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Abstract

Emission tomographic imaging is framed in the Bayesian and information theoretic framework. The first

part of the thesis is inspired by the new possibilities offered by PET-MR systems, formulating models and

algorithms for 4-D tomography and for the integration of information from multiple imaging modalities.

The second part of the thesis extends the models described in the first part, focusing on the imaging

hardware. Three key aspects for the design of new imaging systems are investigated: criteria and efficient

algorithms for the optimisation and real-time adaptation of the parameters of the imaging hardware;

learning the characteristics of the imaging hardware; exploiting the rich information provided by depth-

of-interaction (DOI) and energy resolving devices. The document concludes with the description of the

NiftyRec software toolkit, developed to enable 4-D multi-modal tomographic inference.
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Notation

Boldface letters are used to denote vector and matrix quantities, while the scalar entries of a vector

or matrix are denoted in regular type with subscripts. Curly brackets delimit sets and square brackets

delimit vectors and matrices. The list below summarises the most frequently used symbols and their

meaning (unless otherwise specified).

λ = [λ1, .., λv, ..λNv ] λ ∈ R+Nv Radio-pharmaceutical concentration.

q = [q1, .., qd, ..qNd ] q ∈ NNd Photon counts.

v v ∈ {1, .., Nv} Index of the voxels.

Nv Nv ∈ N Number of voxels.

d d ∈ {1, .., Nd} Index of detector bins.

Nd Nd ∈ N Number of detector bins.

z = [z1, .., zv, ..zNv ] zv ∈ {1, .., N} Hidden anatomical-functional state in voxel v

N N ∈ N Cardinality of the anatomical(-functional) states.

θy = {θy1 , .., θyN } θy ∈ R+2N Set of class-specific parameters of the MR acquisition system.

θy,k = {µλ,k, σy,k} θy,k ∈ R+2 Class-specific parameters of the MR acquisition system.

µy,k µy,k ∈ R+ First moment of the MR image intensity in class z.

σy,k σy,k ∈ R+ Second moment of the MR image intensity in class z.

π = {π1, .., πk, .., πN} πk ∈ R[0,1] Multinomial prior probability associated to a discrete state z.

θλ = {θλ1 , .., θλN } θλ ∈ R+2N Set of class-specific parameters of the pharmaceutical uptake model.

θλ,k = {µλ,k, σλ,k} θλ,k ∈ R+2 Class-specific parameters of the pharmaceutical uptake model.

µλ,k µλ,k ∈ R+ First moment of the radio-pharmaceutical concentration in class k.

σλ,k σλ,k ∈ R+ Second moment of the radio-pharmaceutical concentration in class n.

θ = {θy, θλ} θ ∈ R+4N Set of parameters of the anatomical functional model.

E[x] Expectation of random variable x.

E(x) Shannon Entropy associated to random variable x.

Φ(x) Gaussian kernel with unit variance and centred in x = 0.

N (x;µ, σ) Normal probability distribution of x, with expectation µ and variance σ2.

P(λ, k) Poisson probability distribution of k, with expectation λ.
∂f(x)
∂xr

Partial derivative of function f(x) (vector-valued x) with respect to xr .
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Chapter 1

Introduction

1.1 PET-MR: The third life of emission computed tomography

1.1.1 PET and SPECT

Emission computed tomography is a type of tomography involving radio-active emission, including

Positron Emission Tomography (PET) and Single-photon Emission Computed Tomography (SPECT).

PET and SPECT are widely applied in the field of medical imaging for the diagnosis of ischemic heart

disease, mapping of local brain metabolism, detection of tumors and areas of infection and drug devel-

opment.

The PET and SPECT imaging systems detect the gamma photons emitted by a radio-active isotope

(tracer), which is introduced into the body on a biologically active molecule (radio-pharmaceutical) or

as a pure element. Three-dimensional images of the spatial concentration of the tracer are reconstructed

indirectly from the observed high energy gamma radiation emitted in consequence of the decay of the

radio-active isotope. By detecting the high energy photons and solving the inverse problem that arises,

one can measure in vivo the spatial concentration of the tracer, obtaining insight of the metabolic and

physiological processes. However, the computation of a solution to the inverse imaging problem presents

numerous challenges that frustrate the quantitative assessment.

1. Uncertainty of the measurements: The dose of tracer administered to the patient is limited by

safety constraints; consequently, the number of photons acquired during SPECT and PET medical

scans is of the order of only a few millions to a few hundreds of millions. Discretising the imaging

volume in a few millions of voxels, it is immediately understood how the uncertainty associated

with the photon counting process constitutes a major limitation in emission computed tomography.

While the random variations associated to the photon counting process may be considered less

critical than eventual systematic errors, the dramatic extent of such uncertainty, as discussed in

this thesis, is perhaps the major problem of emission computed tomography. Adopting a jargon

common in the context of photo-detectors engineering, emission computed tomography is photon

limited.
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2. Computational limitations: The problem of reconstructing the spatial density of the tracer from

the emission signals produced by the scanner can be described as an inverse problem, where the

forward problem consists of computing the intensity of light (i.e., as will be clarified, the ex-

pected number of gamma photons) that one would observe for a given spatial distribution of the

tracer. The forward problem consists in simulating the propagation of light through the propagat-

ing medium (the patient in the scanner) and the detection of light by the imaging hardware. In

order to invert the problem, one must be able to compute easily the forward problem; inversion al-

gorithms, such as the ones described in this thesis, in fact, typically entail the iterative computation

of the forward problem. Simulating accurately the propagation of light is tremendously complex.

3. Ill-posedness of the inverse problem: In tomographic reconstruction, one attempts to esti-

mate the rate of emission, continuous function of space and time, from discrete measurements

(the photon interaction events). The reconstruction problem appears therefore inherently under-

determined. Furthermore, the design of the imaging hardware involves a trade-off between effi-

ciency of the photon detection process and ill-posedness of the inverse problem.

4. Mis-characterisation of the imaging systems: Characterisation of the response of the imaging

systems is commonly obtained by numerical simulation or direct measurement by means of arrays

of point sources and other specially designed equipment. Both approaches are subject to errors.

Furthermore, referring back to 2., computational complexity practically imposes the use of ap-

proximated system models. As discussed in this thesis, scattered photons and randoms may be

considered to be in this category, whereas one is forced to adopt simplified forward models due to

computational limitations.

5. Exogenous variables: The signals produced by the imaging system are affected by exogenous

variables, not immediately of interest in the imaging process. In medical applications of Emission

Computed Tomography, the optical characteristics of the propagating medium affect the measure-

ment. Lack of knowledge of the spatially varying attenuation and scatter coefficients for gamma

rays throughout the patient confounds the information that is available about the spatial density of

tracer.

6. Time-dependence: Motion of the patient during the acquisition is an important confounding fac-

tor. The complex, generally non-rigid deformations that occur during the acquisition are challeng-

ing to model, measure and compute. Motion is perhaps more disruptive in emission computed

tomography than in other imaging modalities, such as magnetic resonance imaging (MRI) and

X-Ray computed tomography (X-Ray CT), due to the photon limited acquisition regime. Time

frames short enough to render negligible the effect of motion, in fact, typically present insufficient

information for reconstruction.
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1.1.2 PET-CT and SPECT-CT

Hybrid PET-CT scanners, introduced commercially in 2000 [1, 2], and the immediately following

SPECT-CT scanners (see [3]), have addressed some of the limitations of PET and SPECT. In these

hybrid systems, one or multiple X-Ray sources and detectors are installed aside the detectors for emis-

sion imaging. The X-Ray acquisition enables accurate patient-specific estimation of the attenuation map.

The use of the X-Ray CT derived attenuation map has greatly improved the quality of the emission im-

ages, partly solving problem 5. [4]. Consequently PET-CT and SPECT-CT have been widely accepted in

clinical practice and in research laboratories, virtually all new emission imaging systems incorporating

the X-Ray imaging device. Additionally to the improved quality of the emission images, the anatomical

images provided by the X-Ray scanner have diagnostic value and have proven fundamental for visual lo-

calisation, aiding the quantification and the interpretation by human experts of the emission tomograms.

1.1.3 PET-MR: the PET perspective

Following the success of PET-CT and SPECT-CT, the introduction in 2012 of the first commercial PET-

MR imaging system (the Siemens Biograph mMR) that integrates PET detectors inside the MR coil,

has generated enthusiasm in the medical imaging community. The richness of the information provided

by the combined, simultaneous, acquisition of PET and MR signals and the harmlessness of MR are

enabling new applications. This thesis explores such new possibilities from the perspective of emission

computed tomography.

4-D computed tomography

In order to meet the safety constraints regarding the dose of radiation administered to the patient, the

X-Ray source of PET-CT and SPECT-CT scanners can only be practically switched on for a short time

interval, typically before the emission scanner is activated. Therefore, PET-CT and SPECT-CT sys-

tems are currently designed as sequential systems, with the X-Ray scanner mounted right next to the

PET/SPECT gantry. Integrated PET-MR systems enable simultaneous and inherently spatially aligned

acquisition of the signals from the two modalities. The harmlessness of the non-ionising magnetic reso-

nance imaging system enables continuous acquisition of information related to the underlying anatomy.

Such information may aid the estimation of the spatial density of the tracer and may therefore render

feasible four-dimensional (4-D) emission computed tomography.

Improved quantification

The flexibility of magnetic resonance, its harmlessness and the simultaneous and inherently inter-aligned

acquisition of the emission information promise to enable new techniques for quantitative and qualitative

analysis.
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1.2 The unified modelling approach
This thesis addresses the challenges of emission imaging described above, exploring the combination

of information from the two modalities in PET-MR. The mathematical formulations presented in this

work are inspired by the integrated modelling paradigm outlined in the work of John Ashburner [5] in

the context of MR imaging, describing generative models for PET-MR that capture the (hidden) rela-

tions between the measurements from the two imaging modalities. Heuristics are dispelled by adopting

Probabilistic Graphical Models (PGMs) as a modelling tool and for the development of suitable infer-

ence algorithms. The formulations presented in this thesis are unifying in several ways, combining in a

single model the information from multiple imaging modalities, and attempting to unify reconstruction

and image analysis (registration and segmentation); 3-D and 4-D reconstruction; the parametric and non-

parametric approaches; data-driven and sensor-based motion correction; scatter correction and scatter

rejection.

1.3 Document outline
The first two chapters are introductory. Chapter 2 introduces basic concepts of Probabilistic Graphical

Models (PGMs), framing tomographic reconstruction in such context. Chapter 3 frames the well known

Maximum Likelihood Expectation Maximisation (MLEM) iterative algorithm for the computation of

the Maximum Likelihood Estimator (MLE) and its variant Ordered Subsets Expectation Maximisation

(OSEM) in the context of Probabilistic Graphical Models. The derivations presented in this introductory

chapter serve as the basic ingredients for the formulations presented in the remainder of the thesis. The

second part of the chapter traces the link between the imaging process, the partial-volume effect, resolu-

tion and ill-posedness of the reconstruction problem, investigating, through numerical experiments, the

properties of the Maximum Likelihood Estimator (MLE) and of the Maximum A Posteriori (MAP) esti-

mator with smoothness constraint. The study of the properties of the reconstruction algorithms presented

in this introductory chapter serves as the rationale for the subsequent chapters, especially for chapters 4,

5, 6 and 9.

Chapter 4 introduces a modelling paradigm for multi-modal imaging and defines a model for PET-

MR based on finite mixtures. Such model is aimed at enabling the use of anatomical information ex-

tracted from MR acquisitions to constrain the reconstruction of the emission tomograms.

Chapter 5 addresses the challenge of motion of the patient in the PET-MR scanner. The modelling

paradigm described in Chapter 4 is applied to the 4-D tomographic reconstruction problem. The re-

sulting model describes the interaction amongst the longitudinal measurements from the PET and MR

acquisition systems. The unifying approach results in a number of (sub)models and algorithms: 1)

four-dimensional MLEM reconstruction with non-rigid deformation parameters obtained from external

motion capture devices; 2) direct estimation of the motion parameters from the emission data; 3) event-

driven motion correction in PET-MR; 4) a model for longitudinal segmentation of MR-images. Such
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model, which may be considered a side product of this chapter (as it does not involve PET imaging),

extends the Unified Segmentation framework described by John Ashburner [5], addressing the problem

of plausibility of the registration of longitudinal images.

Chapter 6 extends the finite mixture model described in chapter 4, re-framing the model in the in-

formation theoretic framework in order to introduce a semi-parametric variant. The side product of this

chapter is a link between the parametric registration and segmentation method of the Unified Segmenta-

tion framework [5] and the Joint Entropy and Mutual Information methods commonly employed for the

registration of medical images.

Chapter 7 describes a second type of inverse problems that occurs in emission imaging: the recon-

struction of the coordinates of interaction and energy of the gamma photons from the electrical signals

produces by nuclear imaging devices. In the first part of the chapter, such inverse problem is framed

in the probabilistic (graphical) framework. The second part of the chapter describes two algorithms for

the experimental characterisation of depth-of-interaction (DOI) resolving imaging devices. The first al-

gorithm, based on Expectation Maximisation (EM), presents local convergence properties. The second

algorithm, based on concepts of manifold learning, presents global convergence properties, enabling

fully automated characterisation of gamma imaging devices. This new concept brings artificial intelli-

gence near the hardware of the imaging device.

Chapter 8 considers at once the two inverse problems described in chapter 7 and in chapter 2,

coupling the model of the emission process with a model of the imaging device. The unified approach

suggests two algorithms: 1) an algorithm for automatic adaptation to disrupted detectors; 2) an iterative

algorithm for the discrimination of scatter events that makes use of the rich information from DOI and

energy resolving detectors and may adapt to the available computating resources.

Chapter 9 extends the investigations on the resolution of Emission Imaging systems presented in

Chapter 3, focusing on the challenging problem of optimum system design. Information, as defined

by Shannon, is adopted as the figure of merit for optimal design of tomographic imaging systems. An

efficient algorithm for the approximate calculation of the information retrieval based on the Laplace

approximation and sparsification of the Fisher Information Matrix is described and applied to the explo-

ration of new system designs.

Chapter 10 describes the NiftyRec reconstruction toolkit, which implements the algorithms de-

scribed in the previous chapters. The design of the NiftyRec software is inspired by the unifying ap-

proach and by the graphical models described throughout this thesis.
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Chapter 2

Probabilistic graphical models

2.1 Brief introduction to probabilistic graphical models
A unified theory of causation and inference has emerged in the last 20 years from the works of Judea

Pearl [6], Spirtes [7], Scheines [7][8] and others. In this context, probabilistic graphical models (PGMs)

combine principles from probability theory, graph theory and computational complexity theory to pro-

vide a powerful declarative representation of systems, where semantics are clearly separated from the

inference algorithms. While probabilistic graphical models have permeated and revolutionised the field

of computational science, they have not been applied systematically to tomographic imaging.

The models and algorithms introduced in this thesis, though addressing different aspects of com-

puted tomography, are described in a unified mathematical framework, adopting the formalism of Prob-

abilistic Graphical Models (PGMs). This first chapter introduces some basic concepts and terminology

of PGMs that will be adopted in the remainder of this thesis and frames the problem of tomographic re-

construction in the context of PGMs. The concise introduction of PGMs that follows is meant to enable

the understanding of the concepts utilised in the subsequent chapters for the definition of models and for

the development of inference algorithms in the context of emission computed tomography.

2.1.1 Directed acyclic graphs and Markov random fields

Probabilistic graphical models are graphical constructs that represent knowledge about an uncertain do-

main. A graph is a representation of a set of objects where some pairs of the objects are connected by

links. The interconnected objects are represented by mathematical abstractions called vertexes or nodes,

and the links that connect the pairs of nodes are called edges. The edges of a graph represent rela-

tions between the nodes and may be undirected to express a symmetric relation, or directed to express

an asymmetric relation. When the vertexes of a graph are associated to random variables, the graph

assumes the denomination of probabilistic graphical model (PGM). The edges of a PGM express the

probabilistic dependence between the random variables associated to the graph. In the context of prob-

abilistic graphical models, a graph whose edges are all directed is denominated directed acyclic graph

(DAG), while a graph whose edges are all undirected is denominated Markov Random Field (MRF).
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A mixed graph, in which some edges are directed and some are undirected, is often referred to, in the

context of probabilistic graphical models, as hybrid Bayesian network.

2.1.2 Conditional independence

One of the basic concepts of probabilistic reasoning is the relation of dependence/independence between

random variables. Two variables subject to uncertainty are considered independent if knowledge of the

state of one of the two variables does not introduce any information about the state of the other variable.

The variables are dependent if knowledge of the state of one of the two variables narrows the uncertainty

associated to the other variable. E.T. Jaynes, in his seminal work that has culminated in the Principle of

Maximum Uncertainty [9], has exposed the idea that the very concept of dependence and independence

of random variables implies that probability is subjective. The essence of the Bayesian framework is

indeed the subjectivity of probability: the uncertainty associated to a variable depends on the state of

knowledge of the observer, on the variables that she/he/it has observed.

The ideas of E.T. Jaynes have greatly contributed to the development of the modern conception of

probability. Not only the uncertainty about the state of a variable is subjective (dependent on what the

observer knows about other variables that may be related by probabilistic dependence to the variable of

interest), but the relations of dependence and independence are equally subjective. Kiiveri and Speed

in 1982 [10] have defined the concept of conditional independence. They formulated the idea that if

variable Y is not a cause of X and X influences Y , if at all, only through an intermediary set Z of direct

causes of Y , so that if the variables in Z are held constant, no variation in X will produce a variation

in Y , then X and Y are independent conditionally on Z. Such relation between X,Y, Z, indicated with

X ⊥ Y |Z (X is independent from Y when Z is known), implies that if one knows Z, knowledge of the

state of X does not affect the state of knowledge about Y .

Expressing the relations of conditional independence is essential in order to reason about complex

systems and, as it turns out, in order to devise computationally efficient inference strategies. The joint

probability distribution of two independent variables factorises into the product of two terms. Equiva-

lently, as discussed in the following, relations of conditional independence correspond to factorisations

of the joint probability distribution of the variables. PGMs express precisely the set of conditional

independence relations between the variables. The next paragraph adopts the causal point of view to in-

troduce a methodology to define probabilistic models (model entry) and describes, with the aid of three

examples, the relation between the set of conditional independencies associated with a set of variables

and the structure of the associated directed and undirected graphs.

2.1.3 Causal modelling

Probabilistic graphical models may be used to represent causal relationships, associating a directed edge

to a relation of causality. Though causal interpretation of probabilistic graphical models may be consid-

ered here a matter of philosophical disquisition (see e.g. [8]), acquiring indeed more relevance in the
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context of causal inference (i.e. problems in which one attempts to infer the structure of the graph), for

our purpose it suffices to recognise, from the simple examples that follow, that a set of causal relations

implies a unique set of conditional independencies; however, a given set of conditional independencies

does not imply a unique set of causal relations. A hint of the formal definition of causality in the context

of graphical models is given at the end of this paragraph; let us start out with some examples to clarify

why we are interested in the causal interpretation of graphical models. The examples in Fig. 2.1 and the

discussion that follows in paragraph 2.1.5 clarify that a graph of the type X → Y → Z is equivalent to a

graphX ← Y ← Z, encoding the same set of conditional independencies, though representing different

causal relations. The difficulty with determining the causal relations from multiple observations of a

set of random variables (causal inference), a problem that is not considered in this work, arises from

the non-bijective correspondence between the set of the causal relations and the set of the conditional

independencies. However the causal interpretation guides the process of model entry. If one knows or

assumes the causal relations, the graph (the set of conditional independencies), is uniquely defined.

In order to obtain the set of the conditional independencies implied by the relations of causality, one

constructs a DAG by drawing directed edges from cause to effect. Fig. 2.1 reports three simple graphical

models of three variables. The DAGs encode, from left to right, a nested causal effect, a common cause

and a common effect. For these simple examples, it is relatively straightforward to encode the relations

of conditional independence implied by the causal structure. One may think of common problems that

are known to have such causal structures and verify the relations of conditional independence reported

in Fig. 2.1. An example of nested causal effect (Fig. 2.1-left) is short circuit→ fire→ fire alarm;

an example of common cause (Fig. 2.1-centre) is yellow fingers← heavy smoker → cancer and an

example of common effect (Fig. 2.1-right) is time of the year → average rainfall← country. One

can easily verify the conditional independence clauses reported in Fig. 2.1. When hearing the fire alarm,

one may think that there is a chance that a short circuit has occurred, associating a larger probability

to such event than when the fire alarm is off (X ¬ ⊥ Z|∅ in Fig. 2.1-left) (the symbol ¬ ⊥ reads ‘is

not independent from’). If one sees fire, however, hearing the fire alarm does not add any information

regarding the eventuality of a short circuit and being told that there was a short circuit does not add any

information regarding the eventuality of the fire alarm being activated (X ⊥ Z|Y in Fig. 2.1-left). If one

does not know whether an individual is a smoker or not, observing that he has yellow fingers affects

the probability associated to the event that he has or will develop cancer. Also, one would conclude that

the fingers are likely to be yellow if he has cancer, or at least they are more likely to be yellow than if

he does not have cancer. However, if the observer knows that the individual is a smoker, looking at

the colour of the fingers does not affect his state of knowledge about the eventuality of cancer. And in

this case, the notion that the individual has cancer does not affect the probability of yellow fingers.

In other words, whatever the state of variable smoker, when such variable is known, yellow fingers

and cancer are independent (X ⊥ Z|Y in Fig. 2.1-centre), though they are not independent for the
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observer who does not know the state of variable smoker (X ¬ ⊥ Z|∅ in Fig. 2.1-centre). Considering

an unknown time of the year and country, if one is told the average rainfall for the period under

consideration, then being told the name of the country gives information about the time of the year and

equivalently, being told what is the time of the year gives information about which country it might

be (X ¬ ⊥ Z|Y in Fig. 2.1-right). However, a priori, time of the year and country are not related

(X ⊥ Z|∅ in Fig. 2.1-right).

For simple problems of three variables, in conclusion, one can intuitively determine the conditional

independence implied by the causal structure of the problem. For problems of arbitrary complexity,

determining the relations of conditional independence between the variables from the causal structure

is not always straightforward. Paragraph 2.1.5 describes how the set of conditional independencies, or

equivalently the factorised expression of the joint probability distribution (and eventually its marginals),

can be obtained from the DAG constructed by assigning directed edges to each relation of causality.

The conditional independence clauses reported in Fig. 2.1 and justified in this paragraph via simple

examples, can be obtained algorithmically with the methodology described in paragraph 2.1.5.

As a final remark, for the purpose of model entry, it is sufficient here to accept that a known causal

structure implies a unique set of conditional independencies and that these are encoded by the DAG

obtained by associating a directed edge to causal relations. A formal definition of causality is given

e.g. in [8] and is based on response to intervention; relations of causality can be assessed only if the

variables can be controlled independently. Whether smoking is a cause of cancer is not clear until

one controls the variables independently in a controlled randomised experiment. While variables are

not always controllable, for the observation model of emission imaging systems, described in detail in

paragraph 2.3, there is no doubt that manipulation of the radio-activity implies a change in the probability

distribution associated with the photon interaction events, while manipulation of the photon interaction

events (i.e. forcing the values produced by the read-out electronics), does not affect the decay rate of the

radio-pharmaceutical.

2.1.4 Completeness

One concept that is relevant for the derivations in the next chapters is that of completeness of causal

models. As pointed out by Scheines [8], a causal graph is incomplete in the sense that not all causes

need to be in the graph in order to be able to perform inference and must be complete in the sense

that all the causal relations between the variables that are specified need to be represented in the

DAG. This observation can be clarified with the classical example of the smoker [8]. Referring to the

yellow fingers← smoker → cancer example, the consideration of Scheines on completeness is that

one can still reason about the variables when the model does not account for air pollution: the model

can be incomplete; but if air pollution is included in the model, in order to perform inference correctly,

the graph has to be complete, specifying all the causal relations.
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Figure 2.1: Directed Acyclical Graphs; under the causal interpretation, the three graphs represent, from

left to right, indirect causal effect, common cause and common effect. The relations of conditional in-

dependence and the equivalent factorisations encoded in the three graphs are reported in the caption.

Paragraph 2.1.3 reports examples that clarify how causality implies the relations of conditional indepen-

dence. Paragraph 2.1.5 describes a procedure to extract the relations of conditional independence from

a DAG via moralisation of the graph.

2.1.5 d-separation, moralisation and the Markov blanket

The causal structure of a problem can be encoded into a DAG by drawing a directed edge in correspon-

dence of each causal relation. The DAG encodes the conditional independencies between the variables.

For simple graphs, such as for the graphs in Fig. 2.1, which reports all the possible DAGs for the in-

teraction between three variables, it is relatively straightforward to infer the conditional independencies.

One can think of familiar examples for each case, to verify the conditional independencies reported in

Fig. 2.1. However is it not always straightforward, given a DAG, to infer whether two variables are

conditionally independent, given the state of a third variable or of a set of variables. Given a graph G and

three sets of variables X,Y,Z corresponding to sets of nodes of the graph, one wants to know, e.g., if X

is independent from Y when Z is known. This information is encoded in G. Conditional independence,

named d-separation in the context of DAGs, can be obtained algorithmically from the structure of the

DAG. Procedures to calculate the d-separation for any three subsets are described in [11] - pp. 71. Such

procedures, though useful e.g. to automate, by means of a computer, the extraction of the structure of a

graph, e.g. from observations, are not easily applicable to determine by hand the set of conditional inde-

pendencies of a graph. A simple alternative to calculating the conditional independencies from the DAG

is to transform the DAG into a Markov Random Field (MRF), represented by a graph with non-directed

edges. MRFs in fact provide a definition of conditional independence that is operatively simpler to apply

than d-separation. DAGs and MRFs do not in general encode the same sets of conditional independen-

cies (see e.g. [11] - pp. 69). That is, if one considers all possible graphs, where a given graph is identified

by the set of the conditional independencies that it encodes, DAGs and MRFs may encode only subsets

of all possible graphs and the two subsets do not coincide. However, the mapping between graphs and

probability distributions is non injective; a graph encodes a certain probability distribution if the set of

conditional independencies implied by the graph is a subset of the conditional independencies of the
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distribution. In other words graphs may be intended as filters of probability distributions: the complete

undirected graph, where every node is connected with every other node (the set of conditional indepen-

dencies is empty) may encode any distribution. If I(G) is the set of conditional independencies implied

by graph G and I(P ) is the set of conditional independencies of the distribution P , G represents P if

I(G) ⊆ I(P ). This concept will be more clear in the next few chapters, where analytical expressions

are associated to the factors of the probability distributions. Disregarding one or more, or eventually all,

conditional independencies, may however result in over complicated inference algorithms.

Figure 2.2: Moralisation of a DAG and global Markov properties. Moralisation consists in replacing all

edges by undirected edges and connecting all parents of a same child. Global Markov properties: the

relations of conditional independence can be easily extracted from the Markov Random Field obtained

by moralisation, even for large graphs: two nodes or sets of nodesX andZ are conditionally independent

given a set of variables Y , if, shading the nodes corresponding to the given variables, there is no path

that connects X and Z and does not cross any shaded node. The three graphs reported in figure are the

moralised graphs of the DAGs of Fig. 2.1. The relations of conditional independence reported in of Fig.

2.1 are immediately verified to correspond to the global Markov properties.

The moralised undirected graphM[G], obtained by connecting all parents of a same child in G and

removing all arrows, can be shown to be such that I(M[G]) ⊆ I(G) ⊆ I(P ). In other words, one can

obtain the set of conditional independencies of the probabilistic model from the moralised graph; these

correspond to the conditional independencies implied by the causal structure that corresponds to the

DAG, though some of the conditional independencies might be lost. However, all relations of conditional

dependence are preserved (Fig. 2.2). More specifically, the conditional independencies corresponding

to the structures known as v-structures are lost.

The undirected graph, when interpreted as a probabilistic model, is denominated Markov Random

Field (MRF). The expression global Markov property is used in the context of MRFs to express con-

ditional independence: two sets of variables X and Y are conditionally independent (i.e. possess the

global Markov property) given a separating subset Z if every path from a node in X to a node in Y

passes through Z. The global Markov property is simple to verify even for large and complicated graphs



2.1. Brief introduction to probabilistic graphical models 19

and will be used extensively in the derivations in the next chapters. It is straightforward to extract the set

of conditional independencies from the DAGs of Fig. 2.1 via moralisation and extraction of the global

Markov properties (see Fig. 2.2).

A property of the variables associated to a node or to a set of nodes that will be used extensively in

the subsequent chapters is the Markov blanket. Referring to Fig. 2.3, let us consider the variables at node

X . The Markov blanket is defined as the set of variables that, when known, make X independent from

every other set of nodes in the graph. In other words, the Markov blanket of X is the only knowledge

needed to predict the state of X . In a directed acyclic graph, the Markov blanket of X is the set of nodes

composed of X’s parents, its children, and its children’s other parents. In a Markov random field, the

Markov blanket of a node is simply its set of neighboring nodes. Inspecting Fig. 2.3 one may verify that

the Markov blanket of a node can be calculated, equivalently, from the DAG or from the Markov random

field obtained by moralisation of the DAG.

Markov blanket
Subset 

Figure 2.3: Markov blanket: X is independent from all sets of nodes in a graph conditionally to its

Markov blanket. The Markov blanket of a node can be calculated, equivalently, from the DAG or from

the Markov random field obtained by moralisation of the DAG, as explained in 2.1.5.

2.1.6 Model entry

A probabilistic model is essentially a joint probability distribution over a set of variables (some of the

variables may be considered unknown and some may be considered observations). Probabilistic models

have a structure; the structure, which can be represented as a graph, corresponds to factorisations of the

joint probability distribution. A fully connected graph encodes a probability distribution that cannot be

expressed as a product of terms (i.e. it does not factorise). If the joint probability distribution factorises,

the probabilistic model is expressed by a collection of (conditional) probability distributions. Given a set

of variables (observations and unknown variables), the first step towards performing statistical inference

is the choice of a probabilistic model. The choice of a suited probabilistic model may be obvious when

the variables are regulated by simple physical phenomena, but it is often less obvious. In the following

we will refer to the choice of a probabilistic model as model entry. Model entry comprises the choice of

the structure of the model and of the functional forms of the factors. As discussed in paragraph 2.1.3,

relations of causality correspond to factorisations of the probability distributions. Although estimating
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the relations of causality between variables is generally a difficult task, when relations of causality are

known, these correspond to a set of factorisations (i.e. conditional independencies). The approach to

model entry adopted in this thesis is to assume relations of causality. The analytical expression of the

joint probability distribution of all the variables is then obtained via the Directed Acyclical Graph and the

Markov properties of the moralised Markov Random Field, as described in paragraphs 2.1.3 and 2.1.5.

The criteria for the choice of the functional forms of the factors vary. The choice of the functional form

can be obvious when the variables are regulated by simple physical phenomena. In other less informed

cases, the main criterium adopted in this work is to chose the probability distribution that yields the

simplest inference algorithm. In summary, the models described in this work are obtained with the

following procedure:

1. Assume a causal structure (relations of causality between the variables);

2. Encode the DAG from the causal structure;

3. Transform the DAG to a MRF by moralisation;

4. Obtain the set of conditional independencies from the MRF (global Markov properties);

5. Express the conditional independencies as factorisations of the joint probability distribution;

6. Assign functional forms to the conditional probability distributions;

7. Derive, from the factorisations, expressions of the conditional, marginal, and joint probabilities

associated to the variables.

2.1.7 Notations

As discussed in the examples in paragraph 2.1.3, variables may be observed or unobserved. Observed

variables are denoted, by convention, as shaded nodes, as in Fig. 2.4. In a Bayesian model, every

unobserved variable is associated to a prior probability distribution. When the prior probability distri-

bution is not expressed explicitly, it is implicit that the prior probability distribution is uninformative,

that is all configurations of the variables are assumed to have the same probability. While the prior

probability distributions associated to the unobserved variables of a Bayesian model are often omitted

and therefore implicit, the explicit representation in the graphical models may clarify the factorisation

of the prior probability distributions. In this document, the prior probability distributions of the unob-

served variables are therefore, in most places, expressed explicitly in the graphical models by means of

a dot (•). Fig. 2.4-left, for example, reports the prior probability distribution of a vector-valued variable

x = [x1, x2, . . . , xi, . . . , xN ]. One dot per node in figure 2.4-left would have signified that the state of

xi is independent a-priori from the state of xj . The first order quadratic Markov Random Field described

in the next chapter is an example of a prior probability distribution that does not factorise in such a way,
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therefore it is represented with a single dot as in Fig. 2.4-left. Notice, however, that, as explained, graphs

may be considered filters of probability distributions; the full graph, i.e. a single dot connected to all

variables (as in Fig. 2.4-left), expresses any prior distribution for x.

Another convention adopted throughout this document is to express vector-valued variables con-

cisely as in Fig. 2.4-centre and Fig. 2.4-right. Though the concise forms of the graphical model are not

always as expressive as the expanded form, they are used for notational convenience when details about

the conditional independencies of subsets of the variables are unimportant.

Figure 2.4: Prior probability: prior probabilities of unobserved variables are indicated with a dot. Com-

pact notations: the graph on the left can be represented in vector form with the graphs in the centre and

on the right. The notation on the right explicits the dimensionality of the vectors. This document makes

use of both compact notations.

2.1.8 Inference

A Bayesian model expresses the probabilistic dependence amongst a set of variables. In general, some

of the variables associated to a model are considered to be observed (i.e. their state is known exactly)

and other variables are considered unobserved. The Bayesian model allows the observer to express

analytically or compute numerically the probability associated to different possible states of the variables

that are not observed. Computing the probability associated to the possible states of the unobserved

variables is in general referred to as inference.

As will be evident in the chapters that follow, the structure of the probabilistic model affects the

complexity of the inference algorithms. In the case of two dependent unobserved variables, the state

of knowledge about one of the variables depends on the state of knowledge about the other variable,

therefore the probability associated to a given state for one of the two variables is a function of the state

of the other variable. If the two unobserved variables are independent, the probability associated to the

state of one of the two variables does not depend the state of the second variable, therefore the joint

probability distribution factorises into a product of two terms. In the case of more than two variables,

the relations of (now conditional) dependence and independence are more complex but nevertheless they

imply a factorisation of the joint probability distribution associated to the unobserved variables.

The factorisation of the joint probability distribution of the variables of the model, which may be
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obtained from the properties of the associated graph, affects the design of the inference algorithms,

playing an important role in determining their complexity. If, for example, the variables of interest are

independent from one another given the observations, then the state of each of the unobserved variables,

trivially, can be computed independently from the state of the other unobserved variables. Another

problem, which applies in the case of computed tomography and which is the focus of section 2.3, is

one in which the structure is such that the observations are independent conditionally to the unknown

variables. Though, in this case, the state of one of the unobserved variables may no longer be computed

independently from the state of the other unobserved variables, the knowledge that the observations

would be independent if one knew the state of the unobserved variables turns out to simplify inference.

The graphical model encodes the factorisation of the joint probability and its marginals, playing

a fundamental role in the development of the inference algorithms. Regardless of the structure of the

problem, inference may take many forms.

Many forms of maximum a posteriori

Let us define an experiment as the observation of a set of variables. In the Bayesian framework, after

performing the experiment, the posterior probability distribution of the unobserved variables, whose

factorisation may be represented as a graph, characterises the state of knowledge of the observer. The

observer may be interested in the state of all the unobserved variables, or in a subset. The probability

distribution associated to a subset of the unobserved variables is given by the marginalisation of the

posterior probability distribution over the variables not considered of interest.

Numerical characterisation of the posterior (or marginal of the posterior) may take many forms,

such as the extraction of random samples (posterior sampling techniques), the estimation of the param-

eters of a constrained posterior probability distribution (Laplace approximation, variational methods),

and maximum a posteriori estimation (MAP). MAP is perhaps the simplest synthetic characterisation

of a posterior probability distribution: one considers only the point that maximises the posterior prob-

ability distribution, disregarding all other solutions and their probability. Depending on whether one is

interested in the state of all the unknown variables or only in a subset, there are multiple forms of MAP

estimation for a given model and set of experiments. Referring to Fig. 2.5:

Figure 2.5: Simple model of 3 variables (or sets of variables). X and Z are unobserved, while Y is

observed. One may be interested in both X and Z, or only in one of the two.
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1. Marginal MAP: maximiser of the marginal posterior probability distribution of a subset of the

variables:

X̂ = argmax
X

∫
p(X,Z|Y )dZ (2.1)

and eventually:

Ẑ = argmax
Z

∫
p(X,Z|Y )dX (2.2)

2. Joint MAP: maximiser of the joint posterior probability distribution of the unobserved variables:

X̂, Ẑ = argmax
X,Z

p(X,Z|Y ) (2.3)

3. Approximate marginal MAP: maximiser of the posterior probability distribution of a subset of

the unknowns conditional to the maximiser of the marginal probability of the remaining unknowns:

Ẑ = argmax
Z

∫
p(X,Z|Y )dZ (2.4)

X̂ = argmax
X

p(X|Y, Ẑ) (2.5)

This may be considered an approximation of the marginal MAP (1.), where one is interested only

in the state of X , not in Z:

X̂ = argmax
X

∫
p(X,Z|Y )dZ (2.6)

This can be rewritten as:

X̂ = argmax
X

∫
p(X|Y,Z)p(Z|Y )dZ (2.7)

with p(Z|Y ) =
∫
p(X,Z|Y )dX . If the marginal posterior of Z is a narrow distribution around

its mode Ẑ (2.4):

p(Z|Y ) u δ(Z − Ẑ) (2.8)

Substituting in (2.7), one obtains the expression (2.5).

For certain models in which one is interested inX , it is relatively simple to maximise the marginal

posterior of Z obtained by integrating over X , and to compute the maximiser of the conditional

probability distribution of X given Z, but it is much more difficult to compute a maximiser of the

marginal posterior ofX obtained by integrating over Z. For such models, amongst which are finite

mixtures (considered in more detail in the appendix of chapter 4), this approximation enables the

otherwise untractable estimation of the maximiser of the marginal posterior probability of X .

Whether 1. is better than 2. depends on the purpose of the inference task, therefore there is not

always a clear answer.
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If one considers all possible graphs and functional forms for the factors of the associated probabil-

ity distributions, the resulting probabilistic model may be applied to problems of arbitrary complexity.

Algorithms for the calculation of the MAP estimates vary greatly. While there are some general purpose

algorithms for inference in graphs of discrete variables and for particular structures of the graphs, such

as trees, in general one has to device an ad-hoc inference procedure.

In the following chapters each model is accompanied by the derivation of a suited optimisation algo-

rithm for numerical calculation of the MAP estimates. The next two paragraphs describe two recipes for

the development of optimisation algorithms used throughout this document: Expectation Maximisation

(EM) and Iterated Conditional Modes (ICM).

While most of this work describes procedures for MAP estimation, chapter 9 explores approxi-

mated fully Bayesian inference.

Maximum Likelihood Estimation

When the prior probability distribution over the variables of interest is considered uninformative (i.e. all

states are assigned an equal probability a priori), then the maximum a posteriori (MAP) estimate is often

referred to as maximum likelihood (ML) estimate.

2.1.9 The Expectation Maximisation algorithm (EM)

It is in general not easy to maximise numerically the posterior of X when the model contains hidden

variables, due to the integral in (2.1). If the model does not include hidden variables, the maximisation

of the posterior ofX is generally tractable when p(X|Y ) belongs to the exponential family or is a product

of distributions that belong to such family. In this case, in fact, one may resort to maximising the log

posterior, cancelling the exponentials with the log. A recurring situation is one in which the likelihood

p(Y |X) (i.e. the probability distribution that one would associate to the variable that has been observed

if the state of the variable that has not been observed were known) belongs to the exponential family.

In this case, the posterior probability distribution p(X|Y ) belongs to the exponential family if the prior

probability distribution p(X) belongs to the exponential family. Let us apply the fundamental law of

total probability:

p(Y,X) = p(Y |X)p(X) = p(X|Y )p(Y ) (2.9)

Rearranging the terms gives Bayes formula:

p(X|Y ) =
p(Y |X)p(X)

p(Y )
, (2.10)

with

p(Y ) =

∫
p(X,Y )dX =

∫
p(Y |X)p(X)dX (2.11)
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If we are interested in the MAP estimate of X:

X̂ = arg max
X

p(X|Y ), (2.12)

taking the log of p(X|Y ) and substituting (2.10) in (2.12) (note that the denominator of (2.10) is not a

function of X), we obtain:

X̂ = arg max
X

log p(Y |X) + log p(X) (2.13)

Therefore, if the likelihood p(Y |X) belongs to the exponential family, the choice of a prior probability

distribution p(X) that belongs to the exponential family makes the maximisation problem tractable.

If the model includes hidden variables, the posterior distribution has an integral form. Referring to

Fig. 2.5 and applying again Bayes formula (2.10):

X̂ = arg max
X

log

∫
p(Y, Z|X)dZ + log p(X) (2.14)

This maximisation is problematic due to the log appearing before the integral. Even if the integrand

p(Y,Z|X) belongs to the exponential family, this expression cannot be simplified. The Expectation

Maximisation (EM) algorithm, described by Dempster and Laird [12] and others, however, provides a

simple update formula for the maximisation of the log-posterior ofX for problems for which p(Y,Z|X),

often denominated complete-data likelihood, is easy to maximise with respect to X (e.g. if it belongs to

the exponential family or is a product of terms that belong to the exponential family).

The intuition behind EM is that if it is easy to maximise the complete data log-likelihood p(Y,Z|X)

with respect to X , then if one knew Z, it would be straightforward, (given a good choice of the prior, to

maximise the posterior of X , proportional to the complete-data likelihood and to the prior probability:

log p(X|Y,Z) ∝ log p(Y,Z|X) + log p(X). However Z is not known, but if one knew X , the model

would express the probability distribution of Z. The EM algorithm then consists in assuming a provi-

sional value for the most probable state ofX and then maximising the expectation of the log-posterior of

X with respect to the posterior distribution of the hidden variable Z calculated with the current estimate

of X:

• Start with an initial estimate of X:

X(n) = X(0) (2.15)

• Expectation:

p(Z|Y,X(n)) =
p(Y,X(n)|Z)p(Z)

p(Y,X(n))
(2.16)

• Maximisation:

X(n+1) = arg max
X

∫
p(Z|Y,X(n)) log p(Y,Z|X)dZ + log p(X) (2.17)
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Demonstration of convergence of X(n+1) to the maximiser of the posterior probability distribution

p(X|Y ) is reported, e.g. in [12] and [13]-pag. 450-455. In this document, the EM algorithm is utilised

in a number of occasions, including the optimisation of the activity in emission computed tomography

(chapter 3, paragraph 3.1.1), the optimisation of the parameters of Gaussian mixture models (chapter 4,

appendix 4.A) and of Poisson mixture models (chapter 7, paragraph 7.4). In paragraph 3.1.1, appendix

4.A and paragraph 7.4, the update formulae for iterative MAP estimation of the parameters of the re-

spective models are derived, step by step, from equations (2.15)-(2.17). The reader is invited to consider

such derivations as examples to clarify the use of (2.15)-(2.17).

Note on the many applications of EM:

More than a specific algorithm, EM can be considered a recipe for the development of algorithms. The

first two applications of interest in this work, well known in the field of medical imaging, refer to its

use for the Poisson model for tomographic imaging and for the optimisation of the parameters of finite

mixture models. The application of the EM recipe to different models produces quite different algorithms

dependeing on the model. Interestingly, in both the aforementioned cases, direct optimisation of (2.14)

is actually tractable for two different reasons. In the case of finite mixture models, the integral in (2.14)

is substituted by a finite sum, yielding a simple form of the gradient of the log-posterior, which enables

gradient descent type optimisation. In the case of the Poisson model, the likelihood of the photon counts

Y given the photon countsX indeed has a simple analytical form that does not entail any hidden variable.

While the gradient of the log-likelihood (and eventually of the log-posterior) is again differentiable and

easy to compute, one adds, somewhat artificially, hidden variables (data augmentation) for the purpose

of obtaining an EM update formula. In both such applications, described in 3.1.1 and 4.A, EM produces

gradient type optimisation algorithms with the advantage of being free from nuisance parameters (step

size of the optimisation algorithm), providing essentially automatic line search, and also guaranteeing

positivity of the solution where required.

2.1.10 The Iterated Conditional Modes algorithm (ICM)

The mathematical optimisation problem that arises from MAP estimation can be solved with a variety of

algorithms, depending on the characteristics of the posterior distribution. When the optimisation problem

involves multiple variables (e.g. joint MAP estimation or marginal MAP estimation of a multivariate set),

it may be addressed by alternating optimisation. The simple idea underlying alternating optimisation is

to replace the sometimes difficult joint optimisation of the cost function over all variables with a sequence

of easier optimisations involving grouped subsets of the variables.

Referring to the hidden variables model described in paragraph 2.1.9, one may formulate the prob-

lem of computing the MAP estimate ofX , entailing, as described in 2.1.9, the integration over the hidden

variables Z; another inference task for such a model is the estimation of the joint state of X and Z that



2.1. Brief introduction to probabilistic graphical models 27

maximises their posterior probability distribution. Such a model seems to provide a natural distinction

betweenX and Z, suggesting possibly to alternate the optimisation of the two sets of variables. However

it has to be noted that the problem, from the perspective of mathematical optimisation is not different

from the problem of maximising the posterior with respect to X alone. In the case of joint estimation, in

fact, trivially, X and Z can be renamed asX ′. The only difference that occurs between the two problems

is that in the case of the optimisation with respect to X alone, the expression of the posterior may be

more complicated due to the integral over Z. In both cases the optimisation problem can be addressed

by alternating optimisation; in the case of optimisation of X alone, vector-valued X can possibly be

divided in subsets that are optimised in sequence; in the case of joint optimisation of X and Z, both X

and Z can possibly be divided in subsets. However the natural separation of the unknowns X and Z that

appears in the model often makes the alternating optimisation of such subsets the simplest alternative.

In the context of MAP estimation, it is important to stress that two different choices are involved

when devising the inference strategy. The first choice relates to the type of inference task that one is

interested in. Joint MAP estimation is often simpler to perform than MAP estimation of one variable (or

a subset of the unknown variables) alone. It is not always obvious what type of inference is preferred,

however the decision to calculate the MAP estimate of only a subset of the variables, integrating the

posterior over all the other unknown variables, corresponds to the statement that one is not interested in

the state of the remaining unknowns. The second choice relates to the type of optimisation algorithm

and includes the possibility to alternate the optimisation of the variables to be estimated, or to optimise

for all the variables at once. The combination of these two choices produces different algorithms for

common models. For example, in the Gaussian mixture model described in chapter 4, 5, one may

estimate the parameters of the Gaussian functions, marginalising over the unknown discrete labels, or

estimate the most probable value of the labels jointly with the parameters of the Gaussians. In the first

case, considering the discrete labels as hidden variables, the optimisation may be addressed with the

EM algorithm. In the second case, a simple optimisation algorithm can be obtained by alternating the

optimisation of the parameters of the Gaussian functions with the optimisation of the discrete labels, an

algorithm often referred to as hard EM.

In the probabilistic setting, alternating optimisation is often referred to as Iterated Conditional

Modes (ICM), name given by Besag in [14]. Alternating the optimisation of the posterior with respect

to subsets of the variables is equivalent, in the probabilistic setting, to the sequential optimisation of the

probability distribution of each of the subsets, conditional to the provisional estimates of the remaining

variables. The graphical model aids the development of ICM algorithms. By definition, the Markov

blanket of a node expresses the set of variables that, when known, make the node independent from any

other variable. In other words, the expression of the probability distribution of the variables associated

to the node, conditioned to all other variables of the model, depends only on the variables that belong to

the Markov blanket of that node.
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Markov blankets
Subsets 

Figure 2.6: The Iterated Conditional Modes algorithm: rather than maximising directly the joint proba-

bility distribution of the three nodes, the states of the nodes are updated by optimising, sequentially, the

probability distribution of each of the nodes conditional to the provisional estimates of the other nodes.

The conditional probability distributions each node depends only on the state of the nodes that belong to

its Markov blanket.

Another choice that occurs when the ICM algorithm is applied to more than two subsets is the

definition of a scheme for updating the variables. The subsets may be updated in a systematic way, or by

choosing nodes at random. Besag [14] initially applied ICM to image de-noising, optimising sequentially

the conditional pdf of one pixel at the time, following a raster scanning pattern.

In this work, as explained in the subsequent chapters, where possible, the variables are divided

in subsets such that the conditional probability distribution of each subset can be maximised with the

Expectation Maximisation algorithm. Such approach simplifies the joint optimisation, eliminating the

need for line search algorithms.

While one might consider that joint optimisation is generally a better idea than alternating optimi-

sation, the experiments in chapter 5 suggest to split the parameters in subsets characterised by gradients

of the same order of magnitude, in order to accelerate convergence of the optimisation algorithms.

It is worth to mention that, as pointed out by Green and Besag [14], ICM is a special case of

Simulated Annealing, corresponding to instantaneous freezing. More computationally complex solutions

that prevent local maxima can eventually be obtained considering the solutions proposed by Geman and

Geman [15] and many others after them.

2.2 Brief introduction to emission computed tomography
Emission imaging systems (SPECT and PET) detect the photons emitted by a spatially distributed ra-

dioactive source. While the spatial density of the radio-tracer cannot be measured directly, the photons

detected by the imaging hardware in the periphery allow one to infer the rate of emission within the

imaging volume, proportional to the density of the radio-tracer. The problem of computing the rate

of emission in the imaging volume may be considered an inverse problem, whereas the direct problem

consists in predicting the photons observed at the periphery, given the rate of emission in the imaging

volume. In the early years of SPECT and PET, the forward problem was formulated as a Radon inte-
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gral transform, initially described by Radon in 1917, decades before the invention of emission imaging

systems (the early developments of PET scanners started in the early 1950’s [16]). While the inverse

Radon transform is still perhaps the most widely adopted approach to tomographic reconstruction in

emission and transmission imaging, the Radon transform is a very idealised model of the tomographic

imaging processes, based on the assumption of noiseless measurements and of infinitesimal detectors.

In the early 1980’s the tomographic reconstruction problem was formulated in the probabilistic frame-

work (Shepp and Vardi’s article on the Maximum Likelihood Expectation Maximisation algorithm [17]

is recognised as one of the earliest contributions). The probabilistic formulation introduces several ad-

vantages over the integral formulation (Radon transform), including the following: 1) the probabilistic

formulation enables the construction of algorithms that account for arbitrarily complex models of the

forward problem; 2) the probabilistic formulation allows us to account for the extent of the uncertainty

associated to the measurements; 3) rather than computing a single solution of the inverse problem, one

may compute the probability associated to multiple solutions; 4) incomplete angular sampling (see e.g.

limited angle tomography [18, 19] and interior tomography [20, 21]) can be addressed straightforwardly

in the probabilistic framework; 5) one may pose the problem of devising imaging systems with optimal

characteristics; 6) the probabilistic framework lends itself to the integration of information from multiple

sources, including multiple imaging modalities and population-derived information.

In order to address these aspects of the probabilistic formulation of emission tomographic imaging,

it is useful to make use of the expressive power of probabilistic graphical models (PGMs). Furthermore,

as we will see, the use of PGMs exposes the structure of the probabilistic models, aiding the construction

of efficient inference algorithms. Paragraph 2.3 formulates the SPECT and PET imaging processes in

the probabilistic graphical framework. The current paragraph serves as an introduction to paragraph 2.3,

presenting a brief introduction of the principles of SPECT and PET imaging. The concepts introduced

in this paragraph also serve as an introduction for the unifying computational model of scatter described

in chapter 8 and for the projection and back-projection algorithms described in chapter 10. The sub-

paragraph 2.2.1 introduces the light propagation processes involved in SPECT and PET imaging and

their equations. The sub-paragraphs 2.2.2 and 2.2.3 describe the decay processes involved in SPECT

and PET and summarise some of the techniques currently used for the detection of the gamma photons

in SPECT and PET.

2.2.1 Interaction of photons with matter

The introduction to the photon transport equations reported in this paragraph is mainly derived from two

sources: the MIT Nuclear Science and Engineering Reading Room lecture notes, openly available on the

website of MIT [22], and the articles by J.H. Hubbell, openly available on the website of the National

Institute of Standards and Technology (NIST) [23, 24].

Photons are electromagnetic radiation with zero mass, zero charge, and velocity c, the speed of

light. Because they are electrically neutral, they do not steadily lose energy via Coulomb interactions
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with atomic electrons as do charged particles. Instead they travel some considerable distance before

undergoing a more “catastrophic” interaction. All of the photon interactions of interest in the range

of energies involved in SPECT and PET (i.e. 511 KeV for PET and 10 KeV to 5 MeV for SPECT,

depending on the tracer) lead to partial or total transfer of the photon energy to electron energy. Thus

the history of a photon in a material is characterised by the sudden disappearance of the photon or by

scattering with loss of energy. Penetration of photons is governed statistically via interaction probabili-

ties which depend on the energy of the photons and on the material. Since photons do not continuously

lose energy via Coulomb interactions, the energy of the photon does not change unless an interaction

occurs; therefore, as expressed by the equations in the following two paragraphs, unlike with charged

particles, the probability of interaction per unit length of material traversed is not a function of the

distance travelled. In the range of energies involved in SPECT and PET, the two main mechanisms of

interaction are photoelectric absorption and Compton scattering.

Photoelectric absorption

In the photoelectric absorption process, a photon undergoes an interaction with an absorber atom in

which the photon completely disappears. In its place, an energetic photoelectron is ejected from one of

the bound shells of the atom. The interaction leaves an ionized absorber atom with a vacancy in one of

its bound shells. This vacancy is quickly filled through the capture of a free electron from the medium

and/or rearrangement of electrons from other shells of the atom. The probability that a photon interacts

with an electron depends on the atomic configuration (i.e. on the atomic number Z in case of a pure

element) and on the energy of the photon. No single analytic expression is valid for the probability of

photoelectric absorption per unit length of material traversed over all ranges of energy Eγ and atomic

number Z. Starting from the late 1800’s, physicists and engineers have compiled increasingly accurate

data-bases reporting the photoelectric characteristics of materials at different energies. While computers

are promising accurate model-based computation of the photoelectric characteristics of materials (see [?]

and [?]), current measurements are obtained by means of semi-empirical approaches [?] (one approach

is described in section ‘Note on the characterisation of the properties of a material’ in the following).

The photoelectric characteristics of a material are commonly reported in terms of the linear attenuation

coefficient, symbolised in the following with µPE. In order to frame the concept of linear attenuation

coefficient, let us consider the simple experimental setup in Fig. 2.7. The photons generated by a

monochromatic source of radiation with energy Eγ are collimated into a narrow beam directed on a

sample of material; a second collimator and a detector are placed on the other side of the sample. The

purpose of the collimators, as clarified in the next paragraph, is to discard the scattered photons. Let

the average number of photons entering the sample be N̄0. The probability that a photon interacts when

traveling by a distance dx, as discussed, depends solely on the energy Eγ and on the properties of the

material, not on the distance already travelled. Let µPE (the subscript PE stands for photoelectric) be
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the probability that a photon interacts by photoelectric interaction while traveling by dx; if in average

N̄0 photons enter the slab of material (e.g. per unit time), the average number of photons that have

annihilated due to photoelectric absorption after traveling by dx is N̄0µPE. This is true for every location

x, therefore, we can write the following differential expression:

dN̄(x)

dx
= −N̄(x)µPE(x) (2.18)

Integrating equation (2.18), the photon flux at location x is given by

N̄(x) = N̄0 e
−

∫ t
0
µPE(x)dx (2.19)

Note that µPE, the probability of interaction per unit length or linear attenuation coefficient has dimen-

sions of an inverse length, i.e. [cm−1] if length is expressed in cm:

µPE
[
cm−1

]
(2.20)

If the material is homogeneous (µPE is constant), equation (2.19) simplifies to

N̄(x) = N̄0 e
−µPE x, (2.21)

referred to as the Beer-Lambert exponential law of absorption. The linear attenuation coefficient µPE is

proportional to the density of the absorber ρ [g/cm3], which usually does not have a unique value but

depends on the physical state of the material (e.g. consider varying pressure in the case of a gas). It is

common practice, therefore, for the purpose of tabulation, to remove the dependence of µPE from the

density, reporting µPE/ρ:
µPE

ρ

[
cm2

g

]
(2.22)

The attenuation coefficient normalised by the density µPE/ρ is referred to as the mass attenuation coeffi-

cient. Using a source with known N̄0 in the experiment of Fig. 2.7 and measuring N̄(t) and the density

ρ, one can think of obtaining a measurement of the mass attenuation coefficient of a material (a pure

SOURCE COLLIMATOR COLLIMATORSAMPLE DETECTOR

Figure 2.7: Experimental setup for the measurement of the linear attenuation coefficient.
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element or a compound) by calculating µPE with equation (2.21) and dividing by the measured density

of the material. However, the photoelectric effect is not the only interaction mechanism. In the range

of energy typical of SPECT and PET, the second predominant mechanism of interaction is Compton

scattering, described in the next section.

In the range of energies typical of SPECT and PET, the molecular interactions have negligible ef-

fect on the photoelectric interaction process and on Compton scattering. Therefore the linear attenuation

coefficient for compounds can be obtained, with high accuracy, by the weighted sum of the linear attenu-

ation coefficients of the constituting chemical elements. Tables reporting the mass attenuation coefficient

for a large variety of chemical elements and for a wide range of energies have been compiled over the

years and it is ongoing work to produce more accurate estimates (see [24, 25]).

Let us define the concept of cross-section, which will be useful to describe Compton scattering.

As, in the range of energies of interest, we can express the characteristics of compounds as a weighted

sum of the linear attenuation coefficients for each of the elements, let us consider the linear attenuation

coefficient of a pure element at first. Considering the atomic weight u M , where u = 1.6605402 ×

10−24[g] is the atomic mass unit (defined by convention as 1
12 -th of the mass of an atom of the nuclide

12C - i.e. u is the inverse of Avogadro’s number) and M is the relative atomic mass of the element, the

mass attenuation coefficient can be written as

µPE

ρ

[
cm2

g

]
= σPE

[
cm2

ATOM

]
1

u M

[
ATOMS

g

]
(2.23)

Equation (2.23) defines the cross-section σPE for the photoelectric effect, with unit measure of area. The

cross-section is the effective area that governs the probability of the interaction event. When particles

in the beam are thrown against the sample, the cross-section is a hypothetical area measured around the

atoms of the substance that represents a surface. One way to think of the cross-section is that if a photon

of the beam crosses this surface, the interaction will occur, otherwise it will not.

In summary, the photo-electric cross-section σPE (function of the energy) characterises a pure

element, independently of its density. The linear attenuation coefficient for compounds can be computed,

for light in the energy range 10 KeV to 100 MeV , as the sum of the linear attenuation coefficients of

the constituent elements:

µPE =
∑
i

µPEi =
∑
i

σPEi
ρi
u Mi

(2.24)

The propagation of photons by photo-electric effect through a non-uniform compound is described by

the following differential equation:

dN̄(x)

dx
= −N̄(x)

∑
i

σPEi(x)
ρi(x)

u Mi(x)
(2.25)

Data-bases typically report the cross-section (or equivalently the mass attenuation coefficient) for the

pure elements and the mass attenuation coefficient µPE/ρ for compounds, with µPE given by equation
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(2.24) and ρ being the density of the compound in [g cm−3].

Compton scattering

The interaction of Compton scattering takes place between the incident gamma photon and an electron

in the material. In Compton scattering, the incoming gamma photon is deflected through an angle θ with

respect to its original direction. The photon transfers a portion of its energy Eγ to the electron, which

is then known as a recoil electron. The energy transferred to the electron can vary from zero to a large

fraction of the energy of the gamma photon. The energy of the scattered photon E′γ and the scattering

angle θ are related by a deterministic function, derived by Compton in 1923:

E′γ = Eγ
1

1 +
Eγ
mec2

(1− cos θ)
, (2.26)

where me is the mass of an electron (∼ 511 KeV/c2). The energy transferred to the recoil electron is

equal to the differenceEγ−E′γ . If the photon interacts with the electron in such a fashion that the angle of

recoil is forward at 0◦, then the scattered photon will be scattered straight back; that is, θ = 180◦. This

is the interaction that leaves the minimum energy with the scattered photon: E′γ(180) = Eγ
1

1+
2Eγ

mec2

.

The scattered photon has maximum energy when it propagates in the same direction as the incoming

photon: E′γ(0) = Eγ . When a photon interacts with an electron by Compton scattering, the angle of

the scattered photon can be anywhere between 0 and 2 π. In 1928 Klein and Nishina derived, under the

simplifying assumption that the electrons are unbound and at rest, the probability density associated with

the scattering angle. The Klein-Nishina formula is expressed in terms of the differential cross-section

(see e.g. [23]):

dσC

dΩ
=

1

2
Zr2

e

(
1

1 +
Eγ
mec2

(1− cos θ)

)2(
1 + cos2 θ +

Eγ
mec2

(1− cos θ)2

1 +
Eγ
mec2

(1− cos θ)

)
(2.27)

where the subscript C is employed to denote the Compton interaction, Ω is the unit solid angle, Z is the

atomic number of the element and re is the classical electron radius (∼ 2.2179 fm). The unit measure

of the differential cross section is that of an area per solid angle:

dσC

dΩ

[
cm2

steradian ATOM

]
(2.28)

The integral of equation (2.27) with respect to Ω (see [23]) gives the total cross-section σTOT
C for the

Compton scattering:

σTOT
C = 2πZr2

e

1 +
Eγ
mec2

E2
γ

m2
ec

4

(
2(1 +

Eγ
mec2

)

1 + 2
Eγ
mec2

−
ln(1 + 2

Eγ
mec2

)
Eγ
mec2

)
+

ln(1 + 2
Eγ
mec2

)

2
Eγ
mec2

−
1 + 3

Eγ
mec2

(1 + 2
Eγ
mec2

)2


(2.29)

The unit measure of the total cross section for the Compton scattering is the unit of area:

σTOT
C

[
cm2

ATOM

]
(2.30)
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The total cross-section for the Compton scattering can be interpreted as the hypothetical surface around

each atom such that if a photon of the beam crosses the surface, it scatters, otherwise it does not. The

differential cross section expressed by the Klein-Nishina formula in equation (2.27) represents the in-

finitesimal fraction of such surface that corresponds to the photon being scattered in direction θ.

The Klein-Nishina formula, based on the approximating assumption that the electrons are unbound

and at rest, describes very accurately Compton scattering in the range of energy 10 KeV to 100 MeV ,

with less than 1% of error in the total cross-section [24]. Therefore, one can use equation (2.27) to

compute the probability associated to direction θ for a photon of energy Eγ and equation (??) to com-

pute the energy of the photon scattered in direction θ. Data-bases typically report the total cross-section

(2.29) for different elements for a wide range of energies Eγ . As noted in the paragraph ‘Simulating

the propagation of high-energy radiation in a non-homogeneous medium’, the total cross-section can be

used to predict the propagation of light under certain simplifying assumptions, avoiding the numerical

integration of the Klein-Nishina equation (2.27).

Note on the characterisation of the properties of a material

In the range 10 KeV to 100 MeV of interest to SPECT and PET, the photoelectric effect and Comp-

ton scattering are the predominant mechanisms of photon interaction. Equations (2.25) and (2.27) ex-

press the light transport equations for the photoelectric effect and for Compton scattering. The energy-

dependent photoelectric cross-section σPE of a material (equation (2.25)) expresses the probability that a

photon interacts with an electron by photoelectric effect. The photoelectric cross-section σPE depends on

the atomic number and no single analytic expression is valid for σPE over all ranges of energy Eγ and Z.

One may resort to measure the cross section for a given material, at a given energy, with an experiment

analogous to the experiment represented in Fig. 2.7. However the measured signal N̄(t) depends not

only on σPE, but also on the scattering properties of the material.

