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Abstract We treat the problem of searching for hidden multi-dimensional inde-
pendent auto-regressive processes (Auto-Regressive Independent Process Anal-
ysis, AR-IPA). Independent Subspace Analysis (ISA) can be used to solve the
AR-IPA task. The so-called separation theorem simplifies the ISA task consider-
ably: the theorem enables one to reduce the task to one-dimensional Blind Source
Separation (BSS) task followed by the grouping of the coordinates. However, the
grouping of the coordinates still involves 2 types of combinatorial problems: (i)
the number of the independent subspaces and their dimensions, and then (ii) the
permutation of the estimated coordinates are to be determined. Here, we general-
ize the separation theorem. We also show a non-combinatorial procedure, which
– under certain conditions – can treat these 2 combinatorialproblems. Numerical
simulations have been conducted. We investigate problems that fulfill sufficient
conditions of the theory and also others that do not. The success of the numerical
simulations indicates that further generalizations of theseparation theorem may be
feasible.

Key words Independent Component Analysis, Independent Process Analysis,
auto-regressive processes

⋆ c© Springer-Verlag London Limited 2009. The original publication is available at
http://dx.doi.org/10.1007/s10044-009-0174-x.
⋆⋆ Present address: Department of Computing Science, University of Alberta, Athabasca
Hall, Edmonton, Canada, T6G 2E8
⋆⋆⋆ Corresponding author. Voice: (36-1) 209-0555 / 8473, Fax: (36-1) 381 2140.



2 Zoltán Szabó et al.

Originality and Contribution

Combinatorial explosion is a major obstacle for signal processing. Here, we show
that for Auto-Regressive Independent Process Analysis (AR-IPA), a relative of
Independent Component Analysis, this problem can be alleviated. Namely, our
proposed method does not require previous knowledge about the dimensions of
the hidden independent components. Independent Subspace Analysis (ISA) can
be used to solve the AR-IPA task. We provide a rigorous theorem with sufficient
conditions for the ISA task to be solved. Numerical studies outside of the domain
of the theorem indicate the robustness of the method.
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1 Introduction

Search for independent components is in the focus of research interest. There
are important applications in this field, such as blind source separation, blind
source deconvolution, feature extraction, and denoising.Thus, a variety of par-
ticular methods have been developed over the years. For a recent review on these
approaches and for further applications, see [1,2] and the references therein.

Traditionally, Independent Component Analysis (ICA) is one-dimensional in
the sense that all sources are assumed to be independent realvalued stochastic vari-
ables. The typical example of ICA is the so-calledcocktail-party problem, where
there aren sound sources andn microphones and the task is to separate the origi-
nal sources from the observed mixed signals. However, applications where not all,
but only certain groups of the sources are independent may have high relevance in
practice. In this case, independent sources can be multi-dimensional. Consider the
following generalizations of the cocktail-party problem.There could be indepen-
dent groups of people talking about independent topics at a conference or more
than one group of musicians may be playing at a party. This is the Independent
Subspace Analysis (ISA) extension of ICA, also called Multi-dimensional Inde-
pendent Component Analysis (MICA) [3].

Efforts have been made to develop ISA algorithms [3,4,5,6,7,8,9]. Theoreti-
cal problems concern mostly the estimation of the entropy orthe mutual informa-
tion. Entropy estimation by Edgeworth expansion [4] has been extended to more
than 2 dimensions and has been used for clustering and mutualinformation test-
ing [10]. Other recent approaches search for independent subspaces via kernel
methods [6], joint block diagonalization [9],k-nearest neighbors [7], and geodesic
spanning trees [8].

An important application of ISA is, e.g., the processing of EEG-fMRI data
[4]. Clearly, most practical problems, alike to the analysis of EEG-fMRI signals,
exhibit considerable temporal correlations. In such cases, one may take advantage
of Auto-Regressive Independent Process Analysis (AR-IPA)[11], a generalization
of ISA to auto-regressive (AR) processes, similar to the AR generalization of the
original ICA problem [12]. A separation theorem [13] allowsone, under certain
conditions, to reduce the AR-IPA task to ICA and then to the search for the optimal
permutation of the ICA elements.1 Nonetheless, this permutation search is still a
combinatorial problem and it is computationally intractable for large dimensional
hidden sources. Further, AR-IPA methods [11,13,12] assumethat the number of
the processes and their respective dimensions are known in advance.

Our algorithm makes use of the ISA separation theorem [13], that we gener-
alize here. The algorithm builds upon the temporal dependencies within the sub-
spaces. It does not require previous knowledge about the number and the dimen-
sions of the sub-processes and can considerably ease or may fully avoid the esti-
mation of the multi-dimensional Shannon entropy, the tool of some of the previous
methods [11,13].

1 The possibility of such a decomposition principle was suspected by [3], who based his
conjecture on numerical experiments.
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The paper is constructed as follows: Section 2 formulates the AR-IPA problem
and its reduction to the ISA task. The ISA separation theoremand our novel AR-
IPA identification algorithm are presented in Section 3. Numerical simulations are
provided in Section 4. Short discussion can be found in Section 5 and conclusions
are drawn in Section 6. We also provide an Appendix. It contains the details of
the ISA separation theorem, including previous and novel results for the sake of
self-containment.

2 The AR-IPA Model

We formulate the AR-IPA task (Section 2.1) and then reduce itto the ISA problem
(Section 2.2). The uniqueness of the identification is also treated.

2.1 The AR-IPA Equations

Assume that we haveM hidden and independent AR processes and that only the
mixture of theseM componentsis available for observation:

sm(t + 1) = Fmsm(t) + em(t), m = 1, . . . , M (1)

s(t) =
[

s1(t); . . . ; sM (t)
]

, (2)

z(t) = As(t), (3)

where s(t) is the vector concatenated form of componentssm(t), sm(t),
em(t) ∈ R

dm

, em(t) is i.i.d. in t, and there is at most a single Gaussian among
sourcesem. Also I(e1, . . . , eM ) = 0, whereI stands for the mutual informa-
tion of the arguments.Fm(6= 0) ∈ R

dm×dm

is called thepredictive matrixof the
mth process. The total dimension of the components isD :=

∑M

m=1 dm. Thus,
s(t), z(t) ∈ R

D. Matrix A ∈ R
D×D is the so calledmixing matrixwhich, accord-

ing to our assumptions, is invertible. From now on, for the sake of notational sim-
plicity, all dms are assumed to be equal (dm = d ∀m), butall resultshold for the
general case.

