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Abstract

Alpha-helical transmembrane proteins constitute roughly 30% of a typical genome and are involved in a wide variety of
important biological processes including cell signalling, transport of membrane-impermeable molecules and cell
recognition. Despite significant efforts to predict transmembrane protein topology, comparatively little attention has
been directed toward developing a method to pack the helices together. Here, we present a novel approach to predict lipid
exposure, residue contacts, helix-helix interactions and finally the optimal helical packing arrangement of transmembrane
proteins. Using molecular dynamics data, we have trained and cross-validated a support vector machine (SVM) classifier to
predict per residue lipid exposure with 69% accuracy. This information is combined with additional features to train a
second SVM to predict residue contacts which are then used to determine helix-helix interaction with up to 65% accuracy
under stringent cross-validation on a non-redundant test set. Our method is also able to discriminate native from decoy
helical packing arrangements with up to 70% accuracy. Finally, we employ a force-directed algorithm to construct the
optimal helical packing arrangement which demonstrates success for proteins containing up to 13 transmembrane helices.
This software is freely available as source code from http://bioinf.cs.ucl.ac.uk/memsat/mempack/.
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Introduction

Alpha-helical transmembrane (TM) proteins constitute roughly

30% of the proteins encoded in a typical genome and are involved

in a wide variety of important biological processes including cell

signalling, transport of membrane-impermeable molecules and cell

recognition. Many are also prime drug targets, and it has been

estimated that more than half of all drugs currently on the market

target membrane proteins [1]. Despite significant efforts to predict

TM protein topology [2,3,4], comparatively little attention has

been directed toward developing a method to pack the helices

together. Since the membrane-spanning region is predominantly

composed of alpha-helices with a common alignment, this task

should in principle be easier than predicting the fold of globular

proteins as the longitudinal constraints of helix packing mostly

reduces the solution space from three dimensions to two.

However, topologies consisting of large numbers of TM helices

as well as structural features including re-entrant, tilted and kinked

helices render simple approaches that may work for regularly

packed proteins unable to predict the diverse packing arrange-

ments now present in structural databases.

Early attempts to predict TM protein folds were based on

sequence similarity to proteins with a known three-dimensional

structure, using statistically derived environmental preference

parameters combined with experimentally determined features

[5]. Another method calculated amino acid substitution tables for

residues in membrane proteins where the side chain was accessible

to lipid. By comparing observed substitutions obtained from

sequence alignments of TM regions, accessibility of residues to the

lipid could be predicted. In combination with a Fourier transform

method to detect alpha-helices, the buried and exposed faces could

then be discriminated and the presence of charged residues used to

construct a three-dimensional model [6]. Other methods also

made use of exposed surface prediction to allocate helix positions,

in combination with an existing framework for globular protein

structure prediction involving the combinatorial enumeration of

windings over a predefined architecture followed by the selection

of preferred folds [7]. However, these methods were only suitable

for 7 TM helix bundles such as rhodopsin and were unsuitable for

other topologies.

More recently, a modified version of the fragment-based protein

tertiary structure prediction method FRAGFOLD [8] was

modified to model TM proteins. FRAGFOLD is based on the

assembly of super-secondary structural fragments using a simulat-

ed annealing algorithm in order to narrow the search of

conformational space by pre-selecting fragments from a library

of highly resolved protein structures. FILM [9] added a membrane

potential to the FRAGFOLD energy terms which was derived

from the statistical analysis of a data set of TM proteins with

experimentally defined topologies. Results obtained by applying

the method to small membrane proteins of known three-

dimensional structure showed it could predict both helix topology

and conformation at a reasonable accuracy level. Despite these

good results, the combinatorial complexity of such ab initio protein
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folding methods means that it is unfeasible to use such approaches

for large TM structures, many of which are longer than 150

residues. Modification of another globular protein ab initio

modelling program, ROSETTA [10], added an energy function

that described membrane intra-protein interactions at atomic level

and membrane protein/lipid interactions implicitly, while treating

hydrogen bonds explicitly [11]. Results suggest that the model

captures the essential physical properties that govern the solvation

and stability of TM proteins, allowing the structures of small

protein domains, up to 150 residues, to be predicted successfully to

a resolution of less than 2.5 Å. A recent enhancement of the

algorithm demonstrated that by constraining helix-helix packing

arrangements at particular positions based on local sequence-

structure correlations for each helix of the interface independently,

TM proteins with more complex topologies could be modelled to

within 4 Å of the native structure [12].

The prediction of helix-helix interactions, derived from residue

contacts and topology, has only recently been investigated in TM

proteins due to the relative paucity of TM protein crystal

structures. In contrast, a number of globular protein contact

predictors exist based on a variety of machine learning algorithms

[13,14], and contact prediction has also been used to assess

globular protein models submitted to the Critical Assessment of

Structure Prediction (CASP) experiment [15]. However, analysis

has shown that such globular proteins contact predictors perform

poorly when applied to TM proteins, most likely due to differences

between TM and globular interaction motifs [16]. A number of

studies have identified structural and sequence motifs recurring

frequently during helix–helix interaction in TM proteins. One

investigation analysed interacting helical pairs according to their

three-dimensional similarity, allowing three quarters of pairs to be

grouped into one of five tightly clustered motifs [17]. The largest of

these consisted of an anti-parallel motif with left-handed packing

angles, stabilised by the packing of small side chains every seven

residues, while right-handed parallel and anti-parallel structures

showed a similar tendency though spaced at four-residue intervals.

Another study identified a specific aromatic pattern, aromatic-

XX-aromatic, which was demonstrated to stabilise helix-helix

interactions during assembly [18], while others include the

GXXXG motif found in glycophorin A [19], heptad motifs of

leucine residues [20], and polar residues through formation of

hydrogen bonds [21].