The Klein-Nishina formula of equation (2.27) predicts accurately the probability density associ-

ated to the scatter angle for Comption scattering, for every value of Z and for a wide range of energies

(10 KeV to 100 MeV ). While the cross-section for the photoelectric effect does not have a simple ana-

lytical expression, the Klein-Nishina formula of equation (2.27) may be employed to predict numerically

the total cross-section and the differential cross-section of a chemical element with high accuracy in the

range 10 KeV to 100 MeV . The integral of the Klein-Nishina formula, reported in equation (2.29),

expresses, when normalised by the density and by the atomic weight, the average number of photons

that scatter when traversing a distance dx The number of photons that reach the source in the experiment

of Fig. 2.7 is given by the number of incoming photons, minus the photons that interact by photoelectric

effect, minus the total number of photons that scatter by Compton scattering, plus the photons that scatter

with recoil angle 180o (these can be neglected if the collimators have very thin holes or included in the

calculation by integrating the Klein Nishina formula (2.27) over the solid angle subtended by the detec-
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tor to the source). Neglecting the photons scattered in the forward direction (i.e. under the assumption

of thin-hole collimator), σPE is obtained by subtracting the total Compton scattering cross-section σTOT
C

from the measured cross-section, obtaining, in case of a single element:

dN̄(x)

dx
= −N̄(x)

(
σPE + σTOT

C

) ρ

u M
(2.31)

Integrating equation (2.31) in case of a uniform sample and solving for σPE, we obtain:

σPE =
u M

ρ t
ln

N̄0

N̄(t)
− σTOT

C (2.32)

Computing σC with the integral Klein-Nishina formula of equation (2.29) and measuring N̄0 and N̄(t),

equation (2.32) may be employed to obtain a semi-empirical measurement of σPE with an experiment

analogous to the experiment schematised in Fig. 2.7. This is one of the approaches employed to charac-

terise the scattering and attenuation properties of materials. Note that the total cross-section parameter

expresses the total probability of scattering per unit length of material traversed by a photon, however

it does not express the probability per unit of angle. Therefore, as described in the next paragraph, the

total cross-section can be employed to integrate the light propagation equations only for certain simple

problems.

Simulating the propagation of high-energy radiation in a non-homogeneous medium
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Figure 2.8: Numerical integration of the light propagation equations. A) Single source of radiation

and thin propagating rod. B) Single source of radiation and thick propagating rod. C) Two sources of

radiation and thin propagating rod.
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Equations (2.25) and (2.27) describe the propagation of light for the range of energies 10 KeV to

100 MeV , where the dominating interaction processes are the photoelectric effect and Compton scat-

tering. The two differential equations (2.25) and (2.27) can be integrated numerically for the purpose of

simulating the propagation of light in a homogeneous or inhomogeneous material. In emission computed

tomography, the estimation of the rate of emission of photons in the imaging volume may be regarded

as an inverse problem, with the direct problem consisting of calculating the photon flux in each of the

detectors (i.e. simulating the propagation of light). Computing a solution of the inverse problem, as will

be clarified in chapter 3, typically entails a sequence of simulations of the forward process. Chapter 10

describes an algorithm for the efficient simulation of light propagation in SPECT and PET. In order to

gain some insight of the computational complexity associated to the simulation of the light propagation

process in SPECT and PET and in order to introduce the methodology described in chapter 10, let us

consider the three examples depicted in Fig. 2.8. In the experiment in Fig. 2.8-A, the light emitted by

a source propagates through a thin rod of inhomogeneous material. While the photons propagate in the

rod, they may interact by photoelectric effect or scatter by Compton scattering. If the rod is sufficiently

thin, the majority of the scattered photons are not detected. Under the assumption of thin rod, therefore,

the number of photons entering the surface of the detector is equal to the number of photons entering the

rod minus the photons that interact by photoelectric interaction, minus the scattered photons. In the case

of thin rod, therefore, N̄(L) can be calculated using the total Compton scattering cross section:

N̄(L) = N̄0e
−

∫ L
0
µPE(x)µC(x)dx, (2.33)

where L is the length of the rod, µPE is related to the photoelectric cross-section by the expression in

equation (2.25), and µC is defined as µC = σTOT
C

ρ
u M in the case of a pure element, or by the weighted

sum over µCi , ρi and Mi is case of a compound:

µC =
∑
i

σTOT
Ci

ρi
u Mi

(2.34)

Assuming, for the purpose of numerical integration, that µPE(x) and µC(x) are piecewise constant in

each of N regions of length l = L/N , as depicted in Fig. 2.8-A, the integral of equation (2.33) is

expressed by

N̄(L) = N̄0e
−

∑N
i=1(µPEi+µCi )l (2.35)

In Fig. 2.8-B, the thin rod is replaced by a thick rod. In this case a non-negligible fraction of the scattered

photons enters the surface of the detector (the figure depicts one such photon). In this case the total

Compton scattering cross-section is not sufficient to compute the number of photons entering the surface

of the detector; instead one needs to integrate the Klein-Nishina formula considering the geometry of

the system. Finally, consider the example of Fig. 2.8-C, identical to the case of Fig. 2.8-A, but with

a second isotropic source of radiation. In this case some of the photons emitted by the second source

scatter within the rod and are deviated in the direction of the detector. In order to estimate the number of
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photons entering the surface of the detector one needs again to devise an integration scheme to integrate

the Klein-Nishina formula. These examples pinpoint the limited use of the total Compton scattering

cross-sections. Due to the characteristics of the SPECT and PET imaging hardware, as discussed in the

next sections, the computation of the forward problems in SPECT and PET may partly rely on the thin

rod approximation. As a final note, consider the case in which the detector, for the three geometries

A,B and C measures the energy of each photon and discards the photons whose energy is lower then

the energy of the source Eγ . If the detector could measure the energy exactly, then only the scattered

photons would be discarded, therefore the number of accepted photons would be accurately predicted,

in all three cases A,B and C, by the thin rod approximation.

2.2.2 SPECT

In SPECT, the unstable nuclei of the radio-tracer undergo gamma-decay, emitting a gamma photon (and

an α or β particle). Each photon being emitted from a different atom, the emission events are independent

from one another and the direction of the gamma photons is random with uniform distribution on the

surface of the unit sphere. Therefore, macroscopically, each point in space is an isotropic source of

photons, with emission rate proportional to the density (number of unstable atoms) of radio-tracer. The

gamma photons are detected by a planar device, the Anger gamma-camera. Chapter 7 describes in detail

how the Anger gamma-camera detects the high energy photons; it suffices here to say, referring to Figure

2.9, that the gamma camera records the coordinates of interaction and energy of each gamma photon that

interacts with the scintillator crystal. Let us assume here that the scintillator crystal is 2-dimensional (the

scintillator crystal typically has a thickness of a fewmm to a few cm); therefore considering the gamma-

camera a planar imaging device (i.e. the device records the coordinates of interaction of the photon on the

plane). Chapter 7 describes in details the interaction process of the gamma photons with the scintillator

crystal, accounting for the depth of interaction of the gamma photons within the scintillator crystal. The

collimator, which may have a variety of configurations, the most common of which are pin-hole, multiple

pin-holes, parallel-holes and slit-slat, has the function of restricting the sensitivity of each region of the

camera imaging-plane to a small portion of the imaging volume. Fig. 2.9-left Fig. and 2.10 depict a

parallel-hole collimator (typically made of lead or tungsten); with such design of the collimator, photons

that travel in the direction perpendicular to the plane of the gamma camera have high probability to pass

through one of the holes and be detected by the camera, while photons traveling in other directions are

likely to annihilate in the collimator and therefore to be discarded (SPECT has very low efficiency, with

the majority of the photons being discarded). With a parallel-hole collimator, therefore, given a location

of interaction on the camera plane, only the photons emitted from locations in the imaging volume near

the line normal to the camera plane and intersecting the given location on the camera plane have high

probability to be detected at that location. This is clarified by Fig. 2.10. The trade-offs involved in the

design of the collimators and other parameters of the acquisition systems are discussed in Chapter 9,

which describes a criterium (based on information theoretic concepts) and an algorithm for the selection
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of optimal design parameters.

COLLIMATOR

SCINTILLATOR CRYSTAL

PHOTO-DETECTOR

Figure 2.9: Left: gamma camera for Single Photon Emission Computed Tomography (SPECT) with

parallel-hole collimator. The collimator absorbs photons that are not perpendicular to the imaging plane.

The gamma photons interact with the scintillator crystal causing a scintillation. The scintillation is

detected by the array of photo-detectors. Finally the electronics process the data collected by the photo-

detectors, computing the location of interaction of the gamma photon and its energy. Right: one or

multiple (e.g. three) gamma cameras rotate around the imaging volume during the SPECT acquisition.

Typical acquisition times are in the range of a few minutes to one hour, with a total of 180 angular

positions within a 180o range.
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Figure 2.10: Schamatic of a parallel-holes collimator. The drawing displays only a small section of

the collimator. Photons propagating in the direction perpendicular to the camera plane are likely to be

detected (C); photons propagating in other directions are likely to annihilate within the collimator (A,B).

During a SPECT scan, the gamma camera moves around the imaging volume, typically in a circular

trajectory with an angular span of 180o or 360o (see Fig. 2.9-right). The typical pattern of acquisition

consists in rotating rapidly the camera by a small angle, e.g. 1o , and then collecting photons until the

camera moves to the next position. A list of the coordinates of interaction of the gamma photons with

the scintillator crystal is recorded for each position of the camera. Let us consider a small volumetric

region within the imaging volume and let us denote its location (e.g the coordinate of its center) by v.

Considering the camera at one of its angular positions, let us consider a small area of the surface of the
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scintillator crystal and let us denote by d its location on the plane (e.g. its center). The photons emitted

within the small volume located in v propagate through the imaging volume and through the collimator

according to the light transport equations (2.25) and (2.27). Due to the collimator, if the location v is

near the line normal to the camera plane and intersecting d, then the number of photons that, after being

emitted from v, are detected in d d is relatively high: it depends on the ratio between the integral area of

the collimator surface and the integral area of the holes of the collimator (α) and on the absorbing and

scattering properties of the propagating medium (the tissue of the subject). If v is far from the normal

intersecting d, then the number of photons that, after being emitted from v, are detected in d is low, due

to the thick layer of lead or tungsten that the photons find in their paths. Let us denote by avd the ratio

between the number of photons emitted in v in average (e.g. per unit time), and the number of photons

detected in d in average. If photons are emitted from v with rate λv , then the number of photons detected

in average in d is avdλv .

If the collimator has ideal properties, i.e. it is very thick and has very small holes and very thin septa,

then the probability that a photon emitted in v is detected in d is non-zero only if v is exactly on the line

normal to the gamma camera plane intersecting d. Modern SPECT detectors measure the energy of the

gamma photons. Assuming that the detector measures exactly the energy of the gamma photons and

rejects the photons that have lost energy due to scattering, neglecting the photons that scatter with angle

θ = 180o, the light propagation between v and d is analogous to the thin-rod approximation described

in paragraph ‘Simulating the propagation of high-energy radiation in a non-homogeneous medium’. If

v in on the line normal to the camera plane and passing by d, the average number of photons detected

in d is proportional to λv by the factor avd obtained by integrating the light propagation equations under

the thin-rod approximation along the line that goes from v to (the 3-dimensional coordinates of) detector

location d:

avd = αe
−

∫
Lvd

µPE(x)µP(x)dx (2.36)

v ∈ Ld, (2.37)

In equation (2.37), α is the sensitivity of the collimator; µPE(x) is the linear attenuation coefficient for the

photoelectric effect and µC(x) is the linear attenuation coefficient for the Compton scattering, obtained

from the total Compton scattering cross-section as expressed in equation (2.34). The line integral can

be obtained numerically by sampling µPE(x) and µC(x) along the line and computing the finite sum as

in equation (2.35). In practice, the collimator does not have ideal characteristics and the energy of the

photons cannot be measured exactly. Chapter 10 describes the implementation of an algorithm for the

computation of avd that accounts for a realistic model of the collimator by means of a depth-dependent

convolution operator. Chapter 7 will describe in detail the gamma detection process, highlighting how

the measurement of energy is affected by considerable uncertainty. Due to the uncertainty associated

with the measurement of energy, when photons are selected by their energy, a certain number of photons
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emitted from v may scatter one or multiple times and then be detected in d. In this case the thin-

rod approximation fails and the accurate estimation of avd involves the integration of the Klein-Nishina

formula in 3-dimensions. Algorithms for the efficient integration of the Klein-Nishina formula have been

proposed, mostly based on Monte Carlo integration techniques [26, 27]. It suffices here to say that avd

can eventually be computed with a high degree of accuracy, given sufficient computing resources. When

performing probabilistic reasoning, one may discard some of the information. In the rest of this chapter

and in chapter 3, the formulation will focus on the photons ‘detected’ in d, where a photon is considered

detected if its energy is within a given energy threshold. However one may consider the photons detected

at different levels of energy, or even make use of the continuous measurement of energy when estimating

the rates of emission. Chapter 8 discusses these possibilities, proposing a so far unexplored unified

computational model of scatter for computed tomography that generalises the model described in this

chapter.

2.2.3 PET

In PET, the unstable nuclei of the radio-tracer undergo positron decay. A proton inside the nucleus of the

radionuclide in converted into a neutron while releasing a positron and a neutrino. The positron collides

with an electron. The result of the collision is the annihilation of the positron and of the electron, and the

creation of two gamma photons, nearly in opposite directions, each with energy equal to the rest energy

of the electron or positron (511 KeV ). Figure 2.11 reports a schematic representation of the decay

process. The two gamma photons are detected by the PET imaging system, enabling the estimation of
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Figure 2.11: Positron decay. A proton inside the nucleus of the radionuclide in converted into a neutron

while releasing a positron and a neutrino. The positron then collides with an electron. The result of the

collision is the annihilation of the positron and of the electron, and the creation of two gamma photons,

each with energy 511 KeV .

the spatially varying rate of decay per unit volume of positrons and consequently of the density of radio-
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tracer, proportional to the number of unstable nuclei per unit volume and therefore to the rate of decay

per unit volume. While in the case of single photon emission (SPECT) it is necessary to use a collimator

in order to make the imaging process invertible, the PET imaging system does not require the use of a

collimator (although early PET systems did use collimators). Figure 2.12 displays a schematic drawing

of a modern PET scanner; the detectors are displaced on a cylinder around the imaging volume. In this

example, the detectors are arranged, for engineering reasons, is blocks of 64 (Fig. 2.12-left). The system

comprises 8 rings of detector modules, with 60 modules per ring, for a total of 30720 detectors. When

a gamma photon interacts with one of the detectors, the electronics record the event (single interaction).

When two detectors are activated within a short time interval (it takes about 3 nsec for a photon to travel

1 m), the electronics record the coincidence event (i.e. both locations are recorded). As for the SPECT

system, let us consider a small volumetric region within the imaging volume and let us denote its location

(e.g the coordinate of its center) by v. Let us denote a pair of detector by d. Note that for the system in

this example the total number of possible pairs is 30720 ∗ (30720 − 1)/2 = 471843840. While often

the imaging systems record only a subset of the possible pairs, the tendency in modern PET systems is

to record all possible events; therefore, in the example of Fig. 2.12, d is considered an integer between 1

and 471843840.

SCINTILLATOR CRYSTAL

LIGHT GUIDE

PHOTO-DETECTORS

IMAGING VOLUME

DETECTOR MODULE

~ 700 mm

~4 mm

Figure 2.12: Left: drawing of a PET detector module, composed of 64 crystals. The interaction of a

gamma photon with one of the crystals is recorded. Right: drawing of a PET imaging system. The

system comprises 8 rings of detector modules, with 60 modules per ring, for a total of 30720 crystals.

The electronics detect and record single events of interaction (i.e. the location of the activated crystal is

recorded) and the coincident interaction of two photons (i.e. the position of the two crystals is recorded).

The number possible detector pairs is 30720 ∗ (30720− 1)/2 = 471843840.

The positron emitted from within the small volume located in v diffuses until it collides with an

electron (the mean free path in human tissue is about 1.1 mm), then it annihilates emitting two gamma

photons nearly in opposite directions (the angle is not exactly 180o, but approximately 180o). The two

photons emitted within the small volume located in v propagate through the imaging volume. Each of

the photons may leave the scanner undetected (through one of the two openings or passing undetected
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through the detectors), or it may interact with one of the detectors (and therefore be detected). Each

of the photons, before being detected, may scatter one or multiple times. Integrating the light transport

equations equations (2.25) and (2.27), one can compute the number of photons detected by the detector

pair d per number of photons emitted in v. Considering a given pair of detectors d, only the photons

emitted from the region of the 3-dimensional space located near the line that connects the two detectors

(referred to as line-of-response - LOR, and denoted here by Ld) may be detected but such pair. For this

reason, the PET imaging system, is often said to be self-collimated. Let avd be the ratio between the

number of photon pairs detected per unit time in d and the number of decay events produced in the unit

time in v. PET detectors measure the energy of the gamma photons and discard the events for which

one or both photons have scattered. If the measurements of energy were exact, the ratio avd between the

number of photon pairs detected per unit time in d and the number of decay events in the unit time in v

would be given, for locations v intersected by the line-of-response Ld, by integrating the Klein-Nishina

equations under the thin-rod approximation and 0 everywhere else. Notice that the two photons undergo

independent interaction processes, therefore the number of lost events is obtained integrating over the

entire line-of-response Ld. If the location v is on the line of response Ld, the ratio between the number

of photon pairs detected by detector pair d per unit time and the number of decays per unit time in v is

given, under the thin-rod approximation, by the integral form:

avd = αde
−

∫
Ld

µPE(x)µP(x)dx (2.38)

v ∈ Ld, (2.39)

where αd is the sensitivity of detector pair d. This can be integrated numerically similarly to equation

(2.35). Notice that while in the case of SPECT the line is integrated from the location of d to the

location v, in the case of PET the integral is identical for all locations v along the line-of-response Ld

(not dependent on the position of v along the line-of-reponse). An algorithm for the efficient numerical

integration of (2.39) is described in Chapter 10.

The number of photons detected in the unit time in d depends on the rate of emission in locations

other that the line of response Ld. There is, in fact, a non-zero probability that two photons emitted

by two different positron annihilations are considered a coincidence event. Such events are referred to

as randoms. One of the two photons (or both) emitted in consequence of a positron annihilation may

scatter, therefore changing direction. The electronics select events based on the energy of the detected

photons, however, due to the uncertainty associated to the measurement of energy, the two photons may

trigger a photon pair interaction event, despite the loss of energy due to scattering. Such events are

referred to as scatter events. Randoms and scatter contribute to the ratio avd. The effect of randoms and

scatter may be accounted for when computing avd, by integrating the Klein-Nishina formula, although

the numerical integration of the Klein-Nishina formula requires a great deal of computing resources.

Chapter 8 discusses this possibility and describes a generalisation of the model described in this chapter
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which accounts for the continuous measurement of energy (i.e. the event is accepted regardless of the

measured energy and the energy information for each interaction is recorded). It should be noted that

the measurement of single interaction events may be used to estimate the contribution to avd due to

randoms. Such technique and other techniques such as the delayed window technique are not discussed

further in this thesis. As a final note, we are interested in the positron decay rate, therefore avd indicates

the ratio between the number of pairs detected along line or response d in the unit time and the number

of positron decays per unit time in v. Positrons undergo Coulomb interaction, losing energy along their

way, until they annihilate with an electron, losing the remaining energy and determining the emission

of the two gamma photons. The mean free path of the positrons is about 1.1 mm. In order to compute

avd one should integrate the positron propagation equations, Typically, and in the algorithm described in

Chapter 10, the positron propagation is approximated by means of a convolution.

2.3 Graphical models for emission computed tomography
In paragraphs 2.2.2 and 2.2.3, we have given a brief description of the physics of SPECT and PET.

To summarise, we have denoted by avd the probability that a decay event in location v determines a

detection event in detector (line-of-response in the case of PET) d. For a given location v and a given

detector (line-of-response in the case of PET) avd can be computed, in first approximation, using the

thin-rod approximation of the light propagation equations, described in paragraph 2.2.1. Chapter 10

describes the design and implementation of efficient algorithms for the approximate integration of the

light propagation equations based on the thin-rod approximation. More accurate numerical estimates of

avd can be obtained by integrating the Klein-Nishina equation, e.g. by means of Monte Carlo integration

methods, although this is out of the scope of this thesis. While the emission processes and detection

techniques differ in SPECT and PET, the formulation that follows applies equally to SPECT and PET.

As described in paragraphs 2.2.2 and 2.2.3, the matrixA = {avd} encompasses the characteristics of the

imaging systems and the characteristics of the propagating medium. The remaining of this chapter, after

introducing briefly the Poisson distribution, formulates the emission imaging problem in the probabilistic

graphical framework.

2.3.1 The Poisson distribution

The Poisson distribution expresses the probability of a given number of events q occurring in a fixed

interval of time (or space, but time is of interest here) if these events occur with a known average rate λ

and independently of the time since the last event:

P(q;λ) ,
e−λλq

q!
(2.40)

A simple derivation of the Poisson distribution as a limiting case to the binomial distribution can be

found, for example, in [28]. The following three properties of the Poisson distribution will be used in the

remainder of this chapter:
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• Expectation: the expected value of a Poisson-distributed random variable is equal to λ (a proof in

given in the appendix 3.A.3 of Chapter 3).

• Sum: the sum of two independent Poisson distributed variables is Poisson distributed with expec-

tation given by the sum of the expectations (a proof in given in the appendix 3.A.4 of Chapter

3).

• Thinning: if the events generated by a Poisson process with expectation λ are accepted with

probability α (rejected with probability 1 − α), then the number of accepted events is Poisson

distributed with expectation αλ.

2.3.2 Probabilistic model of emission imaging systems

Figure 2.13: Left: voxel-based probabilistic graphical model (PGM) of PET and SPECT imaging sys-

tems. Activity is assumed to be a grid of point sources of radiation. The photon counts along the line of

response d in PET and in detector bin d in SPECT qd are caused by the activity in all voxels λv . Right:

moralisation of the graph shows that λv 6⊥ λv′ |q and qd ⊥ qd′ |λ. This is due to the causal structure of

the model and implies the factorisation in (2.45).

The rate of decay λ̃ is a continuous function of 3-dimensional space. However, in order to discretise

the problem, let us assume that the events are emitted by point sources located on a regular grid in the

3-dimensional imaging volume. Let us denote by λ = {λ1, λ2, . . . , λv, . . . , λNv} the rate of decay (i.e.

number of events per unit time) at location v, with v = {1, 2, . . . , v, . . . , Nv} indexing the discrete loca-

tions on the grid (e.g. with a raster scanning pattern). Let us denote by q = {q1, q2, . . . , qd, . . . , qNd} the

number of events detected at location d, with d = {1, 2, . . . , d, . . . , Nd} indexing the detector locations

in SPECT and the lines-of-response in PET. Letting avd be the probability that an event emitted in v is

detected in d, the number of events per unit time in d is given by

q̄vd =

Nv∑
v=1

avdλv (2.41)

Applying the sum and thinning properties of the Poisson distribution, the probability distribution associ-

ated to the number of events that one observes in d in the unit of time is

p(qd|λ) = P (qd; q̄vd) (2.42)
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Under the causal interpretation, we can construct a probabilistic graphical model of the imaging process.

The probabilistic graphical model of figure 2.13 encodes the notion that λ is the unique cause of q. The

global Markov properties of the graph imply the following conditional independence:

qi ⊥ qj |λ (2.43)

This conditional independence is often considered a simplifying assumption. Such conditional indepen-

dence, however, more precisely, derives from the assumption that λ is the unique cause of q. If one

removes λ from the graph in Fig. 2.13, it appears that qi and qj are independent. In fact, if one ignores

that the photon count measurements in the two locations are caused by the hidden spatial distribution

of activity, knowledge of qi does not increase the state of knowledge about qj . Now, introducing the

variable λ, hidden cause of q, as expressed by the d-separation (or equivalently by the global Markov

property), qi and qj are no longer independent when the value of λ is not specified. The knowledge

expressed by the generative model, makes the variables interdependent: upon considering that there

exists a hidden variable λ, when given the value of qi, one acquires information about qj . It is often

stated that qi and qj are not independent, but that they are assumed to be independent for simplification.

However, as expressed by the graphical model, qi and qj , although not independent in absolute terms,

are conditionally independent given λ under the assumption that they are common causes of the hidden

variable λ. The relation between causality and conditional independence is better understood, here, in

the context of the Poisson distribution, with a toy example. Let us enclose in a sealed box a light bulb

that emits λ photons/sec and two photo-detectors that operate in photon-counting regime, both facing

the light bulb and detecting each 1% of the light emitted. The battery and the knob that regulates the

intensity λ are hidden inside the box. Two wires A and B carry the impulses generated from each photon

interaction from the two photo-detectors. Experiment 1) Let us set the knob so that the light bulb emits

precisely 100000 photons/sec. Let us now give the box to Alice, without telling her what is inside, ask

her to count the events from wire A in a one second lapse with her pulse-counter and ask her how many

events she guesses wire B would have generated in the same time lapse. She would not know what to

say. Experiment 2) let us describe to Alice what is in the box and ask her the same question, without

telling her the position of the knob. Now, upon counting 1054 events from wire A, she would guess

the number of events in B to be near 1054. Experiment 3) Let us now tell Alice that the knob is set to

100000 photons/sec and ask her again to count events in A for one second and to guess what she would

read from B. Upon counting 856 events in A, she will guess that counts in B would be somewhere near

1000, regardless.

According to the conditional independence of equation (2.43), the probability distribution of q given

λ is a product of Nd terms:

p(q|λ) =

Nd∏
d=1

p(qd|λ) (2.44)
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Expanding equations (2.44) and (2.42), we obtain:

p(q|λ) =

Nd∏
d=1

e−
∑Nv
v=1 avdλv

(∑Nv
v=1 avdλv

)qd
qd!

(2.45)

The system matrix A = {avd} encompasses the characteristics of the imaging system (location, size,

sensitivity, spatial resolution of the Gamma detectors, eventual collimator; positron range, collinearity,

sensitivity of the PET detectors, randoms and dead-time in PET) and the attenuation and scattering of γ

radiation through the patient and the imaging hardware.

2.3.3 Derivatives of the log-likelihood

The next chapter describes first-order algorithms for the numerical computation of MAP estimates of

the activity λ. First-order optimisation algorithms, such as gradient descent, make use of the first or-

der derivatives of the log-likelihood (2.44). Inserting (2.45) in (2.44) and applying the chain rule of

differentiation:

∂

∂λr
log p(q|λ) =

∂

∂λr

Nd∑
d=1

log
e−

∑Nv
v=1 avdλv

(∑Nv
v=1 avdλv

)qd
qd!

(2.46)

=

Nd∑
d=1

[
∂

∂λr

[
−

Nv∑
v=1

avdλv + qd log

(
Nv∑
v=1

avdλv − log qd!

)]]

= −
Nd∑
d=1

ard +

Nd∑
d=1

ard
qd∑Nv

v=1 avdλv

2.3.4 Concavity

A twice differentiable function is concave on an interval if and only if its second derivatives are non-

positive there. This property gives a practical test for concavity. Differentiating twice the log-likelihood

of the Poisson model:

∂2

∂λr∂λs
log p(λ|q) = −

Nd∑
d=1

qd
ardasd(∑Nv
v=1 avdλv

)2 (2.47)

The photon counts are greater of equal to zero qd ≥ 0; therefore with avd ∈ [0, 1]∀v, d, the log-likelihood

is non-strictly concave. The first part of chapter 3 describes well known strategies for the maximisation

of the log-likelihood and of the log-posterior. The second part of chapter 3 investigates the properties of

maximum likelihood and maximum a posteriori estimators.
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Chapter 3

Reconstruction, resolution and the

partial volume effect

The first part of this chapter (paragraph 3.1) describes iterative reconstruction algorithms for maximum

likelihood estimation (ML) and maximum a posteriori estimation (MAP) of the rate of emission. Three

well known optimisation algorithms are derived in the context of probabilistic graphical models: maxi-

mum likelihood expectation maximisation (MLEM), ordered subsets expectation maximisation (OSEM)

and one step late maximum a posteriori expectation maximisation (OSL-MAPEM). This first part of the

chapter is intended to introduce the building blocks used for the development of the algorithms in the

subsequent chapters.

The second part (paragraph 3.3) applies the algorithms derived in the first part of the chapter inves-

tigating, through numerical simulations, the properties of the ML and MAP estimators and tracing the

link between resolution, ill-posedness of the reconstruction problem and partial-volume effect. This sec-

ond part of the chapter adopts initially the frequentist perspective and then introduces the fully Bayesian

perspective, expanded in chapter 9. The observations presented in this chapter motivate the modelling

paradigm for multi-modal imaging described in the next chapter and the system design optimisation

approach described in chapter 9.

3.1 Unconstrained optimisation
The log-likelihood of the Poisson model (2.45) is differentiable and (non-strictly) concave. With non-

informative prior probability distribution of λ (i.e. all values of λ have the same probability, therefore

the derivatives of the prior are zero in all directions for every value of λ), in order to compute the MAP

estimate (in this case referred to as maximum likelihood estimate), one may proceed with a projected

gradient ascent algorithm with a suitable projection in order to impose the non-negativity constraint on

the activity λ:

λ̂ = argmax
λ∈RNv≥0

log p(q|λ) (3.1)
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λ(n+1)
r = I

(
λ(n)
r + ∆t

∂

∂λr
log p(q|λ)|λ(n)

)
(3.2)

I(x) =

 x if ≥ 0

0 if x < 0
(3.3)

The main difficulty with gradient ascent, for such very high dimensional problem, is to decide the size

of the step ∆t. Algorithms with fixed ∆t are unacceptably slow, while computing the optimum step

size with line search algorithms at every iteration can be very expensive computationally. The high

dimensionality of the problem prohibits the use of second order algorithms.

The difficulty of computing the optimum step size for the gradient descent algorithm is perhaps

the reason of the popularity of the maximum likelihood expectation maximisation (MLEM) algorithm.

Firstly, MLEM, when applied to the Poisson model, guarantees non-negativity of the solution; secondly,

MLEM is free from nuisance parameters. By comparing the MLEM update formula with the gradient

ascent update formula, MLEM appears to be a gradient-type optimisation algorithm with embedded

line-search.

A derivation of MLEM is reported in the following, as it is rarely reported in the literature and it

serves as a useful exercise for the development of the algorithms in the subsequent chapters, clarifying

the role of the EM algorithm in the more complex models that will be introduced in chapter 4 and chapter

5.

3.1.1 Maximum likelihood expectation maximisation - MLEM

The MLEM algorithm is an interesting instance of the Expectation Maximisation (EM) algorithm de-

scribed in paragraph 2.1.9. The Poisson model, introduced in chapter 2, and expressed synthetically

be the graph in Fig. 3.1, expresses the probabilistic dependence between the rate of emission λ and

the photon counts q. Although this paragraph considers the case of uninformative prior (therefore it

is not necessary to explicit p(λ) in the equations), the formulation that follows maintains the explicit

expression p(λ) in anticipation of paragraph 3.2.

Though when one intends to maximise the likelihood of λ, the model does not seem to involve

hidden variables, these can be introduced somewhat artificially for the sole purpose of deriving an update

formula with the Expectation Maximisation recipe.

Figure 3.1: Probabilistic graphical model of the emission imaging system. Activity λ determines the

photon counts q.

Shepp and Vardi [17] proposed to introduce the hidden set Z = {z1, z2, . . . , zv, . . . , zNv} with

zv = {z2v, z1v, . . . , zdv, . . . , zNdv}, where zvd is a discrete variable indicating the number of photons
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emitted from spatial location v and detected at detector bin d. One may say that the introduction of

such set of hidden variables is artificial as, as easily verified, the probability distribution that one would

associate to the photon counts q if the hidden variables were known is a delta function. In fact:

qd =

Nv∑
v=1

zvd (3.4)

This implies also that the joint probability distribution of λ, q,Z factorises. In fact, given Z, one knows

everything about q. Such conditional independence is encoded in the probabilistic graphical model in

Fig. 3.2, which can easily be obtained under the causal interpretation.

Figure 3.2: Graphical model explicitly showing the hidden variable Z = {z1, z2, . . . , zv, . . . , zNv}

with zv = {z1v, z1v, . . . , zdv, . . . , zNdv}, introduced artificially for the purpose of applying the EM

algorithm. The discrete variable zvd indicates the number of photons emitted from spatial location v and

detected at detector bin d.

From the thinning property of the Poisson distribution, the conditional probability p(zvd|λ) is a

Poisson distribution with expectation avdλv (see paragraph 2.3):

p(zvd|λ) = P (zvd; avdλv) (3.5)

and the structure of the graph implies the conditional independence zvd ⊥ zv′d′ |λ:

p(Z|λ) =

Nv∏
v=1

Nd∏
d=1

P (zvd; avdλv) (3.6)

From (3.4), one may say that (3.6) implicitly defines the probability distribution over q and thus over

q,Z:

p(q,Z|λ) = p(Z|λ) (3.7)

All the ingredients for the Expectation Maximisation recipe are ready. EM prescribes to compute the

new estimate of the unknown variables (λ(n+1)) by maximising the expectation of the complete data
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log-posterior log p(q,Z|λ) + log p(λ) with respect to the posterior probability of the hidden variables Z

calculated with the current estimate of the unknown variables: p(Z|q,λ(n)). Since the hidden variables

are discrete, the integral of (2.17) is replaced by the finite sum:

λ(n+1) = argmax
λ

EZ [log p(q,Z|λ)] + log p(λ) (3.8)

= argmax
λ

∑
Z

p(Z|q,λ(n)) log p(q,Z|λ) + log p(λ)

Inserting (3.7) and expanding (3.6):

EZ [log p(q,Z|λ)] = EZ

[
Nd∑
d=1

Nv∑
v=1

log
e−avdλv (avdλv)

zvd

zvd!

]
(3.9)

= EZ

[
Nd∑
d=1

Nv∑
v=1

−avdλv + zvd log (avdλv) + const

]

=

Nd∑
d=1

Nv∑
v=1

EZ [zvd] log (avdλv)− avdλv + const

The expectation of zvd given q and λ is non-trivial to derive (a derivation is reported in the appendix

3.A), but has a simple expression:

EZ [zvd] =
∑
Z

p(Z|q,λ(n))zvd = avdλ
(n)
v

qd∑Nv
v′=1 av′dλ

(n)
v′

(3.10)

Inserting (3.10) in (3.9):

EZ [log p(q,Z|λ)] + log p(λ) =

Nd∑
d=1

Nv∑
v=1

avdλ
(n)
v

qd∑Nv
v′=1 av′dλ

(n)
v′

log (avdλv) + (3.11)

+

Nd∑
d=1

Nv∑
v=1

−avdλv + log p(λ)

Setting the derivatives with respect to vector valued λ to 0:

∂

∂λr
(EZ [log p(q,Z|λ)] + log p(λ)) = 0 (3.12)

Nd∑
d=1

avdλ
(n)
r

qd∑Nv
v′=1 av′dλ

(n)
v′

1

λr
+

Nd∑
d=1

−avd +
∂

∂λr
log p(λ) = 0 (3.13)

With uninformative prior, the derivatives of the log-prior ∂
∂λr

log p(λ) are zero and the maximiser has

closed form solution:

λ(n+1)
r = λ(n)

r

1∑Nd
d=1 ard

Nd∑
d=1

ard
qd∑Nv

v=1 avdλ
(n)
v

(3.14)
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The expression (3.14), often named Maximum Likelihood Expectation Maximisation (MLEM), con-

stitutes a fixed-point equation for λ; starting with an initial guess λ[0], one may iteratively update λ

applying (3.14). The properties of Expectation Maximisation (see paragraph (2.1.9)) guarantee that each

new application of (3.14) does not decrease the log likelihood. The MLEM update step entails a projec-

tion and a back-projection.

3.1.2 MLEM as Preconditioned Gradient Ascent

By comparing (3.14) with (2.46), the MLEM update formula appears to entail the same type of cal-

culations involved in computing the gradient of the log likelihood. Indeed MLEM is a preconditioned

gradient ascent optimisation algorithm. By substituting (2.46) in (3.14):

λ(n+1)
r = λ(n)

r +
λ

(n)
r∑Nd

d=1 ard

∂ log p(q|λ)

∂λr

∣∣∣
λ[n]

(3.15)

This expression, equivalent to (3.14), exposes how the MLEM update formula is a gradient ascent update

step with position-dependent diagonal preconditioner.

3.1.3 Ordered subsets expectation maximisation - OSEM

As with any probabilistic model, one may perform the inference task disregarding part of the observa-

tions. One can for example imagine that half of the detectors of the emission imaging system are not

functioning. In order to reduce the computational complexity of iterative reconstruction, the Ordered

Subsets Expectation Maximisation algorithm [29] consists in updating λ using only a subset of the ob-

servations, changing the subset at each iteration. The OSEM algorithm described in [29] cycles, with a

predefined order, through pre-defined subsets and uses the EM algorithm to update the activity at each

step. However one may choose the subsets randomly and eventually use algorithms other than EM. The

OSEM algorithm is very popular in clinical and research applications, reducing drastically the compu-

tation times. The number of detector bins utilised at one given iteration (i.e. the size of the subset) is

a fraction of the total number of detector bins. With subsets of size 1/8 ,1/16 and 1/32 of the total

number of detector bins, OSEM achieves roughly a speedup of 8, 16 and 32 times. The algorithm typi-

cally behaves poorly with small subsets, increasing the noisy look of the image and presenting random

or cyclical variations of the likelihood. It is typical to adopt subsets of size 1/8 ,1/16, 1/32 or even

1/64 is case of fully 3D PET where the number of detector bins is high. Fig. 3.3 depicts OSEM with 2

non-overlapping subsets.

λ(n+1)
r = λ(n)

r

1∑
d∈D(n) avd

∑
d∈D(n)

avd
qd∑Nv

v=1 avdλ
(n)
v

(3.16)

D(n) ⊆ {1, 2, . . . , Nd} (3.17)
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Figure 3.3: Ordered Subsets Expectation Maximisation (OSEM) algorithm. The observed variables are

divided in subsets (2 subsets in figure). At each iteration λ is updated using the observations that belong

to one of the subsets and disregarding all other subsets.

The NiftyRec software, described in the last chapter, implements the traditional OSEM algorithm

and a version based on random subsets. This second solution is adopted in the experiments described in

the subsequent chapters and preferred over the deterministic version as it appears to reduce artefacts. The

random OSEM algorithm is also applied in chapter 5 to the four dimensional models, cycling through

random subsets in space and time.

While OSEM is invaluable in order to reduce the computational complexity and works well for

large subsets (for example 1/8, 1/16, 1/32 of the total number of detector bins), convergence is not

guaranteed even if the log-likelihood is well behaved (i.e. the system matrix is invertible). OSEM with

small subsets presents a cyclical behavior when subsets are cycled in a predefined order, as the algorithm

produces estimates of the activity that are close to the most likely value according to the observations

contained in each of the subsets in turn. For this reason the experiments described in the second part

of this chapter, which investigate the properties of the maximum-likelihood and MAP estimators at

convergence, make use of full MLEM.

3.1.4 Iterated conditional modes - ICM

The ICM algorithm described in 2.1.10 may be applied to the unconstrained tomographic reconstruction

problem, as depicted in Fig. 3.4.

The Poisson log-likelihood, as derived in 2.3.4, is non-strictly concave. If the system matrix is

invertible, the likelihood is concave, presenting a unique maximiser. In the case of concave cost function

(i.e. in the case of invertible system matrix or in case the problem is regularised with a concave log-prior

term as in paragraph 3.2.2), each of the subsets is concave, therefore ICM is guaranteed to converge to

the solution for any choice of the order of subsets, as long as the optimisation algorithm adopted at each

step of ICM is convergent (e.g. gradient descent or MLEM).

One application of ICM is to parallelise the reconstruction problem. This topic is discussed in
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Figure 3.4: Iterated Conditional Modes algorithm (ICM) applied to unconstrained tomographic recon-

struction. Subsets λ′ and λ′′ are updated in sequence.

chapter 10. Projection and back-projection are inherently parallelisable essentially due to the conditional

independence of the photon counts given the activity. Therefore with a distributed computing system,

one may distribute the projection and back-projection on multiple computing devices. However, in a

distributed computing system, at each iteration of an optimisation algorithm such as MLEM, the new

estimate of the activity must be communicated to all the computing devices. This limitation, intrinsic of

joint optimisation, may be relaxed by using the ICM algorithm, i.e. by updating subsets of the unknowns

cyclically or randomly.

3.2 Maximum a posteriori estimation

Considering an arbitrary prior probability distribution p(λ), the posterior probability distribution of λ

given q is obtained by applying the law of total probability:

p(λ, q) = p(q|λ)p(λ) = p(λ|q)p(q) (3.18)

Solving for p(λ|q) and maximising with respect to λ, we obtain the following optimisation problem:

λ̂ = arg max
λ

p(q|λ)p(λ), (3.19)

with p(q|λ) expressed by equation (2.44). As discussed in paragraph 3.1.1, with uninformative prior

p(λ), the M step of the EM algorithm has closed form solution (see (3.13)), producing the MLEM

formula (3.14). However, for other choices of the prior, in general, there does not exist a closed form

solution of (3.13). In order to compute the MAP estimate, then one may resort to adopting a gradient

ascent optimisation algorithm, or eventually devise a generalised Expectation Maximisation algorithm:

instead of computing the maximiser of (3.12) at each iteration, a new value that increases (3.12) is

chosen at each iteration. An elegant and simple alternative was suggested by Peter Green in [30]: the

one-step-late EM algorithm.
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3.2.1 One-step-late maximum a posteriori expectation maximisation (OSL-

MAPEM)

Since there does not exist a closed form solution for (3.13) for an arbitrary prior, Green [30] suggested to

replace the gradient of the log-prior in (3.13) with the gradient of the log-prior evaluated for the previous

estimate of λ:

∂

∂λr
log p(λ)→ ∂

∂λr
log p(λ)|λ=λ(n) (3.20)

The solution of (3.13) is then:

λ(n+1)
r = λ(n)

r

1∑Nd
d=1 avd −

∂
∂λr

log p(λ)|λ=λ(n)

Nd∑
d=1

avd
qd∑Nv

v=1 avdλ
(n)
v

(3.21)

One-step-late (OSL) is not guaranteed to converge and does not impose non-negativity. However the

algorithm behaves well in most practical cases as long as the prior has a relatively small importance

relative to the likelihood. While more sophisticated algorithms have been explored (e.g. [31]), the main

advantage of the OSL algorithm is the absence of parameters.

3.2.2 The smoothness prior

Prior knowledge, or, from the frequentist perspective (further clarified in the next paragraph), the penal-

isation term, can be expressed in many forms. The selection of an appropriate form and parametrisation

of the prior term is an open and challenging problem, discussed throughout this thesis. One of the critical

factors for the selection of the form of the prior term is computational complexity.

One form of prior knowledge that leads to relatively simple inference algorithms is the assumption

that the spatial concentration of the radio-pharmaceutical varies slowly in space. Considering the spatial

concentration of the radio-pharmaceutical a continuous function of space λ̃(X), with X indicating the

coordinates of 3-dimensional space, one may search for solutions of the type:

ˆ̃
λ = argmax

λ̃

log p(q|λ̃)− β‖∇λ̃(X)‖2 (3.22)

With∇λ̃(X) indicating the spatial gradient of λ̃ and ‖ · ‖2 indicating the L-2 norm:

‖∇λ̃(X)‖2 =

∫
[∇λ̃(X)]2dX (3.23)

The term −β‖∇λ̃(X)‖2 promotes solutions that present, on average, small spatial derivatives. In order

to discretise the optimisation problem, in 2.3.2, the activity λ̃ has been considered in first place discrete

(and denominated λ). The same approach of considering the problem to be in first hand discrete can be

adopted to discretize (3.22). The L2-norm of the gradient, in the discrete domain, is replaced by the sum

of the finite differences between neighbouring voxels. Letting c = {c1, c2} indicate a pair of neighbours
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Figure 3.5: The graph on the left displays a generic prior probability distribution of the activity λ. Prior

assumptions about the statistics of the first order derivatives of the activity λ correspond, in the discrete

domain, to a prior probability distribution that factorises according to the MRF reported in the graph

on the right, denominated first order MRF. Equation (3.24) implies, as expressed by the derivative of its

logarithm (3.25), that the activity at a given node (e.g. node 14) would be independent (a priori) from

the activity in all other nodes if the activity in the neighbouring nodes (nodes 5, 11, 17, 23) were known.

The graphical model encodes such assumption.

and C be the set of all pairs of neighbours, the probability distribution function whose log is the sum of

the finite differences of neighbouring voxels multiplied by a constant β, is expressed by:

p(λ)SMOOTHING =
∏
c∈C

1

Z
e−β(λc1−λc2 )2 (3.24)

where Z is the normalisation factor that makes the integral of p(λ) unitary, irrelevant in the maximisa-

tion with respect to λ. Equation(3.24) is expressed graphically by the Markov Random Field with the

structure reported in Fig. 3.5, often denominated first order MRF. Equation (3.24) can be interpreted

globally or locally. Equation (3.24) expresses a probability distribution over all possible values of λ,

assigning high probability to values of λ that present, on average, small variations. The product of terms

in (3.24), corresponds to the assumption that the difference between neighbouring voxels dc = λc1−λc2
is a priori normally distributed and that dc ⊥ dc′ . Note that though the dual local/global interpretation

of MRFs just described may seem obvious, as pointed out by Besag [32], it is one of the fundamental

findings that have emerged from the field of spatial statistics in the last few decades and it is expressed

formally by the Hammersley - Clifford theorem [32].

Differentiating the log of (3.24) with respect to λr, only the terms that contain λr are non-zero.

Therefore, indicating with ηr the set of indexes that correspond to voxels that are neighbours of voxel r:

∂

∂λr
log p(λ)SMOOTHING = −2β

∑
v∈ηr

(λr − λv) (3.25)

This expression can be evaluated efficiently simply by convolution of λ with the Laplace filter, in the

two-dimensional case, the [3× 3] matrix:
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0 −1 0

−1 4 −1

0 −1 0

 (3.26)

and in the three-dimensional case a [3× 3× 3] tensor with analogous structure. The MAP estimate can

be computed with the OSL-MAPEM algorithm 3.21 with the gradient of the prior (3.25). Experiments

are reported in paragraph 3.3.3.

3.3 Resolution, the partial-volume effect, information
Due to the occurrence of noise and to computational limitations, tomographic images constitute an ap-

proximate representation of the underlying quantity. The imaging system and the reconstruction algo-

rithm determine the mapping between the underlying quantity and the numerical representation. Defin-

ing desired properties of the reconstructed images, of the reconstruction algorithms and of the imaging

systems is essential in order to compare and parametrise the reconstruction algorithms, in order to eval-

uate, compare and design the imaging systems, and in order to inform image-driven decision processes.

The formulation of the inverse problem in the probabilistic framework enables us to relate the un-

certainty associated to the acquisition of the emission data (i.e. the uncertainty that one would have

about q if λ were known, expressed by the imaging model p(q|λ)), to the uncertainty associated to the

measurement of the activity λ. Two main research paths have been delineated in occasion of the estima-

tion of the uncertainty and optimisation of the design of the emission imaging systems. The first path,

delineated by the work of J.A.Fessler [33, 34], J.W.Stayman [35, 36, 37], J.Nuyts [38, 39], K.Vunckx

[40, 41, 42], l.Zhou [43], J.Qi [44], H.H Barrett [45, 46], D.W.Wilson [47], L.J.Meng [48, 49], N.Li

[50], and others, defines the properties of the reconstruction algorithms and of the imaging systems in

the frequentist probabilistic framework. Such an approach, summarised in paragraph 3.3.1, has exposed

the fundamental limitations of computed tomography. However, the frequentist approach seems to fall

short, as will be discussed in 3.3.1, when one attempts to define criteria for the choice of optimum imag-

ing parameters. The second path, delineated by the work of H.H.Barrett [51, 52], P.Khurd and G.Gindi

[53], H.C.Gifford, M.A.King, P.H.Pretorius and R.G.Wells [54], K.L.Gilland, B.M.W.Tsui, Y.Qi and

G.T.Gullberg [55], A.Yendiki and J.A.Fessler [56] and others, frames the optimum parametrisation and

system design problems in the decision theoretic framework. Criteria for the optimum selection of the

parameters can be clearly formulated in the decision theoretic framework, on the basis of pre-defined

imaging tasks. The imaging process is parametrised in order to maximise the performance of human

observers or of numerical observers designed to perform such tasks.

This thesis focuses on a third path, unexplored in the context of tomographic reconstruction, the

information theoretic perspective, immediate consequence of the fully Bayesian treatment of the imaging

problem. The imaging model described in 2.3.2 expresses the probability distribution that one would
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associate to λ for a given observation q. Reconstruction is often posed, as is the case here in paragraphs

3.1 and 3.2, as the estimation of the value of λ that maximises such probability distribution. However,

in the fully Bayesian approach, one shall consider the function as a whole, which expresses the state

of knowledge that one possesses about λ upon observing q. If one can characterise the full posterior,

e.g. by drawing samples from it, and integrate it, then it is possible to compute answers to questions

such as ”How much information have I acquired about the concentration of the radio-pharmaceutical

in voxel v?”: The observation of q determines the posterior probability distribution of the vector-valued

variable λ, therefore, upon observing q, the probability distribution associated with the activity in voxel

v is expressed by the marginal:

p(λv|q) =

∫ ∫
. . .

∫
p(λ|q)dλ1 . . . dλv′ 6=vdλNv (3.27)

Shannon’s entropy, as explained in detail in Chapter 9, quantifies the information that one has about

variable λv when the state of knowledge about λv is uncertain and therefore expressed by a probability

distribution, such as, in this case, the probability distribution that occurs upon observing q:

Eλv =

∫
p(λv|q) log p(λv|q)dλv (3.28)

While this expression answers the question formulated above, evaluating numerically (3.28) and the sim-

ilar expressions that arise from similar questions (some of which are addressed in Chapter 9), entails a

tremendous computational complexity due to the integral over the high dimensional posterior probability

distribution. Perhaps due to the prohibitive complexity that information criteria entail, the information

theoretic formulation has not received interest from the computed tomography community. Chapter 9

defines the problem of optimum system design in the information theoretic framework and explores effi-

cient algorithms for the numerical estimation of the information in emission computed tomography. The

reminder of this chapter summarises the frequentist approach, contextualising the partial volume effect

and discussing the use of the bias/variance curves, utilised in the remainder of this document for the

evaluation of reconstruction algorithms.

3.3.1 Resolution

In photography, resolution indicates a quantitative measure of how close two parallel lines can be to

each other and still be visibly resolved. In computed tomography, such a definition of resolution presents

certain challenges.

In the literature of computed tomography, the resolution of the imaging system is often identified

with the Full Width at Half Maximum (FWHM) of the local impulse response (LIR). In order to clarify

the rationale behind such definition of resolution, let us start by considering the simple photographic

imaging system of Fig. 3.6-left, composed of a converging lens and of a pixellated detector. The photons

emitted (emission here includes reflection and refraction) from a point located on the imaging plane are

ideally focused to a point on the focal plane. However, the lens is imperfect, determining aberration:
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the photons are spread on the focal plane, as depicted in Fig. 3.6-left. Let A be the convolution operator

expressed in matrix form. A discrete model of the imaging system is reported in Fig. 3.6-right, using the

same notation as for the tomographic problem: λ for rate of emission (or intensity) and q for detector

readout. While λ, the true value of the light coming out of the imaging plane, is unknown, one has an

image of λ: q. Notice that this problem differs from the tomographic problem only in the choice of the

imaging matrix A. However there is a subtle difference between the two problems in that both λ and q

live on a plane in the case of photography, while in the tomographic problem λ is a function of 3-D space

and q is defined on a surface, such as the cylindrical bore of the PET scanner. The mapping between

space and the vector valued functions does not appear explicitly in the mathematical formulation, but it

is implicit in the structure of A.

Figure 3.6: Left: Simple photographic imaging system. Right: discretised probabilistic model of the

photographic imaging system. The intensity of light on the imaging λ plane determines the observation

q. Due to optical aberration, the image is blurred. Due to blurring, the arrows of the DAG extend from

location v on the imaging plane, not only to the corresponding location on the detector plane, but also to

nearby locations. Only the nearest locations are represented in the schematic graph.

In the frequentist view, one constructs a (deterministic) set of rules that produces the estimate of λ

from the measurement q. The set of rules, denominated estimator can be seen as a function that maps q

to the estimate λ̂:

λ̂(q) (3.29)

The ML and MAP criteria define two of the many possible rules for constructing the estimates λ̂ from

q.

If the measurement is noiseless, the observation, indicated in this case with q̄, is equal to the trans-

formation of λ by the imaging operator:

q̄ = Aλ (3.30)

When the measurement is corrupted by noise, the conditional probability distribution p(q|λ) expresses

the noise characteristics. Common noise models, of interest in photography and in computed tomogra-
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phy, are the homoscedastic Gaussian model:

p(q|λ) =

Nd∏
d=1

N (qd; [Aλ]d, σ) (3.31)

with noise level σ; and the Poisson model:

p(q|λ) =

Nd∏
d=1

P (qd; [Aλ]d) (3.32)

One can easily verify that in both cases, the expectation of q given λ is expressed by (3.30). For a

given value of λ, the measurement q may have many possible values, with probability density p(q|λ).

The estimator produces deterministically a value of λ̂ given the measurement q, therefore, given λ, the

estimator defines a probability distribution function of the estimates. Then the estimator, other than by

the set of rules, can be characterised by the moments of the probability distribution associated with the

estimates that it produces. The first two moments are:

µ(λ) = Ep(q|λ)[λ̂(q)] =

∫
λ̂(q)p(q|λ)dq (3.33)

Γ(λ) = Ep(q|λ)[(λ̂(q)− µ(λ))2] =

∫
(λ̂(q)− µ(λ))2p(q|λ)dq (3.34)

The difference between the mean of the estimator and the true value of λ is denominated bias of the

estimator:

B(λ) = µ(λ)− λ (3.35)

Let us consider three choices of estimator for the noise models (3.31) and (3.32), while sticking to the

parallel between photography and tomographic imaging.

The trivial estimator

In the case of photography, a possible choice of estimator is:

λ̂TRIVIAL(q) = q (3.36)

With this choice, one considers the true scene to be identical to the acquired image. Such choice of

estimator is only allowed if the model has been discretised as in Fig. 3.6-right, with Nv = Nq and

clearly cannot be employed in the case of computed tomography. Substituting in (3.33):

µTRIVIAL(λ) = Aλ (3.37)

for both noise models. This is of course a trivial result, but, in perspective, important to define resolution

and to clarify the meaning of the LIR. Equation (3.37) says that if one considers the true value of λ

to have the same value as q, then, after performing many measurements, the representation that one

constructs about λ using the estimator λ̂TRIVIAL(q) is Aλ, as smooth version of the true value of λ.
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The impulse response
If λ is an impulse, the mean of the estimator is

lvTRIVIAL , µ(ev) = Aev (3.38)

where ev is the v-th unit vector of length Nv . lvTRIVIAL expresses the mean representation that one con-

structs when the true activity is an impulse centred in v and is therefore denominated impulse response.

According to (3.38), lvTRIVIAL is the v-th column of matrix A. The set of all impulse responses {lv}, then,

according to (3.37) can be thought of as the operator (matrix P, in the case of the trivial estimator) that

applied to the true value of λ returns the mean of the estimator. Therefore {lv} characterises the mean

of the estimator and the bias for any value of λ. This is the case for all linear estimators (i.e. λ̂(q) is

a linear function of q) such as λ̂TRIVIAL(q) and the ML estimator for the homoscedastic Gaussian model

discussed in the next part of this paragraph, titled ’The ML estimator’. If the convolution operator is

stationary, matrix A is Toeplitz and the convolution (3.37) can be written as:

µTRIVIAL(λ) = l ∗ λ (3.39)

where l is the 2-D convolution kernel obtained by re-arranging the elements of A according to the

indexing pattern assigned to the pixels, as described, e.g. in [57]. The 3-D Fourier transform of l is

denominated modulation transfer function (MTF):

MTF (f) = F [l] (3.40)

Applying the convolution theorem, (3.39) is equivalent to:

F [µTRIVIAL(λ)] = MTF (f) · F [λ] (3.41)

If λ is, e.g., a sinusoidal function of (spatial) frequency f̄ , the representation that one constructs upon

observing λ infinite times, is equal to λ attenuated by |MTF (f̄)|. If l is a 2-D Gaussian, then the MTF

is a Gaussian centred in f = 0 and it is wider, the thinner is l. If l is wide (a common measure of width

is the full width at half maximum - FWHM ), then the MTF drops sharply, resulting in high spatial

frequencies being attenuated.

In conclusion, in the case of the trivial estimator (3.36), the impulse response (defined as the mean

estimator of the impulse) is an alternative representation of the imaging matrix A. The width of the

impulse response (e.g. its FWHM ) may be considered to be indicative of the ability that an observer

would have to distinguish parallel lines when performing many measurements. However the trivial

estimator cannot be defined in the case of tomography.

The ML estimator
The ML estimator applies equally to photographic and tomographic imaging.

λ̂(q) = argmax
λ

p(λ|q) (3.42)

= argmax
λ

log p(λ|q) (3.43)
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Let us consider the two noise models: homoscedastic Gaussian and Poisson.

Homoscedastic Gaussian model

p(q|λ) =

Nd∏
d=1

1√
2πσ

e−
(qd−[Aλ]d)2

2σ2 (3.44)

If A is invertible, log p(q|λ), as easily verified by differentiating twice as in 2.3.4, is concave. Its

maximum therefore occurs for λ such that

∂

∂λr
log p(q|λ) =

Nd∑
d=1

−2ardqd +

Nd∑
d=1

Nv∑
v=1

2a2
rdλv = 0 (3.45)

Solving for λ and rewriting in matrix form:

λ̂ML GAUSSIAN(q) = (ATA)−1ATq (3.46)

The ML estimator for the homoscedastic Gaussian model is therefore a linear function of the observa-

tions. Substituting (3.46) in (3.33), the mean of the estimator (3.46) is:

µML GAUSSIAN(λ) = (ATA)−1ATAλ (3.47)

As expressed by (3.47) and (3.35), the ML estimator for the Gaussian noise model is unbiased, if ATA

is invertible. The response to the impulse is the impulse:

lvML GAUSSIAN = µ(ev) = ev (3.48)

Poisson model

p(q|λ) =

Nd∏
d=1

e−[Aλ]d [Aλ]d
qd

qd!
(3.49)

log p(q|λ) is again concave if A is invertible. The maximum occurs for λ such that:

∂

∂λr
log p(q|λ) =

Nd∑
d=1

−ard +

Nd∑
d=1

ard
qd∑Nv

v=1 avdλv
= 0 (3.50)

In matrix form:

−AT1 +AT
(
q

Aλ̂

)
= 0 (3.51)

With the fraction indicating point-wise division and 1 indicating the all-ones vector. While for the

Gaussian noise model λ̂ can be expressed explicitly, due to the point-wise division that appears in (3.51),

in general an explicit expression of λ̂ cannot be derived for the Poisson model. Note that, as can be easily

verified by manipulating (3.50), λ̂ can be expressed explicitly in case of diagonal system matrix with

non-zero diagonal entries: λ̂r = qr
arr

and in case of Nv = 1: λ =
∑
d qd∑
d ad

. Such system matrices,

however, are unrealistic in case of emission imaging. In general, the ML estimator for the Poisson model

is therefore an implicitly defined estimator. The estimator is implicitly defined by (3.43) and (3.49), or,
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equivalently, by (3.51). While the trivial estimator (3.36) and the ML estimator for the Gaussian noise

model (3.46) are linear functions of the observations, the ML estimator for the Poisson model (3.51) is

in general non-linear (given again exception in case of diagonal system matrix with non-zero diagonal

entries and in case of Nv = 1).

With the estimator expressed implicitly, one cannot apply (3.33) and (3.34) to obtain explicit

expressions of its mean and variance. What can be said about the ML estimator for the Poisson

model is that it is asymptotically unbiased. Applying the central limit theorem, the Poisson proba-

bility distribution associated to qd is asymptotically normal (i.e. for large values of λ): p(q|λ) ∼

N
(
qd;µ = [Aλ]d, σ =

√
[Aλ]d

)
. One can derive, analogously to (3.47), the mean of the estimator for

such heteroscedastic Gaussian model: µML GAUSSIAN HETERO(λ) = λ. Consequently:

µML POISSON(λ)→ λ (3.52)

In absence of explicit expressions of the properties of the ML estimator for the Poisson model,

Wilson and Tsui [58] and Fessler [34] have explored approximated expressions of µML POISSON(λ) and

ΓML POISSON(λ), defining a local version of the IR, the local impulse response (LIR):

lv(λ) = lim
δ→0

µ(λ− δev)− µ(λ)

δ
=

∂

∂λv
µ(λ) (3.53)

The LIR expresses how, on average, the reconstructed image is affected, at first order, by a perturbation

of a particular element (i.e. voxel value) of the true underlying variable λ. It is easily verified that the

LIR is equivalent to the IR for linear estimators such as (3.36) to (3.46). Fessler has derived [34] the

explicit analytical formulation of the LIR of the ML estimator applied to the Poisson model. Though the

estimator is defined implicitly, the LIR, as defined in (3.53), can be expressed explicitly from the partial

derivatives of the estimator, using the implicit function theorem. Such derivation is reported in [34] and

yields:

lvML POISSON ≈
[
AT diag

1

Aλ
A

]−1 [
AT diag

1

Aλ
A

]
ev (3.54)

If A is invertible, the LIR is an impulse.

The MAP estimator
The width of the IR (or of the LIR, if the IR cannot be expressed explicitly), is often considered, in the

context of computed tomography, a measure of resolution, in analogy with the trivial estimator for the

2-D imaging problem discussed at the beginning of this paragraph. If the imaging matrix is invertible,

the IR of the ML estimator for the Gaussian model (3.48) and the LIR of the ML estimator for the

Poisson model (3.54) are delta functions, indicating infinite resolution. Indeed, the capacity to resolve

lines is infinite in that, if one performs the measurement again and again, as expressed by the integration

in (3.33), the representation that one constructs eventually becomes exact.

In practice, however, the imaging matrix A, as discussed in the next paragraph, is bound to be ill-

conditioned. When the imaging matrix is not invertible, the IR and the LIR of the ML estimator are no
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longer defined. One approach to make the problem well behaved (the problem is here considered not

well behaved when the system matrix is not invertible) is to add a penalisation term to the log likelihood

function.

λ̂MAP(q) = argmax
λ

log p(q|λ) + log p(λ) (3.55)

Homoscedastic Gaussian model

There do not exist, in general, explicit expressions of λ̂MAP(q), µMAP(λ), lvMAP(λ) and ΓMAP(λ) for the

MAP estimator. However, there exist explicit expressions in case of homoscedastic Gaussian likelihood

coupled with the quadratic MRF prior 3.2.2. The derivation of the IR is reported e.g. by Fessler [34]:

lvMAP GAUSSIAN SMOOTHING =
(
ATA+R

)−1
ATAev (3.56)

where R is the matrix of the second mixed partial derivatives of log p(λ):

R = rij =
∂2

∂λi∂λj
log p(λ) (3.57)

Poisson model

The LIR of the MAP estimator with the smoothing prior has been derived by Fessler in [33]:

lvMAP POISSON SMOOTHING ≈
[
AT diag

1

Aλ
A+R

]−1 [
AT diag

1

Aλ
A

]
ev (3.58)

3.3.2 Bias / Variance

As discussed in the previous paragraph, the impulse response (IR) constitutes an alternative represen-

tation of the mean and bias of linear estimators. The mean is given by the true underlying activity

convolved with the IR and the bias is defined as the mean minus the true activity. For estimators that do

not accept an explicit representation, such as the ML estimator for the Poisson model, the local impulse

response (LIR) expresses a first order approximation of the mean and bias. The IR of the ML estimator

for the homoscedastic Gaussian model and the LIR of the ML estimator for the Poisson model are delta

functions if the imaging matrix A is invertible. Such results signify that if one observes again and again

the photon counts q, with an invertible imaging matrix, the true value of λ eventually becomes known.