The goal of the AR-IPA problem is to estimate the original source s(t) and
the unknown mixing matrixA (or its inverseW, which is called theseparation
matrix) by using observationsz(t) only. If ∀Fm = 0 then the task reduces to the
ISA task. The ICA task is recovered if both∀Fm = 0 andd = 1.

2.2 Reduction of AR-IPA to ISA and Ambiguities

The identification of the AR-IPA model, alike to the identification of ICA and ISA
models, is ambiguous. First, we shall reduce the AR-IPA taskto the ISA task [12,
14,11,13] by means ofinnovations. The innovation of stochastic processu(t) is
the error of the optimal quadratic estimation of the processusing its past, i.e.,

ũ(t) := u(t) − E[u(t)|u(t − 1),u(t − 2), . . .], (4)
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whereE[·] is the expectation value operator. It is easy to see that for an AR process,
the innovation is identical to the noise that drives the process. Therefore, construct-
ing a block-diagonal matrixF from matricesFm, the AR-IPA model assumes the
following form

s(t + 1) = Fs(t) + e(t), (5)

z(t) = As(t) = Fzz(t − 1) + Ae(t − 1), (6)

z̃(t) = Ae(t − 1) = As̃(t), (7)

whereFz = AFA−1. Equation (6) shows that the observation processz(t) is also
an AR process. Thus, applying ISA to innovationz̃(t) of the observation, mixing
matrixA and thuse(t) as well ass(t) can be determined.

Concerning the ISA task, we can lessen the ambiguity of the problem (see,
e.g., [15]) by assuming that both the noise source and the innovation of the obser-
vation arewhite, that is,E[e] = 0, E

[

eeT
]

= ID andE[z̃] = 0, E
[

z̃z̃T
]

= ID,
whereID is theD-dimensional identity matrix, superscriptT denotes transposi-
tion. Then, ambiguities are restricted to permutations of the subspaces and to arbi-
trary orthogonal transformations within the subspaces. Now, we have that mixing
matrixA and thus matrixW = A−1 are orthogonal, because:

ID = E
[

z̃z̃T
]

= AE
[

eeT
]

AT = AIDAT = AAT . (8)

3 ISA Separation Theorem and Consequences

First, we define the ISA cost function (Section 3.1), then we state the ISA separa-
tion theorem (Section 3.2). For the proof of the theorem, seeAppendix (A.) This
theorem forms the basis of our AR-IPA identification algorithm, which is intro-
duced in Section 3.3. A novel extension of the separation theorem is also provided
in Section 3.4.

3.1 The ISA Cost Function

The ISA task can be viewed as the minimization of mutual information between
the estimated components:

min
W∈OD

I
(

y1, . . . ,yM
)

, (9)

wherey = Wz, y =
[

y1; . . . ;yM
]

andOD denotes the space of theD × D or-
thogonal matrices. Cost functionI can be transcribed to another cost function that
sums up Shannon’s multi-dimensional differential entropyterms (see, e.g., [8] for
details):

min
W∈OD

J(W) :=

M
∑

m=1

H (ym) . (10)
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3.2 The ISA Separation Theorem

ICA and ISA problems can be formulated as the optimization ofthe above cost
functionJ . Further, the following ISA separation theorem holds [13]:

Theorem 1 (Separation Theorem for ISA) Let us suppose, that all the
u = [u1; . . . ; ud] = sm components of sources in the ISA task satisfy

H

(

d
∑

i=1

wiui

)

≥
d
∑

i=1

w2
i H (ui) , ∀w :

d
∑

i=1

w2
i = 1, (11)

and that the ICA cost functionJ(W) =
∑D

i=1 H(yi) has a minimum (W ∈ OD).
Then it suffices to search for the minimum of the ISA task (WISA) as a permutation
of a solution of the ICA task (WICA). In other words, it is enough to look for the
ISA separation matrix in the following form

WISA = PWICA, (12)

whereP
(

∈ R
D×D

)

is a permutation matrix to be determined. (Proof is provided
in Appendix A.)

Note 1We do not suppose in the separation theorem that matrixWICA is unique –
apart from the ambiguities of the ICA solution. According toour experiences this
assumption is not necessary (see Section 4).

Thus, if noisesem of processessm satisfy condition (11), then the AR-IPA
model can be estimated as follows:

1. observez(t) and estimate the AR model,
2. whiten the innovation of the AR process and perform ICA on it,
3. solve the combinatorial problem: search for the permutation of the ICA com-

ponents that minimizes the cost functionJ .

This is a viable approach. The cross-entropy (CE) method [16] seems very effi-
cient in the last step [13]. However, the CE method (i) still assumes that the num-
ber of the sub-processes and their respective dimensions are known, (ii) it requires
costly multi-dimensional entropy estimations, and (iii) the optimization concerns

D!
d1!···dM ! permutations even if the dimensions of the subspaces are given. As we
show below, under certain conditions, the separation theorem offers a solution to
the AR-IPA task; previous knowledge of the dimensions of thesubspaces is not
necessary, global search in permutation space as well as thecomputer time con-
suming estimation of multi-dimensional entropies can be circumvented.

3.3 Non-combinatorial AR-IPA Algorithm Using the Separation Theorem

We make the following observations:
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1. Eq. (6) prescribes how to transform the predictive matrixof an AR process
[z(t) = As(t)] to another basis. Thus, the predictive matrix of the hidden
processs(t) = Wz(t) (W = A−1) is

F = WFzW
−1 = WFzW

T , (13)

where the orthogonality of matrixW was taken into account. Thus, making
use of the separation theorem, matrix

WICAFzW
T
ICA (14)

– apart from (possible) permutations – is equal to the block-diagonal predictive
matrixF of the sources.

