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Chapter 1

Motivation

A natural requirement in signal processing, data mining, time series analysis and in the
application of dynamical systems is to decompose the problem to be solved to indepen-
dent subproblems. Such a well-known principle of system theory is the so-called separation
principle:

• In a stochastic control problem we say that the separation principle holds if the optimal
control separates into two stages based on optimal �ltering of the unobservable state
and optimal control of the �ltered state. The simplest case when the separation prin-
ciple holds, is the case of discrete time linear systems governed by Gaussian noise with
quadratic objective, the LQG (Linear Quadratic Gaussian) problem [103, 99, 84]1. A
proof for the separation property in continuous time systems was given by [192], who
extended the validity also for problems with non-quadratic cost. Since then, numerous
separation principles concerning the optimal stochastic control have been proved, e.g.,
similar principles exist for linearly constrained LQG problems [129, 130], distributed
parameter systems [32, 33], `LQ-fractional Brownian motion' [115] and `LQ-Hidden
Markov Model' [161] problems, Wiener and polynomial systems [81], integral Volterra
systems [29], the H2-control problem of Markov jump linear systems [58, 59] and
quantum control problems [38, 39]. A recent result is that the separation principle
also holds in case of unknown parameters for LQG problems [28].

• In stabilizing control problems, where the task is to the construct a stabilizer con-
troller without the availability of the system state, similar separation theorems hold.
The basic linear setting [132] can be extended, e.g., to nonlinear jump systems [141],
distributed dissipative bilinear systems [37], non-uniformly completely observable sys-
tems [135] or switching linear systems [36]. The problem can also be broken into two
separate parts in the closely related robust pole placement task [173, 83].

One of the most popular �eld in signal processing, the so-called Independent Component
Analysis (ICA) [101, 57] may seem to have little in common with the control problems listed
above. ICA can be considered as the `nickname' of a cocktail party problem: there are D
pieces of one-dimensional (independent) sound sources and D microphones and the task is to
separate the original sources from the observed mixed signals. Independent Subspace Anal-
ysis (ISA), an extension of ICA, allows multidimensional components, too. One of the most
exciting and fundamental hypotheses of the ICA research is due to Jean-François Cardoso
who conjectured�by numerical experiments�that the solution of the ISA problem can be

1The idea of separation has been early introduced to economics in [169, 178].

2



decomposed [42]: (i) one may set aside that there are subspaces in the background and invoke
a classical ICA algorithm, then (ii) cluster the estimated ICA elements into statistically de-
pendent groups. This principle can be considered as the analogy of the separation principles
of system theory�hence we will refer to this conjecture as the ISA separation principle.

Provided that the ISA separation principle holds, non-combinatorial identi�cation and
realization of dynamical systems �that is the estimation of the parameters and the hidden
variables�with independent multidimensional non-Gaussian variables may be attainable.2
Up to now, neither this conjecture, nor its consequences has been justi�ed completely. The
present thesis is a step towards this direction.

Particularly, we prove reduction techniques, separation principles, which extend the i.i.d.
(independent identically distributed) ISA separation principle to dynamical systems. The
derived principles:3

• cover and generalize the classical assumptions of the ICA literature: multidimensional
components; post nonlinear-, autoregressive-, convolutive mixing; complex-valued vari-
ables (Chapter 4).

• can be used to construct e�cient and large-scale ISA methods (Chapter 5: Section 5.1-
5.2).

• make it possible to estimate the dimension of the hidden components in ISA-reducible
models by non-combinatorial approximations (Chapter 5: Section 5.3).

Before doing so, in Chapter 2 we give a brief introduction to independent component
analysis. Chapter 3 formulates the problem domain and its ambiguities. Chapter 6 provides
numerical experiments illustrating the e�ciency of the algorithms built upon on the derived
separation principles. Chapter 7 contains discussion and open questions. Proofs (roman
numbers) and pseudocodes are put to Appendix A and B, respectively. Abbreviations used
throughout the paper are listed in Appendix C. A short summary of the thesis is given in
English and Hungarian after the Appendix on page 66 and 67, respectively.

2The combinatorial di�culty stems from the fact that, in the general case, the dimension of the in-
dependent subsystems (components) is not known. This di�culty can often be alleviated e�ciently by
non-combinatorial approximations (for details, see Section 5.3).

3We note, that the results of the present thesis can be extended to controlled dynamical systems driven
by independent, multidimensional, non-Gaussian variables. However, the aim of this thesis is to present the
theory of systems without control.
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Chapter 2

Overview of the ICA Related
Literature

At the beginning I attempt to give a brief overview of the literature related to the search for
independent components. Section 2.1 starts with the simplest, so-called Independent Com-
ponent Analysis (ICA) problem. The overview goes on by relaxing the assumptions of ICA,
such relaxations are `one-dimensional�multidimensional components', `i.i.d�autoregressive
time evolution', `instantaneous�convolutive mixing', `linear�post-nonlinear mixing', `real�
complex variables'. A common feature of these relaxations is that there exist separability
results for them, their ambiguities can be characterized.1 These directions will be uni�ed
in Chapter 3 with separation principles presented in Chapter 4. The overview ends with
enumerating other extensions of ICA not treated in this thesis (Section 2.2).

In what follows I focus on problems with hidden, independent, multidimensional, non-
Gaussian variables. For better understanding, some formulae are given, but the exact de�-
nitions will be detailed in Section 3.1.2.

2.1 `Classical' Extensions of ICA
The simplest model dealing with independent components is Independent Component Anal-
ysis (ICA) [101, 57]. One can think of the ICA problem as a cocktail-party problem, where
there are one-dimensional sound sources and microphones, and the task is to recover the
original sources from the observed mixed signals. Formally, only the instantaneous linear
mixture of hidden independent sources

x = Ae (2.1)

is available for observation, where A is the mixing matrix, e is the hidden source to be
estimated with independent ei ∈ R coordinates. In spite of its simplicity, this model has
been successfully applied to feature extraction [30], (ii) denoising [90], (iii) processing of
�nancial [114] and neurobiological data, e.g., fMRI (functional Magnetic Resonance Imag-
ing), EEG (ElectroEncephaloGraphy), and MEG (MagnetoEncephaloGraphy) [136, 188],
and (iv) face recognition [27]. For a recent review about ICA see [56, 93, 55]. Nonetheless,

1Expressions separability and separation shouldn't be confused: separability refers to the ambiguities of
the problem, separation is used as a synonym of a reduction step.
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applications in which the ICA conditions (unechoic cocktail party, with independently talk-
ing participants and linearly recording microphones�more precisely: linear, instantaneous
mixing; one-dimensional, i.i.d hidden components) are not met may be highly relevant in
practice:

Multidimensional, Autoregressive Components: For instance, consider the general-
ization of the cocktail-party problem, where independent groups of people are talking
about independent topics or more than one group of musicians is playing at the party.
The task requires an extension of ICA, which can be found under di�erent names:
Independent Subspace Analysis (ISA) [91], Independent Feature Subspace Analysis
(IFSA) [111], Multidimensional Independent Component Analysis (MICA) [42], Sub-
space ICA [166] and group ICA [181]. We will use the �rst of these abbreviations
throughout this paper. Formally, our goal is to estimate the independent hidden
em ∈ Rdm components (e = [e1; . . . ; eM ]) from their instantaneous linear mixture

x = Ae. (2.2)

The large number of di�erent ISA algorithms [42, 15, 91, 94, 189, 25, 172, 156, 155, 181,
182, 183, 3, 147, 9, 124, 125, 126, 166, 46, 144, 145, 143, 168, 167, 52, 49, 113, 186, 82]
shows the importance of this �eld. The pioneering work of [42] (i) is based on geo-
metric considerations, and (ii) poses the possibility to solve the ISA problem as the
grouping of ICA elements. We will return later to this fundamental idea, the ISA
separation principle in Chapter 4 and to its simbling emerged at the Joint Block Di-
agonalization (JBD) community. The hidden sources are modelled by forests with a
cost functions made of mutual information of the estimated coordinates in the work of
[25]. A nonparametric, kernel density estimation based ICA technique is presented in
[186], which can be extended to the ISA case, as it is noted by the authors. The ISA
problem is formulated as the optimization of multidimensional di�erential entropies in
[156, 155], where the estimation of the entropy is carried out by the use of k-nearest
neighbors and geodesic spanning tree methods, respectively. Mutual information and
entropy based ISA cost functions (joint/pairwise, multidimensional/one-dimensional)
are derived in [9], and the Kernel Canonical Correlation Analysis, Kernel Generalized
Variance (KGV) [24], and the Kernel Covariance (KC) [80] techniques are generalized
for the estimation of mutual information of multidimensional varibles. An outlier ro-
bust pairwise independence measure, the Schweizer-Wol� measure is de�ned in [113]
and used to solve the ISA problem by grouping the estimated ICA elements. The Joint
F-Decorrelation (JFD) ISA method of [3] aims to decorrelate (block diagonalize) over
a function set. The ISA problem is formulated as JBD in [181, 182, 183], too. Namely,
[182, 181] aims at the joint block diagonalization of the Hessian of (i) characteris-
tic functions, (ii) logarithmic densities, respectively; the MSOBI (Multidimensional
SOBI; Multidimensional Second-Order Blind Identi�cation) technique executes tem-
poral joint block-decorrelation, and a cumulant based solution is shown in [183]. The
fastICA method [95] is generalized to ISA in [94]. The derived fastISA procedure is
prone to convergence to poor local minima, the problem can be alleviated by applying
Grassmannian clustering techniques [82]. The ISA task is transformed to Maximum
Likelihood (ML) estimation for spherically symmetric hidden source components in
[91]. [120] performs second order ISA in ML framework for Gaussian sources and trans-
forms the problem to JBD. Recent manifold optimalization techniques are adapted to
this ISA cost function in [144, 145, 143, 168, 167, 52]. Other recent approaches search
for independent subspaces via (i) hierarchical mutual information based clustering
[172], (ii) cumulant based objective function [49], (iii) separability in the phase space
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applying di�erential geometric tools [124, 125, 126] and (iv) vector kurtosis based ISA
cost [166]. A �exible component model framework is developed by [46], which op-
timizes the matching of covariance matrices, and can give totally blind, semi-blind
and non-blind procedures depending on the chosen parameterization of the covariance
matrices.
Successful applications of ISA involve: (i) the processing of EEG-fMRI data [15, 116],
(ii) gene analysis [111, 110, 112], (iii) face view recognition [127, 128], (iv) ECG (Elec-
troCardioGraphy) analysis [121, 42, 172, 181], (v) single-channel source separation
[48], (vi) texture classi�cation [164].
Temporal independence of ISA is, however, a gross oversimpli�cation of real sources
including acoustic or biomedical data. One may try to overcome this problem, by
assuming that the hidden processes are, e.g., AutoRegressive (AR) processes. Then
we arrive at the AR Independent Process Analysis (AR-IPA) task [151, 89, 51, 158, 6,
87, 50, 20, 53, 157, 1, 98, 8, 4]:

s(t) =
Ls∑

i=1

Fis(t− i) + e(t), (2.3)

x(t) = As(t). (2.4)

Here, (i) the hidden process s is driven by a non-Gaussian variable e satisfying the
assumptions of the ISA problem and (ii) the linear mixture x is observed.

One-dimensional hidden components: ML based algorithms are derived for the
context-sensitive ICA problem [151], and by assuming generalized exponential
innovation [51] The AR-IPA task is reduced to applying ICA to the innovation
process produced by linear prediction (AR �t) [89]�sometimes temporal di�er-
entiating is enough instead of AR estimation [53]. An expectation maximization
technique is derived under the assumption of mixture of Gaussian innovation [87],
and the innovation is estimated in ML framework in [50].

Multidimensional hidden components: The innovation trick is extended to the
case of multidimensional hidden components in [158]. The Cross-Entropy (CE)
method [163] can be tailored to perform ISA on the innovation [6]. Using the
ISA separaration theorem [9], the hidden one-dimensional processes are clustered
by the predictive matrix of the hidden source, and the information matrix of
the estimated innovation in [157, 1, 8] and [4], respectively. The Independent
Dynamics Subspace Analysis method aims at minimizing the error (in L2 sense)
of the di�erence process of the estimated hidden source. Multidimensional, hidden
sources are estimated in [20], too. However, the model behind their solution is
di�erent. Although the linear mixture is assumed to be constrained, in contrast
to AR, more general (stationary and ergodic) hidden processes can be assumed.

Temporal Mixing (Convolution): Another extension of the original ICA task is the
Blind Source Deconvolution (BSD) problem. Such a problem emerges, for example, at
a cocktail-party being held in an echoic room, and can be modelled by a convolutive
mixture

x(t) =
Le∑

j=0

Hje(t− j), (2.5)

where the e hidden variable has em ∈ R independent coordinates.
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Several BSD algorithms have been developed over the last decades, for a review
see [152]. BSD shows potentials in the following areas: (i) remote sensing applica-
tions; passive radar/sonar processing [134, 86], (ii) image-deblurring, image restoration
[191], (iii) speech enhancement using microphone arrays, acoustics [67, 139, 162, 23],
(iv) multi-antenna wireless communications, sensor networks [16, 63], (v) biomedical
signal�EEG, ECG, MEG, fMRI�analysis [100, 76, 68], (vi) optics [118], (vii) seismic
exploration [105].

Nonlinear Mixing: The strong assumption on the linearity can be relaxed by assuming
component-wise distortion resulting in a Post NonLinear extension (PNL-ICA) of the
ICA [176]. In PNL-ICA, the observation is

x = f(Ae), (2.6)

where function f acts component-wise. This direction has recently gained much atten-
tion, for a review see [102].

Complex variables: The ICA research has been concerned with complex variables from
its early years [47, 57]. Since then, a number of C-ICA methods has appeared [22, 26,
74, 34, 57, 47, 43, 140, 45, 75, 31, 194, 170, 40, 193, 71, 65, 66, 143, 133, 61, 44, 148,
149, 123, 64]. Possible reasons for that:

• The application areas of Complex-Valued Neural Networks (CVNN) have widened
recently. For an excellent review about CVNNs consult [88].

• Particularly, there is a natural tendency to apply complex-valued computations
for the analysis of biomedical signals. Complex ICA (C-ICA) approximation has
been applied for the analysis of EEG [22] and fMRI [41, 21] data.

The main lines of the C-ICA techniques are the followings: ML principle and complex
recurrent neural network are used in [22, 44], and [26], respectively. Nongaussianity
is maximized in [148]. The Adaptive Principal component EXtractor (APEX) algo-
rithm is based on Hebbian learning [74]. Complex FastICA algorithm can be found in
[34]. More solutions are based on cumulants: e.g., [57, 133], the Joint Approximate
Diagonalization of Eigen-matrices (JADE) algorithm [47, 43], its higher order variants
[140], and the Equivariant Adaptive Separation via Independence (EASI) algorithm
family [45]. `Rigid-body' learning theory is used in [75], [143] performs optimization
on the �ag manifold. The SOBI algorithm [31] searches for joint diagonalizer matrix,
its re�ned version, the weights-adjusted SOBI method [194] approximates by means of
weighted nonlinear least squares. There are complex variants of the infomax (informa-
tion maximization) technique, such as the a split-complex [170] and the fully-complex
infomax [40] procedures. The estimation of a C-ICA coordinate is carried out in a
de�ation framework by the minimization of the support of the coordinate [61]. [149]
presents a demixing technique for Quadrature Amplitude Modulated (QAM) sources
using gaussian mixture model. The spacing idea of the Robust, Accurate, Direct ICA
aLgorithm (RADICAL) [122] is adapted to the absolute value of circular sources whose
density depends only on the absolute value of the argument [123]. Minimax mutual in-
formation [193] and Strong-Uncorrelating Transforms (SUTs) [71, 65, 66, 64] represent
other promising directions.
The complex �ag manifold is de�ned in [146] and a natural gradient based solution is
derived for the complex ISA problem [3].
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It is important to see to what extent we can expect to regain the true sources. A common
property shared by the above problems (ICA, ISA, AR-IPA, BSD, PNL-ICA) is that their
separability has been proven. In other words, these problems are well-de�ned, their ambigui-
ties (indeterminacies) can be characterized. Furthermore, as we will see later (Chapter 4) it
is su�cient to consider the ambiguities of the ICA, PNL-ICA and ISA problems as all other
cases can be derived from these basic types.

• In ICA, hidden sources can be recovered up to a scalar multiplier and permutation
[57, 70].

• In addition to these ambiguities there is an additive scalar term in the PNL-ICA
problem [14].

• In the ISA problem, the components of equal dimension can be recovered up to the
permutation (of equal dimension) and invertible transformation within the subspaces
[180, 183].