The discovery of these recurring motifs, and the likelihood that

there are more as yet undiscovered, suggests predictability by a

generalised pattern search strategy. Recently, two methods have

been developed that attempt to predict residue contacts and helix-

helix interaction. TMHcon [16] uses a neural network in

combination with profile data, residue co-evolution information,

predicted lipid exposure using the LIPS method [22], and a

number of TM protein specific features, such as residue position

within the TM helix, in order to predict helix-helix interaction.

TMhit [23] uses a two-level hierarchical approach in combination

with a support vector machine (SVM) classifier. The first level

discriminates between contacts and non-contacts on a per residue

basis, before the second level determines the structure of the

contact map from all possible pairs of predicted contact residues

therefore avoiding the high computational cost incurred by the

quadratic growth of residue pair prediction.

Here, we present a novel method to predict lipid exposure,

residue contacts, helix-helix interactions and finally the optimal

helical packing arrangements of TM proteins. Using molecular

dynamics data to label residues potentially exposed to lipid, we

have trained and cross-validated a SVM classifier to predict per

residue lipid exposure with 69% accuracy. This information is

combined with PSI-BLAST profile data and a variety of sequence-

based features to train an additional SVM to predict residue

contacts. Combining these results with a priori topology informa-

tion, we are able to predict helix-helix interaction with up to 65%

accuracy under stringent cross-validation on a non-redundant test

set of 74 protein chains. We then tested the ability of the method

to discriminate native from decoy helical packing arrangement

using a decoy set of 2811 structures. By comparing our predictions

with the test set, we were able to identify the native packing

arrangement with up to 70% accuracy. All these performance

metrics represents significant improvements over existing methods.

In order to visualise the global packing arrangement, we adopted a

graph-based approach. By employing a force-directed algorithm,

the method attempts to minimise edge crossing while maintaining

uniform edge length, attributes common in native structures.

Finally, a genetic algorithm is used to rotate helices in order to

prevent residue contacts occurring across the longitudinal helix

axis.

Materials and Methods

Data sets
For any machine learning task, the use of a high quality data set

for both training and validation purposes is essential. Our data set

was based on a previously described crystal structure set [4] which

contained data initially collected from MPTOPO [24], OPM [25],

PDB_TM [26] and SWISS-PROT [27] before fragments,

sequences containing chain breaks and non-native TM proteins

such as venoms and colicins were removed. OPM was used to

define TM helix boundaries, although where a visual inspection

appeared to indicate incorrect placement of the membrane,

PDB_TM helix boundary definitions were used instead. The data

set was homology reduced at the 40% sequence identity level

leaving 131 sequences, of which the 74 which contained at least

two TM helices were used to predict residue contacts. For 53 of

these multi-spanning sequences, and a further 24 single-spanning

proteins, we were able to obtain molecular dynamics data from the

Course Grained Database (CGDB) [28] which was used for lipid

exposure prediction. We chose not to predict interactions between

TM helices and re-entrant helices, found in many channels such as

Author Summary

Alpha-helical transmembrane proteins constitute a signif-
icant proportion of the proteins encoded in a typical
genome and are involved in a wide variety of important
biological processes. Many common diseases including
diabetes, hypertension and epilepsy have been related to
transmembrane protein dysfunction, therefore they repre-
sent one of the most important classes of protein for
pharmaceutical intervention. However, due to the exper-
imental difficulties of structure determination, this class of
protein is severely under-represented in structural data-
bases. Here, we present a novel approach that is able to
predict lipid exposure, residue contacts, helix-helix inter-
actions and finally the optimal helical packing arrange-
ment of a transmembrane protein. Under stringent cross-
validation, our approach demonstrates a significant
improvement in prediction over existing software. This
method can be used to gain insights into transmembrane
protein folding and enhance the quality of ab initio
modelling, while providing testable hypotheses for a
variety of studies including protein design, mutagenesis
and thermostability experiments.

Predicting Transmembrane Helix Packing
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Aquaporin, as they are thought to be involved in channel gating

and thus move into and out of the membrane region depending on

physiological conditions. Including re-entrant helices would

therefore be likely to introduce noise into the data set as contacts

could be both positive and negative training examples.

Predicting lipid exposure
During TM protein crystallisation, detergents are used exten-

sively for membrane solubilisation and then act as mimics of the

lipid bilayer due to their self-assembly properties. As a result,

crystallographic data rarely contains information regarding the

positions of lipid molecules, therefore hindering the study, and

prediction, of lipid exposed regions of TM protein. For

investigating TM topology, a number of automated methods exist

that attempt to position the protein within the membrane [25,26].

However, these methods are inappropriate for accurate studies of

lipid exposure as they do not take into account the solvent-filled

cavities and channels found in many TM proteins. To address this,

we used the CGDB, a resource of coarse-grained simulation data,

which contains analysis of lipid-protein interactions following

200 ns of molecular dynamics using GROMACS [29] to

randomly surround TM proteins in dipalmitoylphosphatidylcho-

line lipids and solvent. A snapshot of each protein in its optimum

position within the bilayer and residue statistics throughout the

simulation are available. While difficult to validate, the approach

has proved successful in reproducing the behaviour of equivalent

atomistic simulations of model proteins, as well as allowing the

insertion of various test peptides whose final configurations were in

agreement with experimental data [30]. Additionally, channel-

containing proteins such as aquaporin and potassium channels are

solvent rather than lipid filled at the end of simulation.

