery of the AS
topology, while the inter-domain routing dataset does restgetly sample the inner-most core of the
network. Such findings call for new efforts in the researcmnity to devise more comprehensive
measurement tools.
Finally, in Chapter 6 | summarise the contributions of thesth, explain on the limitations of the

work presented, and suggest possible directions for fusearch.
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Chapter 2

Literature Review

Accurate measurement, inference and modelling technigeee$undamental to Internet topology re-
search. Spatial analysis of the Internet is needed to deweitwork planning, optimal routing algorithms
and failure detection measures. A first step towards agtgesich goals is the availability of network
topologies at different levels of granularity, facilitagi realistic simulations of new Internet systems.
The main objective of this chapter is to familiarise the eyadith research on network topology
over the past decade. | study techniques for inference, fivggland generation of the Internet topology
at both router and AS level. | also compare the mathematiodlehs assigned to various topologies and

the generation tools based on them.

2.1 Introduction

The Internet connects millions of computers, sensors, toong devices and IP telephony devices to-
gether, offering many applications and services such ayvhd Wide Web, email, and content dis-
tribution networks. Hosts on the Internet are connectedhdasands of ISPs. An ISP contains one or
more ASes depending on its size. An AS is a set of routers nvétgingle administration domain, such
as a university or corporate network.

By convention, the Internet is built upon two domain catégmrtransit andstuh A transit AS
usually carries traffic between other domains. A stub AShsisca corporate network, is one which has
connections to end hosts and relies on at least one tranditrA®nnectivity to the rest of the Internet.
Stub ASes usually do not enable IP packets to transit théivarks, if they are not sent or received by
an end host within the network. Figure 2.1 displays a singglifiersion of this structure.

In Figure 2.1, transit domains carry traffic between custoi®es, ISPs or Stub Domains. The ISPs
may have exchange (peering) relationships among thenssiveesilience and cost-saving purposes.
Some ASes of ISPs are attached to more than one transit AS.isThiback-up measure increasingly
being taken by corporate networks and business customerdénto ensure the existence of alternative
routes to the Internet, should their main provider fail. dtalso a technique for traffic engineering,
allowing traffic to be sent over links of different perforntan This strategy is called multi-homing and
is also displayed in Figure 2.1.

The growth of the Internet and the overlay networks whicl o#l it has led to emerging applica-
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Figure 2.1: An abstract part of the Internet, link widthsresgent relative bandwidth.

tions and properties which have not been considered in threrdutopology inference and generation

tools. Dynamic reconfiguration of routers and firewalls, refes in routing policies of ISPs, overlay

networks, peer-to-peer networks, increasing use of iRui@ate Networks (VPNs) and protocols such

as Multi-Protocol Label Switching (MPLS) and tunnellinghaiques, multi-homing, on-demand circuit

set-up and bandwidth allocation for home entertainmentvésheb conferencing and the increased exis-
tence of mobile devices and laptops has caused the topofaggtworks to be in constant change as a
result of addition, removal and reconfiguration of routénks, devices and organisations.

In this section, | introduced the basic concepts of the h#es operation and the need for network
topology inference, modelling and generation. Section@/&ws the challenges of topology inference,
modelling, generation and validation. Section 2.3 dessrillne inference of router-level topologies of
the ISPs and the AS-level topology of the Internet and thearhpf geographical location of the nodes
on inference techniques. Section 2.4 discusses the ialtiahd hierarchical models which are used
to represent the topologies of the Internet at AS and rdetek In Section 2.6 | overview the tools
available for topology generation. Finally in Section 2i6troduce possible future research directions

and conclude the chapter.

2.2 Topology Research Challenges

The Internet topology is usually investigated at two lev@lse Internet AS-level topology is of interest
to those interested in the relationships between the nksathat constitute the Internet. For example,
understanding the global Internet connectivity and thénass relationships between ISPs. Within an
AS, the router-level topology map of ISPs is important tof@en optimum network planning and to
minimise the impact of router and link failures.

There are many challenges in inferring and generatingstéalnternet topologies. Information on
network topology, routing policies, peering relationghigesilience and capacity planning are not usually

publicly available as they are considered sensitive bgsimdormation by the ISPs. Instead, researchers
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try to infer the required data by using passive and activesoreanent methods to produce snapshots
of the global Internet or individual ISP topologies. Thedamental problem of these techniques is the
lack of ground truth of the Internet topology. Moreover, tmnstant evolution of the Internet leads to
poor perceptions and models, as the underlying measursraennot well understood. In this section, |

discuss these challenges in turn.

2.2.1 Inference of topologies

At the AS-level, it is not possible to obtain a consistent méfhe actual AS-level topology of the In-
ternet due to the constantly changing nature of the Intéopeiogy. Operators are constantly reviewing
their peering agreements. AS operators do not disclosefbering relationships and traffic exchange
policies with other ASes. Connectivity between ASes isdadtinferred from inter-domain routing pro-
tocols, primarily the Border Gateway Protocol (BGP) [RLIAD6 However BGP data collected from
various points on the Internet is not enough to provide a wstr a completemap of the Internet at
AS-level.

Challenges also exist when trying to get the router-levebkogy of a single AS. The router-level
topologies of ISPs are also dynamic and constantly evolgdirgto failures, maintenance and upgrades.
Network operators are not willing to publicly release thgxsaf their network topology; this is sensitive
information that may reveal strategic planning decisiond may also be used by attackers that may
target the weak points of the network.

The most widely used tool for inference of router-level timgdes is thetraceroutetool [Mal93].
One problem with traceroute is that it is known to miss akie links between routers. Another
problem isaliasing Routers have multiple interfaces with separate IP addged3uring the inference
process, each of these interfaces may be reported as ediff@uter. This problem is referred to as
aliasing [SMWO02]. | will discuss these issues in detail intRet2.3.

2.2.2 Moddling the Internet

Researchers have made significant efforts to model thedieaistics of the Internet. The major problem
currently in this field is the absence of detailed informatédout inferred topologies. Many of these
models are based on datasets that are known to be incompktkigrane to errors due to the nature of
the collection process involved, discussed in detail intiSe@.3.

Due to above challenges, it is difficult to estimate the ghopotential and characteristics of the
internet. This is a vital requirement for network traffic evepring purposes. Section 2.4 describes

many of the widely used models.

2.2.3 Validation of Models

Validation of generated topologies can be done by comparisaeal topologies. Another common
method is to compare the statistical characteristics ofreigaed topology with the input parameters
and requirements such as certain node degree distributionennectivity matrices. As there is no
real snapshobf the Internet traffic or its topology, it is difficult to desé a method to benchmark the

success of a topology generator or the inference of a togplagvever the topologies are compared
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with incomplete datasets.

When inferring the router-level topology of a medium size®, |8 may be possible to request
the operator to verify the results, as done by Spring et Ai®2]. However, as mentioned before,
operators are unlikely to reveal such information, altHotlgey may indicate the success level of an
inference method as a percentage of routers or links disedJ®KF"07]. BGP and AS ownership
data can also be validated by relevant Internet domaintreggisalthough the information held by such

authorities is not continuously updated and is thus oftendaorate.

2.3 Topology Inference

In this section | discuss recent efforts for inference of A& level topology of the Internet and router-
level topology of ISPs. It is essential to note the inteiisectf inference with measurement. Inference-
based statistics are subject to the underlying measurepreness and the assumptions which have
been made on the level of accuracy and details of the measuatgmocess. Thus, inaccurate inference
methods lead to unrealistic models.

Topology inference works usually fall in two categories: uRm-level and AS-level. In related
literature, Donnet and Friedman [DFQ7] also mention thentBrface and the Point-of-Presence (PoP)
maps. The IP interface addresses are usually aliases faathe router and | mention the problems
associated with resolving such aliases in this sectionertinfg PoP level maps is a difficult task due
to lack of publicly available datasets or tools. Hence they sometimes made available by network

operators, or inferred indirectly from IGP routing data.

2.3.1 ISP Router-Level Maps

In this part, | discuss the recent efforts and tools for discimg the Internet’s router-level topology,
also known as it$P layer or layer 3topology. These methods are usually based orrdweroutetool.
Traceroute is the basic tool for discovering the paths thekets take in the Internet. Nearly all attempts
to extract routing and topology information of the Interaetouter layer use traceroute.

Traceroute works by sending multiple Internet Control MegsProtocol (ICMP) [Pos81] packets
with an increasing Time To Live (TTL) field in the IP header. Witeepacket with a TTL of one reaches
a router, it discards the packet and send$GvP time exceedepacket to the sender. The traceroute
tool uses the IP source address of these returning packptedoce a list of routers that the packets
have traversed on their route to the destination. By increimg the TTL value after each response, the

overall path taken by the packets can be inferred.

Mercator

One of the first tools which relies on traceroute for mappiections of an ISP idMercator, introduced

by Govindan et al. [GTO0]. The aim of Mercator is to build amgaomplete map of the transit portion
of the Internet from any location where Mercator is run, gdiop-limited probing [ELR 96]. By using
multiple source points, including source-route probe bépeouters, it is possible to find cross links and
avoid discovering only a tree-like structure. Mercatordsea UDP message to a high port number on the

router and receives back an ICMP reply. If two source adéseskthe reply message are the same, they
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are from the same router. This operation relies on the reménts for the Internet hosts as described
in [Bra89]. This is a technique for resolving alias, by idBihg the interfaces belonging to the same
router.

The challenges faced by Mercator are due to the fact thaeg dot attempt to cover the whole spec-
trum of a network due to randomised process and the fact thaymouters do not forward traceroutes

for source-routing in the way that Mercator requires.

Skitter
One of the most widely used datasets is that collected bﬁkﬁtterprojeﬂ. Huffaker et al. [HPM 02]
state the project focus as “active measurement of the tggaad round trip time (RTT) information
across a wide cross-section of the Internet”.

Probing uses the traceroute tool. IP addresses are therethayp their corresponding origin AS.
The disadvantage of such a tool is the large amount of datat thaduces, from a number of sources
currently placed in over 25 locations worldwide. This letml¢he inherent problems of traceroute such

as aliasing on a wider scale as multiple sources are involskitter does not attempt to resolve aliases.

Rocketfuel
In an attempt similar to Mercator, Spring et al. in the Roftkadtproject [SMWO02] try to infer the maps
of ten ISPs, consisting of backbones, access routers ametlgliconnected neighboring domain routers.
Validation is attempted by using some of the ISP’s own togpldata. Direct probing techniques are
used to filter the traceroutes on the ISP of interest, usin@ B&bles information from RouteViews.
A BGP table maps destination IP address prefixes to a set ofai& phat can be used to reach that
destination. Public traceroute servers are used as vaptagis for the traceroutes.

Rocketfuel uses the direct probing method, as suggestedbip@an and Tangmunarunkit [GTOO].
In order to ensure correct resolution of aliases, Rocketlsd uses thé P_I [; field of the router’s
responses to probe packets, which is incremented by therrolihe source sends two probe packets
to the two interfaces that are thought to be aliases of thee ganter. If consecutive responses from
the interfaces increment tHeP_I D by a small value, it indicates that the same IP stack is rgnoim
the same router with multiple interfaces, hence the integaare believed to belong to the same router.

Otherwise, the interfaces belong to two distinct routers.

Network cartographer

Another tool for inference and mapping of a network topolgthe network cartographefnec) map-
ping software introduced by Magoni and Hoerdt [MHO5]. Tiextool is a traceroute-based mapper
from multiple traceroute servers, finding routers and liakd producing router-level connectivity graph.
The major difference betweenecand Rocketfuel [SMWO02] is thatechas wider scope while Rocket-
fuel focuses on a single ISP. Unlike Rocketfuel, where feathtarget thousands of IP addresses;
uses many traceroute webservers to a limited set of chosaddifesses. Figure 2.2 displays the steps

involved in annecmapping query, sent to two traceroute sen/eedB.

tht t p: / / www. cai da. or g/ t ool s/ measur enent / skitter/
2The identification field in the IP header is used to aid in assiemthe fragments of a datagram.
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Figure 2.2: nec mapping steps, figure courtesy of [MHO05]

In the first stage, the queries are sent from the workstatmtise traceroute servers. In the second
stage, traceroute servers query the selected IP addrésdbs.final stage the results of the traceroutes

are sent back to theecmapping workstations.

DIMES

The DIMES project [SS05] attempts to build a router-levelpnod the Internet. In this project, the
DIMES agent, which can be installed on any computer condetttehe Internet, performs Internet
measurements such as traceroute and ping at a low ratengehdiresults to a central collection station
atregular intervals. The advantage of the DIMES approaeh revious traceroute based mapping tools
is that the probing process is done across many locatiofeiworld, giving a more complete map of
the Internet router-level topology. However, due to thgdamnumber of vantage points and collection of
overlapping measurements, removing the redundancieg idata is a complicated process. Moreover,

DIMES also does not attempt to resolve router aliases.

2.3.2 Comparison of traceroute-based methods

In this section | have listed a number of methods for infgrniouter-level connectivity information.
These methods have evolved over time from single sourceryate probes to universally distributed
probing agents. Table 2.1 displays a summary of the chaistits of these methods.

It can be observed that the trend of inference tools has miveed single-source, static maps to
those spread across many sites and constantly updatimglgiabase. It is interesting to note that there
are no maintained maps with alias resolution and this maj/tteacorrect assumptions about the growth

of the Internet router level topology.
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Table 2.1: Comparison of traceroute based methods

Tool Released Aliasresolution Updated Probes
Mercator 1999 YES NO Single
Skitter 1999 NO YES Multiple
Rocketfuel 2002 YES NO Single
nec 2003 NO NO Multiple
DIMES 2004 NO YES Multiple

2.3.3 Accuracy of traceroute maps

Most of the work in discovering router-level topology of KSielies on the traceroute tool. Achlioptas et
al. [ACKMO5] discuss some of the problems associated wiberoute. They explore the mathematics
of the sampling bias of traceroute, confirming that even whgiven node degree distribution is Poisson,
after traceroute sampling, the inferred node degree bigion exhibits power law properties. It is
difficult to remove this bias as shown by Clauset and Moore 06Mas the number of sources required
to compensate for the bias in traceroute sampling growaiipevith the mean degree of the network.

Lakhina et al. [LBCXO03] analyse the effects of such tracezaampling techniques on random
graphs and conclude that when graphs are sampled usingouéedike methods, the resulting degree
distribution can differ significantly from the the underigi graph. For example, given a sparsedsrd
Rényi random graph, the subgraph formed by a collection oftebbpaths from a small set of random
sources to a larger set of random destinations can exhilgigeed distribution remarkably like a power-
law. The implementation of sampling in the paper is perfaira the measurements from Skitter,
Mercator, the dataset used by Faloutsos et al. [FFF99] am@dnsiot-Grad [PG98]. In studies of the
four traces, the sampled subgraph shows differences iedelgtribution and other characteristics from
the original graph.

Teixeira et al.[TMSVO03] look at path diversity (number ofadlable paths) in the Sprint netwgrk
and ISPs explored by Rocketfuel. The Rocketfuel path diyediscovery is found to be at extreme
cases, either over-estimating or finding very little ditgrsagain due to the use of traceroute. The dif-
ferences between the Sprint data and Rocketfuel inferrgub i@ due to non discovery of backup links,
lack of vantage points, incomplete traceroute informatjmeth changes in a traceroute and incorrect
DNS names.

Deploying a large number of monitors usually results in hgd process large datasets from each
monitor. Donnet et al. [DRFCO06] try to find out the amount afurdancy across datasets, focusing on
the CAIDA Skitter datasets. They discover that around 86%gifen monitor’s probes are redundant in
a sense that they visit router interfaces which have alrbaéy visited by the monitor, especially those
closer to the monitoring station. It is also observed thatyraf the probes are redundant in a monitor’s
dataset as they already have been visited by the other mgngarticularly those at an intermediate

distance (between 5 and 13 hops).

Shttp://wmw. sprintlink.net/
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As a result of the traceroute sampling bias, there has begmirameffort in order to modify tracer-
oute behaviour. Augustin et al. [AC®6] proposeParis traceroute which is a modified version of
traceroute with ability to discover redundant paths. Onthefissues when using traceroute arises due
to the Equal Cost Multi Path (ECMP) load balancing deploygdnulti-homed stubs and network op-
erators. This leads to traceroute taking different patheah occasion as shown in Figlre 2.3. Paris
traceroute looks into the effects of load balancing andriggjdency on traceroute anomalies. Load

balancing can be done per packet, per flow or per destingdiamitiress.

TL=6 ——1= .
m=l ————=n Possible traceroute outcome:

Hop#6  Hop#7  Hop#8  Hop#9

S o o)

Hop#6  Hop#7 Hop#3  Hop#9

TIL=8
TTL=9 L

Figure 2.3: Traceroute false reporting, Figure provided&sO*06]

Augustin et al. show that by manipulating the ICMP sequengeber and checksum in the ICMP
packet header, it is possible to ensure that all the packetisoeroute take the same path. This leads to
discovery of more possible routes. With this method it i® glessible to report on the loops and cycles
in ordinary traceroute reports. Paris traceroute is sugdess an alternative to the ordinary traceroute,
rather than as a topology mapping tool, hence it does nahpttt resolve any router aliases.

Dall'Asta et al. [DAHB"06] find that the node and link detection probability depeoudstatisti-
cal properties of elements such as betweenness centtdétyce the shortest path routed sampling, or
sampling the network from a limited set of sources as peréariyy traceroute, provides a better charac-
terisation of underlying graphs with broad distributiofisonnectivity, such as the Internet. The studied
model analyses the efficiency of sampling in graphs with fr¢ailed connectivity distributions and
looks at metrics such as the node degree distribution. Thelusion drawn is that unlike homogeneous
graphs, in those with heavy-tailed degree distributiomsasthe Internet, major topological features are
easily captured though details such as the exponent of therdaws. However this behaviour appears
to suffer from biases which are result of the sampling preeesl affect the accuracy of results.

The studies in this section may imply that traceroute is stitable tool for detailed analysis of the
Internet router-level maps. However it is still widely uded topology measurement and it is in reality

the only scalable and available tool.

234 AS-Leve Internet maps

The other important level of the Internet topology is the l&&el topology. The freedom of AS adminis-
trators to change their traffic exchange relationships watitier providers has led to a constantly evolving
Internet topology at router and AS level. Obtaining the ASpdr can enable better design of routing
algorithms and traffic engineering between various ASes.

BGP information at border routers is kept consistent byivéieg BGP update messages from other

ASes. BGP updates contain multiple route announcementsvahdrawals. These announcements
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indicate that new network sections are available to theersudr a policy change is enforced to prefer an
alternative path over an existing one. Withdrawals occuteman existing route is replaced by a new
route to a destination prefix by means of a withdrawal messEigese messages inform the withdrawal
of links and addition of new links and contain tA&-Pathtravelled by the advertisement. Each router

along the path prepends its own AS number to the AS-path iB@&#e message.

The AS-path is needed to avoid loops in the BGP route setegtiocess. The AS-paths, in con-
junction with the AS prefix, are also used to decide on whahéshiest next hop to use for sending a
packet to a destination. An edge-router may not have compietv of the BGP status of the Internet
and may have a default path to a tier-1 provider. Tier-1 mhers have default-free BGP information so
that they can forward all the packets to the correct destinatiP forwarding requires that all routers

within an AS are aware of all the prefixes which are learnechbyetdge routers from other ASes.

Some attempts on AS-level topology discovery were basedsorguraceroute data. Inference
of AS-level maps from traceroute data includes problemsmatediately noticed. Mapping of an IP
address to the correct AS number incorporates challenges ate discussed by Mao et al. [MRWKO03].
They propose techniques for improving mapping of IP ad@é®$s the corresponding ASes. These
techniques rely on a measurement methodology for coligtith BGP and traceroute paths at multiple
vantage points and using an initial IP-to-AS mapping defifrem a large collection of BGP routing

tables.

The difficulties arise due to the fact that the BGP table daththe actual path taken by packets
can be inconsistent due to new route aggregation/filtenmbrauting anomalies [GW02]. The WHOIS
data is also not always up to date due to company mergersk bpsaand IP address re-allocations. An
improvement can be made by collecting a large amount of imédion from BGP routing tables, BGP
update messages and reverse DNS lookups in order to hegydeaie build a more accurate AS-level

map of the Internet.

Gao’s seminal paper [Gao01] is one of the first attempts tegmean AS graph inferred from the
Oregon RouteViews BGP data. The provision of such a map hatslesh classification of AS relation-
ships into customer-provider, peering and sibling retathips. Figure 214 displays examples of the types

of relationship between different ISPs.

A customer pays its provider for Internet connectivity amesl not transit any traffic between its
providers. A pair of peers agree to exchange traffic betwieein tustomers by sharing the cost of the
peering links and eliminating traffic charges between edlcbroA pair of small ISPs may provide addi-

tional connectivity or backup connectivity to the Interteeeach other in form of a sibling relationship.

Despite the presence of such contractual agreements,ishiittée publicly available information
about inter-AS relationships. The Routing Policy Specifisa Language [AVG 99] can be used to
register information about peering relationships but ithisrmation is not always accurately published
due to its sensitive business nature. However it is possibiefer such information from the BGP
routing tables. Gao proposed heuristic algorithms for sdishovery, and then validated some of the

results by using a Tierl ISP’s internal information. Thecdigery of the relationships is based on the
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Figure 2.4: Commercial relationships between ISPs.

BGP routing update export rules that are different for thividual relationships. The proposed solution
by Gao is based on forming annotated graphs of the networkrekihg sure the AS paths avialley-
Free i.e., after traversing a provider-to-customer or peepéder edge (link), the AS path cannot traverse
a customer-to-provider or peer-to-peer edge. The Vallegleriteria holds only when the following

conditions are met:

e A provider-to-customer edge can be followed by only prowiglecustomer or sibling-to-sibling

edges.
e A peer-to-peer edge can be followed by only provider-tatauer or sibling-to-sibling edges.

Subramanian et al. [SARKO02] focused on peering relatigpgsshetween ASes from a commercial
relationship point of view. They combined BGP data from ripl#t vantage points to construct a view
of the Internet topology, using BGP routing tables fromTélhet Looking Glasserverg The proposed
algorithm ranks each AS from each of the vantage points base¢lde number ofip-hill anddown-hill
portions. The results suggest the design of a topology gésrdvased on directed graphs, as opposed to
degree-based methods, as the directed graphs make distibetween edge ASes, connecting to several
transit core ASes.

This work led to many other interesting findings about ASelerelationships. Batista et
al. [BEHT07] took this approach further by proving that identifying Aelationships from BGP data,
especially when measured from multiple sources, is an NRptete problem. The suggested solution
is a linear time algorithm for determining the AS relatioipshin the case in which the problem admits
a solution without anomalies for large portions of the Intdr(e.g., data obtained from single points of
view). The solution is performed by starting from a set of A8hs, so that the number of invalid paths

is kept small. This method can be applied on the address ktive hosts within an AS.

“http: // www. t racer out e. or g/ #Looki ngd ass
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When looking at the path taken between ASes, direct accesutpants is not always possible.
The approach of using multiple sources of data is an extremmsful method in such scenarios. It
enables a more detailed analysis of the possible paths betwe end nodes (ASes in this case). Mao et
al. [IMQWZ05] explored the feasibility of inferring AS pathg bhsing BGP tables from multiple vantage

points, router-level paths from traceroute servers, ande&8l paths from Looking Glass sites.

One of the inherent issues of inference of AS-level topolo§yhe Internet by use of mapping
node IP addresses to registered AS numbers is that sibliatioreships are missed. Dimitropoulos et
al. [DKF+07] proposed an alternative solution to AS-level map infeeawhich attempts to find sibling-
to-sibling (s2s) relationships, as well as customer-tmsater (c2p) or provider-to-customer (p2c). The
proposed inference model avoids the mistake of consideiblipgs as customers or peers, which in turn
may result in wrong inference of a provider as a customeh®iother way round, while still rendering
a path as valid. The inference of s2s links plays an importetwhen looking at corporate networks,
where multiple ASes belong to the same organisation. Inrdai®ok at the s2s relationships, the IRR
databases are consulted and dictionary of synonymous iseg@ms is manually created. Although a

disadvantage of this approach is that the IRR are not alwpyte-date.