2.2 Other Extensions of ICA
The following problems represent other important directions in the �eld of source separation
concerning hidden multidimensional non-Gaussian components:
Non-Gaussian Component Analysis, Colored Subspace Analysis: The non-Gaussian

Component Analysis (NGCA) [35, 184, 108, 109, 107] and the Colored Subspace Anal-
ysis (CSA) [185] are such relatives of the ISA problem, where ambiguities can still be
determined.

• In the NGCA problem, the observation is instantanenous linear mixture of two
independent i.i.d. components (one Gaussian and one non-Gaussian)

x = A[enon-Gaussian; eGaussian], (2.7)

and the goal is to estimate the non-Gaussian signal subspace (enon-Gaussian). In
contrast to ISA however, no assumption of independence within the non-Gaussian
hidden signal subspace is made.

• In CSA, the observation is the instantaneous linear mixture of two hidden `inde-
pendent' (their auto-crosscorrelation vanishes) components (an i.i.d, and a Wide-
Sense Stationary (WSS)), processes

x = A[sWSS; siid], (2.8)

and the task is to project to the `colored subspace', that is to estimate sWSS.

Stationary Subspace Analysis (SSA): In SSA [190], observation x is instantanenous
linear mixture of multidimensional stationary and non-stationary source signals

x = A[sstationary; snon-stationary], (2.9)

and the task is to recover such a stationary-nonstationary decomposition. The SSA
approach shows promising results in EEG data analysis.

Independent Phase Analysis [17]: One can think of this approach as a modi�cation of
the ISA: sources are organized in subspaces, however instead of statistical dependence,
the elements in a given subspace are characterized by their phase synchronism.

8



Topographic/Hierarchical Organization of the Components: Topographic ICA (TICA)
is ICA dressed up with topographic organization: the energy of the coordinates is al-
lowed to be correlated in their neighbourhood. The TICA task can be formulated as
an ML estimation, and reduces to ISA upon a special choice of the neighbourhood
structure. A 2-layer neural network is applied for feature extraction by [117]: the
�rst layer performes ICA (precisely, is initialized by ICA) and the elements of the �rst
layer are grouped by the second layer�according to the numerical experiments. Similar
hierarchical structure is presented in the [104] and in the Product of Experts (PoT)
model [150].

Variance-Dependent Component Analysis: The dependence of the hidden coordinates
(one-dimensional sources) are modelled in Variance-Dependent Component Analysis
(VDCA) [92, 106, 96] by the dependence of their time-evolving variances.
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Chapter 3

The Independent Process Analysis
Problem

In this chapter, I present a uni�cation of the ICA extensions of Section 2.1 (ISA, AR-
IPA, BSD, PNL-ICA and complex models) by recoursing to Integrated ARMA (ARIMA)
processes, which are commonly used for economic phenomena [138]. De�nitions are given
in Section 3.1, ambiguity questions are addressed in Section 3.2.

3.1 De�nitions
To put our ARIMA Independent Process Analysis (ARIMA-IPA) model into mathematical
form (Section 3.1.2), we need a few notations (Section 3.1.1).

3.1.1 Polynomial Matrices, Complex Random Variables
Numbers (v), vectors (v), and matrices (V) are denoted by di�erent letter types. N
={0,1,. . . } stands for natural numbers. K ∈ {R,C} may stand for either real or for com-
plex numbers. Let KD1×D2 be the set of D1 × D2 matrices over K. Let z stand for the
time-shift operation, that is (zv)(t) := v(t− 1). Polynomials of D1 × D2 matrices are de-
noted by K[z]D1×D2 := {V[z] =

∑N
n=0 Vnzn,Vn ∈ KD1×D2}. A V[z] ∈ K[z]D1×D2 polyno-

mial matrix maps a series of vectors {v(t) ∈ KD2} to (V[z]v)(t) =
∑N

n=0 Vnv(t− n). Let
∇r[z] := (I− Iz)r denote the operator of the rth order di�erence (r ∈ N), where I is the
identity matrix. GlK(D) is the general linear group over K: the set of invertible matrices
from KD×D with the standard matrix product.

We introduce the basic concepts for using complex random variables. An excellent review
on this topic can be found in [70]. VT is the transposed of matrix V ∈ CL×L. Element-wise
complex conjugation is denoted by bar. The transposed complex conjugate of matrix V is
the adjoint matrix V∗ = V̄T . Matrix V ∈ CL×L (RL×L) is called unitary (orthogonal) if
VV∗ = I (VVT = I). The sets of L×L dimensional unitary and orthogonal matrices are de-
noted by UL and OL, respectively. A complex-valued random variable v ∈ CL (shortly com-
plex random variable) is de�ned as a random variable of the form v = vR + ivI , where the
real and imaginary parts of v, i.e., vR and vI ∈ RL are real random variables, i =

√−1. Ex-
pectation value of complex random variables is E[v] = E[vR] + iE[vI ], and the variable can
be characterized in second order by its covariance matrix cov[v] = E[(v − E[v])(v − E[v])∗]
and by its pseudo-covariance matrix pcov[v] = E[(v − E[v])(v − E[v])T ]. Complex random
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variable v is called full, if cov[v] is positive de�nite. Throughout this paper all complex
variables are assumed to be full (that is, they are not concentrated in any lower dimensional
complex subspace).

3.1.2 The ARIMA-IPA Model
The de�nition of the K-ARIMA-IPA task as is follows. We assume M independent hidden
random variables (components). There are ARIMA(Ls, Le, r) processes, where Le, Ls, r ∈ N,
driven by these components, but only their linear mixture is available for observation. For-
mally,

F[z]∇r[z]s = H[z]e, (3.1)
x = As, (3.2)

where e(t) =
[
e1(t); . . . ; eM (t)

] ∈ KDe (De =
∑M

m=1 dm) is a vector concatenated of
the independent components em(t) ∈ Rdm .1 The dimensions of observation x and hid-
den source s are Dx and Ds, respectively. A ∈ KDx×Ds is the so-called mixing ma-
trix. F[z] := I−∑Ls

i=1 Fiz
i ∈ K[z]Ds×Ds and H[z] :=

∑Le

j=0 Hjz
j ∈ K[z]Ds×De are polyno-

mial matrices that represent the AR and MA (Moving Average; also called convolution)
parts, respectively. The goal of the K-ARIMA-IPA task is (to estimate a demixing system)
to recover the original source e(t) from observations x(t).

Our K-ARIMA-IPA assumptions are listed below:

1. Dimensions: Dx ≥ Ds ≥ De.

2. Components:

(a) for a given m, em(t) is i.i.d. in time t,
(b) I(e1, . . . , eM ) = 0, where I stands for the mutual information of the arguments.

This property will be referred to as d-independence [d = (d1, . . . , dM )].
(c) There is at most one Gaussian variable among em. This assumption will be

referred to as the `non-Gaussian' assumption.2

3. A ∈ KDx×Ds has full column rank.

4. Polynomial matrix F[z] is stable, that is det(F[z]) 6= 0, for all z ∈ C, |z| ≤ 1.

5. Polynomial matrix H[z] has left inverse. In other words, there exists a polynomial
matrix Q[z] ∈ R[z]De×Ds such that Q[z]H[z] = I.

Specially, for r = 0, the K-ARMA-IPA special task appears:

F[z]s = H[z]e, (3.3)
x = As. (3.4)

Let us note that the stability of F[z] implies the stationarity of ARMA process s. The core
di�erence for 0 6= r is that Eq. (3.1) includes rth order di�erentiating, which makes the
process non-stationary. Special K-ARMA-IPA tasks are the followings:

1By dm-dimensional em components, we mean that ems cannot be decomposed into smaller dimensional
independent parts. This property is called irreducibility in [183].

2In the complex case, this non-Gaussian constraint can be relaxed: the mixture of certain Gaussian
variables can also be demixed, see Section 4.4.
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1. The case of Le = 0 corresponds to the K-AR-IPA task3:

s(t) =
Ls∑

i=1

Fis(t− i) + e(t), (3.5)

x(t) = As(t). (3.6)

If Ls = 0 also holds, then the K-ISA (or K-IID-IPA) task emerges:

x(t) = Ae(t) (3.7)

In addition, if dm is chosen to be one�that is the em components are one-dimensional�
then the task reduces to the simpler K-ICA problem.

2. for Ls = 0, one talks about the K-MA-IPA (or K-Blind Subspace Deconvolution, K-
BSSD) task4:

x(t) =
Le∑

j=0

Hje(t− j) (3.8)

In other words, the causal FIR (Finite Impulse Response) �ltered mixture5 of the
hidden components is available for observation. Furthermore, if ∀dm = 1 then we
arrive at the original K-BSD problem.

The relations among the di�erent tasks are summarized in Fig. 3.1. For Dx > De the
problem is called undercomplete, while the case of Dx = De is regarded as complete. We
are dealing with the complete problem, if it is not stated otherwise; to distinguish the
undercomplete case, pre�x `u' is used, e.g., uARIMA-IPA.6 For real variables (K =R), we
address the problem of post nonlinear (PNL) models. In this case, observation equation
(3.2) is replaced by

x = f(As), (3.9)
where function f = [f1; . . . ; fDx ] : RDx → RDx is a component-wise transformation that is
f(x) = [f1(x1); . . . ; fDx(xDx)] and f is invertible. Function f can be conceived as a distortion
acting component-wise.

3.2 Ambiguities
This section is about the ambiguity (also called separability) issues of ISA models: what
extent is it possible recover the original hidden components. The linear ISA case (R-ISA,
C-ISA) is detailed in Section 3.2.1, the PNL-ISA case is addressed in Section 3.2.2. As we
will see it later (Chapter 4), other cases in the K-ARIMA-IPA problems can be transformed
into one of these problems.

3In K-AR-IPA, besides e quantities s,F[z],A,A−1 are also estimated.
4In K-MA-IPA, besides e, H[z] can also be easily estimated by the help of x, e.g., by using least squares.
5Causal: j ≥ 0 in Pj . FIR: the number of terms in the sum is �nite.
6One can show for Ds > De that under mild conditions H[z]-has an inverse with probability 1 [160]; e.g.,

when the matrix [H0, . . . ,HLe ] is drawn from a continuous distribution (see assumption 5, on page 11).
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Figure 3.1: The general K-ARIMA-IPA model and its special cases. Arrows point to special
cases. For example, `K-ISA ∀dm=1−−−−→K-ICA' means, that the K-ICA model is a special case
of the K-ISA model, when all components are one-dimensional.

3.2.1 K-ISA Separability
Identi�cation of the (complete) K-ISA model is ambiguous. However, the ambiguities of the
model are simple: hidden components can be determined up to permutation of the subspaces
(of equal dimension) and invertible transformation within the subspaces. The proof of the
real case can be found in [180, 183], the non-Gaussian complex case can be transformed
to the real case by the technique detailed in Section 4.4 (see Proof I). Ambiguities within
subspaces can be lessened. One may assume without any loss of generality that both the
observed (x) and the hidden (e) signals are white: their (i) expected values are zero, (ii)
covariance matrices are identity. Now,

• the mixing matrix A is orthogonal(real case)/unitary(complex case), because

I = cov[x] = E
[
xxT

]
= AE

[
eeT

]
AT = AIAT = AAT , (3.10)

I = cov[x] = E [xx∗] = AE [ee∗]A∗ = AIA∗ = AA∗. (3.11)

holds in the real and complex case, respectively.

• thus, the W := A−1 demixing matrix is orthogonal(real case)/unitary(complex case),

• and the em components are determined up to permutation (of equal dimension) and up
to orthogonal(real case)/unitary(complex case) transformation within the subspaces.

The undercomplete ISA problem can be transcribed into complete ISA by applying Prin-
cipal Component Analysis (PCA). In fact, the whitening and the undercomplete-complete
reduction can be carried out in a single step by PCA (see Note II).

3.2.2 PNL-ISA Separability
To solve the PNL-ISA problem it is important to see to what extent we can expect to regain
the true sources. For this generalization we prove a separability theorem (Theorem 1): the
ambiguities of this problem are essentially the same as for the linear ISA task (Section 3.2.1).
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By applying this result we derive an algorithm using the mirror structure of the mixing
system (Section 4.3).

Because of the PNL assumption the hidden sources can be estimated using the mirror
structure of the mixing system, that is

ê = Wg(x), (3.12)

where W ∈ GlR(De) and g : RDe → RDe is a component-wise transformation. It has to
be shown, however, that the d-independence of the resulting ê unequivocally means that
the true e has been found. The following separability theorem shows that indeed this is the
case. This statement (i) concerns the case of equal dimensions (d = dm,∀m) and (ii) can
be considered as an extension of the results in [179] for the case d ≥ 1. The proof of the
theorem will be based on Lemmas 3.4 and 3.5 of [182]. These lemmas will only be cited. Let
C2(V,R) and Cω(V,R) denote the V (open) ⊆ Rn → R 2-times continuously di�erentiable
and analytic functions, respectively. Let us introduce a concept: a matrix U ∈ RdM×dM is
called `mixing', if there exist at least two invertible elements in any of its rows (considering
d× d blocks as elements).7 Formally, U is `mixing', if decomposing matrix U into blocks of
size d × d (U = [Uij ]i,j=1,...,M ,Uij ∈ Rd×d), then for any index i ∈ {1, . . . ,M} there exist
a pair of indices j 6= k ∈ {1, . . . , M} for which matrices Uij and Uik are invertible. Our
PNL-ISA separability result is the following:

Theorem 1 ([11]; PNL-ISA Ambiguities with Locally-Constant Nonzero C2 Den-
sities, d = dm(∀m)) Let (i) A,W ∈ GlR(De), be `mixing' matrices; (ii) e be as in R-ISA
with existing covariance matrix, and somewhere locally constant nonzero density function
pE ∈ C2(RDe ,R), (iii) h : RDe → RDe is a component-wise bijection with coordinate func-
tions in Cω(R,R). In this case, if y := [y1; . . . ;yM ] = Wh(Ae) is d-independent (ym ∈ Rd)
with somewhere locally constant density function, then

• h(x) = Lx + p, where L ∈ GlR(De) is a diagonal matrix and p ∈ RDe , and

• components ym (m = 1, . . . ,M) recover the hidden em sources up to permutation and
invertible transformation within the subspaces (and maybe up to a constant transla-
tion).

[See Proof III on page 53.]

For example, uniform distributions belong to the family of somewhere locally constant
and nonzero distributions, hence we have proven post nonlinear separability for uniformly
distributed sources.

7It is easy to show an example, when it is impossible to estimate nonlinearities fi and restore the source
components em ∈ Rd, provided that the `mixing' property is not full�lled. Let A = blockdiag(A1, . . . ,AM ),
or more generally a block-permutation matrix made of d × d blocks (a synonym for the latter is d-scaling
matrix [181, 182]).
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Chapter 4

Separation Principles for
Independent Process Analysis

In what follows, we present separation principles for the K-ARIMA-IPA problem family
of Section 3.1.2. By using these principles, we can decompose the solution of the original
problem to simple(r) subproblems.

First, in Section 4.1 we review former, existing separation techniques, which address spe-
cial cases of the problem class. Our contributions concerning real linear (post nonlinear) and
complex linear models are detailed in Section 4.2 (Section 4.3) and Section 4.4, respectively.

4.1 Former Decomposition Principles in the ARIMA-IPA
Problem Family

There are numerous separation techniques for special ARIMA-IPA problems in the literature:

• According to the ISA separation principle [42, 9] the solution of the ISA task requires
an ICA preprocessing step followed by a suitable permutation of the ICA elements.

• By applying an AR identi�cation procedure �rst, the AR-IPA task can be transformed
to the ISA task [158] that extends the result of [89] to multidimensional sources. In
certain cases, simple temporal di�erentiating may be su�cient for the reduction step
[53].

• The undercomplete BSD task can be reduced

� to ISA by temporal concatenation of the observations [73], or
� to ICA

∗ by Minimal Polynomial Basis (MPB) [78],
∗ by means of spatio-temporal decorrelation [54], or
∗ by Linear Prediction Approximation (LPA) [97, 62, 79, 13].

• In case of one-dimensional components (dm = 1), the solution of uARMA-IPA boils
down to ICA:

� after applying (MPB+) LPA [77],
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� after the solution of a linear equation system (LES) constructed from cumulant
matrices [174].

• The PNL-ICA problem is solved using `gaussianization' followed by ICA [196, 171].

Now, we extend these separation principles. Namely:

• We give su�cient conditions for the R-ISA separation principle in Section 4.2.1. In
Section 4.4.2, we justify its complex counterpart, the C-ISA separation principle.