2. It then follows that connected groups of the coordinates of the hidden source
can be recovered by collecting the elements belonging to thesame block inF.
In practice, the estimation of matrixF (i.e., matrixF̂), is only nearly block-
diagonal (apart from permutation). Thus, we say that two coordinatesi and
j areF̂-‘connected’ ifmax(|F̂ij |, |F̂ji|) > ǫ, where,F̂ij denotes the(i, j)th

coordinate of matrix̂F, and, in the ideal case,ǫ = 0. Then we can group the
F̂-‘connected’ coordinates into separate subspaces using the following algo-
rithm:
(a) Choose an arbitrary coordinatei (1 ≤ i ≤ D) and group allj 6= i coordi-

nates to it, which arêF-‘connected’ with it.
(b) Choose an arbitrary and not yet grouped coordinate. Findits connected

coordinates recursively. Group them together.
(c) Continue until all components are grouped.
Thisgathering procedureis fast. In the worst case, it is quadratic inD.

Summing up, the pseudo-code of our non-combinatorial AR-IPA algorithm
is provided below. Estimations ofFz, WICA, s(t), F are denoted bŷFz, ŴICA,
ŝ(t), F̂, respectively and the estimation of the innovation of processz(t) is denoted
by z̃(t), where the hat sign is neglected for the sake of notational simplicity:

1. AR fit toz(t): innovatioñz(t) is approximated by making use of the estimation
F̂z.

2. ICA on whitened̃z(t): hidden sourcês is estimated by means of the estimated
separation matrix̂WICA:

ŝ(t) := ŴICAz(t). (15)

3. Estimation of the predictive matrix of sources(t) [see Eq. (14)]:

F̂ = ŴICAF̂zŴ
T
ICA. (16)

4. Grouping ofF̂-‘connected’ processeŝsi (ŝi is theith coordinate of̂s).

For our method, computational time is negligible as compared to the CE based
AR-IPA technique of [13]. Namely, in the present technique one needs at most
O(D2) simple ‘max(|F̂ij |, |F̂ji|) > ǫ’-like comparisons to execute the gathering
procedure. By contrast, the computational time of the CE-based technique using



8 Zoltán Szabó et al.

k-nearest neighbor method for entropy estimation [13] scales with hidden dimen-
sion D and sample numberT as follows: Our CE-based optimization assumes
that thedm dimensions of the hidden subspaces are known. Without this knowl-
edge the CE method becomes inefficient and one has to try all possible combi-
nations for the dimensions of the subspaces. The possible set of subspace dimen-
sions is constrained by the full dimensionD of the problem:D = d1 + . . . + dM

(dm > 0, M ≤ D). The number of these possibilities is given by the so-called
partition functionf(D), i.e., the number of sets of positive integers that sum up
to D. The value off(D) grows quickly with the argument. Asymptotic behav-
ior is known [17,18]:f(D) ∼ exp(π

√

2D/3)/(4D
√

3) asD → ∞. For given
subspace dimensions, CE optimizes iteratively, say inmaxit steps. In each iter-
ative step new permutation samples are drawn. The number of these samples is
constant,c times the number of the parameters of the optimization problem [16].
These parameters in the CE permutation-optimization correspond to the transi-
tion probabilities of a Markov-chain. Thus, for dimensionD, there areD(D − 1)
of them. For each permutation drawn, one has to compute the CEscore func-
tion from the multi-dimensional Shannon-entropy. The entropy can be estimated
by computing theT 2 Euclidean distances between theT training samples [19]. N-
body techniques [20] offer efficient estimations and they require onlyO(T log(T ))
computations. Putting together, CE based gathering requiresprevious knowledge
about the dimensions of the subspacesand for a given set of subspace dimensions
the number of computations is in the order ofO(D2T log(T )). By contrast, for the
method we suggest here, the gathering requiresO(D2) computations without any
knowledge about the dimension of the hidden subspaces.

3.4 Sufficient Conditions for the Separation Theorem

Sufficient conditions of the separation theorem with respect to theem noise pro-
cesses of Eq. (11) are considered in this subsection. We review known results and
provide an extension of the theorem. (For details of the proofs, see Section B of
the Appendix.)

3.4.1 Thew-EPICondition First, consider the so called Entropy Power Inequal-
ity (EPI)

e2H(
P

L

i=1
ui) ≥

L
∑

i=1

e2H(ui), (17)

whereu1, . . . , uL ∈ R denote continuous stochastic variables. This inequality
holds for example, for independent continuous variables [21], but it may hold for
other variables, too.

Let SL denote the unit sphere of theL-dimensional space, that is

SL := {w ∈ R
L : ‖w‖ = 1}, (18)

where‖·‖ denotes the Euclidean norm, i.e., forw ∈ R
L ‖w‖2 :=

∑L

i=1 w2
i .
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Definition 1 If continuous stochastic variablesu1, . . . , uL ∈ R satisfy the follow-
ing entropy inequalities

e2H(
P

L

i=1
wiui) ≥

L
∑

i=1

e2H(wiui), ∀w ∈ SL, (19)

then we say that they satisfy thew-EPIcondition.

Proposition 1 The w-EPI property of variablesem implies inequality(11) (see
Lemma 1).

3.4.2 Takano’s Dependency CriterionFor constantw ∈ Sd, the w-EPI relation
reduces to the EPI property [Eq. (17)]. In [22], sufficient condition is provided to
satisfy the EPI condition. The condition, which is restricted to the 2-dimensional
case, is based on the weak dependencies of the variables. Theconstraint ofd = 2
may be generalized to higher dimensions, but we are not awareof such general-
izations.

3.4.3 Spherically Symmetric Sources

Definition 2 (Spherically symmetric variable) A stochastic variableu ∈ R
d is

called spherically symmetric (or shortly spherical), if its density function is not
modified by any rotation. Formally, if

u
distr
= Ou, ∀O ∈ Od, (20)

where
distr
= denotes equality in distribution.

