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Originality and Contribution

Combinatorial explosion is a major obstacle for signal pesing. Here, we show
that for Auto-Regressive Independent Process Analysis-I@#®, a relative of
Independent Component Analysis, this problem can be aliesti Namely, our
proposed method does not require previous knowledge aheuditnensions of
the hidden independent components. Independent Subspedgsis (ISA) can
be used to solve the AR-IPA task. We provide a rigorous thraomith sufficient
conditions for the ISA task to be solved. Numerical studiesside of the domain
of the theorem indicate the robustness of the method.
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1 Introduction

Search for independent components is in the focus of raseaterest. There
are important applications in this field, such as blind seuseparation, blind
source deconvolution, feature extraction, and denoigiimgis, a variety of par-
ticular methods have been developed over the years. Foeatrezview on these
approaches and for further applications, see [1, 2] andefegances therein.

Traditionally, Independent Component Analysis (ICA) isedimensional in
the sense that all sources are assumed to be independesativeal stochastic vari-
ables. The typical example of ICA is the so-caltmxtktail-party problemwhere
there aren sound sources andmicrophones and the task is to separate the origi-
nal sources from the observed mixed signals. However, égipins where not all,
but only certain groups of the sources are independent magtigh relevance in
practice. In this case, independent sources can be maigsional. Consider the
following generalizations of the cocktail-party probleitere could be indepen-
dent groups of people talking about independent topics anéecence or more
than one group of musicians may be playing at a party. Thisedndependent
Subspace Analysis (ISA) extension of ICA, also called Mdithensional Inde-
pendent Component Analysis (MICA) [3].

Efforts have been made to develop ISA algorithms [3,4,58& 9. Theoreti-
cal problems concern mostly the estimation of the entrogh@mutual informa-
tion. Entropy estimation by Edgeworth expansion [4] hasmbedended to more
than 2 dimensions and has been used for clustering and muofaahation test-
ing [10]. Other recent approaches search for independdispsges via kernel
methods [6], joint block diagonalization [%;nearest neighbors [7], and geodesic
spanning trees [8].

An important application of ISA is, e.g., the processing &@&fMRI data
[4]. Clearly, most practical problems, alike to the anaysi EEG-fMRI signals,
exhibit considerable temporal correlations. In such cases may take advantage
of Auto-Regressive Independent Process Analysis (AR-[PA), a generalization
of ISA to auto-regressive (AR) processes, similar to the ARegalization of the
original ICA problem [12]. A separation theorem [13] allowse, under certain
conditions, to reduce the AR-IPA task to ICA and then to tregaefor the optimal
permutation of the ICA elementsNonetheless, this permutation search is still a
combinatorial problem and it is computationally intradéafor large dimensional
hidden sources. Further, AR-IPA methods [11,13,12] assinatethe number of
the processes and their respective dimensions are knovavamee.

Our algorithm makes use of the ISA separation theorem [h3}, we gener-
alize here. The algorithm builds upon the temporal depetidemwithin the sub-
spaces. It does not require previous knowledge about thdeuand the dimen-
sions of the sub-processes and can considerably ease owfyagvoid the esti-
mation of the multi-dimensional Shannon entropy, the tédgbmne of the previous
methods [11,13].

! The possibility of such a decomposition principle was sagakby [3], who based his
conjecture on numerical experiments.
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The paper is constructed as follows: Section 2 formulates\R-IPA problem
and its reduction to the ISA task. The ISA separation theaacthour novel AR-
IPA identification algorithm are presented in Section 3. Nduigal simulations are
provided in Section 4. Short discussion can be found in 8e&iand conclusions
are drawn in Section 6. We also provide an Appendix. It costéihe details of
the ISA separation theorem, including previous and nowllte for the sake of
self-containment.

2 The AR-IPA Model

We formulate the AR-IPA task (Section 2.1) and then reduttethie ISA problem
(Section 2.2). The uniqueness of the identification is alsated.

2.1 The AR-IPA Equations

Assume that we hav&/ hidden and independent AR processes and that only the
mixture of theseél/ componentss available for observation:

s"(t+1)=F"s"(t)+e™(t), m=1,....M 1)
s(t) = [s'(t);.. ;8™ (®)] 2
z(t) = As(t), 3)

where s(t) is the vector concatenated form of componerts(t), s™(t),
e™(t) € R, e™(t) is i.i.d. int, and there is at most a single Gaussian among
sourcese™. Also I(el,...,eM) = 0, where[ stands for the mutual informa-
tion of the argument&E™ (£ 0) € RY"*4" is called thepredictive matrixof the
m!" process. The total dimension of the component® is= Zﬂf:l d™. Thus,
s(t),z(t) € RP. Matrix A € RP*P s the so callednixing matrixwhich, accord-

ing to our assumptions, is invertible. From now on, for thieesaf notational sim-
plicity, all d"*s are assumed to be equél'(= d Vm), butall resultshold for the
general case.

The goal of the AR-IPA problem is to estimate the originalsew(¢) and
the unknown mixing matrixA (or its inverseW, which is called theseparation
matrix) by using observations(t) only. If VF™ = 0 then the task reduces to the
ISA task. The ICA task is recovered if botl#"™ = 0 andd = 1.