• We prove, that the R-uMA-IPA task can also be reduced to R-ISA by temporal con-
catenation, in the general dm ≥ 1 case (Section 4.2.2). Then, we show an alternative,
linear prediction based principle, which is better suited for large scale problems.

• In Section 4.2.3, we reduce the R-uARMA-IPA problem (in case of dm ≥ 1) to R-ISA
via linear prediction.

• The R-uARIMA-IPA task can be solved by temporal di�erentiating followed by an
R-uARMA-IPA method (Section 4.2.4).

• The gaussianization based separation principle is extended to the PNL-ISA problem
in Section 4.3.

• The complex linear models (up to C-uARIMA-IPA) are transcribed to real problems
in Section 4.4.1.1

The di�erent separation principles (former+own) are summarized in Fig. 4.1.

4.2 Real Linear Models
In this section, separation principles for real linear models are elaborated.

4.2.1 The R-ISA Separation Theorem - Su�cient Conditions
Without loss of generality, it can be assumed for an undercomplete/complete R-ISA prob-
lem that it is complete (see Note II). According to the R-ISA Separation Theorem, the
R-ISA problem can be solved by clustering the estimated R-ICA elements into statistically
dependent groups:

Theorem 2 ([9]; R-ISA Separation Theorem) Let y = [y1; . . . ; yDe ] = Wx ∈ RDe ,
where W ∈ ODe , x ∈ RDe is the whitened observation of the R-ISA model, and De =

∑M
m=1 dm.

Let Sdm

R denote the surface of the dm-dimensional unit sphere, that is Sdm

R := {w ∈ Rdm :∑dm

i=1 w2
i = 1}. Presume that the u := em ∈ Rdm sources (m = 1, . . . , M) of the R-ISA

model satisfy condition

H

(
dm∑

i=1

wiui

)
≥

dm∑

i=1

w2
i H (ui) , ∀w ∈ Sdm

R , (4.1)

1It is important to note that certain complex methods have already been rewritten to the real case (see,
e.g., [44] and references therein). Here, we prove that the complex problem itself can be rewritten to a real
one, thus any extant real procedure can be applied for the associated problem�provided that there is at least
one hidden Gaussian component in the obtained real problem.
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and that the ICA cost function JR-ICA(W) =
∑De

i=1 H(yi) has minimum over the orthogonal
matrices in WR-ICA. Then it is su�cient to search for the solution to the R-ISA task as a
permutation of the solution of the R-ICA task. Using the concept of demixing matrices, it
is su�cient to explore forms

WR-ISA = PWR-ICA, (4.2)
where P ∈ RDe×De is a permutation matrix to be determined and WR-ISA is the R-ISA
demixing matrix.

Note 3 (Connection to JBD) It is intriguing that if (4.1) is satis�ed then this simple
decomposition principle provides the global minimum of the

J(W) := I
(
y1, . . . ,yM

)
(W ∈ ODe ,y =

[
y1; . . . ;yM

]
= Wx,ym ∈ Rdm) (4.3)

ISA cost. In the literature on JBD [12] have put forth a similar conjecture recently. Ac-
cording to this conjecture, for quadratic cost function, if Jacobi optimization is applied, the
joint block diagonalization of the matrices can be found by the optimization of permutations
following the joint diagonalization of the matrices. ISA solutions formulated within the JBD
framework [181, 182, 183, 3] make e�cient use of this idea in practice. [183] could justify
this approach for local minimum points.

Note 4 (Consequences in R-ISA Cost Optimization) There are several possibilities
to optimize R-ISA cost functions:

1. Without ICA preprocessing, optimization problems concern either the Stiefel manifold
[69, 131, 154, 159] or the �ag manifold [144]. According to our experiences, these
gradient based optimization methods may be stuck in poor local minima. The problem
can be reduced somewhat by smart initialization procedures [24], or Grassmannian
clustering techniques [82].

2. According to the R-ISA Separation Theorem, it may be su�cient to search for optimal
permutation of the R-ICA components provided by R-ICA preprocessing.

• Our experiences show that greedy permutation search is often su�cient for the
estimation of the R-ISA subspaces.2

• However, it is easy to generate examples in which this is not true [155]. In such
cases, global permutation search methods of higher computational burden may
become necessary. We apply such a global technique, the so-called Cross-Entropy
[163] to the solution of the R-ISA problem in Section 5.1.

• Since the R-ISA Separation Theorem transforms the R-ISA problem into cluster-
ing, non-combinatorial approximation of R-ISA, and R-ISA-reducible problems
will become possible (Section 5.3).

The contribution of the present thesis to the ISA Separation Theorem is the following:

• it gives su�cient conditions for (4.1), and

• provides a complex counterpart of the Separation Theorem, the C-ISA Separation
Theorem (Section 4.4.2).

2Applying greedy permutation search strategy: two coordinates of di�erent subspaces are exchanged
provided that this change improves cost function JR-ISA.

18



(a) (b) (c) (d)

Figure 4.2: Illustration: Density functions (for variables em) invariant to 90◦ rotation or
permutation and sign changes. (a) and (c): density function f takes identical values at the
arrowheads. Matrix R and matrix M are 90◦ counter-clockwise rotation and re�ection to
axis x, respectively. (b) and (d): examples for (a) and (c), respectively.

The question of which types of sources satisfy the R-ISA Separation Theorem is open.
Equation (4.1) provides only a su�cient condition. Below, we list a few di�erent sources
types of em that satisfy (4.1):
Theorem 5 ([9]; R-ISA Separation Theorem�Su�cient Conditions) The su�cient
condition (4.1) of the R-ISA Separation Theorem holds for:

• spherically symmetric (regarded as spherical from now on) variables [72]. The distri-
bution of such variables is invariant to orthogonal transformations.3

• Moreover, in case of 2-dimensional components (dm = 2) invariance to 90◦ rotation
su�ces. Under this condition, density function f of component u = em is subject to
the following invariance

f(u1, u2) = f(−u2, u1) = f(−u1,−u2) = f(u2,−u1)
(∀u ∈ R2

)
. (4.4)

A special case of this requirement is invariance to permutation and sign changes
f(±u1,±u2) = f(±u2,±u1). (4.5)

In other words, there exists a function g : R2 → R, which is symmetric in its variables
and f(u) = g(|u1|, |u2|). Special cases within this family are distributions

f(u) = h

(∑

i

|ui|p
)

(p > 0), (4.6)

which are constant over the spheres of Lp
R-space. They are called Lp

R-spherical variables
which, for p = 2, corresponds to spherical variables.

[See Proof IV on page 54.]
In fact, the aforementiond source component types ful�ll a stronger condition than that

of (4.1). This condition is called R-w-EPI condition, where EPI is shorthand for the entropy
power inequality [60]:

e2H(Pd
i=1 wiui) ≥

d∑

i=1

e2H(wiui), ∀w ∈ Sdm

R . (4.7)

3In the R-ISA task the non-degenerate a�ne transformations of spherical variables, the so-called elliptical
variables, do not provide valuable generalizations due to the ambiguities of the R-ISA task.
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Figure 4.3: Su�cient conditions for the R-ISA Separation Theorem.

The R-w-EPI condition is valid (beyond the examples of Theorem 5) for certain weakly
dependent variables: [175] has determined su�cient conditions when EPI holds.4 If the EPI
property is satis�ed on unit sphere Sdm

R , then the R-ISA Separation Theorem holds. The
enumerated su�cient conditions are summarized in Fig. 4.3.

4.2.2 Reduction of R-uMA-IPA to R-ISA
Below, (i) we describe the Temporal Concatenation (TCC) and Linear Prediction Approxi-
mation (LPA) separation principles of the R-uMA-IPA task and (ii) derive their causal FIR
�ltering interpretations.

The Temporal Concatenation Technique (TCC)
The TCC technique for the R-uMA-IPA task is formulated as follows:

Theorem 6 ([9]; R-uMA-IPA via TCC) Let L′ be such that

DxL′ ≥ De(Le + L′) (4.8)

is ful�lled.5 Let xm(t) denote the mth coordinate of observation x(t). Then we end up
with an X(t) = AE(t) R-ISA task with an A ∈ RDxL′×De(Le+L′) (H[z] dependent) Toeplitz
matrix upon applying temporal concatenation of depth Le + L′ and L′ on the sources and
the observations, respectively, that is Em(t) := [em(t); . . . ; em(t − (Le + L′) + 1)], E(t) :=
[E1(t); . . . ;EM (t)], Xm(t) := [xm(t); . . . ;xm(t− L′ + 1)], X(t) := [X1(t); . . . ;XDx(t)]. [See
Proof V on page 55.]

4The constraint of dm = 2 may be generalized to higher dimensions. We are not aware of such general-
izations.

5Such L′ exists due to the undercomplete assumption Dx > De : L′ ≥
l

DeLe
Dx−De

m
.
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The statement extends the result of [79] concerning BSD (dm = 1), to the dm ≥ 1 case.
Making use of this principle the R-uMA-IPA problem can be reduced to R-ISA by applying
temporal concatenation. Choosing the minimal value for L′, the dimension of the obtained
R-ISA task is

DR-ISA := De(Le + L′) = De

(
Le +

⌈
DeLe

Dx −De

⌉)
. (4.9)

Taking into account the ambiguities of the R-ISA task (see page 8), the original em com-
ponents will occur Le + L

′ times and up to orthogonal transformations. As a result, in the
ideal case, our estimations are as follows

êm
k := Vm

k em ∈ Rdm , (4.10)

where k = 1, . . . , K(:= Le + L′), Vm
k ∈ Odm . The pseudocode of the TCC based solution of

the R-uMA-IPA problem can be found in Table B.1.

The Linear Prediction Technique (LPA)
The R-ISA problem associated to R-uMA-IPA by the TCC approach can easily become
`high dimensional' (see Eq. 4.9). This dimensionality problem can be alleviated by the LPA
approach. The LPA technique is compressed into the following statement, which (i) is the
extension of [73] to multidimensional em components (dm ≥ 1), (ii) can be extended to the
R-uARMA-IPA problem (see Theorem 8):

Theorem 7 ([10]; R-uMA-IPA via LPA) In the R-uMA-IPA task, observation process
x(t) is autoregressive and its innovation x̃(t) := x(t)− E[x(t)|x(t− 1),x(t− 2), . . .] is H0e(t),
where E[·|·] denotes the conditional expectation value. Consequently, there is a polynomial
matrix WLPA

AR [z] ∈ R[z]Dx×Dx such that WLPA
AR [z]x = H0e. [See Proof VI on page 55.]

Thus, the AR �t of x(t) can be used for the estimation of H0e(t). This innovation cor-
responds to the observation of an undercomplete R-ISA model6, which can be reduced to
a complete R-ISA model using PCA (see Note II). Finally, the solution can be completed
by any R-ISA procedure. Taking these steps together, one can introduce polynomial ma-
trix ŴLPA[z] := ŴLPA

ISA ŴLPA
PCAŴLPA

AR [z] ∈ R[z]De×Dx and claim that the LPA estimation
gives rise to source estimation ê = ŴLPA[z]x, and consequently, LPA uses causal �lter
ŴLPA[z] for FIR �ltering the observation x. The pseudocode of the LPA based solution of
the R-uMA-IPA problem can be found in Table B.2.

Connection Between TCC and LPA
Using Theorem 6, the TCC technique estimates components em of hidden source e as
the linear transformation of the temporally concatenated form of observation x. Thus,
components em are causal FIR �ltered versions of x similar to the LPAmethod (see Proof VII
on page 56). The di�erence is in the method of the estimation:

• The LPA technique applies Gaussian approximation in the AR estimation (for H0e)
and then rotates the solution to independent directions.

• By contrast, the TCC method�via the temporal concatenation�directly optimizes
the FIR �lter system WTCC[z] = {WTCC

m,k [z]} to make the estimated components êm
k

(m = 1, . . . ,M ; k = 1, . . . , K) independent.
6Assumptions made for H[z] (and A) in the R-u(AR)MA-IPA task implies that (A)H0 is of full column

rank and thus the resulting R-ISA task is well-de�ned.
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Although, according to our experiments, the LPA technique is better suited for large scale
problems, the TCC approach may have its own advantages (see Section 6.3.3).

4.2.3 Reduction of R-uARMA-IPA to R-ISA via LPA
The LPA based R-uMA-IPA separation principle (Theorem 7) also holds for R-uARMA-IPA
problems (for the case of dm = 1, see [77]):

Theorem 8 ([2]; R-uARMA-IPA via LPA) In the R-uARMA-IPA task, observation pro-
cess x(t) is autoregressive and its innovation x̃(t) := x(t)− E[x(t)|x(t− 1),x(t− 2), . . .] is
H0e(t), where E[·|·] denotes the conditional expectation value. Consequently, there is a
polynomial matrix WLPA

AR [z] ∈ R[z]Dx×Dx such that WLPA
AR [z]x = AH0e.6 [See Proof VI on

page 55.]

The pseudocode of the LPA based solution of the R-uARMA-IPA problem can be found in
Table B.2.

4.2.4 Reduction of R-uARIMA-IPA to R-uARMA-IPA via Tempo-
ral Di�erentiating

According to Theorem 8, the solution of R-uARMA-IPA can be transcribed to R-ISA by
the LPA technique. Our non-stationary ARIMA extension (the ARIMA-IPA problem [2])
can be reduced to R-uARMA-IPA by temporal di�erentiating. Namely, let us note that
di�erentiating the observation x of the R-uARIMA-IPA task in Eq. (3.2) in rth order, and
making use of the relation zx = A(zs), the following holds:

F[z] (∇r[z]s) = H[z]e, (4.11)
∇r[z]x = A (∇r[z]s) . (4.12)

That is taking ∇r[z]x as observations, the problem at hand becomes equivalent to an
R-uARMA-IPA task. Neither the undercompleteness, nor the real-valued property of the
problem have been used in this decomposition step.

4.3 Real Post Nonlinear Models
Now, we present a separation principle for the i.i.d, PNL-ISA problem [11] of the real
post nonlinear models, which is�according to our numerical experiments�a viable way of
solution up to the PNL-uARMA-IPA task.

Theorem 1 implies that by using an appropriate transformation g acting on each coor-
dinate separately, the d-independence of the estimation

ê = Wg(x) (4.13)

solves the PNL-ISA task. Thus, the solution of the PNL-ISA task can be carried out in 2
steps:

1. Estimate g: according to the d-dependent central limit theorem [153], term Ae can
be considered as an approximately gaussian variable, so g can be approximated as a
`gaussianization' transformation (see [196, 171] for dm = 1).

2. Estimate W: apply a linear R-ISA method on the result of the `gaussianization' trans-
formation.
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4.4 Complex Linear Models
As C ∼= R2, one may think at �rst sight that complex-valued models do not di�er from a
real-valued model of double dimension:

• On the one hand, this is true: there are certain C-ICA methods, which have already
been rewritten to real ones (see, e.g., [44] and references therein). In fact, all linear
complex problems of Section 3.1.2 can be transformed to real problems (Section 4.4.1).
Thus, any real method can be applied for their solution�provided that, there is at
least one Gaussian among the associated hidden components.

• on the other hand, this is false: an exciting result for the C-ICA problem (∀dm = 1) is
that the mixture of certain Gaussian variables can also be demixed [70]�which is in
contrast to the real non-Gaussian constraint. In the complex case, for dm ≥ 1 (C-ISA)
we are not aware of any similar separability result. Thus, our C-ISA Separation The-
orem presented in Section 4.4.2 can be considered as a pioneering and preliminary
result. The theorem implies�alike the R-ISA separation principle�that the C-ISA
problem can be solved by (i) C-ICA (assuming one-dimensional hidden independent
components), (ii) followed by the grouping of the estimated C-ICA coordinates by
their statistical dependence.

4.4.1 Reduction of C-uARIMA-IPA to R-uARIMA-IPA
Here we reduce the tasks of Fig. 3.1, which have complex variables to real problems. In
particular, we reduce the C-uARIMA-IPA problem to the R-uARIMA-IPA task.

Consider the mappings

ϕv : CL 3 u 7→ u⊗
[ <(·)
=(·)

]
∈ R2L, (4.14)

ϕM : CL1×L2 3 M 7→ M⊗
[ <(·) −=(·)
=(·) <(·)

]
∈ R2L1×2L2 , (4.15)

where ⊗ is the Kronecker product, < stands for the real part, = for the imaginary part,
subscript 'v' (`M ') for vector (matrix). Using these notations, our statement is as follows:

Theorem 9 ([5]; C-uARIMA-IPA to R-uARIMA-IPA) The C-uARIMA-IPA problem
with parameters

(x, s, e,F[z],H[z],A, Le, Ls, r,d, Dx, Ds, De) (4.16)
can be realized as a R-uARIMA-IPA task with parameters

(ϕv(x), ϕv(s), ϕv(e), ϕM (F[z]), ϕM (H[z]), ϕM (A), Le, Ls, r, 2d, 2Dx, 2Ds, 2De). (4.17)

Thus, the solution of the original problem can be carried out by any R-uARIMA-IPA tech-
nique, provided that there is at least one Gaussian variable among the associated components
ϕv(em) ∈ R2dm . [See Proof VIII on page 56.]

