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Motivation – reCAPTCHA

The Hreckinridge’ and Lane
Democrats, having taken courage at
the recent eastern advises , are
xxxxxxxxxx energetically for the
campaign: Several prominent
Democrats who at first favored
DonoLea , are coming out. for the

other aide , apparently under the
xxxxxxxx of Federal xxxxxxxxx .
An address to the National
Democracy of ,1ifornia , urging the

party to support HaeeslipslDas , has
recently been published, which
manifestly bss strengthened that

aide of the xxxxxxxxx : It is
signed by 65 Democrats,
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Motivation

reCAPTCHA determines
unintelligible words by
means of human effort

by solving CAPTHAs,
users on the Web also
help digitize content

Our goal is to determine
unintelligible words
automatically: selecting the
right word from a list of
candidate words, using

their context

the distributional

hypothesis

and structured sparse

coding



The problem
The method

Results

The distributional hypothesis and spurious similarities

Words that occur in the same contexts tend to have similar
meaning

Context: words preceding and following the target word
Example: Democrats who at first favored DonoLea , are
coming out

There are exceptions to the hypothesis

spuriously similar contexts: when two contexts are similar but
belong to different words

many candidate words → many spuriously similar contexts

A mechanism is needed to deal with spurious similarities →
structured sparse coding
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Two steps

First step: solve an inverse problem Dα ≈ x, where

x is the context of the unintelligible word
D is the word-context matrix of dictionary

α is the representation vector

Second step: Obtain a single candidate word from the
representation vector α
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First step – solving an inverse problem
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The representation vector α = [α1;α2; . . . ;αn] ∈ R
n

x = α1d1 + α2d2 + . . . + αndn
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The structured sparsity inducing regularization
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Whole groups are selected → spurious similarities have less
effect
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Group Lasso

The columns of D are organized into groups

G = {Gl}l∈L ⊆ 2{1,...,n}

Gl is a group labeled with l ∈ L, that contains indices of
columns of D

Our goal is to select only a few groups

Group Lasso

min
α∈Rn

1

2
‖x − Dα‖2

2 + λ

∑

l∈L

wl ||αGl
||2
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Second step

Obtain a single candidate word from the representation vector
α

sum the weights in each group
select the candidate word l∗ ∈ L whose group Gl∗ contains the
most weight

Selecting a single candidate word

l∗ = arg max
l∈L

∑

i

(αGl
)i
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Generating the datasets

The computer term

boot is short for

bootstrap or bootstrap

load and is derived

from the phrase...

Candidate words

boot

root

foot

...

Raw corpus

The computer term

boot is short for

bootstrap or bootstrap

load and is derived

from the phrase...

The computer term

boot is short for

bootstrap or bootstrap

load and is derived

from the phrase...

Clean corpus

computer term boot

short bootstrap

bootstrap load

derive phrase...

The computer term

boot is short for

bootstrap or bootstrap

load and is derived

from the phrase...

Contexts

computer term boot short bootstrap
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Evaluations

Two goals:
Compare the method to baselines

Support Vector Machine
k-Nearest Neighbors

Examine the effect of the ratio of unintelligible words on the
accuracy

Delete p percent of the words from the contexts in the test
set (x)
As p is increasing, measure the drop in accuracy

Cross-validation: shuffle and split 30 times on each datapoint
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Accuracy vs percentage of unintelligible words, Brown

corpus
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Accuracy vs percentage of unintelligible words, comparison
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(a) BNC (b) Brown corpus
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Comparison of representation vectors
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The end

Thank you for your attention!
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