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ABSTRACT: The processing of harvested E. coli cell broths is
examined where the expressed protein product has been
released into the extracellular space. Pre-treatment methods
such as freeze—thaw, flocculation, and homogenization are
studied. The resultant suspensions are characterized in terms
of the particle size distribution, sensitivity to shear stress,
rheology and solids volume fraction, and, using ultra scale-
down methods, the predicted ability to clarify the material
using industrial scale continuous flow centrifugation. A key
finding was the potential of flocculation methods both to aid
the recovery of the particles and to cause the selective
precipitation of soluble contaminants. While the flocculated
material is severely affected by process shear stress, the impact
on the very fine end of the size distribution is relatively minor
and hence the predicted performance was only diminished to
a small extent, for example, from 99.9% to 99.7%
clarification compared with 95% for autolysate and 65%
for homogenate at equivalent centrifugation conditions. The
lumped properties as represented by ultra scale-down
centrifugation results were correlated with the basic proper-
ties affecting sedimentation including particle size distribu-
tion, suspension viscosity, and solids volume fraction. Grade
efficiency relationships were used to allow for the particle and
flow dynamics affecting capture in the centrifuge. The size
distribution below a critical diameter dependant on the broth
pre-treatment type was shown to be the main determining
factor affecting the clarification achieved.
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Introduction

The preparation of antibodies for therapy is largely based on
the use of platform processes producing monoclonal anti-
bodies in mammalian cell systems. Antibody fragments, such
as Fabs (~57kDa) comprising two chains each of a variable
and constant domain, or Fvs (~27kDa) comprising two
variable domains as two chains or as an engineered single
chain (scFv), retain similar antigen binding capacity as the
whole antibody and are suitable for expression in microbial
cells such as E. coli; they are now entering late stage clinical
testing (Andersen and Reilly, 2004; Holt et al., 2003). Domain
antibodies (dAbs, ~12-15kDa) are based on a single variable
domain from the heavy and light chain. These also exhibit
high binding affinity and specificity despite lacking most of
the constitutive part of a full antibody (Jespers et al., 2004;
Saerens et al., 2012). The opportunity now exists to establish
platform processes for the production of various antibody
fragments using different cell hosts. Such fragments are likely
to behave very differently in a process environment; for
example, they tend to be more hydrophobic (Ewert et al.,
2003; Nieba et al., 1997) and of reduced mass solubility
(Famm et al., 2008; Tanha et al., 2006).

The use of ultra scale-down techniques for the evaluation of
process options has been discussed in literature: for centri-
fugation clarification (e.g., Boychyn et al., 2000, 2001, 2004),
for centrifuge dewatering and sediment discharge (Chan et al.,
2006; Tustian et al., 2007), for membranes (Ma et al., 2010),
for pumps (Zhang et al., 2007), and for filters (Reynolds et al.,
2003). Large scale centrifugation performance based on its
clarification efficiency can be evaluated at the bench scale
through the use of the X' theory, which allows for comparison
between centrifuges of different sizes and, using appropriate
calibration factors, different centrifuge types (Ambler, 1959).
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The ultra scale-down (USD) technique mimicking centrifu-
gation is based on the principle that significant hydrodynamic
stress will be encountered by the process material in the
centrifuge before it enters the settling region. The level of the
shear stress depends on the type of machine used (Boychyn
etal., 2004). Shear stress is known to disrupt mammalian cells
(Hutchinson et al., 2006; Kamaraju et al., 2010; Tait et al.,
2009; Zaman et al., 2009), flocs (Berrill et al., 2008), and
precipitates (Bell et al., 1982; Byrne et al., 2002; Hoare et al.,
1982). Maybury et al. (2000) observed that there could be a
10-58% error in predicting the capacity of a continuous
centrifuge if hydrodynamic stress equivalent to the conditions
which prevail in the feed zone was not applied to the process
material prior to centrifugation. Rotating disc or capillary
devices (Boychyn et al., 2001; Chan et al., 2006; Ma et al., 2002;
McCoy et al., 2009; Tait et al., 2009) to mimic the effect of
process shear stress may be used. Computational fluid
dynamics have been used to help establish correlations
between the device and the process shear stress (e.g., Boychyn
et al., 2001, 2004), but verification is also achieved experi-
mentally (Hutchinson et al., 2006). The use of flocculating
agents to aid the separation of cellular material from
fermentation broths is particularly affected by pH, cell
concentration, flocculant type (or chemistry), and fluid
mechanics (Gasner and Wang, 1970; Wang et al., 1970). E. coli
aggregation using cationic polymers occurs through charge
redistribution on the surface of originally negatively charged
E. coli debris (the charge-mosaic model); here the polymer has
to be of sufficient length to ensure positively charged areas are
created to induce aggregation (Treweek and Morgan, 1977).