To train a SVM classifier, we used CGDB data to label residues

that were lipid exposed. For the 77 proteins within out data set

where CGDB data was available, each residue within the

membrane was labelled as lipid exposed where the fraction of

simulation time exposed to DPPC lipid was greater than 0.5. PSI-

BLAST [31] was used to generate position-specific scoring

matrices for each of the 77 proteins in the data set using the

UniRef 90 database. Two iterations were performed with a

profile-inclusion E-value threshold of 0.001. For each residue in a

sequence, a sliding window approach was used with a window size

of 7, creating a feature vector of length 140 centred on the target

residue. To determine this windows size, the data set was split

randomly into two and the highest scoring window which ranked

equally in each split was selected, therefore demonstrating

consistency between data sets and reducing the risk of overfitting.

Where the window extended beyond the protein termini, empty

feature values were set to zero. All values for each feature position

where then normalised by Z-score to enable faster SVM

convergence. In training, the target sequence, along with any

other sequences with an E-value less than 1e-4, were excluded. We

used SVM-Light [32] and a radial basis function kernel, in

combination with a grid search of SVM parameters. Matthews

Correlation Coefficient (MCC) was used to optimise these values

as it has been shown to be a more robust measure than using recall

or precision alone [33].

Contact definitions
In order to make direct comparisons with other methods, we

used three thresholds to consider a pair of residues to be in

contact. Firstly, a maximal distance of 8 Å between their C-beta

atoms (C-alpha for glycine) [13,14] (contact definition 1).

Secondly, the distance between any two atoms from an interacting

pair is less than the sum of their van der Waals radii plus a

threshold of 0.6 Å [23] (contact definition 2). Thirdly, the minimal

distance between side chain or backbone heavy atoms in an

interacting pair is less than 5.5 Å [16] (contact definition 3). We

defined TM helices as interacting if one residue from each helix

was observed to be in contact.

Predicting residue contacts
Using the three contact definitions, all residue pairs from

different TM helices were labelled as contacting or non-

contacting, resulting in a substantial bias of approximately 1:50.

In order to balance training sets and reduce learning time, non-

contacting examples were selected randomly in order to achieve

approximately equal numbers of positive and negative examples,

before fine adjustment of the SVM cost-factor parameter achieved

a 1:1 ratio.

SVM input features were based largely on PSI-BLAST profile

data, generated as described above. We used a sliding window of 7

residues, centred on each residue in the pair to produce a feature

vector of length 280. Again, this window size was determined by

randomly splitting the data set. In addition to profile data, the raw

SVM scores for predicted lipid exposure were added to the feature

vector for each residue. We then added a number of sequence

derived statistics. To define the sequence separation between the

two residues, a binary vector was used corresponding to distances

of 50, 75, 100, 125, 150, 175, 200 and greater than 200 residues.

We also added a value which corresponded to the relative position

of each residue within the two TM helices, generated by dividing

the residue position in the TM helix by the helix length, and

subtracting the value from one where the two residues were on

adjacent TM helices or are separated by an even number. This

value effectively represented a relative Z-coordinate for each

residue, the rationale being that residues separated by a large

degree on the Z-axis were unlikely to contact. We tried adding a

number of additional values including the lengths of each TM

helix, average lipid exposure scores for each TM helix, total

number of TM helices, sequence length, and a number of residue

co-evolution scores [34,35]. However, none of these values

increased classification performance so were removed in the final

model. Again, each feature position was normalised by Z-score,

before the target sequence and any other sequences with an E-

value less than 1e-4 were excluded from training sets. A radial

basis function kernel was used and MCC was used to optimise

SVM parameters.

Using helix-helix prediction for discriminating decoy
helical packing arrangements

We then tested the ability of the method to discriminate native

from decoy helical packing arrangement using the predicted helix-

helix interactions. For each of the 74 multi-spanning proteins in

our data set, decoys were generated using the REVCAS program

[36]. Each chain was expanded into a larger set of structures by

making it circular and introducing cyclically permuted breaks. The

method involves a triple-point chain reconnection that avoids the

restoration of native segments allowing the generation of a set of

decoy structures. The method was successfully applied to the pore-

forming colicin domain, an all alpha-helical structure that is

typical of many TM proteins in that the amino and carboxy

termini, which are joined when the structure is circularised, are at

opposite ends of the protein, much like TM proteins whose termini

are on opposite sides of the membrane [36]. By generating decoys

in both forward and reverse directions, 24–48 decoys were

generated for each protein resulting in a total set of 2811

structures. Decoys only contained C-alpha atoms, therefore the

remaining backbone and side chain atoms were added and the

Predicting Transmembrane Helix Packing
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structure was refined and energy minimised using the Jackal

package [37]. Additionally, homology models of the native

structures were constructed using MODELLER [38]. Native

topologies were then used to define TM helix boundaries allowing

observed helix-helix interactions to be extracted which were then

compared to the helix-helix interactions predicted from sequence.

Decoys and native structures were then scored by the number of

interacting/non-interacting helices that matched the predictions

and ranked accordingly. We accessed the frequency at which the

native structure, or a model of the native structure, was ranked

first.

Constructing the helical packing arrangement
Once helix-helix interactions have been predicted, the helical

packing arrangement is treated as an undirected graph where the

helices form vertices and their interactions form edges. A force-

directed algorithm is then applied which treats the graph as a

virtual physical system. The system is simulated resulting in

attractive and repulsive forces being applied to vertices, a process

which is repeated iteratively until the system comes to an

equilibrium state at which point the final graph layout is

constructed.