However q is typically measured once and the system matrix is, in general, ill-conditioned. Though the

IR and the LIR are related to the ability that an observer would have to resolve parallel lines from a single

observation of q, it is not straightforward to establish their relation to resolution.

Let us start by considering the case is which the system matrix is invertible. One does not seem

to require regularisation and the impulse response is a delta function: if one could measure q infinite

times, λ would become known exactly. This is expressed by the first order moment of the estimator

being equal to the true value of Lambda. In order to characterize the single measurement, one has to

consider the higher moments. The covariance matrix, defined in (3.34), expresses, in the L2-norm, the

average distance of the estimates from the mean. If the covariance matrix were diagonal, the estimates

of the elements of vector-valued λ would be independent from one another across multiple observations.
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Small values of the diagonal elements of the covariance matrix imply that the estimates obtained from

repeated measurements are near the mean and therefore near one another. Bias alone, expressed by

the IR and the LIR, in other words, does not characterise the single measurement. Even in the case

of invertible imaging matrix, the estimates of the elements of vector-valued λ are co-variated, making

it difficult to express the ability to resolve parallel lines. While this depends on the properties of the

estimator (the covariance, and eventually higher order momenta), relating the covariance matrix and the

IR to the ability to resolve lines or eventually other features of interest is a challenging problem.

The problem is further complicated with ill-conditioned imaging matrix. The IR and LIR are not

defined. The width of the IR and LIR of the MAP estimator with quadratic MRF penalty, expressed by

(3.56) for the Gaussian noise model and by (3.58) for the Poisson noise model, have been considered,

in recent literature, measures of resolution. These, however, express, again, the mean of the estimator,

the representation that one would construct upon performing infinite measurements. The problem of

selecting the weight of the smoothing term, problem that is largely unsolved in its own terms, complicates

further the definition of a measure of resolution.

Finally, the problem of defining resolution becomes even more volatile considering arbitrary penalty

functions, such as non-differentiable functions (e.g. sparsity constraints on the image gradient) or penalty

functions that do not relate to the mapping between vector λ and 3-dimensional space.

While it is difficult to define a measure of resolution and to relate it to bias (IR, LIR) and covariance,

a good estimator is characterised by low bias and diagonal covariance matrix with small values. Two

useful tools for the visualisation and comparison of the properties of estimators and of the imaging

systems are the grey scale visualisation of one or multiple columns of the covariance matrix and the plot

of the norm of the bias versus the norm of the diagonal of the covariance matrix:

B = ‖µ(λ)− λ‖2 (3.59)

V = ‖diag[Γ(λ)]‖2 (3.60)

The grey scale image of a column of the covariance matrix is obtained by reshaping the column into a

3-D image (2-D in case of 2-D imaging) according to the voxel indexing pattern. One of more slices

of the resulting imaging volume is then displayed for the purpose of visualising how concentrated the

values are near the voxel whose index corresponds to the selected column. Paragraph 3.3.3 makes use

of such visualisation of the covariance matrix and of the bias/variance norm plots to characterise the

properties of the ML estimator and of the MAP estimator with the smoothing prior.

3.3.3 The partial volume effect

PET-CT and, recently, PET-MR, have improved the visual interpretation of emission imaging data. When

overlaid on the functional images, anatomical images support their qualitative interpretation, the de-

lineation of anatomical structures and the quantitative assessment of the uptake in regions of interest.

Overlaying the functional and the anatomical images, however, exposes the fundamental challenge of
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quantification. An observer can distinguish underlying structures in common between the two images,

but the emission image appears to be blurred, giving the observer the impression of spill out of the phar-

maceutical. Such problem is often referred to as spill out effect or partial volume effect (PVE). The

expression partial volume effect suggests that the problem is related to the discretisation of the imaging

volume in voxels of finite size, which cover partially multiple areas with different levels of activity, as

depicted in Fig. 3.7. While this is partially true, one may raise the objection that the choice of the size

of the voxels is arbitrary.

Figure 3.7: The expression partial volume effect suggests that the blurring effect in computed tomog-

raphy occurs in consequence of the discretisation of the imaging volume in voxels of finite size, which

cover partially multiple areas with different levels of activity. This is partially true, however the choice

of the size of the voxels is arbitrary.

The tomographic imaging problem is inherently ill-posed, due to λ being a continuous function of

space. In 2.3.2, we have formulated the imaging model in the discrete domain, considering the activity

non-zero only in discrete locations. Let us consider the continuous formulation of the problem, with λ̃

being an infinite dimensional vector. The ML estimation problem ˆ̃
λ = argmaxλ̃ p(q|λ̃) is clearly ill-

posed, with infinite unknowns and finite (discrete) observations. The discrete model described in 2.3.2

can be considered to arise, in the continuous domain formulation, from a particular choice of prior p(λ̃):

• A) values of λ̃ such that λ̃ is non-zero on a regularly spaced grid of points and zero everywhere

else have non-zeros probability; every other configuration of λ̃ has probability zero.

Another convenient choice of p(λ̃) is the following:

• B) values of λ̃ such that λ̃ is constant within each of the rectangular regions of space indexed by

v (voxels), have non-zero probability; every other configuration of λ̃ has probability zero.

These two assumptions, while introduced solely for convenience of the numerical implementation, con-

strain the estimation problem. If one considers, e.g., the case of Nv = 1 voxel, the estimation problem

is certainly well behaved with a unique solution (given in closed form, as one can easily verify, by the

normalised integral sum of the photon counts
∑Nd
d=1 qd/

∑Nd
d=1 ad). While the constrained problem may

be well behaved (invertible), such two assumptions are, in the Bayesian view, unrealistic, especially for
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large voxels. Decreasing the size of the voxels, on the other hand, the problem becomes more and more

ill-posed, eventually approaching the continuous formulation.

A second type of assumption, which, this time, relates to genuine prior belief about λ̃, is that

λ̃ changes slowly in space. In order to introduce such assumption, as discussed in 3.2.2, one can

follow two approaches. The first approach is to encode the assumption in the continuous domain:

log pMRF(λ̃) ∝ −β‖∇λ̃‖2 and devise a discretisation scheme. The second approach is to introduce

the assumption readily in the discrete domain. In the second case, which we have adopted in paragraph

3.2.2, the assumption of smoothness is encoded by the first order MRF with quadratic energy function-

als, expressing the prior belief that the difference between the activity λ̃(Xc1)− λ̃(Xc2) in two locations

Xc1 and Xc2 is normally distributed. The formulation of the assumption of smoothness in the discrete

domain is equivalent to the prior p(λ̃) given by the product of two terms, a term of type A) and the MRF

term:

p(λ̃) = pDISCRETISATION(λ̃)pSMOOTHING(λ̃) (3.61)

where pSMOOTHING(λ̃) was defined in (3.24) and pDISCRETISATION(λ̃) is defined according to A) or B). Shan-

non’s information, described in depth in the context of emission tomography in Chapter 9, quantifies the

information available about the vector-valued variable λ̃ whose state of knowledge is described by the

probability distribution p(λ̃):

Ep(λ̃) =

∫
p(λ̃) log p(λ̃)dλ (3.62)

Information, as defined in (3.62), as can be easily verified, is additive:

Ep(λ̃) = EpDISCRETISATION(λ̃) + EpSMOOTHING(λ̃) (3.63)

The choice of the number of voxels is irrelevant if the information associated to pSMOOTHING(λ̃) dominates

the information associated to pDISCRETISATION(λ̃):

EpDISCRETISATION(λ̃) << EpSMOOTHING(λ̃) (3.64)

The parameter β of the smoothing prior distribution regulates the extent to which the activity in nearby

voxels is believed to be similar. While deciding the value of β is an open and challenging problem,

the larger the value of β, the more informative is the prior pMRF(λ̃). The discretisation term is more

informative the larger the size of the voxels d. The condition (3.64) is therefore equivalent to:

1

β
>> d (3.65)

In conclusion, the number of voxels must be large enough for the intended prior probability distribution

(e.g. the smoothness prior) to hide the discretisation scheme. Note that this discussion is related to the

voxel-based formulation of the discrete problem. In more general terms, voxels are one of the many

possible choices of basis functions. Similar considerations apply, indeed, to other choices of the basis

functions: if a particular choice of basis functions (or a given parametrisation of the basis functions)
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induces a constraint in the continuous space of λ̃, such constraint can be interpreted, in the Bayesian

framework, as a prior probability distribution. One may opt for a specific choice of the basis functions for

the purpose of obtaining a regularisation effect, however it is arguable that the effect of the discretisation

algorithm should be kept separate from the prior belief.

Optimum design, regularisation (modelling), parameterisation, resolution, partial volume effect, are

one problem. In the frequentist approach any set of rules is an estimator. Early-stopped ML or MAP,

ML with large voxels, converged MAP are all candidate estimators. However it is difficult to define a

criterion of optimality. The partial volume effect arises from using large voxels and from early stopping.

From the Bayesian perspective, early termination of an algorithm has no justification and the size of the

voxels must be chosen to be small enough for the discretisation scheme not to influence the decisions.

The Bayesian framework places the inference task at the centre, separating clearly the model and the

inference algorithm. Under the assumption of smoothness, smooth solutions are preferred. The partial

volume effect arises from the assumption of smoothness.

The next section of this paragraph investigates the properties of the ML and MAP estimator with

smoothing prior, determining a suitable size of the voxels and displaying how the partial volume effect

arises from early termination and from convergent MAP.

Experiments

The experiments that follow investigate the effect of the smoothing prior, of early stopping and of the size

of the voxels. Investigation of the properties of the reconstruction algorithms at convergence exposes the

nature of the partial volume effect.

Uptake of FDG was simulated by assigning typical average values observed in PET FDG scans to

the BrainWeb (http://mouldy. bic.mni.mcgill.ca/brainweb/) ground truth tissue model: 4 parts uptake in

the gray matter (GM), 1 part in white matter (WM), 0 part in the cerebral-spinal fluid (CSF). The PET

imaging process was simulated with the PET-Sorteo Monte Carlo simulator [59]. A single noiseless

simulation of the PET imaging process was obtained with the PET-Sorteo Monte Carlo simulator (i.e.

producing the term Aλ in equation (3.32)). The noiseless measurement was scaled to have an integral

sum equal to 100 × 106 photon counts. Finally, N instances of the PET measurement were generated

by drawing N samples from the Poisson distribution (equation (3.32)) with expectation equal to the

normalised noiseless measurement (notice that, due to the sum property of the Poisson ditribution, the

total number of counts results Poisson distributed with mean 100 × 106). The random samples were

obtained using a pseudo-random Poisson sampler (from the IRT toolbox [60]), based on the rejection

sampling algorithm described at page 293 of [61].

Unconstrained MLEM is often considered non-convergent as at each iteration the image appears

more and more noisy (see e.g. Fig. 3.12 at the end of the chapter). Such statement, however, is incorrect.

If the system matrix is invertible, the Poisson log-likelihood is concave, presenting a unique maximiser.

The Expectation Maximisation algorithm, as demonstrated by Dempster and Laird [12], guarantees,
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given the properties of differentiability and continuity of the Poisson likelihood, convergence to the

maximiser. With ill-conditioned system matrix, the log-likelihood is non-strictly concave, presenting an

infinity of maximally likely solutions. In this case, the EM algorithm converges to one of the maximisers,

depending on the initialisation. While the increasingly noisy aspect of the reconstruction is undesirable

for visualisation, the likelihood increases with the number of iterations. The solution at convergence

is indeed the most likely, or one of the many most likely. The poor appearance of the reconstruction at

convergence is ultimately due to the small amount of information available from the measurement. Early

stopping introduces a smoothing-like effect. While early stopping appears to be a valid alternative in the

frequentist framework, defining an estimator, the Bayesian framework emphasises models and inference.

There seems to be no question, in the Bayesian framework, of whether it is better to terminate early or

not. The first question is how many iterations are required in order to achieve convergence of the MLEM

algorithm. Fig. 3.8 displays the log-likelihood in the range 1 to 10000 iterations for varying size of the

voxels. The reconstructions appears to achieve convergence in about 4000 iterations for large voxel sizes

and 8000 iterations for smaller voxel sizes. The reason is discussed in paragraph 3.3.
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Figure 3.8: Convergence of the MLEM algorithm applied to 3-D PET with varying voxel size. The

imaging volume of size (300 mm × 300 mm × 300 mm) is discretised in a regular grid of isotropic

voxels, the number of voxels varying from 32× 32× 32 to 224× 224× 224. Convergence to machine

precision (floating point precision 2.2e− 16) is achieved in 4000− 8000 iterations.
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The second experiment investigates the effect of the smoothing prior and of early stopping. Bi-

as/variance norm curves are computed, for different values of the smoothing parameter, from the re-

construction of N instances of the PET acquisition. In order to guarantee convergence, the OSL-

MAPEM algorithm described in 3.2.2 was iterated for 10000 iterations. The voxel size was set to

1.6 mm (192 × 192 × 8voxels). Bias/variance norm curves are typically obtained from the recon-

struction of 10 to 100 instances of the measurement. However, when the reconstruction algorithms are

iterated until convergence, such small number of instances appears insufficient to provide an estimate

of the covariance matrix. In order to be able to distinguish visually, from noise, the structure of the

covariance matrix, it was found that the number of noise instances must be much larger. For the imaging

system and average number of photon counts under consideration, N = 10240 produced satisfactory

estimates of the covariance matrix, in terms of visual appearance. The visualisations of the covariance

matrix reported in Fig. 3.11, in fact, appear dominated by random fluctuations for smaller values of N .

Fig. 3.9 and the close up in Fig. 3.10 report the bias/variance norm curves obtained according to (3.59)

and (3.60) from N reconstructions. The plot reports the curves obtained with unconstrained ML (red)

and with MAP with quadratic first order MRF prior with 5 different values of the smoothing parameter β.

The reconstruction algorithms utilised to compute the MAP estimates were MLEM and OSL-MAPEM,

with 10000 iterations per reconstruction. The values of β were selected within a range selected by trial

and error in order to obtain a considerable level of smoothing with the largest value β5 and a small but

visually noticeable level of smoothing with the smallest value β1.

Figure 3.9: Bias/variance norm curves of MLEM (red) and of MAP with quadratic first order MRF

(blue) with 5 values of the smoothing parameter β. The curves are obtained from 10240 reconstructions

iterated 10000 times.

Interestingly, Fig. 3.9 and Fig. 3.10 suggests that MAP with the smoothness prior outperforms early

stopping in terms of bias/variance for any choice of the smoothness parameter, achieving simultaneously



70 Chapter 3. Reconstruction, resolution and the partial volume effect

Figure 3.10: Bias/variance norm curves. Close up of the plot of Fig. 3.9.

lower bias and lower variance.

Fig. 3.11 displays the covariance matrices obtained from the multiple reconstructions. The blue

curves display a column of the covariance matrix corresponding to a random point in the grey matter,

while the red curves display a column corresponding to a random point in the white matter. Each of the

two columns is re-arranged as a 3-D image, according to the voxel indexing pattern (raster scanning).

The plots display a slice of such volume in the axial direction, passing through the voxel of interest.

Semi-transparent plots refer to early stopping at 10, 100, 1000, 5000 iterations. For high values of the

smoothing parameters β4 and β5, the optimisation algorithm appears to converge within 100 iterations,

as one deduces from the overlapping curves. The sharp peak of the covariance matrix in case of MLEM

indicates that the estimates in different locations are nearly independent (voxels are indicated with a

small dot in the plots of Fig. 3.11). Increasing values of the smoothing parameter spread the covariance

matrix. Finally, one can observe that the covariance matrix obtained by early termination of MLEM

(shaded curves) approximates the covariance matrix of the MAP estimator for varying values of the

smoothing prior.

Fig. 3.12-3.17 display the mean of the 10240 reconstructions, the variance (diagonal of the covari-

ance matrix, reshaped as an image), the bias (3.35) and a single reconstruction. Iteration until conver-

gence of MLEM recovers the original image, if one performs the measurement again and again. How-

ever, the single reconstruction has an unappealing noisy appearance. For large values of the smoothing

prior (β3, β4, β5, the reconstruction from the single measurement appears visually appealing, though the

mean of the reconstruction indicates the problem of the partial volume effect.

The reconstruction with the smoothing prior appears more appealing and easy to interpret. Clearly

there is some truth in the model, as indicated by the lower bias for equal variance when compared with

unconstrained (i.e. uninformed) optimisation (Fig. 3.9).
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Figure 3.11: Visualisation of two columns of the covariance matrix Γ(λ) for N = 10240 instances.

Blue: random grey matter voxel. Red: random white matter voxel. Each of the two columns is re-

arranged as a 3-D image, according to the voxel indexing pattern (raster scanning). The plots display a

slice of such volume in the axial direction, passing through the voxel of interest. Semi-transparent plots

refer to early stopping at 10, 100, 1000, 5000 iterations.
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Figure 3.12: MLEM: N = 10240 instances, 10 to 10000 iterations.
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Figure 3.13: MAP-EM smoothing: β = β1, N = 10240 instances, 10 to 10000 iterations.
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Figure 3.14: MAP-EM smoothing: β = β2, N = 10240 instances, 10 to 10000 iterations.
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Figure 3.15: MAP-EM smoothing: β = β3, N = 10240 instances, 10 to 10000 iterations.
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Figure 3.16: MAP-EM smoothing: β = β4, N = 10240 instances, 10 to 10000 iterations.
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Figure 3.17: MAP-EM smoothing: β = β5, N = 10240 instances, 10 to 10000 iterations.
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3.A The conditional expectation of the hidden variables of the Pois-

son model
This appendix describes a derivation of the conditional expectation of the hidden variables zvd introduced

in paragraph 3.1.1 in the context of the derivation of the MLME formula for the Poisson model (refer to

paragraph 3.1.1 for the definition of zvd,λ, q). Although the conditional expectation of zvd presents a

simple and well known expression (see e.g. Green [30]):

Ep(zvd|λ,q)[zvd] =
avd λv qd∑Nv
v′=1 av′dλv′

, (3.66)

deriving such expression is somewhat involved. Despite the widespread use of MLEM, this derivation

seems to have not been reported in the literature of computed tomography. This appendix is organised

as follows: paragraphs 3.A.1 and 3.A.2 define formulas that will be useful for the derivation of the

conditional expectation of the hidden variables of the Poisson model; paragraphs 3.A.3 and 3.A.4 derive

the expectation of a Poisson-distributed random variable and the sum property of the Poisson distribution,

serving as introductions to the procedure for the derivation of the conditional expectation of the hidden

variables of the Poisson model, described in the last paragraph (3.A.5).

3.A.1 Taylor expansion of the exponential function

The following equation expresses the Taylor polynomial expansion of the exponential function ex (with

x ∈ R):

ex =

∞∑
n=0

xn

n!
(3.67)

Equation 3.67 will be used in the derivations that follow.

3.A.2 Multinomial theorem

The multinomial formula (see e.g. [62]) expresses, for any positive integer m and any nonnegative

integer n, how a sum with m terms expands when raised to an arbitrary power n:

∑
k1≥0
k2≥0
...

km≥0∑m
i=1 ki=n

 n

k1, k2, . . . , km

 m∏
i=1

xkii = (x1 + x2 + · · ·+ xm)
n
, (3.68)

where  n

k1, k2, . . . , km

 =
n!

k1! k2! . . . km!
(3.69)

is a multinomial coefficient (see e.g. [62]). Note that the sum is taken over all combinations of nonnega-

tive integer indices k1 through km such that the sum of all ki is n. That is, for each term in the expansion,

the exponents of the xi must add up to n.
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3.A.3 Expected value of a Poisson-distributed random variable

Let us consider a variable q distributed according to the Poisson distribution with parameters λ:

p(q|λ) = P (q;λ) =
e−λλq

q!
(3.70)

The expected value of the variable q under this distribution is:

Ep(q|λ)[q] =

∞∑
q=0

q
e−λλq

q!
(3.71)

=

∞∑
q=1

q
e−λλq

q!
(3.72)

=

∞∑
q=1

e−λλq

(q − 1)!
(3.73)

With the change of variable h = q − 1, we obtain:

Ep(q|λ)[q] = e−λλ

∞∑
h=0

λh

h!
, (3.74)

where the infinite sum, as expressed by equation (3.67), converges to eλ; therefore:

Ep(q|λ)[q] = λ (3.75)

3.A.4 Sum property of the Poisson distribution

The sum of two independent Poisson-distributed variables is Poisson distributed. Let us verify this

property of the Poisson distribution. Let us consider two independent variables q1 and q2 distributed

according to the Poisson distribution with parameters λ1 and λ2 respectively:

p(q1|λ1) = P (q1;λ1) =
e−λ1λq11

q1!
(3.76)

p(q2|λ2) = P (q2;λ2) =
e−λ2λq22

q2!
(3.77)

p(q1, q2|λ1, λ2) = p(q1|λ1)p(q2|λ2) (3.78)

(equation (3.78) expresses the independence of the two random variables). The probability distribution

associated to the sum of the two random variables

q = q1 + q2 (3.79)

is expressed by the integral sum over the joint probability of q1 and q2, with the constraint q1 + q2 = q:

p(q|λ1, λ2) =
∑
q1≥0
q2≥0

q1+q2=q

p(q1, q2|λ1, λ2) (3.80)

=
∑
q1≥0
q2≥0

q1+q2=q

e−λ1λq11

q1!

e−λ2λq22

q2!
(3.81)
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Let us multiply and divide by q! and re-arrange the terms:

p(q|λ1, λ2) =
e−(λ1+λ2)

q!

∑
q1≥0
q2≥0

q1+q2=q

q!

q1! q2!
λq11 λ

q2
2 (3.82)

=
e−(λ1+λ2)

q!

∑
q1≥0
q2≥0

q1+q2=q

 q

q1, q2

λq11 λ
q2
2 , (3.83)

where

 q

q1, q2

 are the multinomial coefficients reported in equation (3.69). Using the multinomial

formula (3.68), the summation in (3.83) is equivalent to (λ1 + λ2)q , therefore we obtain:

p(q|λ1, λ2) =
e−(λ1+λ2)(λ1 + λ2)q

q!
(3.84)

= P (q;λ1 + λ2) (3.85)

3.A.5 Conditional expectation of the hidden variables

Let us consider the model represented by the graph in Fig. 3.18-left, where λ = {λv}, in the context

of emission imaging, is the vector of rates of emission at the locations indexed by v. q = {qd} is a

vector of measurements (i.e. number of events detected at each detector location d); and the variables

zvd represent the number of events emitted in v and detected in d. Therefore we have:

qd =
∑
v

zvd (3.86)

Equation (3.86) can be expressed as a conditional probability distribution using Dirac’s delta function:

p(qd|z11, z12, . . . , z21, . . . ) = δ

(
qd −

∑
v

zvd

)
(3.87)

Let avd be the probability that an event emitted in v is detected in d. The probability distribution associ-

ated to zvd conditional to the emission rates λ depends, by definition of zvd, only on λv and is a Poisson

distribution with parameter avdλv if the events are emitted independently from one another:

p(zvd|λ) = P (zvd; avdλv) (3.88)

Therefore, by the sum property of the Poisson distribution (that will be derived here in 3.A.4), the

probability distribution associated to each of the measurements qd is a Poisson distribution:

p(qd|λ) = P

(
qd;
∑
v

avdλv

)
(3.89)

For the probabilistic model defined by equations (3.87) and (3.88), we are interested in the expecta-

tion of each of zvd when λ and q are known variables (as expressed by the shaded nodes of the graphs in

Fig. 3.18). Let us notice, e.g. via the global Markov properties of the moralised graph of Fig. 3.18-right
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Figure 3.18: Left: graphical representation of the Poisson model explicitly showing the hidden variables

Z = {z1, z2, . . . , zv, . . . , zNv} with zv = {z1v, z1v, . . . , zdv, . . . , zNdv}. The discrete variable zvd

indicates the number of photons emitted from spatial location v and detected at detector bin d. Right:

moralised graph.

(see Paragraph 2.1.5), that the probability distribution of z11, when λ and q are given, depends on q1 and

on z21, z31, . . . but does not depend on q2, q3, . . . nor on z12, z13, . . . , z22, z23, . . . . Therefore, when

considering e.g. the probability distribution of z11 and its expectation, one may refer to the subgraph of

Fig. 3.19-left.

Figure 3.19: The probability distribution of z11, z12, . . . , z21, z22, . . . conditional to λ, q, expressed by

the graphs in Fig. 3.19, factorises into Nd independent terms. Cconditionally to λ, q, variable z11

depends on q1 and on z21, z31, . . . , but does not depend on q2, q3, . . . nor on z12, z13, . . . , z22, z23, . . . .

In order to keep the formulation uncluttered, rather than using the indexes v and d, let us consider,

from here on, the case of λ = {λ1, λ2, λ3} (i.e. Nv = 3) and derive the expectation of z11. The

generalisation is straightforward.

Ep(z11|λ1,λ2,λ3,q1)[z11] (3.90)

In order to derive the marginal conditional probability distribution of p(z11|λ1, λ2, λ3, q1), let us start
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by considering the joint conditional probability of all the variables of the graph, then we will derive the

conditional probability distribution of the hidden variables and finally marginalise with respect of all

the hidden variables except for the variable of interest z11. From the graph in Fig. 3.19-left, the joint

probability of all the variables of the model has the following expression:

p(λ1, λ2, λ3, z11, z21, z31, d1) = p(λ1)p(λ2)p(λ3)p(z11|λ1)p(z21|λ2)p(z31|λ3)p(q1|z11, z21, z31)

(3.91)

Applying the law of total probability, we obtain:

p(z11, z21, z31|λ1, λ2, λ3, d1) =
p(λ1, λ2, λ3, z11, z21, z31, d1)

p(λ1, λ2, λ3, q1)
(3.92)

=
p(λ1)p(λ2)p(λ3)p(z11|λ1)p(z21|λ2)p(z31|λ3)p(q1|z11, z21, z31)

p(λ1)p(λ2)p(λ3)p(q1|λ1, λ2, λ3)

=
p(z11|λ1)p(z21|λ2)p(z31|λ3)p(q1|z11, z21, z31)

p(q1|λ1, λ2, λ3)

The marginal probability distribution of z11 (conditional to λ1, λ2, λ3 and d1) is obtained by integrating

the joint probability distribution of z11, z21, z31 of equation (3.92) over z21 and z31, as follows:

p(z11|λ1, λ2, λ3, q1) =
∑
z21≥0
z31≥0

p(z11, z21, z31|λ1, λ2, λ3, d1) (3.93)

Finally, the expectation of z11 (when λ1, λ2, λ3 and d1 are given), is expressed by the following integral:

Ep(z11|λ1,λ2,λ3,q1)[z11] =
∑
z11≥1

z11 p(z11|λ1, λ2, λ3, d1) (3.94)

(note that in equation (3.94)
∑
z11≥1 is equivalent to

∑
z11≥0;

∑
z11≥1 is a more convenient choice as it

simplifies the derivation that follows). Inserting (3.93) and (3.92) in (3.94), we obtain:

Ep(z11|λ1,λ2,λ3,q1)[z11] =
∑
z11≥1
z21≥0
z31≥0

z11 p(z11, z21, z31|λ1, λ2, λ3, d1) (3.95)

=
1

p(q1|λ1, λ2, λ3)

∑
z11≥1
z21≥0
z31≥0

z11p(z11|λ1)p(z21|λ2)p(z31|λ3)p(q1|z11, z21, z31)

(3.96)

The last term of equation (3.96) is the delta function (3.87), therefore the summation can be rewritten as:

Ep(z11|λ1,λ2,λ3,q1)[z11] =
1

p(q1|λ1, λ2, λ3)

∑
z11≥1
z21≥0
z31≥0

z11+z21+z31=q1

z11 p(z11|λ1)p(z21|λ2)p(z31|λ3) (3.97)
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Inserting (3.88) into (3.97), then doing the change of variable k = z11 − 1; we obtain:

Ep(z11|λ1,λ2,λ3,q1)[z11] =
e−a11λ1e−a21λ2e−a31λ3

p(q1|λ1, λ2, λ3)

∑
z11≥1
z21≥0
z31≥0

z11+z21+z31=q1

z11
(a11λ1)z11

z11!

(a21λ2)z21

z21!

(a31λ3)z31

z31!
(3.98)

=
e−a11λ1e−a21λ2e−a31λ3

p(q1|λ1, λ2, λ3)

∑
z11≥1
z21≥0
z31≥0

z11+z21+z31=q1

(a11λ1)z11

(z11 − 1)!

(a21λ2)z21

z21!

(a31λ3)z31

z31!
(3.99)

=
e−a11λ1e−a21λ2e−a31λ3

p(q1|λ1, λ2, λ3)

∑
k≥0
z21≥0
z31≥0

k+z21+z31=q1−1

(a11λ1)k+1

k!

(a21λ2)z21

z21!

(a31λ3)z31

z31!
(3.100)

Let us multiply and divide (3.100) by (q1 − 1)! and then apply the multinomial formula of equations

(3.68)-(3.69):

Ep(z11|λ1,λ2,λ3,q1)[z11] =
e−a11λ1e−a21λ2e−a31λ3

(q1 − 1)! p(q1|λ1, λ2, λ3)

∑
k≥0
z21≥0
z31≥0

k+z21+z31=q1−1

(q1 − 1)!

k! z21! z31!
(a11λ1)k+1(a21λ2)z21(a31λ3)z31

(3.101)

=
e−a11λ1e−a21λ2e−a31λ3(a11λ1)

(q1 − 1)! p(q1|λ1, λ2, λ3)

∑
k≥0
z21≥0
z31≥0

k+z21+z31=q1−1

 q1 − 1

z21, z31

(a11λ1)k(a21λ2)z21(a31λ3)z31

(3.102)

=
e−a11λ1e−a21λ2e−a31λ3(a11λ1)

(q1 − 1)! p(q1|λ1, λ2, λ3)
(a11λ1 + a21λ2 + a31λ3)

q1−1 (3.103)

Inserting equation (3.89) in (3.103), we obtain:

Ep(z11|λ1,λ2,λ3,q1)[z11] =
a11 λ1 q1

a11λ1 + a21λ2 + a31λ3
(3.104)

Equation (3.104) is valid for every value of v of the Nv-dimensional vector λ = {λv} and for every

value of d of the Nd-dimensional measurement q = {qd}, therefore:

Ep(zvd|λ,q)[zvd] =
avd λv qd∑Nv
v′=1 av′dλv′

(3.105)
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Chapter 4

Physiologically-based modelling

4.1 Physiologically-based modelling paradigm

Uncertainty in Emission Tomography is dominated by photon counting statistics. It is therefore essential

to adopt a probabilistic model of the emission and interaction of the Gamma photons in order to use opti-

mally the information at hand for the quantification of the uptake of the radio-pharmaceutical. Given the

generative probabilistic model of the emission imaging system outlined in Chapter 2, the spatial density

of the radio pharmaceutical can be estimated by Maximum Likelihood (ML), as described in Chapter 3.

However the maximum likelihood estimation problem is ill-posed, presenting an infinity of equally likely

solutions. Furthermore, the unknowns (pharmaceutical density in each voxel) are strongly correlated due

to the measurement of line integrals by the emission imaging system. For these reasons, algorithms for

the optimisation of the likelihood have slow convergence rates and the ML solutions present a noisy

appearance (Chapter 3). A smoothing prior is typically adopted with the effect of reducing the iterations

required to achieve convergence and selecting smooth solutions. The smoothing prior constitutes, from

the Bayesian perspective, a source of information to the likes of emission imaging data. Being a partially

truthful description of the process that generates the activity, the smoothing prior improves the recovery

of the activity, as observed through the bias/variance plots in Chapter 3. PET images obtained under the

assumption of smoothness, however, when overlaid on an MR image of the same subject (intra-subject),

present the problem of partial volume or spill out effect: an observer can distinguish certain regions in

common between the two images, but the PET image is smoother than the MR image, giving the observer

the impression of spill out of the pharmaceutical. The partial volume effect highlights how problematic

it is to quantify the uptake of pharmaceutical in a region of interest obtained by segmentation of the MR

image.

The assumption of smoothness, described in Chapter 3, while interpreted as a regularisation strat-

egy in the context of functional analysis, in the Bayesian framework assumes the meaning of a mech-

anistic model of the uptake of the pharmaceutical. One assumes that configurations of the uptake that

vary slowly in space are more likely than configurations that present abrupt changes. Such assumption
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may be considered a macroscopic probabilistic model of the physiological processes that underlie the

spatial configuration of the uptake of pharmaceutical. In this work, the assumption of smoothness is

replaced with a parametric model that relates the uptake of pharmaceutical to the anatomy, as imaged by

the anatomical imaging modality.

Several publications have focused on improvement of the activity estimate by means of an intra-

subject anatomical image, relying on the assumption that activity is related to the underlying anatomy,

imaged by the MRI scanner. Methods in the literature fall into three main categories: methods that favor

a piecewise uniform reconstruction by segmenting the anatomical image and subsequently applying a

smoothing prior within each identified region [63]; methods that explicitly extract boundary informa-

tion from the anatomical image and relax the effect of a global smoothing prior across the identified

edges [64] and methods based on information theoretic similarity functionals [65]. The last category has

proven particularly interesting, as the involved functionals do not require either explicit segmentation

nor boundary extraction from the anatomical image. The introduction of anatomical prior information

via these functionals has been shown, in synthetic experiments, to improve the a posteriori estimate of

activity, by reducing bias and variance [63].

The declared intent of the use of similarity functionals is to produce reconstructions of the func-

tional tomogram that are similar to the anatomical image. The approach adopted in this work differs

from the aforementioned methodologies in that it is based on the modeling explicitly the joint imaging

system. The probabilistic generative modeling approach described in Chapter 2 is adopted. While the

similarity functionals hide the reasons of similarity between the images, the generative modelling ap-

proach expresses explicitly the models of the imaging systems, therefore exposing a clear model of the

underlying physiological processes.

• model of the imaging systems

• model of the underlying physiological processes (macroscopic or microscopic)

Such modelling paradigm, will be referred to as physiologically-based modelling. Models that express

the relation between observations and hidden variables related to the multiple available imaging modal-

ities are meant to enable the concurrent estimation of quantities related to function and anatomy for au-

tomatic diagnosis and synthesis of images. Along this line of thought, recently Venkataraman et al. [66]

have proposed a generative model for joint estimation of brain connectivity from functional MRI (fMRI)

and diffusion weighted imaging (DWI) and Hiltunen et al. have proposed a combined reconstruction-

classification method for single modality diffuse optical tomography [67]. Earlier related work on joint

estimation of function and anatomy was developed by Sastri et al.[68] who introduced a tissue composi-

tion model based on a finite mixture and Rangarajan et al. [69] who introduced an iterative scheme for

the same model, based on maximisation of mutual information.

The physiologically-based modeling paradigm and the models described in the remainder of this

chapter and in the following chapters are inspired by the Bayesian framework for automated classification
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of tissue described in [70] and in the Unified Segmentation framework [5].

4.2 Finite anatomical-functional states
A common approach for the extraction of anatomical information from MR images is to assume that

there exist hidden discrete states. Such assumption underlies the models described by Van Leemput

[70] and Ashburner [5]. While the assumption that there exist hidden finite states may be considered

a mathematical abstraction, the hidden states may be interpreted, in the context of MR imaging, as

anatomical states, such as gray matter, white matter and cerebrospinal fluid. As will be clarified by the

end of this chapter, the association of the abstract hidden variables with states of anatomy presents certain

difficulties that arise from the non-convexity of the optimisation problem associated to the estimation of

the model parameters. Such difficulty however, as discussed, is effectively addressed by the use of

population-derived prior information. The model that follows extends the models described by Van

Leemput [70] and Ashburner [5] in the context of MR, assuming, in the context of MR-PET imaging,

finite states of anatomy and function. It is assumed that there exist hidden discrete states of anatomy and

function, such as healthy gray matter, healthy white matter, cerebrospinal fluid, hyper-active gray matter

and hyper-active white matter.

The model described in the following is an expression of the physiologically-based paradigm, inte-

grating models of the MRI and PET acquisition systems and a model of the uptake of the pharmaceutical

in a unified framework. The model addresses fully automatic estimation of the parameters by integrating

population-based prior information and a contextual model.

This paragraph first introduces the model of the PET acquisition system (4.2.1), followed by the

hidden-state model of the pharmaceutical uptake (4.2.2) and the model of the MR acquisition system

(4.2.3). Finally 4.2.4 describes the joint model. Paragraph (4.3) is dedicated to the description of an

algorithm for the joint estimation of the model parameters.

4.2.1 Model of the PET acquisition system

The model of the emission imaging system, described in detail in Chapter 2.3, is expressed by the

following conditional probability distribution of the photon counts q given the rate of emission of gamma

radiation λ, proportional to the spatial concentration of the radio-pharmaceutical:

p(q|λ) =

Nd∏
d=1

P
(
qd;
∑Nv
v=1 avdλv

)
(4.1)

The system matrix avd encompasses the characteristics of the imaging system (location, size, sensitivity,

spatial resolution of the Gamma detectors, eventual collimators) and the attenuation of Gamma radiation

through the patient. The model of the PET acquisition system is represented by the graphical model in

Fig. 4.1-A.
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 B  

C

A

Figure 4.1: Finite anatomical-functional states model for PET-MR. A: model of the PET acquisition

system that relates the pharmaceutical concentration λv in voxels v = 1, . . . , Nv to the photon counts

in detector bins d = 1, . . . , Nd; B: finite anatomical-functional states model; C: model of the MR ac-

quisition system. The joint model expresses the assumption that there exists a finite discrete variable

zv for each voxel. If the state of the discrete variable in a voxel v were known, then one would as-

sociate a normal probability distribution to the outcome of the MR acquisition yv . The set of normal

distributions (one for each possible state) is parametrised by θy . If the hidden state in v were known,

one would also associate a normal probability distribution to the concentration of the radio pharmaceu-

tical λv , parametrised by the set of parameters θλ. π parametrises the spatially varying prior probability

distribution of the hidden states.

4.2.2 Finite anatomical-functional states

It is assumed that there exists a finite number of tissue types and that, in a given type of tissue, the

pharmaceutical uptake is considered uncertain, but to some extent predictable. The expectation and the

extent of variation of the uptake within each type of tissue are captured by a parametric finite mix-

ture model. What is intended exactly by type of tissue will be clarified once we introduce the use of

population-derived information in the following.

Assuming that the hidden state may have one of Nk possible values, let us use a 1-of-Nk vectorial

representation for the hidden states. The discrete state at location v is indicated by

zv = [zv1, zv2, . . . , zvk, . . . , zvNk ] (4.2)

zvk ∈ {0, 1}
Nk∑
k=1

zvk = 1 (4.3)
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Let us indicate with Z the hidden states at all voxel locations:

Z = [z1, z2, . . . , zv, . . . , zNv ] (4.4)

The hidden variables are considered to be a priori independent from one another and their probability

distribution is multinomial. This choice will allow us to introduce population-derived information. Note

that the multinomial probability distribution specifies the probability of all possible states, allowing

maximum flexibility in the definition of the prior probability distribution. The prior probability of the

hidden states, function of the voxel location, will be derived, in the experiments in paragraph 4.5, from

a population of images. Let us denote the spatially dependent prior probability of the hidden states with

πvk:

p(zvk = 1|π) = πvk (4.5)

Let us indicate with πv the prior probability of each of the allowed states in voxel v:

πv = [πv1, πv2, . . . , πvk, . . . , πvNk ] (4.6)

0 ≤ πvk ≤ 1

Nk∑
k=1

πvk = 1 (4.7)

and with π the set of all the parameters of the (spatially varying) multinomial prior probability distribu-

tions of the hidden states:

π = [π1, π2, . . . , πv, . . . , πNv ] (4.8)

Because the hidden state zv in v uses a 1-of-Nk representation, the prior probability distribution associ-

ated to the state in v can also be written as:

p(zv|π) =

Nk∏
k=1

πzvkvk (4.9)

This second notation turns out to be often more convenient. The prior probability associated to the set of

all the hidden variables is:

p(Z|π) =

Nv∏
v=1

Nk∏
k=1

πzvkvk (4.10)

The concentration of the radio-pharmaceutical λv in a voxel v belonging to class k is assumed to be

normally distributed around a certain mean µλ,k, with variance σ2
λ,k, grouped in θλ,k = {µλ,k, σ2

λ,k}

and θλ = {θλ1
, θλ2

, . . . , θλNk }:

p(λv|zvk = 1, θλ) = N (λv;µλ,k, σλ,k) (4.11)

Because the hidden state zv in v is expressed with a 1-of-Nk representation, this last expression can be

written as:

p(λv|zv, θλ) =

Nk∏
k=1

N (λv;µλ,k, σλ,k)
zvk (4.12)
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which entails that λv ⊥ λv′ |z, θλ:

p(λ|Z, θλ) =

Nv∏
v=1

Nk∏
k=1

N (λv;µλ,k, σλ,k)
zvk (4.13)

Here, θλ = {θλ1 , θλ2 , . . . , θλNk } are the parameters of the pharmaceutical uptake model, describing

the expectation and the extent of variation of the uptake in each type of tissue. The generative model

that relates the spatial concentration of the radio-pharmaceutical to the anatomical-functional states is

represented by the graphical model in Fig. 4.1-B.

4.2.3 Model of the MR acquisition system

The MR imaging system is described by a parametric voxel-based finite mixture model commonly em-

ployed for the classification of tissue types by means of MR images [71]. It relates the observed image

intensities to the underlying finite hidden states. The intensity yv of a voxel v that belongs to class k is

assumed to be normally distributed around a certain mean µy,k, with variance σ2
y,k. Let us indicate the

parameters compactly with θy,k = {µy,k, σy,k} and θy = {θy1 , θy2 , . . . , θyNk }, then, we get:

p(yv|zvk = 1, θy) = N (yv;µy,k, σy,k) (4.14)

Again, because the hidden state zv in v uses a 1-of-Nk representation, this expression can be written as:

p(yv|zv, θy) =

Nk∏
k=1

N (yv;µy,k, σy,k)
zvk (4.15)

which entails that yv ⊥ yv′ |Z, θy:

p(y|Z, θy) =

Nv∏
v=1

Nk∏
k=1

N (yv;µy,k, σy,k)
zvk (4.16)

The model of the MR imaging system (4.15) is represented by the Bayesian Network in Fig. 4.1-C. The

set of parameter are the mean and spread of the intensity for each class θy = {θy1 , θy2 , . . . , θyNk }.

4.2.4 The joint model

The hidden tissue states are considered the unique underlying cause of mutual dependence of the two

images, as expressed by the arrows of the graph in Fig. 4.1. The hidden state in each voxel is related to

the intensity of the MR image and to the pharmaceutical density (which is also a hidden variable) by the

parametric models of Sec. 4.2.2 and Sec. 4.2.3.

The probability of voxel v being in state k depends a priori on the location of v. Such prior dis-

tribution is expressed by the multinomial probability distribution πvk,
∑Nk
k πvk = 1. The use of the

spatially varying multinomial prior probability of the hidden states is key to automating the algorithm,

as otherwise the parameters of the mixture models converge to different tissue classes non predictably.

The joint model is expressed graphically by the DAG in Fig. 4.1 and by the compact representation

in Fig. 4.2.
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Figure 4.2: Compact representation of the finite anatomical-functional states model of figure 4.1.

4.3 Joint estimation of the unobserved variables
Let us consider the MAP estimate of λ and θ:

λ̂, θ̂ = argmax
λ,θ

log p(λ, θ|q,y, π) (4.17)

In order to derive the expression of the joint posterior, let us start from the joint probability of all vari-

ables, easily obtained from the DAG of Fig. 4.2. One methodology to obtain the joint probability

distribution from the DAG is the following: one assigns an ordering to the variables such that there are

no links from any node to any lower numbered node; the joint probability distribution can be written as

a sequence of products, starting from the lowest numbered node and following increasing node indexes,

of the probability distribution of the variables at each node conditional to the parent nodes. In the case

of Fig. 4.2:

p(π, θ,Z,y,λ, q) = p(π)p(θλ)p(θy)p(Z|π)p(y|Z, θy)p(λ|Z, θλ)p(q|λ) (4.18)

From the chain rule of conditional probabilities:

p(λ, θ,Z|q,y, π) =
p(π, θ,Z,y,λ, q)

p(q,y, π)
(4.19)

Marginalising over Z:

p(λ, θ|q,y, π) =
1

p(q,y, π)

∑
Z

p(π, θ,Z,y,λ, q) (4.20)

Since we are interested in maximising this expression with respect to λ and θ, we are only interested in

the term that appears in the summation, i.e. the marginal of the joint posterior of all the variables with

respect to Z. The summation over all possible values of Z seems to make the expression of the posterior

marginalised with respect to Z complicated. However it does have a simple expression, which can be

obtained by noting that the model implies the following factorisation (this can be easily verified e.g. by

moralising the graph of Fig. 4.1):

p(y,λ|π, θy, θλ) =

Nv∏
v=1

p(yv, λv|π, θy, θλ), (4.21)
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where:

p(yv, λv|π, θy, θλ) =
∑
zv

p(zv|π)p(yv|zv, θy)p(λv|zv, θλ) (4.22)

=
∑
zv

πzvkvk p(yv|zv, θy)p(λv|zv, θλ) (4.23)

=
∑
zv

Nk∏
k=1

πzvkvk

Nk∏
k=1

N (λv;µλ,k, σλ,k)
zvk

Nk∏
k=1

N (yv;µy,k, σy,k)
zvk (4.24)

=

Nk∑
k=1

πvkN (λv;µλ,k, σλ,k)N (yv;µy,k, σy,k) (4.25)

The last equality is a consequence of the 1-of-Nk representation of zv (the possible values of zv are

{[0, 0, . . . , 0, 0, 1], [0, 0, . . . , 0, 1, 0], . . . }). From (4.21) and (4.25), we get:

p(y,λ|π, θy, θλ) =

Nv∏
v=1

Nk∑
k=1

πvkN (λv;µλ,k, σλ,k)N (yv;µy,k, σy,k) (4.26)

Substituting (4.18) in (4.20), and given equation (4.26) and the following equality (marginalisation over

variable Z):

p(Z|π)p(y|Z, θy)p(λ|Z, θλ) = p(y,λ|π, θy, θλ), (4.27)

the log of the posterior distribution of λ, θ has the following expression:

log p(λ, θ|q,y, π) ∝ log p(θy) + log p(θλ) + log p(q|λ) + (4.28)
Nv∑
v=1

log

Nk∑
k=1

πvkN (λv;µλ,k, σλ,k)N (yv;µy,k, σy,k)

The equations above express the conditional probability distributions of all the subsets. The section that

follows describes the use of the ICM algorithm for the joint optimisation of the parameters, based on the

iterative maximisation of the conditional probability distributions of the subsets.

Iterated conditional modes
If the prior probability distributions p(θy) and p(θλ) are differentiable, (4.28) is differentiable with re-

spect to λ and θ (the expression of the first derivatives of the term log p(q|λ) has been reported in

(2.3.3)). In order to optimise the unknown variables jointly, one can proceed with a projected gradient

ascent algorithm, with a suitable projection operator to guarantee positivity of the solution for λ, µλ

and µy . However, as discussed in 2.1.10, we wish to find a partitioning of the variables in subsets such

that the optimisation of the conditional probability distribution of each subset is simpler than the joint

optimisation. The joint optimisation is then performed by alternating the optimisation of the marginal

posterior of the variables of each subset in turn, conditional to the provisional estimates of the variables

in all other subsets (iterated conditional modes algorithm (ICM) - see paragraph 2.1.10). Partitioning the

unknown variables in the following two subsets:
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• S1 : θ = {θλ, θy}

• S2 : λ.

The ICM algorithm consists in alternating the following optimisations:

θ(n+1) = argmax
θ

log p (θ|q,y,λ, π) |λ(n) (4.29)

λ(n+1) = argmax
λ

log p (λ|q,y, θ, π) |θ(n) (4.30)

This particular choice of subsets is convenient as the optimisation problem (4.29) can be formulated in

the expectation maximisation framework, obtaining a parameter-free update formula. For the second

subset we can apply the parameter-free OSL algorithm described in 3.2.1. The two sections that follow

derive update formulae for (4.29) and (4.30).

Markov blankets
Subsets

Figure 4.3: Moralised MRF of the model of Fig. 4.1 and 4.2 and visualisation of the Iterated Conditional

Modes algorithm for the joint optimisation of the model parameters λ, θλ, θy . The ICM algorithm alter-

nates the optimisation of p (θ|q,y,λ, π) |λ(n) and p (λ|q,y, θ, π) |θ(n) . The two conditional distributions

are obtained by marginalising p (θ,Z|q,y,λ, π) |λ(n) and p (λ,Z|q,y, θ, π) |θ(n) over Z. The graph dis-

plays the Markov blankets of λ,Z and y,Z, i.e. the set of variables involved in the two conditional

distributions.

Model parameters

Let us consider the maximisation of the conditional probability of the model parameters given the pro-

visional estimate of λ:

θ(n+1) = argmax
θ

log p (θ|q,y,λ, π) |λ(n) (4.31)

From the moralised graph (Fig. 4.3): θ ⊥ q|λ:

p(θ|q,y,λ, π) = p(θ|y,λ, π). (4.32)

The expression p(θ|y,λ, π) represents the likelihood of a bi-variate mixture model, studied in detail in

paragraph 4.A. Paragraph 4.A clarifies why this expression is the likelihood of a bi-variate mixture and
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describes the derivation of the EM update formula for the maximisation of p(θ|y,λ, π) with respect to

θ. Let us report here the final result, the EM update formula:

lvk ,
πvkN (λv;µλ,k, σλ,k)N (yv;µy,k, σy,k)∑Nk
k=1 πvkN (λv;µλ,k, σλ,k)N (yv;µy,k, σy,k)

(4.33)

µ
(n+1)
y,k =

1∑Nv
v=1 lvk

Nv∑
v=1

lvkyv (4.34)

σ
(n+1)
y,k =

[
1∑Nv

v=1 lvk

Nv∑
v=1

lvk

(
µ

(n+1)
y,k − yv

)2
] 1

2

(4.35)

µ
(n+1)
λ,k =

1∑Nv
v=1 lvk

Nv∑
v=1

lvkλv (4.36)

σ
(n+1)
λ,k =

[
1∑Nv

v=1 lvk

Nv∑
v=1

lvk

(
µ

(n+1)
λ,k − λv

)2
] 1

2

, (4.37)

where θ = {θλ, θy}, θλ = {θλ1
, .., θλN }, θy = {θy1 , .., θyN }, θy,k = {µλ,k, σy,k} and θλ,k =

{µλ,k, σλ,k}.

Radio-Pharmaceutical concentration

Let us now consider the maximisation of the conditional probability of the activity λ given the provi-

sional estimate of the model parameters θ:

λ(n+1) = argmax
λ

log p (λ|q,y, θ, π) |θ(n) (4.38)

This is the log of the posterior probability distribution of λ, conditioned on the provisional estimates of

the model parameters θ. Let us consider its first derivatives with respect to vector valued λ:

∂

∂λr
log p (λ|q,y, θ, π) = (4.39)

=
∂

∂λr
log
∑
Z

p (λ,Z|q,y, θ, π) (4.40)

=
∂

∂λr
log
∑
Z

p (λ,Z, q,y, θ, π)

p (q,y, θ, π)
(4.41)

=
∂

∂λr
log

[
p (q|λ)

∑
Z

p(Z|π)p(λ|Z, θλ)p(y|Z, θy)

]
(4.42)

=
∂

∂λr
log
∏
d

p(qd|λ)︸ ︷︷ ︸
Emission term

+
∂

∂λr
log
∑
Z

p(Z|π)p(λ|Z, θλ)p(y|Z, θy)︸ ︷︷ ︸
Finite mixture term

(4.43)

The gradient of the conditional probability distribution of λ (4.43) is composed of two terms; the first

term is the likelihood of the Poisson model associated to the photon emission and is therefore indicated,

from here on, as emission term; the second term arises from the finite mixture model associated to the
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discrete hidden states, therefore it is indicated as finite mixture term. The emission term has been derived

in Chapter 2 (equation (2.3.3)). Expanding the finite mixture term:

∂

∂λr
log
∑
Z

p(Z|π)p(λ|Z, θλ)p(y|Z, θy)︸ ︷︷ ︸
Finite mixture term

= (4.44)

=
∂

∂λr
log

Nv∏
v

∑
zv

Nk∏
k=1

πzvkvk N (λv;µλ,k, σλ,k)
zvk N (yv;µy,k, σy,k)

zvk (4.45)

=
∂

∂λr
log

Nv∏
v

Nk∑
k=1

πvkN (λv;µλ,k, σλ,k)N (yv;µy,k, σy,k) (4.46)

=
∂

∂λr

Nv∑
v=1

log

Nk∑
k=1

πvkN (λv;µλ,k, σλ,k)N (yv;µy,k, σy,k) (4.47)

=
∂

∂λr
log

Nk∑
k=1

πrkN (λr;µλ,k, σλ,k)N (yr;µy,k, σy,k) (4.48)

=

∑Nk
k=1

µλ,k−λr
σ2
λ,k

πrkN (λr;µλ,k, σλ,k)N (yr;µy,k, σy,k)∑Nk
k=1 πrkN (λr;µλ,k, σλ,k)N (yr;µy,k, σy,k)

(4.49)

=

Nk∑
k=1

lrk
µλ,k − λr
σλ,k2

(4.50)

(note that of the Nv terms in (4.47), only the r-th term is non-zero, therefore the change of index from v

to r between equations (4.47) and (4.48), where the sum disappears). In order to optimise with respect

to λ one may use again a projected gradient ascent algorithm. It would be preferred, in order to maintain

the positivity of the solution and for its simplicity and automatic line search feature, to adopt the EM

algorithm for this local maximisation with respect to λ. Unfortunately, as discussed in 3.1.1, there is no

closed form solution for the maximisation (M) step of the EM algorithm. In order to benefit from the

advantages of the Expectation Maximisation algorithm, let us adopt, for the maximisation of (4.38), the

One Step Late approximation, described in 3.2.1:

λ(n+1)
v = λ(n)

v

1∑Nd
d=1 avd −

∑Nk
k=1 lvk

µλ,k−λ(n)
v

σλ,k2

Nd∑
d=1

avd
qd∑Nv

v′=1 av′dλ
(n)
v′

(4.51)

Summary of the algorithm

The ICM algorithm consists of alternating two steps:

i Optimisation of the parameters of the mixture model (Expectation Maximisation):
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lvk ,
πvkN (λv;µλ,k, σλ,k)N (yv;µy,k, σy,k)∑Nk
k=1 πvkN (λv;µλ,k, σλ,k)N (yv;µy,k, σy,k)

(4.52)

µ
(n+1)
y,k =

1∑Nv
v=1 lvk

Nv∑
v=1

lvkyv (4.53)

σ
(n+1)
y,k =

1∑Nv
v=1 lvk

Nv∑
v=1

lvk

(
µ

(n+1)
y,k − yv

)
(4.54)

µ
(n+1)
λ,k =

1∑Nv
v=1 lvk

Nv∑
v=1

lvkλv (4.55)

σ
(n+1)
λ,k =

1∑Nv
v=1 lvk

Nv∑
v=1

lvk

(
µ

(n+1)
λ,k − λv

)
(4.56)

ii Optimisation of the spatial concentration of the radio-pharmaceutical (One-step-late Expectation Max-

imisation):

λ(n+1)
v = λ(n)

v

1∑Nd
d=1 avd −

∂
∂λv

log p(λ|y, θ, π)|λ=λ(n)

Nd∑
d=1

avd
qd∑Nv

v′=1 av′dλ
(n)
v′

, (4.57)

where:
∂

∂λv
log p(λ|y, θ, π) =

Nk∑
k=1

lvk
µλ,k − λv

σ2
(4.58)

4.4 Context and magnetic field distortion
The model described in the previous paragraphs expresses the probability of the hidden state in voxel v

only as a function of the MR intensity and pharmaceutical uptake in the same voxel. The model is made

more robust by adding contextual information in the form of spatial dependence of the hidden labels.

Not only zv depends on yv and λv , but on zv′ , v
′ 6= v elsewhere. For computational convenience, the

spatial dependence of k is modelled with a joint distribution of the variables zv which factorises on the

first order neighbourhood structure of the image lattice (Markov Random Field - MRF): zv is assumed to

be conditionally independent from all other states if its 6 nearest neighbours are known. The dependence

of state zv upon its neighboursNv is expressed by the following Potts model p(zv|Nv, θz), parametrised

by θz, which corresponds (due to the Markov-Gibbs equivalence [32]) to the joint density of the hidden

states p(k|θz) (see also [71]):

p(zv|Nv, θz) =
e−z

T
v Gθz gv∑N

n e
−zTv Gθz gv

(4.59)

p(Z|θz) =
e−

∑Nv
v −zTv Gθz gv

R
(4.60)
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where gv counts the labels of each class between the neighbours, Gθz is a [N ×N ] matrix of parameters

of the Potts model that expresses the affinity of all pairs of states and R is the partition function, not

involved in the maximisation of the joint probability.

 B  

c

C

A

Figure 4.4: Contextual model and model of the magnetic field distortion: θz parametrises the contextual

model that relates spatially the discrete hidden variables and c parametrises a polynomial model of bias

field inhomogeneity of the MR imaging system.

The intensity of the MR image is distorted due to the non-uniformity of the magnetic field. The

smoothly varying bias due to the non-uniformity of the magnetic field is modelled by a linear combi-

nation of J polynomial basis functions φj(X), where X denotes the 3D coordinates. Intensity is log

transformed, as suggested in [71], in order to treat the bias field, which multiplicates the intensity, as an

additive term. From now on, therefore y indicates the log of the MR image intensity. The set of the J

parameters of the polynomial model of the bias field is denoted by c = {c1, . . . , cJ}. Equation (4.14) is

then substituted by:

p(yv|zvk = 1, θy, c) = N

yv − J∑
j=1

cjφj(Xv);µy,k, σy,k

 (4.61)

where Xv are the coordinates of voxel v.

The joint optimisation is performed by alternating the optimisation of three subsets:

• S1 : θ = {θλ, θy}

• S2 : λ

• S3 : c.
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c c c

Markov blankets
Subsets

Figure 4.5: Moralised MRF for the joint model with the contextual model and the model of the magnetic

field distortion.

The optimisation problems associated to S1 and S3 have been described and investigated in the context of

image segmentation in [71]. The optimisation with respect to parameters c does not involve, as expressed

by the Markov blanket of Fig. 4.5-right, the photon counts q, therefore it only involves the bi-variate

mixture. Such optimisation problem has been described, in the context of image segmentation, in [71],

which proposes to apply the Mean Field Approximation (MFA), yielding the following update formulae:

i Update the parameters θ:

lvk ,
πvkp(yv|zvk; θ

(n)
y,k)p(λv|zvk; θ

(n)
λ,k)p(zvk = 1|l(n)

Nv ; θz)∑Nk
k=1 πvkp(yv|zvk; θ

(n)
y,k)p(λv|zvk; θ

(n)
λ,k)p(zvk = 1|l(n)

Nv ; θz)
(4.62)

where the spatial dependence term p(zvk|l(n)
Nv ; θz) is approximated from the previous estimate of lvk by

the MFA [71]:

p(zvk = 1|l(n)
Nv ; θz) =

e−Uθz (ek|l(n)
Nv )∑Nk

k′=1 e
−Uθz(en′ |l

(n)
Nv )

Uθz(ek|l(n)
Nv ) = eTk Gθz g(n)

v (4.63)

where ek is the unit vector with k-th element equal to 1 and g
(n)
v is the vector of length N with elements

given by:

g(n)
vn =

∑
Nv

l
(n)
vk (4.64)



4.4. Context and magnetic field distortion 95

Then:

µ
(n+1)
y,k =

1

Nv

∑Nv
v=1 p

(n+1)
vk yv −

∑J
j=1 cjφj(Xv)

πvk
(4.65)

σ2(n+1)

y,k =
1

Nv

∑Nv
v=1 p

(n+1)
vk (µ

(n+1)
y,k − yv +

∑J
j=1 cjφj(Xv))

2

πvk
(4.66)

µ
(n+1)
λ,k =

1

Nv

∑Nv
v=1 p

(n+1)
vk λv

πvk
(4.67)

σ2(n+1)

λ,k =
1

Nv

∑Nv
v=1 p

(n+1)
vk (µ

(n+1)
λ,k − λv)2

πvk
. (4.68)

ii Update the bias field parameters:


c
(n+1)
1

c
(n+1)
2

. . .

 =
(
AT diag w(n+1)

v A
)−1

AT diag w(n+1)
v


y1 − ỹ(n+1)

1

y2 − ỹ(n+1)
2

. . .

 , (4.69)

where A is the geometrical matrix of the bias field model, each of its columns evaluating the polynomial

basis function φj at voxel coordinates Xv and

w(n+1)
v =

Nk∑
k=1

w
(n+1)
vk w

(n+1)
vk =

p
(n+1)
vk

σ2(n+1)

y,k

ỹ(n+1)
v =

∑Nk
k=1 w

(n+1)
vk µ

(n+1)
y,k∑Nk

k=1 w
(n+1)
vk

.

iii Update the estimate of the pharmaceutical density:

Under the MFA, the expectation of the hidden variables at step n is expressed by (4.62). Therefore,

under the MFA, the update formula for the subset S2 described in the previous paragraph is affected in

that (4.33) is replaced by (4.62):

λ(n+1)
v = λ(n)

v

1∑Nd
d=1 avd −

∂
∂λv

log p(λ|y, θ, π)|λ=λ(n)

Nd∑
d=1

avd
qd∑Nv

v′=1 av′dλ
(n)
v′

(4.70)

∂

∂λv
log p(λ|y, θ, π) =

Nk∑
k=1

lvk
µλ,k − λv

σ2
(4.71)
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4.5 Experiments
Uptake of FDG was simulated by assigning typical average values observed in PET FDG scans to the

BrainWeb (http://mouldy. bic.mni.mcgill.ca/brainweb/) ground truth tissue model: 4 parts uptake in the

gray matter (GM), 1 part in white matter (WM), 0 part in the cerebral-spinal fluid (CSF). One hot and

one cold spherical lesion of 14 mm diameter were simulated by augmenting the activity by 30% in the

hot lesion and reducing it by 50% in the cold lesion. The PET scan was simulated with the PET-Sorteo

[59] simulator.

For reconstruction, the number of classes Nk was set to 6: White Matter, Internal Gray Matter,

External Gray Matter, External CSF, Internal CSF, everything else. The statistical atlas for the 6 classes

was obtained from the publicly available MNI-152 brain atlas [72] by splitting manually internal and

external regions for the Gray Matter and CSF classes. The off-diagonal elements of theN×N parameter

matrix θz were set to 0.1 and the diagonal elements to 0, penalising equally all transitions except for the

transition to the identical class (more sophisticated parameter selection criteria are reported in [70]). The

order of the polynomial for bias field correction J was set to 4. Scatter was accounted for simply by

discarding the photons with detected energy smaller than 400 KeV .

Ancestral sampling

A visualisation of the type of assumptions encoded by a probabilistic model can be obtained by sampling

from the joint probability distribution. In order to draw random samples from the joint probability distri-

bution of Z,λ,y, q, we have first obtained a reasonable value of the parameters θλ, θy, c by performing

MAP estimation on a single realisation of the MR image and of the emission data, running the algorithm

for 10000 iterations. Given the parameters, samples of Z,λ,y, q were drawn with the ancestral sam-

pling technique. As explained in [13]- p.365, ancestral sampling is a simple technique to sample from

the joint probability distribution encoded by a directed acyclic graph. Ancestral sampling consists in

assigning an ordering to the variables such that there are no links from any node to any lower numbered

node. In order to sample from the joint probability distribution of all the nodes, one starts by sampling

from the lowered numbered node, then draws a sample from all other nodes, following the increasing

nodes index. Each sample is drawn according to the conditional probability distribution of the variables

associated to the node, conditional to the value obtained by sampling the lower numbered node (parent

node). Referring to Fig. 4.2, the indexes assigned to the nodes are Z : 1,y : 2,λ : 3, q : 4. In or-

der to simplify the sampling algorithm, the spatial dependence of the hidden variables was disregarded.