The use of flocculants to enhance the recovery of cells
and cell debris has been demonstrated for centrifugation
(Milburn et al., 1990; Salt et al., 1995) and for filtration
(Aspelund et al., 2008). In addition, a high proportion of
nucleic acids, lipids, and colloidal particles are shown to be
selectively precipitated from soluble proteins. An ultra scale-
down approach was used to optimize the flocculation of E. coli
heat lysed cell broth extract using cationic polymer followed
by clarification by centrifugation (Berrill et al., 2008) with
successful verification at scale using a disc stack centrifuge.

In this paper, the physical characterization of cell broths
conditioned by a range of methods including flocculation,
are correlated with ultra scale-down methods. This is to help
gain a better understanding of their processing.

Materials and Methods

All chemicals were provided by Sigma—Aldrich (Dorset,
England) unless otherwise stated. E. coli cells (strain W3110)
expressinga Vy domain antibody (13.1 kDa) were culturedina
complex medium (Biopharm Process Research, GSK, Steven-
age, UK) containing yeast extract (1 L SRI000DLL bioreactor,
dia 100 mm, fitted with triple Rushton impellers, dia 46 mm,
N=1,200 rpm, DASGIP AG, Jiilich, Germany). The cells were
grown to OD 40 (dry cell weight 13gL™") with a post-
induction time of 45 hleading to 80% cell autolysis at harvest as
measured by release of nucleic acid (fluorescence Qubit™
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assay; Life Technologies Ltd., Paisley, UK). Cell broth was used
within 3 h of harvest for bioprocessing studies or for freezing
(—80°C) in 50 mL aliquots for subsequent studies. This latter
approach was to allow reproducible studies irrespective of
variations in the fermentation broth.

Cell Broth Processing

Homogenization Studies

A high-pressure batch homogenizer (Gaulin Micron Lab40;
APV Gaulin, Lubeck, Germany) operated at 500 bar, 4°C
for two passes was used to achieve complete cell disruption.

Flocculation Studies

A 12.5%w/v polyethyleneimine (PEI, (C,HsN),, My =
50,000-100,000, Sigma—Aldrich) water based solution
was aged for 0.5h. The solution, 2mlL, was added to
cell broth, 50mL, at 6 mLmin~ ' at the tip of the impeller
in a 100mL baffled reactor fitted with an impeller (six
bladed Rushton turbine, dia 20 mm, 1,150 rpm, Re = 2000,
G = (P/Vi)™ =800s") to reach a final PEI concentration
of 0.5% w/v. The solution was left to mix for t=1h at 21°C
before processing (Gt\sim3 x 10%\gg10°required for full floc
strength to be gained (Bell and Dunnill, 1982)).

Ultra Scale-Down Studies

Samples were exposed to shear stress for 20's in a rotary disc
device (20mL stainless steel chamber of 50 mm internal
diameter and 10 mm height, fitted with a stainless steel
rotating disc of 40 mm diameter and 0.1 mm thickness with
disc speed 0-20,000 rpm) controlled by a custom designed
power pack (UCL mechanical workshop). The disc speed was
related to maximum energy dissipation rates, ¢ (Wkg '),
using a computation fluid dynamic derived empirical
correlation (6=1.7x 107> N>7' where N is disc speed,
revs s 1, 33 < N < 250; Zhang et al., to be published). Two
conditions were used, N=6,000rpm, &=0.045x 10° W
kg™' and N= 12,000 rpm, &= 0.53 x 10°Wkg ' as equiva-
lent of conditions experienced in the feed zone of
hydro-hermetic and non-hermetic disc stack centrifuges
respectively (to note previously reported values for the
same disc speed conditions of ¢=0.019 x 10°Wkg ' and
0.37 x 10°Wkg ' (e.g., Lau et al., 2013; Tait et al., 2009) are
for a computation fluid dynamic analysis of the whole disc
outer edge rather than the corner at the disc edge). Each
combination of flocculation and shear preparation was
carried out in duplicate and tested for sedimentation and size
distribution properties as described below (n=2).

The sedimentation properties of sheared and non-sheared
samples were characterized using a test tube centrifuge in
terms of equivalent settling area (X7):

- Viapw®
B Zgln(ZRo/(Ro + Ri))
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where V), is the volume of process material in the centrifuge
tube, w is the radial speed, gis the acceleration due to gravity, R;
is the inner radius (the distance between the centre of rotation
and the top of the liquid), and R, is the outer radius (the
distance between the center of rotation and the bottom of the
tube). A multi-well centrifuge was used (Centrifuge 5810R;
Eppendorf, Hamburg, Germany, equipped with a 2 mL deep
square well plate format (Abgene, Epsom, UK)) using a method
previously described by Tait et al. (2009). The microwell plate
was filled with sample volumes (Vy,;,) of either 500, 1,000, or
1,500 pL in selected plate locations and spun for times (f) of 5,
10, 25, or 50 min and speeds of 3,000 or 4,000 rpm. The top
40% of the resulting supernatant was recovered from each well
taking care not to disturb the sediment. Well-clarified
supernatant, that is, baseline value for clarification, was
prepared by centrifugation for 0.5h at maximum RCF of
16,000 (Centrifuge 5415R; Eppendorf, 12,300rpm). All
operations were carried out at 21°C. The centrifugation
conditions were recorded in terms of values of Vi,,/(tX7).