2.2 Reduction of AR-IPA to ISA and Ambiguities

The identification of the AR-IPA model, alike to the identifimon of ICA and ISA
models, is ambiguous. First, we shall reduce the AR-IPA tagke ISA task [12,
14,11,13] by means ahnovations The innovation of stochastic proces§) is
the error of the optimal quadratic estimation of the proecessg its past, i.e.,

(t) == u(t) — Blu(®)u(t —1),ut - 2),.. ], (4)
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whereF]|-] is the expectation value operator. Itis easy to see thatfdiRaprocess,
the innovation is identical to the noise that drives the pssc Therefore, construct-
ing a block-diagonal matri¥ from matricesF", the AR-IPA model assumes the
following form

s(t+1) = Fs(t) + e(t), (5)
z(t) = As(t) = Fz(t — 1) + Ae(t — 1), (6)
z(t) = Ae(t — 1) = AS(1), (7)

whereF, = AFA~!. Equation (6) shows that the observation proegssis also
an AR process. Thus, applying ISA to innovati(fi) of the observation, mixing
matrix A and thus:(t) as well ass(t) can be determined.

Concerning the ISA task, we can lessen the ambiguity of thblpm (see,
e.g., [15]) by assuming that both the noise source and thesation of the obser-
vation arewhite, that is,E[e] = 0, E [ee’| =Ip andE[z] = 0, E [zz”| =1Ip,
wherelp, is the D-dimensional identity matrix, superscriptdenotes transposi-
tion. Then, ambiguities are restricted to permutationtefdubspaces and to arbi-
trary orthogonal transformations within the subspacesv,Nee have that mixing
matrix A and thus matri® = A~! are orthogonal, because:

Ip=E[2z"] = AE [ee”| AT = AIpAT = AAT. (8)

3 ISA Separation Theorem and Consequences

First, we define the ISA cost function (Section 3.1), then tagesthe ISA separa-
tion theorem (Section 3.2). For the proof of the theorem Aggeendix (A.) This
theorem forms the basis of our AR-IPA identification algamit which is intro-
duced in Section 3.3. A novel extension of the separatioortra is also provided
in Section 3.4.

3.1 The ISA Cost Function

The ISA task can be viewed as the minimization of mutual imfation between
the estimated components:

. 1 M
WrrélgDI(y,---,y ) 9

wherey = Wz, y = [y';...;y™] andOP denotes the space of tiie x D or-
thogonal matrices. Cost functidincan be transcribed to another cost function that
sums up Shannon’s multi-dimensional differential entrtgyns (see, e.g., [8] for
details):

Qi J(W) =3 H(y™). (10)
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3.2 The ISA Separation Theorem

ICA and ISA problems can be formulated as the optimizatiothefabove cost
functionJ. Further, the following ISA separation theorem holds [13]:

Theorem 1 (Separation Theorem for ISA) Let us suppose, that all the
u = [us;...;uq) = s™ components of soureein the ISA task satisfy

d

d d
H (Z wiui> > Zw?H (ui),vVw: Zw? =1, (11)
=1 =1

=1

and that the ICA cost functioh(W) = Zi’il H(y;) has a minimumy € 0%).
Then it suffices to search for the minimum of the ISA t8€ks(x ) as a permutation
of a solution of the ICA taskWca). In other words, it is enough to look for the
ISA separation matrix in the following form

Wisa = PWica, (12)

whereP (€ RP*P) is a permutation matrix to be determined. (Proof is provided
in Appendix A.)

Note 1We do not suppose in the separation theorem that meiig 4 is unique —
apart from the ambiguities of the ICA solution. Accordingotar experiences this
assumption is not necessary (see Section 4).

Thus, if noisese™ of processes™ satisfy condition (11), then the AR-IPA
model can be estimated as follows:

1. observex(t) and estimate the AR model,

2. whiten the innovation of the AR process and perform ICAton i

3. solve the combinatorial problem: search for the permautaif the ICA com-
ponents that minimizes the cost functign

This is a viable approach. The cross-entropy (CE) methofi§ééms very effi-
cient in the last step [13]. However, the CE method (i) sBb@ames that the num-
ber of the sub-processes and their respective dimensietk®awn, (ii) it requires
costly multi-dimensional entropy estimations, and (iii¢ toptimization concerns
#&M! permutations even if the dimensions of the subspaces ae@.ghs we
show below, under certain conditions, the separation #raaffers a solution to
the AR-IPA task; previous knowledge of the dimensions ofghbspaces is not
necessary, global search in permutation space as well aothputer time con-
suming estimation of multi-dimensional entropies can beucnvented.

3.3 Non-combinatorial AR-IPA Algorithm Using the SeparatTheorem

We make the following observations:
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1. Eq. (6) prescribes how to transform the predictive matfixan AR process
[z(t) = As(t)] to another basis. Thus, the predictive matrix of the hidden
process(t) = Waz(t) (W = A~ 1Y)is

F=WF,W!=WF,W7T, (13)

where the orthogonality of matri¥v was taken into account. Thus, making
use of the separation theorem, matrix

WicaF, Wi, (14)

—apart from (possible) permutations — is equal to the bitiekjonal predictive
matrix F' of the source.