A spherical stochastic variable has a density function and this density function
takes constant values on concentric spheres around the origin.

Proposition 2 For spherically symmetric variables with finite covarianceEq.(11)
holds. Further, the stronger w-EPI property [Eq.(19)] also holds and with equality
between the two sides (∀w ∈ Sd). (See Proof B.2 in the Appendix.)

Note 2Spherical variables as well as their non-degenerate affine transforms, the
so called elliptical variables (which are equivalent to spherical ones from the point
of view of ISA) are thoroughly treated in [23,24].

3.4.4 Sources Invariant to90◦ Rotation We have seen that stochastic variables
with density functions invariant to orthogonal transformations (spherical variables)
satisfy the conditions of the separation theorem. For mixtures of 2-dimensional
components (d = 2), invariance to90◦ rotation suffices. This condition is our
novel extension to previous conditions of the ISA separation theorem.

The result: if in the AR-IPA tasks variablesu = (u1, u2)(= em) ∈ R
2 are

invariant to90◦ rotation, i.e., their density functionf satisfies invariances

f(u1, u2) = f(−u2, u1) = f(−u1,−u2) = f(u2,−u1)
(

∀u ∈ R
2
)

, (21)
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(a) (b) (c) (d)

Figure 1: Illustration: Density functions (for variablesem) invariant to90◦ rotation
or permutation and sign changes. (a) and (c): density functionf takes identical val-
ues at the arrowheads. MatrixR and matrixM are90◦ ccw rotation and reflection
to axisx, respectively. (b) and (d): examples for (a) and (c), respectively.

then the AR-IPA task defined by these variables can be identified by means of the
ISA separation theorem. The formulation of this theorem requires care and it can
be found in the Appendix (Theorem 2). The proof of the theoremis also provided
there.

Note 3An important special case of condition (21) is the invariance to permutation
and sign changes. Then, for density functionf the following holds

f(±u1,±u2) = f(±u2,±u1)
(

∀u ∈ R
2
)

. (22)

In other words, there exists functiong : R
2 → R, which is symmetric in its

variables and
f(u) = g(|u1|, |u2|) (23)

holds. In particular, density functions of spherical orLp-norm sphericalvariables
[25], such as

f(u) = g

(

∑

i

|ui|p
)

(p > 0) (24)

also belong to the realm of the theorem.

Illustrations for the theorem are shown in Fig. 1.

3.4.5 Summary of Sufficient ConditionsOur results for the ISA separation theo-
rem are summarized in Table 1.

4 Illustrations

The AR-IPA identification algorithm of Section 3.3 is illustrated below. Test cases
are introduced in Section 4.1. The quality of the solutions will be measured by the
normalized Amari-error, that we call the Amari-index (Section 4.2). Numerical
results are provided in Section 4.3.
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invariance to90◦ rotation (d = 2)

(with equality for a suitable ONB)

��

special case
U

U

U

U

U

U

U

**U

U

U

U

U

U

U

invariance to sign
and permutation

special case

��
Lp-norm spherical

Takano’s
conditions

(d = 2)
+3 w-EPI

��

spherical
symmetry

(with equality for allw ∈ Sd)ks

generalization ford = 2

OO

Equation (11): sufficient
for the Separation Theorem

Table 1: Relations amongst sufficient conditions for the ISAseparation theorem.

(a) (b) (c)

Figure 2: Databases: (a) and (b) depicts examples for the density function ofem,
(c) shows an example forsm [see AR-IPA equations (1)–(3)]. (a):mosaicdatabase
is made of 2D components. Density function ofem is invariant to90◦ rotation.
(b) and (c) concern tests outside of the conditions of the separation theorem. (b):
3D-geomdatabase: density functions ofem are identically distributed on 3D ge-
ometrical structures. (c):Lorenzdatabase: componentssm are not AR processes,
but 3D chaotic systems; trajectories of Lorenz attractors.

4.1 Databases

Four databases were defined to study the AR-IPA identification algorithm. The
first 3 of them are illustrated in Fig. 2.

4.1.1 Mosaic This test has 2-dimensional source components generated from
images of mosaics. AR components were constructed through driving noise
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sources em. Stochastic noise sourcesem were generated by sampling
2-dimensional coordinates proportional to the corresponding pixel intensities. That
is, 2-dimensional images of mosaics were considered as density functions. These
density functions were invariant to90◦ rotation and thus they met condition (11)
of the separation theorem.M = 4 was chosen. This database is calledmosaic.

4.1.2 3-dimensional Geometric FormsThis example, the3D-geomdatabase, is
outside of the domain of the sufficient conditions of the separation theorem. Vari-
ablesem were uniform distribution variables on 3-dimensional geometric forms
(d = 3). Three AR processes were generated from the noises (M = 3) and were
mixed before observation.

4.1.3 Lorenz Attractor In this example non-AR sources were used. The sources
(sm) correspond to 3-dimensional (d = 3) deterministic chaotic time series, the so
called Lorenz attractor [26] with different initial points(x0, y0, z0) and with differ-
ent speeds. The Lorenz attractor is described by the following ordinary differential
equations:

ǫẋ(t) = a(y(t) − x(t)), (25)

ǫẏ(t) = x(t)(b − z(t)) − y(t), (26)

ǫż(t) = x(t)y(t) − cz(t), (27)

whereǫ denotes the inverse of the speed of the processes. The database was created
by using the standarda = 10, b = 27, c = 8

3 parametrization, the differential
equations were computed by Euler’s method, andM = 3 components were used.
This database is calledLorenz.

4.1.4 Led Zeppelin Here, hidden sources were real world data, stereo Led Zep-
pelin songs.2 8 kHz sampled portions of four songs (Bring It On Home, Heart-
breaker, Communication Breakdown, How Many More Times) made the hidden
sms. Thus, the dimension of the componentsd was2 and the number of the com-
ponentsM was4.