Analytical Methods

Clarification and Solids Weight Fraction

The solids content of the sample and feed supernatants was
estimated by OD at 600 nm. The solids remaining (S) was
characterized by:

ODs — ODo

=== 95100 (2)
ODg — ODg

where ODg is the optical density of the supernatant of the
centrifugation sample under test, ODg is the optical density of
the well-clarified supernatant (i.e., the baseline sample
produced by extended centrifugation—see previous section),
and ODy: is the optical density of the sample prior to centri-
fugation. Solids weight fraction in a sample was measured by
weight difference prior to and after centrifugation. A 1.5mL
Eppendorf tube spun for 2 min at 10,000 RCF was used for this
purpose. All experiments were carried out in triplicate.

Particle Size Distribution

Processed cell broth samples were evaluated using blue and
red (laser) light diffraction through a sample flow cell
(Mastersizer 2000, equipped with a Small Volume Dispersion
Unit, Malvern Instruments Ltd., Worcestershire, UK) working
in the particle size detection range of 0.01-2,000 pwm.
Refractive and absorption indices used were 1.59 and 0.000,
respectively, that is, as for latex particles and all reported
results are as for equivalent latex particle diameter (the indices
are unknown for many materials studied here but changes in
their value to reflect these possible differences give only small
variations in resulting size distributions). Results were
measured in triplicate (n=3) and then recorded as volume
percentage, V, against particle size interval, Wand mean size of

interval, d;. Representative size distributions are presented
from the duplicate preparations (n = 6). The variance in key
parameters of size distributions (e.g., volume fraction of fine
particles) is less than £10%.

Protein Analysis

The concentration of product in samples under investigation
was analyzed using protein A chromatography (HPLC
Agilent 1200, Agilent Technologies UK Ltd., West Lothian,
UK, fitted with a 1mL HiTrap MabSelect® Xtra, GE
Healthcare Life Sciences, Buckinghamshire, UK). Loading
and equilibration were performed using a 0.1 M PBS bulffer at
pH 7.3. Samples were diluted in a defined fashion in
equilibration buffer to a concentration of ~0.1 mg/mL,
filtered using 0.22 wm PVDF syringe filter and then placed on
a cooled auto-sampler (4°C) for the duration of the analysis
cycle. Elution was performed using a 13 mM HCl buffer at pH
1.9 with product eluted recorded at 280 nm. Calibration was
performed using standard solutions of pure domain antibody
at a concentration of 1.08 mgmL ™" (GSK). Protein aggrega-
tion was quantified using size exclusion chromatography
(HPLC Agilent 1200; Agilent Technologies UK Ltd., fitted
with a Tosoh TSK-Gel® G2000SWx; column, 5 wm particle
size, Tosoh Bioscience GmbH, Stuttgart, Germany).

Rheology

A cup-and-bob rheometer was used (Brookfield DV-2+
viscometer fitted with spindle CP40, Brookfield Engineering
Laboratories, MA), exposing 0.5mL of treated cell broth
samples to shear rates of 37.5-1,500s ™" in seven increments
with 30s hold at each increment for increasing and
decreasing shear sweeps.

Results and Discussion

Cell broths are highly complex suspensions. Three of the
fundamental properties which impact centrifuge perfor-
mance and which are relatively accessible to measurement are
the particle size distribution, the suspension solids volume
fraction and the suspension rheology. For flocs and
aggregates these properties may be affected by exposure to
hydrodynamic stress. The following results firstly explore the
effects of cell broth conditioning on these properties. The
measurement of density (or difference in density between the
sedimenting species and the suspension) is challenging for a
material comprising flocculated and precipitated material
and entrapped liquor. As the size of precipitates increases it is
observed that the proportion that is entrapped liquor
increases (Bell et al., 1982). Attempts to separate the settling
species from the surrounding liquor (e.g., centrifugation or
filtration) can impact the material composition itself making
density measurement difficult. The shape factor is difficult to
characterize due to the irregular shape. The combined effects
of all the above properties may be measured by ultra scale-
down centrifugation.
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Particle Size Distributions

Particle size distribution analysis is used to compare and
contrast the effect of different methods of cell broth
conditioning. Since there are six orders of magnitude of
particle size to be dealt with in the same distribution, two
methods of presentation are used. Firstly, a logarithmic size
scale allows all features of the size distribution to be
represented. Also, the focus is on volume rather than number
distribution as it is the volume fraction remaining, for
example after centrifugation, which is a key performance
factor affecting subsequent stages, such as filtration. Howev-
er, a logarithmic distribution visually misrepresents the
amounts of different particle species present. To overcome
this, fingerprints of the volume frequency distributions are
also presented in such a way to allow direct comparison of the
amount of the different species present and of the effects of
processing, for example, how one species might break-up
into a second. These volume frequencies are adjusted to
reflect the different amounts of solid phase in the samples to
either allow for loss of volume fraction (e.g., due to floc or cell
break-up releasing entrapped liquor), or to allow for gain in
volume fraction (e.g., due to precipitation of soluble material
or to liquid entrapment in growing flocs).