2. It then follows that connected groups of the coordinafdb@hidden source
can be recovered by collecting the elements belonging tedhee block irF'.
In practice, the estimation of matrR (i.e., matrixF), is only nearly block-
diagonal (apart from permutation). Thus, we say that twordioates: and
j areF-‘connected’ ifmax(|Fi;|, |Fji|) > €, where,F}; denotes théi, j)*"
coordinate of matri¥, and, in the ideal case,= 0. Then we can group the
F-‘connected’ coordinates into separate subspaces usinfpliowing algo-
rithm:

(a) Choose an arbitrary coordinatél < i < D) and group allj # i coordi-
nates to it, which ar#-‘connected’ with it.

(b) Choose an arbitrary and not yet grouped coordinate. Esndonnected
coordinates recursively. Group them together.

(c) Continue until all components are grouped.

This gathering procedurés fast. In the worst case, it is quadraticiin

Summing up, the pseudo-code of our non-combinatorial AR-dRjorithm
is provided below. Estimations &,, Wica, s(t), F are denoted b¥,, Wica,
§(t), F, respectively and the estimation of the innovation of psseét) is denoted
by z(t), where the hat sign is neglected for the sake of notationglgtity:

1. ARfittoz(t): innovationz(t) is approximated by making use of the estimation

F,.
2. ICA on whitenedz(t): hidden sourcé is estimated by means of the estimated

separation matrifVica :
8(t) := Wicaz(t). (15)
3. Estimation of the predictive matrix of soureg) [see Eq. (14)]:
F = WicaF,Wi,. (16)
4. Grouping off*-‘connected’ processes (3; is thei’” coordinate of).

For our method, computational time is negligible as comgppérzehe CE based
AR-IPA technique of [13]. Namely, in the present technigue meeds at most
O(D?) simple ‘max(|}7)j|, |Fﬂ|) > ¢'-like comparisons to execute the gathering
procedure. By contrast, the computational time of the C&elaechnique using
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k-nearest neighbor method for entropy estimation [13]escalith hidden dimen-
sion D and sample numbéF as follows: Our CE-based optimization assumes
that thed™ dimensions of the hidden subspaces are known. Without tfosvk
edge the CE method becomes inefficient and one has to try sdiilje combi-
nations for the dimensions of the subspaces. The possibté sebspace dimen-
sions is constrained by the full dimensiéhof the problemD = d* + ... + d¥

(d™ > 0, M < D). The number of these possibilities is given by the so-called
partition functionf (D), i.e., the number of sets of positive integers that sum up
to D. The value off (D) grows quickly with the argument. Asymptotic behav-
ior is known [17,18]:f(D) ~ exp(m+/2D/3)/(4D+/3) asD — oo. For given
subspace dimension€E optimizes iteratively, say imaz;; steps. In each iter-
ative step new permutation samples are drawn. The numbéiesétsamples is
constantg¢ times the number of the parameters of the optimization erallL6].
These parameters in the CE permutation-optimization spmed to the transi-
tion probabilities of a Markov-chain. Thus, for dimensibnthere areD(D — 1)

of them. For each permutation drawn, one has to compute thecBEe func-
tion from the multi-dimensional Shannon-entropy. The @oyrcan be estimated
by computing thé’? Euclidean distances between ffi¢raining samples [19]. N-
body techniques [20] offer efficient estimations and theyuiee onlyO (7" log(T'))
computations. Putting together, CE based gathering resjpievious knowledge
about the dimensions of the subspaaed for a given set of subspace dimensions
the number of computations is in the ordefD?T log(T')). By contrast, for the
method we suggest here, the gathering requirg®?) computations without any
knowledge about the dimension of the hidden subspaces.

3.4 Sufficient Conditions for the Separation Theorem

Sufficient conditions of the separation theorem with respethee™ noise pro-
cesses of EQ. (11) are considered in this subsection. Wewdsriown results and
provide an extension of the theorem. (For details of the fsr@s®e Section B of
the Appendix.)

3.4.1 Thew-EPICondition First, consider the so called Entropy Power Inequal-
ity (EPI)

L
PH(E ) > 7 2H ), (17)
=1
whereus,...,u;, € R denote continuous stochastic variables. This inequality

holds for example, for independent continuous variablé$, faut it may hold for
other variables, too.
Let S™ denote the unit sphere of tiedimensional space, that is

Sti={weRl: |w| =1}, (18)

L 2
i=1 Wi -

where||-|| denotes the Euclidean norm, i.e., fore RE |w]|* := 3
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Definition 1 If continuous stochastic variables, ..., u; € R satisfy the follow-
ing entropy inequalities

L
62H(Z,L.L=1 wiui) > Z eQH(w““’),VW c SL’ (19)
=1

then we say that they satisfy theEPI condition.

Proposition 1 The w-EPI property of variablee™ implies inequality(11) (see
Lemma 1).

3.4.2 Takano’s Dependency CriteriorFor constantv € S¢, the w-EPI relation
reduces to the EPI property [Eq. (17)]. In [22], sufficienhdiion is provided to
satisfy the EPI condition. The condition, which is resgttto the 2-dimensional
case, is based on the weak dependencies of the variablesofbiaint ofd = 2
may be generalized to higher dimensions, but we are not asfagech general-
izations.

3.4.3 Spherically Symmetric Sources

Definition 2 (Spherically symmetric variable) A stochastic variabler € R? is
called spherically symmetric (or shortly spherical), i iensity function is not
modified by any rotation. Formally, if

distr
u =

Ou, VO e 0, (20)

where™" denotes equality in distribution.