Using the Boost C++ programming library (http://www.boost.

org) we employed a modified version of the Kamada-Kawai force-

directed algorithm [39] which generates two-dimensional layouts

for connected, undirected graphs. It accomplishes this by treating

the graph as a dynamic spring system, where the strength of a

spring between two vertices is inversely proportional to the square

of the shortest distance between those two vertices, and attempting

to minimise the energy within the system. In order to avoid

producing a layout with only a local minima, the vertices are first

arranged along the vertices of a regular n-sided polygon, where n is

the number of TM helices, via a circular layout function. Given

that the number of TM helices in a protein is expected to be less

than 30, energy minimisation occurs in a number of seconds on a

modern computer, avoiding the high running time typically

associated with force-directed algorithms and graphs containing a

larger number of vertices. Resulting layouts demonstrate uniform

edge length, uniform vertex distribution often showing symmetry,

and minimisation of edge crossing – attributes that are common to

the arrangement of TM helices and their interactions in native

TM protein structures.

In a number of cases, multiple helices share the same interactions

resulting in numerous possible arrangements. In all cases where this

occurs, a recursive function is used to score each arrangement

according to the number of observed same-side loop crossovers.

The score is determined by drawing a line (loop) between a pair of

helices adjacent in sequence, before incrementing the helix position

by two so that comparisons are between lines on the same side. Each

line is compared to every other line on the same side and their

intersection is established by determining the cross product. This is

repeated for each side, before the total number of intersections per

side is compared. Particularly when loops are short, it is unusual for

loops to cross each other as this may result in side chain clashes. All

arrangements are then returned, with those containing the least

number of same-side loop crossovers scored highest.

Finally, the constituent residues are superimposed on to their

respective TM helices, before a genetic algorithm is used to rotate

all helices around their respective Z-axes such that the sum of all

predicted residue-residue contact distances is minimised, therefore

preventing residues contacts occurring across the longitudinal

helix axis. For each TM helix, a value in the range 0-359 is

optimised to an accuracy of one degree.

Results

Lipid exposure prediction performance
We compared the per residue performance of our lipid exposure

predictor to the LIPS method using all TM helix residues from our

data set of 77 sequences. The data set contained 336 TM helices

composed of 7016 residues of which 3687 were labelled as lipid

exposed and 3329 were not, according to CGDB data. Optimal

performance was achieved using a radial basis function kernel, a

gamma value of 0.6 and a trade-off value of 1.5. The LIPS method

produces a per residue score generated by multiplying lipophilicity

by positional entropy. The LIPS score that resulted in the optimal

per residue performance was found to be 1.56. Using leave-one-out

cross-validation, our method achieved a MCC of 0.38 and accuracy

of 69.3%, a significant improvement over the LIPS method which

scored 0.23 and 61.7% respectively (table 1). Furthermore, the LIPS

method is calculated using sequence profiles from 18 TM protein

structures, the majority of which are included in the test set of 77,

therefore in the absence of cross-validation these results are likely to

be an overestimate. However, as the LIPS method is based on an

alternative definition of lipid exposure, we repeated the bench-

marking of the two methods using the LIPS definition by labelling

residues with a 1.9 Å probe. Under this definition both methods

perform slightly worse although our method still outperforms LIPS,

with an MCC value of 0.27 compared to 0.18. This indicates that

there is reasonably good correlation between the two definitions

although the LIPS definition is slightly harder to predict, most likely

because the 1.9 Å spherical probe is a poor approximation to the

non-spherical nature of a membrane phospholipid, unlike, for

example, a 1.4 Å spherical probe is to a water molecule.

Residue contact prediction performance
Residue pair contact prediction performance compared with

two TM protein contact predictors (TMHcon [16] and TMhit

Table 1. Per residue lipid exposure prediction performance using a data set of 77 sequences.

Method
Lipid exposure
definition Precision Recall FPR FNR MCC Accuracy

MEMPACK CGDB 0.69 0.56 0.36 0.26 0.38 69.3%

MEMPACK 1.9 Å probe 0.71 0.61 0.39 0.33 0.27 64.3%

LIPS CGDB 0.61 0.59 0.48 0.29 0.23 61.7%

LIPS 1.9 Å probe 0.65 0.65 0.50 0.32 0.18 60.3%

Lipid exposure definition = test set labelled according to the CGDB definition or using a 1.9 Å probe. FPR = false positive rate. FNR = false negative rate. MCC =
Matthews Correlation Coefficient. Accuracy = (TP + TN)/(TP + TN + FP + FN).
doi:10.1371/journal.pcbi.1000714.t001
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[23]) and two globular protein contact predictors (PROFcon [13]

and SVMcon [14]) using the data set of 74 sequences and three

contact definitions is shown in table 2. Existing methods all had

the option of a L5 mode, where only the top L/5 positive results

are returned where L is the sequence length, or for TM protein-

specific methods, the total length of all TM helices. This generally

has the effect of reducing the false positive rate though usually at

the expense of increasing the false negative rate; however our

method did not benefit from the use of this scoring method

suggesting the SVM hyperplane is already optimally positioned.

Performance at all three contact definitions was consistent, with

a MCC value of approximately 0.28 although a slightly lower false

positive rate using contact definition 2. All three SVMs achieved

optimal performance using radial basis function kernels with

gamma and trade-off values of 24 and 1 respectively. Addition of

the predicted lipid exposure scores to profile data in the SVM

feature vector resulted in an improvement of approximately 0.05

MCC, while the additional sequence derived statistics contributed

approximately 0.03 MCC. Although a combination of residue co-

evolution scores did improve performance slightly compared with

using profile data alone (0.02 MCC), this increment was lost when

scores were added after predicted lipid exposure suggesting the

two overlap in feature space.

Compared to existing predictors, our method performed well

with MCC scores substantially higher than both SVMcon and

PROFcon (contact definition 1) using either standard or L5

scoring schemes. SVMcon L5 was able to produce a lower false

positive rate (FPR) but at the expense of a false negative rate (FNR)

of 1.0. Similarly, PROFcon produced a lower FNR of 0.41 but at

the expense of a higher FPR of 0.46, compared to 0.001 for our

method. On this evidence, globular protein contact predictors

appear to perform relatively poorly when applied to TM proteins.