4.2 Normalized Amari-error, the Amari-index

The precision of our algorithm was measured by the normalized Amari-error, that
we call the Amari-index. The Amari-error is a ‘classical’ gauge for the quality of
the ICA methods [27]. The normalized form [28] is advantageous, because dif-
ferent ICA methods can be judged on equal footing. The Amari-error has been
adapted to the ISA task [9,29]. The performance of the methodwas gauged by
the Amari-index [13]. The index measures, for a given matrix, how close it is to a
block-diagonal structure.

The optimal estimation of the AR-IPA model provides matrixB := WA, a
block-permutation matrix made ofd × d sized blocks. Let us decompose matrix

2 http://rock.mididb.com/ledzeppelin/
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B ∈ R
D×D into d × d blocks:B =

[

Bij
]

i,j=1,...,M
. Let bij denote the sum of

the absolute values of the elements of matrixBij ∈ R
d×d. Then the Amari-index

is given as [13]:

r(B) :=
1

2M(M − 1)





M
∑

i=1

(

∑M

j=1 bij

maxj bij
− 1

)

+

M
∑

j=1

(

∑M

i=1 bij

maxi bij
− 1

)



 .

(28)
where the normalization extends the one-dimensional definition [28] to higher di-
mensions. Now, for matrixB we have that0 ≤ r(B) ≤ 1, andr(B) = 0 if, and
only if B is a block-permutation matrix withd × d sized blocks. Thus,r = 0
corresponds to perfect estimation (0% error),r = 1 is the worst estimation (100%
error).

4.3 Simulations

Results on databasesmosaic, 3D-geom, Lorenzand Led Zeppelinare provided
here. Our gauge to measure the quality of the results is the Amari-index (Sec-
tion 4.2) that we computed by averaging over50 randomly chosen computations.
These experimental studies concerned the following problems:

1. The quality of the gathering procedure depends on threshold parameterε. We
studied the estimation error, the Amari-index, as a function of sample number.
Theε values were preset to reasonably good values.

2. We studied the optimal domain for theε values. We looked for the dynamic
range, i.e., the ratio of the highest and lowest ‘goodε values’: We divided
interval [0, Fmax] (Fmax := maxi,j |F̂ij |) into 200 equal parts. For different
sample numbers in all databases at each division point we used the gathering
procedure to group the ICA elements. For each of the50 random trials we
have computed the Amari-indices separately. For the smallest Amari-index,
we determined the corresponding interval ofε’s, these are the ‘goodε values’.
Then we took the ratio of the largest and smallestε values in this set and
averaged the ratios over the 50 runs. The average is called the dynamic range.

In our simulations, sample numberT of observationsz(t) was varied between
1, 000 and200, 000. Mixing matrix A was random and orthogonal matrix. In the
case of themosaicand3D-geomtests, quantitiesF, ande were drawn randomly,
and only stable AR processes were allowed. In theLorenzandLed Zeppelintests,
hidden processes were estimated for different1 ≤ p ≤ 10 depth AR process
assumptions. For AR orderp > 1, we used quantities|F̂ij | :=

∑p

k=1 |F̂ k
ij |,

where F̂ k
ij is the ijth element of matrixF̂k (k = 1, . . . , p) and estimated

F̂-‘connectedness’ andFmax by means of these quantities. For all datasets, we
used the method described in [30,31] for the identification of the AR process. We
used fastICA [32] on the estimated innovations.

Our results are summarized in Fig. 3 and Fig. 4. According to Fig. 3, there
are goodε parameters for thêF-‘connectedness’ already for10, 000 − 20, 000
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Figure 3: Amari-index as a function of sample number for the3D-geom, mosaic,
LorenzandLed Zeppelindatabases on log-log scale.p: the order of the AR esti-
mation for theLorenzand theLed Zeppelindatasets.

samples: our method can find the hidden components with high precision. ForT =
10, 000 samples Fig. 5 and Fig. 6 illustrates this for themosaicand the3D-geom
databases, respectively. Figure 7 illustrates that for sample numberT = 10, 000
and forp = 1 assumption on the AR process, we can get reasonable estimations for
theLorenzdatabase. Figure 3 shows that usually for this database moresamples are
necessary. Figure 3 also shows that by increasing the samplenumber the Amari-
index decreases; it is0.15% for the mosaic, 0.13% for the 3D-geomdatabases,
whereas for theLorenzandLed Zeppelintests, it is1.65% and0.39% for p = 1,
0.42% and0.38% for p = 4, respectively on the average for200, 000 samples.
For themosaicand the3D-geomtests, the Amari-index decreases according to
power lawr(T ) ∝ T−c (c > 0). In these tests hidden sourcess are true AR
processes as opposed to the other tests, where the AR assumption was only an
approximation. The power law decline is manifested by straight line on log-log
scale. The slopes of these straight lines are very close to one another. In theLorenz
andLed Zeppelintests, AR estimations withp > 4 did not improve the results.
Figure 4 demonstrates that for larger sample numbers threshold parameterε that
determines thêF-‘connected’ property can be chosen from a broader domain; the
dynamic range grows. For themosaicand the3D-geomdatabases this is80 and
86, for theLorenztest it is14 (p = 1), 28 (p = 4), for theLed Zeppelin test it
is 6.7 (p = 1), and11 (p = 4) for 200, 000 samples. The dynamic range did not
improve for theLorenzand theLed Zeppelintests by assuming AR processes with
order larger than 4.

5 Discussion

We have introduced a novel AR-IPA identification algorithm.Previous AR-IPA
algorithms [11,13,12] assumed that the number of the hiddenprocesses (the com-
ponents) as well as the dimensions of the components are known. In these meth-
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Figure 4: Dynamic range as a function of sample number for the3D-geom, mo-
saic, LorenzandLed Zeppelindatabases.p: the order of the AR estimation for the
Lorenzand theLed Zeppelindatasets.

ods computation time consuming, multi-dimensional entropy estimations were ap-
plied [11,13]. The constraints and the computation load canbe eased by our novel
method.

In our approach, first the AR-IPA task is reduced to an ISA problem by us-
ing the concept of innovations. Then we make use of the ISA separation theorem
and reduce the ISA problem to an ICA taskand to the search of optimal permu-
tation. Although the permutation problem can be solved, e.g., by the efficient CE
method [16], it requires previously known dimensions of thesubspaces and further,
it requires the estimation of multi-dimensional entropy terms or the estimation of
mutual information.