4.4.2 The C-ISA Separation Theorem
Now, we present our separation principle for the C-ISA problem, which implies that the
solution of the C-ISA task can be formulated as �nding the optimal permutation, grouping
of the C-ICA elements:
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C-spherical symmetry +3 C-w-EPI +3 Equation (4.18): su�cient
for the C-ISA Separation Theorem

Figure 4.4: Su�cient conditions for the C-ISA Separation Theorem.

Theorem 10 ([7]; C-ISA Separation Theorem) Presume that the em sources of the
C-ISA model satisfy condition

H

(
L∑

i=1

wiui

)
≥

L∑

i=1

|wi|2H(ui) ∀w ∈ Sdm

C , (4.18)

and that JC-ICA(W) =
∑M

m=1

∑dm

i=1 H (ym
i ), (W ∈ UDe), i.e., the C-ICA cost function

has minimum. Here, Sdm

C denotes the dm-dimensional complex unit sphere, that is Sdm

C :={
w = [w1; . . . ; wdm ] ∈ Cdm :

∑dm

i=1 |wi|2 = 1
}
. Then it is su�cient to search for the min-

imum of the C-ISA task (WC-ISA) as a permutation of the solution of the C-ICA task
(WC-ICA). That is, it is su�cient to search for the C-ISA demixing matrix in the form

WC-ISA = PWC-ICA, (4.19)

where P
(∈ RDe×De

)
is the permutation matrix to be determined. [See Proof IX on page 57.]

We proved the following su�cient conditions for the C-ISA Separation Theorem:

Theorem 11 ([7]; C-ISA Separation Theorem�Su�cient Conditions) The su�cient
condition (4.18) (formulated for hidden source components) of the C-ISA Separation The-
orem is ful�lled by:

• complex spherical variables [119]. The distribution of such variables is invariant to
unitary transformations.

• variables satisfying C-w-EPI.

[See Proof XVIII on page 61. The relation of these su�cient conditions is depicted in
Fig. 4.4.]

To summarize achievements presented in this chapter, the following can be stated:
K-ARIMA-IPA problems can be solved in several ways by transforming and reducing the
problem to simpler setups as shown in Fig. 4.1.
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Chapter 5

Speci�c Algorithms for
Independent Process Analysis

In Chapter 4, we delineated separation principles for the K-ARIMA-IPA problem family.
By applying these principles, the resulting subproblems can now be addressed by several
di�erent methods. The goal of this chapter is to derive some e�cient algorithms for these
speci�c subproblems. Namely,

• According to the ISA Separation Theorem (see Theorem 2 and Theorem 10), under
certain conditions, the solution of the ISA task can be carried out by �nding the
optimal permutation of the estimated ICA elements grouping them to statistically
dependent subspaces. For the permutation search problem a global technique, the
Cross-Entropy (CE) procedure [163] is adapted in Section 5.1.

• We develop an ISA algorithm in Section 5.2 that (i) builds upon joint decorrelation
for a set of functions (hence the name JFD, Joint F-Decorrelation), (ii) can be related
to kernel based techniques, (iii) can be interpreted as a self-adjusting, self-organizing
neural network solution, (iv) is a �rst step towards large scale problems. Our numerical
examples extend to a few 100-dimensional ISA tasks. Such dimensions can easily
appear, e.g., in the TCC based solution of the R-uMA-IPA problem (see Section 4.2.2).

• Former, existing ISA methods assume that the dimensions of the di�erent subspaces
(dm) are known in advance. In Section 5.3 we present techniques that can estimate the
unknown dimensions as well. These techniques provide solutions for ISA(-reducible)
problems (see Fig. 4.1).

5.1 The Cross-Entropy Method for R-ISA
In the present section, the CE procedure is tailored to the ISA problem: it is applied for
grouping the estimated ICA elements. The CE method has been found e�cient for combi-
natorial optimization problems [163]. The CE technique operates as a two step procedure:
First, the problem is converted to a stochastic problem and then the following two-phases
are iterated (for detailed description, see the above reference):

1. Generate x̃1, . . . , x̃N ∈ X samples from a distribution family parameterized by a θ
parameter and choose the elite of the samples. The elite is the best ρ% of the samples
according to the cost function J .
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2. Modify the sample generation procedure (θ) according to the elite samples. In practice,
smoothing, i.e., θnew = β · θproposed + (1 − β) · θold is employed in the update of θ,
where β ∈ [0, 1].

This technique can be applied in our search for permutation matrix P. Our method is
similar to the CE solution suggested for the Travelling Salesman Problem (TSP) (see [163]).
In the TSP problem, a permutation of cities is searched for. The objective is to minimize
the cost of the travel. We are also searching for a permutation, but now the travel cost is
replaced by JR-ISA(W). Thus, in our case, X = SDe

and x̃ is an element of this permutation
group. Further, the CE cost equals to

J(Px̃) = JR-ISA(Px̃WICA), (5.1)

where Px̃ denotes the permutation matrix associated to x̃. Thus, optimization concerns
permutations in X. θ contains transition probabilities i → j (1 ≤ i, j ≤ De), called node
transition parametrization [163]. The above iteration is stopped if there is no change in
the cost (in the last L steps), or the change in parameter θ is negligibly small (smaller
then ε). Our approach has been illustrated in [6] using the JR-ISA(W) =

∑M
m=1 H(ym)

multidimensional entropy based ISA cost function, where y = [y1; . . . ;yM ] = Wx (ym ∈
Rdm) denotes the estimated hidden source.

5.2 The Joint F-Decorrelation Technique (JFD)
Now, we present an ISA method, which builds on joint decorrelation on a function set
[3]. Components em are estimated by a demixing network, which aims to `decorrelate' (see
below) the ym ∈ Rdm parts of the RDe 3 y(t) = [y1(t); . . . ;yM (t)] output of the network.
The demixing network is chosen to be a neural network executing the mapping

x 7→ N(x,Θ) (5.2)

with parameter Θ. We describe possible network architectures (N) in Section 5.2.1, Sec-
tion 5.2.2 is about decorrelation using a single function setting the stage for our Joint
F-Decorrelation Technique (JFD) ISA method detailed in Section 5.2.3.

5.2.1 Demixing Network Candidates
Choosing an RNN (Recurrent Neural Network) with feedforward (F) and recurrent (R)
connections then the network assumes the form

ẏ(τ) = −y(τ) + Fx(t)−Ry(τ) (5.3)

and thus, upon relaxation it solves the

y(t) = (I + R)−1Fx(t) = N(x(t);F,R) (5.4)

input-output mapping [137, 18]. Another natural choice is a network with feedforward
connections W that executes mapping

y(t) = Wx(t) = N(x(t);W). (5.5)
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5.2.2 Cost Function of the Demixing Network
The network estimates hidden sources em by non-linear (f) decorrelation of yms, components
of network output y. Formally: Let us denote the empirical f -covariance matrix of y(t) and
ym(t) for function f = [f1; . . . ; fM ] over [1, T ] (T : sample number) by

Σ(f , T ) = ĉov (f(y), f(y)) , (5.6)
Σi,j(f , T ) = ĉov

(
f i

(
yi

)
, f j

(
yj

))
, (5.7)

respectively, where i, j = 1, . . . ,M . Then minimization of the following non-negative cost
function (in Θ)

J(Θ; f , T ) := −1
2

log

{
det[Σ(f , T )]∏M

m=1 det[Σm,m(f , T )]

}
(5.8)

gives rise to pairwise1 f -uncorrelatedness:
Theorem 12 (Pre-JFD Cost) For the demixing carried out by the network minimizing
cost function (5.8), the following statements are equivalent:

i) f -uncorrelatedness: Σi,j(f , T ) = 0 (∀i 6= j).

ii) J(·; f , T ) is minimal: J(Θ, f , T ) = 0.
[See Proof XIX on page 61.]
Note 13

1. For the special case, Θ = (F,R), f(x) = x and ∀dm = 1, see [137].

2. Cost function J of (5.8) is attractive as its gradient can easily be computed. This
gradient for the case of an RNN architecture [see Eq. (5.4)] may give rise to self-
organization [137].

3. The demixing de�ned by cost function (5.8), can be related to the KGV technique [24].
This technique aims to separate the ym independent components of y, the transformed
form of input x. To this end, KGV estimates mutual information I(y1, . . . ,yM ) in
Gaussian approximation. Here, the transformation of the KGV technique is realized
by the neural network parameterized with variable Θ and by the function f .

4. We note that KGV is related to the KC method [80], which makes use of the supremum
of one-dimensional covariances as a measure of independence. Our approximation may
also be improved by minimizing J(Θ; f , T ) on F(3 f), i.e., on a set of functions.

5.2.3 R-ISA by JFD
From now on, we are working with the linear feedforward neural network architecture [see,
Eq. (5.5)], and attempt to recover the hidden sources em by pairwise decorrelation of the
components ym of the output of the network using function manifold F (F: see the last
note). Thus by making use of the R-ISA Separation Theorem and Theorem 12 our cost
function is

JJFD(P; F, T ) :=
∑

f∈F

‖M ◦Σ(f , T,P)‖2 → min
P

. (5.9)

Here:
1We note that if our observations are generated by an ISA model then�unlike in the ICA task when

dm = 1, ∀m�pairwise independence is not equivalent to mutual independence [57, 155]. Nonetheless,
according to our numerical experiences it is an e�cient approximation in many situations.
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• (i) F denotes a set of functions, each function RDe 7→ RDe , and each function acts on
each coordinate separately, (ii) ◦ denotes pointwise multiplication (Hadamard prod-
uct), (iii) M is a mask according to the subspaces [M = E− blockdiag(E1, . . . ,EM ),
where all elements of matrix E ∈ RDe×De and Em ∈ Rdm×dm are equal to 1], (iv) ‖·‖2
denotes the square of the Frobenius norm (sum of squares of the elements), (v) in
Σ(f , T,P), y = PêICA, and (vi) P is the De × De permutation matrix to be deter-
mined.

• The JFD cost function, JJFD can be interpreted as follows: Independence of the es-
timated sources ym is approximated by the uncorrelatedness on the function set F,
which is equivalent to the minimization of JJFD according to Theorem 12.

• To optimize JJFD, one may apply greedy permutation search: 2 coordinates of di�erent
subspace are exchanged if this change lowers cost function JJFD(·; F, T ). The pseu-
docode of this JFD implementation can be found in Table B.3. Note: Greedy search
could be replaced by a global at a price of larger computational load, see Section 5.1.

This simple JFD based ISA approximation�with greedy permutation search�could cope
with about 300-400-dimensional (De) ISA problems on a standard PC (see Section 6.3.1),
while former existing state-of-the art ISA techniques can only handle problems of about 20
dimensions.

5.3 Estimation of the Hidden Component Dimensions in
ISA-Reducible Problems

Most existing ISA, IPA methods assume that the dimensions (dm) of the hidden components
(em) are known. In this section, we propose solutions not requiring this a priori knowledge.
The lack of this knowledge may cause combinatorial di�culty in a sense that one may have
to try all possible

De = d1 + . . . + dM (dm > 0,M ≤ De) (5.10)
combinations for the subspace dimensions. The number of these possibilities is given by the
so-called partition function f(De), i.e., the number of sets of positive integers that sum up
to De. The value of f(De) grows quickly with the argument. Asymptotic behavior is known
[85, 187]:

f(De) ∼ eπ
√

2De/3

4De

√
3

, De →∞. (5.11)

Fortunately, making use of the ISA Separation Theorem e�cient non-combinatorial approx-
imations can be constructed. The basic idea behind these approximations is to `cluster by
the dependencies between the coordinates of the estimated sources'. In addition, this non-
combinatorial method can also be applied to all problems that can be transformed into an
ISA task based on the separation principles presented in Chapter 4.

Note 14 So far, we addressed the question of approximating the dimensions of the indi-
vidual hidden components em, provided that the total dimension De is known. It may also
occur that the value of De is not given beforehand. Let us suppose, that this is the case
and let us deal with the ISA problem. Because the observation takes the form x = Ae, the
eigenvalues of the covariance matrix of the observation can reveal the value of De: ideally
there are De positive and Dx −De (almost) 0 values. Estimation is always performed based
on a �nite sample set, thus in practice Dx − De of the eigenvalues are near 0, then there
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is a sharp transition. This train of thoughts concerned ISA. However, the same technique
can be applied to the result of innovation/gaussianization [11] by the separation principles of
Chapter 4. Thus, in the sequel, it is assumed that De is known and our task is to estimate
the dm dimensions.

My results estimating dimensionality in IPA problems [8, 1, 4, 2] with the approaches
known from the literature [157, 183, 172, 25, 82] can be summarized as follows:
AR-IPA with Block-Diagonal F: [157] (Ls = 1), [8] (Ls ≥ 1) Using the fact that in

the AR-IPA problem [(3.5)-(3.6)] the observation is also AR, and that the basis trans-
formation rule implies

x(t) =
Ls∑

i=1

AFs
iA

−1x(t− i) + Ae(t) (5.12)

(or shortly, x = Fx[z]x + Ae,) the predictive matrix2 of the hidden source (Fs[z] =∑Ls

i=1 Fs
i z

i) takes the form

Fs[z] = WFx[z]W−1 = WFx[z]WT . (5.13)

Thus, making use of the ISA Separation Theorem, polynomial matrix

WICAFx[z]WT
ICA (5.14)

� apart from (possible) permutations � is equal to the block-diagonal predictive matrix
Fs[z] of the source s. It then follows that connected groups of the coordinates of the
hidden source can be recovered by collecting the elements that belong to the same
block in Fs[z]. In practice, the estimation of matrix Fs[z] (i.e., matrix F̂s[z]), is only
nearly block-diagonal (apart from permutation). Thus, we say that two coordinates i

and j are F̂s[z]-`connected' if max(|F̂ s
ij |, |F̂ s

ji|) > ε, where, |F̂ s
ij | =

∑Ls

k=1 |F̂ s
k,ij |, F̂ s

k,ij

denotes the (i, j)th coordinate of the kth matrix from F̂s[z], and, in the ideal case,
ε = 0. Then we can group the F̂s[z]-`connected' coordinates into separate subspaces
using the following algorithm:

1. Choose an arbitrary coordinate i (1 ≤ i ≤ Ds) and group all j 6= i coordinates,
which are F̂s[z]-`connected' with it.

2. Choose an arbitrary and not yet grouped coordinate. Find its connected coordi-
nates recursively. Group them together.

3. Continue until all components are grouped.

This gathering procedure is fast. In the worst case, it is quadratic in Ds.

ISA, Cumulant Based Matrices/Grassmannian Clustering: Similar considerations can
be applied in the ISA problem by replacing [|F̂ s

ij |]i,j=1,...,De ∈ RDe×De , for example,
with cumulant based matrices [183]. The unknown component dimensions are ex-
tracted hierarchically in the Grassmannian clustering based approach of [82].

AR-IPA, Iterative Solution: The above-mentioned AR-IPA solution can be implemented
iteratively [1]. Here, the gathering procedure is unchanged, but the estimation of Fs[z]
and W is carried out iteratively. The optimization is initialized by a random F̂s[z]
and performs iteratively the following two steps:

2Note: as the predictive matrices of s and x also appear in the paragraph, they get a distinct superscript
(Fs[z],Fx[z]) to avoid confusion.
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1. perform ICA on the estimated innovation of the observation (on x−Ŵ−1F̂s[z]Ŵx)
to update Ŵ,

2. improve AR �t on the estimated source ŝ = Ŵx, to get the new F̂s[z] estimation.

According to our numerical experiments, in batch mode this technique converges to
the optimum in 3-4 iterations.

ISA, ISA-reducible AR-IPA: We present a JFD based technique for the estimation of
the ISA subspace dimensions in [4]. This method

• in contrast to the approach of [8] (Ls ≥ 1): is using the following matrix

ĈF :=
∑

f∈F

|Ĉf |, (5.15)

instead of the estimated predictive matrix F̂e[z] (ideally the latter is 0 because
of the i.i.d. assumption of ISA). Here, Ĉf is the empirical correlation matrix of
the ICA element for function f ∈ F. In other words, Ĉf = ˆcorr[f(êICA), f(êICA)];
| · | denotes absolute values for all coordinates.3

• similarly to the approach of [8] (Ls ≥ 1) : is a F̂e[z]-`connected' type solution by
the

F̂e[z] :=
∑

f∈F

Ĉfz
[f ] (5.16)

correspondence. Here, [f ] denotes the index (in some order) of the function f
coming from a �nite element function set F.