A spherical stochastic variable has a density function &l density function
takes constant values on concentric spheres around the.orig

Proposition 2 For spherically symmetric variables with finite covariarteg. (11)
holds. Further, the stronger w-EPI property [E{.9)] also holds and with equality
between the two sidesw < S?). (See Proof B.2 in the Appendix.)

Note 2Spherical variables as well as their non-degenerate affamsforms, the
so called elliptical variables (which are equivalent toextal ones from the point
of view of ISA) are thoroughly treated in [23, 24].

3.4.4 Sources Invariant t60° Rotation We have seen that stochastic variables
with density functions invariant to orthogonal transfotioas (spherical variables)
satisfy the conditions of the separation theorem. For megwf 2-dimensional
componentsd = 2), invariance to90° rotation suffices. This condition is our
novel extension to previous conditions of the ISA separdti@orem.

The result: if in the AR-IPA tasks variables = (u1,uz2)(= e™) € R? are
invariant to90° rotation, i.e., their density functiofi satisfies invariances

flur,ug) = f(—u2, 1) = f(—u1, —u2) = f(uz,—u1) (Vu€R?), (21)



10 Zoltan Szab6 et al.

S ~ P S v Pty .
{ZS ) ..\ (@ g
. ‘ww - - .
e\
R »
~ 05 \ - =~
/2\ (CR v/ . raXN e
|“‘YQO} @‘) . R,M',,_,‘va | (e ‘C_A)
R . -1 05 0 05 1 N N
(b) (©) (d)

Figure 1: lllustration: Density functions (for variable’s) invariant to90° rotation
or permutation and sign changes. (a) and (c): density fungtiakes identical val-
ues at the arrowheads. Matiik and matrixM are90° ccw rotation and reflection
to axisz, respectively. (b) and (d): examples for (a) and (c), retpaly.

then the AR-IPA task defined by these variables can be ideatify means of the
ISA separation theorem. The formulation of this theorenuires care and it can
be found in the Appendix (Theorem 2). The proof of the theoieaiso provided
there.

Note 3An important special case of condition (21) is the invaratcpermutation
and sign changes. Then, for density functjothe following holds

f(Fur, tug) = f(Fuz, +u1)  (Yu € R?). (22)

In other words, there exists function: R? — R, which is symmetric in its
variables and

fw) = g(Jual, [uz]) (23)

holds. In particular, density functions of sphericallé+norm sphericakariables

[25], such as
flu)=g <Z |ui|f’> (p>0) (24)

also belong to the realm of the theorem.

Illustrations for the theorem are shown in Fig. 1.

3.4.5 Summary of Sufficient Condition®ur results for the ISA separation theo-
rem are summarized in Table 1.

4 [llustrations

The AR-IPA identification algorithm of Section 3.3 is illuated below. Test cases
are introduced in Section 4.1. The quality of the solutioilklve measured by the
normalized Amari-error, that we call the Amari-index (Seet4.2). Numerical
results are provided in Section 4.3.
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invariance tad0° rotation { = 2)
special case

invariance to sign
and permutation

(with equality for a suitable ONB) special case
LP-norm spherical
generalization fod = 2

Takano’s i i ? i
AN (with equality for allw € S%) Sphencal
C(()C?Citlg)ne w-EPI symmetry

Equation (11): sufficient
for the Separation Theorem

Table 1: Relations amongst sufficient conditions for the k@faration theorem.

@) (b) (©

Figure 2: Databases: (a) and (b) depicts examples for thaitgdanction ofe™,
(c) shows an example fef” [see AR-IPA equations (1)—(3)]. (anosaicdatabase
is made of 2D components. Density functionedt is invariant to90° rotation.
(b) and (c) concern tests outside of the conditions of thersgjon theorem. (b):
3D-geomdatabase: density functions ef* are identically distributed on 3D ge-
ometrical structures. (cj:orenzdatabase: componerd#® are not AR processes,
but 3D chaotic systems; trajectories of Lorenz attractors.

4.1 Databases

Four databases were defined to study the AR-IPA identifisadigorithm. The
first 3 of them are illustrated in Fig. 2.

4.1.1 Mosaic This test has 2-dimensional source components generaied fr
images of mosaics. AR components were constructed throuighgl noise
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sources e™. Stochastic noise sourcee™ were generated by sampling
2-dimensional coordinates proportional to the correspuangiixel intensities. That
is, 2-dimensional images of mosaics were considered astgémsctions. These
density functions were invariant @9° rotation and thus they met condition (11)
of the separation theorem/ = 4 was chosen. This database is calteosaic

4.1.2 3-dimensional Geometric FormsThis example, th&D-geomdatabase, is
outside of the domain of the sufficient conditions of the sefian theorem. Vari-
ablese™ were uniform distribution variables on 3-dimensional getmc forms

(d = 3). Three AR processes were generated from the noiges=(3) and were
mixed before observation.