These difficulties can be reduced by our method:

1. We recover up to permutation the coordinates of hidden processes (sm) using
the separation theorem.

2. We group the one-dimensional processes, which are ‘connected’.

‘Connectedness’ has been defined through the estimated predictive matrix F̂.
(We assumed thatFm 6= 0.) Matrix F, the block-diagonal matrix formed by ma-
tricesFm can be estimated by means of the estimated separation matrixŴICA

and the estimated predictive matrixF̂z of the observed AR process [see Eq. (16)].
The true matrixF is block-diagonal [F = blockdiag(F1, . . . ,FM )] accord-

ing to the AR-IPA model [Eq. (1)–(3)] and we can estimate it bymatrix F̂ up to
permutation provided that the separation theorem holds. This property is exploited
through our definition of̂F-‘connectedness’ of theith and thejth coordinates us-
ing quantitymax (|Fij | , |Fji|). The concept of̂F-‘connectedness’ enabled a fast
gathering procedure.

Our AR-IPA algorithm needs extension if one of the matrices(Wm
ICA)Fm (Wm

ICA)
T

is itself a block-diagonal matrix made of more than 1 block, or if it becomes block-
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(a)

(b)

(c) (d)

(e)

Figure 5: AR-IPA estimation on themosaicdatabase. (a): densities ofem. (b):
10,000 samples of the observed mixed signals [z(t)]. This forms the input of our
algorithm. (c): Hinton-diagram of matrix̂F belonging to the ICA coordinates of
the estimated AR procesŝs(t). Colors: white-positive, black-negative value. (d):
same as (c) after reordering according to groups connected by matrix F̂. (e): esti-
mated noise sourceŝem illustrated on 1 million sample points as uncovered by the
reordering procedure. Note that noise components (em) are recovered, but only up
to permutation and orthogonal transformation.

diagonal during the estimation process.3 In this case our gathering procedure based
on the measure of the connectedness of matrixF̂ is insufficient. Other methods,
such as the estimation of mutual informationI(ŝi, ŝj) may be used instead to
group the components. Consider, however,d-dimensional stochastic variables that
are dependent, but for which any of thed − 1 dimensional subset of the coordi-
nates is independent. (For a construction of‘all-(d-1)-independentvariable’, see

3
W

m
ICA denotes the component of separation matrixWICA that corresponds to themth

sub-process.
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(a) (b)

(c) (d) (e)

Figure 6: AR-IPA estimation on the3D-geomdatabase. (a): densities ofem. (b):
10, 000 samples of the observed mixed signals [z(t)]. (c): Hinton-diagram of ma-
trix F̂ belonging to the ICA coordinates of the estimated AR processŝ(t). (d):
same as (c) after reordering according to groups connected by matrix F̂. (e): esti-
mated noise sources (êm).

[8,13].) For such sources, previous methods are unsatisfactory and estimation of
thed-dimensional Shannon-entropy, or that of the mutual information may be nec-
essary [6,8,7].

Our numerical simulations have some indications that deserve further investi-
gations.

1. The crude but fast̂F-‘connectedness’ criterion may be able to group the appro-
priate components. We found that the block-diagonal feature of the estimated
predictive matrix increased upon increasing the number of samples. This ex-
perience was pronounced for the Lorenz dynamical system.

2. ICA components can be grouped for sources which are outside of our sufficient
conditions for the separation theorem. It seems that further generalization of
the separation theorem should be possible.

3. AR estimation can be used as a trick to attempt to separate more complex, e.g.,
mixed chaotic processes or songs. It then may enable higher order estimations
and time series prediction in lower dimensional spaces.

6 Conclusions

We have shown that oftentimes the separation ofmulti-dimensional and mixed
processes is feasible without knowing the number and the dimensions of the hid-
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(a)

(b)

(c) (d)

(e)

Figure 7: AR-IPA estimation on theLorenzdatabase withp = 1 order AR assump-
tion. (a): non-AR hidden processessm, (b): observed mixed10, 000 sample points
[z(t)]. (c): Hinton-diagram of matrix̂F belonging to the ICA coordinates of the
estimated AR procesŝs(t). (d): same as (c) after reordering according to groups
connected by matrix̂F. (e): Estimation of the sources (ŝm).

den processes and without the computation time consuming estimations of multi-
dimensional entropy or mutual information terms. We have shown a new sufficient
condition for the ‘Separation Theorem’ that forms the basisof our algorithm. Nu-
merical simulations point to the possibility of further extensions of the conditions
of the theorem. Our AR estimation can be used to separate morecomplex, e.g.,
chaotic processes or mixed songs that may considerably lessen the estimation and
prediction problems of time series.
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Appendix

The theorems that we present here concern the ISA task that wegain after reducing
the AR-IPA task and thus, heresm = em (m = 1, . . . , M). Since the ISA task
also concerns source, but these sources exhibit the i.i.d. property, thus we shall
use notationsm. In the present work, the differential entropyH is defined by the
logarithm of basee.

A The ISA Separation Theorem (Proof)

The main idea of our ISA separation theorem is that the ISA task may be accom-
plished in two steps under certain conditions. In the first step ICA is executed. The
second step is search for the optimal permutation of the ICA components.

If EPI [see Eq. (17)] is satisfied (onSL) then a further inequality holds:

Lemma 1 Suppose that continuous stochastic variablesu1, . . . , uL ∈ R satisfy
thew-EPIcondition [see Eq.(19)]. Then, they also satisfy

H

(

L
∑

i=1

wiui

)

≥
L
∑

i=1

w2
i H (ui) , ∀w ∈ SL. (29)

Note 4w-EPI holds, for example, for independent variablesui, because indepen-
dence is not affected by multiplication with a constant.