This approach also provides solution for the AR-IPA problem by applying it to the
estimated innovation delivered by the AR �t (see Fig. 4.1; [4]). Thus, we can alterna-
tively (see item `AR-IPA with Block-Diagonal F') work exploiting the dependencies of
the ICA-ized innovation ({Ĉf}f∈F), instead of the predictive matrix of the innovation
of the estimated hidden source s (F̂s[z]).

Weaknesses of the above threshold based methods include

• the uncertainty in choosing the threshold ε, and

• the fact that the methods are sensitive to the threshold. Nevertheless, this sensitivity
can be alleviated to some extent by increasing the number of samples [4, 1, 8], see
Section 6.3.2.

More robust solutions can be designed if dependencies, for example, the mutual informa-
tion among the coordinates, are used to construct an adjacency matrix and apply a clus-
tering method for this matrix. Then, one might use, for example, hierarchical [172] or
tree-structured clustering methods [25] to solve the ISA task.

The possibility of estimating the unknown dimensions can be extended to ISA-reducible
problems by the separation principles of Chapter 4. This approach has been illustrated in
[2] by applying a variant of the NCut algorithm [195]: the grouping revealed, interesting
`face-component'-type subspaces.

3Note: we computed correlations for matrices Cf (instead of covariances; see Section 5.2) because they
are normalized.
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Chapter 6

Illustrations

This chapter is devoted to the illustration of our separation principles and algorithms (Chap-
ter 4, Chapter 5). Test databases are introduced in Section 6.1. The quality of the solutions
will be measured by the normalized Amari-error, the Amari-index (Section 6.2). Numerical
results are presented in Section 6.3.

6.1 Databases
We conducted experiments on 15 databases, with their di�erent parameterization, to assess
the e�ciency, robustness and limits of our techniques. These databases can be split into 4
categories:1

Category1: Sources from this category satisfy (one of the) su�cient conditions of the ISA
Separation Theorem (Fig. 4.3). Databases:

1. d-spherical (d: scalable, M ≤ 3) [3, 1],
2. mosaic (d = 2, M ≤ 4) [8].

Category2: Sources from this category satisfy the conditions of the studied model, but we
don't know whether they are from Category1, or not. Databases:

1. 3D-geom (d = 3, M ≤ 6) [6, 4, 10, 11, 9, 8],
2. ABC (d = 2, M ≤ 50) [3, 4, 10, 11, 9],
3. all-k-independent (d = k + 1: scalable, M : scalable) [6, 9],
4. celebrities (d = 2, M ≤ 10) [4, 10, 11, 9],
5. d-geom (d: scalable, M ≤ 4) [5],
6. numbers (d = 2, M ≤ 10) [6],
7. smiley (d = 2, M ≤ 6) [6],
8. tale (d = 2, M ≤ 6) [1].

Category3: Sources from this category are outside the conditions of the studied models, but
we `know' the values of dm and M . Databases:

1. Beatles (d = 2, M = 2) [10, 9],
1Databases are ordered alphabetically in each category.
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2. IFS 2 (d = 2, M ≤ 9) [11],
3. Led Zeppelin (d = 2, M ≤ 4) [8],
4. Lorenz (d = 3, M ≤ 3) [8].

Category4: Source from this category is outside the conditions of the studied models, and
we do not know the values of dm and M .

1. FaceGen [2]: In this database3 face images were compressed by PCA to 60 di-
mensions (De = 60), and we searched for M = 4 ISA subspaces.

In the present thesis, our goal is to summarize our numerical experiments�the interested
reader is referred to the cited papers for further results. Databases used for the illustration
are now detailed:

6.1.1 The 3D-geom, the ABC and the Celebrities Database
The �rst 3 databases are illustrated in Fig. 6.1. In the 3D-geom test ems were random vari-
ables uniformly distributed on 3-dimensional geometric forms (d = 3). We chose 6 di�erent
components (M = 6) and, as a result, the dimension of the hidden source e is De = 18. In
the ABC database, hidden sources em were uniform distributions de�ned by 2-dimensional
images (d = 2) of the English+Greek alphabet. M can be at most 26 + 24 = 50. The
celebrities test has 2-dimensional source components generated from cartoons of celebrities
(d = 2, M = 10).4 Sources em were generated by sampling 2-dimensional coordinates pro-
portional to the corresponding pixel intensities. In other words, 2-dimensional images of
celebrities were considered as density functions. M = 10 was chosen.

6.1.2 The all-k-independent Database
The d-dimensional hidden components u := em were created as follows: coordinates ui(t)
(i = 1, . . . , k) were uniform random variables on the set {0,. . . ,k-1}, whereas uk+1 was set to
mod(u1 + . . .+uk, k). In this construction, every k-element subset of {u1, . . . , uk+1} is made
of independent variables. This database is called the all-k-independent problem [155, 6], the
dimension of the components d = k + 1 can be varied.

6.1.3 The d-geom Database
In the d-geom dataset ems were random variables uniformly distributed on d-dimensional
geometric forms. Geometrical forms were chosen as follows. We used: (i) the surface of the
unit ball, (ii) the straight lines that connect the opposing corners of the unit cube, (iii) the
broken line between d + 1 points 0 → e1 → e1 + e2 → . . . → e1 + . . . + ed (where ei is the
i canonical basis vector in Rd, i.e., all of its coordinates are zero except the i, which is 1),
and (iv) the skeleton of the unit square. Thus, the number of components M was equal to
4, and the dimension of the components (d) is scalable. For illustration, see Fig 6.2(a).

2IFS stands for Iterated Function System.
3http://www.facegen.com/modeller.htm
4See http://www.smileyworld.com.
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(a) (b)

(c)

(d)

Figure 6.1: Illustration of the 3D-geom, ABC, celebrities and IFS databases. (a): database
3D-geom, 6 pieces of 3-dimensional components (M = 6, d = 3). Hidden sources are
uniformly distributed variables on 3-dimensional geometric objects. (b): database ABC.
Here, the hidden sources em are uniformly distributed on images (d = 2) of letters. (c):
database celebrities. Density functions of the hidden sources are proportional to the pixel
intensities of the 2-dimensional images (d = 2). Number of hidden components: M =
10. (d): dataset IFS. Here components are self-similar structures generated from iterated
function systems: d = 2, M = 9.

(a) (b)

Figure 6.2: Illustration of the d-geom and d-spherical databases with d = 3 and d = 2,
respectively. (a): database d-geom, 4 pieces of d-dimensional variables distributed uniformly
on geometrical forms. (b): stochastic representation of the 3 hidden d-dimensional sources
of the d-spherical database (M = 3). Left: ρ is uniform on [0, 1], center: ρ is exponential
with parameter µ = 1, right: ρ is lognormal with parameters µ = 0, σ = 1, respectively.
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6.1.4 The d-spherical Database
Here, hidden sources em were spherically symmetric random variables that have representa-
tion of the form v distr= ρu(d), where u(d) is uniformly distributed on the d-dimensional unit
sphere, and ρ is a non-negative scalar random variable independent of u(d) (distr= denotes
equality in distribution). This d-spherical database: (i) can be scaled in dimension d, (ii)
satis�es conditions of the R-ISA Separation Theorem, and (iii) can be de�ned by ρ. Our
choices for ρ are shown in Fig. 6.2(b). The number of the components M was 3.

6.1.5 The Beatles Database
Our Beatles test is a non-i.i.d. example. Here, hidden sources are stereo Beatles songs.5 8
kHz sampled portions of two songs (A Hard Day's Night, Can't Buy Me Love) made the
hidden ems. Thus, the dimension of the components d was 2 and the number of components
M was 2.

6.1.6 The IFS Database
Dataset IFS is a non-i.i.d. example: components em are realizations of IFS based 2-dimensional
(d = 2) self-similar structures. For all m we have chosen the following triple: ({hk}k=1,...,K ,p =
(p1, . . . , pK),v1}, where (i) hk : R2 → R2 are a�ne transformations in the form hk(z) =
Ckz + dk (Ck ∈ R2×2,dk ∈ R2), (ii) p is a distribution over the indices {1, . . . ,K}
(
∑K

k=1 pk = 1, pk ≥ 0), and (iii) for the initial value we chose v1 := ( 1
2 , 1

2 ). We generated
T samples in the following way: (i) v1 is given (t = 1), (ii) an index k(t) ∈ {1, . . . ,K} was
drawn according to the distribution p and the next sample is generated as vt+1 := hk(t)(vt).
The resulting series {v1, . . . ,vT } was taken as a hidden source component em and this way
we generated 9 components (M = 9) to make the IFS dataset [see Fig. 6.1(d)].

6.2 Performance Measure, the Amari-index
First, let us suppose, that we are dealing with the R-ISA task, all components are d-dimensional
(d = dm, ∀m), and the performance of a R-ISA estimation (ŴISA) is to be measured. The
optimal estimation provides matrix G := ŴISAA ∈ RDe×De , a block-permutation matrix
made of d×d sized blocks. This block-permutation property can be measured by the Amari-
index. Namely, let matrix G be decomposed into d × d blocks: G =

[
Gij

]
i,j=1,...,M

. Let
gij denote the sum of the absolute values of the elements of matrix Gij ∈ Rd×d. Then the
normalized version of the Amari-error [19] adapted to the ISA task [181, 182] is de�ned as
[6]:

r(G) :=
1

2M(M − 1)




M∑

i=1

(∑M
j=1 gij

maxj gij
− 1

)
+

M∑

j=1

(∑M
i=1 gij

maxi gij
− 1

)
 . (6.1)

We refer to the normalized Amari-error as the Amari-index. One can see that 0 ≤ r(G) ≤ 1
for any matrix G, and r(G) = 0 if and only if G is a block-permutation matrix with d× d
sized blocks. r(G) = 1 is in the worst case, i.e, when all the gij elements are equal in
absolute value.

In case of the R-uARIMA-IPA problem, using the results of Section 4, ideally, the prod-
uct of matrix AH0 and the matrices provided by PCA, ISA, i.e., G := (ŴISAŴPCA)AH0 ∈

5See http://rock.mididb.com/beatles/.
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RDe×De is a block-permutation matrix made of d × d blocks. Thus, one can measure the
block-permutation property of this G matrix by the Amari-index. In case of C-uARIMA-IPA,
ideally G := (ŴISAŴPCA)ϕM (A)ϕM (H0) ∈ R2De×2De is a block-permutation matrix made
of 2d× 2d blocks, which can be similarly measured by the Amari-index.

In the general case, when the dm component dimensions are di�erent, one can (i) assume
without loss of generality that the component dimensions are ordered in increasing order,
(ii) decompose G into di × dj blocks (G =

[
Gij

]
i,j=1,...,M

) and de�ne gij as the sum of the
absolute values of the elements of the matrix Gij ∈ Rdi×dj .

6.3 Simulations
In what follows, our numerical experiences are summarized, in `Topic�Illustration' pairs:
�rst the addressed issues, questions are posed, then numerical illustrations are provided.

6.3.1 ISA Algorithms (CE, JFD, C-ISA Separation Theorem)
The ISA problem can be reduced by the ISA Separation Theorem (Section 2 and Sec-
tion 4.4.2) to �nding the optimal permutation of the ICA elements.

Topic
1. In certain cases, global permutation search methods of higher computational burden

may become necessary. The CE technique (presented in Section 5.1, and see [6]) o�ers
an e�cient approach in this situation.

2. Independence of the estimated source components may be approximated by the joint
decorrelation over a function set F. This simple approximation, clustering the ICA
elements by the JFD based cost function (see Section 5.2 and [3]), o�ers a �rst step
towards large scale ISA problems: with greedy search, one may tackle few hundred
dimensional tasks.

3. In the complex case, according to our experiments, the C-ISA Separation Theorem
based solution can provide more precise estimations than its ` C-ISA →R-ISA' based
counterpart.

Illustration
1. Here, the task was to solve an R-AR-IPA problem. The hidden AR processes were

driven by M = 5 pieces of all-3-independent sources (d = 3 + 1 = 4)6, and then mixed
by a random orthogal matrix A. After the identi�cation of the AR observation process,
the innovation was analyzed by R-ISA. The `global' CE approach was compared by
the `greedy' Jacobi algorithm of [158], which applies Jacobi rotations for any pairs of
the elements received after R-ICA preprocessing. R-ICA preprocessing was performed
by [95]. Numerical values of the CE parameters were chosen as ρ = 0.05, β = 0.4,
L = 7, ε = 0.005. Sample number T was incremented by 100 between 300 and 1500,
and we averaged the results, the Amari-indices of 10 computer runs to measure the
performance of the algorithms. The precision of the procedures is shown in Fig. 6.3
as a function of the sample number. One can see, that the CE method is superior

6According to our experiments, the all-k-independent construction is a quite challenging dataset for ISA
methods.
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Figure 6.3: Illustration of the CE based ISA algorithm. Left: average ± standard
deviation of the Amari-index as a function of the sample number, gray�Jacobi method,
black�CE method. Right: relative precision of the estimations, dashed�average over
the di�erent sample numbers.

Table 6.1: Amari-index for the JFD method and database d-spherical, for di�erent d
values: average ± standard deviation. Number of samples: T = 30, 000.

d = 20 d = 30 d = 40 d = 50 d = 60
1.40% (±0.03) 1.71% (±0.03) 1.99% (±0.03) 2.23% (±0.03) 2.44% (±0.03)

d = 70 d = 80 d = 90 d = 100 d = 110
2.65% (±0.03) 2.85% (±0.03) 3.03% (±0.04) 3.19% (±0.02) 3.37% (±0.03)

for all sample numbers [Fig. 6.3(a)]. For T = 1, 500 samples the Jacobi method has
precision (100r%±standard deviation) of 30.05%(±17.90). The same precision for
the CE technique is 4.31(±5.61), on the 300 − 1, 500 sample interval this means a
1.96− 5.18− 11.12-times (min-mean-max) improvement. The relative precision of the
two methods is depicted in Fig. 6.3(b).

2. In our d-spherical R-ISA illustration (Fig. 6.4, Table 6.1) scaling properties of the
approximation were studied by changing the value of d between 20 and 110 [i.e.,
the number of subspaces (M) was �xed, but the dimension of the subspaces was
increased.] For each parameters [(T, d)] ten experiments were averaged. Qualities
of the solutions were measured by the Amari-index. Sample number of observations
x(t) changed 1, 000 ≤ T ≤ 30, 000, mixing matrix A was chosen randomly from the
orthogonal group, manifold F was F := {z 7→ cos(z), z 7→ cos(2z)} (functions operated
on coordinates separately). We have chosen FastICA [95] for the R-ICA module (see
Table B.3). Precision of our method is shown Fig. 6.4 as a function of sample number
and source dimension (d) (for details, see Table 6.1). The �gure demonstrates that
the algorithm was able to uncover the hidden components with high precision, and the
Amari-index decreases according to power law r(T ) ∝ T−c (c > 0). In our numerical
simulations, the number of sweeps before the iteration of the permutation optimization
stopped (see Table B.3) varied between 2 and 6.
We note that
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Figure 6.4: Precision of the JFD method for database d-spherical : Amari-index as
a function of the number of samples on log-log scale for di�erent dimensional (d)
subspaces. Task dimension: D = De = Dx. Errors are approximately linear, so they
scale according to power law, like r(T ) ∝ T−c (c > 0). For numerical values, see
Table 6.1.

• the performance of our algorithms presented here often (almost always) show this
power law behavior.

• A direct application of the JFDmethod is the TCC based solution of the R-uMA-IPA
problem (Section 4.2.2), which requires solving `high dimensional' ISA tasks, see
Section 6.3.3 for an illustration.

• one may easily attack larger ISA problems, by applying large(r)-scale ICA meth-
ods. In sum, the ICA preprocessing represents the only computational bottleneck
here.