Consequently, the set of the hidden discrete variables in all voxels is obtained by sampling each state

independently, for every voxel v, from the spatially varying multinomial distribution πv (the statistical

atlas).

10000 samples were drawn from the joint probability distribution. Fig. 4.6 reports a visualisation

of the samples drawn from the joint distribution of Z,λ,y, q. The first row visualises a single sample

of, from left to right, Z,λ,y, q. The second row visualises the mean over all samples and the third row
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Hidden state T1-weighted MRActivity Photon counts

Sample

Mean

Variance

Figure 4.6: Ancestral sampling, 10000 samples. From top to bottom: random sample, mean, variance.

From left to right: hidden discrete label (white if state is 1, black for all other states), activity, T1-

weighted MR image, photon counts. The mean and variance images express the type of measurements

that are expected according to the model.

the variance calculated over all samples. The images of λ,y report simply a slice of the imaging volume

(central sagittal slice) with grey scale colour coding, while the images of q on the right are grey scale

viewgrams of the emission data. Since grey scale is not effective at representing the discrete states, only

the first state is visualised in the images on the left. Specifically, the image of the single sample reports∑Nv
v zve1, with e1 being the unit vector of length N with 1 in the first position. The mean is obtained

by averaging such images over all samples and the variance accordingly. The mean image of the photon

counts (right column, central line of Fig. 4.6) expresses the photon counts that one expects to observe on

average. Notice that this becomes a uniform distribution if one discards the finite mixture model.

Bias variance analysis

The bias/variance plot provides some insight into the properties of the model. 10240 instances of the

measurement were simulated by applying Poisson noise to the noiseless measurement obtained with the

PET Sorteo Monte Carlo simulator. The total number of counts was set to 150× 106 photons (although

the exact number of counts of each measurement is a realisation of the Poisson distribution centred in

150 × 106). The reconstruction algorithm was executed for 5000 iterations for each measurement. Fig.

4.7-green displays the bias/variance norm as a function of the number of iterations. The curve is obtained

by alternating the optimisation steps starting with a uniform estimate of the activity.

Fig. 4.10 displays the mean of the 10240 reconstructions, the variance (diagonal of the covariance

matrix, reshaped as an image), the bias (3.35) and a single reconstruction. Consistently with the observa-

tions of the previous chapter, the average of a large number of reconstructions accurately represents the

original image, if one iterates until convergence. Fig. 4.11 reports, for comparison, the images obtained
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Figure 4.7: Bias/variance norm (for the whole image) as a function of the number of iterations (see equa-

tions (3.59) and (3.60)). Red: MLEM; green, yellow and blue: finite mixture model with different ICM

schemes (see Paragraph 4.5 - ‘Effect of the ICM iteration scheme’). The three ICM chemes converge

to the same point in the Bias/Variance plane, indicating that different ICM schemes provide the same

results. However, the zoom-in (bottom) shows that the green scheme (see Paragraph 4.5 - ‘Effect of the

ICM iteration scheme’) requires less iterations to approach the point of convergence on the Bias/Variance

plane.

with the smoothing prior with smoothing parameter β3, as described in the experiments of chapter 3

(Fig. 3.15). The single reconstruction has a somewhat similar appearance to the reconstruction with the

smoothing prior, though the mean of the estimator closely resembles the phantom. After 1000 iterations

the reconstruction does not present visible differences.

Effect of the ICM iteration scheme

The ICM algorithm suggests to iterate until convergence each sub-optimisation step. In order to reduce

the computational complexity, one may consider to perform only one or a few steps of each sub-

optimisation. Different iteration schemes may be devised, by selecting different number of iterations

for each sub-optimisation problem. Does the algorithm converge to the same solution with different

iteration schemes? The green, yellow and blue curves of Fig. 4.7 report three experiments that point out

that the algorithm converges to the same solution with different iteration schemes. The green curve of



4.5. Experiments 99

Fig. 4.7 reports the bias variance norm as a function of the number of iterations obtained by alternating

one step of OSL-MAPEM for the activity, one step of EM for the parameters and one step of the gradient

ascent algorithm for the bias field correction algorithm. The yellow and blue curves were obtained by

performing initially 100 and 1000 iterations of OSL-MAPEM and then starting to alternate one iteration

of OSL-MAPEM and, one of EM and one of the gradient ascent algorithm for the bias field model. The

convergence to a common point suggests that different choices of iteration scheme produce the same

results at convergence. The zoom-in in Fig. 4.7-bottom reports a circle, for each of the three iteration

schemes, centered at the common point of convergence on the bias/variance plane and whose circumfer-

ence intersects the bias/variance curve at 600 iterations. The algorithm that alternates a single iteration

of each optimisation since the start presents the smallest radius, requires less iterations to approach the

solution. Convergence is not guaranteed due to the non-convexity of the model, however it is reassuring

to observe that different alternation schemes provide the same solution, indicating that in the algorithms

in the experiment select the same local maximum.

Lesion delineation

Fig. 4.8 reports a sagittal slice of the reconstruction obtained for one of the noise instances. The table

in Fig. 4.8 reports the coefficient of recovery (COR) and signal to noise ratio (SNR) of the uptake in 7

regions of interest including the two lesions. The COR is the ratio of the estimated to true uptake in each

region-of-interest (ROI):

CORROI =

∑
v∈ROI λ̂v∑
v∈ROI λv

, (4.72)

where λ̂v is the estimated activity in voxel v and λv the true activity in voxel v. The SNR is the ratio be-

tween the standard deviation of the activity values in the voxels in a region of interest of the reconstructed

image and the mean of the reconstructed activity in the region of interest:

SNRROI =

√
1
N

∑
v∈ROI

(
λ̂v − 1

N

∑
v′∈ROI λ̂v′

)2

1
N

∑
v∈ROI λ̂v

(4.73)

The results highlight that the pharmaceutical uptake model yields measurements with increased re-

covery and less noise when the uptake is consistent with the model. It is also remarkable that the lesions

are well reconstructed even though they are outliers of the model (there is not a class that captures the

lesions), presenting overall improved SNR. This fact can be explained with the strong inter-correlation

of the unknowns in emission imaging due to the line-integral measurements: improving the estimate

everywhere outside of the lesion already improves the estimate in the lesion.
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Figure 4.8: Top: Synthetic PET-MR FDG imaging data (see-through volume-rendering of 5 mm thick

sagittal slices); from left to right: T1-weighted MR image, activity phantom, MLEM reconstruction,

reconstruction with the proposed pharmaceutical uptake model using 6 classes from the MNI-152 brain

statistical atlas [72]. Bottom: coefficient-of-recovery (COR) and signal-to-noise ratio (SNR) for 7 re-

gions of interest (see equations (4.72) and (4.73)).

Clinical data

The finite mixture model was applied to clinical PET FDG using the same 6 classes that were employed

in the synthetic PET FDG study. The emission data and the MR images were acquired on separate

machines: the pharmaceutical density was estimated initially with MLEM, aligned with the MR image

by rigid registration with Normalised Mutual Information cost function and reconstructed again with the

uptake model. Reconstructions are reported in Fig. 4.9.

Conclusion

This chapter has presented a model for the integration of information from multiple imaging modalities

in the context of PET-MR, based on the assumption of finite discrete states. Robust estimation is achieved

by 1) adopting a population-based statistical atlas to initialise and drive the optimisation of the parameters

of the pharmaceutical uptake model and of the MR acquisition system model; 2) adding contextual

information in the form of a Markov Random Field over the hidden tissue labels; 3) capturing the MR

image bias field.

The method has been evaluated with a synthetic study, showing that it improves the quantification

of the pharmaceutical uptake when the simulated data reflects the assumptions of the model and, remark-

ably, that the uptake estimate may improve also in regions that do not obey to the model. Validation with

real data remains an open problem as it would require large sets of imaging data, possibly labelled with

long term clinical outcome for specific imaging tasks. To this extent, automation of the reconstruction

algorithm is crucial.

The population-derived information assigns a meaning to the discrete hidden variables. The con-
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Figure 4.9: PET FDG reconstructions obtained with MLEM (top) and with the proposed pharmaceuti-

cal uptake model (bottom) using 6 classes from the MNI-152 brain statistical atlas [72]. See-through

volume-rendering of 5 mm-thick sagittal slices.

struction of the population-derived statistical atlas remains an open problem. Perhaps the same model

can be used to estimate the probability of the hidden states from a large number of observations)

Given the general acceptance of probabilistic atlas based segmentation algorithm [5, 73], we be-

lieve that a joint generative model for PET/MRI might prove useful when coupled with population based
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spatially varying priors of the hidden states and eventually with hyperpriors for the parameters of the

mixture model in order to include experience in the reconstruction process. The statistical atlas plays an

essential role in the algorithm that has been described in this chapter, assigning a meaning to the abstract

hidden states of the model. Due to the non-convexity of the optimisation problem, the atlas functions

as initialisation, therefore assigning the meaning of the hidden states. In the experiments presented in

paragraph 4.5 and 4.5, the statistical atlas was the MNI-152 brain atlas [72], created in the context of

brain segmentation. Such atlas encodes the probability of white matter, internal gray matter, external

gray matter, external CSF and internal CSF in each location of the image and is therefore suitable for

perfusion studies. While the model is unlikely to be effective, in combination with the MNI-152 atlas, in

case of receptor/radiolegand studies; we believe that the construction of drug-specific statistical atlases

may improve the quantification in receptor/radiolegand studies.
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Figure 4.10: Finite anatomical-functional states: N = 10240 instances, 10 to 10000 iterations.
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Figure 4.11: MAP-EM smoothing: β = β3, N = 10240 instances, 10 to 10000 iterations.
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4.A The expectation maximisation algorithm for finite mixtures

4.A.1 Finite mixture as a hidden variable model

A common imaging task is that of determining the state of a set of discrete variables related to continuous

measurements. The assumption that there exist hidden discrete states may have, in certain applications,

a precise physical meaning, or it may express a more vague understanding that the process that generates

the imaging data is eventually characterised by the existence of discrete states. Under the generative

approach, one expresses the conditional probability distribution of the imaging data given the hidden

variables. Such conditional probability distribution expresses the characteristics of the imaging system.

A common approach is to adopt parametric functions for such conditional probability distributions, in

order to learn the characteristics of the imaging system from the imaging data. Estimation of the most

likely parameters of the imaging system entails the marginalisation over the discrete hidden variables,

calling for the EM algorithm, as discussed in 2.1.9.

In MR imaging, finite mixture models are widely used for the purpose of dividing the imaging do-

main in regions characterised by tissue with similar magnetic properties. In the context of MR imaging,

one assumes that the image intensity yv in voxel v is the realisation of a random process characterised

by the existence of a (hidden) discrete label zv . Let us, once again, describe the discrete label with the

1-of-Nk representation:

Figure 4.12: Finite mixture as a hidden variable model. The probability distribution associated to variable

yv depends on the hidden variable zv and on the model parameters θ. The hidden variable zv has prior

probability parametrised by π. If one knew the state of zv , the state of knowledge about yv would not be

affected by π. Each pixel of an image may be considered a realisation of yv (Fig. 4.13 ).

zv = [zv1, zv2, . . . , zvk, . . . , zvNk ] (4.74)

zvk ∈ {0, 1} (4.75)
Nk∑
k=1

zvk = 1 (4.76)

Assuming a prior probability distribution over the hidden state in v, the natural parametrisation for the

discrete variable is the multinomial distribution.

πv = [πv1, πv2, . . . , πvk, . . . , πvNk ] (4.77)
Nk∑
k=1

πvk = 1 (4.78)

p(zv|π) =

Nk∏
k=1

πzvkvk (4.79)
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Let the conditional probability distribution p(yv|zvk = 1, θy) be a parametric function Φk parametrised

by θy:

p(yv|zvk = 1, θy) = Φk (yv; θy) (4.80)

Due to the 1-of-Nk representation of zv , this expression can be equivalently written as:

p(yv|zv, θy) =

Nk∏
k=1

Φk (yv; θy)
zvk (4.81)

Fig. 4.12 expresses such a model. Applying Bayes rule:

p(yv, zv|πv, θy) = p(zv|πv, θy)p(yv|zv, πv, θy) = p(zv|πv)p(yv|zv, θy) (4.82)

and summing over all possible values of zv gives:

p(yv|πv, θy) =
∑
zv

p(zv|πv)p(yv|zv, θy) =

Nk∑
k=1

πvkΦk (yv; θy) (4.83)

The probability distribution of yv is a finite sum of (weighted) distributions, from which the name finite

mixture model. For Φk(yv, θ) = N (yv, µy,k, σy,k) (normal distribution), the model is a finite mixture

of Gaussians.

4.A.2 Estimation of the model parameters from multiple observations

Assuming that there exists one hidden variable for every voxel of the image, the graph in Figure 4.13 rep-

resents the relation between the observed image, the hidden variables and the parameters of the imaging

system, with

Z = [z1, z2, . . . , zv, . . . , zNv ] [Nv ×Nk] (4.84)

y = [y1, y2, . . . , yv, . . . , yNv ] [Nv × 1] (4.85)

π = [π1, π2, . . . , πv, . . . , πNv ] [Nv ×Nk] (4.86)

One may pose the problem of inferring the most probable value of the model parameters given the

Figure 4.13: Each pixel of an image may be considered a realisation of the model of Fig. 4.12. The

problem of estimating the parameters of the imaging model θy has the form of an incomplete data

problem (see 2.1.9).
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observed image y:

θ̂y = argmax
θy

p(θy|y, π) = argmax
θy

p(y|π, θy)p(θy) (4.87)

From the graph in Fig. 4.13 we get:

p(y|π, θy) =

Nv∏
v=1

p(yv|πv, θy) (4.88)

The log posterior probability distribution of the model parameters is differentiable with respect to

the model parameters as long as the prior probability distribution p(θy) and the observation model

Φk (yv, θy) are differentiable. This gives:

log p(θy|y, π) = log p(θy) +

Nv∑
v=1

log

[
Nk∑
k=1

πkΦ (yv; θy)

]
(4.89)

However, the hidden variables suggest to apply the EM algorithm to device an optimisation algorithm

for (4.87).

4.A.3 The expectation maximisation algorithm

Considering Z the hidden variables and y the observed variables, the problem of estimating θ may be

considered as an incomplete data problem (see 2.1.9), regarding the set {Z,y} as the complete data:

p(y,Z|π, θy) =

Nv∏
v=1

Nk∏
k=1

πvk
zvkN (yv;µy,k, σy,k)

zvk (4.90)

The log posterior of the complete data is:

log p(y,Z|π, θy) =

Nv∑
v=1

Nk∑
k=1

zvk [log πk + logN (yv;µy,k, σy,k)] (4.91)

From the graph in Figure 4.13, the posterior probability distribution of the hidden variables conditional

to the model parameters is:

p(Z|y, π, θy) ∝
Nv∏
v=1

Nk∏
k=1

[πkN (yv, µy,k, σy,k)]
zvk (4.92)

The expected value of the indicator variable zvk under this probability distribution is:

EZ [zvk] =

∑
zvk

zvk [πkΦk(yv; θy)]
zvk∑

zvk′
[πk′Φk′(yv; θy)]

zvk′
=

πkΦk(yv; θy)∑Nk
k′=1 πk′Φk′(yv; θy)

, lvk (4.93)

All ingredients to apply the EM recipe of 2.1.9 are ready. The expectation of the log posterior of the

complete data (4.91) with respect to the posterior distribution of the hidden variables conditional on the

provisional estimate of the model parameters (4.92) is obtained by simply replacing zvk in (4.91) with

its expectation, as the expression in the square brackets does not depend on zvk. This gives:

EZ [log p(y,Z|π, θy)] =

Nv∑
v=1

Nk∑
k=1

lvk [log πk + log Φk (yv; θy)] (4.94)
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The maximum occurs when the derivatives are zero. With Gaussian functions Φk(yv, θ) =

N (yv, µy,k, σy,k), differentiating with respect to µy,k and σy,k in turn, and setting the derivatives

to zero, the maximisers are expressed in closed form:

µ
(n+1)
y,k =

1∑Nv
v=1 lvk

Nv∑
v=1

lvkyv (4.95)

σ
(n+1)
y,k =

[
1∑Nv

v=1 lvk

Nv∑
v=1

lvk

(
µ

(n+1)
y,k − yv

)] 1
2

(4.96)

lvk =
πkN (yv;µy,k, σy,k)∑Nk

k′=1 πk′N (yv;µy,k′ , σy,k′)
(4.97)

4.A.4 Naive multi-variate mixture

Figure 4.14: Naive multi-variate mixture model: the multiple observations would be independent if the

hidden variables were known. Notice that the naive mixture model corresponds to the assumption that

the hidden discrete variables Z are the only common cause underlying the multiple observations.

Let us consider the case of Fig. 4.14, where multiple images y[1], . . . ,y[t], . . . ,y[Nt] are considered

to be the related to common hidden discrete states. If each image is considered to be the realisation of a

hidden process with its own parameters θy[t] (as is the case for λ and y in the graph of Fig. 4.1), then, as

one may easily verify, the EM update equations have the following expression for all values of t:

µ
[t](n+1)
y,k =

1∑Nv
v=1 lvk

Nv∑
v=1

lvky
[t]
v (4.98)

σ
[t](n+1)
y,k =

[
1∑Nv

v=1 lvk

Nv∑
v=1

lvk

(
µ

[t](n+1)
y,k − y[t]

v

)] 1
2

(4.99)

lvk =
πk
∏Nt
t=1N

(
y

[t]
v ;µ

[t](n)
y,k , σ

[t](n)
y,k

)
∑Nk
k′=1 πk′

∏Nt
t=1N

(
y

[t]
v ;µ

[t](n)
y,k′ , σ

[t](n)
y,k′

) (4.100)

These are the formulae utilised in paragraph 4.3.

If the parameter θy is common to all observations, as in Fig. 4.15, then:
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Figure 4.15: Naive multi-variate mixture model with common parameter.

µ
(n+1)
y,k =

1

Nt
∑Nv
v=1 l

(n+1)
v,k

Nt∑
t=1

Nv∑
v=1

l
(n+1)
v,k y[t]

(
Tγ[t]Xv

)
(4.101)

σ
(n+1)
y,k =

[
1

Nt
∑Nv
v=1 l

(n+1)
v,k

Nt∑
t=1

Nv∑
v=1

l
(n+1)
v,k

(
µ

(n+1)
y,k − y[t]

(
Tγ[t]Xv

))2
] 1

2

(4.102)

lvk =
πk
∏Nt
t=1N

(
y

[t]
v ;µ

[t](n)
y,k , σ

[t](n)
y,k

)
∑Nk
k′=1 πk′

∏Nt
t=1N

(
y

[t]
v ;µ

[t](n)
y,k′ , σ

[t](n)
y,k′

) (4.103)
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Chapter 5

Unified 4-D computed tomography

5.1 4-D computed tomography
In medical applications, emission imaging system are operated in the photon limited regime. The small

number of photons emitted during emission scans, as highlighted by the experiments in Chapter 3, may

be considered the major limit to the amount of information that can be acquired in a single scan. Perhaps

the second most important information bottleneck is motion of the patient during the acquisition. While

motion poses similar challenges also in transmission tomography and in nuclear magnetic resonance

imaging, the different constraints imposed by the three imaging techniques determine quite different

problems and solutions.

The recent development of ultra-fast X-Ray imaging systems has enabled rates of acquisition of the

information sufficient to obtain a tomographic image within time frames as short as a few milliseconds.

These new technologies enable the acquisition of sequences of motion-free 3-D images. Ultra-fast X-

Ray acquisitions are enabled by gantries that rotate at speeds as high as 300 rounds per minute (RPM)

[74] and by the use of multiple sources and multiple detectors [75]. Beyond the enabling technologies,

the key enabling factor for ultra-fast X-Ray CT is that safety constraints relate to the integral dose of

radiation. Reducing the acquisition time allows for higher intensity of the X-Ray source.

Radiation dose is not a concern in MRI. Fast gradient-echo MRI sequences enable the acquisition of

multiple MRI images per second, however electronic noise becomes predominant for short time frames,

making the fast acquisition of sequences of images a challenging problem. Despite the difficulties, 4-D

MR imaging has proven diagnostic value in several areas of application, including heart imaging.

The fundamental challenge of 4-D imaging is that the information that can be acquired within short

time frames is limited. The shorter the time frames, the more noise dominates over the signals. Operation

in the photon-limited regime in emission imaging imposes long acquisition times. Time frames short

enough to render negligible the effect of motion, due to the small number of photons observed, generally

present insufficient information for reconstruction.

Frame-by-frame reconstruction, however, presents redundancy. The state of the variables of interest,
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be it anatomical, functional, or a joint state, in a given time frame, is related to the state in other time

frames. If one chooses time frames short enough to make motion negligible, one may then consider

the state at a given time frame approximately equal to the state at the next time frame. Spatio-temporal

regularisation, or with a choice of wording more suited to the Bayesian approach, 4-D modelling is

the focus of this chapter. The Poisson observation model and the joint model of anatomy and function

of Chapter 4 are extended to four dimensions, presenting a mathematical framework that enables the

exploration of some of the possibilities offered by PET and PET-MR systems to cope with motion.

4-D emission tomography has been addressed in the literature with different approaches. The first

categorisation is that between the model-based and model-free approaches. Frame-by-frame reconstruc-

tion may be considered the model-free alternative, where one ignores any relation between the time

frames. The broad category of the model-based approaches includes all the methods that aim at de-

scribing or capturing the time dependence of the imaging data. The second categorisation that one may

describe is one that separates data-driven and sensor-based approaches. The sensor-based approaches

make use of sensors of motion and motion-tracking devices [76], while the data-driven approaches aim

at extracting the information about motion directly from the imaging data (i.e. the photon counts)

[77, 78, 79, 80]. The model-based approaches, regardless if data-driven or sensor-based, differ in the

choice of the deformation model. Rigid, affine and many forms of non-rigid parametrisations of motion

may be adopted depending on the imaging application (see e.g. [81]). In brain imaging, the deformations

are well represented by a rigid model, with typical translations in the range of 5-20 mm and rotations

of 1-4 deg observed during PET and SPECT scans [76]. Different types of motion have determined a

number of different approaches. The typical motion pattern of the head of a patient laying in a scanner is

characterised by large movements occurring at discrete times, sporadically (once every 10-20 seconds)

[76]. Such pattern suggests event-driven motion compensation methods based on motion information

provided by a external motion-tracking devices [79]. The approximately cyclical motion patterns that

occur due to breathing and to the heart cycle have suggested methods that merge the information acquired

over multiple cycles [82]. While we are referring here in particular to emission computed tomography,

some of the approaches described above have been applied also to transmission tomography, in particular

for applications where the ultra-fast acquisition is prohibited. A review of motion correction approaches

in X-Ray CT can be found in [83].

The inherent co-registration and simultaneity of the acquisitions in PET-MR and the harmless-

ness of magnetic resonance introduce unprecedented possibilities to address to confounding effect of

motion. The present work is inspired by the new possibilities offered by PET-MR. A unifying mathe-

matical framework for 4-D multi-modal reconstruction is described based on the physiologically-based

modelling paradigm introduced in Chapter 4. Though inspired on the new possibilities offered by PET-

MR, the mathematical framework described in the following unifies the approaches described above:

the model-based and model-free approaches; data-driven and sensor-based measurements; event-driven,
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continuous and cyclical estimation of motion; rigid and non-rigid parametrisation.

The first part of the chapter (paragraphs 5.2-5.3) describes the mathematical model, while the sec-

ond part (paragraphs 5.4-5.7) describes its applications. Paragraph 5.4 describes a robust algorithm for

data-driven rigid motion reconstruction; paragraph 5.5 describes the extension to 4-D of the MLEM algo-

rithm for sensor-based motion correction; paragraph 5.6 describes an event-driven motion reconstruction

strategy for PET-MR and paragraph 5.7 an algorithm for longitudinal registration of images.

5.2 The 4-D unified modeling approach
The model described in the following extends to four dimensions (3-D plus time), the model described

in chapter 4. Analogously to the discretisation of space in voxels (paragraph 2.3), let us discretise time,

for numerical purposes, in Nt discrete frames indexed by t = 1, 2, . . . , Nt. The object observed by the

imaging system is subject to deformations, function of time. Let us define a homogeneous coordinates

system:

X = [X1, X2, X3, 1]
T (5.1)

In order to discretise the problem spatially, let us define a grid of regularly spaced voxels indexed by

v = 1, 2, . . . , Nv and let Xv denote their coordinates:

Xv = [Xv1, Xv2, Xv3, 1]
T (5.2)

Let us define the spatial transformation T γ
[t]

, parametrised by parameters γ[t], function of time:

T γ
[t]

=



γ11 γ12 γ13 γ14

γ21 γ22 γ23 γ24

γ31 γ32 γ33 γ34

0 0 0 1


(5.3)

T γ
[t]

maps locations Xv in the reference frame to locations X [t]
v at time t:

X [t]
v , T

γ[t]

Xv (5.4)

For simplicity, in this formulation, the spatial transformation is parametrised with a global transforma-

tion matrix. This simple parametrisation simplifies the derivations that follow. However, the model is

extended to account for non-rigid deformations in the second part of the chapter (experiments with non-

rigid transformations are described in 5.4.2). Considering the linear transformation (5.3), γ[t]
14, γ[t]

24, γ[t]
34

are translation parameters and the remaining parameters encode rotation, scaling and shearing.

The first assumption that underlies the unified model for multi-modal imaging, already described

in 4, is that there exist hidden anatomical-functional states, defined at discrete spatial locations. It is

assumed that the hidden variables that represent the anatomical-functional states are constant (though
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Figure 5.1: Left: transformation from reference frame to frame [t]. Right: approximated transformation

for the efficient estimation of the gradients in projection space (see (5.19)-(5.23) and (5.40)-(5.55)).

unknown) over time. As in 4.2, the hidden variables are expressed with a 1-of-Nk representation:

zv = [zv1, zv2, . . . , zvk, . . . , zvNk ] (5.5)

zvk ∈ {0, 1}
Nk∑
k=1

zvk = 1 (5.6)

Z = [z1, z2, . . . , zv, . . . , zNv ] (5.7)

zv can be thought of as the value of function of space z in Xv:

zv = z(Xv) (5.8)

As locations Xv are mapped to X [t]
v , under the assumption that the hidden states are constant over time,

letting z[t] be the hidden states at time t:

z[t](X [t]
v ) = z[t](T γ

[t]

Xv) , z[t]
v (5.9)

z[t]
v = zv (5.10)

Notice that though z and z[t] are indicated a functions of space, z only needs to be defined in Xv and z[t]

in X [t]
v .

The second assumption is that activity is non-zero only at locations Xv . It is assumed that the rate

of emission of the point sources does not change, although they are dislocated over time according to

T γ
[t]

. If one could go and measure the rate of emission at location X [t]
v at time t, it would be equal to

the emission rate at location Xv in the reference frame. Let us use again superscript [t] to indicate the

function of space at time [t]:

λ[t](X [t]
v ) = λ[t](T γ

[t]

Xv) , λ
[t]
v (5.11)
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λ[t]
v = λv (5.12)

The rate of emission, proportional to the spatial concentration of radio-pharmaceutical, is assumed to

be the realisation of a random process characterised by normal probability distribution, when the hidden

state is known (see 4.2):

p(λv|zvk = 1, θλ) = N (λv;µλk , σλk) (5.13)

θλ is the set of the parameters of the pharmaceutical uptake model, as already discussed 4.2. Because

the hidden state zv in v is expressed with a 1-of-Nk representation, this last expression can be written

as:

p(λv|zv, θλ) =

Nk∏
k=1

N (λv;µλk , σλk)
zvk (5.14)

This second notation will come to use when we will derive the marginal probability distributions.

Denoting with y[t] the MR image acquired at time t, given the assumption that the hidden states are

not a function of time, which we have expressed in (5.10), we get:

y[t](X [t]
v ) = y[t](T γ

[t]

Xv) , y
[t]
v (5.15)

p(y[t]
v |zvk = 1, θy, γ[t]) = N

(
y[t]
v ;µyk , σyk

)
(5.16)

Equivalently, given the 1-of-Nk representation of zv:

p(y[t]
v |zv, θy, γ[t]) =

Nk∏
k=1

N
(
y[t]
v ;µyk , σyk

)zvk
(5.17)

Notice that if one questions what the value of the t-th MR image is expected to be in location X [t]
v , the

model says that if the hidden state is known, then the probability distribution associated to the value of

the MR image is Gaussian (it is a mixture density if one does not know the state of the hidden variable).

However, if one questions what the value of the MR image at time t is expected to be in a location other

than X [t]
v , the model does not (and does not need to) give an answer.

We have introduced the following assumptions about the rate of emission: 1) it is non-zero only at

locations Xv in the reference frame, relocated over time by T γ
[t]

; 2) that the rate of emission of each

point source does not change over time (5.12). The conditional probability distribution associated to the

photon counts at time frame t, when activity is known, is then:

p(q[t]|λ, γ[t]) =

Nd∏
d

P

(
q

[t]
d ;
∑
v

aγ
[t]

vd λ
[t]
v

)
(5.18)

where aγ
[t]

vd is the probability that a pair of photons emitted from location X [t]
v is detected in correspon-

dence of Line of Response (LOR) d. The transition matrix Aγ
[t]

= {aγ
[t]

vd } is parametrised by γ[t],

therefore time dependent. Though (5.18) is the correct notation, let us express the generative model of

the emission imaging system with an alternative notation that breaks the discrete formulation described

thus far but enables a more computationally efficient computation of the conditional probabilities and of
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the derivatives of the conditional probability distributions. If the spatial transformations are invertible,

from (5.12) we have:

λ[t](T γ
[t]

Xv) = λ(Xv) (5.19)

λ[t](T γ
[t]

T γ
[t]

Xv) = λ(T γ
[t]

Xv) (5.20)

λ[t](Xv) = λ(T γ
[t]

Xv) (5.21)

Then we can write, substituting in (5.18):

p(q[t]|λ, γ[t]) =

Nd∏
d

P

(
q

[t]
d ;
∑
v

avdλ
[t](Xv)

)
(5.22)

=

Nd∏
d

P

(
q

[t]
d ;
∑
v

avdλ(T γ
[t]

Xv)

)
(5.23)

Strictly speaking λ(T γ
[t]

Xv) is not defined, having assumed that λ is defined only in Xv . While this

last expression breaks the formulation, we will use it, where specified (equations (5.40)-(5.55))), along

with an interpolation scheme to compute λ(T γ
[t]

Xv), for the purpose of reducing the computational

complexity.

The hidden variables are considered to be a priori independent from one another and their probabil-

ity distribution is multinomial. This choice allows us to introduce population-derived information.

p(zvk = 1|π) = πvk (5.24)

Let us indicate with πv the prior probability of each of the allowed states in voxel v:

πv = [πv1, πv2, . . . , πvk, . . . , πvNk ] (5.25)

0 ≤ πvk ≤ 1

Nk∑
k=1

πvk = 1 (5.26)

and with π the set of all the parameters of the (spatially varying) multinomial prior probability distribu-

tions of the hidden states:

π = [π1, π2, . . . , πv, . . . , πNv ] (5.27)

Because the hidden state zv in v uses a 1-of-Nk representation, the prior probability distribution associ-

ated to the state in v can also be written as:

p(zv|π) =

Nk∏
k=1

πzvkvk (5.28)

The prior probability associated to the set of all the hidden variables is:

p(Z|π) =

Nv∏
v=1

Nk∏
k=1

πzvkvk (5.29)

Fig. 5.2 reports the directed acyclic graph of the model.
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Figure 5.2: DAG of the unified model for multi-modal 4-D tomography. Observed (known) quantities

are shaded. Voxels are indexed by v and lines of response (LOR) of the PET detector are indexed by d.

The hidden anatomical/functional state zv determines activity λ and, along with deformation parameters

γ[t], determines MRI intensity y[t] at time frame t. The dependence of activity and MRI intensity from

the hidden states is parametrised by θ = {θλ, θy}. Activity and the deformation parameters determine

the photon counts q[t] at time t. The parameters π parameterise the prior probability distribution of the

hidden states.

5.3 Joint estimation of the model parameters

From the graph in Fig. 5.2, the joint probability distribution is:

p(λ,y,Z, q, γ, θ, π) = p(π)p(θλ)p(θy)p(γ)p(Z|π)p(λ|Z, θλ)

Nt∏
t

p(q[t]|λ, γ[t])p(y[t]|Z, θy, γ[t])

(5.30)

Substituting the expressions (5.14), (5.17), (5.18), (5.29) and summing over Z as in 4.3, one obtains

again a differentiable expression of the log of the posterior (as long as the prior probability distributions

are differentiable). However we wish to alternate the optimisation of subsets of the variables. Let us

consider the following subsets:

• S1 : λ

• S2 : γ = {γ1, . . . , γt, . . . , γNt}

• S3 : θ = {θλ, θy} ,

and derive analytical expressions of the log marginal probability distributions of each subset conditioned

on the other subsets and of their first derivatives. The following paragraphs make use of these expressions

to derive algorithms for the optimisation of the parameters. Notice that the model of the magnetic field

distortion may be included as in the previous chapter, entailing a 4-th subset; the model of the magnetic

field distortion has been left out in this chapter in order to keep the formulation uncluttered.
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5.3.1 Marginal posterior distribution of the activity

The marginal posterior probability distribution of the activity λ, conditioned on the motion parameters

γ and on the model parameters θ has the following expression:

p(λ|q,y, γ, θ, π) =
∑
Z

p(λ,Z|q,y, γ, θ, π) (5.31)

=
∑
Z

p(λ,Z, q,y, γ, θ, π)

p(q,y, γ, θ, π)
(5.32)

Substituting from (5.30):

p(λ|q,y, γ, θ, π) ∝
Nt∏
t

[
p(q[t]|λ, γ[t])

]∑
Z

[
p(Z|π)p(λ|Z, θλ)

Nt∏
t

[
p(y[t]|Z, θy, γ[t])

]]
(5.33)

Let us differentiate it with respect to the components of vector-valued λ and get:

∂

∂λr
log p(λ|q,y, γ, θ, π) =

∂

∂λr
log

Nt∏
t

p(q[t]|λ, γ[t])︸ ︷︷ ︸
Emission term

+ (5.34)

+
∂

∂λr
log
∑
Z

[
p(Z|π)p(λ|Z, θλ)

Nt∏
t

[
p(y[t]|Z, θy, γ[t])

]]
︸ ︷︷ ︸

Finite mixture term

Let us consider the two terms one at the time.

Emission term
Let us expand the emission term of equation (5.35):

∂

∂λr
log

Nt∏
t

p(q[t]|λ, γ[t]) =

Nt∑
t=1

∂

∂λr
log

Nd∏
d=1

P

(
q

[t]
d ;

Nv∑
v=1

aγ
[t]

vd

)
(5.35)

=

Nt∑
t=1

∂

∂λr

Nd∑
d=1

log
e−

∑Nv
v=1 a

γ[t]

vd λv
[∑Nv

v=1 a
γ[t]

vd λv

]q[t]d
q

[t]
d !

(5.36)

=

Nt∑
t=1

Nd∑
d=1

∂

∂λr

[
−

Nv∑
v=1

aγ
[t]

vd λv + q
[t]
d log

Nv∑
v=1

aγ
[t]

vd λv

]
(5.37)

= −
Nt∑
t=1

Nd∑
d=1

aγ
[t]

rd +

Nt∑
t=1

Nd∑
d=1

aγ
[t]

rd

q
[t]
d∑Nv

v=1 a
γ[t]

vd λv
(5.38)

∂

∂λr
log

Nt∏
t

p(q[t]|λ, γ[t])︸ ︷︷ ︸
Emission term

= −
Nt∑
t=1

Nd∑
d=1

aγ
[t]

rd +

Nt∑
t=1

Nd∑
d=1

aγ
[t]

rd

q
[t]
d∑Nv

v=1 a
γ[t]

vd λv
(5.39)
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The computation of the emission term therefore entails a series of Nt projections and back-projections.

The system matrix is different for each of the Nt projections and back-projections, as expressed by a[t]

in the formula (5.39). The following paragraph describes how (5.39) can be re-formulated in order to

obtain an efficient algorithm to compute the Nt projections and back-projections.

Efficient computation of the gradient

Computing the gradient (5.38) consists in the computation of Nt projections and back-projections.

As expressed by the summation
Nv∑
v=1

aγ
[t]

vd λv (5.40)

that appears in (5.38), each of the Nt projections has a different system matrix. In fact, as the point

sources, initially located in Xv , are dislocated over time to T γ
[t]

, the probability that a photon emitted

from the v-th point source changes. One way to compute the projections and the back-projections is

to use a ray-casting algorithm that accounts for the location of the point sources at each time point,

implementing directly (5.40). As discussed in chapter 10, when the point sources are displaced on

a regular grid, the numerical implementations of the projector and back-projector can be considerably

more efficient. If the point sources are considered to be located on a regularly spaced grid in the reference

frame, with Xv representing the locations of the point sources, considering that transformations are non-

rigid, the transformed locations T γ
[t]

are no longer regularly spaced.

In (5.11) we have defined the function of 3-D space λ[t] : λ[t](T γ
[t]

Xv) = λ(Xv). According

to this definition λ[t], consistent with the framework, which defines the hidden states only at discrete

locations, needs only to be defined in T γ
[t]

Xv . However, in order to reduce the computational complex-

ity, let use break the formulation and consider λ[t] and λ continuous functions of space. Then, if the

transformation is invertible, we get:

λ[t](T γ
[t]

Xv) = λ(Xv) (5.41)

λ[t](T γ
[t]−1

T γ
[t]

Xv) = λ(T γ
[t]−1

Xv) (5.42)

λ[t](Xv) = λ(T γ
[t]−1

Xv) (5.43)

(5.44)

Let us define:

A = {avd} (5.45)

as the matrix of the probabilities that a pair of photons emitted in Xv are detected in d, with Xv being

the locations of the voxels in the reference frame. Notice that we have already defined Aγ
[t]

= {aγ
[t]

vd }

as the matrix of the probabilities that a pair of photons emitted from location T γ
[t]

Xv is detected in d.
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In the infinite dimensional case (activity is a continuous function of space), the following expressions of

the (vector-valued) expectation of q are equivalent:

Aγ
[t]

λ(X) = Aλ(T γ
[t]−1

X) (5.46)

Then, discretising the integration:

Aγ
[t]

λ(Xv) = Aλ(T γ
[t]−1

Xv) (5.47)

This breaks the discrete formulation given thus far (although for the sole purpose of obtaining an im-

plementation that makes better use of the computing resources): strictly speaking λ is only defined at

locationsXv , thus it is not defined in T γ
[t]−1

Xv . However it can be obtained by interpolation of the point

sourcesXv nearest to each of T γ
[t]−1

Xv . In other words, in order to compute λ[t](Xv) = λ(T γ
[t]−1

Xv)

one may proceed by computing locations T γ
[t]−1

Xv , then sampling λ in each of the transformed lo-

cations, interpolating from the nearest voxels (see Fig. 5.1-right). Then the transformation and re-

interpolation can be expressed as a linear operator τγ[t] :

λ[t](Xv) = τγ[t]λ(Xv) (5.48)

Substituting in (5.38):

∂

∂λr
log

Nt∏
t=1

p(q[t]|λ, γ) = (5.49)

=

Nt∑
t=1

∂

∂λr

Nd∑
d=1

log
e
−
[
Pτ

γ[t]
λ(Xv)

]
d

[
Pτγ[t]λ(Xv)

]q[t]d
d

q
[t]
d !

(5.50)

=

Nt∑
t=1

∂

∂λr

Nd∑
d=1

−
[
Pτγ[t]λ(Xv)

]
d

+ q
[t]
d log

[
Pτγ[t]λ(Xv)

]
d

(5.51)

=

Nt∑
t=1

∂

∂λr

Nd∑
d=1

−
Nv∑
v=1

avd

Nv∑
v′=1

τγ
[t]

v′v λv′ + q
[t]
d log

Nv∑
v=1

avd

Nv∑
v′=1

τγ
[t]

v′v λv′ (5.52)

=

Nt∑
t=1

Nv∑
v=1

τγ
[t]

rv

Nd∑
d=1

ard +

Nt∑
t=1

Nv∑
v=1

τγ
[t]

rv

Nd∑
d=1

ard
q

[t]
d∑Nv

v=1 avd
∑Nv
v′=1 τ

γ[t]

v′v λv′
(5.53)

=

Nt∑
t=1

τTγ[t]P
T1 +

Nt∑
t=1

τTγ[t]P
T q[t]

Pτγ[t]λ
(5.54)

∂

∂λr
log

Nt∏
t=1

p(q[t]|λ, γ)︸ ︷︷ ︸
Approximate emission term

=

Nt∑
t=1

τTγ[t]P
T1 +

Nt∑
t=1

τTγ[t]P
T q[t]

Pτγ[t]λ
(5.55)
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In summary, the gradient of the marginal probability distribution of the activity with respect to the emis-

sion rate parameters λr is composed of two terms, just like in the static case, which can be computed as

follows:

• Left term of (5.55):

1. Back-projection of the vector [1, 1, 1, 1, . . . ];

2. Transformation of the back-projection by each of the Nt inverse transformations;

3. Summation of the Nt transformed back-projections.

• Right term of (5.55):

1. Re-sampling of the current estimate of the activity λ according to each transformation;

2. Projection of each transformed activity;

3. Point-wise division of the measurement (photon counts) at time t by the projection of the

transformed activity;

4. Back-projection of each of the Nt terms obtained at the previous step;

5. Inverse transformation of each of the Nt back-projections;

6. Summation of the Nt back-projections.

Finite mixture term

Let us now expand the finite mixture term of equation (5.35). Proceeding as in 4.3, the summation over

Z can be written as a product over v of sums over zv:

∂

∂λr
log
∑
Z

[
p(Z|π)p(λ|Z, θλ)

Nt∏
t

[
p(y[t]|Z, θy, γ[t])

]]
= (5.56)

=
∂

∂λr
log

Nv∏
v=1

[∑
zv

Nk∏
k=1

πzvkvk N (λv, µλ,k, σλ,k)
zvk

Nt∏
t=1

N
(
y[t]
v , µy,k, σy,k

)zvk]
(5.57)

=
∂

∂λr

Nv∑
v=1

log

Nk∑
k=1

πvkN (λv, µλ,k, σλ,k)

Nt∏
t=1

N
(
y[t]
v , µy,k, σy,k

)
(5.58)

=

∑Nk
k=1

µλ,k−λr
σ2
λ,k

πrkN (λr, µλ,k, σλ,k)
∏Nt
t=1N

(
y

[t]
r , µy,k, σy,k

)
∑Nk
k=1 πrkN (λr, µλ,k, σλ,k)

∏Nt
t=1N

(
y

[t]
r , µy,k, σy,k

) (5.59)

=

Nk∑
k=1

lrk
µλ,k − λr
σ2
λ,k

(5.60)

∂

∂λr
log
∑
Z

[
p(Z|π)p(λ|Z, θλ)

Nt∏
t

[
p(y[t]|Z, θy, γ[t])

]]
︸ ︷︷ ︸

Finite mixture term

=

Nk∑
k=1

lrk
µλ,k − λr
σ2
λ,k

(5.61)
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with

lrk =
πrkN (λr, µλ,k, σλ,k)

∏Nt
t=1N

(
y

[t]
r , µy,k, σy,k

)
∑Nk
k=1 πrkN (λr, µλ,k, σλ,k)

∏Nt
t=1N

(
y

[t]
r , µy,k, σy,k

) (5.62)

In summary, computing the gradient of the finite mixture term with respect to the activity consists in the

following steps:

1. Compute the partial membership (5.62);

2. Compute the gradient according to (5.57) and (5.60).

5.3.2 Marginal posterior distribution of the deformation parameters

The marginal posterior probability distribution of the deformation parameters γ, conditioned on the

activity λ and on the model parameters θ has the following expression:

p(γ|q,y, π, θ,λ) =
∑
Z

p(γ,Z|λ,y, q, θ, π) (5.63)

=
∑
Z

p(λ,y,Z, q, γ, θ, π)

p(λ,y, q, θ, π)
(5.64)

substituting the expression of the joint posterior probability distribution (5.30), taking the log and differ-

entiating with respect to the r-th parameter of the deformation model at time t:

∂

∂γ
[t]
r

log p(γ|q,y, π, θ,λ) = (5.65)

=
∂

∂γ
[t]
r

log

[
p(γ[t])p(q[t]|λ, γ[t])

∑
Z

[
p(Z|π)

Nt∏
t=1

p(λ|Z, θλ, γ[t])p(y[t]|Z, θy, γ[t])

]]

=
∂

∂γ
[t]
r

log p(γ[t]) + (5.66)

+
∂

∂γ
[t]
r

log p(q[t]|λ, γ[t])︸ ︷︷ ︸
Emission term

+ (5.67)

+
∂

∂γ
[t]
r

log
∑
Z

[
p(Z|π)

Nt∏
t=1

p(λ|Z, θλ, γ[t])p(y[t]|Z, θy, γ[t])

]
︸ ︷︷ ︸

Finite mixture term

(5.68)

Let us consider the two terms one at the time.
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Emission term

Let us expand the emission term of equation (5.68). The likelihood of the activity and of the motion

parameters is given by equation (5.18):

p(q[t]|λ, γ[t]) =

Nd∏
d=1

p(q
[t]
d |λ, γ

[t]) (5.69)

=

Nd∏
d=1

P

(
q

[t]
d ;

Nv∑
v=1

aγ
[t]

vd λv

)
(5.70)

=

Nd∏
d=1

e−
∑Nv
v=1 a

γ[t]

vd λv
[∑Nv

v=1 a
γ[t]

vd λv

]q[t]d
q

[t]
d

(5.71)

(5.72)

Taking the log and differentiating, we obtain:

∂

∂γ
[t]
r

log p(q[t]|λ, γ[t]) =

Nd∑
d=1

[
∂

∂γ
[t]
r

−
Nv∑
v=1

aγ
[t]

vd λv + q
[t]
d

∂

∂γ
[t]
r

log

Nv∑
v=1

aγ
[t]

vd λv

]
(5.73)

=

Nd∑
d=1

[
∂

∂γ
[t]
r

−
[
Aγ

[t]

λ(Xv)
]
d

+ q
[t]
d

∂

∂γ
[t]
r

log
[
Aγ

[t]

λ(Xv)
]
d

]
(5.74)

=

Nd∑
d=1

− ∂

∂γ
[t]
r

[
Aγ

[t]

λ(Xv)
]
d

+ q
[t]
d

∂

∂γ
[t]
r

[
Aγ

[t]

λ(Xv)
]
d[

Aγ[t]λ(Xv)
]
d

 , (5.75)

with

Aγ
[t]

λ(Xv) = Aλ(T γ
[t]

Xv) (5.76)

Letting:

W γ[t]

v = T γ
[t]−1

Xv (5.77)

∂

∂γ
[t]
r

W γ[t]

v =
∂

∂γ
[t]
r

T γ
[t]−1

Xv, (5.78)

by the chain rule of differentiation, we obtain:

A
∂

∂γ
[t]
r

λ

(
T γ

[t]−1
Xv

)
= A

∂

∂γ
[t]
r

λT γ
[t]

Xv (5.79)

= A
∂

∂γ
[t]
r

λ
(
W γ[t]

v

)
(5.80)

= A
∂λ(W γ[t]

v )

∂W γ[t]

v

∂W γ[t]

v

∂γ
[t]
r

(5.81)

= A

λ(W γ[t]

v )

∂W γ[t]

v,1

∂W γ[t]

v,1

∂γ
[t]
r

+
λ(W γ[t]

v )

∂W γ[t]

v,2

∂W γ[t]

v,2

∂γ
[t]
r

+
λ(W γ[t]

v )

∂W γ[t]

v,3

∂W γ[t]

v,3

∂γ
[t]
r

(5.82)

= A

[
∇λ

(
T γ

[t]−1
Xv

)
·

(
∂

∂γ
[t]
r

T γ
[t]−1

)
·Xv

]
(5.83)
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where the operator ∇ denotes the spatial gradient (in homogeneous coordinates). Expanding (5.75), the

derivatives of the emission term with respect to the motion parameters at time t are expressed by

∂

∂γ
[t]
r

log p(q[t]|λ, γ[t])︸ ︷︷ ︸
Emission term

=

Nd∑
d=1

−[A ∂

∂γ
[t]
r

λ(T γ
[t]−1

Xv)

]
d

+ q
[t]
d

[
A ∂

∂γ
[t]
r

λ(T γ
[t]−1

Xv)
]
d[

Aλ(T γ[t]−1
Xv)

]
d

 (5.84)

where: A
∂

∂γ
[t]
r

λ

(
T γ

[t]−1
Xv

)
= A

[
∇λ

(
T γ

[t]−1
Xv

)
·

(
∂

∂γ
[t]
r

T γ
[t]−1

)
·Xv

]
(5.85)

Notice, from (5.84), that the gradient is zero everywhere if q[t]
d =

[
Aλ(T γ

[t]−1
Xv)

]
d
.

The derivative of the emission term with respect to parameter r at time t is obtained, according to

(5.84), by performing a summation in detector space (
∑Nd
d ). The summand is given by two terms. The

left term of (5.84) is the projection of the volumetric quantity

A
∂

∂γ
[t]
r

λ(T γ
[t]−1

Xv) (5.86)

The right term of (5.84) is equal to the same quantity divided, point-wise, by the projection of λ re-

sampled in T γ
[t]−1

Xv and multiplied, point wise, by the photon counts. The volume (5.86) expresses

the change in the transformed activity in T γ
[t]−1

Xv when parameters r relative to time t is perturbed.

Each element is obtained, according to (5.83), by the dot-product of the spatial gradient of λ (re-sampled

in T γ
[t]−1

Xv) with the 4 × 4 matrix of the derivatives of the spatial transformation, multiplied by the

location Xv in the reference space. In summary, the computation of the derivative of the emission term

with respect to parameter r relative to time t consists in the following steps:

1. Warp the image support T γ
[t]−1

;

2. Re-sampling of the activity on the warped image support;

3. Project the re-sampled activity;

4. Compute the spatial gradient of the re-sampled activity (Nv × 4 matrix - homogeneous coordi-

nates);

5. Compute the matrix of the derivatives of the transformation operator;

6. Multiply (dot-product) the spatial gradient of the re-sampled activity, the matrix of the derivatives

of the transformation operator, the image support;

7. Project the volume obtained at the previous step;

8. Point-wise divide the result of step (3) by the result of step (7);

9. Sum, in projection space, the results of (7) and (8).

6 degrees of freedom
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Let us consider the case of 6 degrees of freedom (DOF) rigid transformation. Assigning γ1, γ2, γ3

to the rotation around axis 1, 2, 3 respectively and γ4, γ5, γ6 to the translation in the direction of axis

1, 2, 3, the transformation matrix may be parametrised as follows:

T
γ[t]

= R1(γ
[t]
1 ) · R2(γ

[t]
2 ) · R3(γ

[t]
3 ) · U(γ

[t]
4 , γ

[t]
5 , γ

[t]
6 ) (5.87)

R1(γ
[t]
1 ) =



1 0 0 0

0 cos γ
[t]
1 − sin γ

[t]
1 0

0 sin γ
[t]
1 cos γ

[t]
1 0

0 0 0 1


R2(γ

[t]
2 ) =



cos γ
[t]
2 0 sin γ

[t]
2 0

0 1 0 0

− sin γ
[t]
2 0 cos γ

[t]
2 0

0 0 0 1


(5.88)

R3(γ
[t]
3 ) =



cos γ
[t]
3 − sin γ

[t]
3 0 0

sin γ
[t]
3 cos γ

[t]
3 0 0

0 0 1 0

0 0 0 1


U(γ

[t]
4 , γ

[t]
5 , γ

[t]
6 ) =



1 0 0 γ
[t]
4

0 1 0 γ
[t]
5

0 0 1 γ
[t]
6

0 0 0 1


(5.89)

The inverse of T γ
[t]

is:

T
γ[t]
−1

= U(−γ[t]
4 ,−γ[t]

5 ,−γ[t]
6 ) · R3(−γ[t]

3 ) · R2(−γ[t]
2 ) · R1(−γ[t]

1 ) (5.90)

T
γ[t]
−1

=



cos γ
[t]
1 cos γ

[t]
2 cos γ

[t]
3 sin γ

[t]
2 + sin γ

[t]
3 sin γ

[t]
1 cos γ

[t]
2 sin γ

[t]
3 sin γ

[t]
2 − cos γ

[t]
3 sin γ

[t]
1 cos γ

[t]
2 γ

[t]
4

− cos γ
[t]
1 sin γ

[t]
2 cos γ

[t]
3 cos γ

[t]
2 − sin γ

[t]
3 sin γ

[t]
1 sin γ

[t]
2 sin γ

[t]
3 cos γ

[t]
2 + cos γ

[t]
3 sin γ

[t]
1 sin γ

[t]
2 γ

[t]
5

sin γ
[t]
1 − sin γ

[t]
3 cos γ

[t]
1 cos γ

[t]
3 cos γ

[t]
1 γ

[t]
6

0 0 0 1


(5.91)

The derivative of the transformation operator with respect to parameter e.g. γ[t]
2 (rotation around axis 2

at time t) is then:

∂

∂γ
[t]
1

T
γ[t]
−1

= U(−γ[t]
4 ,−γ[t]

5 ,−γ[t]
6 ) · R3(−γ[t]

3 ) ·



− sin γ
[t]
2 0 cos γ

[t]
2 0

0 1 0 0

− cos γ
[t]
2 0 − sin γ

[t]
2 0

0 0 0 1


· R1(−γ[t]

1 ) (5.92)

This is the matrix required in (5.83) in order to compute the derivative of the emission term with respect

to rotation parameter γ[t]
2 . For the 6-DOF parametrisation one has to compute 6 such matrices, 1 spatial

transformation of λ, 1 spatial gradient, 6 dot products and 6 projections. Paragraph 5.4 reports images

of the (5.86) and of the projections of (5.86) for the rigid motion parametrisation.

Finite mixture term
Once again, proceeding as in 4.3, the summation over Z can be written as a product over v of sums over

zv:
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∂

∂γ
[t]
r

log
∑
Z

[
p(Z|π)

Nt∏
t=1

p(λ|Z, θλ, γ[t])p(y[t]|Z, θy, γ[t])

]
︸ ︷︷ ︸

Finite mixture term

= (5.93)

=
∂

∂γ
[t]
r

log

Nv∏
v=1

∑
zv

[
πvkp(λv|zv, θλ)

Nt∏
t=1

p(y[t]
v |zv, θy, γ[t])

]zvk
(5.94)

=
∂

∂γ
[t]
r

log

Nv∏
v=1

Nk∑
k=1

πvkp(λv|zvk, θλ)

Nt∏
t=1

p(y[t]
v |zvk, θy, γ[t]) (5.95)

=

Nv∑
v=1

∑Nk
k=1 πvkp(λv|zvk, θλ) ∂

∂γ
[t]
r

p(y
[t]
v |zvk, θy, γ[t])

∏
t′ 6=t p(y

[t′]
v |zvk, θy, γ[t′])∑Nk

k=1 πvkp(λv|zvk, θλ)
∏Nt
t=1 p(y

[t]
v |zvk, θy, γ[t])

(5.96)

where:

∂

∂γ
[t]
r

p
(
y[t]
v (T γ

[t]

Xv)|zvk, θy
)

= (5.97)

=
∂

∂γ
[t]
r

N (λv;µλ,k, σλ,k) (5.98)

=
µy,k − y[t]

(
T γ

[t]

Xv

)
σ2
v,k

N
(
y[t]

(
T γ

[t]

Xv

)
;µy,k, σy,k

) ∂

∂γ
[t]
r

y[t]
(
T γ

[t]

Xv

)
(5.99)

Let us expand ∂

∂γ
[t]
r

y[t]
(
T γ

[t]

Xv

)
. With the change of variable (as in (5.77)), we obtain:

W γ[t]

v = T γ
[t]−1

Xv (5.100)

∂

∂γ
[t]
r

y[t]
(
T γ

[t]

Xv

)
(5.101)

=
∂

∂γ
[t]
r

y[t]
(
W γ[t]

v

)
(5.102)

=
∂y[t](W γ[t]

v )

∂W γ[t]

v

∂W γ[t]

v

∂γ
[t]
r

(5.103)

=
y[t](W γ[t]

v )

∂W γ[t]

v,1

∂W γ[t]

v,1

∂γ
[t]
r

+
y[t](W γ[t]

v )

∂W γ[t]

v,2

∂W γ[t]

v,2

∂γ
[t]
r

+
y[t](W γ[t]

v )

∂W γ[t]

v,3

∂W γ[t]

v,3

∂γ
[t]
r

(5.104)

= ∇y[t]
(
T γ

[t]

Xv

)
·

(
∂

∂γ
[t]
r

T γ
[t]

)
·Xv (5.105)

Notice that (5.96) contains the product of Nt − 1 terms p(y[t′]
v |zvk, θy, γ[t′]) for t′ 6= t. Such product is

multiplied by ∂

∂γ
[t]
r

p
(
y

[t]
v (T γ

[t]

Xv)|zvk, θy
)

. With the particular choice of normal density functions for

p
(
y

[t]
v (T γ

[t]

Xv)|zvk, θy
)

, the product is completed for all t terms as the derivative of a normal density

function is proportional to the function, as expressed by (5.99). Substituting (5.99) and (5.105) in (5.96),

in fact, the expression simplifies to:
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∂

∂γ
[t]
r

log
∑
Z

[
p(Z|π)

Nt∏
t=1

p(λ|Z, θλ, γ[t])p(y[t]|Z, θy, γ[t])

]
︸ ︷︷ ︸

Finite mixture term

= (5.106)

=

Nv∑
v=1

 ∂

∂γ
[t]
r

y[t]
(
T γ

[t]

Xv

) Nk∑
k=1

ιvk
µy,k − y[t]

(
T γ

[t]

Xv

)
σ2
y,k

 (5.107)

with lvk expressed by (5.62) and, from (5.105), we obtain:

∂

∂γ
[t]
r

y[t]
v

(
T γ

[t]

Xv

)
= ∇y[t]

(
T γ

[t]

Xv

)
·

(
∂

∂γ
[t]
r

T γ
[t]

)
·Xv (5.108)

Then, the computation of the derivative of the finite mixture term with respect to the motion param-

eter r relative to time frame t involves the following steps:

1. Warp the support of the MR image t;

2. Re-sample the MR image t on the warped image support;

3. Compute the spatial gradient of the re-sampled image;

4. Compute the partial membership lvk;

5. Multiply (dot-product) the spatial gradient of the re-sampled image, the matrix of the derivatives

of the transformation operator, the image support;

6. Compute a weighted sum in image space (see (5.107));

7. Sum all the elements of the volume from the previous step (see (5.107)).

Notice that the derivative of the finite mixture term with respect to the motion parameter does

depend on λ, through l (see (5.62)).

5.3.3 Marginal posterior distribution of the model parameters

The marginal posterior probability distribution of the model parameters θ, conditioned on the activity λ

and on the motion parameters γ has the following expression:

p(θ|λ, q,y, γ, π) =
∑
Z

p(θ,Z|λ, q,y, γ, π) (5.109)

=
∑
Z

p(λ,y,Z, q, γ, θ, π)

p(λ, q,y, γ, π)
(5.110)

with θ = {θλ, θy}. θλ = {µλ,k, σλ,k} θy = {µy,k, σy,k}, k = 1, 2, . . . , Nk. The gradient with respect

to parameters µλ,k, dropping the terms that are not functions of θ and Z, is expressed by:
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∂

∂µλ,k
log p(θ|λ, q,y, γ, π) = (5.111)

=
∂

∂µλ,k
log p(θ) + log

∑
Z

p(θ)p(Z|π)p(λ|Z, θλ)

Nt∏
t=1

p(y[t]|Z, θy, γ[t]) (5.112)

=
∂

∂µλ,k
log p(θ) +

Nv∑
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log

Nk∑
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Nt∏
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N
(
y[t]
v ;µy,k, σy,k

)
(5.113)

= log p(θ) +

Nv∑
v=1

πvk
∂

∂µλ,k
N (λv;µλ,k, σλ,k)

∏Nt
t=1N

(
y

[t]
v ;µy,k, σy,k

)
∑Nk
k=1 πvkN (λv;µλ,k, σλ,k)

∏Nt
t=1N

(
y

[t]
v ;µy,k, σy,k

) (5.114)

= log p(θ) +

Nv∑
v=1

lvk
λv − µλ,k
σ2
λ,k

(5.115)

∂

∂µλ,k
log p(θ|λ, q,y, γ, π) =

∂

∂µλ,k
log p(θ) +

Nv∑
v=1

lvk
λv − µλ,k
σ2
λ,k

(5.116)

differentiating (5.109) with respect to σλ,k, we obtain:

∂

∂σλ,k
log p(θ|λ, q,y, γ, π) =

∂

∂σλ,k
log p(θ) +

Nv∑
v=1

lvk
µ2
λ,k − σ2

λ,k − 2µλ,kσλ,k + λ2
v

σ3
λ,k

(5.117)

And differentiating with respect to µy,k and σy,k we obtain:

∂

∂µy,k
log p(θ|λ, q,y, γ, π) =

∂

∂µy,k
log p(θ) +

Nv∑
v=1

lvk
yv − µy,k
σ2
y,k

(5.118)

∂

∂σy,k
log p(θ|λ, q,y, γ, π) =

∂

∂σy,k
log p(θ) +

Nv∑
v=1

lvk
µ2
y,k − σ2

y,k − 2µy,kσy,k + y2
v

σ3
y,k

(5.119)

The expressions (5.116), (5.117), (5.118) and (5.119), though derived here to complete the deriva-

tions of the previous sections, will not be used in the following paragraphs. The problem of maximising
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the posterior probability distribution of θ, given all other variables, in fact, is equivalent to the problem

described in 4.A. Therefore updates of the parameters θ can be computed with the EM algorithm.

5.4 I Deformations from the emission data
The unified model described in the previous paragraph relates the time-dependent emission data to the

MR data assuming the existence of finite anatomical-functional states and parameterising the spatial

deformations. Modelling the statistical dependence between the time-dependence emission imaging,

the MR imaging data and the deformation parameters, it eventually enables us to make use of the MR

and PET data in order to estimate the deformation parameters jointly with the spatial density of the

radio-pharmaceutical. In order to investigate applications of the unified model, let us break it down into

simpler models. Each of the simpler models described in the next paragraphs could have been described

independently. However we preferred the unified approach as it enables us to reason about the interaction

of data obtained from multiple sources and to device new algorithms.

One may simply ignore subsets of the variables of the unified model of 5.2. Let us start by ignoring

the finite labels Z and θ. Then λ and y become statistically independent. The model then expresses the

interaction between the time-dependent emission data q, the activity λ and the time-dependent defor-

mation parameters γ. Fig. 5.3 reports the DAG of the model when Z is ignored. The variable y is not

reported in the image as it is independent from q, λ and γ.

Figure 5.3: Deformations from the emission data: the model relates the time-dependent emission data

q[t] to the underlying radio-pharmaceutical density λ and to time-dependent spatial transformations γ[t].

Fig. 5.4 reports the moralised graph.