Using public BGP data and validating their results againstperating ISPs, the author’s main
conclusion is that with BGP derived inference, it is possitad identify less than 50% of peer to peer
links. Another conclusion is that nearly all relationsh@we p2p and c2p, as confirmed by the conducted

survey.

When focusing on AS-level graphs of the Internet, peeringtiehships play an important role
in providing alternative routing and resilience. Muhlbaeeal. [MFM*06] focus on the connections
between the ASes within the Internet, due to the importaridbe inter-AS relationships. Peering
relationship are difficult to infer due to the business ratfrthis information, and the limited ability of
methods to correctly identify such peering relationshipewever their importance is significant as they
affect inter-domain routing policies. They build a simpledel that captures such relationships by using
BGP data from observation points such as Routeviews and.RIR&y then use simulations to provide

an AS-level map which they compare with the BGP data fromrotaastage points.

In a view inspired by the business relationships of progd€hang et al. [CIWO06] present a model
of economic decisions that an ISP or AS has to make in ordeeé¢o with other ASes, or with transit
tier-1 ASes. The economic decisions which have to be coresidgy an ISP are of three types: peering,
provider and customer. In each case, the cost-centriclataltal decision, as referred to by the providers,
has to bring mutual benefits for both parties. The gravity eidBoy63] has been used to describe
decisions on traffic demand and exchange. The distance of &&m each other plays the critical role
in the decision made by an AS to peer with another. They used&EPto form node degree distributions
to infer peering relationships. An important result of theork is an analysis of changes in the topology

of a network, by introduction of new peering relationshipd apdates to the current ones.

Muhlbauer et al. [MUF Q7] investigated the role and limitations of business ieteghips as a

model for routing policies. They observe that popular laoat for filtering correspond tealleyswhere
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no path should be propagated according to inferred busmedssonships. This result reinforces the
validity of the valley-free property used for business tielaship inference. This work reveals two di-
mensions to policies: (i) which routes are allowed to prepagcross inter-domain links (route filtering);
and (ii) which routes among the most preferred ones are lctiensen (route choice) and thus observed
by BGP monitors. They use BGP data from more than 1,300 BGEredtson points, including Route-
views. The observation points are connected to more thanAB#% with some feeds from multiple
locations. They provide a model of ASes and have identifiegiafgoer-prefix policies in order to obtain

agreement between the routes selected in their model asd tiserved in the BGP data.

24 Modesof Internet Topology

Mathematical modelling of the characteristics of the Inétiis a key stage for successful generation of
realistic topologies. These mathematical models can rémoge geographical distance and clusters to
distribution of nodes with different degrees of connedyivin reality, the constant change in the Internet
topology makes it difficult to obtain a single topology of timernet and instead it is more appropriate
to refer to the obtained maps ernet topologies

This section presents some of the models of the Internetdgjgs. The objective of this section
is to familiarise the reader with the common methods of attarasing the topology of a network and

provide a basic understanding of the most common terms uddsicontext.

2.4.1 Random graphs
Complex networks such as the Internet have traditionakntgescribed using the random graph theory
of Erdds and Rnyi [ER85]. In a simple model, for a given number of nodesdgesn and the average
degreek = 2m/n, one can construct the class of random graphs having the aeenage degrek by
connecting every pair of nodes with probability= & /n.

Despite the ease of use of the random network model, and abéity to produce some of the
required metrics for a generator such as average node dégegavere abandoned in favour of models

that capture the statistical characteristics of the Irgeas discussed in the next section.

2.4.2 Power lawsin topologies

Power laws are one of the most widely used notions in the gbofe¢opology analysis of the Internet.
Power laws are seen in statistical distributions wherestigemo concept of scale variance, i.e., a property,
such as a distribution of nodes in a network, follows the sartes at different scales or resolutions. In
a seminal paper, Faloutsesal. [FFF99] stated that certain properties of the AS-levelrimé¢topology
are well described by power laws. In this work, the authoms thsee Internet instances (topologies
inferred from BGP tables). Three specific power laws werenlesl and these were believed to hold for

the Internet:
¢ Rank exponeniOut-degree of a node is proportional to its rank to the pavferconstant.

o Out-degree exponenthe frequency of an out-degree is proportional to the @grele to a con-

stant power.
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Figure 2.5: A power law network of 200 nodes

e Eigen-exponentThe eigenvalues of the adjacency graph are proportiorthiet@rderi to a con-

stant power.

One of the classic models that is used in this context iBthenodel, introduced first by Baraki
and Albert [BA99]. This model is based on the incrementalghoof networks, by addition of new
nodes and preferential attaching nodes to well-conneated.o They also reported that Internet has
power law characteristics, alongside the findings of Falosiet al. Baradsi and Albert focus on WWW

webpages and links between them as an alternative measurefitiee Internet.

Figure 2.5 shows a network of 200 nodes connected based d3Atlmeodel. Such a graph will
have power law characteristics, and a tree-like structue=td its scale-free nature. If one relies on
the traceroute tool, it is difficult to infer the cross linksttveen the nodes. A scale-free network is not
a homogeneous network as the nodes have a very heavy-ta@teithudion. Despite the small size of
the Internet at the time of observations of Faloutsbal, these observations were believed to hold in
future growth stages of the Internet. This hypothesisdnid Siganost alto repeat the above analysis
again [SFFF03]. They prove the existence of power laws ierirgt at AS-level, looking at two topology
measurements, at few snapshots over five years, one frono®RaguteViews and another is the dataset
used by Chemrt al. [CCGT02]. The test for the existence of power laws is carried omileérics such
as rank exponent, degree exponent and eigenvalues. Thieigions are that the power laws exist over
a five year period and they are an efficient way to describeicseif topology graphs.

Figurée 2.6 displays the node degree distribution of the pdawe network in Figure 2.5, plotted on

a log-log graph. Existence of a straight line indicates tkistence of a power law distribution of node

degrees.
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Figure 2.6: Power law node degree distribution.

The existence of power laws in the Internet is interestinghasinternet is formed from smaller
networks which are self-managed. Medgtaal. [MMBOO] look at four factors in formation of Internet

topologies which may cause various power laws inferred erriternet:

1. Preferential connectivity of nodes to nodes with moreneations.
2. Incremental growth of the networks.
3. Distribution of nodes in space (random or heavy-tailed).

4. Locality of edge connections (preference to connect &whenodes).

The BRITE topology generator[MLMBO01] was used by Medina let @ test these hypothesis.
Topologies of between 500 to 15,000 nodes were consideiigdand without incremental growth and
preferential connectivity.

The final conclusions are that the rank and out-degree paaves are more effective in distin-
guishing topologies than the number of hops between nodégigenvalue power laws which are ob-
served similarly in all topologies. Preferential conneityiand incremental growth are found to be the
main causes for all power laws in the simulations. They distalthat for best correlation coefficients
(approaching 1) and slope of linear fits for rank exponerpgr@aching 0.5 observed by Faloutsos et
al. [FFF99]) both preferential connectivity and increnamrowth must be present. This methodology
can be extended by grouping nodes into administrative desnai

The findings in this section indicate the existence of poweslin various statistics extracted from
the Internet. However the inferred statistics are not asy@rfect as one cannot obtain a single snapshot
of the Internet topology and must rely on various measurémeehniques. | now present results which

indicate that the existence of power laws are merely a dfeetef poor inference techniques.
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24.3 Argumentsagainst power laws

The inherent biases of traceroute sampling and collectioB@&P data from limited vantage points
made researchers question the true existence of power athie internet AS-level topology. Chext
al.. [CCGt02] state that BGP data represents a partial view of therlatehence power laws may not
exist in the strict form suggested by Faloutgbsl. [FFF99] for the degree distribution. This argument
is based on their findings that BGP AS paths do not completgiyuce the topology and the data from
Routeviews suggest that the node degree distribution sapserheavy-tailed (close to Weibull distribu-
tion) and perhaps only the tail exhibits power laws. The argluse BGP routing tables of 41 ASes and
information from Looking Glass websites to infer the loc& Aonnectivity map and compare it to the
one achieved by Routeviews. Data from the European Inteouting registry (RIPE), which has the
peering relationships of most European ASes, is used irr dod@nd relationships which are not seen
from BGP inference, such as siblings [C@3].

Another observation in conflict with the existence of povesvd is the important observation made

by Mahadevan et al. [MKFO06]. For a comparative study, three distinct data sourcesed:

1. Traceroute data from the CAIDA Skitter project, using3iedaily graphs for the month of March
2004.

2. Routeviews BGP data for March 2004, including staticaabid updates.
3. RIPE WHOIS database dump for April 07, 2004.

The findings confirm that the Skitter data displays power l&aracteristics [FFF99], however
the WHOIS graph has an excess of medium degree nodes and tenode degree distribution does
not follow power laws. They also compared many metrics of $héter and RouteViews graphs to
those graphs generated based on Power-law Random GrapR&JPACLO00] and it is observed that
the PLRG model fails to accurately capture the importanperties of the skitter or RouteViews BGP
graphs. Similarly, the PLRG model fails to recreate the WH@&ph since its node degree distribution
does not follow a power law at all.

Krishnamurthy et al. [KF€05] introduce graph sampling, in order to reduce the sizefefried
topologies for analysis while preserving metrics, in these power laws and slope of graphs. They
model the network as an undirected graph at AS-level. Thepgse sampling the graph by deleting
nodes and links probabilistically, or by contracting thegr at steps, or by generating a subset of graphs
from traceroute paths. They perform probabilistic deletibnodes and edges and can reduce the graphs

by about 50-70% while keeping metrics such as power lawsinvith acceptable range.

2.4.4 Alternative topology models

Power laws were not the only point of interest for networkeeeshers who used datasets from vari-
ous inference projects. For example the graphs producedbka®uel and Skitter consist of physical
connectivity of Internet routers for an ISP or a section &f lifiternet. However for an improved under-

standing of the physical infrastructure of the Interneis gssential to have more information about the
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common characteristics of links such as the link bandwidihter capacities and etc. These concerns
were first raised by Alderson et al. [ALWDO5], where they foamsannotated graphs of the Internet at
the IP layer with addition of bandwidth and buffer sizes. ﬂlﬂlen%‘ and Rocketfuel maps are used
to look at various differences between network models, t®yafsa metric proposed asetwork per-
formance defined as the maximum throughput of a network under a gravitdel of end user traffic
demands. Hence their proposed design for designing an IB®mkegraph is referred to adeuristi-
cally Optimal Topologywhich is based on having sparsely connected high speedsaitéhe core of
the network, supported by hierarchical tree-like struetal the edges. This is similar to the proposed
Highly Optimised Tolerancapproach suggested by Carlson and Doyle et al. [CDOOHmistically
Optimised tradeoffsonsidered by Fabrikant et al. [FKP02].

The authors propose that detailed study of the technolbaicheconomic forces shaping the router-
level topology of a single ISP provides convincing evidetiw the Internet is not necessarily formed
of highly connected routers in the core of the network. Thqyeet border routers again to have a few
relatively high bandwidth physical connections suppagrierge amounts of aggregated traffic. In turn,
high physical connectivity at the router-level is againested to be confined to the network edge. They
also note that modelling router-level robustness requites minimum adding some link redundancy
(e.g., multi-homing) and incorporating a simple abst@actf IP routing that accounts for the feedback

mechanisms that react to the loss or failure of a network corapt.

2.45 Structural modedsof the Internet

Alongside power laws, other metrics of network topologiasehbeen studied extensively in the litera-
ture. One of the most important factors that has already bgplained in this section is the clustering
of nodes. Clustering has been widely studied using teclesiau finding the clustering coefficient of
the nodes in a network. An alternative to this methodgsctral filtering Gkantsidis et all [GMZ03]
perform a comparison of clustering coefficients, by usirggpvalues of adjacency matrices from var-
ious BGP data of networks, and also on methods of topologgra¢ion, such as BRITE. This work
identifies a global problem with topology generators; itighio generate representative topologies. Use
of a small topology leads to concentrating only on degretiligion power laws in AS and router-level
geographic topologies, as opposed to looking into the pgeslationships, clustering and amount of
traffic on the links. They have introduced the basics of dedp@sed graph generation and conditions
that the links and nodes are attached to ensure connectigityg a Markov-chain-based algorithm.
They believe that degree-sequence is not sufficient forlbgyogeneration that matches the real
data. They use clustering methods and eigenvalues to antigsgenerated topologies and compare
with real data from NLAN . The generation methods that meet a degree-sequence ntoigorat-
ing clustering are suggested by the researchers. Gooaghgimethods are also needed in topology

generators, as both the degree-sequence and the clugtegifund in real networks [GMZ03].

Li et al. [LAWDO04] discuss the need for topology inference gyaheration at different levels. For

Shttp://abil ene.internet2. edu/
6http: // www. nl anr. net/
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congestion control protocols, IP level connectivity witinolwidth and buffer sizes is needed, while for
attack assessment and network planning a detailed map efamudl router capacities is required. For
routing protocols one needs a graph of AS-level connegtarnt peering information. The authors focus
on node degree distribution and their heavy-tailed charistics and whether the node degree distribu-
tion is the most important objective of a topology. They dismge the use of random generators as
they do not produce power laws in node degrees, so they haverbplaced by degree-based generators.
The proposedirst principles approactiocuses more on physical layer, router and links. In theexdnt
of network engineering for an ISP, physical metrics sucheafopmance and likelihood are used to for
graph generations. They observe that simple heuristidabjgned and optimised models that reconcile
the tradeoffs between link costs, router constraints, aed taffic demand, result in configurations that

have high performance and efficiency.

The Internet has a hierarchical structure in the form ofedéht tiers. Jaiswal et al. [JRT04] look
at comparing the structure of power-law graph generatogstlat of the Internet AS graph. This is
an important step in proving the existence of power laws. Bgothposing graphs of the Internet at
different levels, the authors establish the propertiesowfgr-law graphs and the Internet graph and find
skewed distributions in degree connectivity, i.e., a largmber of less-connected nodes connect to the

well-connected ones, and well-connected ones tend taconieect more closely.

Carmiet al. [CHKT06] use the data from the DIMES project, combined with ASelewaps from
the RouteViews project, to form a map of the Internet. The floamation method is based dnshell
decompositionwhich involves removing nodes in groups based on numbeomfiections they have, to
form shells of nodes. In the first step, thgruningtechnique is performed by removing all the nodes
with only one neighbour recursively, as well as removinglitieto that neighbour along with the node.
The nodes removed in this step are called tkshell. This process carries on with indéxto form
shells of higher connectivity degree. The last noneniptpore will be, by definition, the backbone of
a network such as Internet. Figdire 2.7 displays a sketchedftore decomposition for a small graph
from Alvarez-Hameliret al. [AHDBVO06]. Each closed line contains the set of verticeobging to a

givenk-core, while colours on the vertices distinguish differerghells.

Carmiet alfound that for the DIMES data used, the size of eaethell decreases with a power

law distribution,n(k) o< k=%, where the exponeidtis about2.7.

Node clustering techniques have also been used to chasactaeternet topologies. Wool and
Sagie [SWO04] propose a clustering method that enables the ofidnternet topology as AS-graphs
in different granularity levels. They find few main denseasyrwhich inter-connect the regional cores.
They compare various degree-based generators and staedthéo consider power laws and clustering
coefficients when generating topologies in BRITE and Inéeyluse the dendesubgraph approach for

clustering in different levels.

Yook et al. at/[YJB02] propose a model of networks based attdia. They find that the physical
layout of nodes form a fractal set, determined by populatiensity patterns around the globe. The

placement of links is driven by competition between two nisd@referential attachment and linear
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Figure 2.7: Example of-core decomposition [AHDBV06]

distance dependence. Preferential attachment assuntébetmobability that a new node will link to

an existing node witt links depends linearly oh. The nodes with higher connectivity degree are more
desirable for attachment by new nodes. Preferential attanhis believed to be one of the main reasons
for power-law properties of the Internet. Linear distanepe&hdence is due to the fact that the further

the nodes are from each other, the less likely it is for theheie a direct connection.

The Internet, like many complex networks, is believed toehemall world characteristics. Such
characteristics are important for delivery of messagesantent on networks. Jin and Bestavros [JB06]
consider the small world characteristics when generatipglogies at router-level and AS-level. At AS-
level, the high variability in node degree, and at routeel¢he preference for local connectivity results
in this phenomena. They use simulation of multicast treeglifarent models. They also use AS
graphs of the University of Michigan AS graph dataset (Ruiges plus Looking Glass), and various
router-level graphs including Skitter. They use these talye statistics such as node degree and local
connectivity in order to evaluate their model. They suggésulators taking into consideration vertex
degree distributions as well as preference for local cativigcand suggest improvement by considering

scale-free characteristics as well.

The Internet architecture and structure is constantly viwgl Pastor-Satoras and Vespig-
nani [PSV04] highlight the self-organising nature of théehnet and its evolution since birth from
a statistical and physical view point. Their conclusiorhiattthe Internet can be modelled as a network
of nodes and links growing in a scale-free manner. Howewvertiowth and death rates of ISPs and

ASes and predictions for future trends on the Internet reropén issues.

This section has gathered various models that are prestmttéiad Internet at physical and routing
levels. The variety of models is an indication of the compdéucture of the Internet which makes
it difficult to capture all the characteristics with a simpt®del. Based on these models, researchers

develop topology generators which are discussed in Se2ttn
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2.4.6 Comparison of topology generation models

Despite the availability of many topology models, there has yet been an agreement between re-
searchers on a single standard method of modelling and gi@renf Internet or ISP network topolo-
gies. This inconsistency is due to the many aspects that am#ohconsider when studying a topology.

In addition, different models may be used by researchersriipg on the level of complexity required.

Chang et al. [CIWO03] look at the problem of generating AS}éwgology of the Internet. They
discuss the weakness of current power-law based genesaidBGP-inferred AS topologies in detect-
ing AS peering and business relationships. The authorsfoouhe optimisation of a topology based
on AS geography, business model and evolution in time, usiadrouteViews data plus inferred infor-
mation from Looking Glass sites to form two datasets. Fompéitity, all multi-homing and multiple
connections of ASes are removed by choosing just one linkdas criteria such as lowest average hop
distance. The final graph is one which is 50% of the size ofimaigdataset, with similar node degree

distribution.

Alderson et al. [ADGWO03] discuss generating topologies gighre Highly Optimised Tolerance
concept. In this strategy, the focus of the generator is th@@mic trade-offs, such as cost and perfor-
mance, and technical barriers faced by an ISP when desigsiog/n network. This would allow for a
focus into economical challenges faced by network opesafbinese issues are important for backbone

service providers, which must ensure optimised use of theark capacity.

Mahadevan et al. [MKFV(06] discuss the lack of analysis amqmblkogy generation tools that can
focus on specific requirements of metrics of a graph, foguemdegree correlations of subgraphs of a
graph that represents a network or Internet. However ththotebecomes extremely complex as the
number of correlated nodes increases. In a basic model, af sebgraphs are defined with various
distributions and are used to define a topology. The metiicsidered for analysis are: spectrum,
distance distribution, betweenness, node degree distifuikelihood (sum of products of degrees of
adjacent nodes) and clustering. However in practice, thesfthas been put on connectivity as the other
metrics are hard to compare and classify. They focus on deging a given network topology and

compare their results with the Skitter dataset and BGP data RouteViews.

Mahadevan et al. believe an improvement in topology geimgraan be achieved by focusing on
peering relationships and graph annotations such as bdtigvatency and etc. In Orbis [MHKO7],
the aim is to produce a random graph of desired size whileikgepe characteristics of the input graph.
They allow a user to feed in average degree, node degreeianhdggree distributions from a measured
topology, and the tool should also annotate the routers Ailmemberships and annotate the AS links

with type of relationship between them.

They observe that the AS-level topologies can be approxidiay power laws. However the router-
level topology does not fit strict power laws. The observedimam degree at router-level does not
increase significantly by increasing the size of the graphl.ktrescaling, they attempt to preserve the
shape of the PDF of the graph’s degree distribution2#rrescaling, they try to preserve the degree

correlation profile. They encourage the addition of lateamogt bandwidth distribution as another metric
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for rescaling for realistic topology generation.

One of the objectives of generation of topologies whicha@lpsap those of Internet is to arm net-
work researchers with tools with which they can analyseouarissues in and around the Internet, such
as congestion, optimal routing and fault finding. Springl €§6&A03] look at traceroute measurements,
usingscriptroute from around 40 vantage points on planetlab to look at tagpoknd routing policies
internal and between ISPs to analyse the causes of pathdnflahd find that inter-domain routing and
peering policies have significant effect on the inflationeffsuggest improvements to BGP policies to
look after routing across ISPs, as the ISPs have to use miniA&f® hop-count which may take longer

sometimes. They compare the taken routes to the topologjyhinainferred using Rocketfuel.

2.5 Topology Generation

For successful simulations of traffic and network eventg,gamerated network model must be topology
aware. Topology generation is an area which researchess lieen actively working on in the last
decades. The first generated topologies were randomly ey selecting a certain number of nodes
and randomly assigning links between them. This was duestiatk of understanding of the architecture
of the Internet and the lack of validation tools. In this g@tt some of the popular network topology

generators are discussed.

251 Waxman

The Waxman model of random graphs is based on a probabilitiehfor interconnecting nodes of the

topology given by:

P(u,v) = ce= ¥ BE) (2.1)

where0 < «, 3 < 1, dis the Euclidean distance between two nodesnd v, and L is the network

diameter, i.e., the largest distance between two nodese thatd and L are not parameters for the
Waxman model. The Internet is known not to be a random netork include the Waxman model as
a baseline for comparison purposes. Figure 2.8 displaysadgy generated by the Waxman model. It

can be seen that some nodes are not connected to others.

252 GT-ITM

With the explosion of the Internet, researchers realizatttiey need to capture the structural properties
and attempted to model the design of the Internet. The uleiGal modelling of the Internet topology
was originally done by the transit-stub models. Calvert.dCiDZ97] presented one of the first results in
this field by focusing on the graph-based models to reprékeribpology. The parameters used include
the number of transit and stub domains, number of Local Areawhirks (LANS) per stub domain,
and the number of edges (links) between transit and stub idstrta initialise the topology generator.
Then the transit domains, transit nodes and their inteneoting edges are placed and similarly the
stub domains. The Transit-Stub model produces connectagtaphs by repeatedly generating a graph

according to the edge count and checking the graph for camitgcUnconnected graphs are discarded.
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Figure 2.8: A topology generated by the Waxman model.

This method ensures that the resulting subgraph is takemdbm from all possible (connected) graphs;
however, it may take a long time to generate a connected gfapk edge count is relatively small
compared to the number of nodes. Extra edges from stub derfwiransit nodes are added by random
selection of the domains and nodes.

Georgia Tech Internetwork Topology Models (GT-ITM), alsmln as theransit-Stubgenerator,

is capable of producing several forms of network topolagies

e Flat random graphs GT-ITM has five models of topology embedded within it indlugl pure

random model and varieties of the Waxman [Wax88] model. &laes not hierarchical models.

e N-Level model The N-Level model constructs a topology recursively. lis timethod, a graph
is made by dividing the Euclidean plane into equal-sizedasgjgectors, and then each sector is

divided into smaller sectors in the same manner, so the et#ie final graph is equivalent to that

of the individual levels.

e Transit-Stub modelThis model produces interconnected transit and stub dwmnaihis model
is controlled by number of domains, average node per traositain, average stub domains per

transit domain, and average nodes per stub domain.

In the transit-stub domain, care has been taken to ensuréhthpaths are similar to those of the
Internet, for example the path between two stub domain dgoesigh one or more transit domains and
not any stub domains and not the other way round. This is dgrs&igning appropriate weights to the
interdomain edges.