Proof Assume thatw ∈ SL. Applying ln on condition (19), and using the mono-
tonicity of theln function, we can see that the first inequality is valid in the fol-
lowing inequality chain

2H

(

L
∑

i=1

wiui

)

≥ ln

(

L
∑

i=1

e2H(wiui)

)

= ln

(

L
∑

i=1

e2H(ui) · w2
i

)

≥
L
∑

i=1

w2
i · ln

(

e2H(ui)
)

=

L
∑

i=1

w2
i · 2H(ui). (30)

Then,

1. we used the relation [21]:

H(wiui) = H(ui) + ln (|wi|) (31)

for the entropy of the transformed variable. Hence

e2H(wiui) = e2H(ui)+2 ln(|wi|) = e2H(ui) · e2 ln(|wi|) = e2H(ui) · w2
i . (32)

2. In the second inequality, we utilized the concavity ofln.

Now we shall use Lemma 1 to proceed. The separation theorem will be a corol-
lary of the following claim:
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Proposition 3 Let y =
[

y1; . . . ;yM
]

= y(W) = Ws, whereW ∈ OD, ym is
the estimation of themth component of the ISA task. Letym

i be theith coordinate
of themth component. Similarly, letsm

i stand for theith coordinate of themth

source. Let us assume that thesm sources satisfy condition(11). Then

M
∑

m=1

d
∑

i=1

H (ym
i ) ≥

M
∑

m=1

d
∑

i=1

H (sm
i ) . (33)

Proof Let us denote the(i, j)th element of matrixW by Wi,j . Coordinates
of y and s will be denoted byyi and si, respectively. LetG1, . . . , GM de-
note indices belonging to the1st, . . . , M th subspaces, respectively, that is,
G1 := {1, . . . , d}, . . . , GM := {D − d + 1, . . . , D}. Now, writing the elements of
theith row of matrix multiplicationy = Ws, we have

yi =
∑

j∈G1

Wi,jsj + . . . +
∑

j∈GM

Wi,jsj (34)

and thus,

H (yi) = H





∑

j∈G1

Wi,jsj + . . . +
∑

j∈GM

Wi,jsj



 (35)

= H











M
∑

m=1







(

∑

l∈Gm

W 2
i,l

)
1

2
∑

j∈Gm Wi,jsj

(

∑

l∈Gm W 2
i,l

)
1

2

















(36)

≥
M
∑

m=1







(

∑

l∈Gm

W 2
i,l

)

H







∑

j∈Gm Wi,jsj

(

∑

l∈Gm W 2
i,l

)
1

2












(37)

=

M
∑

m=1







(

∑

l∈Gm

W 2
i,l

)

H







∑

j∈Gm

Wi,j

(

∑

l∈Gm W 2
i,l

)
1

2

sj












(38)

≥
M
∑

m=1







(

∑

l∈Gm

W 2
i,l

)

∑

j∈Gm







Wi,j

(

∑

l∈Gm W 2
i,l

)
1

2







2

H (sj)






(39)

=
∑

j∈G1

W 2
i,jH (sj) + . . . +

∑

j∈GM

W 2
i,jH (sj) (40)

The above steps can be justified as follows:

1. (35): Eq. (34) was inserted into the argument ofH .
2. (36): New terms were added for Lemma 1.
3. (37): Sourcessm are independent of each other and this independence is pre-

served upon mixingwithin the subspaces, and we could also use Lemma 1,
becauseW is an orthogonal matrix.
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4. (38): Nominators were transferred into the
∑

j terms.
5. (39): Variablessm satisfy condition (11) according to our assumptions.
6. (40): We simplified the expression after squaring.

Using this inequality, summing it fori, exchanging the order of the sums, and
making use of the orthogonality of matrixW, we have

D
∑

i=1

H(yi) ≥
D
∑

i=1

M
∑

m=1





∑

j∈Gm

W 2
i,jH (sj)



 (41)

=

M
∑

m=1





∑

j∈Gm

(

D
∑

i=1

W 2
i,j

)

H (sj)



 (42)

=

D
∑

j=1

H(sj). (43)

Note 5The proof holds if the dimensions of the subspaces are not equal. The same
is true for the ISA separation theorem.

Having this proposition, now we prove our main theorem (Theorem 1).

Proof ICA minimizes the l.h.s. of Eq. (33), that is, it minimizes
∑M

m=1

∑d

i=1 H (ym
i ).

The set of minima is invariant for permutations and sign changes and according to
Proposition 3,{sm

i } – that is the coordinates of componentssm of the ISA task –
belong to the set of minima.

B Sufficient Conditions of the Separation Theorem

In the separation theorem, we assumed that relation (11) is fulfilled for the sm

sources. Below, we present sufficient conditions – togetherwith proofs – when
this inequality is fulfilled.

B.1 w-EPI

According to Lemma 1, if the w-EPI property [i.e., (19)] holds for sourcessm,
then inequality (11) holds, too.

B.2 Spherically Symmetric Sources

We shall make use of the following well-known property of spherically symmetric
variables [23,24]:

Lemma 2 Letv denote ad-dimensional variable, which is spherically symmetric.
Then the projection ofv onto lines through the origin have identical univariate
distribution.
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Lemma 3 The expectation value and the variance of ad-dimensionalv spheri-
cally symmetric variable are

E[v] = 0, (44)

V ar[v] = c(onstant) · Id. (45)

Proof Here, we show that the w-EPI property is fulfilled with equality for spheri-
cal sources. According to (44)–(45), spherically symmetric sourcessm have zero
expectation values and up to a constant multiplier they alsohave identity covari-
ance matrices:

E[sm] = 0, (46)

V ar[sm] = cm · Id. (47)

Note that our constraint on the ISA task, namely that covariance matrices of the
sm sources should be equal toId, is fulfilled up to constant multipliers.