Figure 1 shows the analysis of fresh cell broth as obtained
directly from the fermenter. Also shown is the effect of shear
stress as might be experienced in the feed zone of a non-
hermetic (high shear stress feed zone) disc stack centrifuge
which might be used to clarify this material. Three peaks are
identified for both non-sheared and sheared material. For
the non-sheared material about 1% (all percentages will be
quoted on a volume basis only) of the material is in the
0.8—4 wm range (Fig. 1b), this size range probably being
representative of whole cells and cell ghosts. There is little
evidence of debris, that is, particles occurring in the sub
0.8 wm range. A further 1% is in the 10-50 um range
(Fig. 1c) and the final 98% in the 50-800 pum range
(Fig. 1d). Both of these are evidently aggregates of the cell
species. The effect of shear stress is to disrupt the largest
aggregates reducing their volume to 88% (from 98%) and
yielding significant increases in both the first two peaks but
yet again no evidence of sub 0.8 pm material which would
be typical of cell debris.

Figure 2 shows the same analysis but for freeze-thawed cell
broth. The same three peaks are observed in addition to a
fourth peak in the sub 0.8 wm range, that is, debris-like
material. In addition the volume fractions of the 0.8—4 um
(Fig. 2b and ¢) and the 10-50 pm peaks (Fig. 2c) are
considerably higher and more akin to the sheared material in
Figure 1. This new fine material may either be the result of cell
break-up or of macromolecular precipitation both of which
may occur using during ice crystal formation. The freeze-
thawed cell broth appears to be less sensitive than fresh
material to shear stress, the only significant effect being the
break-up of some aggregates in the >200 wm range to form
aggregates within the same peak. Hence, it is not expected
that clarification of this material will be affected by shear

91 6 Biotechnology and Bioengineering, Vol. 111, No. 5, May, 2014

q 12

3
10
o0
L 8 oy
@ [ ]
=
£ 0
E 6 Q
g o °
> 4 O o}
h ]
(@) ¢]
2 [J
1 2
0 R TTTTs !!& (CCOCOecs %IK(D
102 10! 10° 10! 10? 10° 10*
Particle size (pum)
0 20 40 60 80 100
5 —
b 0-10Fg, 0-5pm | (0 0-0.5F,p,0-100 jun | (a) 0-07Fp, 0-714 pm
M=x10 B M=x10 3 M=x1
— 1 500
Feo, ’
PN o & e
o B ke 2 R o C
o e . 000000 ., 00 * 3 %4
P00 05.6 2 & o #50°000, o .4 8 o .
0 1 2 3 4 5 0 200 400 600

Figure 1. Properties and effect of shear stress for fresh cell broth. Volume size
distributions are presented for (O) fresh cell broth, and for (@) cell broth sheared atan
equivalent maximum power dissipation, ¢, of 0.53 x 10°Wkg™". The relative solids
fraction, ¢, is 0.11 for sheared and non-sheared material. Volume ratios of peaks 1, 2, 3,
are 2:1:97 for non-sheared and 8:4:88 for sheared autolysed cell broth. The size
distributions are presented as (a) the whole distribution on logarithmic size scale, and
the volume frequency distributions emphasizing (b) small, (¢) medium, and (d) large
sized particles. In order to rationalize the data sets, size distributions were converted to
volume frequency distribution, that is, for particle channel j, F;= V/W; where iis the
size range of the channel. For such plots the volume fraction of particles in size range
d; to d, is given by f:f F,;dd)/ f(]“ F,dd ), where the integrated area for a size range
is directly proportional to the volume of particles. Axis scales for F,¢,, and d and the
relative magnification, M, of the figures are given in inserts. In all cases representative
size distributions are presented where the variance in key size parameters (e.g.,
volume fraction of fine particles) is less than 10% (n=2).

stress in a centrifuge feed zone even for a non-hermetic (high
shear stress) feed zone.

Separate studies, not shown here, indicate considerable
variability in the size distribution of the fresh cell broth, with
greater or lesser extent of fine particle formation. Even
though it appears to be less sensitive to shear stress, freeze-
thawed cell broth was characterized as the most challenging
material with respect to clarification by centrifugation and
hence this material was taken forward to subsequent studies.
Similar feed solids volume fractions and domain antibody
supernatant concentrations were noted for fresh and thawed
cell broth. The use of a thawed cell broth offers consistency of
starting material. A final study with fresh cell broth will be
used to help verify the flocculation and centrifugation studies.