The transit-stub model is comparable to Thiersmodel [Doa96], in which the three levels of hier-

archy, or tiers, are referred to as Wide Area Network (WANgtMpolitan Area Network (MAN), and
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LAN levels, corresponding to the transit domains, stub damand LANs of the transit-stub method.
The Tiers model produces connected subgraphs by joiningeahodes in a single domain using a min-
imum spanning tree algorithm, a popular method used as thie fua laying out large networks. This

generation method has been tried in two implementationsarisit-Stub (TS) model, part of GT-ITM.

253 BAand AB
These models are inspired by the Barabasi and Albert [BAS®]ahof networks, and the Albert and

Barabasi (AB) model based one evolving networks [ABOO] wHitcorporate preferential attachment
and incremental growth factors. Starting with a networlogfisolated nodesy < mg new links are
added with probabilityp. One end of each link is attached to a random node, while ther @nd is

attached to a node selected by preferring the more popidamiell-connected, nodes with probability

ki1
N Zj k‘j +1
wherek; is the degree of nodg with probabilityg, m links are rewired and new nodes are added with

TI(k;) (2.2)

probability 1 — p — ¢. A new nodem hasm new links that, with probabilitfI(k;), are connected to

nodes already present in the system.

254 GLP

The Generalised Linear Preference model (GLP) [BT02] fesus matching characteristic path length
and clustering coefficients. It uses a probabilistic metfuwchdding nodes and links recursively while
preserving selected power law properties. In the GLP mededn starting withn links, the probability
of adding new links is defined aswherep € [0, 1]. LetII(d;) be the probability of choosing node

For each end of each link, nodés chosen with probabilityI(d;) defined as:
1(d;) = (d; = B)/ Y _(d; = B) (2.3)
J

where € (—oo, 1) is a tunable parameter indicating the preference of nodesraect to existing

popular nodes.

255 Inet

Inet produces random networks using a preferential linesaghi for the connection probability of nodes
after modelling the core of the generated topology as a faimmetwork. Inet sets the minimum number
of nodes at 3037, the number of ASes on the Internet at thedfriveet's development. By default, the
fraction of degree 1 nodesis set to 0.3, based on measurements from Routel%/iemd; NLANHg BGP
table data in 2002.

2.5.6 The Positive Feedback Preference (PFP)
In the Positive Feedback Preference (PFP) model [ZhoO&Athtopology of the Internet is considered

to grow by interactive probabilistic addition of new nodesldinks. The PFP model starts with a random

network of sizen. At each time step:

"http: // www. r out evi ews. or g/
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1. With probabilityp, a new node is attached to a host node, and at the same timeiataeval link

appears between the host node and a peer node.

2. With probabilityq € [0,1 — p], a new node is attached to a host node, and at the same time two

new internal links appear between the host node and two peksn

3. With probabilityl — p — ¢, a new node is attached to two host nodes, and at the same tieve a

internal link appears between one of the host nodes and axpder

257 1Gen

Another generator which aims to generate topologies whisie the geographical problems associated
with network design is the Igen generator. Quoitin [QuoO&]lains why it is difficult to infer topologies
and thus proposes the generation of topologies based omnketigsign parameters. He argues why
pure degree-based generators such as BRITE or GT-ITM faibpture real optimisation challenges
faced by network designers. The metrics such as latencymigation, dimensioning and redundancy
are discussed. IGen first creates PoPs to look like the Spetmtork, then it make connected trees based

on the Highly Optimised Tolerance methodology [ADGWO03].

2.6 Summary

Internet’'s complex architecture and organisational stinechinders the construction of accurate maps of
the network and makes it nearly impossible to propose digBnibathematical models. Understanding
the network at the physical layer is essential for routingji@silience purposes. understanding the higher
layers, the virtual types of connectivity structures ang/\ifferent when studied from different sources
of data and a correct understanding of the nature of thesgectinns is essential for traffic engineering
and economic modelling of the network.

The research efforts towards mapping the internet haves@émtan trying to get a map at router and
AS level. Researchers try to understand routing policiespaavide connectivity maps, by focusing on
the router and AS-level graphs.

The development of the above works suggest that realigticldgy generators will benefit from
taking link bandwidth and geographic distribution of thedas into consideration. It is also becoming
increasingly important for network researchers to take aansideration the evolution and structure of
networks and Internet as a whole over time and the preseramenoitated links plays an important role
in this context.

In this chapter | have briefly introduced the challenges ffedint areas of Internet topology re-
search. In Chaptér 3, | put the available AS topology modelieutest, comparing them at different
network sizes with observed Internet topologies. In Chadite introduce a new metric for tuning the
parameters of topology models in order to be comparable $erobd datasets from different measure-
ment infrastructures. | also study the evolution of the imé¢ in Chapter 5, analysing the effects of

measurement biases on our understanding of the Interrabtpp
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Chapter 3

Understanding Internet AS Topology M odels

Many models have been proposed for generating Internetndntous System (AS) topologies, most of
which make structural assumptions about the AS graph. énctiépter | compare topologies generated
from several different models against a set of measured pddgies. In contrast to past work, | avoid
making assumptions about which topological propertiesnapertant for characterising the AS topology
by using a large set of topological metrics in the analysis.

In this chapter | show that current topology generatorstéatapture the complexity of the local
interconnection structure between ASes, despite matateggee-based properties of the AS topology
reasonably well. Using a collection of BGP topologies fromnymeasurement locations, | also analyse
the reference datasets. | observe that adding more measutrkroations significantly affects, especially
in the core, local structure properties such as clustenitgrende centrality while not notably affecting
degree-related metrics. The failure of topology genesatious stems from an underestimation of the

importance of the complexity of connectivity in the core sad by inappropriate use of BGP data.

3.1 Introduction

For many years, researchers have modeled the Internet@némmous System (AS) topolgbyusing
graphs obtained via various measurement techniques siBBRsouting tables [Hal97, RLHO6b] and
traceroute maps [HPWMD2]. The AS topology is an abstraction of the Internet comiynased to analyse
its characteristics such as size and connectivity pattentsto simulate the effects and performance of
new protocols.

Figurd 3.1 illustrates the relationship between the rearhet topology, measurements of it and the
topology generation models which are discussed in thistehapbservations of the AS topology suffer
from two problems: a given set of observation points has bmiiged visibility of the topology, and each
observation technique suffers from measurement artifaethis chapter | treat observations from BGP
and traceroute as samples of reality, accepting that thiégrftom biases and reveal different partial
truths about the properties of the Internet.

At the same time, the models which underlie topology genesanhake simplifying assumptions

about the topology [BT02, MKFV06, Zho06] based on prior aliaBons. At present, the main widely-

INote that the AS topology does not represent the data-ptgrdagy. Many organisations are permanently connectectio th

providers, sharing an AS number [SBCC98]. Alternately, ajanisation may use many AS numbers for controlling routing.
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Internet AS-level topology

Observed topologies: Synthetic generators:
* Chinese * Waxman

N s

* RouteViews Models *GLP

* UCLA © Inet

N * PFP

Figure 3.1: Internet topology generation

held assumptions are that the AS topology has a hierarcsticaiture and its node-degree distribution
obeys a power-law. Note that correct reproduction of theginidical structure can be achieved simply by
following degree-related distributions [TG02], although both the node degree distribution and the join
degree distribution must be reproduced [MKJFE]. Thus, by comparing different observed topologies
with different levels of incompleteness, with topologiemngrated from different models, | learn about
the limitations of particular assumptions about the Iné€snAS topology. The direction of these biases
and limitations gives us insight into the actual propertiethe AS topology.

In this chapter | show that current topology generatorsuwrapthe node degree distributions quite
well, but fail to account either for the complex local intenmection structure between ASes, or the
highly meshed structure of the core AS topology. Such fagduran affect the performance of protocols
and applications when simulated using synthetic topokdier example a routing protocol can demon-
strate different convergence times on a random graph whempaed to a graph with high number of
alternative paths between nodes.

Different metrics are considered important by differepttiogy generatorion models, so comparing
topologies from different generators requires taking abnperspective. A key principle underlying this
work is to be agnostic about the topological properties efititernet. To this end | use many topological
metrics, hoping to cover a large enough set of propertidsatrtie AS topology to reveal as many biases
in observations as possible. | do not claim that the set ofiosetised captures all important aspects of
the AS topology. However, using such an extensive set oflégip@al metrics allows one to observe
even subtle differences between synthetic topologies badroed ones. Also, | use statistical measures
for comparing distributions of some metrics, allowing ustectively compare the similarity of two
topologies.

The primary purpose of topology generators is to proveddistic topologies for simulation, where
this means that their properties should be as close as possithose of the real AS topology. This is
typically tested by comparison with measured topologidsctvsuffer from the biases discussed above.

A further problem is that the true topology is itself dynamitcchanges due to routing dynamics, mis-
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configuration [FBO5], and the long-term evolution of theelmtet. This results in problems for BGP-
based observations, as well as traceroute-based obses/at-or example, traceroute can report AS
paths hops that do not map to a unique AS number [MR\/\HOIB]NS, alongside comparison among
generators based on different underlying assumptiongjtrast the results with measurements made at
different times using different techniques and observgpioints.

In summary, the measurements suggest that using addiB@sRlpeers for collecting connectivity
information greatly affect important characteristicstsas power laws and measures of centrality, while
having little affect on basic degree-related propertidsis Buggests that to understand the nature of the
Internet topology, one should only use rich datasets whagtiuze a large portion of peering links.

The key contributions of this chapter are to characteriseRisting generators across a large set of
metrics, and to compare them to numerous available meadatadets. | show thgower lawsare not
strictly adhered to in today’s Internet AS topology. My riésalso indicate that the AS topology is best
modeled by matching node degree distributions while takitgconsideration the meshed core formed
by the many peering links between ASes. | also give insigtat ihe effect of varying the number of
observation points for capturing the AS topology.

The rest of this chapter is structured as follows. In Se@i@nl contrast past work with my analysis.
| revisit current AS topology models and describe their ulyiley assumptions in Section 3.3, present a
collection of observed AS topologies collected using défé methodologies from various locations in
the world in Sectioh 3.4. In Sectibn 3.5, | describe commaisigd metrics for topology characterisation.
In Section 3.6 | discuss the appropriate statistical measofrsimilarity and then in Section 3.7, | present
the results of the analysis. | discover that synthetic togiels and observed topologies record biases due
to the nature of the data collection processes. Hence | @braduintensive analysis of the topology
dataset collected from a large number of measurement tosatind analyse the impact of increasing
the number of BGP peering vantage points. Alongside a dgugmmi of my methodology, the results
in Section 3.8 show that the importance of preferentialchttzent has weakened while peering links,
underestimated in the past, are now far more critical. Ad alconcluding, Section 3.9 discusses

potential improvements in the field.

3.2 Redated Work

Zeguraet al.[ZCD97] analyse topologies of 100 nodes generated usingnamdom, Waxman [Wax88],
exponential and several locality based models of topolagi ss Transit-Stub. They use metrics such
as average node degree, network diameter, number of pathedsenodes. They find that pure random
graphs produce topologies that represent expected piepsuich as locality very poorly and so | exclude
pure random graphs from the comparisons. They suggesthidransit-Stub method should be used
due to both its efficiency and the realistic average nodeedeits topologies achieve.

Faloutsost al.[FFF99] state that three specific properties of the AS-Ibvernet topology are well

described by power laws: rank exponent, out-degree expameheigen exponent (graph eigenvalues).

2This effect is also seen in CAIDA's Skitter dataset, wheraimher of possible AS numbers are recorded for a router on the

traceroute path.
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This work parallelled development of many models based amepdaws, such as the Baradi and
Albert [BA99] model, based on incremental growth by additdd new nodes and preferential attachment
of new nodes to existing well-connected nodes.

Later, Bu and Towsley [BT02] used the empirical complementhastribution (ECD) rather than
standard histograms to generate new nodes. They showedrihbility in graphs from different gener-
ators using the same heuristics using characteristic patjth and clustering coefficients.

Tangmunarunkiet al. [TGJ"02] provide a first point of comparison of the underlying cwter-
istics of degree-based models against structural modelsmajar conclusion is that the degree-based
model, in its simplest form, performs better than randomtarcsural models at representing all the
studied parameters. They compare three categories of rgederators: the Waxman model of random
graphs, the Tiers [Doa96] and Transit-Stub structural fsded the simplest degree based generator,
called the power-law random graph (PLRG) [ACL0OO0]. They camgpunder three metrics: expansion,
resilience and distortion. It was found that the PLRG perfobetter than the random or structural mod-
els in reproducing these parameters. Based on their defiedtics they conclude that the hierarchy
present in the measured networks is stricter than in ddgaeed generators. However, they leave many
questions unanswered about the accuracy of degree-basedtes and the choice of metrics.

Zhou and Mondragon [Zho06] propose models based on sevataeématical features, such as rich-
club, interactive growth and betweenness centrality. TisyAS data from the CAIDA Skitter project
to examine the JDD and rich-club connectivity. They show thiathese data, rich-club connectivity and
the JDD are closely linked for a network with a given degrestrittiution.

In this chapter, | consider many more recent degree-bassergiers using a larger set of graph-
theoric metrics to give better insight into correct undamngling of the AS topology. | make a detailed
comparison with a range of different Internet AS topologiesational and international level obtained
from traceroute and BGP data. When choosing the metrics, $idered both metrics used by the
topology generator designers and those used more widelaphgheory. A particular point to note is
that | chose not to use the three metrics of Tangmunaretlat for two reasons. First, computation of
both resilience and distortion are NP-complete, requitiag of heuristics. In contrast, all the metrics
used in this chapter are straightforward to compute diyec®econd, although accurate reproduction
of degree-based metrics is well-supported by current tapotjenerators, my hypothesis was that local
interconnectivity was poorly supported, and so | chose éosgveral metrics that focus on exactly this,

e.g., assortativity, clustering, and centrality.

3.3 ASTopology Models

There are many models available that claim to describe ttgeriet AS topology. Several of these are
embodied in tools built by the community for generating dited topologies. In this section | describe
the particular models whose output is compared in this@eclihe first are produced from the Waxman
model [Wax88], derived from the Eod-Renyi random graphs [ER85], where the probability of two
nodes being connected is proportional to the Euclideaamtist between them. The second come from

the Barabasi and Albert (BA) [BA99] model, following measorents of various power laws in degree
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distributions and rank exponents by Faloutsbsal. [FFF99]. These incorporate common beliefs about
preferential attachment and incremental growth. The tAradfrom the Generalised Linear Preference
model [BT02] which additionally model clustering coeffiots. Finally, Inet [WJ02] and PFP [Zho06]
focus on alternative characteristics of AS topology: thistexce of a meshed core, and the phenomenon
of preferential attachment respectively. Each model fesumly on particular metrics and parameters,

and has only been compared with selected AS topology olismmsa

3.4 ASTopology Observations

The Internet AS topology can be inferred from various sosiifedata such as BGP routing or tracer-
oute [Mal93] at the network (IP) layer. Using just BGP rogtidata suffers from incompleteness, no
matter how many vantage points are used to collect obsengtiln particular, even if BGP updates
are collected from multiple vantage points and combinedhym@eering and sibling relationships are
not observed [FMM 04]. Conversely, traceroute data misses alternative [sitice routers may have
multiple interfaces which are not easily identified, andtirubp paths may also be hidden by traffic tun-
nelled via Multi-Protocol Label Switching (MPLS) pathway€ombining these data sources does not
solve all problems since mapping traceroute data to AS nwsribeot always accurate [MRWKO03]. In
this chapter | attempt to avoid these problems by compagagnat many measurement-derived datasets

giving a diverse spatial and temporal comparison acrofsrdift continents and years of measurement.

3.4.1 Chinese AStopology

The first dataset is a traceroute measurement of the Chiré§®pology collected from servers within
China in May 2005. It reports 84 ASes, representing a smdlgsaph of the Internet. Zhost
al. [2ZZ07] maintain that the Chinese AS graph presents all thgontopology characteristics of the
global AS graph. The presence of this dataset enables usripare the AS topology models at smaller
scales. Further, this dataset is believed to be nearly aample., it contains very little measurement

bias and accurately represents the true AS topology foréggon of the Internet.

3.4.2 Skitter

The second dataset comes from the CAIDA Skitter prléje@AlDA computes the adjacency matrix of
the AS topology from the daily Skitter measurements. Theseohtained by running traceroutes over
a large range of IP addresses and mapping the prefixes to ABangrasing RouteViews BGP data.
Since the Skitter data represents paths that have actuely tbaversed by packets to their destinations,
rather than paths calculated and propagated by BGP sydtesmaore likely to faithfully represent the
IP topology than the BGP data alone. For this study, | usedgthphs for March 2004 as used by
Mahadevaret al.[MKF +06]. This dataset reports 9,204 unique ASes across thegtter

3.4.3 RouteViews

The third dataset | use is derived from the RouteViews BGR.dghis is collected both as static snap-

shots of the BGP routing tables and dynamic BGP data in the fidfrBGP message dumps (updates

Shttp: //www. cai da. or g/ t ool s/ measur ement / Skitter/
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and withdrawals). | have used the topologies provided by adaliaret al. [MKF T06] from two types
of BGP data from March 2004: one from the static BGP tablesam&dfrom the BGP updates. In both
cases, they filter AS-sets and private ASes and merge theilglgdaphs into one. This dataset reports

17,446 unique ASes acrosk} vantage points in the Internet.
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The fourth dataset comes from the Internet topology ccibt@tmaintained by Oliveirat al. [0ZZ07].
These topologies are updated daily using the data sourchsasiBGP routing tables and updates from
RouteViews, RIP[E Abilen& and LookingGlass servers. Each node and link is annotatibdivg times

it was first and last observed. | use a snapshot of this ddt@asetNovember 2007 computed using a
time window on the last-seen timestamps to discard ASeshniéwe not been seen for more than 6

months. The resulting dataset reports 28,899 unique ASes.

3.5 Topology Characterisation

In this section | provide a large set of topological metri@aken individually, those metrics do not
define adistancein graph space, i.e. how two graphs look like each other. Wewence combined,
they can identify the failures of topology models and hightithe potentials for improvements. The
topological metrics are computed for the synthetic and onegltopologies, modeled as graphs with
a collection of nodes and undirected links that connectspafimodes G = (N, £) with N = |V
nodes and/ = |£] links. In the remainder of this thesis, | consider the neksdormed by the largest
connected component. Consequently, the computation dabff@ogical metrics is restricted to those

largest connected components of the inferred topologies.

3.5.1 Degree

The degree: of a node is the number of links adjacent to it. Therage node degreeis defined as

k = 2M/N. Thenode degree distributio®(k) is the probability that a randomly selected node has
a given degreé: and is defined a®(k) = n(k)/N, wheren(k) is the number of nodes of degrée
Thejoint degree distributiofJDD) P(k, k') is the probability that a randomly selected pair of nodes has
degrees: andk’. A summary measure of the joint degree distribution is treraye neighbour degree
of nodes with a given degrée k., (k) = ZZ:”:“{‘ k' P(k'|k). The maximum possiblg,, (k) value is

N —1 for a maximally connected network, i.e. a complete grapmddel represent JDD by normalised
valuesk,,, (k)/(N — 1) [MKF*086].

3.5.2 Assortativity

Assortativity is a measure of the likelihood of connectidmodes of similar degrees [New02]. This
is usually expressed by means of the assortativity coeafticieassortative networks have> 0 (dis-
assortative have < 0 respectively) and tend to have nodes that are connecteddesnaith similar

(dissimilar respectively) degree.

4http://irl.cs.ucla.edu/topol ogy/
Shttp://ww ripe.net/db/irr.htm/
éntt p:// abil ene.internet2. edu/
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3.5.3 Clustering

Local clusteringC' (k) is the ratio ofrn,,,, (k), the average number of links over all the connected com-
ponents between the neighbourskeflegree nodes, and the maximum possible number of such links
C(k) = 2mn,(k)/(k(k — 1)). I use distribution of clustering coefficients which is the proportion of
triangles (nodes with two connected neighbours) amongalhected node triplets in the entire network

which gives the same weight to each triangle in the netwodspective of degree of the nodes.

354 Rich-Club

The rich club coefficient(p/n) is the ratio of the number of links in the component inducedhzyp
largest-degree nodes to the maximum possible Ip{ks— 1)/2 wherep = 1...n are the firstp nodes

ordered by their non-increasing degrees in a network ofisizedes [CFSV06].

3.5.5 Shortest path length distribution

The shortest path length distributigf(i), as commonly computed using Dijkstra’s algorithm, is the
probability distribution of two nodes being at minimum distes hops from each other. From the
shortest path length distribution, the average node distama connected network is derived As=
ZZ":‘“IX hS(h), whereh,,. is the the shortest paths between any pair of nodes with #egegt number

of hops.h.x is also referred to as the diameter of a network.

3.5.6 Centrality measures

Betweenness centrality is a measure of the number of shqé#iss passing through a node or link,
a centrality measure of a node or link within a network. Thémeenness for a node B(v) =

Z‘g#)#ev st (v) whereo, is the number of shortest paths fronto ¢ and o (v) is the number of

Ost

shortest paths fror to ¢ that pass through a nodefHKYH02]. The average node betweenndsss

the average value of the node betweenness over all fode$"._, B(v).

Closeness is another measure of the centrality of a nodenvatimetwork and is defined as the
average length of the shortest paths to and from all the oibges in a graph. The closenes®) for a
nodev is the reciprocal of the sum of shortest paths to all othestrable nodes (connected component)
V in a networkS(v) = ﬁ A high closeness of a node is indicative of it having shoddgsic

distance to other nodes [Sab66].

3.5.7 Coreness

The [-core of a network is the maximal component in which each rtaateat least degrde In other

words, thel-core is defined as the component of a network obtained bys®ely removing all nodes
of degree less thah A node has corenessf it belongs to the-core but not to thél + 1)-core. Hence,
thel-core layer is the collection of all nodes having corerie§$e core of a network is thiecore such
that the(l + 1)-core is empty [BBGWO04].
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3.5.8 Topcliquesize
A clique in a network is a set of pairwise adjacent nodes, &eomponent which is a complete graph.
The top clique size, also known as the graph cligue numb#rgisumber of nodes in the largest clique

in a network|[Wo097].

3.59 Spectrum
The spectrum is the set of eigenvalues of the adjacencyxwdtai graph. Recently, it has been observed
that eigenvalues are closely related to almost all critiegvork characteristics [Chu97]. For example,
Tangmunarunkiet al.[TGJT02] classified network resilience as a measure of networkstoless subject
to link failures, resulting in a minimum balanced cut sizeaafietwork. Spectral graph theory enables
studying network partitioning problem using eigenvalueb97].

In the graph theory literature, one usually considers thacaticy or the Laplacian matrix [Mer95,
CDGT88], which employ different normalisation and thereftead to different spectra. In this chapter
| focus on the spectrum of theormalised Laplacian matrigChu97], where all eigenvalues lie between

0 and 2, allowing easy comparison of networks of differergsi

3.6 Measuresof Similarity

To compare the distributions of various metrics | use thiefdhg statistics to determine how close two
distributions are to each other. | perform the calculatimn®ach synthetic topology instance separately
and compare them to observed topologies of the same size.thaitdistances are relative to the metric
and the topology size, and so the distances of one metric fmrticular sized topology cannot be
compared either to distances of another metric for the s@rad sopology, or to distances for the same

metric for different sized topologies.

3.6.1 Kolmogorov-Smirnov (KS) distance

Given samples of two random variable§;, and X, the KS distance is the maximum empirical distri-

bution difference defined as:
Dma:z: = Sup|Fn1 (l‘) - Fnz ($)|

wheresup S is the supremum of s&t and F;,, (x) is the empirical distribution oX; (i = 1, 2):
Fo (2) = - i Ix, <, fori=1,2
j=1

wheren; andn, are the number of samples frafy and X, and/x; is the indicator function.

The closely related 2-sample KS test tests the null hypathiest X; and X, share a (truedommon
distribution based on the KS distand®,f.,.). However, it is misleading to use this test to indicate if
two distributions aresimilar, as it is highly sensitive to large sample sizes, and alsbagpdarticular:,
andx, compared here are not strictly independent variables siacexample, nodes with high degrees
tend to occur together. Instedd,, ., alone is used in this chapter to indicate thkative closeness of

distributions.
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3.6.2 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is also proposed asudiable metri@ for comparing network

distributions. The KL divergence between two discrete eandariablesX; and Xs is defined as:

Dip(X1,X2) =), P(X1 = Xi)loylljg;ij)gg

whereP(z) is the probability ofz.