In comparison to TMhit, a recent SVM-based TM protein contact

predictor, results were more comparable. While our method scores

higher on all assessment metrics, the margin of improvement is

narrower with a MCC of 0.28 compared to the TMhit value of

0.26. This is not unexpected given that both methods use SVM

classifiers, though more significantly there is a considerable

overlap of 42 sequences in training sets. Given that we assessed

our method using leave-one-out cross-validation whereas TMhit

results were not cross-validated, TMhit results are likely to be

overestimated therefore the actual margin of improvement may be

larger. Compared to TMHcon, a recent neural network based

approach, our method again performed well, with TMHcon

results comparable to the globular protein contact predictors.

Helix-helix interaction prediction performance
We assessed performance of helix-helix interaction prediction

requiring one residue from each helix to be in contact. Based on

observed interactions there were comparable numbers of inter-

acting and non-interacting helices for all contact definitions, with

668 and 733 respectively using contact definition 1. Results using

the data set of 74 sequences and three contact definitions is shown

in table 3.

Our method achieved similar scores using contact definitions 1

and 2, with a MCC of 0.29 and accuracies of 64.7% and 63.6%.

Using contact definition 3, results were slightly lower with a MCC

of 0.37 and accuracy of 60.6%. The FNR was consistent across all

definitions at approximately 0.84. Compared to SVMcon and

PROFcon, our method performed well with only PROFcon L5

approaching similar performance (MCC 0.19, accuracy 62.0%),

suffering only from a higher FPR compared to our method. Other

than PROFcon L5 which performed better than expected for a

globular protein predictor, results were generally low with MCC

values in the range 0.02–0.13. The performance of TMhit

surpasses that of our method with MCC 0.45 and accuracy

72.3%. However, as described above, the TMhit results were not

cross-validated and are likely to be substantially overestimated

given the overlap of 42 sequences in training sets. To give an

estimate of the level of improvement this is likely to have resulted

in, we scored our method in the absence of cross-validation for the

42 overlapping sequences and achieved scores of MCC 0.65 and

accuracy 82.6%. We additionally compared the two methods

using a smaller data set of 14 sequences for which both our

method and TMhit results were fully cross-validated [23].

Requiring a single contacting pair of residues, our method

achieved 66.3% accuracy compared to 39.1% for TMhit (standard

error 65%). TMHcon achieved MCC 0.02 and accuracy of
Table 2. Per residue pair contact prediction performance
using a data set of 74 sequences.

Method
Contact
Definition Precision Recall FPR FNR MCC

MEMPACK 1 0.69 0.0023 0.0010 0.88 0.28

SVMcon 1 0.06 0.00050 0.0083 0.97 0.03

SVMcon L5 1 0.09 0.00 0.0003 1.00 0.01

PROFcon 1 0.03 0.021 0.4600 0.41 0.04

PROFcon L5 1 0.06 0.00010 0.0018 0.99 0.01

MEMPACK 2 0.69 0.0015 0.0007 0.88 0.28

TMhit L5 2 0.57 0.0015 0.0012 0.88 0.26

MEMPACK 3 0.70 0.0022 0.0010 0.89 0.27

TMHcon L5 3 0.09 0.00020 0.0021 0.99 0.02

Contact definition 1 = A maximal distance of 8 Å between their C-beta atoms
(C-alpha for glycine). 2 = The distance between any two atoms from an
interacting pair is less than the sum of their van der Waals radii plus a threshold
of 0.6 Å. 3 = The minimal distance between side chain or backbone heavy
atoms in an interacting pair is less than 5.5 Å. Results for contact definition 3
used 58 sequences that had more than 2 TM helices as TMHcon is unable to
make predictions for 2 TM helix sequences.
doi:10.1371/journal.pcbi.1000714.t002

Table 3. Helix-helix interaction prediction performance using
a data set of 74 sequences.

Method
Contact
Definition Precision Recall FPR FNR MCC Accuracy

MEMPACK 1 0.93 0.10 0.0087 0.84 0.29 64.7%

SVMcon 1 0.57 0.11 0.090 0.84 0.11 59.3%

SVMcon L5 1 0.82 0.034 0.0074 0.95 0.13 59.5%

PROFcon 1 0.43 0.16 0.83 0.16 0.02 45.4%

PROFcon L5 1 0.72 0.11 0.043 0.84 0.19 62.0%

MEMPACK 2 0.95 0.11 0.0062 0.84 0.29 63.6%

TMhit L5 2 0.77 0.31 0.12 0.47 0.45 73.2%

MEMPACK 3 0.94 0.11 0.008 0.85 0.27 60.6%

TMHcon L5 3 0.49 0.32 0.37 0.63 0.02 52.3%

Successful prediction of interacting helices requires one residue from each helix
to be in contact. Results for contact definition 3 used 58 sequences that had
more than 2 TM helices as TMHcon is unable to make predictions for 2 TM helix
sequences.
doi:10.1371/journal.pcbi.1000714.t003
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52.3%, which reflected the relatively poor performance in residue

contact prediction, caused largely by a high FPR of 0.37.

Helical packing arrangement decoy discrimination
performance

Using our decoy set, we were able to derive between 1 and 53

(average 18.5) unique helical packing arrangements for 71

sequences in our data set. By combining these with unique helical

packing arrangements derived from the native crystal structure

and homology models of the native crystal structure, we assessed

performance of our and existing methods at discriminating the

native or native model arrangements from decoy arrangements.