Figure 3 shows the effect of homogenization on thawed cell
broth. Homogenization at 500 bar for two passes is used as it
reflects a typical process for complete cell disruption and total
product release (Bailey and Maegher, 1997). As expected,
there is a considerable shift towards smaller particle sizes with
all aggregates above ~10 pm (Fig. 3c and d) being disrupted
resulting in just 9% of the solids remaining in the 1-10 pm
range, these probably being whole cell ghosts and their
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the size distributions. The relative solids fraction, ¢,, is 0.11 w/v for non-sheared and
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aggregates. The remaining 91% of the particles are submicron
with a 10-fold increase in the volume of particles in the 0.08—
0.30 wm range (Fig. 3a). The concentration and amount of
product in the supernatant remained the same as the fraction
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&
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of solids decreased from 0.11 to 0.078 w/v. This implies a
small but probably insignificant release of intracellular
product (~3%) upon homogenization. As expected, expo-
sure of the homogenate to the highest stress levels found in a
centrifuge feed zone resulted in no further changes of particle
size distribution or solids fraction (results not shown here).

Since there is little product yield benefit of homogeniza-
tion, the subsequent focus of the cell broth processing was on
the use of flocculation of cell broth to enhance recovery by
centrifugation. Here the important features are the aggrega-
tion into larger flocs of particles less than ~5 pm (Fig. 4) and
the increase in solids fraction from 0.11 to 0.15w/v. Two
species of flocs appear to be formed. Solids in the range of 5—
50 wm make up 20% of the distribution and, interestingly,
the overall solids fraction of particles in the 0-50 wm range
has increased from ~0.025 to 0.030 w/v. The difference is
possibly due to precipitate formation of soluble or colloidal
material (Salt et al., 1995). The volume of aggregates >50 pm
appears to increase from 0.090 w/v for thawed cell broth to
0.120 w/v, this again being possibly due to precipitation as
well as liquid entrapment. The apparent loss of particles in
the range 150-500 pwm is only partly accounted for by the
increase above 500 pm and it is possible that the preparation
of PEI flocs using mixing for 1 h at relatively high speed led to
some break-up of larger aggregates over time. Such an effect is
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Figure 3. Homogenization, 500 bar for two passes, of freeze-thawed cell broth.
Volume size distributions are presented for (@) sheared thawed cell broth and for (O)
homogenate. See Figure 1 for explanation of size distributions. The relative solids
fractions, ¢,, are 0.11 w/v for thawed cell broth and 0.078 w/v for homogenate. The
volume ratio of peaks 1, 2, 3 is: 72:19:9.
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Figure 4. PEl flocculation of freeze-thawed cell broth. Volume size distributions
are presented for (@) non-sheared thawed cell broth (see Fig. 2 for description) and for
(O) PEl-flocculated thawed cell broth. See Figure 1 for explanation of size
distributions. The relative solids fractions, ¢,, are 0.11w/v for thawed autolysate
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also noted in Figure 2 with large aggregates (>200 pm)
being broken-up by shear stress (a phenomenon also
reported in previous work; for example, see Gasner and
Wang (1970)).

The effect of hydrodynamic stress on the flocs at levels
equivalent to that found either in the low or high shear stress
feed zone industrial-scale centrifuge is studied in Figure 5.
The majority of the large aggregates are disrupted to form
aggregates in the 1050 pm size range (Fig. 5b—d). However,
there is no evidence of the reappearance of the sub 2 pm
particles present in thawed cell broth (Fig. 5b). Microscope
images (not shown here) help confirm the changes observed,
especially of the effect of shear on the large aggregates present
in the flocculated material. While the size distribution of the
non-sheared fresh material was considerably different to that
of thawed material, the final overall size distributions of
sheared material were similar especially after exposure to
high hydrodynamic stress (Fig. 6a). Again, no particles was
evident below ~2 um (see Fig. 6b) although compared with
flocs of thawed material the flocculated fresh material does
contain a higher proportion of fine particles (Figs. 5b and
6b) which, however, appear to be less sensitive to shear
stress. These are all factors which should impact the ability
to process these flocculated materials by centrifugation at
scale.
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Figure B. Effect of shear stress on PEI flocculated freeze-thawed cell broth.
Volume size distributions are presented for (@) PEI flocculated cell broth and for PEI
flocculated cell broth sheared at equivalent & of (X) 0.045 x 10°Wkg™" and (O)
0.53 x 106Wkg’1. The relative solids fractions, ¢,, are 0.13w/v for PEI flocculated
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-
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Figure 6. Effect of shear stress on PEI flocculated fresh cell broth. Volume size
distributions are presented for (@) PEI flocculated fresh cell broth, and for PEI
flocculated fresh cell broth sheared at equivalent & of (%) 0.045 x 10°W kg~ and (O)
0.53 x 10°Wkg~". The relative solids fractions of the non-sheared and sheared
material are as for flocculated fresh cell broth (see Fig. 5). The volumes ratios of peaks
1and 2 are (@) 50:50, (X) 87:13, (O) 93:7. Data for fresh cell broth (Fig. 1) is shown for
comparison in Figure 6b (- --).