The KL divergence takes account of the difference betweerdistributions at all points rather
than simply at the maximum point. In this chapter, Gaussiaméd density estimation using fixed
bins centred around data in the observed data set were fouperfform well for as a non-parametric
way of estimating the probability density function, altigbuother methods do exist. There are other
distance estimation measures also available such as Garesgtatistic, quadratic form distance and
match distance which we do not use in this chapter, as mostewf trely on the assumption of the

underlying sample’s distribution.

3.7 Resaultsand Discussion

Most past comparisons of topology generators have beetetinid the average node degree, the node
degree distribution and the joint degree distribution. Tatonale for choosing these metrics is that
if those properties are closely reproduced, then the valueh®r metrics will also be closely repro-
duced [MKFV06].

In this section | show that current topology generators &te & match first and second order
properties well, i.e., average node degree and node deggeibtion, but fail to match many other

topological metrics. | also discuss the importance of wagimetrics in the analysis.

3.7.1 Methodology

For each generator | specify the required number of nodeggandrate 10 topologies of that size in
order to provide confidence intervals for the metrics. | tbempute the values of the metrics introduced
in Section 3.5 for the generated and observed AS topolotfiésimportant to note that all topologies
studied in this thesis are undirected. Using undirectegtggrevents us from considering peering
policies and provider-customer relationships. This isratation that is forced upon us by the design of
the generators as they do not take such policies into account

Each topology generator uses several parameters, all chvebiuld be tuned to best fit a particular
size topology, e.g., the Skitter dataset. However, thegetao problems with attempting this tuning.
First, doing so requires selection of an appropriate gosshoé-fit measure of which there are many,
e.g., as noted in Section 8.5. Second, in any case tuninggéees to a particular dataset is of question-
able merit since, as | argue in Section 3.1, each datasetjsagample of reality with multiple biases
and inaccuracies. Nonetheless, | made a preliminary attatrtpning in this way for node degree and
joint degree distribution in the Waxman model, but it proeddittle value with insignificant impact on

subsequent results. Consequently, | chose not to purssiéutitiher in this chapter and simply use the

"The KL divergence is not strictly a metric @& 1, (X1, X2) # Dxr. (X2, X1)
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Table 3.1: Comparison of AS level dataset with synthetiologies.

Topology Links Avg. deg. Max. Top clique Max. Max. Assort. Clust. Max.
degree size betweenness coreness| coef. coef. closeness
Chinese(n=84) 211 5.02 38 2 1,324 5 -0.32 0.188 <0.01
Waxman 252 6 18 2 404 4 0.039 0.117 0.506
BA 165 3.93 19 3 1,096 2 -0.096 0.073 0.515
GLP 151 3.6 44 3 2,391 5 -0.257 0.119 0.643
PFP 250 5.95 37 10 849 9 -0.38 0.309 0.638
Skitter(n=9204) 28,959 6.3 2,070 16 10,210,533 28 -0.23 0.026 <0.01
Waxman 27,612 6 33 0 474,673 4 0.205 0.002 0.264
BA 18,405 4 190 0 5,918,226 2 -0.05 0.001 0.315
GLP 16,744 3.64 2,411 2 34,853,544 5 -0.089 0.003 0.496
INET 18,504 4.02 1,683 3 15,037,631 7 -0.195 0.004 0.514
PFP 27,611 6 3,000 16 13,355,194 24 -0.244 0.012 0.588
RouteViews(n=17446) 40,805 4.7 2,498 9 30,171,051 28 -0.19 0.02 <0.01
Waxman 52,336 6 35 0 1,185,687 4 0.205 0.001 0.25
BA 34,889 4 392 3 33,178,669 2 -0.04 0.001 0.33
GLP 31,391 3.6 4,226 4 127,547,256 6 -0.08 0.002 0.48
INET 43,343 497 2,828 6 31,267,607 14 -0.258 0.006 0.522
PFP 52,338 6 4,593 23 39,037,735 30 -0.252 0.009 0.564
UCLA(n=28899) 116,275 8.05 4,393 10 76,882,795 73 -0.165 0.05 0.32
Waxman 86,697 6 40 0 3,384,114 4 0.213 | <0.001 0.246
BA 57,795 4 347 0 52,023,288 2 -003 <0.001 0.3
GLP 52,456 3.63 7391 2 371,651,147 6 -0.08 <0.001 0.486
INET 91,052 6.3 6,537 12 88,052,316 38 -0.3 0.01 0.55
PFP 86,696 6 8076 26 123,490,676 40 -0.218 0.01 0.57

default values embedded within each generator. This quorets to the way in which such generators

are generally used. | address the problem of parameter isption in Chapter 4.

3.7.2 Topological metrics

In this section | discuss the results for each metric seplgraind analyse the reasons for differences
between the observed and the generated topologies.

Tabl€ 3.1 displays the values of various metrics (columas)muted for different topologies (rows).
Blocks of rows correspond to a single observed topology aedyenerated topologies with the same
number of nodes as the observed topology. Bold numbersseqpreearest match of a metric value
to that for the relevant observed topology. Rows in eachkbéoe ordered with the observed topology
first followed by the generated topologies from oldest to estwgenerator. Each metric’s value is the
calculated value for the observed topology, and the aveshdke 10 synthetic topologies for each
generator. Note that Inet requires the number of nodes tadmtay than 3037 and hence cannot be
compared to the Chinese topology.

| observe a small but measurable improvement from older teengenerators in how well they
match some measures such as maximum degree, maximum crangsssortativity coefficient. This
suggests that topology generators have been successiymgied to better match some properties of the
observed topologies. However, the number of links in theegegied topologies may differ considerably
from the observed topology due to the assumptions made lyetherators.

Waxman and BA models fail to capture the maximum degree,dpelique size, maximum be-
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Figure 3.2: Comparison of node degree CCDFs.

tweenness and coreness. Those two generators are toassicriplthe assumptions they make about the
connectivity of the graphs to generate realistic AS topi@eg\Waxman relies on a random graph model
which cannot capture the clique that is known to exist beiwiss-1 ASes, nor the heavy tail of the node
degree distribution. BA tries to reproduce the power lawenddgrees with its preferential attachment
model but fails to reach the maximum node degree by far adyitadds edges between new nodes and
not between existing ones. Hence neither of these two madalsde to create the highly-connected core
of tier-1 ASes.

PFP and Inet manage to come closer to the values of the mefrihe observed topologies. For
Inet this is due to the fact that nodes are fully meshed (attie), whereas for PFP it is its rich-club
connectivity model that allows it to add edges between iegstodes. Based on the observations, |

conclude that the core of the Internet is tending towarddla fiteshed network.

Node degree distribution

Figurel 3.2 shows the CCDF of the node degree for all topotogiea log-log scale. We observe that
the Chinese topology does not exhibit power law scaling duéstlimited size, whereas all the larger
AS topologies do exhibit power law scaling of node degreé® Waxman generator completely fails to
capture this behaviour as it is based on a random-graph mrmdekcent topology generators do capture
this power law behaviour of the node degrees quite well. tndhse of the RouteViews and UCLA
datasets, Inet and PFP outperform other topology gensrattwte that, contrary to RouteViews where
the degree distribution displays strict power law scalthg,UCLA dataset has a slightly concave shape.

In summary, more recent generation models reproduce nagtealdistribution well, as expected since
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Figure 3.3: Comparison of average neighbour connectiviiyDEs.

most focus has been on this metric.

Average neighbour connectivity

Neighbour connectivity has been far less studied than nedeed, although it is very important to match
local interconnection among a node’s neighbours when defmiag the topological structure of the In-
ternet [MKF'06]. Figure 3.3 shows the CCDF of the average neighbour dedoe all topologies. We
observe that Waxman, BA and GLP all underestimate the lotatdonnection structures around nodes
due to their simplistic way of modelling node interconnent. Note that BA and GLP typically gen-
erate graphs with far fewer links than the observed topekgo they underestimate neighbour degrees
on average. For the larger topologies, i.e., RouteViewsddA, PFP and Inet typically overestimate
the neighbour connectivity, as they both place a large numbiater-As links at the core. In addition,
the shapes of the neighbour connectivity CCDF differ forldrger topologies: Inet and PFP have two
regimes, one for high-degree nodes, and another for lowedegodes. On the other hand, observed
topologies have a smooth region for the high-degree noddewkd by a rather stable region which
caused by similar degree nodes. We observe that the higbgitalnodes in the UCLA topology have
very high values of neighbour connectivity. This is cormigtwith the belief that tier-1 providers are
densely meshed. In summary, existing topology generatrsotireproduce local interconnection be-
haviour well, but it is an important aspect of today’s AS tlggy and may significantly alter the quality

of results from simulations relying on the AS topology.
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Figure 3.4: Comparison of clustering coefficients.

Clustering coefficients

Like the average neighbour connectivity, the clusteringfficient gives information about local connec-
tivity of the nodes. It is important to reproduce clusterahge to its impact on the local robustness in
the graph: nodes with higher local clustering have increpkical path diversity [MKF 06]. Clustering
properties of a graph can directly affect simulation on gerfance of multipath and resilience of overlay
routing.

Figure 3.4 displays the clustering coefficients of all nddehe topologies. Error bars indica#g%
confidence intervals around the mean values ofithe®pologies from each generator. We observe that
Waxman and BA significantly underestimate clustering, Whecagain consistent with their simplistic
way of connecting nodes. GLP approximates the clusteringeChinese topology quite well but fails
in the case of the larger observed topologies. PFP and Ipaireaclustering reasonably well compared
to the other topology generators. However, Inet does nobdee the tail of the distribution well due
to the randomness factor in its model for edge addition oheeore is fully meshed.

We also observe that for medium degree nodes, clusterirffiaierts display rather high variability
which increases with the size of the observed topologiess Bé&haviour seems to be a property of the
observed AS topology of the Internet (Section]3.8), and ust an artifact of the incompleteness of
observed AS topologies.

In summary, all topology generators fail to properly cagtile clustering of the AS topology. Gen-
erators typically underestimate the local connectivitylydnet for the UCLA topology overestimates

connectivity of low-degree nodes while underestimatesritiigh-degree nodes. The current topology
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Figure 3.5: Comparison of rich-club connectivity coeffitie

generators do not seem to have a proper model of local nodectivity.

Rich-club connectivity

Rich-club connectivity gives information about how wetirmected among themselves are the nodes of
high degree. Figure 3.5 makes it clear that the cores of tkergbd topologies are very close to a full
mesh, with values close to 1 on the left of the graphs. The éars again indicate th#% confidence
intervals around the mean values of the different instantt®e generated topologies. Waxman and BA
perform poorly for this measure in general. Only PFP anddeekrate topologies with a dense enough
core compared to the observed topologies. However, PFRstates the rich-club connectivity of the
Chinese and RouteViews topologies which is consistentthélemphasis that PFP gives to the rich-club
connectivity in its design. Inet performs well due to its drapis on a highly connected core, especially
for larger topologies where data has been collected acrakipta peering points.

In summary, most topology generators underestimate thertapce of rich-club connectivity of
the AS topology. PFP is the only topology generator that exsjsles the importance of the dense core

of the AS topology.

Shortest path distributions

Figurel 3.6 displays the distributions of shortest path flendpart from BA, most topology generators
approximate the shortest path length distribution of thin€e graph quite well due to its small size
and thus limited scope for error. For the other topologids? Rnd Inet generally underestimate the
path length distribution while Waxman and BA overestimdarticular generators seem to capture the

path length distribution for particular topologies wellFFPP matches that for Skitter well and GLP is
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Figure 3.6: Comparison of shortest path distributions (benof hops).

close for Routeviews. Inet and PFP both do a better job for N@ian for RouteViews but both still
underestimate the distribution.
In summary, shortest path length is not well captured by applbgy generator. Given the poor

match of generators on local connectivity metrics, it issufrising.

Spectrum

The spectrum of the normalised Laplacian matrix is a poweofl for characterising properties of a
graph. If two large graphs have the same spectrum, they haw&aime topological structure.

Figure 3.7 displays the CDF of the eigenvalues computed frenmormalised Laplacian matrix of
each topology.

As with other topological metrics, Inet and PFP perform bdste difference between the topol-
ogy generators is most easily observed around the eigewalgqual to 1. These eigenvalues play a
special role as they indicate repeated duplications ofltgpcal patterns within the network. By du-
plication, | mean different nodes having the same set oftisEgrs giving their induced subgraphs the
same structure. Through repeated duplication, one catecnefworks with eigenvalue 1 of very high
multiplicity [BJO7]. In addition, we observe that the sgechave a high degree of symmetry around
the eigenvalue 1. If a network is bipatrtite, i.e., it corsist two connected parts with no links between
nodes of the same part, then its spectrum will be symmetaeitab. Consequently, the observed AS
topologies appear close in spectral terms to a bipartitphgranother phenomenon that arises through
repeated structure duplication. In the AS topology many ASlgare a similar set of upstream ASes

without being directly connected to each other. Inet and &€Rjood examples of topology generators
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Figure 3.7: Comparison of cumulative distributions of eiggdues (from normalised laplacian).

where this strategy is implemented. Note that the simpléepeatial attachment model of BA does not
reproduce the eigenvalues around 1 very well. In the simplar®del, new nodes connect randomly
to a given number of existing nodes, favouring connectiankigh degree nodes. In the Internet in
contrast, although small ASes may tend to connect to largeregim providers, they might not connect
preferentially to the largest ones, connecting insteadtimnal or regional providers. In summary, these
results provide further evidence that the interconnectioncture of the AS topology is more complex

than current models assume.

3.7.3 Measuresof similarity

In Section 3.7.2, | presented visual evidence for the (uiis)arity both among topology generators and
between generators and observed topologies. In this sdqgpicesent a more objective approach, based
on the statistical distance measures described in Secifortt¥ Kolmogorov-Smirnov (KS) distance
and the Kullback-Leibler (KL) divergence.

In the following tables, the values of the distances and thrdard deviations are shown for the
topological metrics with distributions: node degree, hbigur connectivity, clustering coefficient, and
rich-club coefficient. | provide the average values of ttagistical distances and the standard deviation
around the average over the topologies generated by each topology generator. When natibevis
shown, it was< 0.01.

Both statistical measures globally confirm the visual icsipa of Section 3.7.2: more recent topol-

ogy generators produce topologies whose properties asercto the observed topologies. Table 3.2
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Table 3.2: Statistical distances for Chinese vs. synthegiologies.

Node degree Neighbour connectivity
KS KL KS KL
distance divergence distance divergence

Waxman | 0.27+0.07 0.61+0.1 0.75+0.03 | 27.4+4.1
BA 0.12+0.03 3.5+1.8 0.74+0.07 | 18.4+8.1
GLP 0.24£0.08 | 0.64£0.31 | 0.41+0.08 | 1.18+0.72
PFP 0.17£0.04 | 1.45£0.48 | 0.51£0.07 | 0.85+0.25

Clus. Coefficients Rich-Club Coefficients
KS KL KS KL
distance divergence distance divergence
Waxman | 0.61+0.03 | 22.31+4.5 | 0.22+3.5 4.2+2.8
BA 0.65+0.1 13.5+5.2 | 0.28+0.01 | 2.78+1.4

GLP 0.31+£0.05 1.08+.6 0.26£0.04 | 0.34t£0.19
PFP 0.32£0.11 | 0.34+0.14 | 0.12+0.01 | 0.11+0.02

Table 3.3: Statistical distances for Skitter vs. synthifaplogies.

Node degree Neighbour connectivity
KS KL KS KL
distance divergence| distance divergence
Waxman | 0.54+0.04 2.27+0.15 0.99+0.01 | 44.48+0.08
BA 0.41£0.02 17.1+2.6 0.99+0.01 | 44.7+0.25
GLP 0.314+-0.06 17.42+4.1 0.31 2.16
Inet 0.07540.02 413 0.40+0.02 1.82+0.31
PFP 0.13+0.03 18.2+2.31 0.13+0.05 18.2+2.21
Clust. Coefficients Rich-Club Coefficients
KS KL KS KL
distance divergence| distance divergence
Waxman | 0.9140.02 40.62£1.2 0.240.05 6.75£1.3
BA 0.9+0.05 44.62+0.12 | 0.37+0.09 | 7.34+1.21
GLP 0.740.02 19.12+1.8 0.3+0.01 4.34+.45
INET 0.74+£0.01 11.34£1.23 0.25 3.82+0.2
PFP 0.094+0.02 0.5940.19 0.03 0.91+0.14

provides the KS and KL results for topology generators agdire Chinese topology for the four chosen
topological metrics. Topology generators do not show imeneent for the node degree. However, for
the other three metrics successive topology generatorsaoisnprovement. Overall, the PFP and GLP
model both have small relative distances to the Chineseselatdue to the small size of the dataset, the

presence of high degree nodes as core ASes and fewer intepi#@ctions.

Table_3.3 displays the results of the statistical measwresekults against the Skitter topology.
We observe a particularly good match of the node degreehiistn by Inet. PFP outperforms all
other topology generators for the clustering coefficiemid the rich-club coefficients, consistent with

the visual inspection.

Statistical distances for RouteViews (Table|3.4) showliettagain better matches the node degree
distribution. GLP and Inet both perform better than otheregators for neighbour connectivity. PFP
performs better than the others on the clustering coeffigi€dn the other hand, none of the generators

manages to obtain a close distance for the rich-club coeffisi On Figure 315, Inet seemed to be close to
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Table 3.4: Statistical distances for RouteViews vs. syiithiepologies.

Node degree Neighbour connectivity
KS KL KS KL
distance divergence| distance divergence
Waxman | 0.5+0.03 | 50.774-0.01 | 0.94+0.01 | 42.68+0.25
BA 0.2£0.02 | 50.74£0.01 | 0.94+0.01 | 42.91+0.34
GLP 0.18+0.03 | 50.73t0.01 | 0.12+0.02 0.140.02
Inet 0.07 9.92 0.23+0.02 0.2+0.01
PFP 0.11+0.03 50.7 0.62+0.02 1.25+0.07
Clust. Coefficients Rich-Club Coefficients
KS KL KS KL
distance divergence| distance divergence
Waxman | 0.83+0.05 39.4+1.2 0.97 42.23+0.43
BA 0.96+0.01 | 44.08+0.21 0.97 43.070.6
GLP 0.58+0.02 | 12.9+0.65 0.96 40.7£0.9
INET 0.39+0.01 1.35+0.2 0.93 34.18+1.1
PFP 0.324-0.06 0.214+0.03 0.92 27.442.45

Table 3.5: Statistical distances for UCLA vs. syntheticiogies.

Node degree Neighbour connectivity
KS KL KS KL
distance divergencg distance divergence
Waxman | 0.52£0.01 | 1.33+0.9 | 0.99+0.01 | 46.311.3
BA 0.174+-0.03 2.15+0.8 0.99+0.01 | 46.42+0.7
GLP 0.184+0.05 2.214+0.7 0.32+0.03 | 0.63+0.04
Inet 0.2+0.02 5.34 0.29+0.01 | 0.41+0.01
PFP 0.12+0.03 | 2.17+0.8 | 0.48+0.05 | 0.83+0.21
Clust. Coefficients Rich-Club Coefficients
KS KL KS KL
distance divergence distance divergence
Waxman | 0.93+0.02 | 44.2+0.34 0.31 14.5+4.32
BA 0.99+0.01 45.42 0.5 14.32£2.3
GLP 0.82+0.01 | 33.32:0.9 | 0.42+0.01 8.9+1.2
INET 0.38+0.01 | 0.53+0.01 0.13 2.851+0.12
PFP 0.38+0.02 | 0.79+0.15 0.16 3.23+:0.4

RouteViews for rich-club coefficients, but this is not sugpd by the statistical distances. The behaviour
for rich-club connectivity is surprising, especially foFP which is highly biased towards reproducing
rich-club connectivity. | believe this is due mainly to thédition of many extra peering links in this
dataset, which was not captured by model designers.

Statistical tests results for UCLA (Table 3.5) reveal a mmmplex picture. For node degrees, no
generator seems to outperform the others, although Inétrpes worst. GLP, Inet and PFP perform
equally well on the neighbour connectivity. For clusteroagfficients and rich-club connectivity, Inet
and PFP perform better than the others.

Visual inspection of Sectian 3.7.2 seemed to suggest thedit saccessive topology generator in-
troduced improvements in their matching of observed ASlmgies. Waxman and BA perform poorly
both in visual inspection and in the statistical distancBse KL divergences clarify the difference of

the two distributions across all the values and hence madrthie effects of local differences at certain
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Table 3.6: Comparison of AS topology datasets from mulfigering points.

Topology | Nodes | Links Avg. deg. Max. Top clique Max. Max. Assort. | Clust. Max.
degree size betweenness coreness| coef. coef. | closeness
1 peer 17,952 | 34,617 3.86 980 4 35,069,182 9 -0.18 0.008 <0.01
10 peers | 27,838 | 64,717 4.65 2,731 7 52,862,315 20 -0.18 | 0.007 <0.01
25 peers | 27,885 | 67,659 4.85 2,808 7 49,798,002 25 -0.19 0.01 <0.01
All peers | 27,924 | 70,064 5.02 3,371 7 70,142,726 30 -0.18 0.01 <0.01

values.

The statistical measures show that apparent visual clesesfetwo distributions does not mean
close distance in distributional terms, due partly to the oflogarithmic scale axes. Improvements in
successive topology generators are not consistent adtasstacs and across all observed topologies.
Nonetheless, most of the time the most recent generatetsama PFP, do outperform the other topology
generators. This indicates that more attention should\@ngin capturing the effects of peering links
in the core and at the edge of the AS topology, as this is thafgignt difference between these two

generators and the older Waxman and BA generators.

3.8 Multiple Vantage Points

The previous section studied in detail how well topologyeyetors capture the properties of observed
AS topologies. In this section, | will argue about why toppl@enerators capture different properties of
observed AS topologies with varying degrees of successhalfiend | examine the impact on the metrics
of the number of vantage points from which BGP data is catiecFor the analysis | used collected BGP
data from over 40 RouteViews peering points, for a periodwiohiths from May 2007. This time period
was chosen to be the same as that used to build the UCLA dataset

Table 3.6 shows the values of the topological metrics theesaay as in Table 31, for AS topologies
obtained from different numbers of observation points. Whbemparing the AS topologies using 1
(average value amongst all peers) and 10 random obseryatints, we see a significant increase in the
number of nodes and links. Hence, one might also expect disagrt difference in the other metrics, and
indeed, the maximum node degree almost triples and the nushbgly-meshed nodes almost doubles.
As a consequence, the size of the core increases as indimathd maximum coreness value. In turn,
the number of shortest paths crossing the core also in@@asadicated by the maximum betweenness.
On the other hand, we see that going from 1 to 10 observationtgslightly decreases the value of
the clustering coefficient. Most probably this is becausia liD observation points we discover more
of the core than the edge of the network, which does not darngito increase the overall value of the
clustering coefficient. With 25 or more observation poitis links on the edge of the network are also
discovered more, contributing to the increase of the vafubeclustering coefficient. This behaviour
is confirmed by a slight decrease of the value of the maximutwdenness from 10 to 25 observation
points.

Preferential attachment models originate in the belief #mall ASes tend to connect to large

upstream ASes, leading to a disassortative network. Agthdbe value of the assortativity coefficient
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Figure 3.8: Comparison of effects of the number of peeringtso
Recent work [RTMO08] estimates that more than 700 obsemaitioay be needed in order to discover
nearly all missing links. However even this figure is an eaterand may not able to find the ground

truth.

is negative for the AS topology, it is not affected by an img® in the number of observation points.
The links added by increasing the number of observationtpas®@em to be neutral for the assortativity
of the AS topology. One implication is that the links that dendiscovered by using more observation
points do not preferentially interconnect ASes of any patéir degree. | conjecture that this is due to
the type of peering relationships that are missed. If nodeads give an indication of the likely type of

peering relationship, then | suggest that BGP does notrnamtially miss peer-peer relationships, which
are believed to be more difficult to observe that customeviger ones due to the nature of BGP path
advertisements [CGDA4].