Each arrangement was scored according to the number of

interacting/non-interacting helices that matched the prediction

from sequence, with interacting/non-interacting helices scored

equally. Accuracy was determined by counting the frequency at

which the native or native model arrangement achieved the

highest score. As discriminating 2 TM helix arrangements, where

helices are either interacting or not, is somewhat trivial, table 4

shows results including and excluding 2 TM helix arrangements,

where there are a total of 57 sequences with more than 1 unique

packing arrangement.

Consistent with prediction of helix-helix interactions, our

method performed similarly using contact definitions 1 and 2,

although unexpectedly performed best using contact definition 3

(70.4% accuracy). Excluding 2 TM helix proteins, using all contact

definitions, performance decreased slightly suggesting that, on

average, discriminating 2 TM helix arrangements is slightly easier

than for other topologies. SVMcon and PROFcon both performed

best when evaluated using their L5 modes although both achieved

accuracies over 10% lower than our method. TMhit achieved a

slightly lower score than our method (66.2%) though again in the

absence of cross-validation. Excluding 2 TM helix proteins

performance was almost 7% lower. TMHcon was not assessed

using the complete set of 71 as it is unable to make predictions on

2 TM helix proteins, and performed below all other methods

(40.4% accuracy) on the set of 57.

Assessing the accuracy of helical packing arrangements
Given that the generation of helical packing arrangements is

based on the interconnection of vertices within a graph, accuracy

is ultimately dependent on the detection of edges via prediction of

helix-helix interactions. Out of the data set of 74 sequences, 17

(23%) had all interactions successfully predicted although in 3 of

these cases there were no observed interactions between helices.

Predicted arrangements were then compared by visual inspection

of a two-dimensional slice taken from the crystal structure

approximately normal to the likely plane of the lipid bilayer,

and assessed based on the overlap of helices from the predicted

arrangement and the slice. Of these 17 cases, 9 arrangements

produce overlaps for all TM helices and therefore can be

considered as closely resembling the helix packing arrangement

observed in the crystal structure.

Among these 9 correct cases, three 7 TM helix proteins (PDB:

1E12:A, 1XIO:A, 2F95:A) produced helical packing arrangements

that clearly resembled their respective crystal structures (Figure 1).

Additionally, for each of these cases the correct arrangement was

successfully determined from alternatives by scoring arrangements

based on the number of same-side loop crossovers. Overall, this

function successfully identified the correct arrangement in 4 out of

6 cases where multiple arrangements were generated when tested

using observed helix-helix interaction information; in the remain-

ing 3 cases, 2 had an equal number of crossovers for each of the

alternative arrangements (2HYD:A, 1XFH:A) – in these instances,

Table 4. Helical packing arrangement decoy discrimination
using a data set of 71 sequences with 2 or more TM helices
(n = 71) and a data set of 57 sequences with 3 or more helices
(n = 57).

Method Contact Definition Accuracy (n = 57) Accuracy (n = 71)

MEMPACK 1 68.4% 69.0%

SVMcon L5 1 52.6% 56.3%

PROFcon L5 1 45.6% 52.1%

MEMPACK 2 66.6% 67.6%

TMhit L5 2 59.6% 66.2%

MEMPACK 3 70.2% 70.4%

TMHcon L5 3 40.4% -

Accuracy reflects the frequency at which the native or native model helical
packing arrangement achieved the highest score compared to the decoy set.
doi:10.1371/journal.pcbi.1000714.t004

Figure 1. Predicted helical packing arrangement and crystal structure of Halorhodopsin (1E12:A). In this example the two left-most
helices share the same interactions. The correct arrangement has been identified as having no same-side loop crossovers, compared to one for the
incorrect arrangement. Predicted residue-residue contacts are annotated on the packing arrangement while observed helix-helix interactions are
annotated on the crystal structure.
doi:10.1371/journal.pcbi.1000714.g001
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the highest scoring arrangement was the one with the lowest total

residue-residue contact distance resulting in one correct and one

incorrect prediction, while in the remaining case the correct

arrangement contained one more crossover than the incorrect

arrangement (1XME:A).

Other cases where all helix-helix interactions were successfully

predicted and packing arrangements closely resembled crystal

structures included the 5 TM helix ubiquinol oxidase (1FFT:C)

and 6 TM helix Aquaporin-4 (2D57:A). Below 4 TM helices,

arrangements generally resembled crystal structures well although

the task becomes more straightforward as the number of TM

helices decreases. Where all helix-helix interactions were success-

fully predicted and packing arrangement resembled the crystal

structure, application of a genetic algorithm to rotate helices

around thei respective Z-axes usually resulted in helix orientations

that aligned significantly better with native structures compared to

arbitrary degrees of rotation (Figure 2).

When helices were connected consecutively, for example where

a 3 helix protein has interactions between helices 1–2 and 2–3, the

program was unable to determine the correct arrangement despite

predicting all helix-helix interactions correctly. Under these

circumstances, the algorithm defaults to a circular layout, which

is frequently closest to the crystal structure as in the case of

aquaporin (2D57:A) where helices are arranged around a central

pore. In a number of cases though, the correct arrangement is

much closer to linear as in the case of Photosystem II (2AXT:A)

where there is significant interaction with additional chains in the

complex. In such situations, the helix-helix interactions alone do

not provide enough information to determine the correct

arrangement.

Where prediction of helix-helix interactions falls below 100%,

packing arrangements generally fail to accurately resemble crystal

structures. In some cases such as the ammonium transporter

(2B2F:A), well connected sub-components of 3–5 TM helices were

often correctly formed, but their arrangement in relation to each

other was incorrect due to a number of missing helix-helix

interaction. In three cases where there was substantial intercon-

nection between TM helices, the arrangement does not succeed,

most likely due to the algorithm encountering a local minima. It is

also impossible to generate an arrangement from a disconnected

graph, where all helix-helix interactions are incorrectly predicted,

which occurs in 12 sequences (16.2%). A summary of results where

all interactions were correctly predicted is shown in Table 5.