3. In this illustration the d-geom dataset is used to drive a C-ISA problem. The hidden
sources em ∈ Cd were de�ned in R2d by the `2d-geom' construction and ϕ−1

v derived
images were taken as em ∈ Cd. The mixing matrix A [see, Eq. (3.2)] was drawn
randomly from the unitary group.
We studied the performance of the C-ISA algorithms by (i) changing the value of d
(dimension in complex sense) between 2 and 5 [i.e., the number of subspaces (M) was
�xed, but the dimension of the subspaces was increased.] and (ii) varying the sample
size T between 100 and 1, 500. For each parameters [(T, d)] ten experiments were
averaged. Qualities of the solutions were measured by the Amari-index (in R2D×2D

measuring the block-permutation property with 2d× 2d size blocks). To perform the
ICA preprocessing step, the fastICA method [95], and its complex counterpart [34]
was applied. The clustering of the estimated ICA elements was based on the k-nearest
neighbours based entropy cost [156].
The precision of the C-ISA Separation Theorem based algorithm is shown in Fig. 6.5
as a function of the sample number and source component dimension (d). The �gure
demonstrates that although both C-ISA algorithms were able to uncover the hidden
components with high precision [, and the Amari-index decreases according to power
law r(T ) ∝ T−c (c > 0)] the complex based solution is more precise (2 − 3 times on
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Figure 6.5: Estimation error of the C-ISA Separation Theorem based C-ISA method.
(a) Amari-index as a function of the sample number and dimension of the components
on log-log scale. (b) Quotients of the Amari-indices of the C-ISA Separation Theorem
and the `C-ISA →R-ISA' methods: for quotient value q > 1, the former method is q
times more precise.

the average) than the real technique. Improvements were 2.43(±0.42), 2.53(±0.97),
2.35(±0.67), 2.27(±0.71) times for d = 2, 3, 4, 5 on the average (±standard deviation )�
the average was computed over the number of samples and the 10 random simulations.

6.3.2 Estimation of the Unknown Dimensions, Gaussianization
Topic

1. We use the PNL-ISA problem (see Section 4.3 and [11]) to illustrate:

(a) the goodness of the gaussianization as a function of the dimension of the hidden
source.

(b) the possibility to estimate the dimension of the hidden source, i.e., De, when it
is not given beforehand (see Note 14),

2. Then, we illustrate to what extent non-combinatorial approximations make it possible
to estimate the dimensions of the hidden source components (see Section 5.3). Be-
low we address the R-ISA scenario [4]�one can get similar results on R-ISA-reducible
problems [1, 8]. Experimental studies concerned the following problems:

(a) The quality of the gathering procedure depends on the threshold parameter ε. We
studied the estimation error, the Amari-index, as a function of sample number.
The ε values were preset to reasonably good values.

(b) We studied the optimal domain for the ε values. We looked for the dynamic
range, i.e., the ratio of the highest and lowest `good ε values'.

Illustration
1. (a) For the �rst illustration, the ABC dataset is used: we studied the Amari-index

as a function of the sample number and the number of the hidden components M
was chosen as 2, 3, 4, 10, 20, 50. As for small M the Gaussian assumption on Ae is
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Figure 6.6: PNL-ISA: average Amari-index as a function of the sample size, on log-log
scale for dataset ABC with di�erent number of components (M).

3D-geom celebrities IFS
0.29%(±0.05) 0.40%(±0.03) 0.46%(±0.06)

Table 6.2: PNL-ISA: Amari-index for 3D-geom, celebrities and IFS datasets�average
± standard deviation. Sample size: T = 100, 000.

less likely, we expect to see deterioration of the goodness of the estimation in this
range. The gaussianization was based on the ranks of samples [196], the solution
of the R-ISA task was performed by the JFD method [3], R-ICA preprocessing
was carried out by fastICA [95]. The sample size T was chosen between 1, 000 and
100, 000. The goodness of the estimation was measured by the Amari-index. For
a given sample size T the goodness of 50 random runs (A, e, f) were averaged. A
was a random orthogonal matrix. The nonlinear functions fi have been generated
as

fi(z) = ci[aiz + tanh(biz)] + di, (6.2)
that is they are mixtures of random, scaled and translated id and tanh func-
tions. Here ai ∈ [0, 0.5], bi ∈ [0, 5], di ∈ [0, 2] are random variables of uniform
distribution, ci take ±1 values with probability 1

2 , 1
2 .

In Fig. 6.6 the power law decline of the estimation error is presented for increasing
De. For M ≥ 3, (that is when De ≥ 6) the PNL-ISA solution is already e�cient.
It can also be seen that for the case of M = 50 number of components (that is
the dimension of the task is De = 100) we need at least 10, 000 samples to get
a more reliable estimation, while for 3 ≤ M < 50 2, 000 − 5, 000 samples are
su�cient. The exact error are shown in Table 6.3. We experienced similar power
law behavior of the estimation error in the referred work for the 3D-geom (d = 3,
M = 6), celebrities (d = 2, M = 10) and IFS (d = 2, M = 9) databases. For
T = 100, 000, the errors for these datasets are given in Table 6.2 and Fig. 6.7
shows an illustration for the IFS test.

(b) Next we illustrate to what extent we can guess the overall dimension De of the
hidden source e when it is not given beforehand (see Note 14). The dimension
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M = 2 M = 3 M = 4 M = 10 M = 20 M = 50
33.20%(±39.42)5.37%(±8.82)1.71%(±0.52)0.56%(±0.50)0.30%(±0.03)0.30%(±0.01)

Table 6.3: PNL-ISA: Amari-index for dataset ABC, as a function of the number of
components M�values shown are average ± standard deviation. Sample size: T =
100, 000. The error as a function of sample size T is plotted in Fig. 6.6.
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Figure 6.7: Illustration of the PNL-ISA estimation on the dataset IFS. Sample size:
T = 100, 000. (a): the observed mixed x signal. (b): the nonlinear fi functions. (c) the
Hinton-diagram of G, ideally it is a block-permutation matrix with blocks of size 2×2.
(d): the estimated hidden components (êm)�up to the ambiguities of the PNL-ISA
problem.
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Figure 6.8: PNL-ISA: Estimation of the dimension of the hidden source e. The ordered
eigenvalues of the covariance matrix of the transformed signal g(x) are plotted. Results
are averaged over 50 runs. (a): dataset celebrities; results for 3D-geom and IFS are
similar. (b): eigenvalues for the dataset ABC, at di�erent number of components M .

of the PNL-ISA observation x was set to Dx = 2De (De of course is not avail-
able for the algorithm). The mixing matrix A ∈ RDx×De was generated by �rst
creating a random orthogonal matrix of size Dx ×Dx then choosing its �rst De

columns. Postnonlinearities were generated according to Eq. (6.2). Gaussianiza-
tion has been done on the observations and then we studied the eigenvalues of
the covariance matrix of the resulting transformed signal g(x): ideally there are
De positive and Dx −De (almost) 0 values. We show the ordered eigenvalues on
dataset celebrities averaged over 50 runs in Fig. 6.8. It can be seen that exactly
half of the eigenvalues are near 0, then there is a big leap. (For datasets 3D-geom
and IFS we have got similar results, data is not shown.) Figure 6.8(b) shows the
results corresponding to dataset ABC for di�erent number of components M :
only the M ≤ 4 cases are illustrated, but in the whole range of 2 ≤ M ≤ 50 there
is a sharp transition similar to the results gained for the other 3 datasets.

2. Results on databases 3D-geom (d = 3, M = 6), celebrities (d = 2, M = 10), and ABC
(d = 2, M = 10) are provided here. Our gauge to measure the quality of the results
is the Amari-index that we computed by averaging over 50 random runs, i.e., random
choice of quantities A and e. In our simulations, sample number T of observations x(t)
was varied between 1, 000 and 20, 000. Mixing matrix A was generated randomly from
the orthogonal group. The dynamic range is de�ned as follows: We divided interval
[0, ĈF

max] (ĈF
max := maxi,j ĈF

ij) into 200 equal parts. For di�erent sample numbers
in all databases at each division point we used the gathering procedure to group the
R-ICA elements. For each of the 50 random trials we have computed the Amari-indices
separately. For the smallest Amari-index, we determined the corresponding interval of
ε's, these are the `good ε values'. Then we took the ratio of the largest and smallest ε
values in this set and averaged the ratios over the 50 runs. The average is called the
dynamic range.
Our results are summarized in Fig. 6.9. According to Fig. 6.9(a), there are good ε
parameters for the ĈF-`connectedness' already for 1, 000−2, 000 samples: our method
can �nd the hidden components with high precision. Figure 6.9(a) also shows that
by increasing the sample number the Amari-index decreases. For 20, 000 samples, the
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Figure 6.9: Non-combinatorial R-ISA approximation: Amari-index on log-log scale (a)
and dynamic range (b) as a function of sample number for the 3D-geom, celebrities,
and ABC databases.

Amari-index is 0.5% for the 3D-geom, 0.75% for the celebrities, and 0.75% for the
ABC database, respectively on the average. The decline of the Amari-index follows
power law manifested by straight line on log-log scale. Figure 6.9(b) demonstrates that
for larger sample numbers threshold parameter ε that determines the ĈF-`connected'
property can be chosen from a broader domain; the dynamic range grows. For the
3D-geom, the celebrities and the ABC databases the measured dynamic ranges are
4.45, 5.09 and 2.05 for 20, 000 samples and for the di�erent databases, respectively on
the average.
Finally, we illustrate the quality and the working of our method in Fig. 6.10. The
�gure depicts the 3D-geom test and we used T = 20, 000 samples. According to this
�gure, the algorithm was able to uncover the hidden components up to the ambiguities
of the R-ISA task.

6.3.3 R-uMA-IPA Alternatives
Topic
Our experiences on the TCC [9] and LPA [10] based solution of the R-uMA-IPA problem
(see Section 4.2.2) can be summarized as follows:

1. the LPA method is better than the TCC one for larger tasks, i.e., for tasks of higher
dimensions (De) or deeper convolutions (Le).

2. in smaller tasks, the TCC based approximation have its own advantages. Namely,
according to our experiments the AR estimation, and thus the LPA technique seems
to be more sensitive to almost degenerate problems; when some of the coordinates
have relatively small standard deviations.

Illustration
1. In the �rst illustration, the TCC and the LPA methods are compared on R-uMA-IPA

tasks. Parallely, the performance and the limits of the LPA technique are studied as
a function of convolution length. We studied the Dx = 2Ds case, like in [9]. Both
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Figure 6.10: Non-combinatorial R-ISA approximation: illustrations. (a): observed
mixed signal x(t), (b) ĈF - the sum of absolute values of the elements of the non-linear
correlation matrices used for the grouping of the R-ICA coordinates, (c): the product
of the R-ICA demixing matrix and the mixing matrix, (d): estimated components
ê(t)�up to ambiguities of the ISA problem�, based on (e): ĈF after grouping, (f)
product of the estimated R-ISA demixing matrix and the mixing matrix: with high
precision, it is a block-permutation matrix made of 3× 3 blocks.

the TCC and the LPA method reduce the R-uMA-IPA task to R-ISA problems and
we use the Amari-index to measure and compare their performances. For all values
of the parameters (sample number: T , convolution length: Le + 1), we have averaged
the performances upon 50 random initializations of e and H[z]. The coordinates of
matrices Hj were chosen independently from standard normal distribution. We used
the Schwarz's Bayesian Criterion to determine the optimal order of the AR process.
The criterion was constrained: the order Q of the estimated AR process (see Table B.2)
was limited from above, the upper limit was set to twice the length of the convolution,
i.e., Q ≤ 2(Le + 1). The AR process and the R-ISA subtask of TCC and LPA were
estimated by the method detailed in [142, 165], and by JFD [3], respectively.
We studied the dependence of the precision versus the sample number. In the 3D-
geom (d = 3, M = 6) and celebrities (d = 2, M = 10) [ABC (d = 2, M = 2)
and Beatles (d = 2, M = 2)] tests, the sample number T varied between 1, 000 and
100, 000 (1, 000 and 75, 000), the length of the convolution (Le + 1) changed between
2 and 6 (2 and 31). Comparison with the TCC method and the estimations of the
LPA technique are illustrated in Figs. 6.11(a)-(b) [Figs. 6.11(c)-(d)] on the 3D-geom
(Beatles) database. According to Fig. 6.11(a), the LPA algorithm is able to uncover
the hidden components with high precisions on the 3D-geom database. We found that
the Amari-index r decreases according to power law for sample numbers T > 2000.
According to Fig. 6.11(b) the LPA method is superior to the TCC method (i) for
all sample numbers 1, 000 ≤ T ≤ 100, 000, moreover (ii) LPA can provide reasonable
estimates for much smaller sample numbers on the 3D-geom database. This behavior
is manifested by the initial steady increase of the quotients of the Amari indices of the
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TCC and LPA methods as a function of sample number followed by a sudden drop
when the sample number enables reasonable TCC estimations, too. Similar results
were found on the celebrities and the ABC databases. The LPA method resulted in
1.1 − 88, 1.0 − 87, 1.2 − 110-times increase of precision for the 3D-geom, celebrities
and ABC database, respectively. For the 3D-geom (celebrities, ABC ) dataset the
Amari-index for sample number T = 100, 000 (T = 100, 000, T = 75, 000) is 0.19 −
0.20% (0.33− 0.34%, 0.30− 0.36%) with small 0.01− 0.02 (0.02, 0.11− 0.15) standard
deviations.
Visual inspection of Fig. 6.11(c) shows that on the Beatles database the LPA method
found the hidden components for sample number T ≥ 30, 000. The TCC method gave
reliable solutions for sample number T = 50, 000 or so. According to Fig. 6.11(d) the
LPA method is more precise than TCC for T ≥ 30, 000. The increase in precision
becomes more pronounced for larger convolution parameter Le. Namely, for sample
number 75, 000 and for Le = 1, 2, 5, 10, 20, 30 the ratios of precision are 1.50, 2.24,
4.33, 4.42, 9.03, 11.13, respectively on the average. For sample number T = 75, 000
the Amari-index stays below 1% on average (0.4−0.71%) and has 0.02−0.08 standard
deviation for the Beatles test.
According to our simulations, the LPA method may provide acceptable estimations for
sample number T = 20, 000 (T = 15, 000) up to convolution length Le = 20 (Le = 230)
for the 3D-geom and celebrities (ABC and Beatles) datasets. Such estimations are
shown in Fig. 6.12(d), Fig. 6.12(h) and Fig. 6.12(i)-(m) for the 3D-geom, ABC and
celebrities tests, respectively.

2. For our second illustration, the TCC and LPA R-uMA-IPA methods were compared
on 3 databases: 3D-geom (d = 3, M = 2), ABC (d = 2, M = 3) and celebrities (d = 2,
M = 3). Thus, the dimension of the hidden source e was De = 6, in all 3 tests. The
almost degenerate property of hidden source e was modeled through an almost degener-
ate coordinate. That is, covariance matrix of e was scaled as cov(e) = diag(ε, 1, . . . , 1)
and we investigated the limit (0 <)ε → 0. The measure of undercompleteness was
Dx = 2De.
The performance of the algorithms were measured by the Amari-index: we averaged
20 random computations (e,H[z]) with �xed parameters (T, ε, Le) to measure the
quality of the estimations. The coordinates of H[z] were chosen independently from
standard normal distribution. Sample number T varied between 500 and 100, 000, con-
volution parameter Le and parameter ε took values on 1, 2, 5, 10 and 10−1, 10−2, 10−3,
respectively.
Our results are shown in Fig. 6.14 for the 3D-geom database for parameters Le = 2 and
Le = 10. According to Fig. 6.14(a), the smaller the value of ε, the more advantageous
the TCC method ever the LPA technique is: For ε = 10−1, LPA is better, for ε = 10−2

TCC becomes somewhat more precise, and for ε = 10−3 the error of the LPA method
increases with sample number, but the TCC technique gives rise to a stable estimation.
These features remain true upon increasing parameter Le�, although the necessary
sample number for the TCC technique increases faster with Le, because the R-ISA
task associated to the TCC method becomes `high dimensional'�as it can be seen in
Fig. 6.14(b). Similar results were found for the ABC and celebrities tests. Quantitative
results for Le = 10 are provided in Table 6.4. Figure 6.13 shows the estimation of the
TCC technique for the 3D-geom database.

44



1  2  5  10 20 30 50 100

10
−2

10
−1

10
0

Number of samples (T)

R−uMA−IPA: 3D−geom (LPA)

 

 

L
e
=1

L
e
=2

L
e
=3

L
e
=4

L
e
=5

x103

(a)

1  2  5  10 20 30 50 100
10

0

10
1

10
2

Number of samples (T)

R−uMA−IPA: 3D−geom (TCC/LPA)

 

 

L
e
=1

L
e
=2

L
e
=3

L
e
=4

L
e
=5

x103

(b)

1 2 5 10 30 50 75

10
−2

10
−1

10
0

Number of samples (T)

R−uMA−IPA: Beatles (LPA)

 

 

L
e
=1

L
e
=2

L
e
=5

L
e
=10

L
e
=20

L
e
=30

x103

(c)

1 2 5 10 30 50 75

10
0

10
1

10
2

Number of samples (T)

R−uMA−IPA: Beatles (TCC/LPA)

 

 

L
e
=1

L
e
=2

L
e
=5

L
e
=10

L
e
=20

L
e
=30

x103

(d)

Figure 6.11: Estimation error of the LPA method and comparisons with the TCC
method for the 3D-geom and Beatles databases. Scales are log-log plots. Data corre-
spond to di�erent convolution lengths (Le +1). (a) and (c): Amari-index as a function
of the sample number. (b) and (d): Quotients of the Amari-indices of the TCC and
the LPA methods: for quotient value q > 1, the LPA method is q times more precise
than the TCC method. In the celebrities and ABC tests, we found similar results as
on the 3D-geom data set.