I now turn in more detail to the effect of the number of peegogts on four particular topological
metrics (see Figure 3.8). The addition of observation gambstly affects node degree distribution for
high degree nodes. As | increase the number of observatiotspon average the neighbours of a node
will have a higher degree. However, this does not hold foresosthose neighbours already have high
degrees (left part of the average neighbour degree curdgg)se nodes correspond to stub networks
connected to very well interconnected upstream provideos the clustering coefficient, when moving
from one to several observation points, the differencerikisy. For all node degrees, the clustering
coefficient significantly increases. On the other hand, whewring from a few peerings to many, the

difference appears most for high degree nodes. This ifitesrthe better observability of links in the
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core compared to the edge of the network. Rich-club convigctionfirms the previous observations in
that adding a few observation points is enough to discovectine links.

In this section | have illustrated the importance of relyorga sufficiently large number of obser-
vation points in order to properly capture the actual priperof the AS topology. Using only a few
observation points has led researchers to simplify the texitp of the interconnection structure be-
tween ASes. The improper AS topology on which researchers heied has caused the creation of
topology generators that underestimate this intercommestructure between ASes. The results show

that researchers must use rich datasets for an accuratestamtiéng of the Internet AS topology.

3.9 Conclusionsand Contributions

In this chapter, | provide insight into the Internet’'s AS ¢dgmy. | compare multiple synthetic topologies
from generators based on different models, both among #lgessand to several observed AS topolo-
gies collected at different times using different methddimse this comparison on numerous topological
metrics, and use statistical measures to perform this cosgueobjectively.

My analysis revealed that current topology models do ntitfially represent the reality of the Inter-
net AS topology. Current models over-emphasise node defis&éution and preferential attachment,
while failing to reproduce local connectivity metrics. Adtugh | observe that more recent topology
generators generally perform better than older ones, | fiatl hetrics giving information about local
connectivity properties were not well captured by any éxistopology generator. In addition to clus-
tering and centrality properties, the highly meshed corlefinternet AS topology must be considered
in order to generate representative synthetic topologiesgasing the quality of simulations based upon
them.

| also compared the properties of AS topologies relying dieint sets of observations. | observed
that, in contrast to structural metrics, node degreeedlaroperties are not greatly affected by the ad-
dition of more vantage points as they add only a small peaggnbf peering links. On the other hand,
the power-law nature of the node degree distribution searastipnable, as increasing the number of
observation points causes deviation from strict powerdaaling.

Finally, | wish to point out that the AS topology, useful assitprovides only limited information
about the Internet’s size and other properties. When ciggp#t topologies, not all ASes should be
considered equal. Some networks may contain thousandsitaefrsoand links and be represented by a
single AS number, whereas others may have their own AS numiteontain just a single router. Future
AS topology generators should permit the addition of matadach as peering relationship and relative

importance of nod

8The work presented in this chapter is the result of collatimmavith Damien Fay, Steve Uhlig, Olaf Maennel and my advisors
Damien Fay was mainly responsible for the accuracy of use ti$tital measures. Steve Uhlig contributed to the use oftsprec
Olaf Maennel provided the BGP data. All authors collabatate the writing. However, the largest part of the underlyitheas
behind the work and methodological comparison approactheltdde and the detailed analysis of the collected tracesiyesn

done by me.
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Chapter 4

Tuning Topology Generators

An increasing number of synthetic topology generators aadable, each claiming to produce repre-
sentative Internet topologies. Every generator has its panameters, allowing the user to generate
topologies with different characteristics. However, ghexist no clear guidelines on tuning the value of
these parameters in order to obtain a topology with spedificacteristics.

In this chapter | tune the parameters of several topologgigagors to match a given Internet topol-
ogy. The optimisation is performed either with respect t lihk density, or to the spectrum of the
normalised Laplacian matrix. Contrary to approaches iritheature that rely only on the largest eigen-
values, | take into account the distribution of eigenvaludswever, | show that on their own the eigen-
values cannot be used to construct a metric for optimisimgrpaters. Instead | use a weighted spectral

method which simultaneously takes into account all the @rtigs of the graph.

4.1 Introduction

Today'’s Internet is formed from more than 25,000 ASes, edethich can contain few or hundreds of
routers. Constant evolution and change in the Internettal@&lures and router configuration bugs in
the short term, and growth and death of networks in the lorng,thas made it difficult for scientists to
produce representative Internet topologies at either AButer level. However, such maps are essential
for the simulation and analysis of ideas including new angrowed routing protocols, and peer-to-
peer or media-streaming applications. Since obtainingrate, timely maps of the Internet topology is
difficult, and development of new protocols and systemsirequnderstanding their performance over
a range of scenarios, researchers use synthetic topologyajers.

There are many such generators, each of which is paransatedaften with multiple parameters,
giving rise to a plethora of potential synthetic graphs. &hsthnding and generating those graphs, use-
ful because they accurately represent features of the trderlying Internet graph, is difficult. Existing
approaches to tuning the generator parameters range friectise of particular metrics of interest,
e.g., link count, and tuning to match that particular metigcsimply using the default parameters en-
coded in the particular release of the generator packagsein u

The core problem is to select an appropriate cost functiadohwueflects those aspects of the graph

that are important to the user and weights those aspectsditegly. Such a selection process is inher-
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ently subjective: there is no “best” cost function in gethef@nce a suitable cost function is selected,
it is a simple matter to tune the available parameters ofdpelbgy generator to produce output that
optimally matches said cost function.

In the light of this, the contributions in this chapter ard@bows:

| propose a new cost function, theeighted spectrupconstructed from the eigenvalues of the

normalised Laplacian matrix, or graph spectrum;

| demonstrate that the graph spectrum alone is unsatisfa&soa cost function;

| use an efficient approximation of the weighted spectrumctvifavours the more significant

eigenvalues;

| use this approximation to tune parameters for a set of heteiopology generators, enabling us

to use these generators to effectively match a particulasored Internet topology.

The graph spectrum is a useful starting point for such a costtion as it yields a set of invariants
about a graph that encode all the properties of that grapt9@h The proposed cost function improves
on the simple graph spectrum because it incorporates thel&dge that not all eigenvalues are equally
important, and weights toward those that are considereddode more significant aspects of the graph’s
structure. The basis of the algorithm is to provide a way tasnee the difference between two graphs
with respect to a common reference, a suitable regular @(aph

After reviewing related work in Sectidn 4.2, | outline baotgnd theory in Section 4.3. In Sec-
tion 4.4 | present the results of the analysis and in Sectisih dompare topologies generated at optimal
values of the parameters with an observed dataset. Fihalbnclude the chapter in Section 4.6 and

discuss future work.

4.2 Related Work

Zeguraet al.[ZCD97] analyse topologies of 100 nodes generated usingnamdom, Waxman [Wax88],
exponential and several locality based models of topolagh s&as Transit-Stub [CDZ97]. They use
metrics such as average node degree, network diameteruartzen of paths between nodes, and use the
number of edges as the metric of choice for optimisation efttming parameter. However as | show
in this chapter, the number of links is not an ideal choicdipalarly in random networks, due to the
network structure only resembling the observed Internatltzgy at link counts much higher than those
suggested by the optimisation process.

Tangmunarunkiet al. [TGJ"02] provide a first point of comparison of the underlying cwter-
istics of degree-based models against structural modelmajar conclusion is that the degree-based
model in its simplest form performs better than random arcstiral models at representing all the stud-
ied parameters. They compare three categories of modetagjere the Waxman model of random
graphs, the TIERS [Doa96] and Transit-Stub structural nsdnd the simplest degree based gener-

ator, called the Power-Law Random Graph [ACL00]. They compmder three metrics: expansion,

1A regular graph is one where all nodes have the same degree.



4.3. Weighted Spectral Distribution 71

resilience and distortion and conclude that the hierarchgent in the measured networks is more strict
than in degree-based generators. However, they leave nuasgions unanswered about the accuracy of
degree-based generators and their choice of metrics anthptar values.

Heckmannret al. [HPSS03] discuss different types of topologies and preaestillection of real-
world topologies that can be used for simulation. They theiind several similarity metrics, such as
the shortest path distributions, node degree distribatiomd node rank exponents, to compare artificially
generated topologies with real world topologies from AT&nhetwork. They use these to determine the
input parameter range of the topology generators of BRITENB01], TIERS and GT-ITM [CDZ97]
to create realistic topologies.

Gkantsidiset al. [GMZ03] perform a comparison of clustering coefficientsngsthe eigenvectors
of the k largest eigenvalues of the adjacency matrices of BGP tgpajoaphs. However, the selected
eigenvectors are all given equal importance. They do nat tato account the rest of the spectrum,
although it has recently been shown that the eigenvaluatheiréhe adjacency matrix or the normalised
Laplacian matrix can be used to accurately represent adgp@nd some specific eigenvalues provide
a measure of properties such as robustness of a networkuefajBut06, JUO7].

Vukadinovicet al. [VHEO02] used the normalised Laplacian spectrum for analg$iAS graphs.
They propose that the normalised Laplacian spectrum cansed as a fingerprint for Internet-like
graphs. Using the Inet [WJ02] generator and AS graphs from B&R, they obtain eigenvalues of
the normalised Laplacian matrix. The differences betwsgrhetic and observed topologies indicate
that the structural properties of the Internet should bkigexd in an Internet AS model alongside power
law relationships. They believe that the graph spectrunulghine considered an essential metric when
comparing graphs. | expand on this work by demonstrating &appropriate weighting of the eigen-
values can be used to reveal structural differences betiweetopologies.

Use of spectrum for graph comparison is not limited to Inéémesearch. Hanna [Han07] uses
graph spectra for numerical comparison of architecturatspn large building plans. By defining space
as a graph, he shows that the spectra of two plan types carebeetfectively to judge the effects of
global vs. local changes to, and hence the edit distancegbgt the plans. Hanna believes spectra give
a reliable metric for capturing the local relationships aad be used to guide optimisation algorithms

for reproducing plans.

4.3 Weighted Spectral Distribution

| use the Weighted Spectral Distribution (WSD), which is tetato another common structural metric,

the clustering coefficient, for examining the charactex$svf networks with different mixing properties.
Denote an undirected graph@s= (V, ) whereV is the set of vertices (nodes) ahtis the set of

edges (links). The adjacency matrix@f A(G), has an entry of one if two nodesandwv, are connected

and zero otherwise

1, if u,v are connected
A(G)(u,v) = (4.1)

0, if u,v are not connected
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Letd, be the degree of nodeandD = diag(sum(A)) be the diagonal matrix having the degrees
along its diagonal. Denoting b¥ the identity matrix(7); ; = 1if ¢« = j,0 otherwise, the Normalised
LaplacianL associated with grap& is constructed frond by normalising the entries of by the node

degrees ofd as

L(G)=1-D"'24D~Y/? (4.2)
or equivalently
1, if u=wvandd, #0
L(G)(u,v) =< — dtdu’ if v andv are adjacent (4.3)
0, otherwise
As L is a real symmetric matrix there is an orthonormal basis af eggenvectorey, ..., e, 1
(i.e.,eiejT = 0 ande;el’ = 1) with associated eigenvalues, ..., \,_;. Itis convenient to label these

sothat\y < ... < \,_1. The set of pairs (eigenvectors and eigenvaluek)a$ called the spectrum of

the graph. It can be seen that

L(G) = Z)\ieieiT (4.4)

The eigenvalueg,, ..., \,_1 represent the strength of projection of the matrix onto theidel-
ements. This may be viewed from a statistical point of vieR(@S] where each\;e;e] may be used
to approximateA(G) with approximation error inversely proportional to- \;. However, for a graph,
those nodes which are best approximated\pye! in fact form a cluster of nodes. This is the basis
for spectral clustering, a technique which uses the eiggave of L to perform clustering of a dataset
or graph|[NLCKO05]. The first (smallest) non-zero eigenvedinel associated eigenvector are associated
with the main clusters of data. Subsequent eigenvalues igedwectors can be associated with clus-
ter splitting and also identification of smaller clusters)iM02]. Typically, there exists what is called
a spectral gapin which for somek andj, A\, < Ap41 = 1 = Aj_;1 < Aj. That is, eigenvalues
Me+1,- - - Aj—19 are approximately equal to one and are likely to represeiserin the original dataset,
i.e., links in a graph which do not belong to any particularstér. It is then usual to reduce the dimen-
sionality of the data using an approximation based on thetegdelecomposition. However, in this work
I am interested in representing the global structure of atyfa.g. |1 am interested in the presence of
many small clusters), which is essentially the spread afteling across the graph. This information is
contained in all the eigenvalues of the spectral decomipasit

A full derivation of WSD is present in [HFJ08]. To summarise: the eigenvaluesibfie in the
range 0 to 2 (the smallest being 0), i@+ X\o < ... < A\,—1 < 2, and their mean is 1.

The distribution of the: numbers), ..., \,_1 contains useful information about the network, as
will be seen. In turn, information about this distributiangiven by its moments in the statistical sense,
where theN™ moment is1/nY",(1 — \;)". These moments have a direct physical interpretation in

terms of the network, as follows. Writing for the matrixD—'/2AD~1/2, so thatL. = I — B, then

?j.e., the eigenvalues at the centre of the spectrum.
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by (4.3) the entries oB are given by

A
(D_1/2AD_1/2)Z'" — 1,]
T Vi

Now the numbers — \; are the eigenvalues &f = I — L, and soy_, (1 —\;) Y isjusttr(BN)@ Writing

(4.5)

b; ; for the (i, j)-th entry of B, the (i, j)-th entry of BY is the sum of all products;, ;, b;, i, - - - bix_1in
wherei, = ¢ andiy = j. Butb, ;, as given by[(4.5), is zero unless nodeand j are adjacent.
So we define anV-cycle in G to be a sequence of verticasus . . . uy with u; adjacent tou;, for
i =1,...,N — 1 and withuy adjacent tou;. (Thus, for example, a triangle i with vertices set
{a,b,c} gives rise to six 3-cyclesbe, acb, bea, bac, cab andcba. Note that, in general, aivV-cycle

might have repeated vertices.) We now have

1
A=)V =t(BY)=>" I (4.6)

i - oy

the sum being over alV-cyclesC' = ujus ... uy in G. Therefore ", (1 — ;)" counts the number of
N-cycles, normalised by the degree of each node in the cycle.

The number of N-cycles is related to various graph properti€he number of 2-cycles is just
(twice) the number of edges and the number of 3-cycles istifsigs) the number of triangles. Hence
>, (1= X)? is related to the clustering coefficient, as discussed belswimportant graph property
is the number of 4-cycles. A graph which has the minimum nundbel-cycles, for a graph of its
density, is quasi-random, i.e., it shares many of the pt@seof random graphs, including, typically,
high connectivity, low diameter, having edges distributeiformly through the graph, and so on. This
statement is made precise in [Tho87] and [CGW89]. For reggilaphs, [(4.6) shows that the sum
>, (1 = X)* is directly to the number of 4-cycles. In general, the sutmtsthe 4-cycles with weights:
for the relationship between the sum and the quasi-randssmofehe graph in the non-regular case, see
the more detailed discussion in [Chu97, Chapter 5]. Thet ffigimd side of[(4.6) can also be seen in
terms of random walks. A random walk starting at a vertex wligreed,, will choose an edge with
probability1/d,, and at the next vertex, say choose an edge with probabilityd, and so on. Thus the
probability of starting and ending randomly at a vertexraltesteps is the sum of the probabilities of all
N-cycles that start and end at that vertex. In other wordstlxtne right hand side of (4.6). As pointed
out in [WLO06], random walks are an intricate part of the In&#rAS structure.

The left hand side of Equatioh (4.6) provides an interesitisgght into graph structure. The right
hand side is the sum of normalis@@cycles whereas the left hand side involves the spectralrdposi-
tion. We note in particular that the spectral gap is dimiaetsbecause eigenvalues close to one are given
a very low weighting compared to eigenvalues far from onds ©important as the eigenvalues in the
spectral gap typically represent “random” links in the natkvand are not therefore important parts of
the larger structure of the network.

Next, | consider the well-known clustering coefficient. tiosild be noted that there is little con-

nection between the clustering coefficient, and clustemtifieation, referred to above. The clustering

3Trace of a square matrix is the sum of the elements in the maiooag
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coefficient,y(G), is defined as the average number of triangles divided byotlaé iumber of possible

triangles

(@) = 1/nZ m,di > 2 (4.7)

whereT; is the number of triangles for nod@ndd; is the degree of node Now consider a specific
triangle between nodes b andc. For the cluster coefficient, noting that the triangle w#l tonsidered
three times, once from each node, the contribution to theagesis

1 1 1
Galda 172 G(dy—1)2 " d(de—1)/2

(4.8)

However, for the weighted spectrum (with = 3), this particular triangle gives rise to six 3-cycles and

contributes
6

dadbdc
So, it can be seen that the clustering coefficient normatisel triangle according to the total number

(4.9)

of possible triangles while the weighted spectrum (with= 3) instead normalises using a product of
the degrees. Thus, the two metrics can be considered to llarsbmt not equal. Indeed, it should be
noted that the clustering coefficient is in fact not a metni¢he strict sense. While two networks can
have the same clustering coefficient they may differ sigaifity in structure. In contrast, the elements
of 3=, (1 — A)® will only agree if two networks are isomorphic.
Theweighted spectruns formally defined as the normalised sumMfcycles as
W(G,N) =) (1-x)" (4.10)
However, calculating the eigenvalues of a large (even spangtrix is computationally expensive. In
addition, the aim here is to represent tilebal structure of a graph and so precise estimatealldhe
eigenvalue values are not required. Thus, the distrit&lmbaigenvalues is sufficient. In this chapter the
distribution of eigenvalueg(\ = k) is estimated using pivoting and Sylvester’s Law of Iner8al52]
to compute the number of eigenvalues that fall in a giverrilale A measure of the graph can then be
constructed by considering the distribution of the eighresas
WG N)=Y (1-k)Nf(A=k) (4.11)
keK
where the elements of(G, N) form theweighted spectral distribution
WSD:G—RE ke K: (1-k)NfA=k))} (4.12)
In addition, a metric can then be constructed frofdr) for comparing two graph&7; andGs, as
S(Gr,Ga, N) = Y (1= k)N (LA =k) = fo(A = k))? (4.13)
keK
where f; and f, are the eigenvalue distributions 6f; and G, and the distribution of eigenvalues is
estimated in the sek” of bins € [0,2]. Equation (4.13) satisfies all the properties of a metrie (se

Appendix A).

4The eigenvalues of a given graph are deterministic ardistdbutionhere is not meant in a statistical sense.
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Haddadiet al. [HFJ™08] consider 3 and 4 to be suitable values\dffor the current application:
N = 3 is related to the well-known and understood clustering féicient; and N = 4 as a 4-cycle
represents two routes (i.e., minimal redundancy) betw@embdes. For other applications, other values

of N may be of interest.

4.4 Tuningthe Topology Models

The aim of this section is to examine how well the topologyegators match the Skitter topology for
different values of their parameters. To facilitate thisnparison, grids are constructed over the possible

values of the parameter spaces and various cost functierevaluated as follows:

1. A cost function measuring the matching between the numblarks in skitter and the generated

topologies:

C1(0) = (1e(0) = Lskitter)” (4.14)

where (] is the first cost functiong are the model parameters (which differ for each topology
generator)/; is the number of links (which is a function of the parametensil /;x;:c, IS the

number of links in the Skitter dataset.

2. A cost function measuring the matching between the spedtthe Skitter network and of the

generated topologies:

C2(0) = Z(P(A < Aei) — P(A < Agkitteri))? (4.15)

where, ; is theith eigenvalue for topology.

3. A cost function measuring the matching of the weightedspe

C3(0) =Y ((w* P(A=Xp;) —w* P(A = Aspitter.i))? (4.16)

i

where weighto = (1 —)*.

The objective of the optimisation is to minimise the sum sqdarrors between the cost function
for skitter and the generated topology. In addition to exang different parameter values across a grid,
the optimum parameters with respectdg(¢) are estimated using the Nelder Meade simplex search
algorithm [NM65, DW87]. Note that the topologies generatgdhe topology generators are random
in a statistical sense, due to differing random seeds fdr aat. Ten topologies are generated for each
value off and the average spectral distribution is calculated. | dotimat the variance of the spectral

distributions was sulfficiently low to allow reasonable esties of the minima in each case.

441 Link Densities

Figurel 4.1 displays the value of the cost functidn(é) as a function of the topology generator param-

eters. On the upper and lower left graphs, the grayscaleicoidicates the value of the cost function.
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Figure 4.1: Topology generator parameter grid for sum sgfuarror from number of links.

The darker the region is, the closer the value is to optimat. IRet (lower right) there is only one pa-
rameterp, so it is plotted as a curve in Figure 4.1(d). Figure 4.1 shihasa minimum exists for each
topology in approximately the same regions as the defaliiegaof each generatér.

For the BA generator it is known that for valuegdindg above the line shown in Figure 4.1(b), the
topologies generated follow an exponential node degraghiiton while those below follow a scale-
free distribution. It is encouraging to note that the valok€’, (9) are large in the exponential region
and the minimum is in the scale-free region as the node deliggéution of the Internet is known to be
approximately scale free [AB00]. Overall the results afégi by tuning the parameters basedri6)
appear reasonable. For link density matching it is posstotebtain parameter values which match the
link densities exactly. Indeed, there is a ridge of paramédta BA, GLP and Waxman for which the
link densities can be matched. However, as noted in thedantiion, there is no control over any other

characteristic of the graph using this method.

442 SpectraPDF

Figure 4.2 shows the spectral PDF of the Skitter datasettantbtir topology generators calculated at
three parameters values in each grid (the parameter val@é@sdicated in brackets in the legends). The

aim is to illustrate how much the spectral PDFs change wighviilues of the parameters. The spectral

5Some of these default values are listed in tablé 4.1.
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Figure 4.2: PDF of Spectra

PDFs of Waxman (Figure 4.2(a)) vary significantly for diéfat values ofv and 3. Furthermore, none
of the Waxman PDFs match well the spectral PDF of the Skitt@ply The BA PDFs vary to a lesser
extent (Figure 4.2(b)) and appear to give a much better nth&shthe Waxman model, especially around
eigenvalud (\ = 1). This better match of BA is not surprising as the Waxman rhisdet a good model
for the Internet as noted in Section 3.3. GLP (Figure 4.2{ny) Inet (Figure 4.2(d)) give similar results

to BA, with a poor match outside eigenvalueThe better match of the BA model around eigenvdlis

interesting. As noted in Section 4.3 the regions away fragemialuel are far more important than the
region around\ = 1. However, what is required is a technique that reveals ttierdnces with distance
from one as these are more important. Thus it would appefcudifto evaluate which model, or even
which parameter, is better based on the PDFs alone. This isailow further explored by analysis of

the grids calculated with respectt&(6).

4.4.3 Limitationsof Spectra CDF

Figure 4.3 shows the value of the second cost fundfig(?) as a function of the topology generator
parameters, in the same way as Figure 4.1. As can be seenuire @, there are many islands corre-
sponding to local minima. The variance in the PDFs referoeiah this section is actually greater than
any gradient that might exist in the grid. This means that itdt possible to estimate the minimum with
respect taC>(6). Figure 4.3 shows that the spectrum on its own is not suffi¢eidentify the optimum

parameters of any of the topology generators. This is becaash eigenvalue i6'5(0) is weighted
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Figure 4.3: Parameter grid for sum of absolute differenéepectra CDFs.

equally. As noted in Section 4.3, the eigenvalues close te tnare likely to be affected by the random

seeds for each topology generator and are the source of iseamthe grid.