The generative model of the imaging system, parametrised by the deformation parameters, allows

us to estimate the motion parameters, along with the spatial concentration of the radio-pharmaceutical,

from the emission data. In order to optimise the posterior probability distribution given the photon counts

p(λ, γ|q), we decide once again to split the unknowns according to their natural separation

• S1 : λ

• S2 : γ

and to alternate the optimisation of the posterior probability distribution of the activity λ conditional to γ

and the optimisation of the posterior probability distribution of the deformation parameters γ conditional
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to the activity (Iterated conditional modes - see paragraph 2.1.10). One may verify, from 5.4 and 5.5, that

the posterior probability distribution of the motion parameters conditional to the activity factorises in Nt

independent terms. Therefore the parameters for different time points are optimised independently.

subsets

Figure 5.4: Deformations from the emission data: moralised graph of the model of Fig. 5.3. Given λ and

q[t], the deformation parameters at time t are independent from the deformation parameters at all other

time points and from the photon counts at all other time points. Fig. 5.5 reports the Markov blankets of

λ and γ for the alternated optimisation of the joint posterior of λ and γ.

Markov blankets

Figure 5.5: Deformations from the emission data: the posterior probability distribution of λ, conditional

to γ, depends on the photon counts at all time points and on the motion parameters at all time points.

The posterior probability distribution of γ conditional to λ, however, factorises in Nt terms (there is no

open path connecting γ[t] to γ[t′] when λ is given). Therefore, alternated optimisation of Activity and γ

consists in estimating the activity given all the deformation parameters, then estimating the deformation

parameters independently, given the activity, as expressed by (5.120) and (5.122).

Equation (5.38) expresses the first derivative of the posterior probability distribution of the activity

for the 4-D model of 5.3. The expression of equation (5.38) is the sum ofNt terms, each equivalent to the

gradient of the likelihood of the static measurement (2.46). In order to optimise with respect of λ, one

may once again proceed by gradient ascent. Recognising how the two terms of (2.46) are rearranged in

the MLEM update formula (3.14), the two terms of (5.38) can be rearranged to obtain the 4-dimensional

version of the MLEM algorithm for the model of Fig. 5.3:
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λ(n+1)
v = λ(n)

v

1∑Nt
t=1

∑Nd
d=1 a

γ[t]

rd

Nt∑
t=1

Nd∑
d=1

aγ
[t]

rd

q
[t]
d∑Nv

v=1 a
γ[t]

vd λv
(5.120)

The optimisation of the motion parameters is to some extent simpler than the optimisation of the

activity for two reasons. The first reason is that there are no negativity constraints. The second reason is

that the dimensionality of γ is typically much smaller than that of λ, enabling the use of sophisticated

optimisation algorithms prohibited for λ. The following section describes experiments with spatial trans-

formations with 6 degrees of freedom. In such experiments, the motion parameters are optimised, at each

step of the ICM algorithm, using the BroydenFletcherGoldfarbShanno (BFGS) quasi-Newton algorithm

[84].

At every iteration, the BFGS algorithm makes use of all previous searching directions and of

the first derivatives of the cost function in order to decide in which direction and how far to move

in the space of the parameters. BFGS requires storage of all previous searching directions as well

as many matrix vector multiplications, making it unsuited to problems with more than a few thou-

sand variables, but very well suited to the experiments reported in the following section. In these

experiments the BFGS algorithm implemented in the Matlab minFunc open source toolbox (http:

//www.di.ens.fr/˜mschmidt/Software/minFunc.html) was used as a black-box optimi-

sation tool, only requiring the first derivatives of the cost function. The first derivative of the posterior

probability distribution of the motion parameters conditional to the activity, with respect to deformation

parameter γ[t]
r have been derived in 5.3.2 (eq. (5.84) and (5.84)) and are reported here:

∂

∂γ
[t]
r

log p(q[t]|λ, γ[t]) = (5.121)

∂

∂γ
[t]
r

log p(γ[t]) +

Nd∑
d=1

−[A ∂

∂γ
[t]
r

λ(T γ
[t]−1

Xv)

]
d

+ q
[t]
d

[
A ∂

∂γ
[t]
r

λ(T γ
[t]−1

Xv)
]
d[

Aλ(T γ[t]−1
Xv)

]
d

 (5.122)

where

A
∂

∂γ
[t]
r

λ

(
T γ

[t]−1
Xv

)
= A

[
∇λ

(
T γ

[t]−1
Xv

)
·

(
∂

∂γ
[t]
r

T γ
[t]−1

)
·Xv

]
(5.123)

As also expressed by the graph 5.5, the derivative with respect to motion parameter γr at time t does not

depend on the motion parameters and on the photon counts in other time frames.
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OSEM in time and space for the efficient estimation of the activity
The 4-D MLEM update formula differs from the static formula for the additional sum over t. The

summations over d of the static MLEM update formula (3.14) are replaced, in the 4-D update formula

(5.120), by summations over d and t. The Ordered Subsets Expectation Maximisation (OSEM) algorithm

(see 3.1.3) can then be simply extended to the 4-D case. Each of the summations over all values of d and

all values of t is replaced with the summation over subsets of d and t:

λ(n+1)
v = λ(n)

v

1∑
t∈T (n)

∑
d∈D(n) a

γ[t]

rd

∑
t∈T (n)

∑
d∈D(n)

aγ
[t]

rd

q
[t]
d∑Nv

v=1 a
γ[t]

vd λv
(5.124)

T (n) ⊆ {1, 2, . . . , Nt} (5.125)

D(n) ⊆ {1, 2, . . . , Nd} (5.126)

The updated value of the activity is therefore obtained in accordance to the photon counts observed in a

subset of the detectors and in a subset of the time frames. The subsets can be chosen, at each iteration,

according to a pre-defined scheme, hence the name ordered subsets given in [29], or randomly. In the

experiments that follow, new subsets, in time and space, are chosen randomly at each iteration.

5.4.1 Rigid motion

Simple phantom
The first experiment points out how the effect of motion is more significant in emission imaging due

to the photon limited regime of acquisition. Synthetic emission data was generated from the pattern of

figure 5.6. The acquisition parameters used in the simulation were set to mimic the characteristics of

a clinical 3-D PET scanner, but the activity was set to non-zero values only in a 3 mm thick 2-D slice

perpendicular to the axis of the scanner. The simulated imaging volume was 300 mm × 300 mm ×

3 mm. In order to emulate the level of noise typical of a 3-D medical acquisition, the number of

detected photons for the 2-D experiment was set to the number of photons of a typical 3-D acquisition

(50 × 106) divided by the number of axial slices of the 3-D system (100): 0.5 × 106 photons. Two

different simulations were performed. In the first case, the rate of emission was considered to be constant

during the entire acquisition and proportional to the grey levels of image 5.6-A. In the second case, the

phantom was translated and rotated randomly 50 times, defining 50 time frames of equal duration. The

range of motion and frequency of the motion events were deliberately exaggerated, drawing the random

translations from a uniform distribution in the range (−20 mm ÷ 20 mm) and the rotations from a

uniform distribution in the range (−12 deg÷ 12 deg). With 50 time frames, the average photon counts

for each time frame was equal to 0.5×106/50 = 104 photons. The activity of the first three time frames

is reported in Fig. 5.6-A,B,C. Fig. 5.6-D reports the sum of the 50 phantoms. Fig. 5.7-A,B,C reports the

sinograms corresponding to the first three time frames and 5.7-D the sinogram obtained by disregarding
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the timing information (i.e. the sum of the time-indexed sinograms).

 A                        B                         C                         D

Figure 5.6: Rigid motion - synthetic activity. (A,B,C) Synthetic activity during time frames 1,2 and 3,

respectively. (D) Sum of the activity during all Nt = 50 time frames.

A                        B                        C                        D

Figure 5.7: Rigid motion - sinograms. (A,B,C) Sinograms measured during time frames 1, 2 and 3,

respectively. (D) Sinogram measured during the entire duration of the acquisition (sum of the Nt = 50

time-indexed sinograms).

Four reconstructions were performed:

• Reconstruction of the static measurement, MLEM (Fig. 5.8-A);

• Reconstruction of the motion-corrupted measurement, MLEM (Fig. 5.8-B);

• Frame-by-frame reconstruction, MLEM (Fig. 5.8-C);

• Joint reconstruction of the activity and of the motion parameters, ICM (Fig. 5.8-D);

No smoothness constraints were adopted in the reconstruction; however reconstructions were ter-

minated after 160 iterations of MLEM. The early termination effectively introduces some degree of

smoothness in the reconstructions. The 0.5 × 106 photons, as expected, were found to be sufficient to

obtain an image of the phantom of reasonably good quality (Fig. 5.8-A). However, the information con-

tained in a single time frame is not sufficient to reconstruct an image (Fig. 5.8-C). Joint reconstruction of

activity and of the motion parameters was obtained by alternating, for 16 times, 10 iterations of MLEM

and the optimisation of the motion parameters with the BFGS algorithm cycled until convergence. The

MLEM step was implemented according to (5.120) and the gradient of the motion parameters is given
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by (5.122) and (5.123). The transformation matrix was parametrised as described in (5.87),(5.88),(5.89),

setting the derivatives with respect to γ[t]
2 , γ

[t]
3 , γ

[t]
6 to zero.

Fig. 5.9 displays the recovery of the motion parameters as a function of the ICM iteration (light blue

to dark blue) and the ground-truth motion parameters (red). The translation parameters were recovered

within a few iterations of the ICM algorithm, however the rotation parameters were found to converge

slowly. It was found that such problem, visible in 5.9-right, is solved by alternating the estimation of

the translation and rotation parameters, as discussed in the note that follows. Fig. 5.8-D reports the

activity obtained by the joint reconstruction of the activity and of the translation and rotation parameters

(alternating the optimisation of translation and rotation). Remarkably, though the reconstructions of the

single time frames present insufficient information for visual interpretation, a few iterations of ICM are

sufficient to recover, from the multiple observations, the motion parameters and the underlying activity.

The activity of Fig. 5.8-D, obtained by joint estimation of the activity and of the motion parameters,

appears visually indistinguishable from the image obtained from the static experiment.

A                        B                        C                        D

Figure 5.8: Rigid motion - reconstructions. (A) Reconstruction of the static measurement (MLEM).

(B) Reconstruction of the motion-corrupted measurement (MLEM), - sinogram of Fig. 5.7-D. (C) Re-

construction of a single time frame (MLEM). (D) Joint reconstruction of the activity and of the motion

parameters (ICM).

Fig. 5.11 and 5.10 are meant to aid the interpretation of the formulae of the derivatives of the

posterior with respect to the motion parameters, reporting images of the quantities expressed by (5.122)

and (5.123).

Note on the selection of the subsets
It was found that, when alternating the optimisation of the activity and of the motion parameters, the

rate of convergence of the rotation parameters is much slower than for the translation parameters. Such

problem is related to the different order of magnitude of the gradients of the translation and rotation

parameters. The step size, selected by the line search algorithm, appears to be limited by the translation

parameters. Alternating the optimisation of the activity, the optimisation of the translation parameters

and the optimisation of the rotation parameters, convergence is faster for all the parameters.

One may think that joint optimisation of the parameters of a model is in general a better idea than
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Figure 5.9: Rigid motion - recovery of the motion parameters. The plots report the true motion pa-

rameters (red) and the estimated motion parameters (blue) for each of the 50 time points. The estimated

motion parameters are pictured as a function of the ICM iteration: light blue indicates low iteration num-

ber, dark blues high iteration number (up to 16). The rotation parameter converges slowly, eventually

never reaching convergence. Such problem is solved by alternating the optimisation of the translation

and rotation parameters, as discussed in the note of 5.4.1. The translation parameters are recovered

accurately in just a few iterations of ICM.

A                       B                        C            

Figure 5.10: Rigid motion - derivatives with respect to the motion parameters in image space. The three

images display the quantity obtained by evaluating the expression in the square brackets of (5.123) at

ICM iteration 10 for the three rigid motion parameters: (A) rotation, (B) translation X , (C) translation

Y . See also 5.11.

alternated optimisation, considering the latter a simpler alternative for certain problems. Alternated

optimisation, in fact, may eventually converge to saddle points of the cost function, as discussed in [85].

However, alternated optimisation may be a better choice when the joint cost function is affected by the

parameters to a largely different extent. Partitioning of the variables that appear to be natural, such as

for example grouping the rates of emission in all voxels into a subset and the translation parameters into

another subset, indeed often correspond to the selection of sets of variables that present commensurate

derivatives.
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A                       B                        C            

Figure 5.11: Rigid motion - derivatives with respect to the motion parameters in detector space. The three

images display the quantity obtained by evaluating (5.123) at ICM iteration 10 for the three rigid motion

parameters: (A) rotation, (B) translation X , (C) translation Y . The three images therefore represent

the projections of the images in 5.10. As expressed by (5.122)-right, the derivative of each motion

parameter is obtained by performing a sum over all the elements of the corresponding image (multiplied

by the photon counts and by the projection of the activity estimate).

The experiment that follows, which evaluates the joint estimation of the activity and the rigid motion

parameters in the case of fully three-dimensional imaging, makes use of the alternated optimisation of

the translation and rotation parameters. Fig. 5.15 will show how the translation and rotation parameters

converge at equal rates.

Brain phantom

The ICM algorithm (5.120), (5.122), (5.123), at the first iteration, reconstructs the activity given the

initial estimates of the motion parameters. If the motion (translation and rotation) parameters are initially

considered to be zero at all time frames, the estimate of the activity obtained at the first iteration of ICM

is equal to the reconstruction obtained by ignoring motion and thus summing the time-indexed sinograms

into a single sinogram. For the experiment of the previous section, the first estimate of the activity then

corresponds approximately to a smoothed version of 5.8-B (as in the experiment MLEM is iterated only

10 times within each ICM step). The second part of the first step of ICM is to estimate the motion

parameters. Such optimisation essentially consists in moving around the estimate of the activity, until its

projection matches the measurements. One may think that, starting with such a poor initial estimate of

the activity, it would be difficult to make a good guess of the motion parameters. However, surprisingly,

the motion parameters and the activity are recovered in just a few iterations of ICM. One may argue

that the simplicity of the object is the cause of the good behaviour of the optimisation. This second

experiment considers a synthetic brain imaging study in the three-dimensional imaging space a 6 DOF

rigid motion.

The synthetic activity and the characteristics of the PET imaging system are the same that were

used in the experiments described in 4.5. The activity phantom was transformed, according to random

translations and rotations, into 50 volumetric images. Translations were sampled from a uniform dis-
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tribution in the range (−15 mm ÷ 15 mm) and rotations from a uniform distribution in the range

(−5 deg ÷ 5 deg). Fig. 5.12(A,B,C) reports the central transverse slice of the activity phantom relative

to time frames 1,2 and 3 and Fig. 5.12-D reports the central transverse slice the sum of the 50 volumes.

The 50 frames were considered to be of equal duration, with the collection of 50× 106 photons, 1× 106

per frame. Fig. 5.13 reports one plane of the viewgrams (i.e. the emission data re-binned from the

cylindrical geometry to the planar geometry) relative to time frames 1,2,3 and to all frames (D).

 A                        B                         C                         D

Figure 5.12: Rigid motion - phantom. (A,B,C) Activity phantoms at time frames 1,2 and 3, respec-

tively. The phantoms are obtained by random translation and rotation of a static 3-D synthetic spatial

concentration of the pharmaceutical. (D) Sum of the 50 phantoms.

 A                        B                         C                         D

Figure 5.13: Rigid motion - viewgrams. (A,B,C) Viewgrams at time frames 1,2 and 3, respectively. (D)

Sum of all 50 viewgrams. This is the measurement obtained by discarding the timing information.

As in the previous experiment, no smoothness constraints were adopted in the reconstruction, how-

ever reconstructions were terminated after 160 iterations of MLEM. Joint reconstruction of activity and

of the motion parameters was obtained by alternating, for 16 times, 10 iterations of MLEM and the

optimisation of the motion parameters with the BFGS algorithm cycled until convergence. The transfor-

mation matrix was parametrised as described in (5.87),(5.88),(5.89).

Fig. 5.14-D reports the activity obtained by the joint reconstruction of the activity and of the 6

motion parameters and Fig. 5.15 displays the recovery of the motion parameters as a function of the

ICM iteration. The motion parameters are recovered in 15 iterations of ICM, with residual average

errors of 0.4 mm ( 1
4 of a voxel) and 0.65 deg. The activity obtained by joint estimation of the activity
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and of the motion parameters, though somewhat distinguishable from the image obtained from the static

experiment, is well recovered.

A B

C                                                        D 

Figure 5.14: Rigid motion - reconstructions. (A) Reconstruction of a single time frame (MLEM). (B)

Reconstruction of the motion-corrupted measurement (MLEM), - sinogram of Fig. 5.13-D. (C) Recon-

struction of the motion-free measurement (MLEM). (D) Joint reconstruction of the activity and of the

motion parameters (ICM).

5.4.2 Non-rigid motion

The gradient of the non-rigid motion parameters may be obtained with the same formulae described in

the previous paragraph, just by replacing the transformation matrix. Such problem has not been explored

in this work, however, given the effectiveness of gradient-based estimation of the rigid motion parameters

from the emission data, highlighted by the experiments in the previous section, estimation of the non-
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RMSE Rotation [deg]

Figure 5.15: Rigid motion - recovery of the motion parameters. The plots display the root mean squared

error (RMSE) of the translation and rotation parameters. RMSE is obtained by summing over the three

translation and rotation parameters and over all time points. The convergence of the rotation parameters

was found to be slightly slower than for the translation parameters. Translation and rotation converge

within 15 iterations, with residual RMSE of 0.4 mm ( 1
4 of a voxel) and 0.65 deg

rigid deformation parameters directly from the emission data becomes an interesting problem. From the

algorithmic perspective, the main challenge with the estimation of the non-rigid deformation parameters

from the emission data is that, in order to compute the derivatives of the deformation parameters, it is

required to perform one projection for each parameter.

5.5 II 4-D reconstruction with known deformations
The model described in the previous paragraph enables the estimation of the motion parameters from

the emission imaging data. The experiments described in 5.4.1 show the feasibility of direct estimation

of the rigid motion parameters for complex objects and with a higher number of time frames. Paragraph

5.4.2 discusses the extension to non-rigid deformations. While the update formulae (5.120), (5.122) and

(5.123) are unchanged in the non-rigid case, the calculation of the derivatives of the motion parameters

becomes computationally expensive, involving one projection for each deformation parameter.

In the experiments reported in 5.4.2 it was assumed that no information was available beforehand

about the motion parameters, assigning the uninformative uniform distribution to each of the motion

parameters. If motion parameters are measured by an external motion detection device, the prior prob-

ability distribution p(γ) may express the acquired knowledge. In this paragraph we will consider the

case in which the prior probability distribution over the motion parameters is a delta function, that is

with an ideal motion detection device. The graphical model is then simply equal to the graph described
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Figure 5.16: 4-D reconstruction with known deformations: the motion parameters γ are assumed to be

known exactly. The only unknown is the activity λ.

in the previous paragraph, with shaded nodes for the motion parameters (Fig. 5.16). The gradient of

the probability distribution of λ is expressed by (5.38) and the EM update formula for the activity is

expressed by (5.120). While the estimation of the motion parameters from the emission data presents

the computational challenge associated with the calculation of the derivatives of the motion parameters,

the estimation of the activity with known deformation parameters does not present a tremendous com-

putational challenge. Let us rewrite the 4-D MLEM formula according to the expression of the gradient

(5.54):

λ(n+1)
v = λ(n)

v

1∑Nt
t=1 τ

T
γ[t]PT1

Nt∑
t=1

τTγ[t]P
T q[t]

Pτγ[t]λ
(5.127)

The normalisation
∑Nt
t=1 τ

T
γ[t]P

T1 can be pre-computed; then each MLEM update involves the following

steps:

1. Transform the estimate of the activity according to the Nt sets of deformation parameters τγ[t] ;

2. Project the Nt transformed activity images;

3. Divide (point-wise) each sinogram by the projection of the transformed activity;

4. Back-project each of the Nt detector space functions from step (3);

5. Transform each back-projection according to the inverse of the transformation used in (1);

6. Sum the Nt inverse transformed back-projections;

7. Multiply the provisional estimate of the activity by the volume obtained in step (5) and divide by

the normalisation.

The full MLEM update may be replaced by the OSEM update reported in (5.124).

5.5.1 Non-rigid motion

The NiftyRec software (http://niftyrec.scienceontheweb.net/), developed along with

this thesis and described in Chapter 10, was designed to enable 4-D reconstruction. The image support

can be warped according to deformation parameters. The locations of the voxels Xv are parametrised

by means of a b-spline model, which expresses locations of the voxels as a function of the location of
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the control points of the splines. The control points, displaced on a 3-dimensional lattice, provide a low

dimensional parametrisation of the spatial deformations, the position of each node controlling locally

the location of several voxels Xv .

In the experiments that follow, synthetic deformations were generated according to a sinusoidal

pattern emulating breathing motion. The breathing ferquency was considered to be of 5 breaths per

minute and was sampled 10 times per cycle. A synthetic static phantom of the radio-activity, made of 8

hot spheres of varying radius in uniform background, was deformed according to such pattern of motion,

obtaining a sequence of 50 images. Two experiments were performed. In the first experiment, the static

phantom was imaged for 5min, with an expected rate of detection of 10×106 photons pairs per minute,

for a total of approximately 50 × 106 counts. In the second experiment 25 repetitions of the breathing

cycle (5 per minute for 5 min) were simulated, obtaining 250 sinograms, each of duration 1.2 sec and

with 0.2× 106 average detected events.

Fig. 5.17 reports viewgrams, from 5 different directions, of the static measurement; Fig. 5.18

reports the noiseless viewgrams for the dynamic experiment and Fig. 5.19 reports the noisy viewgrams

for the dynamic experiment. It appears, from the images of the viewgrams, that while in absence of

motion one can make sense of the measurement, the single frame does not have enough information to

obtain a tomographic image (Fig. 5.19).

   A                                 B                                  C                                 D                                 E      

Figure 5.17: Non-rigid motion - motion-free viewgrams. The viewgrams are displayed from 5 different

directions. The acquisition parameters emulate a 5 min PET scan, with a total of 50× 106 counts. With

such level of noise, one may recognise the structure of the underlying image.

   A                                 B                                  C                                 D                                 E      

Figure 5.18: Non-rigid motion - ideal viewgrams. The noiseless viewgrams, displayed from different

directions, are obtained by projecting the activity from 5 of the 10 samples of the breathing cycle (odd-

indexed time frames). Fig. 5.19 displays the corresponding photon counts.
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   A                                 B                                  C                                 D                                 E      

Figure 5.19: Non-rigid motion - noisy viewgrams. The viewgrams represent the photon counts observed

(from different directions), during different time frames. (A) time frame 1; (B) time frame 3; (C) time

frame 5; (D) time frame 7; (E) time frame 9. The structure of the underlying object is unrecognizable.

Frame-by-frame reconstructions are reported in Fig. 5.22.

Four reconstructions were performed:

• Reconstruction of the static measurement, OSEM (Fig. 5.20);

• Reconstruction of the motion-corrupted measurement, OSEM (Fig. 5.21);

• Frame-by-frame reconstruction, OSEM (Fig. 5.22);

• 4-D reconstruction, 4-D OSEM (Fig. 5.23);

   A                                 B                                  C                                 D                                 E      

Figure 5.20: Non-rigid motion - (deformed) motion-free reconstruction. The motion-free reconstruction

was warped according to the deformations parameters. (A,B,C,D,E) display the reconstruction deformed

according to time frames 1,3,5,7,9. This visualisation serves to visualise the deformation parameters and

as ground truth for visual evaluation of the 4-D MLEM reconstruction (Fig. 5.23).

Figure 5.21: Non-rigid motion - motion-corrupted static reconstruction. This image is obtained recon-

structing a single static image for the 5 min scan, while the activity deforms due to breathing.
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   A                                 B                                  C                                 D                                 E      

Figure 5.22: Non-rigid motion - frame-by-frame reconstruction. (A,B,C,D,E) correspond to time frames

1,3,5,7,9.

   A                                 B                                  C                                 D                                 E      

Figure 5.23: Non-rigid motion - 4-D reconstruction. (A,B,C,D,E) correspond to time frames 1,3,5,7,9.

All reconstructions were obtained with 160 iterations of OSEM with subsets of size 1/16-th of the

total number of detector bins. The 4-D reconstruction was obtained with 160 iterations of OSEM with

subsets of size 1/16-th of the total number of detectors from each time bin and selecting 1/16-th of

the time bins at each iteration (spatial and temporal OSEM - see paragraph 3.1.3) Fig. 5.24 displays a

close up of the reconstructions obtained with the four methods for visual comparison (central slice of the

imaging volume). The 4-D reconstruction presents small artifacts due to the approximation involved in

the inversion of the spatial transformations (the b-spline model is non-invertible).

Computational complexity
The imaging volume was 192×192×192 voxels and the detector bins 192×192×180. With 16 spatial

subsets and 16 temporal subsets, each step of 4-D MLEM required 250
16×16 ≈ 1 full projections and back-

projections. The deformations were parametrised with a grid of 20× 20× 20 nodes. The reconstruction,

terminated after 160 iterations, require in total 4.3 min on a CPU Xeon E5430@2.66GHz quad-core

with GPU NVidia GTX285. In case of repetitive motion, multiple measurements relative to nearby

locations in the motion cycle may be binned as one in order to reduce the computational complexity.

5.6 III Anatomically-constrained 4-D reconstruction
When all the variables of the joint model of Fig. 5.2 are considered at once, the joint optimisation can

be addressed with the ICM algorithm, with the following subsets:

• S1 : λ

• S2 : θ = {θy, θλ}
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A B

C                                                       D

Figure 5.24: Non-rigid motion - comparison. (A) frame-by-frame reconstruction, frame 9; (B) motion-

corrupted static reconstruction; (C) motion-free reconstruction deformed according to the parameters

relative to frame 9; (D) 4-D reconstruction deformed according to the parameters relative to frame 9.

• S3 : γ = {γ1, γ2, . . . , γNt}

and, in case of rigid motion, the motion parameters γ can be conveniently further separated, into trans-

lation and rotation parameters, as discussed in 5.4. Denoting with S0 observed variables (MRI images,

photon counts, known model parameters) ICM then consists in alternating three optimisations:

• λ(n+1) = argmaxλ log p(λ|q,y, γ, θ, π)

• γ(n+1) = argmaxγ log p(γ|q,y,λ, θ, π)

• θ(n+1) = argmaxθ log p(θ|λ, q,y, γ, π)
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The gradients of the three cost functions have been derived in 5.3. While, once again, each max-

imisation (as well as the joint maximisation, without recurring to ICM) could be performed by gradient

ascent, it is preferred to use EM type algorithms.

The maximisation 1. with respect to λ has been partly discussed in 5.4, which reports the MLEM

update formula for λ, given the motion parameters γ. However the derivation of the MLEM update

formula in 5.4 did not account for the hidden variables Z, which relate, through the parameters θ, the

activity λ to the MRI images y. Considering the posterior distribution of λ for the full joint model (5.35),

one can verify that there is no longer a closed form expression for the M-step of the EM algorithm for

the maximisation with respect to λ. Proceeding like in 4.3, let us adopt the OSL algorithm:

λ(n+1)
v = λ(n)

v

1∑
t∈T (n)

∑
d∈D(n) a

γ[t]

rd −
∂
∂λv
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∑
t∈T (n)

∑
d∈D(n)

aγ
[t]

rd

q
[t]
d∑Nv

v=1 a
γ[t]

vd λv
(5.128)

with
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and
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The maximisation 2. with respect to the motion parameters has been partly discussed in 5.4, where

it has been addressed using a quasi-Newton optimisation algorithm. Having discarded the hidden dis-

crete labels, in 5.4, the gradient of the log posterior distribution of the motion parameters, expressed by

(5.122), was a function of the activity and of the photon counts only. The gradient of the log posterior

distribution of the motion parameters for the full joint model has been derived in 5.3.2 and comprises an

emission term and a finite mixture term. Let us repeat it here, to specify the algorithm in full:



144 Chapter 5. Unified 4-D computed tomography

∂
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and
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The maximisation 3. with respect to the parameters θ when the activity λ and the motion parameters

γ are given, corresponds again to the estimation of the parameters of a multi-variate Gaussian mixture

with given observations. The problem is analogous to 4.3, where the dimensionality of the mixture

model was 2. Here the dimensionality of the mixture model is Nt + 1. The EM update formulae have

the following expressions:
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5.6.1 Event-driven 4-D PET-MR

In the context of PET-MR we propose an event-driven motion compensation algorithm based on the

acquisition of an MRI image each time large motion is detected by a tracking system or by an MRI

navigator, or at regular intervals throughout the PET acquisition process. The 4-D joint generative model

allows us to estimate motion parameters from the MRI image and from the photon counts, obtaining a

time consistent estimate of activity that accounts for its relation with the underlying anatomy, imaged by

MRI.

Noisy simulation data modelling 3-D patient head movements were constructed by projecting at

various orientations a brain phantom based on the BrainWeb database [86] and by warping the cor-

responding MRI image. Rigid motion was simulated by randomly generating rotation and translation

along the three axes, according to amplitudes and frequency that resemble typical measurements of head

movement within a scanner for Emission Tomography [76] (Fig. 5.25). The MRI and functional imaging

processes were decoupled by running independent simulations based on the ground truth normal brain

tissue model from Brain-Web.

Figure 5.25: Simulated random rigid motion parameters. Rotation in degrees (left) and translation im

mm (right) along the three axes.

The MRI image was generated with the BrainWeb simulator, which realistically accounts for noise

of the imaging system. The parameters of the simulator were set for T1-weighted imaging with noise

standard deviation set at 3% of the brightest tissue and perfect uniformity of the magnetic field (in accor-

dance with the simplistic GM model). Activity of 18F-FDG was simulated by associating typical activity

levels to different tissue types, proportionally to partial voxel occupation. Specifically the activity in grey

matter was set to a value 4 times higher than in all other tissues. The total number of counts was set to

32×106. A 1.9×106 LOR PET imaging system was simulated by means of the NiftyRec rotation-based

projector with realistic position dependent point source response and uniform attenuation within the area

of the head. The effect of scatter and randoms was disregarded, at this stage, by simulating only the non-

scattered photon pairs. The detectors were assumed to present uniform sensitivity. Note that scatter and

randoms, as discussed in more depth in Chapter 8, when not accounted for in the reconstruction, degrade

the quality of the reconstructed images; the degrading effect is reduced by accounting, in the imaging

model, for scattered photons and random detections. In the experiments that follow, the effect of scatter

and randoms was disregarded by simulating PET acquisitions free from scattered photons and randoms,

isolating the problem of the estimation of the motion parameters. Further evaluations of the algorithms

including scatter and randoms in the PET simulations and in the reconstruction process will be consid-
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GM ROC WM ROC

Figure 5.26: Left: Expectation of the hidden discrete labels at convergence. Right: coefficient-of-

recovery (COR) and signal-to-noise ratio (SNR) in the gray matter (GM) and white matter (WM) regions

for the 5 methods employed to reconstruct the activity. The reconstructed images are reported in Fig.

5.27

.

ered in the future. Randoms and scatter are expected to have similar effects on the estimate of the activity

as in the case of non motion-aware reconstruction (i.e. higher background uptake in the reconstructed

image if scatter is not accounted for in the projector and back-projector utilised for the reconstruction)

and to have little or no effect on the estimates of the motion parameters, due to their low number of

degrees of freedom. The MRI and activity images were defined on a cubic grid of (128 × 128 × 128)

voxels. The number of tissue types was assumed to be Nk = 4; µy,k were initialised to evenly spaced

values in the range of intensity of the MRI image; σy were initialised to 1/Nk of the image intensity

range; µλ,k were initialised to 1 and σλ,k to 1/Nk of the maximum activity assigned to the phantom.

The transformations, the parameters of the Gaussian mixture and the activity were updated repeating 100

iterations of (5.128)-(5.137). Results of the reconstruction are reported in Fig. 5.27. Fig. 5.27 reports

the coefficient-of-recovery (ROC) and the signal-to-noise ratio (SNR), defined in Chapter 4 - equations

(4.72) and (4.73). The activity estimate produced by applying the joint generative model presents higher

COR both in grey matter and white matter when compared to standard MLEM reconstruction of the

motion-corrupted data (Fig. 5.26-right). Even when compared to motion-free MLEM reconstruction,

the activity obtained with the generative model presents slightly higher COR and SNR, due to the MRI

images improving the activity estimate.
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Figure 5.27: From top to bottom: (1) MRI image frame at time t = 0; (2) activity phantom; (3) MLEM

reconstruction of single frame (t = 0); (4) MLEM reconstruction of motion-free simulation; (5) MLEM

reconstruction with no motion compensation; (6) reconstruction of single frame using joint generative

model; (7) joint estimation of motion and activity. The method estimates correctly the rigid motion

parameters, and reduces noise.
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5.7 IV A plausible model for longitudinal registration
Finally, disregarding the emission data, the model of Fig. 5.1 entails a model for the registration of

sequences of images, represented by the DAG in Fig. 5.28. Alternating the optimisation of the motion

parameters and of the parameters of the mixture model, we get:

∂

∂γ
[t]
r

log p(γ|y, θ, π) =

Nv∑
v=1

 ∂

∂γ
[t]
r

y[t]
(
T γ

[t]

Xv

) Nk∑
k=1

ιvk
µy,k − y[t]

(
T γ

[t]

Xv

)
σ2
y,k

 (5.138)
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] 1
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(5.140)

Such model extends longitudinally the model described in the Unified Segmentation framework

[5]. The main difference is that in the Unified Segmentation framework the location of the population

with respect to the acquired image was considered an unknown parameter. Here the parametrisation

is inverted, considering the location γ[t] of each frame with respect to a population of aligned images

unknown. The inverted parametrisation trivially makes it possible to consider multiple time frames. The

model addresses the problem of plausibility of the alignment model. The images are not just considered

to be similar. They are considered to be generated by the same underlying object (a brain, the same brain).

The anatomical states (i.e. the brain) determine the observation at time [t]. The deformation parameters

also determine the observation at time [t]. The hidden states, defined in a reference space (the reference

space is arbitrary if π is uniform and defined by a population of images otherwise), deformed by the

transformation at time [t], determine the observation at time [t]. Such model is plausible especially if

Figure 5.28: DAG of the model for longitudinal joint registration based on the finite mixture model. The

MR image y[t] at time [t] is cased by the deformation parameters γ[t], by the parameters of the imaging

system at time [t] and by the hidden anatomical states in the reference space Z. π is a statistical atlas.
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one is ultimately interested in the hidden labels. Plausibility of the registration, in fact, depends on the

use that one intends to make of the alignment. If one is interested in the hidden labels, these should be

expressed in the transformation model.

Fig. 5.29 and Fig. 5.30 display the registration of two pairs of spherical phantoms. The incommen-

surate spheres (Fig. 5.30) cannot be aligned with the sum of squared differences cost function. Fig. 5.31

displays the registration of the 10 images used in the experiments of paragraph 5.6. The model can be

extended to perform non-rigid registration.

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

Figure 5.29: Rigid registration of simple phantoms with the mixture model of Fig. 5.28. Two spheres in

uniform background with commensurate intensities (both spheres have higher intensity than the back-

ground). Top: misaligned images. Bottom: images registered with the finite mixture model. The plots

report the smoothed joint histogram of the intensity of the two images before and after the registra-

tion. Note that this registration can easily be performed with the sum of squared differences (SSD) cost

function.
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Figure 5.30: Rigid registration of simple phantoms with the mixture model of Fig. 5.28. Two spheres in

uniform background with incommensurate intensities (high intensity sphere in low intensity background

and low intensity sphere in high intensity background). Top: misaligned images. Bottom: images

registered with the finite mixture model. The plots report the smoothed joint histogram of the intensity

of the two images before and after the registration. Note that this registration cannot be obtained with

the SSD cost function.

Figure 5.31: MR image randomly translated and rotated 10 times. Image A displays the overlay of

the 10 randomly translated and rotated images. The rotations and translations are then recovered with

the algorithm (5.138)-(5.140). Images B,C,D display the 10 overlayed images at iteration 1,5 and 30

respectively. The MR images are the same used for the experiments in paragraph 5.6.
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Chapter 6

Semi-parametric learning

The model described in Chapter 4 assumes the existence of finite states of tissue and parametric distribu-

tions for the MR image intensity and for the concentration of pharmaceutical within each state. The first

assumption that the MR image intensity is normally distributed for a given type of tissue is supported

by the Gaussian approximation of Rician noise for high SNR and by the histogram of the intensity of

T1-weighted and T2-weighted MR images, presenting bell-shaped peaks (see Fig. 6.4). The second

assumption, that for each type of tissue the activity is distributed according again to a parametric dis-

tribution (a Gaussian function), is arbitrary. While the first assumption that there exist finite states, and

that within each state the intensity of the MR image is normally distributed, is to some extent veryfiable,

even from a single acquisition, the second assumption is difficult to verify.

As clarified in more depth in the following, one may describe the model of Chapter 4 in the context

of density estimation, regarding the choice of the bivariate Gaussian mixture as the choice of a specific

hypothesis space for the density that characterises the bivariate process that generates the MR image

intensity and the spatial concentration of pharmaceutical. The expression hypothesis space is used here

to denote the family of functions that is employed to represent the joint probability distribution of the

variables, i.e. the space of the hypotheses of the joint probability distribution. In Chapter 4, the activ-

ity in a voxel and the MRI image intensity in the same voxel were considered realisations of a Gaussian

mixture of unknown parameters. The choice of hypothesis space described in Chapter 4 may be regarded

as parametric as we were searching for the parameters of a parametric function, the bivariate Gaussian

mixture, that justify at best the observations (under the MAP criterion). We may have adopted a dif-

ferent choice of parametric functions, or, as discussed in this chapter, avoided the parametric approach

altogether.

The main question addressed in this chapter is how to introduce hypothesis spaces with functional

forms other than the particular choice of Chapter 4 (i.e. parametric, Gaussian). Fig. 6.1 and Fig. 6.2

report the graphical models and examples of joint probability distributions for the parametric, semi-

parametric and non-parametric approaches. Formulating the generative model in the Information Theo-

retic framework, under the Principle of Maximum Uncertainty, enables the formulation of the assumption
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Figure 6.1: Examples of parametric, semi-parametric and non-parametric probability density functions.

Left: probability density function of a parametric model (bivariate Gaussian mixture with two mix-

ture components). Note that the marginal probability densities of X (blue) and Y (red) are univariate

Gaussian mixtures. Centre: probability density function of a semi-parametric mixture model with two

mixture components. Note that the marginal probability density of variable X (blue) is a univariate

Gaussian mixture, while the marginal probability density of variable Y (red) is not a mixture of Gaus-

sians. Right: non-parametric model: the joint density is the sum of smooth kernel functions. Note that

the marginals of this joint density are not the sum of two Gaussians as they present asymmetric tails.

that the bivariate density function is the finite sum of kernel functions. Such formulation corresponds to

the method of Joint Entropy described in [63] and in [87].

Formulating the parametric and non-parametric models in the same framework suggests a semi-

parametric formulation, described in this chapter. Before diving into the semi-parametric formulation,

the next paragraph contextualises the parametric vs. non-parametric approaches in the field of medical

image registration (closely related to tomographic reconstruction), pointing out that the common use of

the expression Joint Entropy to refer to a certain class of image registration methods can be misleading.

6.1 Two approaches to medical image registration
Joint Entropy (JE) and Mutual Information (MI) were introduced in the context of image registration

in 1995 [88] and subsequently applied to the registration of medical images [89][90]. Recent publica-

tions have described the application of JE and MI as similarity measures for multi-modal tomographic

reconstruction [63, 87].

In the same years (1999), finite mixture models were applied to the classification of brain tissue

[70]. In 2005 the Unified Segmentation framework [5] extended the application of Gaussian mixtures

to medical imaging applications, applying them to the problem of alingning non-rigidly an image of the

brain to a population of similar images.

The model described in [5], which inspired the models described in chapter 4 and chapter 5 of this
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NON-PARAMETRIC SEMI-PARAMETRIC PARAMETRIC

Figure 6.2: Probabilistic Graphical Models (PGM) representing the assumptions of conditional indepen-

dence underlying the non-parametric method (left) - often referred to as Joint Entropy, the parametric

method (right) described in Chapter 4, and the semi-parametric method (centre) described in this Chap-

ter. Known (observed) variables are shaded. In the non-parametric model, the activity and the MRI

image intensity are considered to be samples of a smooth non-parametric function. In the parametric

model, the activity and the MRI image intensity are considered samples of a parametric function (a bi-

variate Gaussian mixture) - each voxels has a different mix of probabilities to be drawn from each of the

mixture components, expressed by π; the mixture model corresponds to the assumption that there exist

hidden discrete variables and that the probability distribution associated to the MRI image intensity yv

and to the activity λv are Gaussian (i.e. a parametric function) given the value of the hidden state. In

the semi-parametric model, the probability distribution associated to yv given the hidden state is Gaus-

sian, however the probability distribution associated to the activity, given the hidden state is a smooth

non-parametric function.

thesis, assumes that there exist a finite number of hidden types of tissue and that the intensity of a voxel

of the MR image is the realisation of a Gaussian random process if the hidden state is known. The prior

probability of the hidden states in each voxel is obtained from a population of images inter-aligned in

a reference space. The algorithm finds the parameters of the Gaussians and the alignment of the image

with the reference space such that the probability to observe the image is maximum.

Gaussian Mixtures have gained popularity in applications oriented towards the classification of

regions, especially for the analysis of brain images, while the JE and MI similarity metrics have gained

popularity in multi-modal registration and atlas-free applications.

JE and MI, in the context of image registration and reconstruction are often regarded as measures of

similarity between two or eventually multiple images. Joint Entropy and Mutual Information, however,

are metonymies: the methods are named after the inference criterion, rather than by the model, causing

the same confusion that would be raised by naming MAP the registration algorithm based on the Gaussian

mixture model. The difference between the method denominated, in the context of image registration

(and also in the context of tomographic reconstruction) as Joint Entropy and the method based on the

mixture of Gaussians stands the choice of the hypothesis space of the joint density, which, in the first case

is non-parametric and parametric in the second case. These concepts will be more clear after defining
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the parametric and non-parametric approaches in the next paragraph.

6.2 The semi-parametric model

6.2.1 Model of the emission imaging system

The model of the emission imaging system, described in detail in chapter 2.3, is expressed by the fol-

lowing conditional probability distribution of the photon counts q given the rate of emission of gamma

radiation λ, proportional to the spatial concentration of radio-pharmaceutical:

p(q|λ) =

Nd∏
d=1

P
(
qd;
∑Nv
v=1 avdλv

)
(6.1)

As described in chapter 2.3, the system matrix avd encompasses the characteristics of the imaging sys-

tem (location, size, sensitivity, spatial resolution of the Gamma detectors, eventual collimators) and the

attenuation of Gamma radiation through the patient. We are interested in the MAP estimate:

λ̂ = argmax
λ

log p(λ|q) + log p(λ) (6.2)

Where the probability distribution p(λ) represents the belief of the observer about λ prior to the obser-

vation of the photon counts.

6.2.2 Prior probability distribution

The Principle of Maximum Entropy, formulated by E.T. Jaynes in 1963 [9], expresses a general criterion

for the choice of the prior probability distribution. The Principle of Maximum Entropy is based on

the observation that probability is a measure of the state of knowledge of the observer and therefore

subjective. It states that a prior probability distribution should express maximum uncertainty. As derived

in Appendix 6.A, the Gibbs measure is the unique measure that maximizes the uncertainty for a given

expected entropy (i.e. amount of information expressed by the prior):

p(λ) =
e−βEλ∫
e−βEλdλ

=
1

Z
e−βEλ (6.3)

where the Entropy Eλ associated with state λ is a measure of the information contained in the state λ

(Appendix 6.A).

Assuming that the observer has no knowledge of structural properties of the random field λ, the

amount of information necessary to reveal the state of λ depends solely on the recurrence of symbols

in vector λ, where the image intensity at each voxel represents a symbol in the voxel-based approach;

in other words, if the observer has no knowledge of the structure, the disclosure of λ is equivalent to

the disclosure of independent symbols λv (see Shannon [91]). If symbols were discrete, the amount

of information Eλ necessary to communicate a state λ could be calculated exactly by the histogram

of the recurrence of the symbols, whereas in the continuous domain of the pharmaceutical density, the

information necessary to reveal the state of λ is expressed by the Differential Entropy [91]:

Eλ = −Nv
∫
pλ(λ) ln pλ(λ)dλ (6.4)
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where pλ(λ) is the probability distribution of the symbols of vector λ. Eλ can be calculated for a given

pharmaceutical uptake λ, and given an algorithm for the estimation of the probability distribution of the

symbols pλ(λ). Equation (6.3) then expresses the prior probability to observe that specific pharmaceu-

tical uptake. The prior probability in (6.3) cannot be computed for every value of λ, nor on a regular

grid in the space of λ because of the size of the space of λ, but we can walk along its gradient if (6.4) is

differentiable.

Considering now an intra-subject image y = (y1, . . . , yv, . . . , yNv ), such as a magnetic resonance

(MR) image, the amount of information necessary to communicate λ when y is observed equals the

information that is left in λ when y is disclosed, expressed by the Conditional Entropy:

Eλ|y = Ey,λ − Ey (6.5)

(which equals Eλ if λ and y are independent, in which case y is not informative of λ). The prior

probability distribution of λ when y is observed, applying again the Principle of Maximum Entropy, has

the following expression:

p(λ) =
1

Z
e−βEλ|y (6.6)

In order to apply a gradient-type optimisation algorithm for the maximisation of (6.2), we are inter-

ested in the gradient of the log prior with respect to λv , which can be expressed from (6.5) and (6.6)

equivalently in terms of the Conditional Entropy or of the Joint Entropy: ∂ log p(λ)
∂λv

= −β ∂
∂λv

Eλ|y =

−β ∂
∂λv

Ey,λ. We will use the second expression.

The first assumption that underlies our semi-parametric model (and the non-parametric model in

[92, 19, 93]) is that knowledge of the MR image intensity in one voxel v gives information about the

activity in the same voxel, however when the MR intensity in the voxel v is known, knowledge of the

neighbouring MR voxels does not add information about activity in v. This assumption corresponds

to the factorisation of the joint probability distribution pλ(λ, y) represented by the Directed Acyclical

Graph (DAG) in figure 6.3-left. Under this assumption, the amount of information necessary to commu-

nicate y and λ depends on the recurrence of symbols (λ, y):

Ey,λ = −
∫
pλ(λ, y) log pλ(λ, y) dydλ (6.7)

If the joint probability distribution of the symbols pλ(λ, y) is estimated with a non-parametric method,

one obtains the classical non-parametric Joint Entropy based regularisation reported in Appendix 6.B

and in [92, 65, 63].

6.2.3 Semi-parametric model

The histogram of T1-weighted and T2-weighted MR images (figure 6.4 reports the histogram for one

of the T1-weighted images from the DaTSCAN study in section 6.4) suggests that the image intensity

across different voxels is generated by a finite number of noisy processes. The probability distribution

of image intensity can be described as the sum of simple parametric functions, obtaining a finite mixture
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Figure 6.3: Probabilistic Graphical Models (PGM) representing the assumptions of conditional indepen-

dence underlying the non-parametric JE prior (left) and the proposed semi-parametric Joint Entropy prior

SP-JE (right). Known (observed) variables are shaded. In the graph on the right the activity in a voxel λv

and the MR image intensity yv are independent conditionally to the hidden state zv . θ are the parameters

that describe the MR imaging process and π is a multinomial latent prior probability associated to the

hidden state. Activity determines photon counts qd in detector bins d.

model. Estimation of the model parameters of the finite mixture can be treated in terms of Maximum

Likelihood Estimation (MLE), however the MLE problem for the mixture does not have a closed form

solution, which makes the calculation of the model parameters notoriously difficult. This computational

issue has been largely resolved with the development of the Expectation Maximisation (EM) algorithm

[12].

Multi-variate mixture models have also been adopted to regularise the reconstruction of Emission

Tomographic images [69, 94]. Such parametric multi-modal imaging models assume that there exist

clusters in the joint probability distribution of pharmaceutical density and MR image intensity, each

cluster corresponding, under the hidden variable interpretation, to one of the allowed (now anatomical-

functional) finite states. Fully parametric mixture models, in other words, may be considered joint mod-

els of the pharmaceutical uptake in tissue and of the MR acquisition, which assume that for a given type

of tissue the pharmaceutical uptake is uncertain and distributed according to some parametric function.

Tissue type is not certain either, but is related to the MR acquisition through a parametric probabilistic

model. The parameters of such models are estimated along with the activity, providing activity esti-

mates that are consistent with the hypothesised model. The choice of a particular functional form for

the mixture components should reflect the characteristics of the data; for the purpose of T1-weighted

and T2-weighted MR tissue classification, Gaussian or Gamma functions are commonly adopted due

to the bell shaped peaks in the image histograms. Bivariate Gaussian and Gamma mixtures have been

employed in [69, 94].

Here we adopt the hidden variable interpretation of mixture models in order to develop a semi-

parametric model with more loose assumptions about the pharmaceutical uptake in tissue.

Fully parametric mixture models can be described in the framework of Maximum Entropy, obtain-

ing optimisation algorithms by maximising the MAP (6.2) with respect to the activity and the parameters

of the parametric distribution pλ(λ, y) in (6.7). However, while there are simpler routes to develop op-

timisation algorithms for the fully parametric models [69, 94], Maximum Entropy seems the natural
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choice for non-parametric (Appendix 6.B) and semi-parametric models.

Let zv be the hidden discrete state in voxel v and fk(·) be the mixture component that describes

the joint probability of (λ, y) if the hidden state is zvk == 1; the joint probability of (λ, y) is a finite

mixture of the form:

pλ(λ, y) =

Nk∑
k=1

πkfk(λ, y) (6.8)

where πk is the mixing coefficient or multinomial prior probability of the latent label. Note that, for

the sake of simplicity, πk is considered here equal for each voxel (i.e. not a function of v). In order to

estimate the joint probability of (λ, y), if all the mixture components fk are assumed to come from a

particular parametric family of densities such as the Gaussian, then standard mixture model techniques

such as EM may be employed [12]. However we wish to avoid the parametric assumption for the mixture

component that models the activity distribution for a given anatomical state pλ(y|zv). While for the MR

image the histogram (see figure 6.4) justifies the assumption that there exist finite anatomical states

and that the MR image intensity for a given state has a Gaussian probability distribution, we are not

so confident about the probability distribution that describes the pharmaceutical density within each

anatomical state.

A common restriction placed on fk, which we adopt here as the third assumption, is that the mixture

component fk is equal to the product of its marginal densities. This means, under the hidden variable

interpretation of the mixture model, that if the hidden state zv in voxel v were known, the probability

distribution of yv would not be affected by knowledge of λv . This condition, expressed by the Directed

Acyclical Graph (DAG) of the model in figure 6.3-right, corresponds to the assumption that the hidden

state is the unique cause of interdependence of the imaging modalities [8]:

pλ(λ, y) =

Nk∑
k=1

πkpλ(λ|zv)pλ(y|zv) (6.9)

Factorisation of fk is justified by the following arguments: 1) in fully parametric models, the use of

a factorised multi-modal Gaussian Mixture has been shown to yield results virtually identical to the

non-factorised multivariate Gaussian Mixture when the model is applied to the segmentation of regions

of tissue with multi-spectral MR images [73]; 2) though some special cases have been treated (see

[95]), a general algorithm that deals with multivariate non-parametric mixture components has not been

developed, to the best of our knowledge; 3) restrictions on fk generally improve the identifiability of the

parameters, as discussed in [95].

An algorithm for density estimation with mixture models that factor according to (6.9) has been

presented by Benaglia et al. [95] for the semi-parametric case where one or more of the factors are

non-parametric functions. Semi-parametric density estimation is interpreted as a parametric problem

with parameters ϕ = (θ, g), where here θ = (µk, σk), with k = 1, 2, . . . , Nk, are the parameters of the

Gaussian mixtures for the MR image and g is the distribution that represents the mixture component for

the functional image and is drawn from a set of smooth functions. Representing g as the sum of kernel
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functions Φ of bandwidth σλ, the algorithm for the estimation of the parameters ϕ proposed in [95]

consists in the following steps that are reminiscent of the EM algorithm for purely parametric mixture

models. N denotes the Gaussian distribution. For each t = 0 . . . T :

E-step

l
[t+1]
vk =

π
[t]
k p̃

[t]
λ (λv|zv)N

(
yv;µ

[t]
k , σ

[t]
k

)
∑Nk
k=1 π

[t]
k p̃

[t]
λ (λv|zv)N

(
yv;µ

[t]
k , σ

[t]
k

) (6.10)

M-step parametric

π
[t+1]
k =

1

Nv

Nv∑
v=1

l
[t+1]
vk (6.11)

µ
[t+1]
k =

∑Nv
v=1 l

[t+1]
vk yv∑Nv

v=1 l
[t+1]
vk

(6.12)

σ
2 [t+1]
k =

∑Nv
v=1 l

[t+1]
vk

(
yv − µ[t+1]

k

)2

∑Nv
v=1 l

[t+1]
vk

(6.13)

p̃
[t+1]
λ (y|zv) = N

(
y;µ

[t+1]
k , σ

[t+1]
k

)
(6.14)

M-step non-parametric

p̃
[t+1]
λ (λ|zv) =

1

Nv

Nv∑
v=1

l
[t+1]
vk Φ

(
λ− λv
σ2
λ

)
(6.15)

l
[t+1]
vk is the expectation of the membership of voxel pair (λv, yv) to each of the Nk classes.

The estimate of the joint probability of (yv, λv) at step t is the marginal over zv of the estimate of

the joint probability of (yv, λv, zv):

p̃
[t+1]
λ (λ, y) =

1

Nv

Nk∑
k=1

[
π

[t+1]
k p̃

[t+1]
λ (λ|zv)N

(
y;µ

[t+1]
k , σ

[t+1]
k

)]
(6.16)

Which is differentiable with respect to λv if Φ is a differentiable kernel, such as the Gaussian kernel:

∂p̃
[t+1]
λ (λ, y)

∂λv
=

1

Nv

Nk∑
k=1

[
l
[t+1]
vk Φ′

(
λ− λv
σ2
λ

)
N
(
y;µ

[t+1]
k , σ

[t+1]
k

)]
(6.17)

Approximating the integral in (6.7) with the sum of rectangular parallelepipeds of base (∆λ,∆y), the

gradient of the log prior has the following expression:

∂ log p(λ)

∂λv
=

∂

∂λv
Eλ,y '

−∆λ∆y

M∑
i,j

(
1 + log p̃

[t+1]
λ (yi, λj)

) ∂p̃[t+1]
λ (yi, λj)

∂λv
(6.18)
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Figure 6.4: Histogram of T1-weighted image intensity and Gaussian Mixture estimate of its probability

distribution function. The peaks of the histogram correspond to the finite states of the mixture model.

In this example the number of classes is set to Nk = 7 in order to capture the 4 peaks and the 3 partial

volume classes.

6.2.4 Optimisation

In order to obtain a point estimate of λ that maximises its log posterior probability distribution (6.2),

we use the Expectation Maximisation One Step Late (EM-OSL) gradient-type optimisation algorithm

proposed by Green [30]. The Expectation Maximisation algorithm for the maximisation of the Poisson

likelihood was derived by Shepp and Vardi [17] by formulating the problem in terms of hidden labels (a

variable indicating from which voxel a photon is emitted), obtaining an update formula by maximising

the expectation of the complete data log likelihood with respect to the posterior distribution of the hidden

labels [17]. The M-step does not have a closed form solution when a generic prior probability for the

activity is taken into account, however the EM update can still be calculated considering the gradient

of the prior at the previous iteration [30] (one step late). The EM algorithm (and EM-OSL) have the

advantage, over other gradient-type algorithms, of getting rid of the step-size parameter, thanks to the

optimisation scheme being tailored specifically for the optimisation of the Poisson likelihood. EM-OSL

is not guaranteed to converge, but it is stable in practice as long as the gradient of the prior is small,

which is true if the data evidence (photon counts) is given more importance than the prior (by controlling

the parameter β).

λ̂[n+1]
v = λ̂[n]

v

1
Nd∑
d=1

avd + β
∂

∂λv
log p(λ)

∣∣∣
λ[n]

Nd∑
d=1

avd
qd

Nv∑
v′=1

av′d λ̂
[n]
v′

(6.19)

In summary, each update of activity involves the computation of the projection, the back-projection, and

the gradient of the log prior (6.18), which involves computing the joint probability distribution of (λ, y)
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(6.16) and it’s gradient with respect to the activity estimate (6.17). (6.16) involves iterating through

(6.10)-(6.15). Efficient estimation of the joint probability distribution (6.16) and its gradient (6.17) and

their numerical integration (6.18) are described in the section 6.3-Implementation.

6.2.5 Extension to multi-spectral anatomical images

Figure 6.5: Non-parametric model (left) and the semi-parametric model (right) for multi-spectral

anatomical images (y1,y2, . . . ,yR). The proposed model is based on the assumption that a latent dis-

crete state is the unique cause of interdependence of the images. Under this assumption the complexity

of the algorithm grows polynomially with the number of images rather than exponentially (see 6.3.1).

The semi-parametric model is based on the assumption that the joint probability distribution that

describes the activity and MR image intensity in a voxel pair is a mixture distribution (6.8) and that it

factors according to (6.9). Under these assumptions, the complexity of the model grows polynomially

with the number of intra-subject images (see 6.3.1), rather than exponentially, due to independence across

images conditionally to the hidden state (figure 6.5). The model can be extended to use information from

multi-spectral MR images extending the mixture model to more dimensions. This has proven valuable

for the segmentation of tissue with multi-spectral MR images such as T1-weighted, T2-weighted and

proton-density images. [70]. Equations (6.9)-(6.4) have the following expressions for R anatomical

images:

pλ(λ, y1, y2, . . . , yR) =

Nk∑
k=1

πkpλ(λ|zv)
R∏
r=1

pλ(yr|zr) (6.20)
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6.3 Numerical implementation

6.3.1 Efficient computation of the prior term

The evaluation of the gradient of the Differential Entropy term (6.18), (6.17), (6.16) is computationally

expensive, requiringMNv evaluations of the Gaussian kernel, which is unacceptable with 3D images due

to the order of magnitude of Nv . We adopt the approximation of the gradient described by Shwartz et al.

[96], which is significantly more efficient than the exact computation and proves sufficiently accurate.

Referring to the computation of the uni-dimensional Differential Entropy in (6.40), the gradient with

respect to λv is replaced by the gradient with respect to the nearest λn, with λn being the nodes of the

regular grid for the integration. Letting h(j) = 1+log p(λj), substituting (6.41) into (6.40), the gradient

with respect to yn is
∂Eλ
∂λn

' −∆λ

M∑
j

h(j)Φ′
(

∆λ(j − n)

σ2
λ

)
(6.30)

This is a good approximation for sufficiently high number of nodes and the complexity is greatly re-

duced for M << Nv as the evaluation of the convolution in (6.30) can be performed in O(M2) or in

O(M logM) by Fast Fourier Transform and multiplication.

Equivalently, for the gradient of the Differential Joint Entropy in (6.47):

∂Ey,λ
∂λn

' −∆y∆λ

M2∑
i,j

h(i, j)Φ

(
∆y(i− n)

σ2
y

)
Φ′
(

∆λ(j − n)

σ2
λ

)
(6.31)

which is O(2M2 logM). For the semi-parametric model, expanding (6.18) one obtains an expression

similar to (6.31), with computational complexity O(NkM logM) and O(Nk(1 + R)M (1+R) logM)

with R multi-spectral images.
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6.3.2 Sensitivity and selection of the nuisance parameters

The prior based on Joint Entropy has a number of parameters: β, which controls the importance of the

prior; the bandwidth of the Gaussian kernel for Parzen Windows estimation of the joint pdf σy and σλ

(6.47); the size of the discretization grid for the joint entropy ∆y and ∆λ (6.47). The bias/variance

curves were computed varying ∆y and ∆λ, with an arbitrary value of σy = σλ and the activity estimate

appeared to be largely independent upon ∆x and ∆y when the discretization grid for the joint pdf has

more than about 200 points in y and λ, for any value of β. A discretization grid of size 400 × 400 was

chosen. For what concerns the choice of σy and σλ, multiple reconstructions were performed again

(with the grid 400 × 400) and the quality of the reconstruction in terms of bias/variance appeared to

increase when σy and σλ decrease, and then to abruptly decrease when they are down to the order of ∆y

and ∆λ. The following values were adopted σy = 10 ∗ ∆y and σλ = 10 ∗ ∆λ . This procedure gave

insight of the effect of the parameters and allowed us to consider β as the only parameter of the algorithm.

6.4 Experiments
The proposed semiparametric algorithm was applied to the reconstruction of synthetic brain perfusion

data and to the reconstruction of clinical DaTSCAN SPECT.

6.4.1 Brain phantom experiments

Multi-modal synthetic phantom

Multiple instances of the sinogram were generated by applying Poisson noise to the ideal noise-free

(high number of simulated photons) sinogram that includes scatter and attenuation, produced by the

Monte Carlo simulator and by selecting photons in the energy window 126–154 KeV.

The reconstructions with the two regularisation methods were obtained with the NiftyRec GPU-

accelerated reconstruction software [97]. Activity was estimated from each sinogram instance by ex-

ecuting 10000 iterations of the One Step Late MAP-EM algorithm of (6.19) with each of the three

methods MLEM, JE, SP-JE. For SP-JE, the parameters of the Gaussians were initialised by repeating

(6.10)–(6.14) until convergence with the initial uniform activity estimate, then one step of (6.10)–(6.15)

was alternated with one update of the activity (6.19) throughtout the reconstruction (T = 1).

With access to multiple instances of the sinogram data, bias/variance characterization of the recon-

struction algorithms was performed. Specifically, the activity was estimated from 10240 realizations of

the sinogram.

Figure 6.8 reports the bias and variance norm at each iteration of the reconstruction algorithms for un-

constrained MLEM and with the two anatomical priors JE and SP-JE. In presence of a prior, after a

number of iterations, the curves tend to converge, while with unconstrained MLEM, the noise keeps

increasing due to dimensional instability [93]. In order to compare the bias/variance curves of the three
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Figure 6.6: Non-parametric Joint Entropy. N = 10240 instances, 10 to 10000 iterations.

algorithms, the optimal values of the hyper-parameter for each reconstruction method was found by run-

ning the reconstructions of the multiple instances of noise for varying values of the hyper-parameters,

obtaining the set of bias/variance curves in figure 6.8. The optimal value of β for each algorithm was

chosen as the value that determines convergence of the bias/variance curve to a point closer to the axis

origin (low bias and low variance).

The reconstructed images with optimum β are reported in figures 6.6 and 6.7. The reconstruction with

the semi-parametric model produces images with lower bias when compared with the conventional non-

parametric Joint Entropy method, while the noise is approximately unaffected. Consistently with the

bias/variance curves, the images of the activity reconstructed with the two algorithms (figures 6.6 and

6.7) show approximately the same level of random variations and the image obtained with the semi-

parametric model is more similar to the true activity at visual inspection. Remarkably, the images ob-

tained with SP-JE present boundaries that are more resembling of the MR image.
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Figure 6.7: Semi-parametric Joint Entropy. N = 10240 instances, 10 to 10000 iterations. The third row

(reconstruction) reports the reconstruction of a single instance of the measurement.

6.4.2 DaTSCAN SPECT experiments

Anatomical information from an intra-subject T1-weighted MR image was used to regularise the recon-

struction of DaTSCAN emission images acquired from 13 subjects involved in a study for the diagnosis

of Parkinson’s Disease.

The DaTSCAN SPECT scans were acquired on a General Electric Infinia with Low Energy High

Resolution (LEHR) collimator (spatial resolution of 7.30 mm Full Width at Half Maximum at 80 mm

from the detector surface) with 120 camera positions regularly spaced between 0o and 360o. A low-dose

computed tomography (CT) scan was acquired immediately before each SPECT study for attenuation

correction. Subjects had the structural T1-weighted MR image acquired on a 1.5T MR scanner (GE

Signa Excite).