Table 6.4: Amari-index in percentages for the TCC and the LPA R-uMA-IPA methods
for database 3D-geom, ABC and celebrities, for di�erent ε parameters, for convolution
length Le = 10: average ± standard deviation. Number of samples: T = 100, 000. For
other sample numbers between 500 ≤ T < 100, 000 and for Le = 2 see Figure 6.14.

ε = 10−1 ε = 10−2 ε = 10−3

3D-geom (LPA) 0.27%(±0.10%) 1.74%(±0.65%) 14.25%(±5.74%)
3D-geom (TCC) 0.38%(±0.02%) 1.63%(±0.17%) 6.69%(±0.63%)

ABC (LPA) 0.51%(±0.18%) 2.94%(±1.10%) 9.79%(±2.51%)
ABC (TCC) 0.55%(±0.02%) 2.63%(±0.22%) 5.05%(±0.28%)

celebrities (LPA) 0.61%(±0.11%) 4.06%(±0.69%) 8.70%(±1.55%)
celebrities (TCC) 0.57%(±0.02%) 2.65%(±0.16%) 5.07%(±0.35%)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l) (m)

Figure 6.12: Illustration of the LPA method on the R-uMA-IPA task for the 3D-
geom (ABC ) and celebrities databases. (a)-(c) [(e)-(g)]: sample number T = 100, 000
[T = 75, 000], convolution length Le +1 = 6 [Le +1 = 31]. (a), (e): observed convolved
signals x(t). (b) [(f)]: Hinton-diagram of G, ideally block-permutation matrix with
3× 3 [2× 2] blocks. (c) [(g)]: estimated components (êm), Amari-index: 0.2% [0.3%].
(d) [(h)]: estimation of hidden components (êm) for sample number T = 20, 000
[T = 15, 000] and convolution parameter Le = 20 [Le = 230]. (i)-(m): sample number
T = 20, 000, dependence of estimated components (êm) on the convolution parameter
Le running on values 1, 5, 10, 15, 20.
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(a) (b)

Figure 6.13: Illustration of the TCC method on the R-uMA-IPA task for the 3D-geom
database: ε = 10−3, convolution parameter Le = 10, sample number T = 100, 000.
(a): observed convolved signals x(t). (b): estimated components (êm

k ).
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Figure 6.14: Comparisons of estimation errors of the TCC and LPA methods for the
3D-geom database for di�erent εs on log-log scale. (a): Le = 2, (b): Le = 10.
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6.3.4 Complex Problems, Towards Non-Stationarity
Topic
Now the e�ciency of the proposed C-uARIMA-IPA solution is examined [5]�one may get
similar results in case of the R-uARIMA-IPA problem. We focused on 2 distinct issues:

1. How does the estimation error scale with (i) the number of samples and (ii) dimension
of the hidden components?

2. We assumed that matrix polynomial F[z] of Eq. (3.1) is stable, that is, det(F[z]) has
no roots within the closed complex unit circle. In the case of r = 0 this means that
process s is stationary. For r > 1 the model describes non-stationary processes. It is
expected that if the roots of F[z] are close to the unit circle then our estimation will
deteriorate. We investigated this by generating polynomial matrix F[z] as follows:

F[z] =
Ls∏

i=1

(I− λUiz) (|λ| < 1, λ ∈ R) (6.3)

Matrices Ui ∈ CDs×Ds were random unitary matrices and the λ → 1 limit was studied.

Illustration
In our C-uARIMA-IPA simulations:

• the d-geom database (d: scalable, M = 4) is used for illustration purposes. The hidden
sources em ∈ Cd were de�ned in R2d by the `2d-geom' construction and ϕ−1

v derived
images were taken as em ∈ Cd.

• the measure of undercompleteness was 2 (Dx = Ds = 2De),

• the Amari-index was used to measure the precision of our method. For all values of
parameters (T,Ls, r, Le), the average performances upon 20 random initializations of
e,H[z],F[z] and A were taken.

In economic computations, the value of r is typically ≤ 2, we investigated values between
1 ≤ r ≤ 3. The coordinates of matrices Hj in the MA part (see Eq. (3.1)) were chosen
independently and uniformly from the {v = v1 + iv2 ∈ C : − 1

2 ≤ v1, v2 ≤ 1
2} complex unit

square. The mixing matrix A [see, Eq. (3.2)] was drawn randomly from the unitary group.
Polynomial matrix F[z] was generated according to Eq. (6.3). The choice of λ is detailed
later. The order of the AR estimation (see Fig. 4.1) was constrained from above as follows
deg(ŴAR[z]) ≤ 2(Le + 1) + Ls (i.e., two times the MA length + the AR length). We used
the technique of [142] with the Schwarz's Bayesian Criterion to determine the optimal order
of the AR process. We applied the method of [3] to solve the R-ISA task.

1. In our �rst test (`small task') sample number T ranged between 2, 000 ≤ T ≤ 30, 000
and the orders of the AR and MA processes were kept low: Ls = 1, Le = 1 (MA order:
Le+1 = 2). The order parameter r of the C-ARIMA process was set to r = 1, 2 and 3 in
the di�erent computations. Sample number varied as T = 2, 5, 10, 20, 30 · 103. Scaling
properties of the algorithm were studied by changing the value of the dimension of the
components d between 1 and 15. The value of λ was 0.9 [see, Eq. (6.3)]. Our results
are summarized in Fig. 6.15(e), with an illustrative example given in Fig. 6.15(a)-(d).7

7The r = 1 case is illustrated, results are similar in the studied r ≤ 3 domain.
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Figure 6.15: Illustration of our C-uARIMA-IPA method. (a)-(d): AR order Ls = 1,
MA order Le = 1, order of integration r = 1, sample number T = 30, 000. (a)-(b):
typical 2D projection of the observed mixed x signal, and its rth-order di�erence. (c):
estimated components [ϕv(em)]. (d): Hinton-diagram of G, ideally block-permutation
matrix with 2× 2 blocks. (e): average Amari-index as a function of the sample size on
log-log scale for di�erent dimensional (d) components; λ = 0.9, Ls = 1, Le = 1, r = 1
(r ≤ 3). For T = 30, 000, the exact errors are shown in Table 6.5. (f): Estimation
error on log scale as a function of the magnitude of the roots of matrix polynomial
F[z]. (If λ = 1 then the roots are on the unit circle.) ARIMA parameters: r = 1, 2
and 3; AR order: Ls = 5; MA order: Le = 10.

According to Fig. 6.15(e), our method could recover the hidden components with high
precision. The Amari-index r(T ) follows power law r(T ) ∝ T−c (c > 0). The power
law is manifested by straight lines on log-log scales. The slope of the lines are about
the same for di�erent d values. The actual values of the Amari-index can be found in
Table 6.5 for sample number T = 30, 000.

2. In the second test we increased parameters Ls and Le to 5 and 10, respectively since
in the `small test' (Ls = 1, Le = 1) we did not see relevant performance drops even
for λ = 0.99. The sample number was set to T = 20, 000. Dimension d of components
em was 5. ARIMA parameter r took values on 1, 2 and 3. Results are shown in
Fig. 6.15(f). According to this �gure, there is a sudden change in the performance at
around λ = 0.9− 0.95. Estimations for ARIMA parameters r = 1, 2 and 3 have about
the same errors. We note that for Ls = 1 and Le = 1 we did not experience any
degradation of performance up to λ = 0.99.
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d = 1 d = 5 d = 10 d = 15
0.29% (±0.05) 1.59% (±0.05) 4.36% (±2.61) 6.40% (±3.10)

Table 6.5: C-uARIMA-IPA: Amari-index as a function of the dimension of the com-
ponents d: average ± standard deviation. Sample size: T = 30, 000. For other sample
numbers, see Fig. 6.15(e).
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Chapter 7

Discussion

In this thesis we addressed the problem of searching for hidden independent multidimensional
non-Gaussian components. Particularly, we

• introduced a general problem family called ARIMA-IPA (and PNL-ARMA-IPA), which
cover extensions of the original ICA problem (post nonlinear-, autoregressive-, convo-
lutive mixing, complex-valued variables), and

• derived separation principles (Chapter 4, Fig. 4.1) for this problem family lessening
the i.i.d. assumption of the ISA Separation Theorem. Making use of these separation
principles, the solution of the original problem can be reduced step-by-step to simpler
subproblems.

Direct consequences of the separation principles:

• algorithmic modularity : the solution of the speci�c subproblems can be performed by
any subproblem-solver algorithm. For example, in the `uBSSD via LPA' technique (see
Theorem 8) any AR �tting and ISA solver can be combined. Provided that we solve
the obtained ISA problem by making use of the ISA Separation Theorem, any `well-
tried' ICA procedure can be applied, then the computation of the dependence of the
estimated ICA elements can be carried out by a `well-performing' mutual information
estimating routine, and a `favourite' clustering procedure can complete the solution
by grouping the ICA elements.

• computationally e�cient and robust methods can be constructed to the speci�c sub-
problems. Namely,

� the CE technique can be tailored to the ISA subproblem (see Section 5.1) to get
a reliable, global permutation search solution.

� the JFD based ISA method (Section 5.2), which builds upon the joint decorrela-
tion over a function set, make it possible to solve `high dimensional' ISA problems:
dimensionality can be 300 − 400, which is a great improvement over any other
methods that can only handle problems of 20 dimensions.

� Non-combinatorial approximations can be derived for the estimation of the di-
mension of the hidden components in ISA-reducible models (Section 5.3).

Several questions remain open, e.g.:
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ISA Separation Theorem�Characterization, Extension: Our simulations indicate that
the presently known su�cient conditions of the separation theorem may be extended
considerably. For example, the following datasets used in the presented studies are all
outside the problem domain: (i) Beatles- [9, 10], Led Zeppelin songs [8], (ii) self-similar
structures [11], (iii) deterministic dynamical systems [8].
The validity domain, the characterization of the sources types satisfying the ISA Sep-
aration Theorem is an open question, only su�cient conditions are known (see Fig. 4.3
and Fig. 4.4). Similarly, it would be interesting to �nd su�cient conditions for the
`JBD Separation Principle' (see Note 3) formulated in terms of components and guar-
anteeing global extrema.

C-ISA Separability: The C-ISA problem can solved by R-ISA provided that there is at
least one Gaussian among the hidden components (see Section 4.4.1). However, the
C-ICA separability result of [70] suggests that the C-ISA problem can also be solved for
certain non-Gaussian hidden components. For C-ISA we are not aware of any similar
separability result. Thus, our C-ISA Separation Theorem presented in Section 4.4.2
can be considered as a pioneering and preliminary result: its exact validity domain
has not been characterized yet.

Amari-index: One can measure the e�ciency of algorithms for solving ISA(-reducible)
problems by the Amari-index. We conducted extended simulations to assess the e�-
ciency, robustness and limits of our separation principles. According to our numerical
experiments, the estimation error of our algorithms often (almost always) followed
power law r(T ) ∝ T−c (c > 0). It would be interesting to �nd its optimality or
characterize source types this relation holds for.

PNL-ISA Component-Wise Distortions: In the PNL-ISA problem, the f distortion
were assumed to act coordinate-wise. Surely, this restriction can be relaxed to components-
wise distortions, acting on dm-dimensional coordinate sets.
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Appendix A

Proofs

Proof I (C-ISA Separability) The C-ISA problem can be reduced to R-ISA, if there is
at most one Gaussian component among ϕv(em), see Section 4.4.1. The R-ISA separability
result can be applied to the associated real problem. Finally, using that mapping ϕM :
GlC(De) → GlR(2De) is a group homomorphism [see properties (A.22) and (A.23)] and
injective (Ker(ϕM ) = {I}) GlC(Dx) ∼= Im(ϕM ) holds according to the group homomorphism
theorem.

Note II (R-ISA: Undercomplete�Complete Reduction and Whitening via PCA)
In order to transform the undercomplete R-ISA task into a complete R-ISA task with white
observations let C := cov[x] = E[xxT ] = AAT ∈ RDx×Dx denote the covariance matrix of
the observation. Rank of C is De, since the rank of matrix A is De according to our assump-
tions. Matrix C is symmetric (C = CT ), thus it can be decomposed as follows: C = UDUT ,
where U ∈ RDx×De , and the columns of matrix U are orthogonal, that is, UT U = I. Fur-
thermore, the rank of diagonal matrix D ∈ RDe×De is De. The principal component analysis
can provide a decomposition in the desired form. Let Q := D−1/2UT ∈ RDe×Dx . Then the
original observation x can be modi�ed to x′ := Qx = QAe ∈ RDe . The resulting x′ is
white and can be regarded as the observation of a complete ISA task having mixing matrix
QA ∈ ODe .

Proof III (of Theorem 1 on page 14) In the proof below, superscript is reserved for
derivatives, and locally (instead of the former superscipts) subscripts are used for the nota-
tion of the mth component.

To prove the �rst statement it su�ces to show that if y := Wh(Ae) is d-independent
then derivatives h′mi are constant for ∀(i,m) ∈ {1, . . . , d} × {1, . . . , M} where hm is part
of h that belongs to subspace m and hmi is the ith coordinate function of hm : Rd → Rd.
It directly implies the second part of the statement as if Be + Wp (where B denotes the
matrix product WLA) is d-independent then Be is also d-independent. In turn, because
of the separability properties of the linear ISA, B can recover the hidden components up to
permutation and invertible transformation within the subspaces (and maybe up to a constant
translation within the subspaces).

To prove the �rst part, let pY and pE denote the density functions of y and e, respectively.
Based on the transformation rule of the density functions, pY can be given as

pY [Wh(Ae)] = |det(W)|−1

(
M∏

m=1

| det(h′m[(Ae)m])|−1

)
| det(A)|−1pE(e), (A.1)
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where (Ae)m ∈ Rd is part of Ae belonging to subspace m (Ae = [Ae1; . . . ;AeM ] ∈ RMd).
In addition, y is d-independent implying that pY (·) is d-separated, that is it can be rewritten
as

pY = ⊗M
m=1pm, (A.2)

where functions pm are of Rd → R. Let us choose point e0, for which pE(e0) > 0. Then,
there exists an open neighborhood U ⊆ RDe of this point, where pE |U > 0, and pE |U ∈
C2(U,R). Let us de�ne r(e) := ln

[| det(W)|−1| det(A)|−1pE(e)
]
on set U . It can be shown

using Eqs. (A.1)-(A.2) that the following relation holds

r(e) = ln

[(
M∏

m=1

|det(h′m[(Ae)m])|
) (

M∏
m=1

pm([Wh(Ae)]m)

)]
(A.3)

=
M∑

m=1

ln[| det(h′m[(Ae)m])|] + ξm([Wh(Ae)]m), (e ∈ U) (A.4)

where ξm := ln(pm), locally at e0
m. pE is d-separated, thus function r ∈ C2(U,R) is linearly

d-separated. In other words, it can be written as a direct sum, so ∂i∂jr ≡ 0, where
⌊

i
d

⌋ 6= ⌊
j
d

⌋
(i,j correspond to indices in di�erent subspaces). However, since pm and therefore ξm =
ln(pm) is locally constant, this relation holds (without loss of generality on set U) when
ignoring terms ξm, since their derivatives are 0. Now, following the reasoning of Lemma
3.5 [182] for the d-separated function

[⊗M
m=1 det(h′m)

]
(As), where A is `mixing' (| · |s were

dropped since functions hm were assumed to be invertible), we can see that each function
gm(v) = det[h′m(v)](6≡ 0) satis�es a di�erential equation

gmHgm −∇gm(∇gm)T ≡ Cmg2
m (A.5)

on set Um := Am(U), where Am := [Am1, . . . ,AmM ], Cm ∈ Rd×d, ∇ stands for the
gradient, H is the Hessian. For this reason�similarly to Lemma 3.4 [182]�functions gm can
be given in the form gm(v) = evT Dmv+bT

mv+cm (v ∈ Um) with suitable Dm ∈ Rd×d,bm ∈
Rd, cm ∈ R. Furthermore, as functions hm are assumed to act on each coordinate separately
as hmi, gm can be written as gm = ⊗d

i=1h
′
mi, we arrive at

h′mi(t) = ±edmit
2+bmit+cmi (dmi, bmi, cmi ∈ R) (A.6)

locally, exploiting that h′mi ≡ 0 is not allowed. Based on our assumption on hmi it holds on
all R(3 t).