444 Weighted Spectra

The previous section illustrated the limitations of usihg taw eigenvalues to find optimal topology
generator parameters to match the Skitter topology. Figufehows a plot of the weighted spectra of
the same topologies as those shown on Figure 4.2. As it caedretke results are quite different from
those shown in Figufe 4.2. The Waxman weighted spectrabtillvs a bad fit with respect to the Skitter
data (mainly around and2) compared to the other generators. The other generators GBR and
Inet) now show that they are capable of matching the weigpedtra of the Skitter topology, especially
around the point of greatest weight £ 0.4 or 1.6). The difference between the weighted spectranaro

1 is no longer of importance (in contrast to Figlre 4.2), refitecthat the weights here approach zero
as we approach eigenvallieln the next section the optimum values and the resultingted spectra

will be compared.

445 Weighted Spectra Comparison

Figure 4.5 shows the grids associated witt(#). Unlike the spectra in Figure 4.3 where it was difficult
to find an optimum minima, the weighting process, hence giléiss importance to noisy eigenvalues
in the middle and more importance to the significant onesnhede it possible to get get an optimum

region for the parameters. As can be seen the grids shovhtiratis a region with a minima in each case
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Figure 4.4: Weighted spectra grid for generator parameters
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Table 4.1: Optimum parameter values for matching Skittpology.
Waxman | « = 0.08 (default= 0.15) B = 0.08 (defaul= —0.2) C3(0) = 0.0026 | C3(0) = 0.0797
BA p = 0.2865 (default= 0.6) g = 0.3145 (default= 0.3) | C3(8) = 0.0014 | C3(8) = 0.0300
GLP p = 0.5972 (default= 0.45) | B = 0.1004 (default= 0.64) | C3(8) = 0.0021 | C5(0) = 0.0446
Inet o = 0.1013 (default= 0.3) - C3(0) = 0.0064 | C5(0) = 0.0150
PFP - C3(0) = 0.0014 | C3(0) = 0.0371
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Figure 4.6: Comparison of the weighted spectra.

and in addition, comparing Figure 4.5 and Figure 4.1 it casdma that these minima lie in a region close
to those forC; (6). However, it should be noted that the weighted spectra wilid fit more than just the
number of links in a topology. This demonstrates the inheradle-off. Also of note is that the region

of interest for the BA model lies inside the region of scaleefbehaviour as shown in Figure 4.5(b).

4.5 Generating Topologieswith the Optimum Value Parameters

Table 4.1 displays the optimum values for the topology gatioes for generating networks that are close
to the Skitter graph. In addition, | give the values &y(¢), which show that PFP gives the closest fit
followed by BA, GLP, Waxman and finally Inet. While these résudre mostly expected, the ranking
of Inet as the worst topology generator is surprising. | hage listed some of the default parameters
used in certain generators such as BRITE [MLMBO01]. While mahyhe optimised parameters are
close to the default values, which is encouraging, it shanglchoted that the default parameters given
by designers are for gpical graph and are not selected for any particular situation,(8lgtter in this
example). Thus a direct comparison is meaningless and ibeaseen that optimum parameters are
sometimes significantly different from the default ones.

Figure 4.6(a) shows the weighted spectra for each of thddagp@enerators and inspection of this
figure goes some way to explaining the discrepancy in thdteesis can be seen the main peak in the
weighted spectra for the Skitter data occurs at a value f0.4. The Waxman generator peak occurs
at A = 0.6 which is closer to 1 demonstrating the greater amounarmdom structure in the Waxman
topologies. However, for the Inet generator the peak ocatitge correct pointY =0.4) but the weighted

power at this point is far greater than in the skitter topgldgly normalising the weighted spectrum this
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point becomes clear:

((w; * P(A =N i)

ZZ (w; *x P(A = )\m))_

((wL * P(A = )\skitte'r‘))
Z((wz * P(A - )\skitter))

i

(4.17)

Using the normalised weighted spectrum the results in Eigus(b) show that Inet is the best match
for the Skitter data while the Waxman model still performssenthan the other models. Further research
is required before stating which version@f is superior.

Figure[ 4.7 shows a comparison of the optimised topologidls mispect to four typical network
metrics: the node degree distribution, the average neightemnectivity, the clustering coefficient and
the rich-club connectivity [Zho06]. As can be seen PFP giliesbest match for these metrics in agree-
ment with the proposed metr€;(0). The performance of the other topologies is mixed showirag th
while one topology is able to match one metric it fails to rhedoother. For example, the GLP generator
achieves a reasonable match for the node degree distribotibfails to match the average neighbour
connectivity. This demonstrates that for a weak underlyirgglel (e.g., Waxman) the optimisation can

not significantly improve its performance when comparedhéoltternet AS topology.

4.6 Conclusonsand Contributions

Comparison of graph structures is a frequently encountpreblem across a number of problem do-
mains. To perform a useful comparison requires definitios ast function that encodes which features
of the graphs are considered important. Although the spectof a graph is often claimed to be a way

to encode a graph’s features, the raw spectrum contains tob nmoise to be useful on its own. In this
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chapter | have introduced a new cost function, weeghted spectral distributigrthat improves on the
graph spectrum by discounting those eigenvalues that #evée to be unimportant and emphasising
the contribution of those believed to be important.

I use this cost function to optimise the selection of paramealues within the particular problem
domain of Internet topology generation. The weighted spettvas shown to be a useful cost function
in that it leads to parameter choices that appear sensi@a girior knowledge of the problem domain,
i.e., are close to the default values and, in the case of thgé@®rator, fall within the expected region.
In addition, as the metric is formed from a summation, it isgble to go further and identify which
particular eigenvalues are responsible for significarfeddhces. Although it is currently difficult to
assign specific features to specific eigenvalues, it is htipetcthis feature of the cost function will be

useful in the futu

6The work presented in this chapter is the result of collafimmavith Damien Fay, Steve Uhlig and my advisors. Damien Fay
was mainly responsible for the theory behind weighted spkdistribution. Steve Uhlig contributed to the use of thagheed
spectral distribution. However, the largest part of theartying ideas behind the work and tuning approach, the sifioul@ode

and the detailed analysis of the results have been done by me.



Chapter 5

Evolution and Scaling of Internet Topologies

In this chapter | study the evolution of the AS topology a®iréd from two different datasets over a
period of seven years. To focus on structural changes iroff@dgy, | use theveighted spectral distri-
butionas this metric reveals differences in the hierarchicalcstimg of two graphs. The results indicate
that the Internet is changing from a core-centred, stroogbfomer-provider oriented, disassortative net-
work, to a soft-hierarchical, peering-oriented, assiveatetwork. In addition, | use a variety of other
metrics to analyse the structural disagreement reveal&wiAS topologies inferred from the two dif-
ferent datasets. This disagreement is due to the natureeohéasurement techniques. | find that the
traceroute dataset has increasing difficulty in sampliegoriphery of the AS topology, while the BGP

dataset does not sample the inner-most core of the network.

5.1 Introduction

The Internet continuously evolves: new networks are cceate ones disappear, and existing ones grow
or merge. At the same time, business dynamics cause integctions between networks to change.
Both these effects cause the underlying topology of thetietdo be in a constant state of flux. Studying
the evolution of this topology is important as it impacts daefy of factors relevant to network users and
application designers, such as scalability, performamckbaisiness incentives. For example, different
network structures affect the propagation of both legiten(a.g., routing) and illegitimate (e.g., viruses)
information.

Most efforts to understand the structure of the InterneeHagused on the AS topology. There are
over 25,000 ASes, each representing a single adminigratithority with its own network and peering
policies. Thus, the AS topology is a graph reflecting therodanections between the networks that
compose the Internet. Relationships between ASes areatiypatassified as either customer-provider or
peer-peer. Note that as the Internet has grown, many laegeornks have come to be represented as more
than one AS (i.e., to advertise more than one AS number). Asualtr the AS topology may contain
edges that do not directly represent a business relatjprmtiveen two distinct networks. However,
the AS topology serves as an available, albeit approxinma@sure of the complexity of the Internet’s
structure at a network level.

Characterising the structure of the AS topology has provifidwt, but it is usually simplified to:
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a richly connected core, including the fully meshed tienteinet Service Providers (ISPs), providing
connectivity for the huge number of smaller ISPs and custarasvorks at the periphery of the network.
These edge ISPs may connect to only a single upstream progidaay connect to many for resilience,
performance and cost reasons. Recent work has shown thagigkis for networks to try to connect di-
rectly in the periphery of the Internet, rather than to theecbypassing the largest providers [GALMO08].
In this chapter | analyse the evolution of the AS topologyngsiwo significant datasets, each
generated by a different measurement technique: the SH#taset using traceroute, and the UCLA
dataset using BGP. | focus on the overall structure of thelbtmy, rather than local features such as
node degree, using a recently introduced metric calledvitighted spectral distributio(WSD). This
allows us to distinguish topologies with different mixingoperties, i.e., how much the core can be
differentiated from the periphery of the topology [HFO8]. A clear distinction between the core and
the periphery is believed to be one of the strongest featfré® Internet topology [SARK02, Zho0#].
This chapter makes three contributions. First, | demotestraw WSD, as explained in Section 4.3,
depicts the mixing between core and periphery in the AS tmpoln Section 5.3. Second, | find that
the AS topology has evolved from a highly hierarchical grapth a clearly distinct core towards a
“softer” hierarchy where the core and non-core parts ofdpelogy are less distinct (Section 5.4). Third,
I show how the two different measurement techniques, toaterand BGP, both provide limited but
complementary coverage of the AS topology: the traceroatasgt has increasing difficulty sampling

the periphery, while the BGP dataset does not sample thenktte core (Section 5.5).

5.2 Redated Work

In this section | outline related work, classified into thgeeups: evolution of the AS topology, spectral
graph analysis of the AS topology, and analysis of the ctirgjdeatures of the AS topology.

Shyuet al.[SLHO06] study the evolution of a set of topological metricsiputed on a set of observed
AS topologies. The authors rely on monthly snapshots etettlaitom BGP RouteViews from 1999 to
2006. The topological metrics they study are the averageedegverage path length, node degree,
expansion, resilience, distortion, link value, and therNalised Laplacian Spectrum. They find that the
metrics are not stable over time, except for the Normalissaldcian Spectrum.

Oliveira et al.[0ZZ07] look at the evolution of the AS topgloas observed from BGP data. Note
that they do not study the evolution of the AS topology sutetonly the nodes and links. They propose
a model aimed at distinguishing real changes in ASes and ABsffom BGP routing observation
artifacts. | use the extended dataset made available byithera, in addition to 7 years of AS topology
data from an alternative measurement method.

Latapy and Magnien [LMQ8] address the question of studyheyrelation between the size of
a measurement sample and the corresponding topologicpéiies. Based on AS topologies built
from IP-level measurements from Skitter for a period fromuky 2005 to May 2006, they observe an
increase in the average degree and the clustering coeffiglen a larger dataset is used.

Wang and Loguinov [WLO06] propose the Wealth-Based Interogblogy (WIT) model. Interest-

ingly, central to their model is the notion that each AS pitksconnections to maximise local random
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walks. This characteristic of the structure of the AS toggle particularly targeted by the WSD. How-

ever, as this model is not publicly available it is not in@ddn our comparisons

The graph spectrum has been used for a variety of purposedditiom to characterisation of
Internet topologies, including space comparison [Han@vdph matching [LHO1], cluster identifica-
tion [NJWO02] and topology generator tuning [HFO8]. Gkantsidist al.[GMZ03] perform a compari-
son of clustering coefficients using the eigenvectors oftlaegest eigenvalues of the adjacency matrices
of AS topologies.k is chosen to retain the strongest eigenvectors discardosy af the others. Those
retained are then shown to represent finer elements of tambttstructure. The rest of the spectrum is
considered unimportant, even though other works have shizairihe eigenvalues of the adjacency ma-
trix or the normalised Laplacian matrix can be used to a¢elyraepresent a topology [But06], and some

specific eigenvalues provide a measure of properties suabastness of a network to failures [JUO7].

Vukadinovicet al.[VHEO02] were the first to investigate the properties of thetdfology based on
the normalised Laplacian spectrum. They observe that thealsed Laplacian spectrum can be used
to distinguish between synthetic topologies generatechby[WJ02] and AS topologies extracted from
BGP data. This results indicates that the normalised L&agpectrum reveals important structural
properties of the AS topology. However, as noted by Had@éagil. [HFUT08], the spectrunalone
cannot be used directly to compare graphs as it containsetaled information about the network
structure. | expand on this work by demonstrating how appatg weighting of the eigenvalues can
reveal the structural differences between two topologies.

Wool and Sagie [WS04] propose several clustering algorittorexplore the AS topology using
just a snapshot of the Skitter data. They focus on identifinaif the dominant clusters, although their
result is sensitive to the parameters chosen such as thenomnicluster size. The technique | use, the
WSD, differs in that it focuses on random cycles instead ddtelts and does not require any parameter

estimation. In addition, | use the k-core decompositionnalgse the core of the Internet AS topology.

Li et al.[LCMFO8] perform a similar study to the one presented hare¢héir work they use several
different clustering methods to identify the distributiohclustering features throughout a network. In-
terestingly, their clustering metric gives similar resutir the skitter and routeviews (here called UCLA)
datasets, while WSD shows differing results reflecting diyetbe differing sampling characteristics of

these two measurement techniques.

5.3 Mixing Properties of Networks

The synthetic topology generator introduced in this secigointended as a strawman tool that can be
adjusted to show the effect of different parts of a topologytiee resulting WSD. These topologies are
generated using a simple model based on the existence ofvarketore and a periphery, as do most
generative models of the Internet. Figurel5.1 shows a sopdldgy of 500 nodes. AlM nodes within
the graph are first assigned locations using a uniform Higion. Nodes within a circle of diamet&r

are then defined as tltereand nodes outside a circle of diamelerx (1 — m) as the periphery, where

m < 1is a factor called the mixing factor. Connections are thesigagd between the core nodes using
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Figure 5.1: Synthetic topology.

a Waxman model:

—dBcore

P(u - U) = Qcore €Xp P (51)

wherea,.,.. andg..,. are the Waxman coefficients for the core, ard the distance between two nodes
u andv. Subsequently, connections are also assigned in the peﬁphsing a Waxman model but
one with different coefficientsy,., and3,.,. After this process, isolated nodes are connected to their
nearest neighboHrFigur shows the WSD (usig = 4) for a topology generated with/ = 2000
nodes,D = 0.25, acore = 0.08, Beore = 0.08, aper = 0.06, Bper = 0.7, andm = 0.95 (i.e., 5%
mixing), resulting in a small (relatively) meshed core wéthess well connected periphery. There are
several things to note in Figure 5.2. Ignoring the asymmaitpart of the curve, which is due to a small
number of disconnected components, the peak of the weigipectrum of the periphery alone lies at
A = 0.7 while that for the core lies at 0.5. The spectrum for the dveetwork hastwo peaksat these
points. This is a direct result of the fact that the spectrdra graph is the union of the spectra of its
disconnected subgraphs [Chu97]. In terms of the WSD, thenwfispectra is equivalent to a weighted
average of the WSD. That is, for a gra@h+ H composed of two disconnected subgraghand H:

w(G,N) w(H,N)
Y >

w(G + H,N) = |G+H|< (5.2)

where|.| denotes volume (number of vertices). Although there is 5%ingi between the core and
peripheryw(G + H, N) results in an close estimate of the network WSD (see Figuredg@oted
YIIE(1 - X)*]). Asm — 0 (i.e., the core and periphery become less and less con)¢izéstimate

becomes more accurate and is exaehat 0.

INote that nodes lying betwedn and D x (1 — m) are members of the comndthe periphery and will be connected twice.
2Note that there are likely to be some disconnected componetite iresulting graphs giving asymmetrical spectra, but this

does not affect the main results.
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Figure 5.2: Synthetic topology spectra.

Figurel 5.3 shows the effect of increasing the mix betweemp#riphery and the co@As can be
seen the core becomes less distinct in the resulting spectiod has practically disappeared with 40%
mixing. Increasing the mixing effectively adds edges cating the core and periphery, which results
in a spreading of the eigenvalues and thus a spreading of thg, YéSulting in less distinct peaks. This
result is a consequence of the following theorem from [Blit07

Let G be a weighted graph and a subgraph on the vertices @fwith ¢ non-isolated vertices. If
{Mo < Ao < A1 fand{fy < 6,... < 0,,_, } are the eigenvalues @ G) andL(G+ H) respectively,
then fork = 0,1,...,n — 1 we have:

Ak—tr1, H is bipartite
Aipt—1 L0 < (5-3)

At otherwise

In the current context, the new edges in the mix are beingdtilenodes causing the eigenvalues
to spread by at mostplaces. It should be noted that although this makes the @ak lpss distinct this
does not mean that the core is more difficult to detect, rdtiathe core itself is now less distinct from
the periphery.

The statistical properties of the WSD are examined by exaingtegureg 5.4. This plot was created
by generating 50 topologies using the AB model with the optmmparameters usindifferent initial
conditionsand recording the resulting spectra and weighted spedirax@ained in Section 4.4). As
the underlying model (i.e. the AB model) is the same for earh) thestructuremight be expected to
remain the same and so any structural metric should bevahatiobust in the face of varying initial

conditions. As can be seen the standard devidtioithe (unweighted) spectrum is significantly higher

3Again the large peaks before 0.2 represent isolated subgjep are ignored.
“multiplied by a factor of ten for clarity
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Figure 5.3: Effect of a change in on the spectrum of the overall network.

at the centre of the spectrum reflecting that the spectratgafains random connections. However, for
the WSD the standard deviation peaks at the same point as the #WSibise in the spectral gap having

been suppressed.

5.4 Evolution of theInternet

In this section | look at the evolution of the Internet seemtigh the two datasets using a number of
topological metrics. Sectidn 5.4.1 studies the evolutibthe AS topology seen in the Skitter dataset,
and Sectioh 5.4.2 then studies the evolution of the AS taposeen in the UCLA dataset. We consider
the discrepancies between these views in Selction 5.5, whtse discuss the likely evolution of the real

AS topology.

5.4.1 Skitter topology

The first dataset | study consists Diears of traceroute measurements, starting in Jar{sxy, col-
lected by the CAIDA Skitter project [HAAQ7]. Traceroutes are initiated from several locations & th
world towards a large range of destination IP addressesIPrhddresses reported in the traceroutes are
mapped to AS numbers using RouteViews BGP data. | use a yamttdn of the set of all unambiguous
links collected on a daily basis by the projéct.

Figure[ 5.5 presents the evolution over thgears of a set of topological metrics computed on the
AS topology of Skitter.

The number of ASes seen by Skitter exhibits abrupt changasgdiine first40 months. At the end

5A link may be ambiguous for a variety of reasons, principallg ¢l problems resolving an IP address to its AS; we ignore

such links.
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of those firsd0 months, changes were made in the way probing was perfc%rmae.large increases in
the number of ASes, observed during the fiéigtmonths, are due to new monitors being added to the
system. After each increase in the number of ASes a smootkatexfollows, corresponding to a subset
of the IP addresses of the Skitter list that no longer resgorngtobes, e.g., because a firewall starts
blocking the probes. The variations in the number of ASen bgeSkitter are not caused by changes in
the AS topology itself, but are artifacts of the probing.

The number of AS edges and the average node degree both fokoaehaviour of the number of
ASes seen. | only observe a large increase in the numberksf diaring the first few months, during
which new monitors are added resulting in new regions oftterhet being covered by Skitter measure-
ments. As the list of destinations used by Skitter does neticiine global set of ASes well [BHWD7],
and the same list is shared by all monitors, a new monitortwglically discover new ASes close to its
location. However, most of the AS edges close to the degiimd® addresses have probably already
been discovered by existing monitors [LBCXO03].

The AS edges that Skitter no longer observes probably st dut can no longer be seen by
Skitter due to its shrinking probing scope. To be effectiv@bserving topology dynamics, traceroute
data collection must update destination lists constaotlyite optimal AS coverage. This limitation of
Skitter is visible in the decreasing average node degreevd\dd normally expect to see a net increase
in the average node degree as ASes tend to add rather thaver@eerings, and the results of the BGP
data support this view. If the coverage of the Skitter mezrp@nts was not worsening, we should see an
increasing node degree.

The lower three graphs of Figure 5.5 present the evolutidghetlustering coefficient, the assorta-
tivity coefficient and the weighted spectrum with= 3, w(G, 3) (related to the topology’s clustering).
We observe that changes were made to the way Skitter probdstéinet around month 40: the metrics
take an unusual value, very small for the clustering and gl for assortativity. The values of the
clustering and the assortativity coefficients randomlytflate over ther years, as if the sampling of
the AS topology by Skitter is not stable. Neither the clusgenor the assortativity seem to decrease
or increase over thé years. The value af(G, 3) shows a long-term increasing trend, similar to the
decreasing trend in the average node degree. Althougledeiathe clusteringy(G, 3) gives different
weights to different parts of the topology. The subset ofttymology that corresponds to duplicated
structures (e.g., the periphery) receives a smaller weifgtt the rest. The increasingG, 3) reflects
the increasing bias of Skitter toward sampling the cord&erathan the periphery, of the Internet.

Figure 5.6 presents four WSDs spanning the entire duratitmedBkitter dataset. Notice the eigen-
values at zero, indicating the presence of several disabadeomponents. The WSD in January 2002
shows a single peak at = 0.4. As time passes, a second peak appears arauad0.3. Thus the
sampling resulting in the Skitter data shows an Internetingpfrom a less hierarchical to more hierar-
chical topology. This contradicts current observatiors thS topology is becoming less hierarchical,

with increasing numbers of ASes peering at public Internethange Points (IXPs) to bypass the core

6These changes were subject to caveats and bugs affectingnaeasits, and hence the resulting metrics, at month 40. For

more information refer tbit t p: / / ww. cai da. or g/ dat a/ acti ve/ skitter_aslinks_dataset.xm /


http://www.caida.org/data/active/skitter_aslinks_dataset.xml/
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Figure 5.6: Weighted Spectral Distribution, Skitter ASatgmy.

of the Internet.

To further investigate this surprising result, | next imtnge supporting evidence using theore
measure. A:-core is defined as the maximum connected subgrAplof a graphG, with the property
thatd, > k Vv € H. As pointed out by Alvarez-Hameliet al. [AHDBVO08] the k-core exposes the
structure of a graph by pruning nodes with successivelydrigegrees;, and examining the maximum
remaining subgraph; note this is not the same as simply pguali nodes with degrek or less. Fig-
ure[ 5.7 shows the proportion of nodes in e#etore as a function of. There are 84 plots shown but
as can be seen there is little difference between each of deemonstrating that the proportion of nodes
in each core is not changing over time. This is not surprising to the nature of the Skitter sampling
process: the Skitter data set is composed of traceroutésdraba limited set of locations, so thecore
is expected to be similar toeeling the layers from an onidAHDBVO08]. From an evolution point of
view this result shows that, although the number of nodesdosampled by Skitter is decreasing, the
hierarchy of the Internet as observed by Skitter is not clmgngThis also implies that Skitter is not

sampling AS edges and so cannot see evolutionary changes the

54.2 UCLA

I now examine the evolution of the Internet usif) snapshots, one per month, from Januzig4 to
April 2008. This dataset, referred to in this chapter as the UCLA datasees from the Internet topol-
ogy colIectio@ maintained by Oliveirat al. [0ZZ07]. These topologies are updated daily using data

sources such as BGP routing tables and updates from RouteMRIPES Abilene® and LookingGlass

"http://irl.cs.ucla.edu/topol ogy/
Chttp://ww. ripe.net/db/irr.htm
°http://abilene.internet2. edu/


http://irl.cs.ucla.edu/topology/
http://www.ripe.net/db/irr.html
http://abilene.internet2.edu/
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servers. Each node and link is annotated with the times iffinstsand last observed.

Figure/ 5.8 presents the evolution of the same set of topcabonetrics as Figure 5.5, over the 4
years of AS topologies in the UCLA dataset.

The UCLA AS topologies display a completely different exan to the Skitter dataset, more
consistent with expectation. As the three upper graphs guirgi 5.8 show, the number of ASes, AS
edges, and the average node degree are all increasing,edexkp a growing Internet.