The parameters of the three regularisation algorithms were chosen by optimising the reconstruction

in terms of bias/variance with a digital phantom representing an average subject. This was obtained by

segmenting the striatum region of the 13 subjects with Free Surfer [98] and applying uniform activity to
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Figure 6.8: Bias variance norm (for the whole image) as a function of the number of iterations (1 to

10000 iterations). See equations (3.59) and (3.60) for the definition of bias and covariance norm (the

variance is the diagonal of the covariance matrix). The curves are obtained according to (3.59) and (3.60)

integrating over 10240 instances of the measurement. Red: unconstrained MLEM; blue: smoothing prior

with varying smoothing parameter; green: parametric finite mixture model with different ICM schemes

(see Fig. ?? in chapter 4); yellow: non-parametric Joint Entropy with optimum parameters; orange:

semi-parametric Joint Entropy with optimum parameter.

the striatum and to the rest of the brain. The activity in the two regions was obtained by averaging the

activity estimate given by the MLEM reconstructions of the 13 subjects. A SPECT scan of the phantom

was simulated by projecting the phantom with NiftyRec with the parameters emulating the GE Infinia
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LEHR scanner and by applying Poisson noise. The bias/variance curves were computed for varying

values of the parameters for 30 iterations of each of the reconstruction methods. Optimum parameters

were chosen by selecting the curve that ends closer to the axis origin, as described in section 6.4.1.

Finally, the spatial density of pharmaceutical was reconstructed from the 13 sinograms with uncon-

strained MLEM, JE and SP-JE executing 30 iterations for each algorithm with the optimum parameters.

As reported in the pharmaceutical concentration image for one representative subject in Figure 6.9, the

regularisation based on anatomical information produces images less noisy at visual inspection. The

estimate produced by the anatomical regularisation based on the non-parametric model is more uniform

throughout the brain than the semi-parametric model, which seems to allow for more differences of up-

take in different tissues, while still reducing noise artefacts. The activity in the striatum appears sharper

than with MLEM and with non-parametric regularisation.

Figure 6.9: DaTSCAN SPECT of a control subject. For each reconstruction method, the images show the

radio-pharmaceutical estimate afterN = 30 iterations overlaid on the T1-weighted MR image. Nuisance

parameters are chosen from optimisation of synthetic DaTSCAN data with characteristics obtained from

a population of 13 subjects. The transaxial view on the right shows a close up of the striatal region.

When compared with the conventional non-parametric Joint Entropy prior, the proposed method

provides lower bias of the activity estimate in synthetic reconstructions of brain perfusion data. At visual

inspection the images are more similar to the true activity and present discontinuities more consistent

with the anatomical image, thanks to the use of a more informed model of the MR acquisition system.

The proposed semi-parametric model introduces a differentiable measure (6.18) which could be used

for registration of multi-modal images, such as MR and SPECT or MR and PET by parametrising the

semi-parametric entropy term with a deformation model.



6.A. The Principle of Maximum Entropy and the Gibbs Prior 167

6.A The Principle of Maximum Entropy and the Gibbs Prior

The Principle of Maximum Entropy, formulated by Jaynes [9], expresses a general criteria for the choice

of a prior distribution, based on the principle that it should manifest maximum uncertainty in order

not to assume knowledge that the observer does not posses. Uncertainty is measured by the amount

if information necessary to communicate the state of the variable, expressed by Shannon’s Information

Entropy [91]. The amount of information necessary to communicate the state of the spatial density of the

radio-pharmaceutical λ depends on the state (e.g. the amount of information necessary to communicate

the state λ if λ is such that y1 = y2 = · · · = yB , is lower than if λ is more complex), let it be Eλ. Let

the probability distribution of the states be p(λ). The average uncertainty is

E =

∫
p(λ) Eλdλ

∫
p(λ)dλ = 1 (6.32)

Applying the Principle of Maximum Entropy, the choice of p(λ) that assumes the least amount of infor-

mation is one that maximises the uncertainty about the system, expressed by the Entropy S of λ

S = −
∫
p(λ) ln p(λ)dλ (6.33)

Maximisation of S subject to the constraints (6.32) can be achieved by the use of the Lagrange multiplier:

L = S + α
[∫
p(λ)dλ− 1

]
+ β

[∫
p(λ)Eλdλ− E

]
(6.34)

∂L
∂α =

∫
p(λ)dλ− 1 = 0 (6.35)

∂L
∂β =

∫
p(λ)Eλdλ− E = 0 (6.36)

∂L
∂p(λ) = ln p(λ) + α+ βEλ = 0 (6.37)

Solving for α and substituting α = ln
∫
e−βEλdλ in (6.37):

p(λ) =
e−βEλ∫
e−βEλdλ

=
1

Z
e−βEλ (6.38)

The complexity of the posterior in high dimensional problems such as Emission Tomography hinders

the computation of β as it depends on the full posterior, though some algorithms have been proposed to

approximate it by sampling the posterior (see [99]). Here β is considered a parameter and is optimised

in order to maximise bias/variance for the reconstruction of synthetic data.
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6.B Non-parametric Joint Entropy

For the Differential Entropy in (6.4) to be differentiable, the probability distribution of the symbols can

be estimated, for a given state, by a non-parametric kernel density estimation method:

pλ(λ) =
1

Nv

Nv∑
v=1

Φ

(
λ− λv
σ2
λ

)
(6.39)

Where Φ is a kernel function with bandwidth σ2
λ. By the chain rule of differentiation and approximating

the integral with the sum of rectangles of base ∆λ, the gradient of the Entropy associated to a state λ is:

∂

∂λv
Eλ ' −∆λ

M∑
j

(1 + log pλ(λj))
∂pλ(λj)

∂λv
(6.40)

where, by differentiating (6.39):

∂pλ(λ)

∂λv
=

1

Nv
Φ′
(
λ− λv
σ2
λ

)
(6.41)

In the context of emission tomography, letting λ represent the unknown activity, considering an

intra-subject image y, such as a magnetic resonance (MR) image, the amount of information necessary

to communicate λ is expressed by the conditional entropy

Eλ|y = Ey,λ − Ey (6.42)

(which equals Eλ if λ and y are independent). It follows from (6.32) and (6.33) that

p(λ) =
1

Z
e−βEλ|y (6.43)

For the purpose of MAP estimation, minimisation of the Conditional Entropy Eλ|y and of the Joint

Entropy Eλ,y are equivalent.

∂ log p(λ)

∂λv
= −β ∂

∂λv
Eλ|y = −β ∂

∂λv
Ey,λ (6.44)

Where:

Ey,λ = −
∫
pλ(λ, y) log pλ(λ, y) dy dλ (6.45)

In order for the Joint Entropy to be differentiable, the probability distribution of the symbols can be

estimated, for a given state of λ, by a non-parametric kernel density estimation method:

pλ(λ, y) =
1

Nv

Bv∑
v=1

Φ

(
y − yv
σ2
y

)
Φ

(
λ− λv
σ2
y

)
(6.46)
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Approximating the integral in (6.45) with the sum of rectangular parallelepipeds of base (∆y,∆λ), the

gradient of the prior is proportional to:

∂

∂λv
Eλ,y ' −∆y∆λ

M2∑
i,j

(1 + log pλ(yi, yj))
∂pλ(yi, yj)

∂λv
(6.47)

With:
∂pλ(λ, y)

∂λv
=

1

Nv
Φ

(
y − yv
σ2
y

)
Φ′
(
λ− λv
σ2
λ

)
(6.48)

(6.47) time a factor β is the gradient of the prior for MAP estimation for the non-parametric Joint Entropy

method implemented in [92, 65, 63].
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Chapter 7

Modelling the imaging devices

This chapter describes the gamma photon detection process in the probabilistic graphical framework.

The models defined in this Chapter will be employed in Chapter 8 to extend the model of the emission

process described in Chapter 2. The joint model that emerges in Chapter 8 has several applications

including the use of the energy information for the estimation of the activity and an algorithm for the

auto-adaptation of the emission imaging systems to disrupted photo-detectors. The current Chapter, after

describing the gamma photon detection process by means of a scintillating camera and its probabilistic

model, introduces two algorithms for the automated calibration of SPECT and PET detectors.

Scanners for planar and tomographic nuclear emission imaging detect gamma photons, record-

ing their location of interaction and eventually their energy. Owing to the relatively low probability

of interaction of gamma photons with matter, characteristic that makes the gamma photons suited to

tomographic imaging of (relatively) large volumes, the detectors for gamma radiation, in order to max-

imise the detection efficiency, make use of high density materials to intercept the radiation. The most

widespread detector design for the detection of gamma photons is the scintillating camera. In a scintil-

lating camera, a high density crystal is engineered to emit low energy (visible or nearly visible) light in

consequence of the interaction of a gamma photon. The scintillation is detected by one or more photo-

detectors, producing an indirect measure of the location of the interaction and of the energy of the gamma

photon.

The problems of determining the location of the interaction of each gamma photon and its energy

are inverse problems. Once again, the uncertainty of the measurement plays an important role, thus the

probabilistic formulation is essential in order to make good use of the information acquired.

A few articles have recently focused on optimum estimation of the location of interaction and energy

of the gamma photons (see [100, 101]) by posing the problem in the probabilistic framework. This

chapter firstly frames the problem in the probabilistic (graphical) framework, deriving the well known

expression for the maximum likelihood estimator (MLE) of the location of interaction and energy of a

gamma photon. The second part of the chapter focuses on the problem of measuring experimentally

the characteristics of the imaging device, especially focusing on devices designed to discriminate the
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depth-of-interaction (DOI).

Two algorithms for the characterisation of scintillating imaging devices are introduced; the first

arises from the generative modelling approach and is based on a finite mixture model and on the Ex-

pectation Maximisation optimisation strategy; the second arises from concepts of manifold learning,

introducing a new approach to the characterisation of the imaging devices, which brings artificial intel-

ligence near the hardware of PET and SPECT scanners.

7.1 The scintillating camera
The scintillating gamma-camera, whose first design was proposed by Anger, is composed of a monolithic

scintillator crystal coupled with an array of photo-detectors (see schematic in Fig. 7.1). The interaction

of a γ-photon with the crystal determines, through a cascade of radiative and non-radiative processes,

the emission of secondary photons. These are captured by the photo-detectors of the gamma-camera,

producing electrical signals that are amplified by the front-end electronics and, in modern designs, digi-

talised and streamed to a digital computer [102]. The set of signals acquired by the photo-detectors bears

information about the energy of the γ-photon and the location of the interaction with the scintillator crys-

tal. The reconstruction of the coordinates of the interaction and of the energy from the measurement of

secondary photons can be described as an inverse problem, where the forward problem consists in pre-

dicting the set of measurements given the location of the interaction and the energy of the γ-photon.

A number of reconstruction algorithms have been proposed, including heuristic methods, such

as the centroid algorithm initially proposed by Anger [103][104], and maximum likelihood estimation

(MLE).

MLE arises from probabilistic formulation of the reconstruction problem. It has proven superior to

heuristic algorithms, eliminating non-linear distortions, such as the barrel effect (see [105] and section

7.5 of this chapter). Furthermore, the probabilistic formulation enables the definition of optimality cri-

teria; MLE provides in fact optimum reconstructions in the sense of the L2-norm of the expected error

(Cramér-Rao lower bound) [106][107]. Another important advantage of maximum likelihood estimation

is that it enables 3-dimensional reconstruction of the coordinates of interaction, while heuristic methods

are often limited, as is the case for the centroid method, to in-plane 2-dimensional reconstruction.

Though the development of efficient reconstruction strategies and hardware acceleration have over-

come initial limitations due to computational complexity of maximum likelihood estimation, probabilis-

tic methods for the estimation of the reconstruction of the events of interaction still have limited diffusion.

Despite the optimality of MLE reconstruction, it is common experience to obtain visually better results,

as described in section 7.6 of this chapter, with the centroid method. The reason for the poor performance

of MLE, as clarified in 7.6, is that errors in the forward model propagate to the reconstruction. MLE,

one may say, attempts to fit the data closely to the model, while the inherent imprecision of the heuristic

methods hides the distortions introduced by the use of inexact forward models.
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In order to obtain accurate reconstructions of the coordinates of interaction and energy of the de-

tected γ-photons and to achieve the optimum resolution dictated by the Cramér-Rao bound, it is crucial to

construct an accurate forward model of the camera. The forward model can be obtained with numerical

simulations or by exhaustive experimental characterisation of the device.

A number of numerical methods for the prediction of the response of gamma-cameras have been

described, including the simple solid-angle model based on Huilier’s formula [106] and more accurate

Monte Carlo light transport solvers [108]. However the complexity of the light transport processes limits

the accuracy of numerical simulators. Especially the uncertain parametrisation of the materials and the

high complexity of surface effects (such as the coupling between the scintillator crystal and the array of

detectors) render the simulations highly approximative.

Experimental characterisation of the detector may enable accurate estimation of the forward model.

By using a collimated beam one can force γ-photons to interact at a specific location of the camera

plane (Fig. 7.2), obtaining an exhaustive characterisation of the camera response to the interaction of

photons at that location. However the electrical signals generated by the array of photo-detectors is

also a function of the depth-of-interaction, which cannot be imposed in an experimental set-up. The

2-dimensional characterisation of the response of the camera, obtained by neglecting the dependence of

the response on the depth-of-interaction, is highly inaccurate causing distortions in the reconstruction,

as illustrated in section 7.6 of this chapter.

Figure 7.1: Schematic representation of the Anger gamma-camera. The monolithic scintillator is cou-

pled with the array of photo-detectors indexed with d = 1, . . . , D. The forward model of the camera is

discretised in voxels indexed with j. The interaction of a γ-photon in j determines the noisy measure-

ment vector u = {u1, . . . , uD}. The discrete forward model of the camera is characterised by the set of

expected measurement vectors ldj for γ-interaction in j.

3-dimensional characterisation is still an unsolved problem due to the computational challenges

that is entails, associated with the unknown depth-of-interaction. In this chapter we describe a new

methodology for exhaustive 3-dimensional characterisation of the forward model of gamma-cameras

based on unsupervised learning techniques. Such powerful techniques, which have had large widespread

in medical imaging applications, have not been applied to the reconstruction of the photon interaction

events and to the characterisation of gamma-camera devices. One important advantage of the algorithm

that we describe is that it is globally convergent, guaranteeing stability and fully automated operation.

While maximum likelihood estimation of the events of interaction may be considered optimum,
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given that the forward model is accurate, Chapter 8 challenges this statement, integrating the genera-

tive model of the detection device described in the present chapter with the generative model of the

tomographic system described in Chapters 2, 3, 4 in a unifying model.

7.2 Generative model of the imaging device
Let (x, y, z) be the 3-dimensional space coordinates with z being the direction normal to the camera

imaging plane (Fig. 7.1) and let u = {u1, . . . , ud, . . . , uD} be the measurement vector produced, in

occurrence of a γ-interaction event, by the D photo-detectors, indexed by d = 1, . . . , D. u is a random

vector owing to the uncertainty associated with the measurement of the secondary photons by the D

photo-detectors. We refer to the (continuous) forward model, denoted with l̃d(x, y, z), as the expected

signal in d per unit of energy of the γ-photon, in case of interaction with the scintillator crystal in

(x, y, z). Scintillator crystals present a linear relation between the average number of secondary photons

emitted and the energy of the incoming gamma photon [109][106]. Therefore, by the thinning property

of the Poisson distribution, the expected number of secondary photons in d for a gamma photon of

energy E that interacts in (x, y, z) is El̃d(x, y, z) . In order to discretise the problems of reconstruction

and model estimation, let us partition the spatial domain of the scintillator crystal in a regular grid of

voxels, indexed with j, and assume that the response within each voxel is constant:

L = ldj (7.1)

The elements of matrix L = {ldj} constitute the parameters of the discrete forward model. Let us formu-

late the reconstruction of an event of interaction as an optimisation problem, entailing the maximisation

of an energy functional parametrised by L:

ĵ, Ê = arg max
j,E

ΨL (j, E,u) (7.2)

Assuming that the main source of noise is the intrinsic uncertainty associated to the collection of sec-

ondary photons by the photo-detectors, the energy function can be written as a product of Poisson distri-

butions (see 7.3). With this commonly employed model of the uncertainty, the MLE estimators (7.2) of

the Poisson likelihood for j and E have the well known expressions (see derivation in paragraph 7.3):

ĵ = arg max
j

D∑
d

−ldj + ud log ldj (7.3)

Ê =

∑
d ud∑
d ldĵ

(7.4)

The energy of the γ-photon (7.4) has a closed form expression dependent on ĵ. The location of in-

teraction ĵ (7.3) is independent of the energy but does not have a closed form solution. A number of

algorithms for the maximisation of (7.3) have been described, including gradient free iterative optimisa-

tion [110] and (hardware accelerated) exhaustive search [106]. Details about specific implementations of
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the maximisation algorithms are beyond the scope of this chapter; we are concerned here with obtaining

accurate experimental measures of the parameters L = {ldj} of the discrete forward model. In section

7.6 we use equations (7.3) and (7.4) with exhaustive search of j for reconstruction in order to compare

different model parameters L.

While it was convenient in the formulation of the reconstruction problem above to index all voxels

with a single variable j, defining the matrix L = ldj of model parameters, we use from here on a

slightly different notation in order to simplify the indexes for the description of the algorithm for the

estimation of the parameters of the forward model. The next section will focus on the estimation of the

depth-dependent response of the camera at a single location (xo, yo). The parameters that describe the

depth-dependent model in (xo, yo) correspond to a subset of the elements of L whose indexes depend

on how the elements of L are mapped to spatial locations. In order to get rid of the specific indexing

pattern, let us denote with lokd the expected signal in d for γ-interaction at depth k, with k ∈ {1, . . . , Nz}

indexing the voxels in (xo, yo) along axis z, as pictured in Fig. 7.2. Lo = lokd is the set of parameters

that describe the depth-dependent response of the camera in (xo, yo). The matrix L is filled by repeating

the learning procedure described in the next section for each discrete location (xo, yo) according to the

indexing pattern that maps the elements of L to spatial locations j.

7.3 Estimation of the events of interaction
The maximum likelihood estimators (MLE) of the location of interaction and energy of the γ-photon are

the values ĵ and Ê of j and E that maximise the log likelihood of the measurement log p(u|E, j, L).

ΨL (j, E,u) = log p(u|E, j, L) (7.5)

The likelihood function expresses the model of the uncertainty associated with the measurement. A

common model for gamma-cameras is based on the assumption that the uncertainty associated with the

discrete nature of light interaction dominates over other sources of noise. In this case the uncertainty

is described by the Poisson distribution associated with counting the secondary photons. The measure-

ments ud are assumed to be independent conditionally to the location of interaction and energy. Such

assumption, which corresponds to the following product, is essentially the statement that location of

interaction and energy are the only causes of the measurements ud.

p(u|E, j, L) =

D∏
d=1

e−EldjEldj
ud

ud!
(7.6)

log p(u|E, j, L) = E

D∑
d=1

−ldj + logE

D∑
d=1

ud +

D∑
d=1

ud log ldj (7.7)
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Figure 7.2: Schematic of the experimental set-up to learn the depth-dependent response of the gamma-

camera. The collimated beam is focused at a given location (xo, yo). Though the depth-of-interaction z

can not be imposed in the experiment, the depth-dependent response is learned from the signals produced

by the photon interactions at (xo, yo).

Maximising with respect to j and E:

∂

∂E
log p(u|E, ĵ, L) =

D∑
d=1

−ldj +

∑D
d=1 ud
E

= 0 (7.8)

Ê =

∑
d ud∑
d ldĵ

(7.9)

This expresses a closed form solution for the optimum energy. Notice that it depends on the optimum

location of interaction ĵ. Let us express the maximiser with respect to j. Dropping the term that does

not depend on j from equation (7.7), we can write:

ĵ = arg max
j
E

D∑
d

−ldj + ud log ldj (7.10)
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For E > 0 the maximiser does not depend on E, hence:

ĵ = arg max
j

D∑
d

−ldj + ud log ldj (7.11)

Notice that there is no closed form solution for the optimum location of interaction ĵ, however ĵ is

not a function of the optimum energy Ê. As already boserved, the optimum energy (7.9) does have a

closed form solution, dependent on ĵ. Therefore the optimum location of interaction and energy may

be computed by finding the optimum location of interaction with (7.11) and then the optimum energy

with (7.9). (7.11) can be optimised with gradient free optimisation algorithms, exhaustive search or

more efficient direct search algorithms, such as the algorithm depicted in Fig. 7.3. Such algorithm and a

version optimised for GPU implementation are described in [106]. With GPU acceleration, the 3-D (i.e.

with DOI) reconstruction of the events of interaction can be performed in real-time at rates of 106 events

per second.

Figure 7.3: Fast globally-convergent algorithm for the direct search of the optimum location of interac-

tion. The image depicts the algorithm described in [106] for the optimisation problem of (7.11) through

direct search. At the first step, the algorithm computes the likelihood of the interaction at the four corners

of the imaging device (A1, B1, C1, D1). The search grid is then refined selecting one of four rectangu-

lar regions depending on which of the four likelihoods is highest (A1 in this example). The algorithm

proceeds until convergence to one point. The depicted algorithm searches the solution within a 2-D grid.

The algorithm trivially extends to 3-D, as explained in [106].

7.4 Learning the characteristics of the imaging device: finite mix-

ture model

7.4.1 Experimental set-up

Fig. 7.2 is a schematic representation of the set-up for the characterisation of the gamma-camera. The

collimator generates a narrow beam that forces the γ-photons to interact with the crystal in (xo, yo). The

signals produced by the photo-detectors for each photon interaction depend on the unknown depth-of-

interaction. If one knew at which depth z each of the photon interactions occurs, it would be straight-

forward to characterise the average response of the camera to the interactions in a specific location
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(xo, yo, z) (forward model) by averaging the response of a large number of interactions associated to

(xo, yo, z). While xo and yo are imposed by the collimator, unfortunately the depth-of-interaction can

not be forced. If one knew how the camera responds on average to the interaction in (xo, yo, z), the

depth-of-interaction of each γ-photon could be easily estimated. However, when the forward model is

unknown, the depth-of-interaction of the γ-photons can not be estimated. In order to estimate the forward

model, in conclusion, it is required that the forward model is already known. In fact one way to proceed

to estimate the forward model is to start with an approximate model, determine the depth-of-interaction

of each photon according to the model and re-estimate the depth-dependent forward model according to

the measurements now mapped to the depth-of-interaction. In 7.4.2 we derive an algorithm based on this

iterative procedure and on a finite mixture probabilistic model. Such iterative procedures however are

strongly dependent on the initial guess of the model parameters, posing the problem of establishing an

initial value that is close to the solution. In other words, the optimisation problem associated with the es-

timation of the parameters of the forward model has multiple maxima. Owing to the problems associated

with the initialisation of the aforementioned iterative procedure, in the following we adopt powerful un-

supervised machine learning techniques to derive an algorithm with global convergence properties. The

main idea is that though each measurement is a point in a high dimensional space, the measurements live

on a low dimensional manifold. The algorithm learns the structure of the low dimensional embedding

and exploits prior knowledge of the local density of data points along the manifold to learn the relation

between the measurements and the depth-of-interaction. The resulting algorithm is surprisingly simple

to implement and computationally efficient.

7.4.2 Finite mixture model

Figure 7.4: Probabilistic graphical representation of the mixture model for the set of N i.i.d. mea-

surements {ui} with corresponding latent locations of interaction {zi}, with i = 1, . . . , N . For each

measurement i, the latent location of interaction zi is a 1-of-Nz unit vector. The matrix of parameters

that characterise the imaging device L0 is the unknown variable of interest. π = {πk} is the prior prob-

ability associated to the latent variables, with k = 1, . . . , Nz being the running index over the elements

of zi. The prior probability distribution π associated to the depth of interaction is identical for each mea-

surement (therefore not a function of i) and given by Beer-Lambert exponential law, which expresses

knowledge of the photon interaction process.

The model described in the following is an extension of the Poisson model described in 7.3. The
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MLE estimators ĵ and Ê of the location of interaction j and energy of the γ-photon E described in

7.3 maximise the Poisson likelihood, expressing the uncertainty associated with the measurement of

secondary photons. The expressions of the MLE estimators found in 7.3 depend on the system model

L = {ldj}. In the following the same model of the uncertainty is adopted for the purpose of estimating

the parameters of the forward imaging model. Assuming that the locations of interaction along axis z

are discrete, we obtain in the following a finite mixture model and derive the Expectation Maximisation

(EM) optimisation algorithm for the parameters of the forward model. The probability distribution of the

depth-of-interaction p(z) is given by Beer-Lambert exponential law of absorption (7.28). Indexing with

k = 1, . . . , Nz the allowed depths-of-interaction (Fig. 7.2), let us introduce a Nz dimensional binary

random variable z having a 1-of-Nz representation in which a particular element zk is equal to 1 and

all other elements are equal to 0. The values of zk therefore satisfy zk ∈ {0, 1} and
∑
k zk = 1, and

there are Nz possible states for vector z according to which element is non-zero. Let πk be the prior

probability that the interaction occurs in voxel k:

p(zk = 1) = πk (7.12)

Section 7.5.1 will describe one choice of prior probability distribution based on the mechanics of the

photon interaction (Beer Lambert exponential law). Because z is a 1-of-Nz representation, we can also

write this distribution in the form

p(z) =

Nz∏
k=1

πk
zk (7.13)

The conditional distribution for u given a particular value for z, adopting the Poisson model of the

uncertainty described in 7.3, is a product of Poisson distributions:

p(u|zk = 1) =

D∏
d=1

P (uid;λk,d) (7.14)

which, similarly, can be written in the form

p(u|z) =

Nz∏
k=1

[
D∏
d=1

P (uid;λk,d)

]zk

(7.15)

Integrating over the depth-of-interaction, the likelihood of the measurement is

p(u) =

Nz∑
k=1

[
πk

D∏
d=1

P (uid;λk,d)

]
(7.16)

Considering N measurements U = {u1, . . . ,ui, . . . ,uN} at location (xo, yo), each data point is drawn

independently from the distribution (7.16). We can express the mixture model for this i.i.d. data set

using the graphical representation in 7.4. From (7.16) the log of the likelihood function for the training

data U is given by

ln p(U|L0) =

N∑
i=1

ln

Nz∑
k=1

[
πk

D∏
d=1

P
(
uid; l

0
kd

)]
(7.17)
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The summation that appears inside the logarithm produces a complicated expression for the maximum

likelihood solution of the parameters lokd, excluding the existence of a closed form solution for lokd that

maximises (7.17) (see [111] p.439). The EM algorithm, however, once again, provides an iterative

update formula for lokd which is free from nuisance parameters.

7.4.3 Expectation Maximisation

Considering U as the incomplete data of the complete data set {U,Z}, with Z = {z1, . . . , zi, . . . , zN},

let us consider the problem of maximising the likelihood of the complete data. From (7.13) and (7.15),

this likelihood takes the form:

p(U,Z|L0) =

N∏
i=1

Nz∏
k=1

D∏
d=1

πk
zikP

(
ui,d; l

0
kd

)zik (7.18)

where zik denotes the kth component of zi. Taking the logarithm, we obtain

ln p(U,Z|L0) =

N∑
i=1

Nz∑
k=1

zik

[
lnπk +

D∑
d=1

lnP
(
uid; l

0
kd

)]
(7.19)

The complete data log likelihood function could be maximised trivially in closed form if Z were known.

However in the missing-data formulation, Z are unknown latent variables. As the EM algorithm pre-

scribes, we consider the expectation, with respect to the posterior distribution of the latent variables, of

the complete-data log likelihood: from (7.13) and (7.15) and applying the Bayes’ theorem

p(Z|U,L0) ∝
N∏
i=1

Nz∏
k=1

[
πk

D∏
d=1

P
(
uid; l

0
kd

)]zik
(7.20)

The expected value of the indicator variable zik under this posterior distribution is given by

E[zi,k] =

∑
zi
zi,k

∏Nz

k′=1

[
πk′
∏D
d=1 P

(
uid; l

0
k′,d

)]zik′
∑

zi

∏Nz

k′′=1

[
πk′′

∏D
d=1 P (uid; l0k′′d)

]zik′′ =
πk
∏D
d=1 P (uid;λkd)∑Nz

k′=1 πk′
∏D
d=1 P (uid;λk′d)

, hik

(7.21)

referred to, in context of finite mixture models, as the responsibility of the mixture component k for data

point ui. The expected value of the complete-data log likelihood function is therefore given by

Q(L0|L0old
) = Ez

[
ln p(Z,U|L0old

)
]

(7.22)

=

N∑
i=1

Nz∑
k=1

hik

[
lnπk +

D∑
d=1

lnP
(
uid; l

0
kd

)]

This is maximum when the gradient with respect to L0 is zero

∂Q(L0|L0old
)

∂l0kd
=

N∑
i=1

[
hik

∂

∂lkd
lnP

(
uid; l

0
kd

)]
= 0 (7.23)

solving for l0kd
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l0 new
kd =

∑N
i=1 hikuid∑N
i=1 hik

(7.24)

The EM algorithm for the estimation of the model parameters l0kd, in summary, consists in choosing

an initial guess and iterating until convergence (7.24) (M-step), with hik expressed by eq. (7.21) (E-step):

hik =
πk
∏D
d=1 P (uid;λkd)∑Nz

k′=1 πk′
∏D
d=1 P (uid;λk′d)

(7.25)

Starting from an initial guess, the EM algorithm of (7.24) and (7.25) provides a series of estimates of the

parameters of the forward model with increasing likelihood (the increase of likelihood at each step of

the EM algorithm is guaranteed to be ≥ 0 [12]). Therefore the algorithm converges to a local maximiser

of the likelihood. While for other problems, such as the problem discussed in Chapter 4, the locally

convergent algorithm is often sufficient given a reasonable initial guess, as discussed in the experiments

section of this chapter 7.6, for this particular problem, the selection of the initial value of the parameters

is critical, making the algorithm unstable. The next paragraph describes a different approach based on

manifold-learning techniques.

7.5 Density of the locally linear embedding - DLLE
Let us consider the set of N measurements U = {u1, . . . ,ui . . . ,uN}, with ui ∈ RD. Dimensionality

reduction algorithms provide a reduced dimensional representation R = {r1, . . . , ri, . . . , rN}, ri ∈ Rd

of the original dataset U. The underlying assumption behind these algorithms is that U lies on a manifold

M embedded in RD with intrinsic dimensionality d∗. The estimated dimension d of d∗ is provided by

the user as a parameter to the algorithm. We adopt here the LLE algorithm [112] to learn the structure of

the manifold. Although the details of LLE can be found in [112], we provide a brief description in order

to fully explain our method.

The first step of LLE is to solve for the location of each point ui ∈ RD in terms of its n nearest

neighbours. This step is performed simultaneously for every point ui ∈ U by selecting the n-nearest

neighbours of each data point and solving

Ŵ = arg min
W

∑
i

∣∣∣∣∣∣ui −
∑
j

Wijuj

∣∣∣∣∣∣
2

(7.26)

subject to two constraints: first, that each data point ui is reconstructed only from its neighbours, en-

forcing Wij = 0 if uj does not belong to the set of neighbours of ui; second, that the rows of the weight

matrix sum to one
∑
jWij = 1 for every i. The minimisation (7.26) with these two constraints finds the
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coefficients of the weighting matrix W that reconstruct optimally each data point as a linear combination

of its neighbours. In the implementation of LLE that we adopt here, data points are reconstructed from

their n nearest neighbours as measured by the Euclidean distance. For such implementation of LLE, the

algorithm has only one free parameter: the number of neighbours n. The minimisation problem (7.26)

has a closed form solution, as described in [113].

Once the reconstruction weights Ŵ have been estimated, each high-dimensional observation ui is

mapped to a low-dimensional vector ri representing global internal coordinates on the manifold. This is

done by choosing d-dimensional coordinates ri to minimise the embedding cost function

R̂ = arg min
R

∑
i

∣∣∣∣∣∣ri −
∑
j

Ŵijrj

∣∣∣∣∣∣
2

(7.27)

Such embedding cost, defining a quadratic form in the vectors ri, can be minimised by solving a sparse

D × D eigenvalue problem [113], whose bottom d non-zero eigenvectors provide an ordered set of

orthogonal coordinates centred on the origin. Implementation of the algorithm, detailed in [113], is

straightforward. We set here d = 1 in order to capture the 1-dimensional variations associated with the

depth-of-interaction. The scalar measure ri denotes the location of data point i on the manifold.

7.5.1 Partitioning of the manifold

In order to establish a relation between the internal coordinates of the manifold and the depth-of-

interaction, we exploit the prior information about the density of data points on the manifold.

Beer-Lambert exponential law of absorption expresses the probability of interaction as a function

of z for the collimated photons travelling in the direction of the z axis

p(z) = αẼe
−αẼz (7.28)

with αẼ being the attenuation coefficient of the scintillator crystal for the γ-source of energy Ẽ utilised

for the experimental characterisation. Though a number of algorithms may be devised for the purpose

of matching the prior density of z with the density of points on the manifold, let us introduce here a

simple algorithm based on the discretisation of the depth-of-interaction in Nz locations. Indexing with

k = 1, . . . , Nz the voxels along axis z (see Fig. 7.2), and letting ∆z be the size of the voxels along

direction z, the probability that a γ-photon interacts in voxel k is

πk =

∫ k∆z

(k−1)∆z
p(z)dz∑Nz

k=1

∫ k∆z

(k−1)∆z
p(z)dz

=
e−αẼ(k−1)∆z − e−αẼk∆z

1− e−αẼNz∆z
(7.29)

The manifold is subdivided in k partitions corresponding to the depth-of-interaction by matching

the density of data points on the manifold with the expected a-priori number of data points in each voxel
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k. As the scalars ri represent a measure of the location of point i on the manifold, the manifold is

partitioned by finding Nz + 1 thresholds th, h = 0, . . . , Nz for the internal measure on the manifold in

order for the density of points within each interval [tk−1, tk] to match the prior probability distribution

πk for all voxels k = 1, . . . , Nz . The matching condition has the following expression in terms of unit

step functions H(x):

th = min rj :

[
1

N

N∑
i=1

H(ri − rj)

]
> πh, h = 1, . . . , Nz (7.30)

with t0 = min ri. Such threshold values th are computed simply by sorting the values of ri, setting t0 =

min ri, then t1 to the value ri such that the number of points that are smaller than ri is floor(N π1∑
k πk

),

t2 to the value of ri such that the number of points that are smaller than ri is floor(N π1+π2∑
k πk

), and so on.

Finally, given the partition of the manifold th, h = 0, . . . , Nz , each data point i is assigned to location k

according to the value ri of its low dimensional representation. Let us introduce aNz dimensional binary

variable z having a 1-of-Nz representation in which a particular element zk is equal to 1 and all other

elements are equal to 0. The values of zk therefore satisfy zk ∈ {0, 1} and
∑
k zk = 1, and there are

Nz possible states for vector z according to which element is non-zero. z may be considered as a hidden

label indicating the discrete depth-of-interaction of measurement u. Let Z = {z1, . . . , zi, . . . , zN} with

zi = {zik} be the set of hidden labels for the N measurements and ẑik their estimates according to the

partition of the manifold:

ẑik = H(ri − tk−1)H(tk − ri) (7.31)

The forward model lokd is calculated as the expectation vector for depth-of-interaction k according to the

estimated depth-of-interaction labels:

lokd =

∑N
i=1 uidẑik∑N
i=1 ẑik

(7.32)

7.5.2 Summary of the algorithm

For each discrete location (xo, yo)

• Acquire N data points.

• Learn the structure of the 1-dimensional manifold (7.26).

• Project the data on the manifold (7.27).
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• Partition the manifold in order to match the prior probability distribution of the depth-of-

interaction with the density of data points (7.30).

• Estimate the depth-of-interaction of each γ-photon based on its position on the manifold (7.31).

• Estimate the depth-dependent response of the gamma-camera by averaging the signals produced

by all photons with the same label (7.32).

7.6 Experiments

7.6.1 Analytical model of the gamma-camera

In order to evaluate the algorithm described in the previous section, we make use in the following of an

analytical ground-truth forward model of the gamma-camera. We adopt the simple solid angle model

often used as the forward model for reconstruction [106][100]. Though such simplistic model neglects

scatter, reflection and refraction at the boundaries of the scintillator crystal, it allows us to generate

efficiently the expectations for continuously varying depth-of-interaction z. The number of expected

secondary photons detected by each photo-detector d for an interaction in (x, y, z) is considered to be

proportional to the solid angle θd(x, y, z) subtended by the surface of the photo-detector to the interaction

point in (x, y, z). The solid angle is calculated exactly with Huilier’s formula for the triangular planes

obtained by triangular meshing of the surface of the photo-detectors [106]. Emission of secondary

photons is assumed to be isotropic: the expected photon counts at each location d are proportional to the

solid angle θd(x, y, z), to the light yield of the scintillator ξ and to the energy of the γ-photon E:

l̃d(x, y, z) =
θd(x, y, z)ξE

4π
(7.33)

7.6.2 Learning the forward model

The parameters of the simulation emulate the characteristics of a small gamma-camera composed of

D = 25 photo-detectors of size 10mm × 10mm displaced in a 5 by 5 square array and coupled with a

50mm× 50mm× 10mm NaI(T1) scintillator crystal (Fig. 7.7(A) and Fig. 7.1). The scintillator crystal

is partitioned into 128 × 128 × 10 non-isotropic voxels. For each of the 128 × 128 locations (xo, yo),

N = 10000 events of interaction of γ-photons with energy E = 140 KeV are simulated by sampling

the depth-of-interaction according to (7.28) with α140Kev = 2.4 cm−1 (see [114] for typical parameters

of NaI(T1)). The signals uid for each of the i events are obtained by calculating the ideal response with

the simulator described in the previous section, with scintillator light yield ξ = 38 photons/KeV [114],

and applying Poisson noise. For each (xo, yo) location, the response of the gamma-camera is estimated

with two methods:

1. 2-d averaging: The responses for the N photon interactions are averaged, producing a 2-

dimensional model of the camera. This may corresponds to applying (7.32) with Nz = 1.
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Figure 7.5: Scatter plot of the data points projected on the manifold of dimension d = 3. Data points are

coloured according to the ground-truth depth-of-interaction label k. From this visualisation of the data

projected on the 3-dimensional manifold it can be observed that the data live on a 1-dimensional mani-

fold. The density of data points decreases exponentially with increasing depth-of-interaction. Figure 7.6

represents the projection for d = 1

.

2. Unsupervised learning: The 3-dimensional response of the camera is learned from the N mea-

surements with the algorithm described in 7.5. The number of neighbours is set to n = 12.

Fig. 7.5 shows the scatter plot of the N data points projected on the 3-dimensional manifold ri

(d = 3). Each point is coloured according to the depth-of-interaction k at which it interacts, obtained by

thresholding the ground-truth continuous depth-of-interaction. From the projection on the 3-dimensional

manifold in Fig. 7.5, the manifold appears to be, as expected, intrinsically 1-dimensional and the density

of data points decreases as the depth-of-interaction increases. Fig. 7.6 reports the scatter plot of the pro-

jection of the data points on the manifold of dimension d = 1 and the thresholds th = {t0, t1, . . . , tNz}

calculated according to (7.30). Data points in Fig. 7.6(B) are coloured according to the ground-truth

depth-of-interaction while in Fig. 7.6(A) according to the value of ri relative to th = {t0, t1, . . . , tNz}

- equation (7.31). As described in section 7.5, the parameters of the forward model are estimated by

averaging all data points assigned to the same depth-of-interaction - equation (7.32).
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Figure 7.6: Scatter plot of the data points projected on the manifold of dimension d = 1. The location of

each data-point i on the manifold is characterised by scalar ri. (I): All N training data points. (II): Close

up for r near 1, corresponding to depth-of-interaction k = 9 and k = 10 voxels. th = {t0, t1, . . . , tNz}

partition the manifold inNz = 10 regions according to (7.30). In plot (A) the data points are coloured ac-

cording to the value of ri (estimated depth-of-interaction). In plot (B) data points are coloured according

to the true depth-of-interaction.

Figure 7.7: (A) The experiments are based on a 50mm × 50mm × 10mm scintillator crystal coupled

with an array of D = 25 square photo-detectors of size 10mm × 10mm. The ground-truth response

of the gamma-camera is obtained with the solid angle model and computed by triangulating the photo-

detector elements. Simulation of 5M events of interaction at 36 discrete locations. (B) Reconstruction

with the centre-of-mass algorithm with forward model obtained by experimental characterisation of the

camera. (C) MLE reconstruction with 2-D forward model obtained by experimental characterisation of

the camera. (D) MLE reconstruction with the 3-D forward model learned with the manifold learning

algorithm. (E) MLE reconstruction with the 3-D forward model learned with the manifold learning

algorithm and refined with the EM algorithm (7.21)(7.24).

7.6.3 MLE reconstruction and model mismatch

In this last section we evaluate, through numerical simulation, the effect of using the learned 3-

dimensional forward model and the approximated 2-dimensional model for the reconstruction of the
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events of interaction. 5 Million interactions are simulated by generating random (x, y, z) locations of

interaction as follows:

While less then 5 M events of interaction:

1. draw (x, y) location from uniform distribution on the surface of the gamma-camera;

2. discard the event if outside of the mask defined by the white pattern in figure 7.7(B);

3. draw (z) according to the Beer-Lambert distribution (7.28);

4. compute the noiseless measurement with the simulator 7.6.1;

5. apply Poisson noise.

Reconstructions of the 5 M events of interaction are visualised in Fig. 7.7. The intensity of the

images in 7.7 represents the number of events associated to each of the 128× 128 pixels. The events are

reconstructed with MLE (7.3) (7.4) using the ground-truth forward discrete model (Fig. 7.7(C)) and the

2-dimensional (Fig. 7.7(D)) and 3-dimensional (Fig. 7.7(F)) estimated forward models. For reference

Fig. 7.7(E) reports the reconstruction obtained with the centroid algorithm [104] with the 2-dimensional

estimated forward model. Finally the parameters of the 3-dimensional model estimated with the learning

algorithm are refined with 100 iterations of the EM algorithm described in 7.4.2 and Fig. 7.7(G) reports

the reconstruction obtained with the refined model.

Comparison of the reconstruction obtained with the centroid algorithm in Fig. 7.7(E) with the

reference reconstruction in 7.7(C) shows the distortion produced by the centroid method, underlined

by the two circular dark regions that are shifted towards the centre of the image. MLE reconstruction

with the 2-dimensional model artificially assigns events to the regions located near the centre of the

photo-detectors, as highlighted by Fig. 7.7(D). The reconstruction obtained with the 3-dimensional

estimated forward model shows how the recovery of the forward model is highly accurate, producing a

reconstruction that is visually undistinguishable from the MLE reconstruction obtained with the ground-

truth forward model in Fig. 7.7(C).

Finally, the refinement of the forward model obtained with the EM algorithm does not produce

visible improvements in the reconstruction.

In summary, the first part of this chapter has framed in the probabilistic graphical framework the

inverse problem of estimating the coordinates of interaction and the energy of the gamma photons de-

tected with a scintillating camera. The second part of the chapter has presented two algorithms for the

estimation of the depth-dependent characteristics of monolithic gamma-cameras. The first algorithm,

based on the mixture of Poisson distributions model and the EM algorithm, is the natural solution that

arises from the formulation of the problem in the probabilistic framework. However such algorithm

suffers from local minima. The second algorithm, based on concepts of manifold learning, overcomes

the limitations of the EM-based algorithm. The LLE manifold learning algorithm is employed to learn
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the characteristics of the camera and the density of data points on the manifold is matched to the prior

probability distribution of the depth-of-interaction in order to establish a relationship between the posi-

tion of the data points on the manifold and the depth-of-interaction. This new concept shows promising

results in the simulation study that is presented here, recovering the forward imaging model with high

accuracy. The unique global convergence properties of the algorithm make it stable and reliable. The

absence of nuisance parameters (exception given for the number of neighbours n, which has been found

to be non-influential as long as the number of training photons N is sufficiently large) and the stability

of the algorithm make it suitable for fully automated characterisation of the cameras.

The inverse problems described in this chapter and the inverse problem of tomographic image re-

construction are inherently coupled, but often considered in separate contexts. The description of the

imaging device in the probabilistic graphical framework enables us to consider the two problems jointly.

This is the focus of the next chapter.



189

Chapter 8

Unified computational model of scatter

The elements of the system matrix of the emission imaging system A = {avd}, as described in chapter

2-paragraph 2.3, express the probability that a photon emitted from voxel v is detected in detector bin d

in SPECT or by the pair of detectors corresponding to the line of response d in PET. The system matrix

encompasses the geometry of the system (position of the detectors relative to the imaging volume; colli-

mator), the attenuation of γ-rays throughout the body of the patient, scattering of photons and randoms.

As a photon emitted in v propagates through the body, its direction can be altered by random scattering

events. The photon may then be detected in d after one or more scattering events, though having lost part

of its energy at the scattering sites. If one had sufficient computational resources, scatter and randoms

would be accounted for by expressing in each element of P the probability that a photon emitted in v is

detected in d accounting for scatter events. This involves integrating over all possible scattering sites and

accounting for multiple scatter events. It is immediately understood that the computational complexity

is too high.

Using a projector and back-projector that only account for un-scattered photons, the image quality

is degraded. In fact each detected pair of photons, regardless of whether one of the two or both have

scattered or not, is considered, in PET, to be emitted somewhere along the line of response corresponding

to the detector pair d excited by the two photons. Similarly, in SPECT, a photon detected in detector bin

d is assumed to be emitted from the cone of response centred in d (with probability weighted by the

Point Spread Function - PSF) regardless of whether the photon has scattered or not. However, often the

γ-cameras measure not only the coordinates of interaction of the γ-photons, but also their energy (though

both measurements are subject to uncertainty). The energy information can be used to discriminate and

discard scattered photons. The simplest algorithm to reduce the degradation of image quality due to

the use of simple forward models that do not account for scatter, consists in applying a threshold to the

measured energy, discarding photons with energy that falls below a threshold (Fig. 8.5 reports in blue

a typical measured energy spectrum, the green continuous line is the spectrum of un-scattered photons

and the red continuous curve is the spectrum of scattered photons). However, due to the noise associated

to the measurement of energy, some of the scattered photons are considered un-scattered and vice versa.
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In order to reduce the effect of confounded photons, the Triple Energy Window (TEW) algorithm uses

empirical formulae to correct the number of un-scattered photons obtained for each detector location

by energy thresholding. In both algorithms, the correction factor for each detector bin is derived from

the number of counts associated to photons with energy below a lower threshold and above a higher

threshold (the higher threshold is adopted only in case of multi-spectral radio-ligands with higher energy

yield). The rationale of this methods is that the number of photons with detected energy falling outside

of the energy window for the un-scattered photons is related to the number of photons that have scattered

but whose measured energy falls within the un-scattered region due to uncertainty in the measurement

of energy. The empirical correction factors reduce the counts in the un-scattered region accordingly.

However such algorithms are not derived from a model.

The question that arises is, if one could compute the system matrix that accounts for the scattered

photons, what would be the optimal use of the energy information from energy resolving gamma cam-

eras. The model described in the following addresses this question, though, on the side, also suggesting

algorithms for scatter correction that do not require the computation of the forward projection for the

scattered photons.

The trivial answer to the question of how make use the energy information, is to extend the model of

the emission imaging system described in chapter 7, considering the energy as an additional dimension

of the measurement and discretising it just like the coordinates of interaction, let’s say in NE bins. This

would require a slight modification of the model described in chapter 2-paragraph 2.3 (equation (2.45)).

The number of detector bins would be NE × Nd and the system matrix, of size [Nv × NdNE ] would

express the probability that a photon emitted in v is detected in d and the measured energy is Ee, with

index e = 1, 2, . . . , NE . The complexity of such model is dramatically higher than the complexity of

the model that does not account for the energy measurements. One may say that this is a case of the

curse of dimensionality. However the model, as expressed, hides certain factorisations, as discussed in

this chapter.

The chapter is divided in two parts. The first paragraph describes the joint model that occurs when

joining the probabilistic model of the tomographic imaging system of chapter 7 with the probabilistic

model of the gamma detectors of chapter 7. At this stage, scatter photons are disregarded. The joint

model suggests an algorithm for the automatic compensation of disrupted detectors.

The second paragraph extends the joint model described in the first paragraph, accounting for scat-

tered photons. While the model described in this chapter may be applied, nearly unchanged, to PET and

SPECT, it is described in the following in the context of SPECT only.

8.1 Joint estimation of the activity and of the events of interaction
As described in Chapter 7, a monolithic γ camera is composed of a collimator, a scintillator crystal, and a

planar array of photo-detectors. When a γ photon annihilates in the scintillator crystal, a cascade of decay
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processes determines the emission of low energy photons (secondary photons), whose number is of the

order of a few thousand (yield of the scintillator crystal). The secondary photons are detected by the array

of photo-detectors, which produce electrical signals in proportion to the number of detected photons.

Such signals are correlated to the location and energy of the γ interaction. By employing a model of

the response of the camera, one may infer the location of the interaction event and the energy of the γ

photon, computing task often referred to as reconstruction of the event of interaction. Reconstruction

of the events of interaction has been formulated in the probabilistic framework in chapter 7, modelling

the uncertainty associated to the measurement of the secondary photons produced by the scintillator

crystal by means of the Poisson distribution. The coordinates of interaction and energy are commonly

estimated with the Maximum Likelihood Estimator (MLE) for such Poisson model, as described in

chapter 7-paragraph 7.3. The position of iteration is a continuous function over the plane of the camera,

however the computational model described in chapter 2-paragraph 2.3 for the purpose of tomographic

reconstruction of the activity assumes discrete locations of interaction. Such model consists again of

a product of Poisson distributions. Both the models described in chapter 2 and in chapter 7 are non-

strictly concave and can be optimised with gradient ascent type algorithms such as MLEM. Due to

the statistics associated with the detection of secondary photons, the locations of interaction of the γ

photons with the camera have a degree of uncertainty (the scintillator crystals produce typical yields

of a few thousand secondary photons for the energies of interest in emission computed tomography,

determining typically around 5mm full-width-half-maximum uncertainty). Such uncertainty can be

accounted for in the reconstruction of the activity, and embedded in the system matrix P . In fact the

probability that a photon emitted in v is detected in d is now not only dependent on the attenuation and

collimator, but also on the probability that it interacts somewhere nearby d but it is detected in d. It is

often assumed that the uncertainty about the location of interaction is a normal distribution over the plane

of the camera centred in the MLE estimate d. The probability distribution of the location of interaction

is in fact asymptotically (high number of secondary photons) normal [115], with variance equal to the

inverse of the Fisher Information Matrix (FIM) associated with the camera model. Assuming normality,

the uncertainty about the location of the interaction events may be accounted for simply by adding a

convolution step in the projection and back-projection; the kernel of the convolution operator obtained

by inverting the FIM and is often referred to as intrinsic resolution. The uncertainty is, however, in

general strongly non-uniform across the camera due to the finite size of the secondary photo-detectors

and normality only holds asymptotically.

An important result of probability theory is the concept of complete statistics, which holds for

normal distributions. In our case the results of complete statistics tell us that if the probability distribution

of the location of interaction of an event, associated to the measurement of secondary photons is normal,

then the parameters of the normal are sufficient to describe the measurement. However, since the Poisson

model does not have sufficient statistics [116] (except in the asymptotic case), the probability distribution
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of the location of interaction does not have a synthetic representation, thus some information is lost when

one accounts for the MLE estimate of the location of interaction forgetting about the actual counts of the

secondary photons. Rather than considering the MLE estimates of the locations of the interaction events,

in the following we express explicitly the joint probability distribution of the activity, and of the location

of all events of interaction.

Figure 8.1: DAG of the joint model of the tomographic system and of the imaging device. Observed

variables are shaded. Photons are indexed by c = {1, . . . , Nc}. The variables ic are 1-of-Nd indicators

representing the location of interaction of photon c, with d = 1, . . . , Nd indicating the allowed discrete

locations of interaction. Activity λ = [λ1, . . . , λv, λNv ] is the unique cause of the Nc photon interac-

tions. The location of the interaction of photon c is the unique cause of the secondary photons vc. vc is

a vector of length Nk equal to the number of secondary photo-detectors (photo-multiplier tubes or solid

state detectors). A = avd describes the geometry of the system (collimator, attenuation map) and L the

system model of the gamma camera, relating the allowed locations of interaction to the expected count

of secondary photons.

The SPECT acquisition produces Nc photon interactions. Each interaction generates a vec-

tor of electrical signals vc = [vc1, vc2, . . . , vck, . . . , vcNk ] of length Nk, where k indexes the sec-

ondary photo-detectors. Let v = {v1, v2, . . . , vc, . . . , vNc} be the set of all the measurements; let

i = {i1, . . . , ic, . . . , Nc} be a set of Nc indicator functions, one for each photon interaction and Nd

be the number of allowed discrete locations of interaction, indexed by d = 1, . . . , Nd. Each indicator

ic takes Nd possible values ic = {0000 . . . 001, 0000 . . . 010, . . . }. Let Sysmat = avd be the probabil-

ity that a photon emitted in v interacts with the crystal in location d (notice that while in the previous

formulation (2.45) this was is detected, here it’s interacts; though subtle, this is the key difference). A

encompasses again the characteristics of the collimator, position of the cameras and the attenuation map.
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Let L = ldk be the probability that a secondary photon emitted from location d is detected by photo-

detector k. Assuming that all the detected gamma-photons have the same energy and letting E be the

product of the energy of the gamma-photon multiplied by the yield of the scintillator crystal and by the

quantum efficiency of the secondary photo-detectors, the photon counting processes that describe the

emission and interaction of the gamma photons and the detection of the secondary photons in the camera

are the following:

p(i|λ) =

Nd∏
d=1

P(

Nc∑
c=1

ic · ed;
Nv∑
v=1

avdλv) (8.1)

p(vc|ic) =

Nk∏
k=1

P(vck; [L · ic]kE) (8.2)

p(v|i) =

Nc∏
c=1

p(vc|ic) (8.3)

where P is the Poisson distribution and ed is a unit vector of length Nd with the element indexed by d

equal to 1. Recognising that the photon counts in detector bin are given by:

qd =

Nc∑
c=1

ic · ed (8.4)

equation (8.1) is the Poisson model described in chapter 2-paragraph 2.3. Equations (8.2) and (8.3)

express the model of the imaging device described in chapter 7-paragraph 7.2. the joint probabilistic

model of equations (8.1), (8.2) and (8.3) is represented graphically in Fig. 8.1. Let us indicate with q̄d

the expected photon counts in d given the activity:

q̄d =

Nv∑
v=1

avdλv (8.5)

On the optimum estimation of the locations of interaction

The probabilistic model of the imaging device described in chapter 7-paragraph 7.2 and expressed

here in equation (8.2), expresses the likelihood of the measurement obtained from the array of secondary

photo-detectors (for the photon interaction c) vc given the location of interaction of the photon. One

may, according to such model, estimate the location of interaction ic by maximum likelihood (ML). The

maximum likelihood estimator (MLE) for the location of interaction may be shown to be optimum in

the sense the L2-norm of the expected error. That is, if one measures vc, the best estimate that one can

obtain of the location of interaction ic is given by the MLE estimator.

However, though this appears to be the maximum resolution of the locations of interaction, the joint

model described in equations (8.1)-(8.3) and in Fig. 8.1, exposes that the location of interaction can be

measured with higher accuracy. Consider the following example. A small source of radiation, small

enough to be considered to be a point source, is placed in front of a planar monolithic gamma-camera
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equipped with parallel-hole collimator. The source is located at a given distance and the characteristics

of the camera and of the collimator are well known. One now collects a number of measurement vectors

v1, v2, . . . , vc, . . . , vNc . The location of interaction of each of the Nc photons is random, though con-

centrated around the point corresponding to the intersection of the line normal to the camera plane that

passes through the point source. One may therefore guess the location of interaction of photon c without

even looking at vc. If one considers the experiment of measuring vc alone, the fact that photon was

certainly generated by the point source at the known location, and the knowledge of the characteristics

of the imaging system, determine prior knowledge about the location of interaction. If the location of the

point source is not known, one may at first estimate the location of the source, and this can be estimated

with high accuracy from the multiple interactions, then re-estimate the location of interaction of each

photon at the light of the acquired (i.e. computed) information. When the source is more complex than a

point, the problem is unchanged. Referring to the DAG of the joint model of Fig. 8.1, if one disregards λ,

the interactions are independent ic ⊥ ic′ , c 6= c′. However, when the model includes λ, as in figure, the

interactions are no longer independent, although they are independent when the value of λ is given. This

is the same type of relation that holds between the activity and the photon counts, discussed in chapter

2 paragraph 2.3.2. Since the locations of interaction are no longer independent when one considers λ,

the measurement vc produces information also regarding the location of interaction of another photon.

Considering the tomographic, which includes multiple cameras, the photon interactions measured by one

of the cameras, provides information about the location of interaction of the photons in other cameras.

Joint estimation of the activity and of the events of interaction

Let us consider the problem of optimising jointly the model of equations (8.1)-(8.3) and Fig. 8.1

with respect to (λ, i).

λ̂, î = arg max
λ,i

p(λ, i|v) (8.6)

One approach to the joint optimisation is alternated optimisation (Iterated Conditional Modes), with the

following subsets:

• S1: λ

• S2: i

Therefore ICM consists in alternating the optimisation with respect to λ given provisional estimates

of the locations of interaction with the estimation of the locations of interaction given the provisional

estimate of the activity:

î(n+1) = argmax
i

p(i|v,λ(n)) = argmax
i

p(i|λ(n))p(v|i) (8.7)

λ̂
(n+1)

= argmax
λ

p(λ|v, i(n+1)) (8.8)
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The locations of interaction are independent conditionally to the activity: ic ⊥ ic′ |λ, c 6= c′. Therefore

(8.7) splits into Nc optimisations. Taking the log of (8.7), and considering that it factorises in Nc terms,

the optimisation regarding photon c consists in maximising the sum of two terms. One term is the

likelihood of the measurement, expressed by (8.2), and the other term is the prior probability that the

interaction happened in lc == ed, given by the activity and is expressed by the marginalisation of

(8.1) with respect to ic′ , c′ 6= c. This marginalisation is non trivial, however, it is simple to understand

intuitively, considering a simple example. Given λ, the number of expected photon counts in d is q̄d =∑Nv
v=1 avdλv . Then, if one considers a single photon interaction what is the probability that this happened

in d without looking at the measurement vc? It is proportional to the rate of events in d, therefore:

p(ic = ed|λ) =

∑Nv
v avdλv∑Nd

d=1

∑Nv
v avdλv

=
q̄d∑Nd
d=1 q̄d

(8.9)

Substituting in (8.7):

îc
(n+1)

= argmax
ic

log

∑Nv
v avdλv∑Nd

d=1

∑Nv
v avdλv

+
∑
k

− [[L · ic]k + vck log[L · ic]k] (8.10)

This can be maximised with the direct search algorithm described in chapter 7 paragraph 7.3 (Fig. 7.3).

Notice that ML estimation of the location of interaction, described in 7 paragraph 7.3 consists in max-

imising only the second term of (8.10). The computation of the first term consists in a single projection.

The optimisation of the activity given the provisional estimates of the locations of interaction (equa-

tion (8.8)), considering that p(λ|i(n+1), v) = p(λ|i(n+1)) ∝ p(i(n+1)|λ), can be performed with the EM

algorithm:

λ(n+1)
v = λ(n)

v

1∑Nd
d=1 avd

Nd∑
d=1

avd

∑Nc
c=1 i

(n+1)
c ed∑Nv

v′=1 av′dλ
(n)
v

(8.11)

8.2 Compensation of disrupted detectors
It is not uncommon that one or more photo-detectors of a γ-camera stop working due to hardware

failure. In this condition, the resolution of the camera in the region near the disrupted detector is lower,

as visualised in Fig. 8.2-left. We adopt the joint model for the estimation of the activity and the events of

interaction in order to compensate for the disrupted detector. A SPECT perfusion study is simulated with

the SIMIND Monte Carlo simulator with 50 × 106 counts and ideal, infinite resolution, gamma camera

(8.2-left). Events of interaction are filtered based on simple energy thresholding, in order to reduce the

effect of scattered photons. The γ interactions are simulated according to the solid angle model described
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in chapter 7 paragraph 7.6.1 for an array of 25 square photo-detectors of size 4×4cm, quantum efficiency

ν = 0.8 and 1cm thick NaI(Tl) crystal with yield of 53200 photons. The same simulation is performed

disabling two of the photo-detector.

Joint reconstruction of the activity and the events of interaction with 100 iterations of the ICM

algorithm show, at visual inspection, recovery of the lost resolution (Fig. 8.2-right). This is explained

by the flow of information amongst the cameras through the iterative process. Since the uncertainty at

the centre of the disrupted camera is large, the location of interaction of the photons is decided, as a

consequence of the joint model, in accordance to the observations of the other cameras.

8.3 Unified computational model of scatter
A common use of the information produced by the gamma cameras is to estimate the location of in-

teraction (regardless of the underlying activity), of each photon and to disregard the energy. A second

common use, especially in SPECT, is to select the photons that, according to the measured energy, are

likely to have scattered, and to disregard the rest (energy thresholding). Energy thresholding, or energy

windowing is a scatter rejection algorithm, or more appropriately, a reconstruction algorithm that ac-

counts for scattering and for the energy of the detected gamma photons, perhaps the simplest algorithm

of such sort. Let us extend the model described in the previous paragraph, to account for scattered pho-

tons. Let us consider the discrete variable sc = {0, 1} that indicates whether a photon has scattered on its

way to the detector, or not. One could consider other variables, such as an integer variable that indicates

the number of scattering events, but let us consider here the binary case. The DAG of the measurement

system is represented in Fig. 8.3. There is no energy windowing, a photon c detected by the gamma

camera has energy Ec. Let S = {σvd} be the probability that a photon emitted in v scatters and is de-

tected in d and let A = {avd} be the probability that a photon emitted in v is detected in d un-scattered.

(The probability that a photon emitted in v is detected in d is given by the sum σvd + avd).

p(i, s|λ) =

Nd∏
d=1

P(

Nc∑
c=1

scic · ed;
Nv∑
v=1

σvdλv)P(

Nc∑
c=1

(!sc)ic · ed;
Nv∑
v=1

avdλv) (8.12)

Let:

qPd ,
Nc∑
c=1

scic · ed (8.13)

qSd ,
Nc∑
c=1

(!sc)ic · ed (8.14)

As described in chapter 7 paragraph 7.2, the probability distribution associated to the measurement vc

when the energy and the location of interaction is known, is expressed by:

p(vc|ic, Ec) =

Nk∏
k=1

P(vck; [L · ic]kEc) (8.15)
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Figure 8.2: The red boxes represent the secondary photo-detectors. A) Visualisation of the uncertainty

in different locations of the detector obtained by reconstructing 10000 events for each of 9 locations and

histogramming the reconstructed locations of interaction on the detector plane. B) Histogram of the ML

reconstructions of the locations of interaction for one position of the gamma camera. C) Histogram of

the ideal locations of interaction for one position of the gamma camera, obtained under the assumption

of perfect reconstruction of the locations of interaction (no uncertainty associated to the measurement of

location of interaction of the gamma photons). D) Visualisation of the uncertainty in different locations

of the detector obtained again by reconstructing 10000 events for each of 9 locations and histogramming

the reconstructed locations of interaction on the detector plane. Two of the photodetectors are disrupted.

Uncertainty is much greater for photons that interact in regions near the disrupted photodetector. E)

Histogram of the ML reconstructions of the locations of interaction for one position of the gamma camera

with two disrupted photodetectors. Notice the the effect of the disrupted photodetectors in comparison

with B. F) Histogram of the reconstructions of the locations of interaction obtained, in the case of the

two disrupted photodetectors, by iterative joint reconstruction of the activity and of the locations of

interaction. Notice the recovery of resolution in the region of the gamma camera corresponding to the

disrupted photodetectors.