4.1.3 Lorenz Attractor In this example non-AR sources were used. The sources
(s™) correspond to 3-dimensional & 3) deterministic chaotic time series, the so
called Lorenz attractor [26] with different initial poin{s, yo, zo) and with differ-

ent speeds. The Lorenz attractor is described by the fallgwidinary differential
equations:

i (t) = aly(t) — 2(t)), (25)
eg(t) = 2()(b — =(t)) — y(b), (26)
ex(t) = a(b)y(t) — ez (t), (27)

wheree denotes the inverse of the speed of the processes. The sktt@hscreated
by using the standard = 10,6 = 27,¢ = % parametrization, the differential
equations were computed by Euler's method, ahd= 3 components were used.
This database is callddrenz

4.1.4 Led Zeppelin Here, hidden sources were real world data, stereo Led Zep-
pelin song<. 8 kHz sampled portions of four songs (Bring It On Home, Heart-
breaker, Communication Breakdown, How Many More Times) ente hidden
s™s. Thus, the dimension of the componenigas2 and the number of the com-
ponentsM was4.

4.2 Normalized Amari-error, the Amari-index

The precision of our algorithm was measured by the norméWaeari-error, that
we call the Amari-index. The Amari-error is a ‘classical'ugge for the quality of
the ICA methods [27]. The normalized form [28] is advantagedecause dif-
ferent ICA methods can be judged on equal footing. The Araagr has been
adapted to the ISA task [9,29]. The performance of the metthasl gauged by
the Amari-index [13]. The index measures, for a given matrow close itis to a
block-diagonal structure.
The optimal estimation of the AR-IPA model provides maBx= WA, a

block-permutation matrix made af x d sized blocks. Let us decompose matrix

2 http://rock.mididb.com/ledzeppelin/
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B € RP*P into d x d blocks:B = [B”] fiml M Let b* denote the sum of

the absolute values of the elements of maB#X e IR{dXd. Then the Amari-index
is given as [13]:

1 SNOSLL
r(B) ::m z;<max bii >+Z<max bii _1>

(28)
where the normalization extends the one-dimensional diefini28] to higher di-
mensions. Now, for matriB we have that < »(B) < 1, andr(B) = 0 if, and
only if B is a block-permutation matrix witd x d sized blocks. Thus; = 0
corresponds to perfect estimation (0% errer} 1 is the worst estimation (100%
error).

4.3 Simulations

Results on databas@sosai¢ 3D-geom Lorenzand Led Zeppelinare provided
here. Our gauge to measure the quality of the results is tharifindex (Sec-
tion 4.2) that we computed by averaging o%errandomly chosen computations.
These experimental studies concerned the following proble

1. The quality of the gathering procedure depends on thiéglavameter. We
studied the estimation error, the Amari-index, as a fumctibsample number.
Thee values were preset to reasonably good values.

2. We studied the optimal domain for thevalues. We looked for the dynamic
range, i.e., the ratio of the highest and lowest ‘gaodalues’: We divided
interval [0, Frnaz| (Frmas = max; j |Fij|) into 200 equal parts. For different
sample numbers in all databases at each division point we theegathering
procedure to group the ICA elements. For each ofih@andom trials we
have computed the Amari-indices separately. For the setalimari-index,
we determined the corresponding intervakisf these are the ‘goodvalues’.
Then we took the ratio of the largest and smallestalues in this set and
averaged the ratios over the 50 runs. The average is cabetitiamic range.

In our simulations, sample numb&rof observationg(t) was varied between
1,000 and200, 000. Mixing matrix A was random and orthogonal matrix. In the
case of thanosaicand3D-geomtests, quantitie¥, ande were drawn randomly,
and only stable AR processes were allowed. InltbeenzandLed Zeppelirtests,
hidden processes were estimated for different p < 10 depth AR process
assumptions. For AR order > 1, we used quantitie§f;| = S7_, |Fk|,
where Ft is the ij" element of matrixE* (k = 1,...,p) and estimated

F-‘connectedness’ andl},.,., by means of these quantities. For all datasets, we
used the method described in [30, 31] for the identificatibthe AR process. We
used fastICA [32] on the estimated innovations.

Our results are summarized in Fig. 3 and Fig. 4. Accordingitp 8, there
are good: parameters for th&-‘connectedness’ already fdi0, 000 — 20, 000
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Figure 3: Amari-index as a function of sample number for3Degeom mosai¢
LorenzandLed Zeppelirdatabases on log-log scaje.the order of the AR esti-
mation for theLorenzand thelLed Zeppelirdatasets.

samples: our method can find the hidden components with megtigion. Fofl’ =
10,000 samples Fig. 5 and Fig. 6 illustrates this for thesaicand the3D-geom
databases, respectively. Figure 7 illustrates that forppgamumberl” = 10, 000
and forp = 1 assumption on the AR process, we can get reasonable estirs&ir
theLorenzdatabase. Figure 3 shows that usually for this databasesanmgles are
necessary. Figure 3 also shows that by increasing the samapiber the Amari-
index decreases; it i8.15% for the mosaic 0.13% for the 3D-geomdatabases,
whereas for thé.orenzandLed Zeppelintests, it is1.65% and0.39% for p = 1,
0.42% and0.38% for p = 4, respectively on the average 200,000 samples.
For themosaicand the3D-geomtests, the Amari-index decreases according to
power lawr(T) o« T7¢ (¢ > 0). In these tests hidden sourcesre true AR
processes as opposed to the other tests, where the AR agsumvps only an
approximation. The power law decline is manifested by girialine on log-log
scale. The slopes of these straight lines are very closed@aoather. In th&orenz
andLed Zeppelintests, AR estimations with > 4 did not improve the results.
Figure 4 demonstrates that for larger sample numbers thiceplarametee that
determines th&'-‘connected’ property can be chosen from a broader domaén; t
dynamic range grows. For threosaicand the3D-geomdatabases this 80 and
86, for the Lorenztest it is14 (p = 1), 28 (p = 4), for theLed Zeppelintest it
is6.7 (p = 1), and11 (p = 4) for 200, 000 samples. The dynamic range did not
improve for theLorenzand thelLed Zeppelinests by assuming AR processes with
order larger than 4.