The increasing assortativity coefficient indicates thaed&creasingly peer with ASes of similar
degree. The preferential attachment model is thus becolessgelevant over time. This trend towards
a less disassortative network is consistent with more A$padsing the tier-1 providers through public
IXPs [GALMO0S8], hence connecting with nodes of similar degrénother explanation for the increasing
assortativity is an improvement in the visibility of nonrecedges in BGP data. | will demonstrate in
Section 5.5 that the sampling of core and non-core edges hyAlADd Skitter biases the observed AS
topology structure. Contrary to Skitter(G, 3) for UCLA decreases over time. As a weighted clustering
metric,w(G, 3) indicates that the transit part of the AS topology is acyuaicoming sparser over time
compared to the periphery. Increasing local peering withlsASes in order to reduce the traffic sent
to providers decreases both the hierarchy induced by stistbmer-provider relationships, and in turn
decreases the number of 3-cycles on whighy, 3) is based.

If we look closely at Figure 5]9, we see a spectrum with a lgegk at\ = 0.3 in January2004,
suggesting to a strongly hierarchical topology. As timespasthe WSD becomes flatter with a peak at
A = 0.4, consistent with a mixed topology where core and non-cageat so easily distinguished.

Figure 5.10 shows the proportion of nodes in eaetore as a function of. There are>2 plots

shown as a smooth transition between the first and last gloighasised. As can be seen, the distribution
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of k-cores moves to the right over time, indicating that the prtpn of nodes with higher connectivity
is increasing over time. This adds further weight to the agion that the UCLA dataset shows a
weakening of hierarchy in the Internet, with more peeringrextions between nodes. Note that the

UCLA data set was not examined in [AHDBV08].

5.5 Reconciling the Datasets

The respective evolutions of the AS topology visible in theétt8r and UCLA datasets differ. Skitter
shows an AS topology that is becoming sparser and more biecat, while UCLA shows one that is
becoming denser and less hierarchical. Can we reconcite ttliffering views? One must first under-
stand that Skitter and UCLA sample different parts of the ¢§#togy: Skitter sees a far smaller fraction
of the real AS topology than UCLA, and even UCLA does not seaxhole AS topology [OPWO08].

To check how similar the AS topologies of Skitter and UCLA,dreomputed the intersection and
the difference between the two datasets in terms of AS edgké&es. | used a two-years period from
January 2006 until December 2007. In Tablg 5.1 | show the rumbAS edges and ASes that Skitter
and UCLA have in common during some of these monthly peritatse(led "intersection”), as well as
the number of AS edges and ASes contributed to the total améhgadrom one of the two datasets only
(labelled "Skitter-only” or "UCLA-only”). | observe a stelg increase in number of total ASes and AS
edges seen by the two datasets. At the same time, the irttersbetween the two datasets decreases.
Due to the wide coverage of the UCLA dataset, few ASes and Agsdre contributed by Skitter only.

From Tablg 5.1, we may conclude that the Skitter datasetiigenesting. To the contrary, the
relatively constant, albeit decreasing, sampling of thterhret core by Skitter gives us a clue about

which part of the Internet is responsible for its structeadlution.
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Autonomous Systems AS Edges

Time Total Intersection Skitter-only UCLA-only Total Intersection  Skitter-only UCLA-only
Jan. 2006 | 25,301 32.6% 0% 67.4% | 114,847 15.4% 5.3% 79.3%
Mar. 2006 | 26,007 31.6% 0% 68.4% | 118,786 14.9% 4.4% 80.7%
May. 2006 | 26,694 30.5% 0% 69.5% | 124,052 13.8% 4.6% 81.5%
Jul. 2006 | 27,396 29.5% 0% 70.5% | 128,624 13.2% 3.7% 83.1%
Sep. 2006| 28,108 28.7% 0% 71.3% | 133,813 12.6% 3.4% 84.0%
Nov. 2006 | 28,885 27.9% 0% 72.1% | 139,447 12.4% 3.4% 84.2%
Jan. 2007 | 29,444 27.2% 0% 72.8% | 144,721 11.6% 3.1% 85.3%
Mar. 2007 | 30,236 26.5% 0% 73.5% | 151,380 11.2% 3.0% 85.8%
May. 2007 | 30,978 25.6% 0% 74.4% | 157,392 10.5% 2.7% 86.8%
Jul. 2007 | 31,668 25.9% 0% 86.1% | 166,057 10.0% 3.8% 86.2%
Sep. 2007| 32,326 24.5% 0% 75.5% | 168,876 9.7% 2.5% 87.8%
Nov. 2007 | 33,001 23.9% 0% 76.1% | 174,318 9.5% 2.2% 88.3%

Table 5.1: Statistics on number of ASes and edge counts fasets

Tablel 5.2 shows the number of AS edges belonging to theEibmﬁsh (labelled "T1 mesh”) as

well as other AS edges where a tier-1 appears. More3h&hof the AS edges sampled by Skitter cross

at least a tier-1 AS, against abalii% for UCLA. Both dataset see almost all AS edges from the tier-1

mesh. Note that the decrease in the number of tier-1 edgésttarSs partly related to IP to AS mapping
issues for multi-origin ASes [GALMO08].

Skitter UCLA

Time Total Tlmesh Other T1 Total Tlmesh Other T1
Jan. 2006 | 23,805 66 7,498 | 108,720 64 19,149
Mar. 2006 | 22,917 66 7,289 | 113,555 64 19,674
May. 2006 | 22,888 64 7,504 | 118,331 64 20,143
Jul. 2006 | 21,740 65 7,192 | 123,842 64 20,580
Sep. 2006| 21,400 65 6,974 | 129,228 64 21,059
Nov. 2006 | 22,034 66 7,159 | 134,636 65 21,581
Jan. 2007 | 21,345 65 6,898 | 140,216 65 22,531
Mar. 2007 | 21,366 65 6,774 | 147,000 65 23,194
May. 2007 | 20,738 65 6,694 | 153,156 65 23,769
Jul. 2007 | 22,972 65 6,838 | 159,792 65 24,310
Sep. 2007| 20,570 64 6,510 | 164,770 65 24,888
Nov. 2007 | 20,466 64 6,430 | 170,431 65 25,480

Table 5.2: Coverage of tier-1 edges by Skitter and UCLA.

101 rely on the currently accepted list of 12 tier-1 ASes thaivie transit-only service: AS174, AS209, AS701, AS1239,
AS1668, AS2914, AS3356, AS3549, AS3561, AS5511, AS646d ABi7018.
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The evolution of the AS topology observed by the Skitter ai@lldl datasets is not inconsistent as
it first appeared from Sectidn 5.4. Rather, the two datasebpke differently the AS topology, leading
to different bias. A large fraction of the AS topology sanmibley Skitter relates to the core, i.e., edges
containing at least a tier-1 AS. With its wider coverage, WQibserves a different evolution of the AS
topology, with a non-core part that grows more than the cbine. evolution seen from the UCLA dataset
seems more likely to reflect the evolution of the peripherthefAS topology. The non-core part of the
Internet is growing and is becoming less and less hieraathixespite a common trend towards making
a union of the datasets in this field, such simple addition is not eppate for the UCLA and Skitter
datasets. Each dataset has its own biases and measuretif@ctsaMixing them together will only add
these biases together, potentially leading to poorer tyuddita. Further research is required in order to
devise a correct methodology that takes advantage of éiftefatasets obtained from different sampling
processes.

The above observations suggests that the Internet, onneaseeetree-like, disassortative network
with strict power law properties [FFF99], is moving towawdts assortative and highly inter-connected
network. Tier-1 providers have always been well connediatithe biggest shift is seen at the Internet’s
periphery where content providers and small ISPs are agjyedg adding peering links among them-
selves using IXPs to avoid paying transit charges to tiereliders. However, a different view of the
Internet evolution can be obtained using the WSD, shown infEg5.6 and 5.9. As seen in Section 5.3,
one possible cause for this behaviour is increased mixingetore and periphery of the network, i.e.
the strict tiered hierarchy is becoming less important ia tietwork structure. This is given further
weight by studies such as [OPW8] which show that the level of peering between ASes in therhet

has greatly increased during this period, leading to a less-dominated network.

5.6 Conclusionsand Contributions

In this chapter | presented a study of two views of the evgltimternet AS topology, one inferred from
traceroute data and the other from BGP data. | exposed gatces between these two inferred AS
topologies and their evolution. | reconciled these disangpes by showing that the topologies are not
directly comparable as neither method sees the entirenkitéspology: BGP data misses some peerings
in the core which traceroute observes; traceroute missag mare peerings than BGP in the periphery.
However, traceroute and BGP data do provide complementewys\of the AS topology.

To remedy the problems of decreasing coverage by the Skiitsgroute infrastructure and the lack
of visibility of the core by UCLA BGP data, significant imprements in fidelity could be achieved with
changes to the existing measurement systems. The quatigtathen collected by the traceroute infras-
tructure would benefit from greater AS coverage, while théPBiata would benefit from data showing
intra-core connectivity. | acknowledge the challengegieht in these improvements but emphasise that,
without such changes, the study of the AS topology will ferelve subject to the vagaries of imperfect
and flawed data. Availability of traceroute data from a lamygmber of vantage points, as attempted by
the Dimes project, will help remedy these issues. Howeven esuch measurements have to be done on

a very large scale, and ideally performed both from the cbteeonetwork (like Skitter), as well as the
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edge (like Dimes).

To provide an objective analysis of the changing structditbe AS topology, | used a wide range
topological metrics, including the weighted spectral rifisttion. | find that the core of the Internet is
becoming less dominant over time, and that edges at thehgeyi@re growing instead. The practice
of content providers and content distribution networkksegconnectivity to greater numbers of ISPs
at the periphery, and the rise of multi-homing, both supploese observations. Further, | observe a
move away from a preferential attachment, tree-like dizdstve network, toward a network that is
flatter, highly-interconnected, and assortative. Thegdirfgs are also indicative of the need for more
detailed and timely measurements of the Internet topolagyder to build up on works such as [Eco05],
focusing on the economics of the structural changes suchstisutional mergers, dual homing and

increasing peering relationships.

11The work presented in this chapter is the result of collafimmavith Damien Fay, Andrew G. Thomason, Steve Uhlig and my
advisors. Damien Fay and Andrew G. Thomason were mainly resperier the theory behind weighted spectral distribution.
Steve Uhlig contributed to the use of the weighted spectsdtidution and helped with understanding of the Internetition.
However, the largest part of the underlying ideas behindvibik and the ideal approach, analysis code, collection agggvation

of the traces and the detailed analysis of the results haam thene by me.
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Chapter 6

Contributions and Future Work

This chapter concludes this thesis by summarising the wamied! out, the contributions and suggesting

areas of future work.

6.1 Conclusionsand Contributions

My main contributions include analysis of popular AS togplaenerators, comparing them with nu-
merous observations, and highlighting appropriate mefdccomparing the models through long term
observations of the evolution of the Internet. The condusiand contributions can be broken down into

categories listed in this section.

6.1.1 Identifying Modelling Challenges

In Chapter 3, | provided insight into the Internet AS topglog evaluated various models for gener-
ating synthetic topologies and compared them to observedop8ogies collected at different times
using different measurement methods. | based this congpaois humerous topological and statistical
measures.

My analysis revealed that current topology models do natiately represent the observed Internet
AS topology. Although current models accurately preseneedegree-related properties and preferential
attachment, they fail to reproduce local connectivity mestr At the same time, | observe that more
recent topology generators generally perform better thder @nes. This is partly due to the availability
of better observed topologies. | believe that, in additiordégree-related, clustering and centrality
properties, the highly meshed core of the Internet AS tapploust be considered in order to generate
representative synthetic topologies.

| also compared the properties of AS topologies relying dfedint sets of observations. It was
observed that, in contrast to structural metrics, nodeadegelated properties are not greatly affected by
the addition of more vantage points as they add only a smedepéage of peering links. On the other
hand, the power-law nature of the node degree distribugems questionable, as increasing the number

of observation points causes deviation from strict povaer$caling.

6.1.2 Tuning Topology Generators

A new cost function, the weighted spectral distribution (W3Eas introduced in Chaptet 4. The WSD

improves on the graph spectrum by discounting those eiyigewahat are believed to be unimportant
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and emphasising the contribution of those believed to beitapt.

| used this cost function to optimise the selection of patamealues within the particular problem
domain of Internet topology generation. Optimal parangetetative to this cost function were then
estimated for Internet topology generators. The WSD was showbe a useful cost function in that
it leads to parameter choices that appear sensible given lmbwledge of the problem domain. It
capture wells the clustering characteristics and it isifeago mixing between the core and edge ASes.
In addition, as the metric is formed from a summation, it isgble to go further and identify which
particular eigenvalues are responsible for significarfeddéhces. Due to high computational cost of
calculating the eigenvalues, it is currently difficult tsim specific features to specific eigenvalues, it is

hoped that this feature of the cost function will be usefithia future.

6.1.3 Analysisof the Internet Evolution

In Chapter 5 | presented a study of two views of the evolvirtgrimet AS topology, one inferred from
traceroute data and the other from BGP data. | exposed irstensies between these two inferred AS
topologies and their evolution. | reconciled these incstesicies by showing that the topologies are not
directly comparable as neither method sees the entireittempology: BGP data misses many peerings
in the core which traceroute observes; traceroute missag mare peerings than BGP in the periphery.
However, traceroute and BGP data complement each other.

To remedy the problems of decreasing coverage by Skitteertoate infrastructure and lack of
visibility of the core by UCLA BGP data, significant improvents in fidelity could be achieved with
changes to the existing measurement systems. The quatlgtathen collected by the traceroute infras-
tructure would benefit from greater AS coverage, while théPBfata would benefit from data showing
intra-core connectivity. | acknowledge the challengegieht in these improvements but emphasise that,
without such changes, the study of the AS topology will fereve subject to the vagaries of imperfect
and flawed data.

To provide an objective analysis of the changing structfith® topology, | used a wide range of
topological metrics, including the WSD. | observed that theef the Internet is becoming less domi-
nant over time, and that edges at the periphery are growstgad. The practice of content providers and
content distribution networks seeking connectivity toagee numbers of ISPs at the periphery, and the
rise of multi-homing, both support this hypothesis. Furth@bserve a move away from a preferential
attachment, tree-like disassortative network, towardstaork that is flat, highly-interconnected, and

assortative

6.2 Discussionsand Future Work

Valuable future work in this area is to consider the anali@isouter-level topologies. Such an analysis
of router-level topologies is bound to differ greatly fronsAevel ones, as network operators have tight
control over router interconnects and are subject to diffeconstraints from the AS-level connectivity.
The control plane at the router level has different charésties to those seen at the AS level. At the

router level, the dynamics are more frequent and tend to &aerter durations. Regular maintenance
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works, router and link failures, traffic engineering, firdhmisbehaviours and other factors all effect the
routing at the IP layer. Operators do not disclose inforamatibout routing changes and link failures.
This has made it difficult to model the behaviour of routeeldnternet topology. | am currently infer-
ring the characteristics of router level topologies of aanaier-1 ISP, looking at short term and long
terms trends, while considering the effects of failurest@nISP network topology. This will also allow
researchers to build a model for dynamic topology genearattahe router level.

Today, topology generators are tightly bound to the obskedata used to validate them. Given
that the actual properties of the Internet topology are mainNn, topology generators should strive to
reproduce the variability that characterises the evatutb the Internet topology over time. Future
topology generators should be able to express the varg@atiofocal connectivity that makes today’s
Internet: peering relationships, internal AS topology amating policies each changing over time due
to failures, maintenance, upgrades and business stratefjiee network. Topology generators should
capture those dimensions, by allowing a certain level dloamess in the outcome, rather than enforcing
structural assumptions as the truths about Internet's/sengbtructure, which may never be discovered.
If incorrect AS interconnections or policies are used fonudation purposes, then the resulting routes
might be far from realistic [MFNMT06, MUF"07].

The Internet is not a static network. At the AS level, thera isonstant growth in the number of
peering links between ISPs [0ZZ07]. Also, due to policy nogitand hot potato routing, the changes
at the IP level affect the AS level [TSGRO04]. Simulation f@pécations such as routing protocols and
analysis such as studies in prefix hijacking would benefihftopologies which take into account the
changes of the network over time, similar to real networlkavébur. | believe that using static topologies
does not fully exploit the potential scenarios that one &hoansider in simulations. Another important
aspect of the networks that is not captured by current maddle move of the Internet AS topology
towards having a meshed core of tier-1 ISPs, alongside pheilieering relationships between edge
ASes, and an atypical connection models of some ASes sutle ashtent providers which form many
peering connections with as many ASes as possible in ord&rdiol high transit charges [OPY08].

In addition to information about peering links, the availi&yp of models of growth and evolution of
networks will enable us to include dynamic models for getiegasynthetic AS topologies. Pursuing
this goal, | aim to form a collaboration with network operatalongside topology generator designers,
to provide a representative dynamic topology generatdréagésearch community.

Finally, the metric used in chapter 5, WSD, can be used foryaisabf a wide range of topologies
and it is not necessarily bound to Internet topologies. Achsui am looking at using the WSD for
exploiting the hierarchy and structural characteristicsazial networks and protein-protein interaction
networks. If successful, this can be a very efficient yet eteumethod of categorising such large

networks which may be formed of millions of links.
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Appendix A

WSD Metric Proof

The WSD metric proposed in Chapter 4 for obtaining a best fit is:
J(Go Gy) = Y (1= k) (fa(A = k) = fy(A = k))? (A1)
keK
We now show that,/J(G,,G,) is a metric in the mathematical sense. The difference betwee
J(Gz, Gy) and J (G4, Gy) is similar to the difference between the sum squared errdrtia@ root
mean squared error. We prefer the sum squared errorf{€,, Gy)) in this application as it provides
the well known minimum variance-bias trade-off.

A metric satisfies the following four conditions:
(@ J(G4,Gy) > 0 (non-negativity)
(b) J(Gz,Gy) = 0 < z = y (identity of indiscernibles)
(€) J(Gz,Gy) = J(Gy, G;) (symmetry)
(d) J(Gq,G.) < J(Gg,Gy) + J(Gy, Gz) (triangle inequality)

(a) and ¢) follow directly from (A.1). Noting that all the elements tfe sum inJ(G,,G,) are
positve = J(G,,G,) = 0ifand only if f,(A = k) = f, (A = k) Vk. Arranging (and increasing the
number of bins if necessary) thebins such that each bin contains at most 1 eigenvalue Redgijréo
be co-spectral and isomorphicdg,. Two graphs may beo-spectrali.e., they share the same spectrum
but are notisomorphic. However, studies have shown [ZWGi]ttre number of co-spectral graphs falls
dramatically with the number of vertices in the graph. Faaraple, only 0.05% of all graphs with 21
vertices are co-spectral and not isomorphic; this numbgraigght to decrease with increasing number
of vertices [ZWO05]. Thus, conditiorbf is truealmost certainlyin the statistical sense.

V/J (G, G,) defines the standard metric spaé§ [KF75]. This can be seen by distributing the
weights(1 — k)* as:

1/2
Gz, Gy) = <Z (ha(A=k) = hy(A = k))2> (A.2)

keK

where

ho(A=k) = (1 - K)*fo(A = k) (A3)
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and h, (A = k) is similarly defined. The triangle inequality holds for (A.2For a detailed proof
see [KF75] Chapter 2, Section 5.



Bibliography

[ABOO]

[ACKMO5]

[ACLOO]

[ACO™*06]

[ADGWO3]

[AHDBVO06]

[AHDBVO08]

[ALWDO5]

[AVG +99]

Reka Albert and Albert-Laszlo Barabasi. Topologyewblving networks: local events and
universality. Physical Review Letter85:5234, (2000). 44, 76

Dimitris Achlioptas, Aaron Clauset, David Kempand Cristopher Moore. On the bias of
traceroute sampling: or, power-law degree distributioneegular graphs. I$TOC'05:
Proceedings of the 37th Annual ACM Symposium on Theory opGiimg, pages 694—
703, Baltimore, MD, May 2005. 29

William Aiello, Fan Chung, and Linyuan Lu. A randonmraph model for massive graphs.
In STOC’00: Proceedings of the 32nd Annual ACM Symposium oor¥ leé Computing
pages 171-180, Portland, OR, May 2000\ 37} 50, 70

Brice Augustin, Xavier Cuvellier, Benjamin Orgogozalden Viger, Timur Friedman,
Matthieu Latapy, Clemence Magnien, and Renata Teixeiraidiwg traceroute anomalies
with paris traceroute. lProceedings of ACM/Usenix Internet Measurement Conferenc
(IMC) 2006 pages 153-158, Rio de Janeiro, Brazil, October 2006. 13, 30

David Alderson, John Doyle, Ramesh Govindan, andt&awillinger. Toward an
optimization-driven framework for designing and genemgtiealistic Internet topologies.
SIGCOMM Computer Communications Revi8&(1):41-46, 2003. 41, 45

Jose Ignacio Alvarez-Hamelin, Luca Dall’Astalain Barrat, and Alessandro Vespignani.
k-core decomposition: a tool for the visualization of laggale networks.Advances in

Neural Information Processing Systems 18, Canadae 41, 2006. 18, 89, 40

Jose Ignacio Alvarez-Hamelin, Luca Dall'Astalain Barrat, and Alessandro Vespignani.
k-core decomposition of Internet graphs: hierarchies;sgiflarity and measurement bi-
ases.Networks and Heterogeneous Media371, 2008. 91, 94

David Alderson, Lun Li, Walter Willinger, and John.@oyle. Understanding Internet
topology: principles, models, and validationEEE/ACM Transactions on Networking
(TON), 13(6):1205-1218, 2005. 38

C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens,Neyer, T. Bates, D. Karrenberg,
and M. Terpstra. Routing Policy Specification Language (RPRFC 2622, IETF, June
199931



106

[BA99]

[BBGWO4]

[BEH*07]

[BHM +07]

[BJOT7]

[Bra89]

[BT02]

[But06]

[But07]

[CCG+02]

[CDOO0]

[CDGT8S]

[CDZ97]

[CFSV06]

Bibliography

A. L. Barabasi and R. Albert. Emergence of scaling andom networks. Science
286(5439):509-512, (1999). 19, 35, 44, 50

Michael Baur, Ulrik Brandes, Marco Gaertler, andrbihea Wagner. Drawing the AS
graph in 2.5 dimensions. Irados Pach, editoGraph Drawing, New York, 2004¢ages
43-48. Springer, 2004. 53

Giuseppe Di Battista, Thomas Erlebach, Alexander Hadurizio Patrignani, Maurizio
Pizzonia, and Thomas Schank. Computing the types of théaeships between au-
tonomous system$EEE/ACM Transactions on Networking (TQNJB(2):267-280, 2007.
[32

R. Bush, J. Hiebert, O. Maennel, M. Roughan, and S. UHIigsting the reachability of
(new) address space. roceedings of the 2007 SIGCOMM workshop on Internet nétwor
management (INM'072007. 90

A. Banerjee and J. Jost. Spectral plot propertiesvafds a qualitative classification of

networks. InEuropean Conference on Complex Systebtsober 2007. 61

R. Braden. Requirements for Internet Hosts — Comioation Layers. RFC 1122, IETF,
October 1989. 27

T. Bu and D. Towsley. On distinguishing between Inttrpower law topology generators.
In Proceedings of IEEE Infocom 2008ew York, NY, June (2002). 44, 47, 50, 51

Steve Butler. Lecture notes for spectral graph thed_ectures in Nankai University,
Tianjin, Ching 2006. 71| 85

Steve Butler. Interlacing for weighted graphs gsihe normalized laplaciarElectronic

Journal of Linear Algebral16:90-98, 2007. 87

Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, atfillhger. The origin of
power laws in Internet topologies revisited. Pnoceedings of IEEE Infocom 200Rew
York, NY, June 2002. 35, 37

J. M. Carlson and John Doyle. Highly optimized tolera: Robustness and design in
complex systemsPhysical Review Lettey84(11):2529-2532, 2000. 38