(notice that this is a slight modification of (8.3)). The conditional probability distribution of the mea-

surement given the location and scatter labels is expressed by the following integral (see the graph in

Fig. 8.3):
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Figure 8.3: DAG of the unified scatter model. Observed variables are shaded. Photons are indexed by

c = {1, . . . , Nc}. ic are 1-of-Nd indicator functions representing the location of interaction of photon

c, with d = 1, . . . , Nd indicating the allowed discrete locations of interaction. sc = {0, 1} is a binary

variable indicating whether photon c has scattered or not. Activity λ = [λ1, . . . , λv, λNv ] is the unique

cause of ic, sc. The location of the interaction and the scatter label of photon c are the unique cause of

the secondary photons vc. vc is a vector of length Nk equal to the number of secondary photo-detectors

(photo-multiplier tubes or solid state detectors). The energy of the photon Ec depends on whether is has

scattered or not. If one knew the exact location of interaction and the energy of photon c, the scatter

label sc would not add information about vc. A = avd and S = σvddescribe the geometry of the system

(collimator, scatter coefficients).

p(vc|ic, sc) =

∫
p(vc|ic, Ec)p(Ec|sc)dEc (8.16)

Joint estimation of the activity and of the scattered photons Let us consider the problem of optimising

jointly the model of equations (8.1)-(8.3) and Fig. 8.1 with respect to (λ, i, s).

λ̂, î, ŝ = arg max
λ,i,s

p(λ, i, s|v) (8.17)

Let us alternate the optimisation of the following two subsets:

• S1: λ

• S2: i, s

The optimisation of the activity, given the provisional estimates of i and s, consists in maximising

p(λ|i, s) ∝ p(i, s|λ), expressed by (8.12). p(i, s|λ) can be written as p(qPd , q
S
d |λ), with qPd and qPd

defined in (8.13) and (8.14). The Let us differentiate the log of (8.12):



8.3. Unified computational model of scatter 199

∂

∂λv
log p(qPd , q

S
d |λ) = −

Nd∑
d=1

(avd + σvd) +

Nd∑
d=1

(
qPd∑Nv

v′=1 av′dλv′
+

qSd∑Nv
v′=1 σv′dλv′

)
(8.18)

Therefore, rearranging the gradient, as described in chapter 3 paragraph 3.1.1, the MLEM algorithm for

the optimisation of the activity is the following:

λ(n+1)
v = λ(n)

v

1∑Nd
d=1 (avd + σvd)

Nd∑
d=1

(
avd

qPd∑Nv
v′=1 av′dλv′

+ σvd
qSd∑Nv

v′=1 σv′dλv′

)
(8.19)

The optimisation of i, s given the provisional estimate of the activity factors in Nc optimisations. Let us

indicate with Φ the cost function for the optimisation relative to photon c:

îc, ŝc = argmax
ic,sc

Φ(ic, sc) (8.20)

Φ(ic, sc) = log p(i, s|λ) + log

∫
p(Ec|sc)p(vc|Ec, ic)dEc (8.21)

Discretising the gamma camera in, e.g. 256 × 256 × 10 pixels, and considering that ic is binary, the

the dimensionality of the search space (ic, sc) is not large. We could therefore proceed by direct search.

However, the evaluation of the cost function requires the evaluation of the integral over the energy

reported on the left had side of (8.21). This may appear problematic for the fast estimation of the

location of interaction and scatter labels. However, considering, as explained in the following, that the

maximiser of the probability distribution of the location of interaction conditional to the scatter label is

independent of the energy, the integrals can be pre-computed and the optimisation can be performed with

a simple direct search algorithm of the type described in 7 paragraph 7.3 (Fig. 7.3). In order to select the

most probable value of ic and sc, we wish to compute the cost function log p(i, s|λ)+log p(vc|ic, sc) for

every value of ic and sc. Computing the cost function for all the values of ic and sc is trivially equivalent

to computing the cost function for all the locations ic for sc = 1 and then for all the values of ic for

sc = 0.

Φno-scatter(ic) = Φ(ic, sc = 0) = log p(i, s|λ) + log

∫
p(Ec|sc = 0)p(vc|Ec, ic)dEc (8.22)

Φscatter(ic) = Φ(ic, sc = 1) = log p(i, s|λ) + log

∫
p(Ec|sc = 1)p(vc|ic, Ec)dEc (8.23)

As one observes in equation (8.10), the maximiser of p(vc|Ec, ic) with respect to ic does not depend on

Ec. Therefore, moving this term out of the integral, the maximisers of (8.22) and (8.23) with respect to

the location of interaction do not depend on Ec:
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îc
no-scatter

= argmax
ic

Φno-scatter(ic) = argmax
ic

log
qPd∑Nd

d=1 q
P
d + qSd

+
∑
k

− [[L · ic]k + vck log[L · ic]k]

(8.24)

îc
scatter

= argmax
ic

Φscatter(ic) = argmax
ic

log
qSd∑Nd

d=1 q
P
d + qSd

+
∑
k

− [[L · ic]k + vck log[L · ic]k] (8.25)

The value of ic that maximises jointly the cost function with respect of ic, sc is one of these two.

(8.24) and (8.25) can be maximised by applying twice the direct search algorithm described in chap-

ter 7 paragraph 7.3 (Fig. 7.3). The joint maximiser of the cost function is either (îc
no-scatter

, sc = 0), or

(îc
scatter

, sc = 1). depending on which of the two gives a higher value of the cost function 8.21. The

evaluation of the cost function, however, involves the integration over the energy:

log

∫
p(Ec|sc = 1)p(vc|ic, Ec)dEc (8.26)

With p(vc|ic, Ec) expressed by (8.15):

p(vc|ic, Ec) =

Nk∏
k=1

P(vck; [L · ic]kEc) (8.27)

This, in the integration in (8.22) and (8.23), is a function of Ec with given parameters vc and ic The

integral (8.26) appears complicated due to the term of the integrand (8.27) being a product of functions

(Poisson distributions). However, applying the sum property of the Poisson function, (8.27) can be ex-

pressed as a function of Ec parametrised by the sum of the elements of vector vc, rather than a function

of Ec parametrised by vc. Since, as expressed by (8.27), the conditional probability distributions associ-

ated to vck are independent Poisson distributions, by the sum rule, the conditional probability distribution

associated to
∑Nk
k=1 vck is a Poisson distribution, whose expectation is the sum of the expectations of vck:

Vc ,
Nk∑
k=1

vck (8.28)

p(Vc|ic, Ec) = P(Vc;

Nk∑
k=1

[L · ic]kEc) (8.29)

This is equivalent to (8.27), but expresses explicitly the dependence on the sum of the elements of vck,

rather than on the values of vck considered one by one. Then (8.26) can be written as:



8.4. Continuous-energy scatter-rejection algorithm 201

log

∫
p(Ec|sc = 1)P(Vc;

Nk∑
k=1

[L · ic]kEc)dEc , f(sc, ic, Vc) (8.30)

f(sc, ic, Vc) can be pre-computed and stored in a look-up table as Vc is an integer between 0 and a few

thousand (maximum yield of the gamma-camera), sc is binary and the number of discrete locations of

interaction ic is of the order of a few thousand (e.g. 256× 256× 10). Each value in the table is obtained

by performing the integration (8.30). Substituting (8.30) in

Φ(ic, sc = 0) = log
qPd∑Nd

d=1 q
P
d + qSd

+ f(0, îc
no-scatter

, Vc) (8.31)

Φ(ic, sc = 1) = log
qSd∑Nd

d=1 q
P
d + qSd

+ f(1, îc
scatter

, Vc) (8.32)

In summary, the estimation of the location of interaction and scatter labels consists in 1 pre-

computation step and 5 run-time steps:

• Pre-computation

1. Evaluate f(sc, ic, Vc) (the integral of eq. (8.30)) for all values of ic, sc, Vc and store in a

loo-kup table.

• Run-time:

1. Compute the most probable location of interaction in case the photon has not scattered îc
no-scatter

(eq. (8.24));

2. Compute the most probable location of interaction in case the photon has scattered îc
scatter

(eq.

(8.25));

3. Compute the integral of the measurement Vc (eq. (8.28));

4. Extract from the look-up table f(0, îc
no-scatter

, Vc) and f(1, îc
scatter

, Vc);

5. Compute the cost function (eq. (8.31)-(8.32)) and decide between (ŝc = 0, îc = îc
no-scatter

) and

(ŝc = 1, îc = îc
scatter

).

8.4 Continuous-energy scatter-rejection algorithm
The algorithm described in the previous paragraph iteratively updates the activity, making use of the

un-scattered and of the scattered photons. The decision of whether a photon has scattered or not is

re-instantiated at every iteration and it is based on the detected energy and on the expected number of

scattered photons at the location of interaction, relative to the total expected number of photons (scattered

and un-scattered). Both steps of the algorithm (update of the activity and update of the location of
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interaction and scatter labels) require the computation of the un-scattered projection Aλ and of the

scattered projection Sλ. Additionally, update of the activity requires the computation of the un-scattered

back-projection AT (·) and of the scattered back-projection ST (·).

Computing the scatter projection and back-projection at every iteration is, in general, computation-

ally demanding. This paragraph investigates the simplest forward model of scatter: the scatter operator

S is assumed to be a matrix of ones scaled by a known scaling factor η:

S = η ·


1 1 . . . 1

1 1 . . . 1

. . . . . . . . . 1

1 1 1 1

 (8.33)

With such imaging matrix, the projection is identical for every value of d and equal to the integral sum of

the activity scaled by η. The use of scatter matrix (8.33) in the model described in the previous paragraph

has two implications:

1. Scattered photons are nearly not informative of the activity. The expression of the conditional

probability distribution of i, s of equation 8.12 simplifies to:

p(i, s|λ) =

Nd∏
d=1

P(

Nc∑
c=1

scic · ed; η
Nv∑
v=1

λv)P(

Nc∑
c=1

(!sc)ic · ed;
Nv∑
v=1

avdλv) (8.34)

The observation of the scattered photons (ic = 1) defines a probability distribution over the sum

of the activity. The scattered photons are therefore informative only of the integral sum of the

activity. Differentiating the expression (8.34), the MLEM algorithm of equation (8.19), in the case

of scatter matrix (8.33) is:

λ(n+1)
v = λ(n)

v

1∑Nd
d=1 (avd + η)

Nd∑
d=1

(
avd

qPd∑Nv
v′=1 av′dλv′

+
qSd∑Nv

v′=1 λv′

)
(8.35)

2. The expected number of scattered photons given the activity is identical for all the detector loca-

tions:

q̄Sd = ν

Nv∑
v=1

λv (8.36)

Notice that the decision of whether a photon has scattered or not still depends on the current

estimate of the activity. In fact the decision of whether the photon has scattered or not depends on

qSd and on qPd (see eq. (8.31)-(8.32)). Adopting the matrix-of-ones approximation, qSd is constant,

but qPd is not.
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In order to evaluate the algorithm, a synthetic brain perfusion phantom simulating the uptake of

Technetium-99m was projected with the Simind Monte Carlo simulator, with the parameters of a stan-

dard SPECT scanner with LEHR parallel-hole collimator. The data was collected in list mode, recording

the location of the annihilation and the energy of each event of interaction for 50 × 106 events. The Si-

mind simulator also records the number of scatter events for each photon. The interaction of the gamma

photons with the gamma camera was simulated according to the solid angle model described in chap-

ter 7 paragraph 7.6.1, for an array of 25 square photo-detectors of size 40× 40mm, quantum efficiency

ν = 0.8 and 10mm thick NaI(Tl) crystal with yield of 38photons/KeV (corresponding to 5320 average

secondary photons for the un-scattered gamma photons emitted by Technetium-99m at 140KeV ). Each

interaction was simulated by computing the 25 expected detector read-out signals and adding Poisson

noise.

In order to achieve convergence, the MLEM algorithm was replaced by the OSL-MAPEM algorithm

with smoothness prior. The level of smoothness was set empirically to achieve convergence within 100

iterations. The joint reconstruction was then obtained by alternating for 100 iterations the update of the

activity and the update of the labels. The parameter η, expressing the ratio between the scattered photons

and the un-scattered photons, was assumed to be known:

η =

∑
d

∑
v σ̃λv∑

d

∑
v ãλ̃v

(8.37)

Where ã and σ̃ indicate the exact system matrices utilised in the Monte Carlo simulation and λ̃ the

true activity. Fig. 8.4 reports the binned photon counts obtained for the camera at location 0o (i.e. the

viewgram at angle 0o). Image (A) displays the photon counts binned regardless of their energy (scattered

and un-scattered). Images B and C display the photon counts obtained by counting the photons with

identical location labels ic for sc = 0 (B) and for sc = 1 (C) at convergence. Fig. 8.5 displays the

histogram of the integral number of secondary photons.

A                                       B                                       C

Figure 8.4: Synthetic brain perfusion SPECT imaging. A) viewgram considering all photons (energy is

discarded); B) reconstructed viewgram of un-scattered photons; C) reconstructed viewgram of scattered

photons.
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Figure 8.5: Histogram of the integral sum of the secondary photons. The histogram obtained only with

the scattered photons is coloured in red; the histogram obtained with the un-scattered photons is coloured

in green. Circles indicate the histogram obtained with the ground truth labels (from the Simind Monte

Carlo simulator). Solid lines indicate the histograms obtained according to the estimated labels.
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Chapter 9

Estimation of the information retrieval

Probabilistic models for emission tomography have proven more effective than the early deterministic

models as they allow us to account for the intrinsic uncertainty of the emission measurements and to em-

ploy accurate models of the imaging systems. Furthermore sources of information other than the photon

counts may be embedded in the reconstruction process. Another important advantage of the probabilistic

formulation is that by describing the measurements as random variables, one may establish the relation-

ship between the measurements and the uncertainty in the reconstructed images. The work described in

this chapter addresses the estimation of the uncertainty of the reconstruction and the optimisation of the

design of the imaging systems under the information theoretic pespective.

ML and MAP are point estimators of the posterior probability distribution that one associates to

the unknown variables (the concentration of radio-pharmaceutical in each voxel). However, in the fully

Bayesian apporach, one is interested in the full posterior probability distribution of the unknown vari-

ables, rather than the point that maximises it. The posterior probability distribution of the unknown λ is

readily expressed analytically by equation (3.19) (and equations (2.44), (2.45) for the Poisson model).

Such expression of the posterior represents the joint probability distribution over all the components of

vector λ when photon counts q are observed; this expression can be marginalised with respect to all the

components of vector-valued λ except for the v-th, obtaining the probability distribution p(λv|q) associ-

ated to the uptake of pharmaceutical in v. A synthetic representation of the uncertainty about the uptake

in v, such as the second moment (variance) of p(λv|q) could be used to inform decisions related to the

uptake of radio pharmaceutical in voxel v, either visually or in an automated decision process. More in

general, the posterior probability distribution p(λ|q) can be integrated in order to obtain the probability

distribution not only of the uptake in a voxel, but of derived measurements, such as the integral uptake

in a region of interest. Such measure of uncertainty may be employed to inform design choices for new

imaging systems. One family of algorithms for the integration of the posterior that has become popular

in other fields in the last few years is based on posterior sampling techniques (Markov Chain Monte

Carlo - MCMC). However neither sampling techniques nor deterministic integration schemes are viable

due to the high dimensionality of p(λ|q). Instead, this chapter describes the use of the Laplace approxi-
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mation for the estimation of the posterior probability distribution of the activity and of its marginals and

an algorithm based on the sparsification of the Hessian of the log-posterior for the efficient computation

of information measures.

9.1 Information Retrieval
Let us consider an imaging system whose response is a function of a set of parameters ξ.

pξ(q|λ) (9.1)

In the case of the Poisson model 2.3, the probabilistic interaction between λ and q is regulated entirely

by the system matrix. (Notice that this is not the case e.g. with the homoscedastic Gaussian model 3.3,

where pξ(q|λ) is parameterised by the imaging matrix A and by the parameter σ). Let us denote by Aξ

the system matrix, dependent on the parameters of the acquisition system, then we can write:

pξ(q|λ) =

Nd∏
d=1

P (qd; [Aξλ]d) (9.2)

Upon observing q with parameters ξ, the probability distribution associated to λ is:

pξ(λ|q) =
pξ(q|λ)p(λ)

pξ(q)
(9.3)

with

pξ(q) =

∫
pξ(q|λ)p(λ)dλ (9.4)

One can then express information measures such as (see [117] and [91]):

Eλ|q(ξ) =

∫
pξ(λ|q) log pξ(λ|q)dλ (9.5)

and

Eλv|q(ξ) =

∫
pξ(λv|q) log pξ(λv|q)dλv (9.6)

with

p(λv|q) =

∫
p(λ|q)dλv′ 6=v (9.7)

Equation (9.5) expresses the information that one would have about λ upon observing q and (9.6) the

information that one would have about the unknown variable in voxel v. Measures of information related

to functions of λ, such as the integral uptake in a region of interest, can eventually be expressed via the

distribution function method. Let us denote with κ the function of λ that we are interested in:

Eκ|q(ξ) = f(pξ(λ|q)) (9.8)

Eκ|q encompasses (9.5) and (9.6) for κ = λ and κ = λv .
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If the variable of interest is κ, the system should be designed in order to retrieve maximum infor-

mation about κ. Equation (9.8) expresses the information that one would have about κ upon observing

q. Integrating over the probability distribution associated to q (9.4):

Eκ(ξ) =
∑
q

pξ(q)Eκ|q(ξ) (9.9)

The global measure of information about λ of (9.6) (i.e. for κ = λ), is expressed by:

Eλ(ξ) =
∑
q

pξ(q)

∫
pξ(λ|q) log pξ(λ|q)dλ = (9.10)

=
∑
q

pξ(q|λ)p(λ) log pξ(λ|q)dλ (9.11)

9.1.1 Bayesian versus frequentist design optimisation

In the frequentist framework, as discussed in 3, an optimum design is one that produces, over many

observations, the least error in the representation that one constructs about the true values (low bias),

while minimising the difference across observations (low variance) and making the observations statis-

tically independent (diagonal covariance matrix). The frequentist framework emphasises the existence

of a true underlying image. In order to select an optimum design, one would start with a known value

of λ (a phantom), and search, through the numerical simulation and reconstruction of multiple instances

of the measurement for each candidate design parametrisation, for the design parameters that produce

the best combination of bias and covariance. The difficulty, in the frequentist framework, is to estab-

lish a principled design cost function that expresses how favourable is a certain combination of bias and

covariance.

In the Bayesian framework described in the previous paragraph, there is no concept of true image. A

given measurement of the photon counts provides information about the underlying activity, the posterior

distribution of the activity expressing the state of knowledge that one has about the activity after the

observation. A set of design parameters is considered optimal if, considering all possible values of

the underlying activity and all possible measurements that the machine may consequently produce, the

information that the system retrieves about the variable of interest is maximum. The variable of interest

is not necessarily the entire vector valued variable λ, but perhaps the activity in one voxel, or a function

of λ.

It is somewhat simpler to define optimality criteria in the Bayesian framework. If one is interested

in the integral uptake in the grey matter region, then the measurement should maximise the information

associated to such scalar variable, which is a linear function of λ. However, direct implementation of

the Bayesian formulation of the previous paragraph is unfeasible due to computational complexity. It is

clearly unthinkable to integrate over all possible values of λ and all possible values of q.

While the frequentist approach focuses on the true value of λ, suggesting, in the basic formulation,

to optimise the imaging system for the observation of one given object, the Bayesian approach, in the
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basic formulation, suggests to integrate over all possible values of λ. The integration over λ and over

q that occurs in the Bayesian approach constitutes a tremendous challenge, but there is a second, more

subtle difficulty. As expressed by equations (9.3)-(9.11), the optimum design depends (through equation

(9.3)) on the prior belief about λ. The probability distribution p(λ) expresses the state of knowledge

that one has about λ a priori. However the choice of a mathematical model, i.e. a functional form of

p(λ), is affected by considerations of computational complexity and of complexity of the mathematical

formulation. The smoothing prior, though convenient for the simple formulation and for the simplicity

of the algorithms that it yields, does not express the prior belief that one truly has about λ. Therefore,

the optimum design expressed by the formulae of the previous paragraph is the optimum design that

one would have to use if p(λ) were her prior belief about λ. In brain imaging, one expects the activity

to resemble the shape of a brain. However such qualitative prior knowledge is difficult to encode. In

the frequentist framework, such knowledge appears to be expressed, to some extent, by the choice of

the phantom; though optimising the system for the observation of a single object is a limitation. In the

Bayesian framework described in the previous paragraph, there does not seem to be a way to express

such knowledge. If one assigns p(λ) = δ(λ− λ̌), the posterior probability distribution (9.3) becomes a

delta function and information is infinite for any choice of the design parameters.

The next paragraph addresses this difficulty, describing an algorithm that learns the optimum design

parameters from random observations. Incidentally, the formulation of the next paragraph addresses the

computational complexity of the Bayesian design optimisation problem.

9.2 Information Gain
Bob constructs the machine pictured in Fig. 9.1 and gives it to Alice as a gift. The machine is controlled

by two buttons (N and M) and a knob and it displays information through two numerical displays A

and q. When you press button N, Bob tells Alice, a new value of vector-valued variable λ is generated

according to a secret set of rules. However, the machine does not display λ, it displays q, which is

equal to λ multiplied by A, plus a random number. The random numbers are generated according to the

Poisson distribution: p(qd|λ) = P (qd; [Aλ]d). The random numbers make it difficult for you to guess

λ, says Bob, however, button M generates a new value of q, while λ remains unchanged. The knob

regulates, according to a deterministic set of rules, the values of A.

Alice is determined to understand how the machine generates λ. She decides to write down the

values of A for every possible position of the knob. Then she starts playing with the buttons and she

writes down all the numbers that are generated by the machine. After a while, she has reason to believe

that the values of λ are related spatially. On average, if the value of λ is large in location d, it seems to

be large in the nearby display locations; if it is small, it appears to be small in the nearby locations. Alice

realises that there is more; there seem to be certain patterns in the data, which she cannot yet describe.

At some point, Alice, frustrated by the attempt of understanding the set of rules that produces λ,
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133 234 546 749 132 231

1.0   1.5   2.2   1.5       

??? ??? ??? ??? ??? ???

1.0   0.5

N

M

Figure 9.1: Machine for iterative design experiments. Button N generates a new value of λ, button M

generates a new value of q, which is a noisy realisation of Aλ. The knob regulates the parameters of A.

The machine does not display λ. The set of rules that generates λ when N is pressed is unknown.

considers that if she kept pushing M infinite times, she would eventually know what is the true value of λ

as long as all values ofA are non-zero, which is the case for all knob positions. Then, she wonders, given

the numbers that the machine is currently displaying (q1), obtained with the knob in the current position

(ξ1), in which position should she set the knob in order to acquire as much knowledge as possible about

λ the next time she presses M. She decides to use the information that she has gained about λ and

encodes it with the assumption that λd+1 must be normally distributed if λd is known. She parametrises

the normal distribution using the values that she had noted down. Her state of knowledge about λ is

expressed by:

p(λ|q1) =
pξ1(q1|λ)p(λ)

pξ1(q1)
(9.12)

pξ1(q1) =

∫
pξ1(q1|λ)p(λ)dλ (9.13)

Her state of knowledge after performing the measurement with the new parameters ξ2 will be expressed

by:

p(λ|q1, q2) =
pξ1(q1|λ)pξ2(q1|λ)p(λ)

pξ1,ξ2(q1, q2)
(9.14)

pξ1,ξ2(q1, q2) =

∫
pξ1(q1|λ)pξ2(q2|λ)p(λ)dλ (9.15)

Integrating over all possible values of q2:

Eλ(ξ2) =
∑
q2

pξ2(q2|q1)

∫
p(λ|q1, q2) log p(λ|q1, q2)dλ (9.16)

pξ2(q2|q1) =

∫
pξ2(q2|λ)p(λ|q1)dλ (9.17)

Eλ(ξ2) expresses the information that Alice expects to gain from the measurement performed with

parameters ξ2. Notice that this expression coincides with (9.11) if p(λ|q1) is replaced by p(λ). In

fact, according to the Bayesian formulation of paragraph 9.1, the optimum design depends on the prior

probability distribution assigned to λ. In the iterative design experiment performed by Alice, the first

measurement defines the prior probability distribution of λ for the second measurement. Therefore
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p(λ) is replaced by p(λ|q1). The estimation of the information gain (9.16), therefore, entails the same

computational complexity as the estimation of the information retrieval (9.11). However, after observing

q1, the posterior probability p(λ|q1) is reasonably narrow (while p(λ) in (9.11) is very broad in case of

smoothing prior). This consideration suggests to approximate pξ2(q2|q1):

pξ1(λ|q1) u δ(λ− λ̂1) (9.18)

λ̂1 = argmax
λ

p(λ|q1) (9.19)

pξ2(q2|q1) u δ(q2 −Aξ2λ̂1) (9.20)

Substituting in (9.16):

Eλ(ξ2) u
∫
p(λ|q1, Aξ2λ̂1) log p(λ|q1, Aξ2λ̂1)dλ (9.21)

The integration over λ is computationally complex. One way to greatly simplify the problem is the

Laplace approximation, discussed in the next paragraph (9.3). The posterior distribution of λ is approxi-

mated with a normal probability distribution, that is the logarithm of p(λ|q1, q2) is approximated with a

second order polynomial. Such approximation reveals especially convenient, making the integration of

p(λ|..) log p(λ|..)dλ trivial. The Laplace approximation of (9.14) is:

p(λ|q1, q2) u N
(
λ; λ̂1,Γ2

)
(9.22)

Γ2 = [F1 + F2 +R]
−1 (9.23)

with F1 being the Hessian of log p(q1|λ), F2 the Hessian of log p(q1|λ|) andR the Hessian of log p(λ),

as explained in detail in the next paragraph. Shannon information (9.16) of a multivariate normal dis-

tribution is the determinant of the covariance matrix. If the measurement (button M) is repeated several

times, the n-th optimum parameter is expressed, under the Laplace approximation, by:

Eλ(ξn) =
1

2
log 2πe DET

[Fξ1(q1) +

n∑
i=2

Fξi(Aξi
ˆλi−1) +R

]−1
 (9.24)

λ̂n = argmax
λ

∑
i=1

n log p(qi|λ) + log p(λ) (9.25)

With normal posterior, it is straightforward to compute the marginals. The information about the activity

in voxel v is:

Eλv (ξn) =
1

2
log 2πe

diag

[Fξ1(q1) +

n∑
i=2

Fξi(Aξi
ˆλi−1) +R

]−1


v

(9.26)

where diag[] is the vector of the diagonal elements of the square matrix given as argument.
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9.3 Laplace approximation and sparse Fisher Information Matrix
The posterior probability of the activity given the photon counts is expressed by the product of the Pois-

son likelihood and the prior. Though we can write the analytical expression of the posterior distribution,

calculating its statistical properties such as the variance, its marginals and the information associated to

the distribution and to the marginals is very computationally complex due to the large dimensionality of

the problem. However such properties are trivial to compute for normal distributions. If the posterior

probability distribution is twice differentiable, one may compute the parameters of the normal distri-

bution that approximates the posterior. The derivatives of order greater than 2 of the log of a normal

distribution are zero, as the log of the normal distribution is a polynomial of order 2. The posterior prob-

ability distribution may then be approximated with the probability distribution whose log is the second

order polynomial with coefficients given by the Taylor expansion of the log of the posterior around its

mode λ̂, truncated to the second order. Notice that the first derivatives vanish around the mode, therefore

leaving only the second derivatives. The approximation is exact if the derivatives of the posterior of

order greater than 2 are zero (in which case the posterior is normal). The matrix of the second order

derivatives of the log of a normal distribution (the Hessian H) is the inverse of the covariance matrix,

indicated with Γ. Therefore:

p(λ|q) u N
(
λ, λ̂,Γ

)
(9.27)

Γ = H−1 (9.28)

The Hessian of the log posterior is the sum of the Hessian of the log likelihood (F ) and the Hessian of

the log prior (R):

H = F +R (9.29)

The Hessian of the log likelihood may be referred to as Fisher Information Matrix (FIM). In the case of

Poisson likelihood, differentiating (2.45), F has the following expression:

Fij =
∂2

∂λi∂λy
log p(q|λ)|λ̂ =

M∑
d=1

aidajd∑N
v=1 avdλ̂v

(9.30)

Paragraph 9.3.2 describes how the elements of the FIM can be computed efficiently with a highly par-

allel computing system. Computing the parameters of the normal distribution and, consequently the

information expressed in (9.24) and (9.26), requires the inversion of H +R.

9.3.1 Sparse Fisher Information Matrix

In the previous section we have described how the Fisher Information Matrix can be employed to char-

acterize the uncertainty of the reconstruction. Unfortunately computing the FIM inverse is intractable

since we are dealing with a large matrix of size N ×N = (Nx ×Ny ×Nz)2.

A computationally efficient approximation for the calculation of the inverse of the FIM has been

previously proposed in the context of the design of space-variant penalties that yield to space-invariant
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impulse response functions [35] [36] [44]. Qi et al. [44] argued that if it is reasonable to assume that the

FIM varies slowly with position and if one is interested in calculating the effects of a quadratic prior in

terms of bias and variance in a voxel i, then it is acceptable to ignore the shift-variance of the FIM. The

FIM is then replaced with a circulant matrix obtained by shifting the row corresponding to one voxel

location (i.e. one value of i in (9.30)). This local approximation of the FIM is obtained by replacing all

rows of the FIM with the shifted version of its i− th row and then by inverting this shift-invariant matrix

in order to estimate the variance associated to voxel i. This approximation is referred to as the circulant

approximation, since it simply reduces the FIM to a circulant matrix. This makes the computation of

the information tractable as the inverse of a circulant matrix is a circulant matrix whose row i can be

computed using the Discrete Fourier Transform (DFT) (see e.g. [35]).

Such approximation, while appearing well suited for the estimation of the uncertainty for systems

whose response can be approximated as shift-invariant, does not account for the global interdependence

between the estimates in all the voxels and therefore can not incorporate the effects of long-range corre-

lations (e.g., evaluation of the effects of data truncation or missing data).

This thesis proposes a different approach for calculating the inverse of the FIM. This formulation

reduces the computational complexity in inverting the FIM but nevertheless accounts for the global

interdependence between the variables. The FIM is calculated over a subset of the voxel indexes G ⊂

[1, . . . , N ] arranged in a grid that covers the whole volume. We define a sparse version of the FIM

calculated over a subset λG of the full set of parameters λ:

FGij =

M∑
d=1

aidajd∑N
v=1 avdλv

with i, j ∈ G (9.31)

where aid is the element of index (i, d) of the system matrix: A = {aid}. The expression in equation

(9.31) is equivalent to saying that, in the estimation of the covariance, we are accounting for the interde-

pendence between a subset of voxels i, j ∈ G only, assuming that, for the remaining voxels i, j /∈ G, the

MAP estimate λ̂ is equal to the true value of λ. The inverse of such kind of sparse matrix is a matrix with

the same structure. Therefore, the inverse of the covariance matrix is obtained by inverting FGij +RGij :

Γ(λ̂G) = [FG +RG]−1 (9.32)

The number of elements in the full FIM equals N2, whereas the number of elements of the sparse FIM

equals N2
G; therefore reducing the computational burden in inverting the sparse FIM.

The Hessian of the quadratic penalty R is not dependent on λ and therefore can be precalculated.

Analogously to F , the sparse version of the quadratic penalty RG is obtained by selecting the elements

of the matrix R that correspond to the points in the grid.

Two examples of grids are pictured in Fig. 9.2, for a small imaging volume of 6 × 6 × 6 voxels.

In Fig. 9.2-A the grid accounts for the interdependence between every point in the imaging volume, in

Fig. 9.2-B, the grid accounts for the interdependence between half of the voxels in the imaging volume.
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This model allows the user to design the grid and therefore to define the degree of approximation in the

calculation of the FIM.

Figure 9.2: Example of grids for the estimation of the uncertainty. A (top left) the grid accounts for the

correlation between every point in the imaging volume (full FIM). B (top right) the grid accounts for the

correlation between 1/8 of the voxels in the imaging volume (sparse FIM). C (Bottom right) The central

plane of the grid displayed in A. D (Bottom left) The central plane of the grid displayed in B.

9.3.2 GPU Implementation

Every element of the FIM at the grid points is calculated exactly, accounting for the acquisition geometry

and the object without further approximation. If the grid has NG nodes, the FIM is of size NG×NG and

symmetrical, so filling the matrix requires the computation of 1
2N

2
G+ 1

2NG elements. Naive computation

of the FIM requires one projection for the denominator of (9.31) and M sums of products (SOPS) for

each of the 1
2N

2
G + 1

2NG elements of the half FIM. The proposed algorithm is inspired by the rotation-

based algorithm proposed by Zeng and Gullberg [118]. The collimator-detector response is captured by a

depth dependent Point Spread Function (PSF). Information being additive over the detector bins, the FIM

element Fij is the sum of Fmij contributions from the M camera positions indexed with m = 1, · · · ,M .

The algorithm is based on interpolation of the activity and of the FIM grid on a regular grid aligned with

each camera. By re-interpolating the activity and the FIM grid on a regular grid, the PSF can be applied

more efficiently in the frequency domain as all points that are at a given distance lie on the same plane.

The PSF is non-zero within a box X (see Fig. 9.3). The algorithm for the evaluation of the elements of

the FIM consists of the following steps:

1) Compute projection of λ for each camera position.

2) Compute FIM elements for each camera position:

a. Re-sample the FIM grid positions on the voxel grid parallel to the camera by tri-linear interpola-

tion.

b, For each pair of points i, j in the FIM grid
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Figure 9.3: Rotation-based algorithm for fast computation of the Fisher Information Matrix: 3-D

schematic representation. Algorithm: 1) For each Gamma camera (grey plane) position, the activity

λ is resampled on a regular grid parallel to the camera plane and projected; 2) The grid points (yellow

spheres) for the Fisher Information Matrix (FIM) are reinterpolated on the same parallel grid; 3) For each

pair of points in the FIM grid, the FIM element is updated with the information relative to the current

camera, which only depends on the region of the projection Z (black square) where the two PSFs Xi

(red square) and Xj (blue square) intersect.

i. Compute coordinates of the box Z, on the camera plane, where the two PSFsXi Xj intersect

(if they intersect).

ii. If Xi and Xj intersect, update the FIM element by integrating (9.31) over the intersection

box Z.

The algorithm is implemented in the CUDA programming language for parallel execution on Graphics

Processing Units (GPU). Tri-linear re-sampling is performed in hardware by the texture fetch unit of

the GPU at the cost of a single memory access. Coalesced memory access is achieved by partitioning

the memory transfers in blocks. The convolutions are calculated with the 2D-FFT and IFFT routines

included in the NVidia CUFFT library. A tailor made GPU kernel computes the projection (sum of

planes) with high device occupancy and maximizes memory coalescing. A second kernel computes the

integral in each intersection box (2-b-ii): each GPU thread computes the integral (for the current camera

position), for a pair of points in the grid, so that the integrals for multiple pairs are evaluated concurrently

on the multi-processors of the GPU. Each thread decides if the two PSFs intersect, then it loads from the

global memory of the GPU device the sections of the PSFs that intersect and the projection data in the

area of intersection Z (see Fig. 9.3). Finally, the thread computes the integral (2-b-ii) in the intersection

box. After completion of the partial FIM for a single camera, the process is repeated for another camera,

accumulating the elements of the FIM, as, according to (9.31), information is additive. Computation

times are reported in table 9.1. The GPU-accelerated algorithm for the computation of the FIM has been

integrated in the Niftyrec reconstruction software toolbox and has Matlab and Python interfaces which

enable real time scripting interaction and full flexibility in the definition of the grid.
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Table 9.1: Computation times for the calculation of the FIM and its inverse.

g1 g2 g3

Grid Size 27648 6912 3072

NVidia GeForce GTX-285 348s 30s 19s

Multiple instances of noise 18 hours

9.3.3 Effect of the approximation of the FIM

In the following we explore the use of the approximate analytical method described in section 9.3.1 for

the estimation of the uncertainty in emission imaging systems.

In order to evaluate the method described in the previous paragraph, one may proceed, as reference

method, by sampling the posterior probability distribution with a posterior sampling technique. However,

posterior sampling is very computationally expensive. An alternative to evaluate the effect of the sparse

FIM is to employ the FIM to estimate the covariance matrix of the MAP estimator. The covariance of the

MAP estimator, defined in 3 ((3.34)), is the matrix that describes how spread are the estimates of λ on

average (over many repeated measurements) for a given true value of the activity. The covariance matrix

of the MAP estimator, which we denominate in the reminder of this chapter ΓMAP is (subtly) related

to the covariance matrix that describes the uncertainty about λ from the single experiment Γ, defined in

paragraph 9.3. While there is no explicit expression of the covariance matrix of the MAP estimator for

the Poisson model, Fessler has derived the first order approximate expression:

ΓMAP (λ̂) ≈ [F +R]−1 · F · [F +R]−1 (9.33)

The covariance matrix of the MAP estimator can be computed by performing the reconstruction, until

convergence, of multiple instances of the measurements for a given true value of the activity, as de-

scribed in chapter 3. In order to evaluate the effect of the sparse approximation, therefore we proceed

by comparing ΓMAP obtained with the analytical expression 9.33 with the covariance obtained with the

multiple noise instances.

For the reference method, a series of independent noise realisations were computed using a pseudo-

random Poisson noise generator (from the IRT toolbox [60]), based on the rejection sampling algorithm

described at page 293 of [61]. The noisy data sets were reconstructed using the GPU-accelerated im-

plementation of the One Step Late algorithm for MAP estimation, implemented as part of the NiftyRec

toolbox. 10000 iterations were performed. A smoothing prior with a small weight was included in the

cost function. The value of the smoothing parameter was chosen after trial and error, as a minimum

value that guarantees convergence within 10000 iterations. The calculation of the variance was based on

10240 instances of the measurement (the number of noise instances is a multiple of 1024 as NiftyRec can
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process concurrently up to 1024 reconstructions in order to make efficient use of the GPU. As discussed

in chapter 3, the number 10240 was chosen in order to obtain visually satisfactory plots of the covariance

matrix). Though often variance is calculated with much smaller sample size and number of iterations, we

found that such large numbers are necessary to obtain estimates of the covariance comparable with the

estimates obtained with the analytical methods based on the inversion of the Fisher Information Matrix.

The sparse version of the FIM has been calculated over three different grids of g1 = 27648, g2 =

6912 and g3 = 3072 points equally distributed over the central axial slice and the two neighbouring

slices. The volume was discretised in 96× 96× 12 voxels, therefore grid g1 samples fully over the three

slices of interest (27648 = 96 · 96 · 3). In the following, the FIM for grid g1 will be referred to as the

full FIM.

The variance images in Figures 9.4 (B-C-D), 9.5 (B-C-D) were obtained by re-ordering the diagonal

of the covariance matrix ΓMAP calculated as in (9.32). For the full FIM (g1), the diagonal of ΓMAP is

simply reshaped to a three dimensional matrix, whereas for grids g2 and g3 every point of the diagonal of

ΓMAP is allocated to the respective points of the grid in the imaging volume. A tri-linear interpolation

is then performed in order to facilitate the visual comparison between the variance images obtained with

the different grid strides. It should be noticed that a direct interpolation on ΓMAP can not be performed.

A more closely spaced grid gives a more precise estimation of the variance but increases the com-

putational complexity of the estimation. The computation time needed to calculate the FIMs and their

inverse are presented in table 9.1. Variance images obtained with the circulant approximation are also

presented for comparison.

We performed two different sets of experiments with different software phantoms and different

system models. First, the calculation of the variance obtained with the approximated analytical method

based on the sparse FIM is validated for a realistic phantom. Secondly, in order to emphasise the benefits

of the sparse approximation of the FIM with respect to the circular approximation, we show how it can

be employed to calculate the reconstructed image quality in the case of region-of-interest reconstruction

from truncated projection data.

Both experiments are based on the simulation of the response of a standard SPECT system with

parallel-hole collimator.

NCAT Phantom The SPECT system is based on a detector system of size 236.16 mm × 236.16 mm.

The detector rotates over 360◦ at a regular angular step of 2◦ around the centre of the imaging volume.

The imaging volume dimensions are 96 × 96 × 12 cubic voxels of 2.4 mm. Photon counts are binned

on a grid of 96× 96 pixels of 2.46 mm in size and the detector is placed at a distance of 133 mm from

the centre. We consider a low energy high resolution (LEHR) parallel hole collimator, characterised

by point spread function (PSF) with full width at half maximum FWHM = 7.89 mm and efficiency

1.55%. In this study we assume that the detectors have a perfect absorption efficiency and a perfect

intrinsic detector resolution.
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The first experiment is performed simply to validate the analytical method with a realistic phantom.

The phantom used for this experiment was a heart phantom (NCAT) [119]. The activity within the

phantom was λ = 8kBq/cm3 in the left and right ventricle myocardium, λ = 3.4kBq/cm3 in the left

and right ventricle chamber, λ = 0.9kBq/cm3 in the lungs and λ = 0.6kBq/cm3 in the background.

The variance images for the NCAT phantom are shown in Fig. 9.4. Fig. 9.4-A shows the variance

image obtained from the reconstruction of 10240 noisy projection data sets. Fig. 9.4 B-C-D show the

corresponding images predicted with the full FIM for grid g1 = 27648 and with the method based

on the sparse Fisher Information matrix for grid g2 = 6912 and g3 = 3072 respectively. Fig. 9.4-E

shows the variance image predicted with the circulant approximation of the FIM. Fig. 9.4-F shows the

horizontal profiles. From these images we can see how both the analytical calculation method based on

the sparse Fisher Information Matrix and the circulant approximation of the FIM approximately predict

the variance of the MAP estimator, presenting minor, but obvious, differences with respect to the variance

obtained with the reference method. The variance image obtained from the reconstruction of multiple

noise realisations is rather noisy, due to the limited number of repeated experiments. The variance

images predicted with the FIM method appear smooth as neighbouring voxels suffer from similar levels

of noise. However a sparser grid gives a more approximated estimation, as we can see in Fig. 9.4-F.

In fact, a fundamental limitation of the sparse FIM approach is that fine detail is being lost as the grid

becomes more sparse. However, the algorithm enables the degree of approximation in the estimation to

be defined by the user. Therefore a trade-off between computational complexity and reliability of the

estimation of the covariance matrix arises. The minimum number of grid points necessary to obtain a

reliable estimation of the covariance depends on the characteristics of the system under investigation.

Both the method based on the sparse FIM and the method based on the circulant approximation of

the FIM are somewhat less accurate near the edge of the finite support used in image reconstruction,

for unknown reasons. This effect (which has been reported also in another study [120]) can lead to a

discrepancy exceeding 10% and it is more noticeable, in case of low level of activity, in the off-centre

voxels of the phantom [50].

Truncated Projection Data

In this experiment we investigate the effect on image variance for region-of-interest reconstruction

from truncated projection data. Truncation is caused by a limited detector size. Only a certain number

of detector bins w are used to measure the emission data. The Field Of View (FOV), in this condition

of truncated emission data, is defined as the cylindrical region, whose radius depends on the level of

truncation, obtained by rotating the truncated camera. The phantom was a uniform sphere positioned

in the centre of the image space, with diameter D = 24.6 mm. The activity in the sphere was set to

λ = 8kBq/cm3 and to λ = 4.4kBq/cm3 in the background. The size and the position of the sphere

has been chosen in order to have the sphere always in the FOV, whereas a larger and larger part of

the background activity falls in the region outside the FOV for larger levels of truncation. During the
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Figure 9.4: Variance images for the NCAT phantom obtained with a standard SPECT system. A (first

column) - reference method (variance image obtained from the reconstruction of 10240 noisy projection

data sets), B (second column) - Full Fisher Information-based method with grid g1, C (third column) -

Sparse Fisher Information based method with grid g2, D (fourth column) - Sparse Fisher Information

based method with grid g3, E (fifth column)- Variance image obtained with the Circulant Approximation

method. F (sixth column)- Variance profiles at the centre of the heart: reference method (black line - ∗),

grid g1 (blue line - +), grid g2 (red line - ◦), grid g3 (green line - �), circulant (magenta line - ×).

Figure 9.5: Variance images of a uniform sphere obtained with a standard SPECT system. A (first

column) - reference method (variance image obtained from the reconstruction of 10240 noisy projection

data sets), B (second column) - Full Fisher Information-based method with grid g1, C (third column) -

Sparse Fisher Information based method with grid g2, D (fourth column) - Sparse Fisher Information

based method with grid g3, E (fifth column)- Variance image obtained with the Circulant Approximation

method. F (sixth column)- Variance profiles at the centre of the heart: reference method (black line - ∗),

grid g1 (blue line - +), grid g2 (red line - ◦), grid g3 (green line - �), circulant (magenta line - ×).

experiment, the FOV diameter varies from w = 96 to w = 16 (from 236.16 mm to 39.36 mm).

Fig. 9.6 displays variance images from truncated projection data with a FOV diameter w = 36. The

variance image obtained from multiple noisy data sets and the variance images obtained from the full

FIM and the sparse FIM method with different grids are in good agreement. For the voxels outside the

FOV, the variance increases considerably in respect to the non truncated case. Outside the FOV, in fact,

we do not have full sampling, since we acquire data from that region only at certain angular positions

of the camera. The variance image obtained with the circulant approximation of the FIM method is

displayed in Fig. 9.6 - E. From this image, we can notice an increase in variance in the voxels outside

the FOV with respect to the non-truncated case. However the aforementioned effect is less accentuated

with respect to the increase in variance estimated with full FIM method and with the sparse FIM method

in the same region. The horizontal profiles are shown in Fig. 9.6-F.
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Figure 9.6: Interior tomography: Variance images for a uniform sphere phantom obtained with truncated

projection data with FOV diameter w = 36. A (first column) - reference method (variance image

obtained from the reconstruction of 10240 noisy projection data sets), B (second column) - Full Fisher

Information-based method with grid g1, C (third column) - Sparse Fisher Information based method with

grid g2, D (fourth column) - Sparse Fisher Information based method with grid g3, E (fifth column)-

Variance image obtained with the Circulant Approximation method. F (sixth column)- Variance profiles

at the centre of the heart: reference method (black line - ∗), grid g1 (blue line - +), grid g2 (red line - ◦),

grid g3 (green line - �), circulant (magenta line - ×).

In Fig. 9.6, the variance associated to the voxel at the centre of the sphere is plotted for different

FOV diameters w = 96, · · · , 16. The calculation of the variance is obtained with the reference method

(reconstruction of 1024 noisy data sets), with the sparse FIM approach for (with grid of g1 = 27648 (full

FIM), g2 = 6912, g3 = 3072 points) and, for comparison, with the circulant approximation based on a

single row of the FIM. Even if Region Of Interest (ROI) reconstruction from truncated projections data

can lead to nearly unbiased reconstruction in a well-sampled ROI (as demonstrated in [18] [121]), we

noticed that a decrease in FOV size leads to an increase in variance, not only outside the FOV but also

inside it. For this specific experiment we observe an overall decrease in variance of 10% compared to the

non-truncated case, using the reference method based on multiple noise realisations for the calculation

of the variance. An important observation is that we see no effect due to truncation with the circulant

approximation of the FIM (as stated in [43]) whereas with the sumbsampled FIM, since we account

for the interdependence between the voxels, we see an increase of the variance with increased level of

truncation. This is an important feature of the method that we have introduced, because it enables the

optimisation of systems for interior imaging and of imaging systems that depart from the uniformly

sampled circular trajectory of SPECT.

The circulant FIM is generally considered to yield a good approximation of the covariance matrix

for nearly shift-invariant systems, however 3-D imaging systems are inherently shift variant, presenting

a block-circulant FIM even in case of ideal uniform object in the FOV. Comparison of the variance (the

diagonal of the covariance matrix) obtained from the circulant approximation, with the full FIM and

with the reference statistical method, has highlighted certain pitfalls of the circulant approximation. In

the following, the link between the shift-variance of the system and the different approximations of the

FIM is illustrated with two examples. Figure 9.8 shows the full Fisher Information Matrix (Figure 9.8
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Figure 9.7: Interior tomography: variance for different levels of truncation for a voxel in the centre of

the sphere. FOV diameter (from left to right) w = 96, · · · , 16. Black line (∗) - variance obtained with

the reference method. Blue line (+) - variance obtained with full FIM method with grid g1. Red line

(◦) - variance obtained with sparse FIM method with grid g2. Green line (�) - variance obtained with

sparse FIM method with grid g3. Magenta line (×) - variance obtained from the circulant approximation

method.

A-D) a sparse Fisher Information Matrix with grid g2 (Figure 9.8 B-E) and the Circulant Fisher Matrix

(Figure 9.8 C-F) for the experiment with the Truncated Projection Data. It should be noticed that Fig.

9.8 C-F shows the circulant Fisher Matrix for the calculation of the variance of a voxel of interest i in

the centre of the FOV; whereas Fig. 9.8 A-D shows the FIM for all the points in the FOV and Fig. 9.8

B-E shows the FIM for the points of grid g2.

As already described in section 9.3.2, every element of the sparse FIM at the grid points is calculated

exactly, accounting for the acquisition geometry and for the object. We can see, in fact, how in the sparse

FIM we account for the system response and for the object dependency, whereas with the circulant

approximation method we make the assumption that the FIM (and therefore the system response) is

shift invariant. The number of elements in the full FIM and in the circulant FIM equals N2, whereas

the number of elements of the sparse FIM equals (N/2)2; therefore highly reducing the computational

burden in inverting the sparse FIM. Since the FIM is a huge matrix and therefore difficult to display,

we show the FIMs for the 2-D case. Therefore the full FIM has g1 = 9216 points and the sparse FIM

has g2 = 2304 points. However, what is ultimately of interest is the inverse of the FIM (the Covariance

matrix) Figure 9.9 shows the inverse of the full FIM (Figure 9.9 A) the inverse of the sparse FIM with grid

g2 (Figure 9.9 D) and the inverse of the FIM calculated with the circulant approximation method (Figure

9.9 B) for the Truncated Projection Data experiment. Fig. 9.9 B shows a circulant FIM inverse, where

each column of the matrix is evaluated independently. The resulting circulant FIM inverse is spatially

variant (non circulant) but clearly does not show the same structure as the full FIM inverse in Fig. 9.9 A.

We can therefore deduce that the circulant FIM can not incorporate the effects of shift-variant systems

(Fig. 9.9) and also can not account for the effects of data truncation or missing data. A direct visual

comparison between the inverse of the full FIM and the inverse of the sparse FIM is arduous, because of
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Figure 9.8: Fisher Information Matrix for the Truncated Projection Data experiment. Comparison be-

tween full FIM, sparse FIM and Circulant FIM. A (top left) - Full FIM, grid g1 = 9216 points. B (top

central) - sparse FIM, grid g2 = 2304 points. C (top-right) - Circulant FIM for a voxel of interest i in

the centre of the FOV only. D (bottom left) - A zoom-in part of A. E (bottom central) - A zoom-in part

of B. F (bottom right) - A zoom-in part of C.

Figure 9.9: Covariance matrix for the Truncated Projection Data experiment. Comparison between

inverse of full FIM, sparse FIM and Circulant FIM. A - Inverse of the Full FIM, grid g1 = 9216 points.

B - Inverse of the FIM using the circulant approximation method. C - obtained selecting the voxels at

the locations of the full FIM that corresponds to locations of the elements of the grid for the sparse FIM.

D - Inverse of the sparse FIM, grid g2 = 2304 points.
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the different size of the two matrices. Hence we show, in Figures 9.9 C, two matrices which are obtained

selecting the voxels at the locations of the inverse of the full FIM that corresponds to locations of the

elements of grid g2 and then rebinning the selected voxels in a smaller matrix of size (N/2)2. Clearly,

the inverse of the sparse FIM will not be exact at the grid points because of the missing off-diagonal

FIM entries between the grid points, however the matrices in 9.9 C and 9.9 D exhibit the same structure.

This encompass the capability of the method to incorporate non-stationary system functions and effects

of long-range correlations.

The sub-sampled FIM trades off computational complexity and accuracy of the estimation, enabling

an adaptation of the accuracy of the estimation based on the available computational resources. When

sufficient resources are available, the GPU-accelerated software described in section 9.3.2 can compute

the covariance matrix exactly on a grid g1. One important advantage of the scalable sub-sampled FIM

approximation is that the algorithm provides an estimate of the full covariance matrix, though sub-

sampled, accounting for the global interdependence between the variables of the tomogram. This enables

the use of global metrics for system design optimisation.

Evaluation of the effect of sub-sampling, however, is complicated by the trade-off that arises. It is

not possible to define an absolute criterion for the choice of the sub-sampling scheme. The contributions

to the FIM at a given camera position, for a given pair of grid points, arise only from the overlap in the

projected PSF from those points (as shown graphically in Figure 9.3). The implication is that grid points

must be close enough in order to have non-zero overlap between those projected PSFs. This condition

depends on many factors, among which: the image volume size, the voxel size, the size of the PSF, the

camera trajectory etc etc. This condition refers to the accuracy of the FIM entry for those two points, but

does not apply to accuracy of its inverse, which will suffer from missing points even if the overlapping

PSF condition is met. Therefore, a general criterion to define a relationship between the grid stride and

the obtainment of a reliable estimation of the covariance matrix, can not be provided. This criterion

depends in fact on the properties of the specific system. The sparse FIM formulation and the software

tool described in this chapter may be employed for the optimisation of a range of design parameters

of emission imaging systems. However only two guidelines can be given, so far, for the choice of the

sub-sampling scheme. The first is trivially to adopt the most dense grid for the available computational

resources. The second is to restrict the grid volume to a specific region of the FOV, in case we know in

advance that activity is present only in that region of interest.
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9.4 Active Learning Tomography
The measure of uncertainty based on the FIM accounts for the complex interdependence of the infor-

mation about the activity through the imaging volume. We can then explore new geometries that depart

from the rotation at regular steps around an axis. In the concept camera pictured in 9.12, the algorithm

for the estimation of the uncertainty has been coupled with a random walk algorithm in order to compute

adaptively an optimum acquisition strategy. The camera performs an initial scan on a circular trajectory,

then a new trajectory that maximises the information about the activity in the voxel at the centre of the

volume is calculated with a random walk algorithm. Trajectories are sampled from a b-spline curve with

random walk over the nodes of the spline, as depicted in Fig. 9.10. Trajectories are parametrised as

b-splines. The random trajectory sampler of Fig. 9.10 returns a new random trajectory, given the previ-

ous trajectory, by drawing the locations of the nodes of the spline from independent normal distributions

centred at the previous locations of the nodes. Given the current trajectory, the design optimisation al-

gorithm performs a random walk by drawing randomly a series of trajectories. For each new random

candidate trajectory, the information gain is computed according to (9.26) and the candidate trajectory is

accepted (yellow trajectories in Fig. 9.11) if the information gain is positive. The process is repeated, un-

til Nopt successive samples do not increase the information gain. At this point the trajectory is accepted

(red trajectories in Fig. 9.11) and new emission data is acquired according to the new trajectory.

Figure 9.10: Active learning SPECT: random trajectory sampler.

Fig. 9.11 and Fig. 9.12 display the results of a synthetic experiment. The object is composed of

a hot sphere at the centre of the imaging volume and of a second sphere in the periphery. With the

initial path of the SPECT camera (circular trajectory between 0o to 180o), the outer sphere and the inner

sphere overlap along the path of the camera. The design optimisation algorithm was parametrised for the

maximisation of the information about the central voxel (equation (9.26)). The volume was discretised

in 128 × 128 × 128 voxels and the FIM was sampled on a grid every other 4 voxels along each axis.
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Nopt was set to 10. The design optimisation algorithm, whose random candidates and final path are

reported in Fig. 9.11, selected a trajectory that is close to the circular trajectory but does not intersect the

peripheral sphere. Fig. 9.12 reports the viewgrams for the initial trajectory and for the final trajectory.

Figure 9.11: Active learning SPECT. The green lines are the randomly sampled trajectories. For each

trajectory, the expected uncertainty is calculated with the algorithm based on the sub-sampled FIM.

The yellow curves are the new candidates that increase the information gain. The red curves are the

trajectories that maximise the information gain. A new scan is performed for each red curve. The image

displays 3 iterations of the design optimisation algorithm. Fig. 9.12 reports the viewgrams for the initial

trajectory and for the final trajectory.

Figure 9.12: Active learning SPECT. The top images show the projections at 0o,45o,90o,135o,180o

for the initial circular trajectory. After 3 iterations of design optimisation, the trajectory avoids the

intersection with the sphere in the peripheral region of the imaging volume.
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Chapter 10

NiftyRec: unifying tomography toolkit

The work described in this thesis is embodied in the NiftyRec software toolkit for tomographic imaging.

NiftyRec is unifying in three ways:

• integrating tomographic reconstruction, registration and segmentation in a unified mathematical

and software framework

• supporting multiple tomographic imaging modalities through a unifying software interface

• providing a unified interface for third-party open source tomographic reconstruction software

The modular software design of NiftyRec is inspired by the graphical models described in Chapters

4 and 5, enabling the tight integration of tomographic reconstruction with image analysis, registration

and segmentation in a unified framework. The multiple projectors and back-projectors, at the core of

NiftyRec, enable multiple imaging modalities, including PET, SPECT, transmission tomography with

cone-beam geometry (X-Ray CT and Tomosynthesis), fan-beam geometry (fan-beam X-Ray CT) and

parallel beam geometry (Synchrotron X-Ray Tomography, Neutron Tomography and Optical Projection

Tomography (OPT).

In order to address the near real-time demands of clinical applications, NiftyRec is designed for

execution on the massively parallel computing architectures of off-the-shelf Graphics Processing Units

(GPUs). The unprecedented performance of NiftyRec enables the exploration of complex models, anal-

ysis of the properties of optimisation algorithms at convergence and four-dimensional tomography. The

modular design and the live scripting interfaces for Matlab and Python foster fast prototyping and devel-

opment.

Wrapper interfaces for the open source reconstruction software Image Reconstruction Toolbox

(IRT) [60] and the Software for Tomographic Image Reconstruction (STIR) provide unified access to

projection and back-projection routines, fostering interoperability [122].



226 Chapter 10. NiftyRec: unifying tomography toolkit

10.1 A software design pattern for the integrated modelling

paradigm
Unifying mathematical models are delineating a paradigm shift away from sequential processing towards

integrated modelling of the imaging process. The integrated modelling approach shifts the focus of the

imaging process from the creation of images to direct extraction of clinically-relevant information and

visualisations from the raw data produced by the imaging hardware.

Such paradigm shift is permeating the field of tomographic reconstruction, with the introduction

of models that join information from multiple modalities, informing the reconstruction with data pre-

viously considered exogenous to the standalone tomographic imaging systems. Numerous instances

of the integrated modelling approach can be found in the field of nuclear imaging. Examples are the

use of the X-Ray transmission data for attenuation-aware reconstruction of the emission tomograms in

PET/CT (see e.g. [123]), and the use of complementary imaging modalities to constrain the tomographic

reconstruction, discussed in chapter 4. In the field of image analysis methodology, the trend towards in-

tegrated modelling has been outlined in seminal works such as in the Unified Segmentation framework

[5] and in the work by Fischl et al. [124]. Both papers combine, in unifying mathematical frame-

works, the three processing steps of tissue classification, bias field correction and non-linear warping,

otherwise commonly performed in sequence. Tomographic reconstruction, however, along with even-

tual de-noising and other corrections, is still considered a pre-processing stage. This thesis has explored

the convergence of the two trends towards integrated modelling observed in the fields of tomographic

reconstruction and image analysis methodology and the combination of information from multiple to-

mographic imaging modalities within such framework. The integrated modelling paradigm, as observed

in [5], generally makes better use of the information available from the data. The perceived disadvan-

tages of the integrated approach, on the other hand, are the increased complexity of the software and the

increased demand of computing resources.

• Computation time: In the context of tomographic reconstruction, while iterative algorithms have

proven superior, in many applications, to direct inversion methods, their computational complex-

ity is still largely a limit to widespread use in research and clinical settings. The even greater

complexity of the algorithms devised within the integrated modelling approach thus constitutes a

major development challenge.

• Software complexity: In the integrated modelling approach a sequence of simple computer pro-

grams is replaced by highly specialised monolithic programs. This makes it more difficult to write

re-usable software and to mix and match different programs.

• Accessibility: The monolithic nature of the algorithms that emerge from the integrated modelling

paradigm calls for software design patterns that address re-usability. Free availability of such
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software is essential in order to foster experimentation, development and assessment of models

and algorithms.

The large computation time of tomographic reconstruction algorithms has been addressed with solutions

based on: 1) numerical representations of the imaging data and discretisation schemes that promote

computational efficiency [125, 126]; 2) the use of dedicated high performance processors [127] and

distributed computing systems [128]; 3) optimisation algorithms with fast convergence rates [31]; 4) use

of priors in order to accelerate convergence [129]. Though a number of algorithms based on 1),2),3),

4) have been described in the literature, only a few open source software tools for tomographic image

reconstruction are currently available. These include the Matlab based Image Reconstruction Toolbox

(IRT)[60] and the Software for Tomographic Image Reconstruction (STIR) [122]. IRT provides a large

collection of functions for the reconstruction of SPECT, PET, CT and MRI tomograms, making it useful

tool for the exploration of new algorithms. IRT however is based on Matlab and therefore unsuited

for the deployment of stand-alone applications. STIR is a C++ based software for the reconstruction

of PET tomograms, designed for the deployment in research and clinical applications. Reconstruction

algorithms are applied to the raw data files from a scanner or to simulated data by means of command-

line tools. STIR implements state of the art iterative reconstruction algorithms (MLEM, OSEM) and

handles file formats for several commercial PET scanners. The monolithic nature of the command-line

interface and the steep learning curve for the development through the C++ API limit the freedom to

experiment with new algorithms.

The design of NiftyRec addresses the challenges of the integrated modelling paradigm, conjugating

computational efficiency and accessibility of the code. Bayesian Networks inspire the design of the mod-

ular application programming interface, providing a unifying interface for multiple imaging modalities,

including Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography

(PET) and transmission tomography with multiple geometries. Computational efficiency is achieved

by making use of the Single-Instruction-Multiple-Data (SIMD) architecture of commercial off-the-shelf

Graphics Processing Units (GPUs).

10.1.1 Design Principles

The shift of paradigm of the imaging process mandates a shift of paradigm in the software design. The

sequence of simple computer programs of the sequential approach is replaced by monolithic programs

in the integrated modelling approach, posing the challenge of writing modular and re-usable software

components.

The sequential approach finds its natural expression in the pipeline design pattern, which inspires

many software frameworks and common practice. Notable instances of the pipeline design pattern are the

filter update mechanism of the Insight Toolkit (ITK) [130] and the widespread adoption of command line

tools. Tools for medical image processing are often intended as binary programs that operate on input
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Figure 10.1: Integrated modelling.

files and produce output files. Programs are executed as standalone processes and mixing and matching is

specified with command line scripts. Such means of interaction are effective in the sequential paradigm,

however the integrated modelling paradigm demands tighter integration of the software components,

posing the challenging problem of writing re-configurable software.

In NiftyRec, this challenge and the challenge of computational efficiency are addressed by a soft-

ware design that leverages the efficiency of ANSI C, the interactivity and inherent modularity of high

level programming language Matlab and Python, and computational power of GPUs.

Figure 10.2: NiftyRec 1.6 software design.

Core routines are written in ANSI C with the NVidia Compute Unified Device Architecture (CUDA)

language extensions for GPU acceleration. The code compiles into a set of shared libraries that provide

two application programming interfaces (APIs): a low level development API based on the NiftiLib data

structures and a high level API for integration into third-party applications, which exposes plain ANSI

C types (Figure 10.2). The low level interface is aimed at simplifying the development of NiftyRec.
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Though the programming style is that of plain C, the imaging data is represented with the data structures

defined in the NiftiLib libraries. The use of such data structures minimises the number of function

parameters. The high level C-types API is a thin layer built on top of the development API, aimed at

simplifying the integration of NiftyRec into third-party software and the construction of bindings for

high level programming and scripting languages.