Suspension Rheological Properties

Some examples of flow properties of the various materials
studied under laminar flow conditions are given in Figure 7 in
terms of the apparent viscosity as a function of shear rate
during exposure to extended cycles of shear. All materials
exhibited moderate shear thinning characteristics (n values
range from 0.75 to 0.95) with both time dependent behavior
and some irreversible loss of structure. This overall rheo-
destructive behavior makes it necessary to relate rheological
measurements under defined laminar flow conditions to the
flow conditions which prevail during ultra scale-down test
tube centrifugation and, for the purposes of prediction of
full-scale operation, the conditions which apply during
continuous flow centrifugation. Some materials, especially
non-sheared PEI flocculated suspensions, exhibited consid-
erable slip at the rheometer walls which led essentially to
measurement of just the continuous phase. In these cases, the
rheological properties of closely related material are used (e.
g., PEI flocculated material exposed to preconditioning by
low hydrodynamic stress in the ultra scale-down shear
device).

Ultra Scale-Down Centrifugation

The range of centrifugation conditions studied is representa-
tive of those commonly used in industrial scale centrifuga-
tion, (Q/Xp) = Viup/(tX7) >~3.0x 10 ms ', where Q is
the flow-rate and X, is the Sigma value for a full scale
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Figure 1. Rheological characterization of processed cell broth. Data presented:

Shear rate, 7 (s™)

Increasing shear

Decreasing shear

Broth pre-treatment n k (Ns"m™?) n k (Ns"m™?%)

(a) Thawed cell broth (@) 0.83 6.76 x 10> 0.83 6.76 x 102

(a) Homogenate (O) 0.95 2.34%x 1072 0.95 2.34%x107°
g

(b) PEI flocs, £=0.045 x 10°Wkg ™! 0.82 5.50 x 1072 0.92 251x107°

(c) PEI flocs, 6=0.53 x 10°Wkg ™ 0.75 7.76 x 107> 0.90 2.46 x 107

The rheology of non-sheared flocs was not recordable, most likely due to slip at the disc surface in the presence of large flocs. Temperature was maintained at

23°C in the viscometer using a cooling water circuit.

centrifuge (the value includes a calibration factor to allow for
non-ideal flow (e.g. Hutchinson et al. (2006)). For the
recovery of solids from fresh cell broth (Fig. 8a) and thawed
cell broth (Fig. 8b), similar properties are obtained with
~13% solids remaining at the highest centrifuge throughputs
and little evidence of the performance being affected by
exposure of the material to even the higher hydrodynamic
stress levels studied. At low centrifuge throughputs there are
slightly higher levels of solids carry over for the thawed as
compared with the fresh cell broth, this probably reflecting
the differences in size distributions at the fine end with the
former containing peaks in the submicron range (compare
Figs. 1 and 2). The sensitivity to shear stress of the fresh cell
broth (Fig. 1) is not reflected by changes in the clarification
achieved (Fig. 8a); the small extent of change expected is
within the range of uncertainty of the analysis. Extremely low

equivalent centrifuge throughputs are required to achieve say
10% level of solids remaining in the supernatant for
homogenate (Fig. 8c). It was also observed that homogeni-
zation did not contribute to any extra release of product (data
not shown). As might be expected the centrifuge perfor-
mance is not affected by shear stresses imposed in advance.

For PEI flocculated cell broth (Fig. 8d and e) high levels of
clarification are achieved reflecting the major changes in the
particle size distribution especially in the sub-5pm range
(Figs. 5b and 6b) and the reduced viscosity. It is also evident
that the flocculated material is sensitive to shear stress with up
to a doubling of solids carry over when comparing no to high
shear stress pre-processing. The fourfold increase in solids
carry over when processing flocculated fresh rather than
flocculated thawed cell broth (Fig. 8e compared with 8d)
matches with the respective size distributions at the fine end
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Figure 8. Ultra scale-down centrifugation analysis of processed cell broth: (a) fresh cell broth, (b) freeze-thawed cell broth, (¢) homogenized thawed cell broth, (d) PEI
flocculated thawed cell broth, and (e) PEI flocculated fresh cell broth. The different suspensions were all exposed to conditions of: (@) no shear; (X) & =0.045 x 10°Wkg~"; (O)
&=0.53 x 10°W kg~ and then processed by ultra scale-down centrifugation. Data presented as mean + average (n= 2); lines are best least squares fit using 3rd order polynomials.
For graphs (a—c) single correlations are given as there is no consistent trend with increasing shear rate. In all cases the correlations are fitted through the origin which provides the

control.