D.M. Cvetkove, M. Doob, I. Gutman, and A. Tor§av. Recent Results in the Theory of
Graph SpectraNorth-Holland, 1988. 54

Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Ziegg Modeling Internet topology.
IEEE Communications Magazing5(6):160-163, (1997). 42, 70, 71

V. Colizza, A. Flammini, M.A. Serrano, and A. Vegpani. Detecting rich-club ordening
in complex networksNature Physics2(2):110-115, 2006. 53



Bibliography 107

[CGJT04] Hyunseok Chang, Ramesh Govindan, Sugih Jamin, Scottehk8r, and Walter Will-
inger. Towards capturing representative AS-level Intetmgologies.Computer Networks
44(6):737-755, 2004. 37, 66

[CGW89] F.R.K.Chung, R. L. Graham, and R. M. Wilson. Pseualtdom graphsCombinatorica
9(4):345-362, 1989. 73

[CHKT06] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E.iISAMEDUSA - New Model of
Internet Topology Using k-shell DecompositioficXiv Condensed Matter e-print2006.
139

[Chu97] Fan R. K. ChungSpectral Graph Theory (CBMS Regional Conference Seriesaitié4
matics) American Mathematical Society, 1997. 54|70,/ 73, 86

[CIWO03] Hyunseok Chang, Sugih Jamin, and Walter Willingerteinet connectivity at the AS-
level: an optimization-driven modeling approach. NfoMeTools '03: Proceedings of
the ACM SIGCOMM workshop on Models, methods and tools fapdegible network
research pages 33-46, Karlsruhe, Germany, 2003. 41

[CIWO06] Hyunseok Chang, Sugih Jamin, and Willinger. To peenat to peer: Modeling the
evolution of the Internet’'s AS-level topology. IRroceedings of IEEE Infocom 2006
Barcelona, Spain, 2006. 33

[CMO5] Aaron Clauset and Cristopher Moore. Accuracy andisgghenomena in Internet map-
ping. Physical Review letters, 94:0187@005, 29

[DAHB T06] Luca Dall'Asta, Ignacio Alvarez-Hamelin, Alain BarraAlexei Vazquez, and Alessan-
dro Vespignani. Exploring networks with traceroute-likelpes: theory and simulations.
Theoretical Computer Sciencgsb5(1):6—24, 2006. 30

[DFO7] B. Donnet and T. Friedman. Internet topology disecgva survey|EEE Communications

Surveys and Tutoria]2007. to appealr. 26

[DKF*07] Xenofontas Dimitropoulos, Dmitri Krioukov, Marina F@nkov, Bradley Huffaker, Young
Hyun, kc claffy, and George Riley. AS relationships: infeze and validationSIGCOMM
Computer Communications Revied(1):29-40, 2007. 26, 33

[Doags] Matthew B. Doar. A better model for generating testivorks. INEEE GLOBECOM'96
London, UK, November (1996)). 43, 50,170

[DRFC06] B.Donnet, P. Raoult, T. Friedman, and M. Crovdllaployment of an algorithm for large-
scale topology discoverylEEE Journal on Selected Areas in Communications (JSAC)
24(12):2210-2220, 2006. 29



108

[DW87]

[Eco05]

[ELR+96]

[ER85]

[FBO5]

[FFF99]

[FKP02]

[FMM *04]

[GALMOS]

[Gao01]

[GMZ03]

[GTOO0]

[GWO02]

Bibliography

J.E. Dennis and D.J. Woods. Optimization in microcomeps: The nelder-meade simplex
algorithm. In A. Wouk, editorNew Computing Environments: Microcomputers in Large-
Scale Computingpages 116-122. SIAM, 1987. 75

Nicholas Economides. The economics of the Intdsaekbone.NYU, Law and Research
Paper No. 04-033; and NET Institute Working Paper No. 04R2@e 2005. 97

D. Estrin, T. Li, Y. Rekhter, K. Varadhan, and D. Zapp&aurce Demand Routing: Packet
Format and Forwarding Specification (Version 1). RFC 1980, May 1996] 26

P. Erds and A. Rnyi. On random graphs. Mathematical Institute Hungarian Academy,
196, London, (1985). 34, 50

Nick Feamster and Hari Balakrishnan. Detecting B@Rfiguration faults with static anal-
ysis. INNSDI'05: Proceedings of the 2nd conference on Symposiunetmdiked Systems
Design & Implementatiorpages 43-56, Berkeley, CA, 2005. USENIX Association. 48

Michalis Faloutsos, Petros Faloutsos, and CleiBadoutsos. On power-law relationships
of the Internet topology. I®Proceedings of ACM SIGCOMM 1998ages 251-262, Cam-
bridge, Massachusetts, United States, 1999. 29, 34, 389330/ 96

Alex Fabrikant, Elias Koutsoupias, and Christo®Bpadimitriou. Heuristically optimized
trade-offs: A new paradigm for power laws in the Internet.|@ALP '02: Proceedings

of the 29th International Colloquium on Automata, Languagaed Programmingpages

110-122, London, UK, 2002. Springer-Verlag. 38

Anja Feldmann, Olaf Maennel, Z. Morley Mao, Arthur Bergend Bruce Maggs. Locat-
ing Internet routing instabilities. IRroceedings of ACM SIGCOMM 200dages 205-218,
Portland, OR, 2004. 51

P. Gill, M. Arlitt, Z. Li, and A. Mahanti. The flatteing Internet topology: Natural evo-
lution, unsightly barnacles or contrived collapse? Phoceedings of Passive and Active
Measurement Conference (PAMYpril 2008./84] 92, 95

Lixin Gao. On inferring autonomous system relaghups in the Internet.|[EEE/ACM
Transactions on Networking (TON)(6):733-745, 2001. 31

C. Gkantsidis, M. Mihail, and E. Zegura. Spectrabhbssis of Internet topologies. In
Proceedings of IEEE Infocom 200San Francisco, CA, April 2008. 18, 38,/71] 85

Ramesh Govindan and Hongsuda Tangmunarunkit. sggifor Internet map discovery.
In Proceedings of IEEE Infocom 200pages 1371-1380, Tel Aviv, Israel, March 2000.
IEEE.[26] 27

Timothy G. Griffin and Gordon Wilfong. On the correciseof iBGP configurationSIG-
COMM Computer Communications Revj&2(4):17-29, 2002. 31



[HAA +07]

[Hal97]

[Han07]

[HFJT08]

[HFU+08]

[HKYHO02]

[HPM+02]

[HPSS03]

[JBO6]

[JRTO4]

[JU07]

[KF75]

Bibliography 109

Bradley Huffaker, Dan Andersen, Emile Aben, Matthew kia¢ k Claffy, and Colleen
Shannon. The Skitter AS Links Dataset, 2001-2007. 88

Bassam Halabilnternet Routing ArchitectureCisco Press, 1997. 47

Sean Hanna. Representation and generation of ptng graph spectra. Bth Interna-

tional Space Syntax Symposiustanbul, Turkey, 2007. 71, 85

Hamed Haddadi, Damien Fay, Almerima Jamakovic, Olaf ivb@® Andrew W. Moore,
Richard Mortier, Miguel Rio, and Steve Uhlig. Beyond nodgmée: evaluating AS topol-
ogy models. Technical Report UCAM-CL-TR-725, Universify@ambridge, Computer
Laboratory, July 2008. 75

Hamed Haddadi, Damien Fay, Steve Uhlig, Andrew MoorehRid Mortier, Almerima
Jamakovic, and Miguel Rio. Tuning topology generators gisipectral distributions. In
Lecture Notes in Computer Science, Volume 5119, SPEC atienal Performance Eval-
uation WorkshopDarmstadt, Germany, 2008. Sprinder. 72,84, 85

P. Holme, B.J. Kim, C.N. Yoon, and S.K. Han. Attacklaerability of complex networks.
Physical Review F65(5):298-305, 2002. 53

Bradley Huffaker, Daniel Plummer, David Moore, , and laf§l. Topology discovery by
active probing. IrSAINT-W'02: Proceedings of the 2002 Symposium on Appbicatand
the Internet (SAINT) Workshogsage 90. IEEE Computer Society, 20021127, 47

Oliver Heckmann, Michael Piringer, Jens Schraity Ralf Steinmetz. On realistic net-
work topologies for simulation. IiMoMeTools '03: Proceedings of the ACM SIGCOMM
workshop on Models, methods and tools for reproducible oktwesearch pages 28-32,
New York, NY, USA, (2003)| 71

Shudong Jin and Azer Bestavros. Small-world cheréstics of Internet topologies and
implications on multicast scalingComputer Networks50(5):648-666, 2006. 40

Sharad Jaiswal, Arnold L. Rosenberg, and Don TowslEomparing the Structure of
Power-Law Graphs and the Internet AS Graph.IONP '04: Proceedings of the Net-
work Protocols, 12th IEEE International Conference on (FZ04), pages 294-303. IEEE
Computer Society, 2004. B9

A Jamakovic and S Uhlig. On the relationship betwden dlgebraic connectivity and
graph’s robustness to node and link failures3td EuroNGI Conference on Next Gener-
ation Internet NetworksTrondheim, Norway, (2007). 71, 85

A. N. Kolmogorov and S. V. Fominntroductory Real AnalysiDover Publication, 1975.
103,104



110

[KFC+05]

[LAWDO4]

[LBCX03]

[LCMFO08]

[LHO1]

[LMOS]

[Mal93]

[Mer95]

[MFM +06]

[MHO5]

[MHK +07]

[MKF *06]

[MKFV06]

Bibliography

Krishnamurthy, Michalis Faloutsos, Marek Chrobak, kid, Jun-Hong Cui, and Allon G.
Percus. Reducing large Internet topologies for faster lgitimns. InIEEE/IFIP NET-
WORKING pages 328-341, 2005. 37

Lun Li, David Alderson, Walter Willinger, and Johndyle. A first-principles approach
to understanding the Internet’s router-level topologyPtoceedings of ACM SIGCOMM
2004 pages 3-14, Portland, OR, 2004] 38

A. Lakhina, J. Byers, M. Crovella, and P. Xie. Saingl biases in IP topology measure-

ments. InProceedings of IEEE Infocom 2003an Francisco, CA, April 2003. 29,190

Y. Li, J.-H. Cui, D. Maggiorini, and M. Faloutsos.haracterizing and Modelling Cluster-
ing Features in AS-Level Internet Topology. Pnoceedings of IEEE Infocom 2008&pril
2008. 85

Bin Luo and E.R. Hancock. Structural graph matchisgyg the EM algorithm and singu-
lar value decompositionEEE Transactions on Pattern Analysis and Machine Inteltige
23(10):1120-1136, October 2001. 85

M. Latapy and C. Magnien. Complex network measuretseBstimating the relevance of

observed properties. Rroceedings of IEEE Infocom 2008&8pril 2008./84
G. Malkin. Traceroute Using an IP Option. RFC 1393TF, January 1993. 25, 51

R. Merris. A survey of graph laplacianisinear and Multilinear Algebra39:19-31, 1995.
54

Wolfgang Muhlbauer, Anja Feldmann, Olaf Maennel, MatthRoughan, and Steve Uh-
lig. Building an AS-topology model that captures route déity. SIGCOMM Computer
Communications Revie86(4):195-206, 2006. 33, 101

Damien Magoni and Mickael Hoerdt. Internet core tlgyy mapping and analysi€om-
puter Communication®8(5):494-506, 2005. 13, 27,128

Priya Mahadevan, Calvin Hubble, Dmitri Krioukov, BraglHuffaker, and Amin Vahdat.
Orbis: rescaling degree correlations to generate anmbhaternet topologiesSIGCOMM
Computer Communications Reviedv(4):325-336, 2007. 41

Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov, Xéontas Dimitropoulos, k ¢
claffy, and Amin Vahdat. The Internet AS-level topology:réb data sources and one
definitive metric. SIGCOMM Computer Communication Revje¥6(1):17-26, (2006).
37,48, 51, 52, 58, 59

Priya Mahadevan, Dmitri Krioukov, Kevin Fall, andimin Vahdat. Systematic topology
analysis and generation using degree correlationsPréceedings of ACM SIGCOMM
2006 pages 135-146, Pisa, Italy, 2006. [41],47, 55



[MLMBO1]

[MMBOO]

[MQWZ05]

[MRWKO3]

[MUF+07]

[New02]

INJWO2]

[NLCKO5]

[NM65]

[OPW+08]

[0ZZ07]

[PGO8]

[Pos81]

Bibliography 111

Alberto Medina, Anukool Lakhina, Ibrahim Mattand John Byers. BRITE: an approach
to universal topology generation. IEEE MASCOTSpages 346—353, Cincinnati, OH,
USA, August (2001). 36, 71, 80

Alberto Medina, Ibrahim Matta, and John Byers. O tbrigin of power laws in Internet
topologies.SIGCOMM Computer Communications Revi&®(2):18-28, 2000. 35

Z. Morley Mao, Lili Qiu, Jia Wang, and Yin Zhang. On ABvel path inference. In
SIGMETRICS '05: Proceedings of the 2005 ACM SIGMETRICS$nat®nal conference
on Measurement and modeling of computer systparpes 339-349, 2005. 33

Z Morley Mao, Jennifer Rexford, Jia Wang, and RandyKdtz. Towards an accurate AS-
level traceroute tool. IProceedings of ACM SIGCOMM 2003ages 365378, Karlsruhe,
Germany, 2003. 31, 49, 51

Wolfgang Muhlbauer, Steve Uhlig, Bingjie Fu, Mickael Mk, and Olaf Maennel. In
search for an appropriate granularity to model routingqyoliln Proceedings of ACM
SIGCOMM 2007Kyoto, Japan, August 2007. 33, 101

M.E.J. Newman. Assortative mixing in networkiBhysical Review Letter89(20):871—
898, 2002| 52

A. Ng, M. Jordan, and Y. Weiss. On spectral clusteriagalysis and an algorithm. In
T. Dietterich, S. Becker, and Z. Ghahramani, editgkdyvances in Neural Information

Processing Systems.IMIT Press, 2002. 72, 85

Boaz Nadler, Stephane Lafon, Ronald Coifman, avahhis Kevrekidis. Diffusion maps,
spectral clustering and eigenfunctions of Fokker-Plarmeators. IfNeural Information
Processing System2005. 72

J.A. Nelder and R. Mead. A simplex method for functiominimization. Comput. J.
7:308-313, 1965. 75

Ricardo Oliveira, Dan Pei, Walter Willinger, Beichuahahg, and Lixia Zhang. In search
of the elusive ground truth: The Internet's AS-level cortivty structure. INACM SIG-
METRICS Annapolis, USA, June 2008. 94,196, 101

Ricardo Oliveira, Beichuan Zhang, and Lixia Zhar@pserving the evolution of Internet
AS topology. InProceedings of ACM SIGCOMM 200Ryoto, Japan, August 2007. 52,
84,91/101

Jean-Jacques Pansiot and Dominique Grad. On roudesalticast trees in the Internet.
SIGCOMM Computer Communications Revi@#(1):41-50, 1998. 29

J. Postel. Internet Control Message Protocol. RFRQIETF, September 1981. 126



112 Bibliography

[Poy63] Pentti Poyhonen. A tentative model for the volume tigfde between countries.
Weltwirtschaftliches Archiye0:93-100, 1963. 33

[PSVO04] Romualdo Pastor-Satorras and Alessandro Vespigravolution and Structure of the

Internet: A Statistical Physics ApproacBambridge University Press, 2004.] 40

[Quo05] Bruno Quoitin. Topology generation based on nekva@sign heuristics. ICONEXT’05:
Proceedings of the 2005 ACM conference on Emerging netwquérinent and technol-
ogy, pages 278-279, Toulouse, France, 2005. 45

[RLHO6a] Y. Rekhter, T. Li,and S. Hares. A Border GatewaytBrol 4 (BGP-4). RFC 4271, IETF,
January 2006. 25

[RLHO6b] Y. Rekhter, T. Li, and S. Hares. A Border GatewaytBecol 4 (BGP-4). RFC 4271, IETF,
January 2006. 47

[RTMO8] Matthew Roughan, Simon Jonathan Tuke, and Olaf MakrBigfoot, sasquatch, the yeti
and other missing links: what we don’t know about the as graptMC '08: Proceedings
of the 8th ACM SIGCOMM conference on Internet measurenpages 325-330, New
York, NY, USA, 2008. ACM. 66

[Sab66] G. Sabidussi. The centrality index of a graPBychometrika31(4):581-603, 1966. 53

[SARKO2] Lakshminarayanan Subramanian, Sharad Agarneahifer Rexford, and Randy H. Katz.
Characterizing the Internet hierarchy from multiple vaetgoints. InProceedings of
IEEE Infocom 2002June 2002. 32, 84

[SBCC98] J. Stewart, T. Bates, R. Chandra, and E. Chen. Usedicated AS for Sites Homed to
a Single Provider. RFC 2270, IETF, January 1998. 47

[SFFFO3] Georgos Siganos, Michalis Faloutsos, PetrosuEale, and Christos Faloutsos. Power
laws and the AS-level Internet topolog\e EE/ACM Transactions on Networking (TQN)
11(4):514-524, 2003. 35

[SLHO6] L. Shyu, S-Y. Lau, and P. Huang. On the search of @eAS-level topology invariants. In
Proceedings of IEEE Global Telecommunications Conferé6t®©BECOM) 2006pages
1-5, San Francisco, CA, USA, 2006. 84

[SMAO3] Neil Spring, Ratul Mahajan, and Thomas Anderson.e Tauses of path inflation. In
Proceedings of ACM SIGCOMM 2003ages 113-124, Karlsruhe, Germany, 2003. 42

[SMWO02] Neil Spring, Ratul Mahajan, and David Wetherall. Megng ISP topologies with rocket-
fuel. In Proceedings of ACM SIGCOMM 2002ages 133-145, 2002. 25,26] 27

[SRO3] A.J. Seary and W.D. Richards. Spectral methods falyaimg and visualizing networks:
an introduction. InDynamic Social Network Modeling and Analysggages 209-228.
National Academic Press, 2003. 72



[SS05]

[SW04]

[Syl52]

[TGJ02]

[Tho87]

[TMSV03]

[TSGRO4]

[VHEO2]

[Wax88]

[WJ02]

[WLO6]

[Wo097]

[WS04]

Bibliography 113

Yuval Shavitt and Eran Shir. DIMES: let the Internetasure itselfSIGCOMM Computer
Communications Revie85(5):71-74, 2005. 18, 28

G. Sagie and A. Wool. A clustering approach for expigrihe Internet structure. 23rd
IEEE Convention of Electrical and Electronics Engineerssirael, pages 149-152, 2004.
139

J J Sylvester. A demonstration of the theorem tharyehhvomogeneous quadratic poly-
nomial is reducible by real orthogonal substitutions tofthven of a sum of positive and

negative squares. Iphilosophical Magazine IMpages 138-142, 1852. 74

Hongsuda Tangmunarunkit, Ramesh Govindan, Sugih J&aintt Shenker, and Walter
Willinger. Network topology generators: degree-basedstrsictural. InProceedings of
ACM SIGCOMM 2002pages 147-159, Pittsburgh, PA, (2002)./48] 50, 54, 70

A. G. Thomason. Pseudo-random grapRaindom Graphs '85, North-Holland Mathe-
matical Study144:307-331, 1987. 73

Renata Teixeira, Keith Marzullo, Stefan Savagaq &eoffrey M. Voelker. In search of
path diversity in ISP networks. IMMC '03: Proceedings of the 3rd ACM SIGCOMM
conference on Internet measuremagges 313-318, Miami Beach, FL, 2003. 29

Renata Teixeira, Aman Shaikh, Tim Griffin, and J@mRexford. Dynamics of hot-potato
routing in ip networks SIGMETRICS Perform. Eval. Re82(1):307-319, 2004. 101

Danica Vukadinovic, Polly Huang, and Thomas Erlgta On the spectrum and struc-
ture of Internet topology graphs. ICS ’'02: Proceedings of the Second International
Workshop on Innovative Internet Computing Systet@62.[ 71| 85

Bernard M. Waxman. Routing of multipoint conneasolEEE Journal on Selected Areas
in Communications (JSACH(9):1617-1622, December (1988). 43,49, 50, 70

Jared Winick and Sugih Jamin. Inet-3.0: Internet togy generator. Technical report,
University of Michigan Technical Report CSE-TR-456-0202051] 71|, 85

X. Wang and D. Loguinov. Wealth-based evolution mddelthe Internet AS-Level topol-
ogy. InProceedings of IEEE Infocom 2008pril 2006.[73] 84

D. R. Wood. An algorithm for finding a maximum cliquea graph Operations Research

Letters 21(7):211-217, January 1997. 54

A. Wool and G. Sagie. A clustering approach for expigrihe Internet structurePro-
ceedings of 23rd IEEE Convention of Electrical and EledizerEngineers in Isragpages
149-152, Sept. 2004. 85



114

[YJBO02]

[ZCD97]

[Zho06]

[ZWO05]

[22Z07]

Bibliography

Soon-Hyung Yook, Hawoong Jeong, and Albert-Lag¥dwabasi. Modeling the Internet’s
large-scale topologyApplied Physical Science89(21):13382-13386, October 2002. 39

Ellen W. Zegura, Kenneth L. Calvert, and Michael ériahoo. A quantitative comparison
of graph-based models for Internet topologh\EEE/ACM Transactions on Networking
(TON), 5(6):770-783, (1997). 49, 70

Shi Zhou. Characterising and modelling the Intétopology, the rich-club phenomenon
and the PFP modeBT Technology Journak4, 2006/ 44, 47, 50, 51, 81, 84

P. Zhu and C. Wilson. A study of graph spectra for conmgagraphs. InThe 16th British
Machine Vision Confereng&eptember 2005. 103

S. Zhou, G.-Q. Zhang, and G.-Q. Zhang. Chinese h@eAS-level topologylET Com-
munications 1(2):209-214, April 2007. 51



	Introduction
	Structure of the Internet
	Motivations for Topology Research
	Challenges
	Contributions
	Thesis Outline

	Literature Review
	Introduction
	Topology Research Challenges
	Inference of topologies
	Modelling the Internet
	Validation of Models

	Topology Inference
	ISP Router-Level Maps
	Comparison of traceroute-based methods
	Accuracy of traceroute maps
	AS-Level Internet maps

	Models of Internet Topology
	Random graphs
	Power laws in topologies
	Arguments against power laws
	Alternative topology models
	Structural models of the Internet
	Comparison of topology generation models

	Topology Generation
	Waxman
	GT-ITM
	BA and AB
	GLP
	Inet
	The Positive Feedback Preference (PFP)
	IGen

	Summary

	Understanding Internet AS Topology Models
	Introduction
	Related Work
	AS Topology Models
	AS Topology Observations
	Chinese AS topology
	Skitter
	RouteViews
	UCLA

	Topology Characterisation
	Degree
	Assortativity
	Clustering
	Rich-Club
	Shortest path length distribution
	Centrality measures
	Coreness
	Top clique size
	Spectrum

	Measures of Similarity
	Kolmogorov-Smirnov (KS) distance
	Kullback-Leibler divergence

	Results and Discussion
	Methodology
	Topological metrics
	Measures of similarity

	Multiple Vantage Points
	Conclusions and Contributions

	Tuning Topology Generators
	Introduction
	Related Work
	Weighted Spectral Distribution
	Tuning the Topology Models
	Link Densities
	Spectra PDF
	Limitations of Spectra CDF
	Weighted Spectra
	Weighted Spectra Comparison

	Generating Topologies with the Optimum Value Parameters
	Conclusions and Contributions

	Evolution and Scaling of Internet Topologies
	Introduction
	Related Work
	Mixing Properties of Networks
	Evolution of the Internet
	Skitter topology
	UCLA

	Reconciling the Datasets
	Conclusions and Contributions

	Contributions and Future Work
	Conclusions and Contributions
	Identifying Modelling Challenges
	Tuning Topology Generators
	Analysis of the Internet Evolution

	Discussions and Future Work

	Appendices
	WSD Metric Proof
	Bibliography
	VITA