5 Discussion
We have introduced a novel AR-IPA identification algorithfrevious AR-IPA

algorithms [11,13,12] assumed that the number of the higdecesses (the com-
ponents) as well as the dimensions of the components arerkriowhese meth-
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Figure 4: Dynamic range as a function of sample number fo3xyeom mo-
saic LorenzandLed Zeppelirdatabases: the order of the AR estimation for the
Lorenzand thel ed Zeppelirdatasets.

ods computation time consuming, multi-dimensional entregiimations were ap-
plied [11,13]. The constraints and the computation loadbzeased by our novel
method.

In our approach, first the AR-IPA task is reduced to an ISA fobby us-
ing the concept of innovations. Then we make use of the ISArsdion theorem
and reduce the ISA problem to an ICA taakd to the search of optimal permu-
tation. Although the permutation problem can be solved, bygthe efficient CE
method [16], it requires previously known dimensions ofgshbspaces and further,
it requires the estimation of multi-dimensional entropyrie or the estimation of
mutual information.

These difficulties can be reduced by our method:

1. We recover up to permutation the coordinates of hiddengssesq™) using
the separation theorem.
2. We group the one-dimensional processes, which are ‘cbede

‘Connectedness’ has been defined through the estimateatiirednatrix F.
(We assumed thd™ # 0.) Matrix F, the block-diagonal matrix formed by ma-
tricesF™ can be estimated by means of the estimated separation Vst
and the estimated predictive matiiy, of the observed AR process [see Eq. (16)].

The true matrixF is block-diagonal F = blockdiag(F!,... , FM)] accord-
ing to the AR-IPA model [Eq. (1)-(3)] and we can estimate itrbgtrix F' up to
permutation provided that the separation theorem holds.froperty is exploited
through our definition of*-‘connectedness’ of thé" and thej*" coordinates us-
ing quantitymax (|F};| , |Fji|). The concept oF-‘connectedness’ enabled a fast
gathering procedure

Our AR-IPA algorithm needs extension if one of the matricdg %, ) F™ (Wit
is itself a block-diagonal matrix made of more than 1 blockf it becomes block-

)T
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(b)

(d)

()

Figure 5: AR-IPA estimation on thmosaicdatabase. (a): densities of*. (b):
10,000 samples of the observed mixed signa(s)]. This forms the input of our
algorithm. (c): Hinton-diagram of matrik' belonging to the ICA coordinates of
the estimated AR processt). Colors: white-positive, black-negative value. (d):
same as (c) after reordering according to groups connegtetstrix F. (€): esti-
mated noise sourcés” illustrated on 1 million sample points as uncovered by the
reordering procedure. Note that noise componesitd ére recovered, but only up
to permutation and orthogonal transformation.

diagonal during the estimation procéds.this case our gathering procedure based
on the measure of the connectedness of matris insufficient. Other methods,
such as the estimation of mutual informatié(g;, $;,) may be used instead to
group the components. Consider, howewedimensional stochastic variables that
are dependent, but for which any of the- 1 dimensional subset of the coordi-
nates is independent. (For a constructionatif(d-1)-independenvariable’, see

3 W, denotes the component of separation ma¥kixca that corresponds to the"
sub-process.
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B %

() (d) (e)

Figure 6: AR-IPA estimation on theD-geomdatabase. (a): densities &f. (b):
10,000 samples of the observed mixed signa&]]. (c): Hinton-diagram of ma-
trix F belonging to the ICA coordinates of the estimated AR proééss (d):
same as (c) after reordering according to groups connegtetstrix F. (€): esti-
mated noise sources’).

[8,13].) For such sources, previous methods are unsatisfaand estimation of
thed-dimensional Shannon-entropy, or that of the mutual inftion may be nec-
essary [6,8,7].

Our numerical simulations have some indications that deserther investi-
gations.

1. The crude but fag-‘connectedness’ criterion may be able to group the appro-
priate components. We found that the block-diagonal featfithe estimated
predictive matrix increased upon increasing the numbegaofdes. This ex-
perience was pronounced for the Lorenz dynamical system.

2. ICA components can be grouped for sources which are @un$iour sufficient
conditions for the separation theorem. It seems that fugkaeralization of
the separation theorem should be possible.

3. AR estimation can be used as a trick to attempt to sepa@tecomplex, e.g.,
mixed chaotic processes or songs. It then may enable higtier estimations
and time series prediction in lower dimensional spaces.