Let Pw denote the projection to straight line with directionw ∈ Sd, which
crosses the origin, i.e.,

Pw : R
d ∋ u 7→

d
∑

i=1

wiui ∈ R. (48)

In particular, ifw is chosen as the canonical basis vectorei (all components
are 0, except theith component, which is equal to 1), then

Pei
(u) = ui. (49)

In this interpretation, w-EPI ((19)) is concerned with the entropies of the pro-
jections of the different sources onto straight lines crossing the origin. The l.h.s.
projects tow, whereas the r.h.s. projects to the canonical basis vectors. Let u de-
note an arbitrary source, i.e.,u := sm. According to Lemma 2, distribution of
the sphericalu is the same for all such projections and thus their entropiesare
identical. That is,

d
∑

i=1

wiui
distr
= u1

distr
= . . .

distr
= ud, ∀w ∈ Sd, (50)

H

(

d
∑

i=1

wiui

)

= H (u1) = . . . = H (ud) , ∀w ∈ Sd. (51)

Thus:

– l.h.s. of w-EPI is equal toe2H(u1).
– r.h.s. of w-EPI can be written as follows:

d
∑

i=1

e2H(wiui) =

d
∑

i=1

e2H(ui) · w2
i = e2H(u1)

d
∑

i=1

w2
i = e2H(u1) · 1 = e2H(u1)

(52)
At the first step, we used identity (32) for each of the terms. At the second step,
(51) was utilized. Then terme2H(u1) was pulled out and we took into account
thatw ∈ Sd.
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Note 6We note that sources of spherically symmetric distributionhave already
been used in the context of ISA in [33]. In that work, a generative model was
assumed. According to the assumption, the distribution of the norms of sample
projections to the subspaces were independent. This way, the task was restricted to
spherically symmetric source distributions, which is a special case of the general
ISA task.

B.3 Sources Invariant to90◦ Rotation

By definition, spherical variables are invariant to orthogonal transformations [see
Eq. (20)]. For mixtures of 2-dimensional components (d = 2), much milder con-
dition, invariance to90◦ rotation, suffices. First, we observe that:

Note 7In the ISA separation theorem, it is enough if some orthogonal transfor-
mation of thesm sources,Cmsm (Cm ∈ Od) satisfy the condition (11). In this
case, theCmsm variables are extracted by the permutation search after theICA
transformation. Because the ISA identification has ambiguities up to orthogo-
nal transformation in the respective subspaces, this is suitable. In other words,
for the ISA identification the existence of an Orthonormal Basis (ONB) for each
u := sm ∈ R

d components is sufficient, on which the

h : R
d ∋ w 7→ H [〈w,u〉] (53)

function takes its minimum. (Here, the〈w,u〉 :=
∑d

i=1 wiui stochastic variable
is the projection ofu to the directionw.) In this case, the entropy inequality (11)
is met with equality on the elements of the ONB.

Now we present our theorem concerning to thed = 2 case.

Theorem 2Let us suppose, that the density functionf of stochastic variable
u = (u1, u2)(= sm) ∈ R

2 exhibits the invariance

f(u1, u2) = f(−u2, u1) = f(−u1,−u2) = f(u2,−u1)
(

∀u ∈ R
2
)

, (54)

that is, it is invariant to90◦ rotation. If functionh(w) = H [〈w,u〉] has minimum
on the set{w ≥ 0} ∩ S2, it also has minimum on an ONB. (Relationw ≥ 0

concerns each coordinates.) Consequently, the ISA task canbe identified by the
use of the separation theorem.

Proof Let

R :=

[

0 −1
1 0

]

(55)

denote the matrix of90◦ ccw rotation. Letw ∈ S2. 〈w,u〉 ∈ R is the projection
of variableu ontow. The value of the density function of the stochastic variable
〈w,u〉 in t ∈ R (we movet in directionw) can be calculated by integration
starting from the pointwt, in direction perpendicular tow

fy=y(w)=〈w,u〉(t) =

∫

w⊥

f(wt + z)dz. (56)
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Using the supposed invariance off and the relation (56) we have

fy(w) = fy(Rw) = fy(R2w) = fy(R3w), (57)

where ‘=’ denotes the equality of functions. Consequently, it is enough to opti-
mizeh on the set{w ≥ 0}. Let wmin be the minimum of functionh on the set
S2 ∩ {w ≥ 0}. According to Eq. (57),h takes constant and minimal values in the

{wmin,Rwmin,R2wmin,R3wmin}

points.{vmin,Rvmin} is a suitable ONB in Note 7.

AcknowledgementsThis research has been supported by the EC NEST ‘Perceptual Con-
sciousness: Explication and Testing’ grant under contract043261. Opinions and errors in
this manuscript are the author’s responsibility, they do not necessarily reflect those of the
EC or other project members.

References

1. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley
& Sons (2001)

2. Cichocki, A., Amari, S.: Adaptive blind signal and image processing. John Wiley &
Sons (2002)

3. Cardoso, J.: Multidimensional independent component analysis. In: International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP ’98). Volume 4. (1998)
1941–1944

4. Akaho, S., Kiuchi, Y., Umeyama, S.: MICA: Multimodal independent component anal-
ysis. In: International Joint Conference on Neural Networks (IJCNN ’99). Volume 2.
(1999) 927–932

5. Vollgraf, R., Obermayer, K.: Multi-dimensional ICA to separate correlated sources. In:
Neural Information Processing Systems (NIPS 2001). Volume14., Cambridge, MA,
MIT Press (2001) 993–1000

6. Bach, F.R., Jordan, M.I.: Beyond independent components: Trees and clusters. Journal
of Machine Learning Research4 (2003) 1205–1233

7. Póczos, B., L̋orincz, A.: Independent subspace analysis using k-nearestneighborhood
distances. Artificial Neural Networks: Formal Models and their Applications (ICANN
2005)3697(2005) 163–168

8. Póczos, B., L̋orincz, A.: Independent subspace analysis using geodesic spanning trees.
In: International Conference on Machine Learning (ICML 2005). Volume 119., New
York, NY, USA, ACM Press (2005) 673–680

9. Theis, F.J.: Blind signal separation into groups of dependent signals using joint block
diagonalization. In: International Society for Computer Aided Surgery (ISCAS 2005).
Volume 6. (2005) 5878–5881

10. Van Hulle, M.M.: Edgeworth approximation of multivariate differential entropy. Neu-
ral Computation17 (2005) 1903–1910
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