(Figs. 5b and 6b). Also matched is the impact of shear stress
with over a doubling in solids carry over in going from no to
high shear stress for flocs from a thawed cell broth compared
with those from a fresh cell broth where there is ~20%
increase in solids carry over.

Figure 9 explores the effect of the stresses involved during
continuous-flow centrifuges on the recovery of domain
antibodies. No change in the concentrations of the domain
antibodies or their molecular variants (e.g., dimers) was
observed in the ultra scale-down shear stress tests, even under
excessive (1h) exposure to shear stress. These results are

920
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consistent with previous observations on antibody frag-
ments, for example, fAbs (Harrison et al, 1997) and
monoclonal antibodies, for example, mAbs (Reid et al.,
2010) where the impurities present in the broth probably
serve to act as surface-active protectants of the proteins even
if there are denaturing (e.g., air/liquid) interfaces present. No
significant difference was observed in the yield of domain
antibody or in the profile of monomer and dimers for any of
the cell broth conditioning methods studied in this paper,
that is, freeze—thawing, homogenization or PEI flocculation
(data not shown here). As discussed earlier there may be a
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Figure 9. Product stability during shear stress of cell broth. The product purity
profile in terms of monomer and two dimer forms after exposure to different shear
stress levels for (a) 20's (i.e., the same overall equivalent exposure to stress as in a
centrifuge feed zone and (b) for 1h. In all cases thawed cell broth was used as a
starting material. Data presented as mean & SD (n=3).

small increase due to the lower solids volume fraction after
homogenization. Studies on of the effect of broth condition-
ing on sediment dewatering will be a key issue in the future if
more intensive high solids concentration processing is of
interest (Tustian et al., 2007).

Correlating Suspension Properties and Centrifuge
Performance

From the definition of the settling capacity of a centrifuge,
Vian/t X35 we have (Ambler, 1959; Maybury et al., 1998):

i= (50) (12 ) o ®)

where d, is the critical particle size above which all particles
are recovered and f{g,) is a correction factor to allow for the
volume fraction of solids. Various expressions exist for f(¢,)
depending on the suspension type; in this study flg,) =1/
(1 —¢,) isassumed (Richardson et al., 2002), this being based
on the theoretical reduction in area available for upward flow

(other correlations were considered but the hindered settling
conditions which exist in the flow between disc spaces are
insufficiently well-characterized to justify the use of any one
correlation). For the purpose of this work Vy,,/tXr=3.50
x 10"*ms™" was chosen; this is equivalent to flowrates
ranging from 10°Lh™" for small pilot scale centrifuges to
10°Lh™" for the larger industrial scale machines used for
broth processing. Viscosity values, u, used in the correlation
were taken from Figure 7 at y =15~ as an approximation of
low shear condition in a centrifuge tube. The predicted
percentage of solids in the supernatant after centrifugation,
Spreds is given by:

(1 —=T(dy))

pred - Z V

where T(d) = (d/d.)* ford < d.,
T(d) = 1ford > d,

(4)

where V(d,) is the percentage volume of particles in a channel
i of average size d;. Calculated values of d. are given in Figure
10 legend. The comparison for predicted and actual solids
remaining is presented in Figure 10, this showing good
correlation but with some offset at the very low levels of solids
remaining achieved using flocculation. This may be for a
variety of reasons including differences in the densities of the
different sized particles being recovered, the approximations
made for the rheological properties which prevail during
ultra scale-down centrifugation and the uncertainty in

100
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% solids remaining at

Vlab /{sz}

o
o
-

0.01 0.1 1 10 100

pred (vol % <d )

Figure 10. Correlation between the particle volume fraction d<d, and the
volume fraction in suspension after centrifugation at Vup/(tX7) =3.50 x 10 8ms™"
data presented for fresh cell broth (€}, no shear; ¥, high shear) and freeze-thawed cell
broth (@, no shear; ¥, high shear), © =6.76 x 103Nsm? d; =2.79 wm; homogenate
(O, no shear; 57, high shear), © =234 x 103 Nsm~2 d, =1.61 um; PEI flocculated
cell broth (€3, @ no shear; A, A low shear; §, A, fresh; @, A, thawed)
=550 x 10"*Nsm~2, d, = 2.54 um; PEl flocculated cell broth high shear (%, fresh;
WV, thawed) =776 x10"°Nsm2 d,=3.01pum; Viscosity values taken from
Figure 7; measurements for fresh autolysate, PEI flocculated cell broth at low shear
and PEI flocculated fresh cell broth were all affected by slip at the rotating bob;
viscosity values were taken from nearest neighbour material. Assumed Ap =75kg m—
(Baldwin et al., 1995). Low shear stress, ¢ 0.045 x 106Wkg’1; high shear stress
¢ 0.53 x 105Wkg~"; — best least square fit for all data points; - - - parity line.
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particle size distributions especially at the fine end of the
distribution. The key value of this ability to correlate the
predicted and experimentally observed extents of solids
remaining is that it helps verify the observations made
especially of changes in the particle size distribution as a
function of the different conditioning procedures used.