6 Conclusions

We have shown that oftentimes the separatiomotti-dimensional and mixed
processes is feasible without knowing the number and themnkions of the hid-
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(b)

()

Figure 7: AR-IPA estimation on tHeorenzdatabase witlhh = 1 order AR assump-
tion. (a): non-AR hidden process&s, (b): observed mixed0, 000 sample points
[z(¢)]. (c): Hinton-diagram of matri belonging to the ICA coordinates of the
estimated AR procesgt). (d): same as (c) after reordering according to groups
connected by matri¥'. (e): Estimation of the sources™).

den processes and without the computation time consumtitgains of multi-
dimensional entropy or mutual information terms. We haxasha new sufficient
condition for the ‘Separation Theorem’ that forms the basisur algorithm. Nu-
merical simulations point to the possibility of further ersions of the conditions
of the theorem. Our AR estimation can be used to separate coonplex, e.g.,
chaotic processes or mixed songs that may considerabgndlss estimation and
prediction problems of time series.
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Appendix

The theorems that we present here concern the ISA task thgawarfter reducing
the AR-IPA task and thus, heg®* = €™ (m = 1,..., M). Since the ISA task
also concerns source, but these sources exhibit the irogepty, thus we shall
use notatiors™. In the present work, the differential entropis defined by the
logarithm of base.

A The ISA Separation Theorem (Proof)

The main idea of our ISA separation theorem is that the ISR tagy be accom-
plished in two steps under certain conditions. In the fiegp $CA is executed. The
second step is search for the optimal permutation of the I@ApoNnents.

If EPI [see Eq. (17)] is satisfied (o$t") then a further inequality holds:

Lemma 1 Suppose that continuous stochastic variahles. .., u; € R satisfy
thew-EPI condition [see Eq(19)]. Then, they also satisfy

L L
H (Z wiui> > Zw?H (u;),vYw € S*. (29)
=1 =1

Note 4w-EPI holds, for example, for independent variahlgsbecause indepen-
dence is not affected by multiplication with a constant.

Proof Assume thatv € S*. Applyingln on condition (19), and using the mono-
tonicity of theln function, we can see that the first inequality is valid in tok f
lowing inequality chain

L L L
2H <Z ’UM,'UM,) >In (Z ezH(w"'“"')> =In <Z 2 (ui) . wf)
i—1 i1 i—1

L L
> Zw? -In (eQH(“")) = Zw? - 2H (u;). (30)
i=1 i=1

Then,

1. we used the relation [21]:
H(wiu;) = H(u;) + In (Jw;]) (31)
for the entropy of the transformed variable. Hence

62H(wiu,;) _ 62H(ui)+21n(|w,; 2H (u;) | 62 In(|w;

D—¢ )= 2w 2 (32)
2. In the second inequality, we utilized the concavityrof

Now we shall use Lemma 1 to proceed. The separation theorktreve corol-
lary of the following claim:
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Proposition 3Lety = [y';...;yM] = y(W) = Ws, whereW € 0P, y™ is
the estimation of the2*" component of the ISA task. gt be thei*” coordinate
of them!” component. Similarly, let” stand for thei** coordinate of then'"
source. Let us assume that e sources satisfy conditiof11). Then

M d M d
SN HEm =Y S HP. (33)
m=11i=1 m=11i=1

Proof Let us denote thei, j)!* element of matrixW by W; ;. Coordinates
of y ands will be denoted byy; and s;, respectively. LetG!,... g™ de-
note indices belonging to theést,... M'" subspaces, respectively, that is,
Gl:={1,...,d},...,.GM .= {D —d+1,...,D}. Now, writing the elements of
thei*” row of matrix multiplicationy = Ws, we have

yi= D Wigsi+...+ D> Wiss, 59
jESl JGSM
and thus,
Hg) = H | S Wigsy 4ot 3 Wigs) (39)
jegl jESNI
M %
om Wi i85
5 (Z Wfl) EJ€9—JJ% (36)
m=1 legm (Zlegm Wi%l)
M
. . Wl .S
§ ( W;J) i | aesm Wias (37)
s 2
m=1 | legm (Zzesm W12’)
M
Wi,
B (Z Wi2,l> ly W (38)
m:1 leS’NL ’

y m 2
JjES (ZleSm Wi,l)

'l W ’
=S (z w) S M) )| e
| Mes jegm (Zlegmwfz)

=Y WZHH(sj)+...+ > W H(s)) (40)

Jjeg? jegM

N

The above steps can be justified as follows:

1. (35): Eq. (34) was inserted into the argumentiof

2. (36): New terms were added for Lemma 1.

3. (37): Sources™ are independent of each other and this independence is pre-
served upon mixingvithin the subspaces, and we could also use Lemma 1,
becaus@V is an orthogonal matrix.
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4. (38): Nominators were transferred into the terms.
5. (39): Variables™ satisfy condition (11) according to our assumptions.
6. (40): We simplified the expression after squaring.

Using this inequality, summing it fof, exchanging the order of the sums, and
making use of the orthogonality of matiw, we have

D D M
S Hy) =) > W2H (s;) (41)
i=1 i=1m=1 [jegm
M D
= > (Z ng> H (s;) (42)
m=1 | jegm \i=1
D
=Y H(s;). (43)
j=1

Note 5The proof holds if the dimensions of the subspaces are nat €fjoe same
is true for the ISA separation theorem.

Having this proposition, now we prove our main theorem (Thaol).

Proof ICA minimizesthe I.h.s. of Eqg. (33), thatis, it minimiz§§%:1 Zf’:l H (y™).

The set of minima is invariant for permutations and sign gesrand according to
Proposition 3{s} —that is the coordinates of componesits of the ISA task —
belong to the set of minima.