While the successful packing arrangements were achieved with

topologies of less than 8 TM helices, we additionally tested the

algorithm using observed data to validate its effectiveness at

generating arrangements for topologies with large numbers of TM

helices using observed helix-helix interaction data rather than

predicted contacts. In a number of cases, complex packing

arrangements were generated with up to 13 TM helices that

Figure 2. Predicted helical packing arrangement and crystal structure of Photosystem I chain D (1JB0:L). Application of a genetic
algorithm to rotate helices about their Z-axes results in the correct positioning of residues Val64, Ala135 and Phe137.
doi:10.1371/journal.pcbi.1000714.g002

Table 5. Assessment of predicted helical packing
arrangements for the 17 sequences where all interactions
were successfully predicted.

Helical packing arrangement prediction Count

Resembles two-dimensional slice from crystal
structure

9

No observed helix-helix interactions 3

Incorrect due to linear configuration 3

Incorrect helix placement 2

Arrangements were compared to a two-dimensional slice taken from the
respective crystal structures and assessed based on the alignment between the
helices in the predicted arrangement and in the slice; in 9 cases there was
overlap for all helices (2F95:A, 1E12:A, 1XIO:A, 2D57:A, 1FFT:C, 1JB0:L, 1C17:A,
1R3J:C, 2AHY:A). In 3 cases, there were no observed helix-helix interactions
therefore no arrangement could be predicted (1VCR:A, 1YQ3:D, 1ZOY:C). In 3
cases, the arrangement predicted a circular configuration whereas the correct
arrangement was approximately linear (1DXR:M, 2AXT:D, 2AXT:A).
doi:10.1371/journal.pcbi.1000714.t005
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clearly resembled the respective crystal structure. Examples

include the 10 TM helix proton ATPase (1MHS), 12 TM helix

multidrug transporter (2GFP:A) and 13 TM helix cytochrome C

oxidase (1XME:A) shown in figure 3, although in this case two

helices that share the same helix-helix interactions are incorrectly

replaced.

Discussion

In this paper we have implemented a novel tool capable of

predicting lipid exposure, residue contacts and helix-helix

interactions using SVM classifiers. These predictions are then

combined to produce the optimal helical packing arrangement

using a force-directed algorithm. Firstly, lipid exposure is predicted

using evolutionary information labelled by data derived from

coarse-grained molecular dynamics simulations. Solvent-exposed

residues in both globular and TM proteins are known to be less

conserved than buried residues, therefore non-conserved residues

are more likely to identify lipid-exposed surfaces of TM helices

[40,41]. But in contrast to globular proteins, TM proteins do not

show large differences in hydrophobicity between lipid-exposed

and buried residues, making lipid exposure prediction a harder

task [42]. Using machine learning tools that have been successfully

applied to TM protein topology prediction [4], we were able to

achieve per residue accuracy that compares favourably with a

recent existing method suggesting the SVM is efficiently capturing

the major distinguishing features of lipid exposure, the periodicity

of conserved residues and the polarity of their side chains, from

sequence profile data. Predictions may be useful for a number of

additional applications including the modification of a TM

protein-specific energy functions for ab inito modelling [9] where

they could be incorporated into the potential, as for example

ROSETTA [10] includes the LIPS score in its energy function, or

added as an additional term with a separate weighting.

By combining predicted lipid exposure with sequence derived

statistics and profile data centred on each residue in a pair, we

were able to train an additional SVM to predict residue contacts.

Recent methods specifically designed to predict residue contacts in

TM proteins have used a variety of features including residue co-

evolution scores, contact propensities and a range of global

sequence-derived values. By experimenting with different combi-

nations we attained optimal performance using a minimal set of

features without the need for a consensus approach, resulting in

significant improvement compared to all existing methods. Our

results demonstrate that globular protein contact predictors

perform poorly when applied to TM proteins due to extremely

high levels of false negative predictions. This is not especially

surprising since the amino acid composition of hydrophobic

globular protein alpha-helices has recently been shown to contrast

from that of TM helices, therefore contact propensities are likely to

differ. Generally, hydrophobic globular protein alpha-helices that

are long enough to span the bilayer contain three or more charged

residues with a relatively even distribution along their lengths, as

well as a decreased frequency of occurrence of Ile and Val

residues, while charged residues in TM helices tend to be

concentrated towards helix termini [43]. Additionally, in the case

of PROFcon, all TM proteins were removed from the data set so

the neural network had received no training with TM protein

data. Compared to the top performing TM protein contact

predictor, our method achieves higher performance on all

assessment metrics despite the lack of cross-validation of TMhit

which was trained on a data set which included 42 sequences that

are present in our test set. While our method produces a

consistently low FPR, the FNR achieved a maximum score of

Figure 3. Helical packing arrangement and crystal structure of cytochrome C oxidase (1XME:A), generated using observed rather
than predicted helix-helix interactions. Observed residue-residue contacts are annotated on the packing arrangement while observed helix-
helix interactions are annotated on the crystal structure. In this example, the two helices at the bottom left of the arrangement are incorrectly placed;
they share the same helix-helix interactions but the correct arrangement has one same-side loop crossover whereas the incorrect arrangement has
none. The alternative correct arrangement where the placement of these two helices is reversed is returned as the second highest scoring
arrangement.
doi:10.1371/journal.pcbi.1000714.g003
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0.89. This result may suggest that our SVM is not sampling feature