Python and Matlab APIs are build on top of the C-types API, linking dynamically to the NiftyRec

libraries. NiftyRec appears to the Matlab and Python programmers as a Matlab Toolbox and as a Python

module, hiding entirely the complexity of the underlying algorithms and GPU acceleration. The Python

package provides the same functionalities as the Matlab toolbox, though in a more object-oriented fash-

ion. By making use of the dynamic allocation and reference counting features of the Matlab and Python

interpreters, the NiftyRec shared libraries are stateless, making the scripting interaction free from mem-

ory management errors.

The mixing and matching of software components involved in the definition of new algorithms

is specified by means of the Matlab and Python interfaces. The Matlab and Python interpreters may

be considered as a mechanism for real-time, interactive linking of the functions defined in the shared

libraries, replacing the hard linking that occurs when building monolithic command line applications.

Though MLEM and other reconstruction algorithms could be performed entirely on the GPU, in-

creasing slightly the computational efficiency, the software design trades off computational efficiency

and modularity. With the stateless interface, imaging data is pushed to the GPU only while a function

call from the scripting interfaces is being executed. This mechanism entails the transfer of the imag-

ing data from the RAM memory of the host computer to the GPU at each function call. While this

mechanism may seem to add latency, projection and back-projection functions are designed to perform

all the projections at once (i.e. for multiple detector locations in CT and for the entire gantry in PET),

effectively masking the memory transfer latency.

Table 10.2 reports a list of the functions available through the C-Types, Matlab and Python APIs;

Table 10.1 reports a list of the features of NiftyRec and Table 10.3 reports a list of the demo scripts,

which illustrate the basic functionality of NiftyRec.

10.1.2 Inter-operability

The C-types interface and the Matlab and Python bindings simplify the integration into third party soft-

ware and the development of plugins and other mechanisms that render NiftyRec interoperable with other

software packages. A plugin for 3D Slicer based on the Slicer 3 Execution Model enables OSEM recon-

struction for SPECT within the 3D Slicer environment. The NiftyRec Matlab Toolbox interfaces with

the Image Reconstruction Toolbox (IRT) [60], with the Software for Tomographic Image Reconstruction

(STIR) and with the Monte Carlo simulators Simind and PET-Sorteo. Projection and back-projection

functions of IRT and of STIR are wrapped, providing drop-in replacement functions in Matlab for the

NiftyRec projection and back-projection routines. This enables immediate comparison of performance
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and image quality. The interfaces to the Monte Carlo simulators Simind and PET-Sorteo simplify the

development of simulation studies.

10.2 Efficient projection and back-projection

Computing the registration, reconstruction and segmentation jointly is costly. Calculating the deriva-

tives of the nodes potentials described in Chapters 3, 4 and 5 requires the computation of projections

and back-projections, exponentials (Gaussian likelihoods), spatial gradients, linear interpolations and

3-D transformations. The largest computational burden, however is attributed to the projections and

back-projections and the non-linear spatial transformations. Computing and storing the projection ma-

trix P = {pbd} is problematic due to its very large size. However, due to the geometrical characteristics

of the imaging systems, the systems matrix is sparse and structured. Sparsity and structure enable us to

apply the matrix and its transpose (i.e. to compute the projection and back-projection) efficiently with-

out ever storing the matrix. Projection and back-projection may be obtained by combining ray-tracing

and convolution operators. Ray-tracing, convolutions and the transformation of spatial coordinates are

computing tasks that adapt well to the computing architectures of Graphics Processing Units (GPUs).

For problems that present enough task parallelism, high-end GPUs can provide an acceleration

of up to 10× over high-end multi-core CPUs, however the speed-up can increase by another order of

magnitude if the structure of the algorithms allows for efficient use of the shared memory of the GPU

[131, 132]. While on CPUs the cache hierarchy compensates costly accesses to external RAM and

cache heuristics account for a large class of computational problems, the simplified memory hierarchy

of GPUs requires careful design of the algorithms for efficient memory access. The external memory is

directly exposed to the programmer, who has to consider explicitly coalesced access due to the mismatch

between data rate and cycle time of the DDR RAM memory of the GPU device. On the other hand, the

simpler structure of the memory and vicinity of the RAM to the processor yield data throughput up to

about 10× higher than the throughput between CPU and RAM.

The fast RAM memory of the GPUs therefore explains the 10× speedup often immediately achieved by

porting applications to GPU; however the Single Instruction Multiple Data (SIMD) architecture and the

shared memory may provide additional speedup if the computational problem can be formulated in a

way that suits the architecture of the GPU. In the SIMD architecture, many simplified low footprint pro-

cessor cores fit on the same chip grouped in multiprocessors with a single common fetch unit. Multiple

cores can operate concurrently in a multiprocessor if they execute the same instruction. Therefore, if the

computational problem is such that the same operation is performed on multiple segments of data, the

GPU can use a great number of processors at the same time. However, if the degree of parallelisation

of the computational problem is sufficiently high to employ a great number of processor cores, the data

throughput of the GPU DDR RAM is often not sufficient to continuously feed data to all the proces-

sors. A key feature of GPU architectures is a small (a few Kbytes) on-chip multiple data-path shared
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memory which can be read and written concurrently in a single clock-cycle by the processor-cores of

a same multiprocessor. Efficient use of the shared memory is a key for the development of highly

optimised algorithms for GPU. The computational power of the hundreds of cores of the GPUs can be

fully exploited, essentially, if the computational problem is such that it can be decomposed in parallel

task executed by independent cores and the cores in a multiprocessor can re-use the data that resides

in the shared memory, minimising access to the global GPU DDR RAM memory. In order to take full

advantage of the architecture, the computational problem needs not only to expose parallel tasks that run

on the multiple cores, but the tasks executed by cores that are part of the same multiprocessor must be

serialisable in smaller tasks that share a limited amount of data and re-use it.

Figure 10.3: Memory hierarchy of a personal computer with General Purpose Graphics Processing Unit

- GPU. The high data throughput of the RAM memory installed on-board of the GPU explains the 10×

speed-up often immediately achieved when porting applications to GPU. In order to exploit fully the

computing resources of the GPU, the computational problem has to be formulated in a way that exposes

a high number of parallel tasks characterised by memory locality. Exposing possibly identical parallel

tasks enables the efficient use of the Single Instruction Multiple Data (SIMD) architecture of the multi-

processors of the GPU (high device occupancy), while memory locality enables the efficient use of the

shared memory. The rotation-based projector of NiftyRec achieves high device occupancy and exploits

the shared memory, achieving a speed-up of up to 80× when compared with the CPU implementation of

NiftyRec and with third party open source reconstruction software (see Fig. 10.13 and Fig. 10.14).

Another feature offered by GPUs is hardware interpolation. A portion of memory may be declared

as a 1-D, 2-D or 3-D array to the memory management unit (MMU) of the GPU. The MMU then accepts

read requests based on floating-point coordinates, it decodes each request into the memory addresses of

the nearest memory locations and returns a value calculated by linear (bi-linear, tri-linear) interpolation.

Such hardware feature can provide dramatic speed-ups when interpolation is frequent, as is the case for

ray-tracing and for rigid and non-rigid image deformation.
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10.2.1 Emission Imaging

The forward projection consists in simulating the propagation and detection of light. This is a tremen-

dously complex problem due to scattering of photons throughout the propagating medium. However

in emission computed tomography, as opposed to other tomographic problems (such as diffused optical

imaging), the energy of the radiation and size of the imaging volume are such that the ratio between de-

tected un-scattered and scattered photons is relatively high. Though projectors and back-projectors that

simulate scatter have been described [26], due to their tremendous computational complexity, emission

computed tomography, is currently limited to rejection of the scattered photons. A comprehensive review

of algorithms for the selection of un-scattered photons can be found in [133]. When the reconstruction

of the emission rate tomogram is based uniquely on the un-scattered photons, the system matrix P , due

to the use of planar cameras, shift invariant collimators and rotation symmetry, is sparse and structured

[134]. A number of algorithms for projection and back-projection have been described. One class of

algorithms exploits the sparsity of the system matrix by pre-computing the elements of the matrix and

storing them with a sparse representation (see e.g. IRT [60]). Another class of algorithms exploits the

sparsity and, more directly, the structure of P . The structure of P , in fact, corresponds to a natural sparse

representation and often to a factorisation of the matrix. The characteristics of the detection system and

the attenuation map entirely define the system matrix. The description of the imaging system, along

with the attenuation map, can already be considered a convenient sparse representation of the matrix.

With such class of algorithms, the factorisation of the matrix corresponds to direct computation of Px

and PTx from the description of the imaging system and attenuation map. We prefer such class of

algorithms that do not rely on an intermidiate sparse representation as they do not require a costly pre-

processing step and enable more flexibility: the attenuation map can change and eventually be estimated

along with the activity, without re-calculating the matrix in the intermediate representation.

Single Photon Emission Computed Tomography

In SPECT, the probability that a photon emitted in v is detected in d, discarding attenuation through-

out the patient, repeats over and over as v moves on a plane that is parallel to the detector plane (shift

invariant) and repeats again for each camera. The response of the imaging system is captured by the

depth-dependent point spread function (DD-PSF) and by the spatial position of the camera. The matrix

P can be factored into two matrices, one that accounts for the DD-PSF and another matrix that accounts

for the attenuation map. Without going in further detail on the factorisation of the system matrix, which

underlies the rotation-based algorithm described by [134], it suffices to say that, approximating the inte-

gral attenuation from v to d with the attenuation from v to the detector element d′ that lays on the camera

plane in the location with highest sensitivity to v, the projection and back-projection consist in modulat-

ing with the DD-PSF the response of an ideal Gamma Camera with attenuated line integrals. Efficient

computation of the line integrals for projection and back-projection by ray-tracing was proposed by Sid-

don [135]. However with a ray-based approach, it becomes inefficient to include the depth-dependent
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PSF, as this requires the casting of a number of rays within a cone of response [134].

NiftyRec is inspired on the rotation-based algorithm proposed in [134], referred in the following as

re-gridding. Such algorihtm is well suited for GPU acceleration as it re-organises the data into a regular

grid, exposing data locality and yielding efficient use of the shared memory. For each position of the

gamma camera, the image matrix volume is re-interpolated on a regular grid so that the front face of the

re-sampled volume faces the detection plane - Figure 10.4. After re-interpolation, all the point sources

that lay approximately on a same plane parallel to the detector are now at the same distance from the

detector. The depth-dependent PSF can be incorporated efficiently by convolving each parallel plane

with the PSF corresponding to the relative distance from the plane to the camera.

Figure 10.4: Schematic representation of the projector and backprojector for SPECT.

• Projection:

Activity and the depth dependent PSF are copied to the GPU global memory and additional mem-

ory is allocated for the sinogram. The support of the image (ordered list of the x, y, z indexes of

the image voxels) is extracted and stored in global memory.

For each position of the gamma camera, the activity matrix volume is rotated so that the front

face of the volume faces the detection plane. In order to optimize the usage of the GPU, rotation

is performed by multiplying the support of the image by the rotation matrix, then the image is

re-sampled at the locations specified by the rotated support. Rotation of the support maximizes

the device occupancy (concurrent usage of the multiprocessors) and takes advantage of the shared

memory by partitioning the matrix multiplication [136]. The trilinear interpolation is performed

in hardware by the texture fetch unit of the GPU at the cost of a memory access and coalesced

memory accesses are obtained by partitioning the memory transfers in blocks.
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For each camera’s position, the activity is rotated from its initial position, rather than from the

previous camera’s position, in order to minimize interpolation errors. After re-interpolation, each

image plane parallel to the camera is convolved with the PSF. Convolution is performed by zero-

padding the plane to double its linear size, computing its 2D FFT, multiplying by the FFT of the

zero-padded PSF, back-transforming and truncating. The convolution is performed in place, in

order to minimize memory occupancy. 2D FFT is performed by means of the CUDA CUFFT

library that takes into account all the architectural factors and constraints of CUDA, memory

coalesced access, bank conflicts and efficient shared memory usage.

Finally a kernel sums all planes and stores the result in the sinogram data structure. Shared

memory cannot be used in the summation step as the number of operations (sums) is exactly

equal to the number of memory accesses, however device occupancy and memory coalescing are

optimized by partitioning the sums in blocks.

• Back-Projection: The sinogram and the PSF are transfered from the host machine RAM to the

GPU global memory. Two volumes are allocated for the backprojection, a rotating volume and a

fixed volume that is initialized to 0 and contains in the end the result of the backprojection.

One projection at a time is extracted from the sinogram data structure and the value on each pixel

is backprojected to the rotating volume along lines perpendicular to the detection plane. This step

is performed by a GPU kernel that copies a pixel to a local register and then copies it back into all

the voxels in the same column of the rotating volume. Each plane of the rotating volume is then

convolved in place with the PSF by multiplication in the frequency domain. The rotating volume

is rotated to the zero position and then accumulated into the fixed volume.

The same series of operations is repeated for each camera’s position.

Positron Emission Tomography

The projector/back-projector pair for PET is an extension of the projector/back-projector pair for SPECT,

based on the re-gridding algorithm. In order to account for the many geometries of PET imaging systems,

the emission imaging data is abstracted through the concept of the viewgram, i.e. the emission data

is considered to be detected by a series of virtual planar detectors. Emission data measured in the

cylindrical coordinate system of the PET scanner is re-binned a viewgram before reconstruction.

Due to re-binning, parallel lines of response (LORs) are mapped to a non-regularly spaced grid in

viewgram space. In order to account for such distortion, often disregarded, NiftyRec warps the image
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support prior to integration when performing the forward projection and warps accordingly the back-

projection, as depicted in Fig. 10.5. The parameters dx1, dx2, . . . , dy1, dy2, . . . are descriptive of

the geometry of the system. Resolution modelling, as described in the previous section, is obtained

by convolving each plane parallel to the viewgram plane before integrating along lines parallel to the

viewgram plane. Dually, the partial back-projection for a given plane of the viewgram is convolved

with a depth-dependent point spread function. The convolution, however, is performed in the spatial

domain (not in the frequency domain), enabling the definition of a spatially variant convolution kernel

(Fig. 10.5-left).

Figure 10.5: Schematic representation of the projector and backprojector for PET.

10.2.2 Transmission Imaging

NiftyRec implements projector and back-projector pairs for parallel-beam and for cone-beam geome-

tries. These support the development of one-step and iterative reconstruction algorithms for multiple

imaging modalities such as X-Ray CT, Tomosynthesis, Synchrotron X-Ray Tomography, Neutron To-

mography and Optical Projection Tomography (OPT).

Cone-beam

The cone-beam projector and back-projector are based on an efficient ray-tracing algorithm. While a

solution similar to the re-gridding algorithm for emission imaging could be implemented for cone-beam

transmission imaging by replacing the rotation with an affine transformation, ray-tracing is simpler

and more accurate for the cone-beam geometry. The ray-tracing algorithm implemented in NiftyRec

is based on the efficient ray-box intersection algorithm described on the Siggraph Education web-

site http://www.siggraph.org/education/materials/HyperGraph/raytrace/

rtinter3.htm. Each GPU thread casts one ray from the X-Ray source to one of the detector

pixels, computes the coordinates of the intersection with the volume of the attenuating medium and in-

tegrates the attenuation coefficient along the ray, re-sampling with tri-linear interpolation the attenuation

coefficient at regular intervals. Integrals are stored on shared memory to maximise the efficiency and the
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attenuation coefficients are fetched through the cached texture memory which caches reads that are in

common between neibouring threads and provides hardware tri-linear interpolation. The back-projector

is the dual of the projector, each thread reads a value from one pixel and integrates it into the back-

projection volume at regular steps with tri-linear interpolation. In order to avoid race conditions, threads

are launched in batches on a chess-board structure.

Figure 10.6: Schematic representation of the cone-beam projector for transmission imaging.

Parallel-beam

The parallel-beam projector and back-projector pair is based on the re-gridding algorithm described

in 10.2.1. The advantage over ray-tracing is that the re-gridding algorithm avoids race-conditions in

the back-projector. While strategies to avoid the race conditions typically limit the performance of the

back-projector on parallel architectures, the re-gridding algorithm guarantees equal performance of the

projector and back-projector.

10.3 List of features
Table 10.2 reports a list of the functions available through the Integration API and the Scripting API

(see also Fig. 10.2). Table 10.1 reports a synthetic list of the features of NiftyRec and Table 10.3

reports a list of the demo scripts which illustrate the main features of NiftyRec. Figures 10.7-10.10

display the reconstructions obtained by executing the Matlab demos et demo mlem, et demo pet sorteo,

tt demo mlem conebeam and tt demo parallelbeam, described briefly in the caption of the figures and

in Table 10.3. The source code of et demo mlem (Fig. 10.7) is reported here:

Nx = 192 ; % number o f v o x e l s x

Ny = 128 ; % number o f v o x e l s y

Nz = 192 ; % number o f v o x e l s z

i t e r a t i o n s = 200 ; % MLEM i t e r a t i o n s

camera = l i n s p a c e ( 0 , pi , 1 8 0 ) ’ ; % t r a j e c t o r y o f t h e camera

fwhm = 2 . 0 ; % FWHM o f t h e non−DD PSF

GPU = 1 ; % 1 t o use t h e GPU
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phantom = e t s p h e r i c a l p h a n t o m ( Nx , Ny , Nz , Nx / 2 , Ny / 3 , Nz / 2 , 0 , 1 0 0 ) ;

mumap = e t s p h e r i c a l p h a n t o m ( Nx , Ny , Nz , Nx / 2 , Ny / 2 , Nz / 2 , 0 , 1 ) ;

p s f = repmat ( f s p e c i a l ( ’ g a u s s i a n ’ , [ 5 , 5 ] , fwhm ) , [ 1 , 1 , Nx ] ) ;

s inogram = p o i s s r n d ( e t p r o j e c t ( phantom , camera , mumap , ps f ,GPU ) ) ;

n o r m a l i s a t i o n = e t b a c k p r o j e c t ( ones ( Nx , Ny , 1 8 0 ) , camera , mumap , ps f ,GPU ) ;

a c t i v i t y = ones ( Nx , Ny , Nz ) ;

f o r i =1 : i t e r a t i o n s

r a t i o = s inogram . / e t p r o j e c t ( a c t i v i t y , camera , mumap , ps f ,GPU ) ;

a c t i v i t y = a c t i v i t y . / n o r m a l i s a t i o n .∗ e t b a c k p r o j e c t ( r a t i o , camera , mumap ,GPU ) ;

end

Table 10.1: Features of NiftyRec 1.6

• Projectors

– rotation-based projector and back-projector for emission imaging (CPU and GPU)

– cone-beam projector and back-projector for transmission imaging (CPU and GPU)

– parallel-beam projector and back-projector for transmission imaging (CPU and GPU)

• Reconstruction algorithms

– Maximum Likelihood Expectation Maximisation - MLEM .

– Ordered Subsets Expectation Maximisation - OSEM .

– Iterated Conditional Modes - One Step Late - ICM-OSL

– Gradient Ascent (GA)

• Scatter correction algorithms

– Reconstruction-based Scatter Correction - RBSC (as described in [137]).

• Regularisation

– Markov Random Field with quadratic penalty [Chapter 3.2.2]

– Non-parametric Entropy [Chapter 6]

• Multi-modal joint generative models [Chapter 4]

– Non-parametric Joint Entropy - JE

– Non-parametric Mutual Information - MI

– Semi-parametric Joint Entropy - SPJE

– Multivariate Gaussian Mixture Model - GM

• Deformation models

– Affine transformation

– Cubic-spline deformation model

• Other Features

– Computation of the Fisher Information Matrix - FIM (CPU and GPU) [Chapter 9].

– Massively parallel reconstructions - (CPU and GPU).
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Table 10.2: NiftyRec 1.6 Integration API and Scripting API

• Common to all imaging modalities

– Allocatio of the computing resources

nr list gpus Returns a list of the GPUs installed in the system and their compute capability.

nr set gpu Sets the GPU to be used by NiftyRec. It is used in conjunction with nr list gpus.

nr isinstalled Checks if NiftyRec libraries are installed.

– Image transformation

nr resize Resizes a 3-D image by scaling.

nr rotate Rotates a 3-D image in three-dimensions.

nr irotate Inverse of nr rotate when given the same parameters.

nr affine Affine transformation of a 3-D image.

nr convolve 3-D convolution.

– File input/output

nr load nifti Loads a NIFTI file (.nii)

nr save nifti Saves a NIFTI file (.nii)

– Synthetic data

nr spherical phantom Creates a spherical imaging phantom

nr helical phantom Creates a helical-shaped imaging phantom

nr apply lesions Applies synthetic lesions to a brain phantom

– Random function generators and probability density functions

nr poissrnd Applies Poisson noise to high dimensional data.

nr normal density Returns the normal probability density function for given parameters.

– Multi-modality

nr joint entropy nonparametric Non-parametric kernel density estimation

nr joint entropy semiparametric Semi-parametric kernel density estimation

• Emission tomography

– Projection and back-projection

et project Parallel-beam projection with depth-dependent resolution modelling

et backproject Parallel-beam back-projection with depth-dependent resolution modelling

et project irt Same as et project but based on IRT.

et backproject irt Same as et backproject but based on IRT.

et project stir Same as et project but based on STIR.

et backproject stir Same as et backproject but based on STIr.

– Optimisation

et mapem step One-step-late maximum-a-posteriori expectation-maximisation (and MLEM).

et osmapem step Ordered-subsets one-step-late maximum-a-posteriori expectation-maximisation (and OSEM).

– File input/output

et load ecat Load ECAT files.

et load simind Load data files produced by the Simind Monte Carlo simulator.

– Simulation

et simind simulate Run the Simind Monte Carlo simulator.

– Definition of the scanner geometry

et collimator parallelholes Defines the parallel-hole-collimator geometry for et project and et backproject

– Advanced

et fisher grid Computes the Fisher Information Matrix (FIM) and the sub-sampled FIM.

et gradient attenuation To compute the attenuation map from the emission data.
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• Transmission tomography

– Projection and back-projection

tt project ray cone Cone-beam ray-traced projector.

tt backproject ray cone Cone-beam ray-traced back-projector.

tt project parallel Parallel-beam rotation-based projector.

tt backproject parallel Parallel-beam rotation-based back-projector.

– Optimisation

tt mapem step One-step-late maximum-a-posteriori expectation-maximisation (and MLEM).

tt osmapem step Ordered-subsets one-step-late maximum-a-posteriori expectation-maximisation (and OSEM).

• Deformation models

– Cubic-spline

reg control points from affine Creates matrix of control points of the cubic-sline.

reg gaussian smooth 3-D Gaussian smoothing.

reg resample spline Re-sample a 3-D image according to the cubic-spline parametrisation.

reg autoscale image Auto-scale image for the NMI registration of two images.

reg gradient bending energy nodes Derivative of the bending energy of the cubic-spline model w.r.t. the displacement of

the nodes of the cubic-spline.

reg gradient jacobian determinant nodes Derivative of the Jacobian of the deformation field w.r.t. the displacement of

the nodes of the cubic-spline.

reg gradient NMI voxels Partial derivative of the Normalised Mutual Information w.r.t. the image intensity.

reg gradient SSD voxels Partial derivative of the Sum of Squared Differences w.r.t. the image intensity.

reg gradient voxels to nodes Propagates the derivatives w.r.t. the image intensity to nodes displacements.

reg gradient image voxels Spatial gradient of a 3-D image.

• Classification

– Multi-variate Gaussian mixture model

seg initialise Initialise classifier.

seg terminate Terminate classifier.

seg set input image Set the input images.

seg set mask Binary mask to exclude certain regions of the image.

seg set priors Set the statistical atlas.

seg set biasfield parameters Set the parameters of the bias field model.

seg set MRF strength Set the parameters of the Potts model.

seg set regularisation covariance Regularisation parameter for the covariance matrices.

seg set mean Set the initial value of the mean of each Gaussian function.

seg set covariance Set the initial value of the covariance matrices.

seg set segmentation Set the initial value of the partial membership.

seg get input image Get the input image data.

seg get mask Get the input mask.

seg get priors Get the input statistical atlas.

seg get biasfield Get the estimated bias field.

seg get segmentation Get the estimate of the partial membership.

seg get mean Get the estimate of the mean of each Gaussian.

seg get covariance Get the estimate of the covariance matrices.

seg get loglikelihood Get the likelihood value.

seg get biasfield parameters Get the input parameters of the bias field model.

seg get MRF strength Get the input parameters of the Potts model.

seg get regularisation covariance Get the input regularisation parameter for the covariance matrices.
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Table 10.3: NiftyRec 1.6 demos

• Emission Tomography

et demo mlem MLEM reconstruction SPECT with depth-dependent resolution modelling (see Chapter 3).

et demo osem OSEM reconstruction SPECT with depth-dependent resolution modelling (see Chapter 3).

et demo osem 2D 2-D OSEM reconstruction SPECT with depth-dependent resolution modelling.

et demo mapem mrf Maximum-a-posteriori reconstruction with smoothing prior, one-step-late EM algorithm (see Chapter 3).

et demo noise instances Reconstruction of multiple instances of noise (see Chapter 3).

et demo mlem scatter rbsc Reconstruction-based scatter correction algorithm (see [137]).

et demo fisher information Estimation of the Fisher Information Matrix, 3D SPECT (see Chapter 9).

et demo fisher information 2D Estimation of the Fisher Information Matrix, 2D SPECT.

et demo petsorteo Load data from PETSorteo simulation and reconstruct with OSEM.

et demo simind Load data from Simind simulation and reconstruct with OSEM.

et demo mixture model Bivariate Gaussian mixture model for anatomically-driven reconstruction (see Chapter 4).

et demo nonparametric model Non-parametric anatomically-driven reconstruction (see Chapter 6).

et demo semiparametric model Semi-parametric anatomically-driven reconstruction (see Chapter 6)

et demo 4D mlem nonrigid Four-dimensional reconstruction with non-rigid motion (see Chapter 5).

et demo 4D motion from data rigid Estimation of the rigid motion parameters from the emission data (see Chapter 5).

et demo estimate attenuation Estimation of the attenuation map from the emission data.

• Transmission Tomography

tt demo project conebeam Cone-beam projection.

tt demo project parallelbeam Parallel-beam projection.

tt demo mlem conebeam Maximum-likelihood expectation-maximisation (MLEM), cone-beam geometry.

tt demo mlem parallelbeam Maximum-likelihood expectation-maximisation (MLEM), parallel-beam geometry.

• Registration

reg demo nonrigid SSD Registration with Sum of Squared Differences (SSD) cost function.

reg demo nonrigid NMI Registration with Normalised Mutial Information (NMI) cost function.

• Segmentation

seg demo manual priors Brain image segmentation driven by a statistical atlas.

seg demo auto priors Atlas-free brain image segmentation.

Figure 10.7: MLEM reconstruction of DaTSCAN data acquired on GE Infinia, Low Energy High Resolu-

tion (LEHR) parallel-holes collimator. The reconstruction (with depth-dependent resolution modelling)

is obtained by executing the NiftyRec demo et demo osem through the Matlab interface.

10.4 Performance and accuracy
The routines for projection and back-projection are at the core of all reconstruction algorithms of

NiftyRec and constitute the most computationally demanding computing task.
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Figure 10.8: Fludeoxyglucose(−18F ) (FDG) PET reconstruction. The uptake is digitally generated

and the emission data is simulated with PET Sorteo. The reconstruction (with resolution modelling) is

obtained by executing the NiftyRec demo et demo petsorteo through the Matlab interface.

Figure 10.9: Cone-beam X-Ray CT reconstruction. This reconstruction is obtained by executing the

NiftyRec demo tt demo mlem conebeam through the Matlab interface.

Figure 10.10: Parallel-beam X-Ray CT reconstruction. This reconstruction is obtained by executing the

NiftyRec demo tt demo mlem parallelbeam through the Matlab interface.

In order to promote interoperability and to enable the evaluation and comparison of the runtime per-

formance and of the accuracy, NiftyRec wraps the projectors and back-projectors for emission imaging

of the Image Reconstruction Toolkit (IRT) and of the Software for Tomographic Image Reconstruction

(STIR). The wrappers of IRT and STIR mimic the NiftyRec functions et project() and et backproject(),

enabling direct comparison and drop-in replacement. The algorithms for projection and back-projection

of the three reconstruction softwares are different. IRT implements a voxel-driven projector back-

projector pair, where one ray per voxel is cast, rather than one ray per detector bin. STIR implements

multiple algorithms for projection and back-projection. The two that are most commonly used are the
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detector-driven ray tracer and the detector-driven ray tracer with multiple rays. The first algorithm casts

one ray for each detector bin. The second algorithm casts multiple rays from a grid of points displaced

on the surface of each detector bin.

The first experiment consisted in projecting a point source placed at the centre of the 3-D imaging

volume. The number of cameras was 120. Fig 10.11 displays the central line of the viewgram, providing

a visualisation of how the projection of a point source is affected by the different projection algorithms.

As one may have expected, the voxel-driven algorithm yields identical projection in all directions.

Figure 10.11: Visual comparison of the different interpolation schemes adopted in IRT, STIR and

NiftyRec. The images display the central line of the viewgram obtained by projecting a point at the

centre of a cubic imaging volume. The detector is displaced in 120 locations from 0 to π radians.

The second experiment consisted in performing the noiseless projection and reconstruction of the

a phantom image with each of the three reconstruction softwares. Fig. 10.12 reports the phantom, the

reconstructions obtained with 3000 iterations of MLEM and images representing the difference between

the reconstructions obtained with the three reconstruction softwares. The plot in Fig. 10.12-bottom

reports the mean squared error (MSE) between the phantom and the reconstruction as a function of

the number of iterations. Low MSE is indicative of a good match between the projector and the back-

projector.

For all three reconstruction softwares, the computing time for projection matches approximately

the computing time for the back-projection. Therefore run-time performance was evaluated only for the

projection algorithms. Fig. 10.13 reports the timing charts obtained from the projection of 3-D volumes

of varying size (i.e. number of voxels). The numbers indicate the timer required for the computation of

the projection in 180 directions. The size of the viewgram obtained from the projection of the volume of

size N ×N ×N is N ×N × 180. Fig. 10.14 reports figures of the computing time for the projector for

transmission imaging. Finally, Fig. 10.15 reports the time necessary for the reconstruction of a SPECT

image with NiftyRec.
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Figure 10.12: Top: Reconstruction of noiseless synthetic data. Bottom: mean squared error (MSE)

between the phantom and the image reconstructed with MLEM as a function of the number of iterations.

Low MSE is indicative of good match between the projector and the back-projector.

10.5 Distributed computing

NiftyRec exploits the massively-parallel computing architecture of graphics processing units, achieving

unprecedented performance. However the complexity of the reconstruction algorithms and the dimen-

sionality of the raw and reconstructed data keep increasing. Four-dimensional tomography, in particular,

is extremely demanding computationally.

In order to address the increasing demand of computing resources, reconstruction may be performed

on multiple computers interconnected in a distributed computing system. While the two terms parallel

computing and distributed computing have a lot of overlap, and no clear distinction exists between them,

let us adopt the definition given in [138]:
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Figure 10.13: Performance chart emission imaging: The performance of the projectors for PET and

SPECT is compared with the Image Reconstruction Toolbox (IRT) and with the Software for Tomo-

graphic Image Reconstruction (STIR). The charts report the computation time for 180 projections of

volumes of size spanning from 643 to 2563 voxels. Both the PET and SPECT projections account for

the attenuation map. The SPECT projection accounts for resolution of the system by means of depth-

dependent point spread function (PSF). The reported computation times were measured on a desktop

computer with CPU Xeon E5430@2.66GHz quad-core, GPU NVidia GTX285 and operating system

Ubuntu Linux 64 bit. STIR and IRT are compiled with the OpenMP option enabled and NiftyRec with

the ENABLE CUDA option activated.

• In parallel computing, all processors may have access to a shared memory to exchange information

between processors.

• In distributed computing, each processor has its own private memory (distributed memory). Infor-

mation is exchanged by passing messages between the processors.

GPUs are parallel computing arhitectures. The physical vicinity of memory and the multi-

processors enables, for a certain class of computational problems, such as the projections and back-
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Figure 10.14: Performance chart of the projectors for transmission imaging. The charts report the com-

putation time for 180 projections of volumes of size spanning from 643 to 5123 voxels. The reported

computation times were measured on a desktop computer with CPU Xeon E5430@2.66GHz quad-core,

GPU NVidia GTX285 and operating system Ubuntu Linux 64 bit. NiftyRec was compiled with the

ENABLE CUDA option activated.

Figure 10.15: SPECT reconstruction with OSEM iterative algorithm (subset size is 1/8 of the number of

detector bins), 180 camera positions, 60 iterations. Reconstruction time is reported for several sizes of

the imaging volume, with and without GPU acceleration.

projections involved in tomographic reconstruction, performance otherwise not achievable with dis-

tributed computing systems. As clarified later in this chapter, in data-intensive tasks such as those

involved in computed tomography, communication bandwidth is a bottleneck for distributed comput-
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ing systems. The performance achieved by a single GPU, in fact, may supersede the performance of a

computer cluster with thousands of nodes. However, the resources available on a single GPU are limited.

The architectures of distributed computing systems vary greatly, including multi-core single com-

puter systems, eventually equipped with multiple GPUs; small networks of heterogeneous computers;

homogeneous and heterogeneous clusters and worldwide grids for cloud computing. Multi-threading

and multiprocessing technologies allow one to orchestrate the use of multiple CPUs and graphics cards

on the same machine, but the number of CPU cores and GPUs is limited. Message passing technologies

on the other hand allow one to scale applications to use multiple CPUs in homogeneous and heteroge-

neous clusters, however there is scarcity of programming models and software support for multi-GPU

systems [139][140].

Though it is possible to adapt communication protocols designed for distributed computing [141],

such as the Message Passing Interface (MPI), to make use of GPUs, the complexity of the multi-processor

based GPU programming model and the additional complexity of the shared memory programming

model for the distributed computing system complicate the design and development processes. This

work aims at providing a mechanism that enables the distribution of the code that was conceived for

execution on single GPU over multiple GPUs installed in a distributed computing system, with little

additional effort. Additionally, the software framework described in the following aims at providing

an abstraction from the architecture of the distributed computing system and from the communication

system, enabling the distribution of tasks on a large range of platforms: multiple CPU cores or GPUs on

a single machine, one or multiple CPUs or GPUs per machine in a cluster or in a grid.

The programming model described in the following is an instance of the Boss/Worker model (B/W).

The software framework is implemented in Python.

The simple B/W model, described in the following, provides an abstraction over the communication

protocol, guaranteeing automatic load balancing and a degree of latency hiding. Hiding the communi-

cation protocol, the B/W model allows the programmer to be agnostic about the underlying mechanism

that allows the nodes to exchange data and to ignore communication latency hiding and load balancing

considerations.

The B/W programming model, in fact, provides an abstraction over the communication protocol and

guarantees automatic load balancing and latency hiding for computational problems that present a high

degree of task parallelism [142][143]. Such is the case of iterative tomographic reconstruction, as clari-

fied later in this chapter.

The first paragraph that follows describes the B/W programming model and issues specific to GPU

embedding; the second paragraph that follows describes the implementation of the back-end based on

MPI-2 and finally evaluation of performance and scalability on small computer cluster.
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10.5.1 GPU aware Boss/Worker architecture

In order to scale execution of a program that makes use of the B/W abstraction on a number of different

architectures, ranging from a single multi-core machine, to a GPU cluster, to a computing grid, the appli-

cation programming interface (API) of the B/W framework provides an abstraction over the mechanism

for data exchange. The back-end for communication and data exchange is an interchangeable module

which can be reimplemented in order to enable the same applications to run under different computation

environments.

Figure 10.16: Boss/Worker abstraction

In order to maintain a common API, it is necessary to address the issue of selection and allocation

of GPU devices in a way that is consistent with the abstraction and that can be implemented over a

number of the back-ends. It is straightforward to allocate GPU resources when multiple GPUs run on a

single machine, by means of the GPU runtime API, however batch queuing systems, message passing

infrastructures and the operating system are commonly unaware of GPUs. As batch queuing systems

are not GPU aware, one simple solution for the allocation of resources is to assume that there is a one-

to-one matching between nodes and GPUs so that one may rely on the existence of a GPU on each

node. However the following addresses heterogeneous clusters where some of the machines have one or

more GPUs. The batch queuing system has no awareness of the GPUs so one may let the batch queuing

system decide what nodes to allocate (this can be controlled configuring the batch queuing system), then

the B/W software implements a handshaking mechanism that makes the Boss aware of the computing

resources of each worker. When the application is launched, all the workers attempt to use the GPU API

(cudaGetDeviceCount and cudaGetDeviceProperties) to retrieve the properties of the installed GPUs

and communicate to the Boss a list of the GPUs installed on the local machine and their characteristics.

The Boss then uses MPI node IDs (process IDs for the OS Pipe back-end) and GPU device number to

figure out which nodes might conflict the allocation of a GPU on the same machine and assigns uniquely
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one GPU to each Worker; the Worker allocates the device that it has been assigned so each Worker is

associated at most to one GPU. In order for all the GPUs to be in use it is necessary to configure the

queuing system to create, on each machine, at least one node per GPU.

The Boss assigns a unique WorkerID to each Worker and stores information about whether

the Worker is GPU capable and what is the type of GPU and its compute capability (CUDA 1.1,

CUDA 2.0, CUDA 3.0,CUDA 4.0,CUDA 5.0,...). The programmer defines the Boss and the

Worker functionalities by sub-classing two basic Boss and Worker classes. Each method of

the Worker class may be executed by the Boss simultaneously on several Workers. A function

list workers(compute capability) allows the Boss to obtain a list of Workers with a specific compute

capability; the parameter of this function is a string that allows the Boss to query a list of all Workers

that support GPU acceleration, or a list of the Workers that have a compute capability equal, greater or

smaller then a specific value (for example =CUDA 2.0 lists all the Workers that have a CUDA device

with compute capability exactly equal to 2.0).

The Boss has a main method that is executed when the Boss is first started by M.engage(). The

programmer overrides the main method of the Boss to define the execution of tasks by the Workers.

In order to achieve automatic load balancing and to hide communication latency, the B/W imple-

ments and asynchronous API. The function do(task name, worker ids, parameters) determines buffering

of function name, parameters and worker ids and returns immediately a job ID to the Boss. In the back-

ground the function name and data objects are sent to the Workers. The second parameter to function do

may also be a string that specifies compute capability; in this case the task is dispatched to any worker

that has the requested compute capability. An idle Worker is chosen if available, otherwise the Worker

with least number of tasks awaiting for execution is chosen. This mechanism is identical to the classical

task bag [144][145] if the compute capability is set to ANY, but it allows to route tasks to nodes with

GPU acceleration or specific compute capability.

If the Worker is busy, the function name, job ID and parameters are buffered on the Worker side.

When the Worker completes the execution of a job, it notifies the Boss and pops a new job from the

local buffer. The Boss disposes of two APIs to query the status and result of a job: the asynchronous

interface returns None if the job (identified by its job ID) has not been completed, it returns the result

otherwise; the synchronous interface, that blocks until the result is ready, is more efficient then polling the

asynchronous interface when the Boss wants to synchronize with a specific job outcome. A sync(jobIDs)

function is provided to wait until all jobs with given job IDs are completed or until all jobs are completed

if the argument is 0.

The Workers are shut down explicitly by the Boss by means of a poison pill when the Boss shuts

down. Before terminating, the Worker process deallocates the GPU device.
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Figure 10.17: Boss/Worker abstraction

10.5.2 MPI Backend

The back-end for communication and data exchange can be implemented with a number of technologies,

such as MPI, OS Pipes, Condor, BOINC, Tuple Space, addressing different cluster configurations. This

allows us to run the same unmodified software on a single machine, on a cluster, or on a worldwide grid

for cloud computing.

The only implementation of the back-end currently implemented is based on MPI-2. MPI and its

batch queuing system provide the means to launch multiple processes on the nodes of a cluster and

to send and receive messages in a synchronous and an asynchronous manner. The network layer is

abstracted by assigning a node ID to each node. Though a more efficient beck-end might be designed

to exploit shared memory when communicating amongst multiple processes on a single machine, MPI

can create multiple nodes on the same machine and the OpenMPI implementation of MPI addresses the

issue of efficient data transfer amongst processes.

In the B/W model, the Boss communicates with the Workers and the Workers send results back to

the Boss, however there is no communication between Workers directly; each Worker has a WorkerID

that is mapped, in the MPI back-end, to a node ID.

In order to implement the task bag with double queue and asynchronous behaviour, we use the

asynchronous functions from the MPI API: asynchronous send to send messages from the Boss to the

Workers and back and iProbe and recv to asynchronously receive the messages. We use the tag of the

MPI message to define three message types: JOB, RESULT, COMMAND; the content of the message

is always a dictionary, that has specific fields for the three types of messages. The JOB message has

a function key, a parameters key, and a jobid key; function is a string that specifies the name of the

function, parameters is a list object that lists all the parameters of the function (each with its own object

type) and jobid is the integer ID that the Boss assigned to the job. The RESULT message, similarly, has

a result key (list object) and a jobid key (integer). The COMMAND message specifies a type key (string

object) and a content key (list object).

The back-end uses these three message types (tags) to send job requests, results and messages for

handshaking and shutdown (poison pill).
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10.5.3 Performance and Scalability

We present the implementation of an application for Emission Tomographic Reconstruction. Through

this application we show how the B/W programming model applies to a genuine problem and we evaluate

the benefit that can be obtained by distributing the execution on multiple CPUs and GPUs by means of

the B/W framework.

The MLEM algorithm iteratively updates an estimate of the radio-tracer activity, with increasing

likelihood of the estimation being the one that determined the observed data [17]:

λ̂newb = λ̂oldb
1∑D

d=1 pbd

D∑
d=1

nd pb,d∑B
b′=1 λ̂

old
b′ pb′,d

, b = 1, .., B (10.1)

A GPU accelerated projection/backprojection algorithm has been written in C/CUDA and is de-

scribed in detail in [97]. The projection/backprojection function, which takes as input λ̂oldb , a list of

cameras (their position and size), a point spread function, input projection data from each camera, and

produces the backprojection (right of λ̂oldb (10.1)), has been automatically wrapped with the wrapper

generator based on SWIG for use with the B/W programming interface.

Figure 10.18: Performance of MLEM Tomographic Reconstruction with the Boss/Worker framework for

activity of size 323,643 and 1283 voxels. Top figures show execution time for reconstruction on multiple

GPUs; the figures in the bottom show execution time for reconstruction on multiple CPUs. The given

time is for 60 iterations of MLEM and 180 projection angles.

As can be observed from the MLEM formula in (10.1), the projection and backprojection can

be calculated for any subgroup of D and the resulting backprojections need to be reduced by a sum

operation in order to compute the new estimate of λ̂. We exploit this task concurrency to execute the

projection/backprojection on multiple GPUs buy letting each GPU compute the backprojection from a

single camera (there are 180 cameras). The reduce operation is performed by the Boss for simplicity and

the synchronous interface allows reduced memory footprint as one projection is loaded from the workers

at the time. The Python listing for the MLEM reconstruction is reported below.
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from PyMW import Boss , Worker , Backend MPI

from S p e c t import p r o j e c t o r , s a v e a c t i v i t y , u n i f o r m a c t i v i t y ,\

c r e a t e p s f , c r e a t e c a m e r a s , c r e a t e t e s t d a t a , s u b s e t c a m e r a s

N = 6 4 ;

n c a m e r a s = 180 ;

out name = ’ a c t i v i t y . n i i ’

c l a s s Spec t Worke r ( Worker )

def p r o j e c t ( a c t i v i t y , ps f , cameras ) :

re turn p r o j e c t o r . p r o j e c t ( a c t i v i t y , ps f , cameras )

c l a s s S p e c t B o s s ( Boss )

def r e c o n s t r u c t ( s e l f , s inogram , ps f , cameras , a c t i v i t y ) :

# use o n l y nodes w i t h GPU f o r p r o j e c t i o n

worke r s IDs = s e l f . i n t e r f a c e . l i s t w o r k e r s ( ’GPU ’ )

i d l i s t = [ ]

f o r i in r a n g e ( l e n ( worker IDs ) ) :

cameras w = s u b s e t c a m e r a s ( cameras , l e n ( worker IDs ) , i )

#add j o b t o t h e t a s k bag

i d = s e l f . i n t e r f a c e . do ( ’ p r o j e c t ’ , worker IDs [ i ] , a c t i v i t y ,\

psf , cameras w )

i d l i s t . append ( i d )

# r e d u c t i o n :

f o r i d in i d l i s t :

a c t i v i t y += s e l f . i n t e r f a c e . g e t r e s u l t ( i d )

re turn a c t i v i t y

def main ( s e l f ) :

s inogram = c r e a t e t e s t d a t a (N, ’ b r a i n ’ , ’ p o i s s o n ’ )

p s f = c r e a t e p s f (N, ’ d d p s f ’ )

cameras = c r e a t e c a m e r a s ( n cameras , 1 8 0 )

a c t i v i t y = u n i f o r m a c t i v i t y (N)

a c t i v i t y = s e l f . r e c o n s t r u c t ( s inogram , ps f , cameras , a c t i v i t y )

s a v e a c t i v i t y ( a c t i v i t y , ou t name )

i f n a m e == ” m a i n ” :

B = Backend MPI ( )

W = Spec t Worke r (B)

M = S p e c t B o s s (B)

M. engage ( )

W. engage ( )

The code has been tested for reconstruction on a small cluster of 16 computers, each equipped with

a CPU Intel Core 2 Duo E6700 and a GPU NVIDIA GTX 285 with 1Gb of DDR3; the PCs are connected

by means of 1Gbps Ethernet. Each machine is equipped with Ubuntu-9.4 with NVIDIA drivers 195.36.1

and they share a network drive where we have installed Python-2.5, Numpy-1.3.0 and MPI4Py built with

OpenMPI-1.4.1. We launch MPI by means of ssh. In figure 10.18 we report the execution time registered

for reconstruction until convergence (60 MLEM iterations) with 180 projections and three different sizes

of the activity: 323, 643, 1283 voxels. The three images on the top represent the reconstruction time for

the GPU implementation while the three in the bottom are for the CPU implementation. These images
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show the speed up of approximately 100-fold of the GPU implementation over the implementation for

CPU, when executed on a single core (no multi-threading support was implemented for the CPU version).

When the size of the data is small, the improvement is less marked because of the time it takes to launch

the kernels on the GPUs (tough the recently released Fermi devices claim a 10-fold improvement in

kernel scheduling time).

Scaling the execution on multiple GPUs gives an immediate benefit, but the gain in performance

drops when using more than 8 GPUs. This is due to the latency when transferring the activity to the

Workers and back, in fact there is no other task subsequent to projection/backprojection, so after each

projection/backprojection task all the workers need to synchronize to perform the reduction and produce

the new estimation of the activity. When the algorithm is distributed on 8 GPUs we obtain a speed up

of about 4, while the speed up for 8 CPU is of about 5 times. However it is remarkable that it is not

possible to achieve the performance of a single GPU with a cluster of CPUs, due to communication

latency predominating the computation.

The aim of our work is to provide a Boss/Worker abstraction that allows to distribute code on

multiple machines in number of computing environments as diverse as possible. We have reviewed

the Boss/Worker programming model showing its applicability and limitations. The B/W abstraction

provides an effective way to distribute execution of code when the problem presents a high degree of

task concurrency. In this case a B/W programming model is appealing as it provides abstraction from

the communication protocol between processes and because it provides automatic load balancing and

hides communication latency. We have presented the implementation of a Python based B/W framework

that allows to distribute an application, unmodified, on a number of diverse computing environments;

particularly we have addressed distribution of code in a multi-GPU environment. We have addressed a

number of issues involved in distributing workload to multiple GPUs and shown that the B/W abstraction

is well suited to multi-GPU programming.

Finally we have tested our B/W framework by implementing an algorithm for Tomographic Re-

construction in Emission Tomography. This application shows that the framework allows to distribute

execution on multiple GPUs with little effort for the programmer. However for this application, the

scalability is limited to a maximum of 8 to 16 GPUs because of the low computational intensity of the

macroscopic tasks that can be extracted. Nonetheless, a speed up of a factor 4 is achieved by distributing

the execution of the algorithm on 6/8 GPUs. Because of the intrinsic low computational intensity of the

problem taken into consideration, the reconstruction algorithm does not scale well neither on CPU nor on

GPU, but the GPU implementation provides a speed up of up to 100 times over the CPU implementation.

The B/W framework introduces another speed up of a factor 4. The B/W programming model proves

to simplify the distribution of code to multiple machines and GPUs, and its unified interface provides

the means to distribute code on clusters of diverse sizes and configurations. It can be applied to scale a

GPU based application to run on a small GPU cluster, or to scale an algorithm that presents sufficient
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task parallelism on a bigger cluster.

10.6 A visualisation tool for multi-modal imaging data
Visualisation tools have the crucial role of delivering, for human interpretation, the information acquired

by the imaging. The integrated modelling approach shifts the focus of the imaging process from the

creation of images to direct extraction of clinically-relevant information and visualisations from the raw

data produced by the imaging hardware. In order to realise such imaging paradigm, NiftyRec includes an

interactive visualisation tool for multi-modal imaging data, designed especially for the joint visualisation

of anatomical and functional information.

The visualisation of tomographic data presents the challenge of extracting 2-D visualisations for

the human eye from the 3-D tomographic data. The two common approaches to the visualisation of

tomographic data are slicing and volume rendering. In the first case the volume is subdivided in a series

of 2-D slices and the visualisation software typically provides an interface for the selection of the slice of

interest and for navigation of the slices. Conversion from the scalar value in each voxel of the tomogram

to the colour of the slice is typically obtained by the use of a re-configurable look-up table denominated

as colour-map. Volume rendering assigns a virtual source of light and a virtual coefficient of attenuation

to every voxel of the tomogram. The image displayed on the screen in the image observed by a virtual

camera that collects the light produced by the virtual light sources.

In nuclear imaging, PET and SPECT functional images are often visualised in combination with

an anatomical image, typically X-Ray CT or MRI, in order to aid the localisation of regions and of

anatomical structures. The joint visualisation is typically obtained by slicing and by fusing the two slices

from the two modalities. There are a number of algorithms for image fusion; typically the anatomical

image is rendered with a black-and-white colour-map and fused, by alpha compositing (see http:

//en.wikipedia.org/wiki/Alpha_compositing), with the functional image, rendered with

colour-encoded intensity. Slicing presents the problem that the observer visualises, at a given time, only

the information contained in a single slice. The process of joining the information from neighbouring

slices requires some effort of memory for the observer. Volume rendering produces a global visualisation.

While volume rendering is flexible, enabling even the visualisation of surfaces (see figure 10.21), the

global visualisation may be overwhelming.

The visualisation tool of NiftyRec is based on ray-casting and merges the two methods of slicing

and volume-rendering.

10.6.1 Volume rendering algorithm

The multi-modal visualisation tool of NiftyRec is based on a modified version of the GPU-accelerated

ray-casting algorithm utilised for the cone-beam projector 10.2.2. The modified ray-casting algorithm

for visualisation is depicted in Fig. 10.19. Rays are traced from the source to the screen (virtual camera).

Integration is performed only within a rectangular bounding box (represented in grey in Fig. 10.19)
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parallel to the camera plane. The depth and thickness of the bounding box can be modified in real time.

Multiple volumetric images are defined (depicted in red and in yellow in the figure) and each volume is

associated to a colour-map. If the bounding box covers entirely the images, then the visualisation is a

multi-channel volume rendering, if the bounding box is 1-voxel-thick, then the image on the screen is

the alpha composition of the slices of the volumes corresponding to the location of the box.

Figure 10.19: Volume renderer for multi-modal datasets.

The colour-map maps the scalar values of the image to a colour value and opacity: RGBA (for red,

green, blue, alpha). The rendering algorithm computes, for each ray, the coordinates of the intersection

with the bounding box, then the ray is sampled at regular intervals throughout the bounding box. The

data is interpolated at each sample point, the colour-map applied to form an RGBA sample and the

sample is composited onto the accumulated RGBA of the ray. The process is repeated until the ray exits

the volume. The RGBA color is converted to an RGB color and deposited in the corresponding image

pixel.

Integration rule

Two algorithms for the computation of the sequence of alpha compositions have been implemented in

NiftyRec 1.6:

• Trapezoid rule (see http://en.wikipedia.org/wiki/Trapezoid_rule).

• NewtonCotes order 3 integration formula (see http://en.wikipedia.org/wiki/

Newton-Cotes_formulas).

Fig. 10.20 displays the volume rendered image of a T1-weighted MR image. The image is rendered with

black-white colour-map and with bounding box covering the entire image. Fig. 10.20-left os obtained
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Figure 10.20: Volume renderings of T1-weighted MR image. Left: Trapezoid rule integration rule.

Right: NewtonCotes order 3 integration rule.

with the trapezoid rule integration scheme, while Fig. 10.20-right with the higher order integration

scheme (NewtonCotes order 3).

10.6.2 Live interaction

The position of the camera and of the source can be manipulated in real time with the mouse buttons and

scroll button. The visualisation tool can also be scripted in real-time with the Python scripting language

to load the imaging data, modify the bounding box, set the colour-map and create animations. The list of

the methods for the interaction with the volume rendering tool (NiftyRec 1.6) is reported in 10.4. 10.21

reports images obtained with the NiftyRec visualisation tool. Animations can be found on the NiftyRec

website 10.8.

Table 10.4: NiftyRec, visualisation API

set volume(volume,channel) Set the image volume for channel channel

set colormap(colormap,channel) Set the colormap table for channel channel

set scale(scale,channel) The image at channel channel is pre-multiplied by this value.

set offset(offset,channel) The image at channel channel is pre-summed to this value.

set density(density,channel) The alpha values for channel channel is multiplied by this values.

set brightness(brightness,channel) The RGB values for channel channel are multiplied by this values.

set bounding box(bbox) Coordinates of the bounding-box in voxels.

set ray step(voxels) Length of the sampling interval along the ray.

pan camera(x,y,z) Pan the camera.

rotate camera(s,t,q) Rotate the camera.

zoom camera(zoom value) Zoom in (positive value) and out (negative value).

dump screenshot(filename) Save an image of the current visualisation. The extension determines the file format.
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A                                C                                 E

B                                D                                F

Figure 10.21: Renderings of multi-modal imaging data. (A) PIB PET, control patient; 4-voxels-thick

bounding box. (B) PIB PET Alzheimer’s patient; 4-voxels-thick bounding box. (C) DaTSCAN SPECT;

128-voxels-thick bounding box. (D) FDG PET; 4-voxels-thick bounding box. (E) T1-weighted MR of

mouse embryo; 256-voxels-thick bounding box. (F) T1-weighted MR of human brain; 4-voxels-thick

slice.

10.7 BSD license
NiftyRec is distributed under the permissive BSD license, allowing redistribution and use in source and

binary forms, with or without modification, provided that the following conditions are met:

• Redistributions of source code or binaries must retain all the copyright notices, the list of condi-

tions and a disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the organization nor the names of its contributors may be used to endorse or

promote products derived from this software without specific prior written permission.

10.8 NiftyRec online
NiftyRec source, binaries and documenation are hosted at the following URL: http://niftyrec.

scienceontheweb.net/
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Chapter 11

Conclusion

11.1 Contributions
This work was inspired by the new possibilities offered by PET-MR imaging systems. The unified

modelling approach, driven by the necessity to make joint use of the information from the two imaging

modalities, however, has resulted in new models and approaches that find application in both the stand-

alone PET and SPECT modalities and in the hybrid PET-MR systems. The main contributions of the

work described in this thesis are the following:

• Formulation of the tomographic reconstruction problem in the probabilistic graphical framework

(Chapter 2 and 3).

• Formulation of Bayesian finite mixture model for the integration of information from multiple

imaging modalities (anatomical and functional) and fully automated parameter learning algorithm

(Chapter 4).

• Formulation of a unifying probabilistic model for 4-D computed tomography, including the use of

multi-modal information (Chapter 5).

• Formulation of a semi-parametric model for multi-modal imaging (Chapter 6).

• Formulation of an EM-based algorithm for the estimation of the characteristics of depth-of-

interaction (DOI) detectors (Chapter 7).

• Formulation of a globally convergent learning algorithm based on manifold learning techniques

for the estimation of the characteristics of depth-of-interaction (DOI) detectors (Chapter 7).

• Formulation of a manifold learning algorithm based on the density of the locally linear embedding

(DLLE) (Chapter 7).

• Formulation of a method, based on a sparsified Fisher Information Matrix, for the efficient esti-

mation of the uncertainty in emission computed tomography (Chapter 9).
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• Formulation of an active learning method for real-time adaptation of emission imaging devices

(Chapter 9).

• Formulation of a method for the compensation of disrupted detectors in emission computed to-

mography (Chapter 8).

• Formulation of a unifying computational model for scatter compensation in tomographic imaging

systems (Chapter 8).

• Development of the open-source GPU-accelerated multi-modal tomographic reconstruction soft-

ware NiftyRec (Chapter 10).

11.2 Conclusion
The first two chapters (chapter 2 and chapter 3) of this thesis are introductory. Chapter 2 introduced the

mathematical formalism of probabilistic graphical models that was adopted to frame the (multi-modal

and time-dependent) tomographic reconstruction problem and to derive various models and algorithms

throughout the rest of the document. Chapter 3 derived the basic iterative algorithms commonly ap-

plied for inference in single modality static tomographic imaging, including MLEM, OSEM and OSL-

MAPEM. Such derivations constitute the building blocks for the successive chapters. The second part

of the paragraph described the fundamental challenge of tomographic imaging and the link between

ill-posedness of the reconstruction problem, resolution, and the partial-volume-effect.

Chapter 4 described a Bayesian model that enables the use of information from multiple imaging

modalities including emission computed tomography. With the growing field of PET-MR scanners, the

approach and algorithms described in this chapter can have an impact on the quality of the reconstructed

PET images. The chapter describes a mixture model and extensions aimed at guaranteeing full automa-

tion of the algorithm. Robust estimation is achieved by 1) adopting a population-based statistical atlas

to initialise and drive the optimisation of the parameters of the pharmaceutical uptake model and of the

MR acquisition system model; 2) adding contextual information in the form of a Markov Random Field

over the hidden tissue labels; 3) capturing the MR image bias field. The algorithm has been evaluated in

a synthetic study, finding that it improves the quantification of the pharmaceutical uptake when the sim-

ulated data reflects the assumptions of the model and, remarkably, that the uptake estimate may improve

also in regions that do not obey to the model. Validation with real data remains an open problem as it

would require large sets of imaging data, possibly labelled with long term clinical outcome for specific

diagnostic tasks. To this extent, automation of the reconstruction algorithm is crucial. Given the wide

acceptance and increasing use of of probabilistic atlas based segmentation algorithm [70] [5], the joint

generative model for PET-MR might prove useful when coupled with population based spatially varying

priors of the hidden states and hyper-priors for the parameters of the mixture model in order to include

experience in the reconstruction process.
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Chapter 5 extended the model of Chapter 4, accounting for spatial deformations. The model de-

scribes the time-dependent interaction between data from multiple imaging modalities and has several

applications, unifying some of the approaches for motion correction that have been proposed in the lit-

erature and introducing new algorithms. The algorithms introduced in this Chapter have been evaluated

with synthetic data, proving feasibility. It is difficult, however, to envisage at this stage implementation

strategies on real imaging systems such as defining the most appropriate MRI sequences and frequency

of the frames. The work described in Chapter 5 will be further investigated in a research project financed

by EPSRC grant Exploiting the unique kinetic capabilities of simultaneous whole-body PET/MRI.

Chapter 6 extended the model described in Chapter 4, replacing the parametric model of the phar-

maceutical uptake described in 4 with a non-parametric model. The resulting semi-parametric model

merges the gap between the parametric and the non-parametric approaches described and utilised in the

context of medical image registration.

Chapters 7 and 8 explored the new applications that emerge from the combination of a probabilistic

model of the gamma imaging device and a probabilistic model of the tomographic imaging system. The

first part of Chapter 7 formulated the probabilistic model of the gamma imaging device in the probabilis-

tic graphical framework. While probabilistic modelling of the gamma imaging device is not a novelty of

this paper, the second part of the chapter and chapter 8 extended the probabilistic model of the imaging

device in two ways: 1) by defining the inference problem associated to the estimation of the charac-

teristics of the gamma imaging device; 2) by coupling the model of the gamma imaging device with

the probabilistic model of the tomographic system. The first extension of the probabilistic model of the

imaging device resulted in two algorithms for the estimation of the characteristics of gamma imaging

devices, especially for depth-of-interaction (DOI) resolving devices, but applicable to any gamma imag-

ing device. The first algorithm emerges as the trivial solution to the inference problem associated to

the characteristics of the imaging device and is based on the EM iterative algorithm. Such algorithm

is locally convergent. The second algorithm is based on concepts of manifold learning (introducing a

new methodology denominated density of the locally linear embedding - DLLE) and has global conver-

gence properties. The learning algorithms described in this chapter require further experimentation with

real imaging devices, however the results obtained with simulation studies are encouraging. The recent

widespread interest in DOI detectors for high resolution PET imaging confirms the importance of the

algorithms described in this chapter.

The second extension of the probabilistic model of the imaging device was explored in Chapter 8

and consisted in coupling the model of the imaging device with the model of the tomographic imaging

system. Coupling the probabilistic models couples the two inverse problems that arise from the two

models: the estimation of the location of interaction and energy of the gamma photons and the estimation

of the activity. The formulation in the graphical framework is fundamental in order to attain the joint

model described in this chapter.
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The combination of the two models constitutes a novelty and highlights the important observation

that the the Cramer-Rao bound does not constitute a hard limit on the accuracy (intended as degree of

closeness to the true values) of the location of interaction and energy of a photon. By constructing a

model of the process that emits the photons from multiple photon interactions, one may obtain estimates

of the location of interaction and energy that are, in average, closer to their true values, than indicated

by the Cramer-Rao lower bound associated to the single photon detection. An algorithm for the iterative

refinement of a model of the underlying emission process has been described in this thesis. Furthermore,

the combination of the two models may have a number of applications. Two were suggested in Chapter

8: 1) an algorithm for the compensation of disrupted photo-detectors; 2) an algorithm for scatter com-

pensation that makes use of continuous energy measurements at low computational cost. Such algorithm

may possibly find application in the next generation energy-resolving PET scanners.

All the algorithms described in this thesis work were derived within the Bayesian framework. How-

ever, inference was mainly intended as point estimation, as a decision, rather than characterisation of the

full posterior probability distributions. Chapter 9 scratched the surface of the fully Bayesian approach,

focusing on the problem of the choice of the design parameters of a tomographic imaging system and

framing the problem in terms of information retrieval. The problem of optimum design has not been

previously treated in the information theoretic framework, perhaps due to the tremendous computational

complexity that arises. The second part of the paragraph described a methodology for the efficient

computation of the information, based on the sparsification of the Fisher Information Matrix. Such ap-

proximation enables the exploration of design spaces otherwise forbidden. The last paragraph of Chapter

9 described the concept of a SPECT imaging system that adapts in real-time to the imaging conditions,

selecting the acquisition parameters that maximise the information gain. Though more in-depth eval-

uation of the adaptive system and experiments with real world imaging hardware are not presented in

this thesis, the active-learning SPECT system concept is an interesting application of the sparse FIM

algorithm. In-depth evaluation of the effect of the approximation involved in sparsifying the FIM and

the application of the method to the optimisation of the parameters of a parallel-hole collimator and of a

commercial SPECT system (D-SPECT) are presented in a journal article at this time in the final stage of

the revision process [21].

The work described in this thesis is nearly entirely based on the NiftyRec reconstruction software,

described in Chapter 10. NiftyRec is freely available, fast, it supports multiple tomographic imaging

modalities (including PET, SPECT, cone-beam and parallel-beam transmission tomography) and it is

entirely scriptable in Matlab and Python. Finally, the design of NiftyRec is inspired on the graphical

models described in this thesis and meant to enable the development of algorithms that integrate tightly

reconstruction, registration (e.g. motion compensation) and segmentation.
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