B Sufficient Conditions of the Separation Theorem

In the separation theorem, we assumed that relation (11)lfiled for the s™
sources. Below, we present sufficient conditions — togethtr proofs — when
this inequality is fulfilled.

B.1 w-EPI

According to Lemma 1, if the w-EPI property [i.e., (19)] hslébr sources™,
then inequality (11) holds, too.

B.2 Spherically Symmetric Sources

We shall make use of the following well-known property of efbally symmetric
variables [23, 24]:

Lemma 2 Letv denote ai-dimensional variable, which is spherically symmetric.
Then the projection of onto lines through the origin have identical univariate
distribution.
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Lemma 3 The expectation value and the variance od-dimensionalv spheri-
cally symmetric variable are

Elv] =0, (44)
Var[v] = c(onstant) - 1. (45)

Proof Here, we show that the w-EPI property is fulfilled with eqtyefor spheri-
cal sources. According to (44)—(45), spherically symneetdurces™ have zero
expectation values and up to a constant multiplier they la¢gse identity covari-
ance matrices:

E[s™] =0, (46)
Var[s™ =™ - 1. 47)

Note that our constraint on the ISA task, namely that comagamatrices of the
s™ sources should be equallg, is fulfilled up to constant multipliers.

Let P, denote the projection to straight line with directien € S¢, which
crosses the origin, i.e.,

d
Py :RY5um ) wiu; €R. (48)
i=1
In particular, ifw is chosen as the canonical basis veetpo(all components
are 0, except th&”" component, which is equal to 1), then

Pe,(u) = u;. (49)

In this interpretation, w-EPI ((19)) is concerned with th&repies of the pro-
jections of the different sources onto straight lines dragsthe origin. The |.h.s.
projects tow, whereas the r.h.s. projects to the canonical basis vetiers: de-
note an arbitrary source, i.ay := s™. According to Lemma 2, distribution of
the spherical is the same for all such projections and thus their entropies
identical. That is,

d
Zwiui distr Uy distr | distr ug, Ywe S (50)
=1
d
H <Z wu) =H(u)=...=H(ug), YweSs (51)
i=1

Thus:

— Lh.s. of w-EPl is equal te>(v1)
— r.h.s. of w-EPI can be written as follows:

d d
Z €2H(wiui) — ZBQH(TM) . w12 — eQH(ul)
i=1 =1
(52)

At the first step, we used identity (32) for each of the terntgha second step,
(51) was utilized. Then terre?’(“1) was pulled out and we took into account
thatw € S9.

w12 — €2H(u1) . 1 — eQH(ul)

M-

=1
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Note 6We note that sources of spherically symmetric distributiawe already

been used in the context of ISA in [33]. In that work, a gerieeatnodel was

assumed. According to the assumption, the distributiorhefritorms of sample
projections to the subspaces were independent. This watashk was restricted to
spherically symmetric source distributions, which is aciplecase of the general
ISA task.

B.3 Sources Invariant t80° Rotation

By definition, spherical variables are invariant to orthoglaransformations [see
Eg. (20)]. For mixtures of 2-dimensional componernts< 2), much milder con-
dition, invariance t®0° rotation, suffices. First, we observe that:

Note 7In the ISA separation theorem, it is enough if some orthoftraasfor-

mation of thes™ sourcesC™s™ (C™ ¢ 0% satisfy the condition (11). In this
case, thaC™s™ variables are extracted by the permutation search afteiChe
transformation. Because the ISA identification has ambiggiup to orthogo-
nal transformation in the respective subspaces, this taldei In other words,
for the ISA identification the existence of an OrthonormasBgONB) for each
u :=s™ € R? components is sufficient, on which the

h:RY 5w H[(w,u)] (53)

function takes its minimum. (Here, thgv, u) := 3¢ | w;u; stochastic variable
is the projection ofx to the directionw.) In this case, the entropy inequality (11)
is met with equality on the elements of the ONB.

Now we present our theorem concerning to ¢he 2 case.

Theorem 2Let us suppose, that the density functiprof stochastic variable
u = (u1, us)(= s™) € R? exhibits the invariance

flur,ug) = f(=uz,u1) = f(—ur, —u2) = f(ug, —u1) (YueR?), (54)

that is, it is invariant tod0° rotation. If functionh(w) = H[(w, u)] has minimum
on the sef{w > 0} N S?, it also has minimum on an ONB. (Relatien > 0
concerns each coordinates.) Consequently, the ISA taslbeadentified by the
use of the separation theorem.

Proof Let

10

denote the matrix 0§0° ccw rotation. Letw € S?. (w,u) € R is the projection
of variableu ontow. The value of the density function of the stochastic vagabl
(w,u) int € R (we movet in directionw) can be calculated by integration
starting from the pointvt, in direction perpendicular tes

R := [0 _1} (55)

fy:y(w):<w7u> (t) = f(wt + z)dz. (56)

wL
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Using the supposed invariance pand the relation (56) we have

fy(w) = fy(Rw) = fy(sz) = fy(R3w)v (57)

where =’ denotes the equality of functions. Consequently, it isuggioto opti-
mize h on the se{w > 0}. Let w,,;,, be the minimum of functiork on the set
S2 N {w > 0}. According to Eq. (57)h takes constant and minimal values in the

2 3
{Wmin7 mein; R Wmin, R szn}

points.{Vin, RVmin } is a suitable ONB in Note 7.
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