Prediction of Large Scale Centrifugation From USD
Results

The critical aspect here is the translation of the ultra scale-
down results achieved using either low or high shear stress
pre-treatment. The rheological properties which relate to the
settling zone of a continuous flow centrifuge will relate to
those after exposure to extensive shear cycles with for
example a threefold reduction of apparent viscosity being
possible (Fig. 7). There are then two methods to translate the
ultra scale-down data:

(a) via the use of equivalent capacity/settling areas, that is,
Q/ Xp=Vi/tX; where a calibration factor is used in the
evaluation of X, to account for non-ideal flow patterns.

(b) use of the particle size distributions as in this paper but
with an alternative expression for the grade efficiency as a
function of d; relative to d. (Mannweiler and Hoare, 1992):

T(d;) = 1 — exp (—0.865(d;/d.)**) (5)

Again this expression allows for non-ideal flow patterns in the
settling zone of the full scale centrifuge. However it does
require the X'j, value for the full-scale centrifuge to be based
on the assumption of ideal streamline flow patterns, that is,
without any calibration factor used. The value of this
approach is that it takes into account the larger part of the size
distribution at the fine end which determines the extent of
solids carry over (i.e., T(d;) < 1 for di/d. < 2.5).

Conclusions and Future Work

Ultra scale-down centrifugation provides insight of centri-
fuge performance as may occur at full scale. Alternatively the
suspension physical properties may be combined to help
predict centrifuge performance. The good correlation
achieved in this study between the two methods for
characterization of centrifuge performance allows the
importance to be assessed of various suspension properties
such as the volume fraction at the fine end of a size
distribution, for example, <~3 wm depending on suspen-
sion viscosity and solids volume fraction. For autolysates the
presence of a significant proportion by volume of particles at
the fine end of the distribution leads to the prediction of
substantial solids carry over during industrial scale centrifu-
gation. However this material is not unduly affected by the
levels of shear stress which prevail in the feed zones of
continuous centrifuges. The effect of homogenization is to
increase substantially the amount of material at the fine end
and there is over fourfold increase in solids carry over during
centrifugation. Flocculation of the cell broth with PEI

922 Biotechnology and Bioengineering, Vol. 111, No. 5, May, 2014

removes nearly all material at the fine end. This, combined
with a reduction in viscosity, leads to a major 20- to 50-fold
reduction in supernatant solids carry over in the centrifuge as
compared with non-flocculated cell broth. However, the PEI
flocculated material is sensitive to shear stress and this can
lead to ~20-100% increase in solids carry over when using a
centrifuge equipped with a high shear stress non-hermetic
feed zone (reduced to 5-50% increase when using a low shear
stress hydro-hermetic feed zone). The effects of such process
improvements on clarification now needs to be assessed in
terms of the impact on the whole bioprocess sequence, for
example, on subsequent filtration stages. This will help better
relate the control of physical properties needed in processing
of challenging materials such as concentrated autolysed
microbial cell broths.

Nomenclature

d particle diameter (m)

d. critical particle diameter (m)

d; impeller diameter (m)

Fy,; volume frequency distribution where i is the

channel number
g gravitational acceleration (m s72)
G mean velocity gradient (s~ ')
k flow consistency index (Ns"m™?)
n flow behavior index
N disc speed (rps)
Ns stirrer speed (rps)

ODs  optical density of supernatant at 600 nm

ODo  optical density of supernatant after extended
centrifugation at 600 nm

OD;r  optical density of feed at 600 nm

P mixing vessel power input (= P,oNs’d;) (W)

Q flow-rate through a disc stack centrifuge (m>s™")

P, power number

Te the effective radius of the centrifuge (m)

R; inner radius of a centrifuge tube (m)

R, outer radius of a centrifuge tube (m)

RCF  relative centrifugal force (g)

T(d)  fraction of particles of diameter <d that will
sediment

Vs settling velocity in a centrifugal field (ms™')

Viab ~ volume of process material in a test tube centrifuge
(m?)

V(d;) percentage volume of particles in a channel 7 of
average size d;

w size-interval width in particle size distribution (pm)

€ maximum power dissipation (Wkg™")

0 fluid density (kgm™>)
Ap density difference between solid and liquid phase

(kgm?)

0 half-disc angle (rad)

y shear rate (s™})

n dynamic viscosity (Pas)

>p equivalent settling area of a disc stack centrifuge
(m?)



P equivalent settling area of a test tube centrifuge (m?)
Oy relative solids fraction of a cell suspension (w/v)
1) angular velocity of a centrifuge (rads™')
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