space effectively, although it is reasonable to suggest that many of

these contacts are brought together as a consequence of strongly

interacting residues that are correctly predicted. Studies of

globular proteins have found that folds could be reconstructed

using ab initio techniques and distance constraints to obtain native-

like structures using between N/4 and N/8 restraints, where N is

sequence length [44,45], which supports the notion that the

majority of contacts may be consequential. Ranked by average

raw SVM score, the top five predicted contacts include Ala-Ser,

Gly-Ile, Ile-Phe, Ala-Trp and Ala-Leu, which is broadly in line

with previous observations of a relative enrichment of small and

aromatic residues in packing interactions [17,18,46]. Residue

contacts involving a pair of charged residues occur in between 16

and 20 of the 74 proteins (depending on contacting definition),

with most containing only a single charged pair. Therefore they

are relatively under-represented in the current data set. Out of 53

contacting charged pairs across all contact definitions, only 10 are

correct so compared to uncharged contacts they are poorly

predicted by the SVM. Aside from a relative lack of training data,

it is difficult to speculate on exactly why this is although most are

side-chain to backbone interactions. Additional input features may

therefore be required to improve prediction of charged residue

pairs. However, contacts between some Arg-Asp and Arg-Glu

pairs are predicted relatively strongly and are amongst the top 25

scoring predictions.

Helix-helix interaction results generally mirrored contact predic-

tion performance, though globular protein contact predictors faired

slightly better due to the relative ease of only having to predict a single

residue contact for a successful helix-helix interaction, particularly

when the FPR is reduced using the L5 mode, with PROFcon

achieving 62.0% compared with 64.7% compared to our method.

While difficult to compare accuracy using the entire test set of 74

sequences, the significant improvement of our method over TMhit

when fully cross-validated on a smaller set of 14 sequences suggests

state-of-the-art performance. While it is often difficult to successfully

predict all helix-helix interactions correctly, the discrimination of

decoy helical packing arrangements provides a measure of how well a

method predicts enough interactions correctly to identify the native

arrangement, a value which is usually below 100%. Results indicate

that our method performs well achieving up to 70.4% accuracy,

aided by the fact that 50% of sequences have over 60% of their helix-

helix interactions correctly predicted (contact definition 3). PROF-

con, achieving only 52.1%, performs much worse than its helix-helix

interaction prediction score would suggest, indicating that these

successful interaction predictions are limited to a smaller number of

sequences, and that prediction generalises poorly across a larger test

set, while conversely SVMcon performs better than its interaction

prediction score would suggest indicating better generalisation. Again

it is difficult to accurately compare TMhit which achieves identical

performance.

Using the helix-helix interaction results, helical packing

arrangements were constructed using a force-directed algorithm.

This task, which was ultimately dependent on the accuracy of

predicted interactions, was successful for proteins with up to 7 TM

helices although errors occurred where helices were connected

consecutively and even correct interaction data was insufficient to

identify the correct arrangement. In these circumstances, interac-

tions with additional chains is likely to play a role. For proteins

where helix-helix interactions were not all correctly predicted,

testing using observed interaction data validated that the algorithm

is capable of constructing packing arrangements for proteins with

up to 13 TM helices. These results suggested that where predicted

helix-helix interactions can be supplemented with interaction data

from experimental sources, for example mutagenesis studies, it

may be possible to generate accurate packing arrangements for

complex proteins containing large numbers of TM helices, assisted

by the fast run time of the algorithm that will also allow alternative

packing arrangements to be explored iteratively. Predictions can

be used to generate pseudo three dimensional-structures with

which loop regions can be built using programs such as

SuperLooper [47]. Models could then be used to pre-position

residues prior to ab inito modelling therefore reducing conforma-

tional search space and reducing computational requirements.

While our results are encouraging, the paucity of structural data

available for training purposes is likely to have limited residue

contact and helix-helix interaction prediction performance, partic-

ularly as small data sets reduce tolerance to errors and the ability of

SVMs to develop large generalisation bounds. Paradoxically,

another problem may be the use of crystal structures to derive

contact data, which provide only a snapshot of a protein at a given

time therefore neglecting the inherent dynamic nature of TM

proteins. TM proteins are known to exhibit significant conforma-

tional flexibility for a range of functions including modulation of

catalytic activity and control of ionic flow, therefore labelling

contacts according to a single crystal structure will inevitably lead to

training errors. Should enough data become available, it may be

preferable to use ensembles of nuclear magnetic resonance

structures in place of crystal structures, though due to the

experimental difficulties in obtaining membrane protein structures

this is unlikely to be an option in the near future. Another issue is the

interaction between chains in multimeric complexes, which the

majority of TM proteins in structural databases form. It is

reasonable to expect that interplay between chains in complexes

has a degree of influence on the folding of individual chains,

therefore satisfying these oligomeric interactions may lead to an

improvement in the fold prediction of individual chains. Predicting

oligomeric interactions would also allow TM protein quaternary

structure to be predicted from sequence for the first time, while

revealing the stoichiometry and symmetry of the complex.

Overall, our results demonstrate that residue contacts and helix-

helix interactions can be used to accurately predict the helical

packing arrangement of TM proteins, and discriminate native

from decoy arrangements. This method can be used to gain

insights into TM protein folding, while providing testable

hypotheses for a variety of studies including protein design,

mutagenesis and thermostability experiments, in addition to

reducing conformational search space prior to ab initio modelling.

Availability
MEMPACK is available as source code from the URL below

and is free for non-commercial use. All data sets are also available,

and cross-validation SVM model files are available on request.

The software has been tested on a Linux operating system. In

order to compile and run, the gcc compiler, Perl interpreter, Boost

C++ libraries and NCBI tools are required. http://bioinf.cs.ucl.ac.

uk/memsat/mempack/
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