Let us introduce the following notation: z = [z1; . . . ; zM ] = Ae, where z ∈ A(U).
Following the above reasoning for the inverse system e = A−1h−1(W−1z), h−1

mi can be given
similar to (A.6), with other constants. However, if both hmi

′ and (h−1
mi)

′ are of exponential
type then it follows that dmi = 0 and bmi = 0 [∀(m, i) ∈ {1, . . . , M}×{1, . . . , d}]. Therefore,
hmis are a�ne, that is hmi(u) = lmi(u)+pmi (lmi, pmi ∈ R), what we wanted to demonstrate.

Proof IV (of Theorem 5 on page 19) Below we prove that the R-w-EPI condition (4.7)
[which implies (4.1)] is valid for spherical variables, and for 2-dimensional variables invari-
ant to 90◦ rotation. In what follows, u = em ∈ Rdm stands for the mth hidden component.

Spherical variables: For spherical variables, the distribution and thus the entropy of these
projections are independent of w ∈ Sdm

R . Because e2H(wiui) = e2H(ui)w2
i and w ∈ Sdm

R ,
the R-w-EPI is satis�ed with equality ∀w ∈ Sdm

R .

54



2-dimensional variables invariant to 90◦ rotation: Assume that function

f : S2 3 w 7→ H

(
2∑

i=1

wiui

)
(A.7)

has global minimum on set S2
R ∩ {w ≥ 0}.1 Let this minimum be at wm ∈ R2. Then,

the 90◦ invariance warrants that function f take its global minimum also on w⊥
m ∈ R2,

which is perpendicular to wm. Let (Cm)T = [wm,w⊥
m] ∈ O2. Now, we can estimate

variables Cmem. This is su�cient because the R-ISA solution is ambiguous up to
orthogonal transformation within the subspaces.

Proof V (of Theorem 6 on page 20) Let L′ be such that

DxL′ ≥ De(Le + L′) (A.8)

is ful�lled. Such L′ exists due to the undercomplete assumption Dx > De:

L′ ≥
⌈

DeLe

Dx −De

⌉
. (A.9)

This choice of L′ guarantees that the reduction gives rise to an (under)complete R-ISA task:
let xm(t) denote the mth coordinate of observation x(t) and let the matrix Hl ∈ RDx×De be
decomposed into 1×dm sized blocks. That is, Hl = [Hij

l ]
i=1..Dx,j=1..M

(Hij
l ∈ R1×dj ), where

i and j denote row and column indices, respectively. Using notations

Em(t) := [em(t); em(t− 1); . . . ; em(t− (Le + L′) + 1)] ∈ Rdm(Le+L′), (A.10)
Xm(t) := [xm(t); xm(t− 1); . . . ; xm(t− L′ + 1)] ∈ RL′ , (A.11)

E(t) := [E1(t); . . . ;EM (t)] ∈ R
PM

m=1 dm(Le+L′)=De(Le+L′), (A.12)
X(t) := [X1(t); . . . ;XDx(t)] ∈ RDxL′ , (A.13)

Aij :=




Hij
0 . . . Hij

L 0 . . . 0
. . . . . .

. . . . . .
0 . . . 0 Hij

0 . . . Hij
L



∈ RL′×dj(Le+L′), (A.14)

A := [Aij ]i=1..Dx,j=1..M ∈ RDxL′×PM
m=1 dm(Le+L′)=DxL′×De(Le+L′), (A.15)

model
X(t) = AE(t) (A.16)

can be obtained. Here, em(t)s are i.i.d. in time t, they are independent for di�erent m values,
and Equation (A.8) holds for L′. Thus, (A.16) is either an undercomplete or a complete
R-ISA task, depending on the relation of the l.h.s and the r.h.s of (A.8): the task is complete
if the two sides are equal. In (A.16), each em ∈ Rdm component appears Le + L′ times.

Proof VI (of Theorem 8 (and its special case, Theorem 7) on page 22 (page 21))
We assumed that H[z] has left inverse, thus the hidden e can be expressed from observation
x by causal FIR �ltering, i.e.,

e = H−1[z]F[z]A−1x = H′[z]x, (A.17)
1Relation w ≥ 0 concerns each coordinate.
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where H−1[z] =
∑N

n=0 Mnz−n ∈ R[z]De×Ds , N denotes the degree of the H−1[z] polynomial,
A−1 is the left inverse of matrix A and H′[z] = H−1[z]F[z]A−1. According to Eqs. (3.3)-
(3.4) the following equality chain holds

x = A(I− F[z])A−1x + AH[z]e (A.18)
= A(I− F[z])A−1x + [AH0 + A(H[z]−H0)]e (A.19)
=

[
A(I− F[z])A−1 + A(H[z]−H0)H′[z]

]
x + AH0e. (A.20)

Here: in (A.19) the term containing H0 was separated, then expression (A.17) for e was
exploited. The �rst term of the observation x in (A.20) belongs to the linear hull of the �nite
history of x, and using that the constant parts of I − F[z] and H[z] −H0 (containing z0)
cancelled out:

[
A(I− F[z])A−1 + A(H[z]−H0)H′[z]

]
x ∈

〈
zx, z2x, . . . , zmax(Ls,Le+N)x

〉
. (A.21)

Because e(t) is independent of 〈x(t− 1),x(t− 2), . . . ,x(t−max(Ls, Le + N))〉, we have that
observation process x(t) is autoregressive with innovation AH0e(t).

Proof VII (see Section 4.2.2, page 21)
1. Let us notice that instead of E(t), X(t), we could choose concatenations E′(t) =

[e(t); . . . ; e(t − (Le + L′) + 1)],X′(t) = [x(t); . . . ;x(t − L′ + 1)], too. Permutation
is the only di�erence between these two quantities, thus one can arrive at a similar
X′(t) = A′E′(t) model. In what follows, this permuted form will be denoted by X(t),
E(t).

2. Hidden source e is estimated [in K := (Le +L′) pieces] by the TCC method�, possibly
after PCA computation for the undercomplete case�as Ê = [ê1

1; . . . ; ê
1
K ; . . . ; êM

1 ; . . . ; êM
K ] =

ŴTCCX, where ŴTCC := ŴTCC
ISA ŴTCC

PCA. Now, one can take this expression at time
t, use the de�nitions of E and X, decompose demixing matrix ŴTCC as ŴTCC =
[ŴTCC,l

m,k ]l=0,...,L′−1;m=1,...,M ;k=1,...,K and have that êm
k (t) =

∑L′−1
l=0 ŴTCC,l

m,k x(t − l)

with matrices ŴTCC,l
m,k ∈ Rdm×Dx . Introducing polynomial matrix ŴTCC

m,k [z] :=
∑L′−1

l=0 ŴTCC,l
m,k zl,

the above expression takes the following form: êm
k = ŴTCC

m,k [z]x.

Proof VIII (of Theorem 9 on page 23) Known properties of mappings ϕv, ϕM are as
follows [119]:

det[ϕM (M)] = | det(M)|2 (M ∈ CL×L), (A.22)
ϕM (M1M2) = ϕM (M1)ϕM (M2) (M1 ∈ CL1×L2 ,M2 ∈ CL2×L3), (A.23)

ϕv(Mv) = ϕM (M)ϕv(v) (M ∈ CL1×L2 ,v ∈ CL2), (A.24)
ϕM (M1 + M2) = ϕM (M1) + ϕM (M2) (M1,M2 ∈ CL1×L2), (A.25)

ϕM (cM) = cϕM (M) (M ∈ CL1×L2 , c ∈ R). (A.26)

In words: (A.22) describes transformation of determinant, while (A.23), (A.24), (A.25) and
(A.26) expresses preservation of operation for matrix-matrix multiplication, matrix-vector
multiplication, matrix addition, real scalar-matrix multiplication, respectively.

Now, one may apply ϕv to the (3.1)-(3.2) C-uARIMA-IPA equations (with K =C) and
use (A.24)-(A.26). The result is as follows:

ϕM (F[z])∇r[z]ϕv(s) = ϕM (H[z])ϕv(e), (A.27)
ϕv(x) = ϕM (A)ϕv(s). (A.28)
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Given that (i) the independence of em ∈ Cdm is equivalent to that of ϕv(em) ∈ R2dm ,
and (ii) the stability of ϕM (F[z]) and the existence of the left inverse of ϕM (H[z]) are
inherited from F[z] and H[z], respectively [see Eqs. (A.22) and (A.23)], we end up with an
R-uARIMA-IPA task with (Ls, Le, r) parameters and M pieces of 2dm-dimensional hidden
components ϕv(em).

Proof IX (of Theorem 10 on page 24) These are the main steps of the proof:

1. First, we show that the mutual information based C-ISA cost function is equivalent to
the minimization of multidimensional entropies, which is more appropriate to the rest
of the proof.

2. Then, we de�ne a so-called C-EPI property and a C-w-EPI relation starting from the
vector variant of the R-EPI relation.

3. The next step is to prove that the cost function C-ICA�assuming the C-w-EPI property
for the hidden sources�has global minimum in the C-ISA solution.

4. Finally, the invariance of the C-ICA cost is used.

In detail:

1. The C-ISA task can be viewed as the minimization of the mutual information between
the estimated components on the unitary group [see (3.11)]:

JI,C-ISA(W) := I(y1, . . . ,yM ) → min
W∈UDe

, (A.29)

where y = Wx, y =
[
y1; . . . ;yM

]
, ym ∈ Rdm , De =

∑M
m=1 dm. Mutual information

(Shannon's multidimensional entropy) of complex variables is de�ned as the mutual
information (entropy) of their images under mapping ϕv [70]:

I(y1, . . . ,yM ) := I(ϕv(y1), . . . , ϕv(yM )), (A.30)
H(y) := H(ϕv(y)). (A.31)

Matrix W is unitary, thus ϕM (W) is orthogonal [see (A.22)] and the C-ISA task is
equivalent to the minimization of the cost function

JC-ISA(W) :=
M∑

m=1

H (ym) → min
W∈UDe

, (A.32)
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because:
I

(
y1, . . . ,yM

)
= I

(
ϕv(y1), . . . , ϕv(yM )

)
(A.33)

=
M∑

m=1

H (ϕv(ym))−H(ϕv(y)) (A.34)

=
M∑

m=1

H (ϕv(ym))−H(ϕv(Wx)) (A.35)

=
M∑

m=1

H (ϕv(ym))−H(ϕM (W)ϕv(x)) (A.36)

=
M∑

m=1

H (ϕv(ym))− [H(ϕv(x)) + ln(|det(ϕM (W))|)] (A.37)

=
M∑

m=1

H (ϕv(ym))− [H(ϕv(x)) + ln(|det(W)|2)] (A.38)

=
M∑

m=1

H (ϕv(ym))− constant + 0 (A.39)

=
M∑

m=1

H (ym)− constant. (A.40)

Here:

(a) (A.33): de�nition of the complex mutual information was applied,
(b) (A.34): we used a well-known relation between I and H [60],
(c) (A.35): de�nition of y was plugged in,
(d) (A.36): is the consequence of (A.24),
(e) (A.37): identity for the transformation of Shannon's di�erential entropy under

linear mappings [60] is made use of,
(f) (A.38): is the consequence of (A.22),
(g) (A.39): H(ϕv(x)) is constant in W, and |det(W)| = 1 because matrix W is

orthogonal,
(h) (A.40): de�nition of the complex entropy is used.

2. EPI-type Relations: Let us consider the vector variant of the R-EPI relation.
Lemma X (vector-EPI) For independent (�nite covariance random variables) u1, . . . ,uL ∈
Rq holds [177] that

e2H(PL
i=1 ui)/q ≥

L∑

i=1

e2H(ui)/q. (A.41)

Let us de�ne a similar property for complex random variables:
De�nition XI (C-EPI) We say that random variables u1, . . . , uL ∈ C satisfy relation
C-EPI if

eH(PL
i=1 ui) ≥

L∑

i=1

eH(ui). (A.42)
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Note XII (C-EPI - independence is su�cient) This holds for independent ran-
dom variables u1, . . . , uL ∈ C, because according to vector-EPI (q = 2)

e2H(PL
i=1 ui)/2 ≥

L∑

i=1

e2H(ui)/2. (A.43)

We need the following lemma:

Lemma XIII (C-w-EPI ⇒ (A.45)) Let us assume that random variables u1, . . . , uL ∈
C satisfy condition

eH(
PL

i=1 wiui) ≥
L∑

i=1

eH(wiui) ∀w = [w1; . . . ; wL] ∈ SL
C (A.44)

that we shall call condition C-w-EPI. Then

H

(
L∑

i=1

wiui

)
≥

L∑

i=1

|wi|2H(ui) ∀w ∈ SL
C . (A.45)

Proof XIV (of Lemma XIII) Assume that w ∈ SL
C . Applying ln on condition

(A.44), and using the monotonicity of the ln function, we can see that the �rst in-
equality is valid in the following inequality chain

H

(
L∑

i=1

wiui

)
≥ ln

(
L∑

i=1

eH(wiui)

)
= ln

(
L∑

i=1

eH(ui)|wi|2
)

(A.46)

≥
L∑

i=1

|wi|2 ln
(
eH(ui)

)
=

L∑

i=1

|wi|2H(ui). (A.47)

Then,

(a) we used the relation:

H(wu) = H(u) + ln
(
|w|2

)
(w, u ∈ C) (A.48)

for the entropy of the transformed variable. Hence

eH(wiui) = eH(ui)+ln(|wi|2) = eH(ui)eln(|wi|2) = eH(ui)|wi|2. (A.49)

(b) In the second inequality, we exploited the concavity of ln.

3. The C-ISA Separation Theorem will be a corollary of the following claim:

Proposition XV Let y =
[
y1; . . . ;yM

]
= y(W) = We, where W ∈ UDe , ym is

the estimation of the mth component of the C-ISA task. Let ym
i be the ith complex

coordinate of the mth component. Similarly, let em
i stand for the ith coordinate of the

mth source. Let us assume that the em sources satisfy condition (A.45). Then

M∑
m=1

dm∑

i=1

H (ym
i ) ≥

M∑
m=1

dm∑

i=1

H (em
i ) . (A.50)
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Proof XVI (of Proposition XV) Let us denote the (i, j)th element of matrix W
by Wi,j. Coordinates of y and e will be denoted by yi and ei, respectively. Let
G1, . . . , GM denote the indices belonging to the 1st, . . . , M th. subspaces, that is, G1 :=
{1, . . . , d1}, G2 := {d1+1, . . . , d1+d2}, . . . , GM := {De−dM +1, . . . , De}. Now, writing
the elements of the ith row of matrix multiplication y = We, we have

yi =
∑

j∈G1

Wi,jej + . . . +
∑

j∈GM

Wi,jej (A.51)

and thus,

H (yi) = H




M∑
m=1

∑

j∈Gm

Wi,jej


 (A.52)

= H




M∑
m=1




( ∑

l∈Gm

|Wi,l|2
) 1

2
∑

j∈Gm Wi,jej

(∑
l∈Gm |Wi,l|2

) 1
2





 (A.53)

≥
M∑

m=1




( ∑

l∈Gm

|Wi,l|2
)

H




∑
j∈Gm Wi,jej

(∑
l∈Gm |Wi,l|2

) 1
2





 (A.54)

=
M∑

m=1




( ∑

l∈Gm

|Wi,l|2
)

H


 ∑

j∈Gm

Wi,j(∑
l∈Gm |Wi,l|2

) 1
2
ej





 (A.55)

≥
M∑

m=1




( ∑

l∈Gm

|Wi,l|2
) ∑

j∈Gm

∣∣∣∣∣∣
Wi,j(∑

l∈Gm |Wi,l|2
) 1

2

∣∣∣∣∣∣

2

H (ej)


 (A.56)

=
M∑

m=1


 ∑

j∈Gm

|Wi,j |2H (ej)


 (A.57)

The above steps can be justi�ed as follows:

(a) (A.52): Eq. (A.51) was inserted into the argument of H.
(b) (A.53): New terms were added for Lemma XIII.
(c) (A.54): Sources em are independent of each other and this independence is pre-

served upon mixing within the subspaces, and we could also use Lemma XIII,
because W is a unitary matrix.

(d) (A.55): Nominators were transferred into the
∑

j terms.
(e) (A.56): Variables em satisfy condition (A.45) according to our assumptions.
(f) (A.57): We simpli�ed the expression after squaring.

Using this inequality, summing it for i, exchanging the order of the sums, and making
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use of the unitary property of matrix W, we have

De∑

i=1

H(yi) ≥
De∑

i=1




M∑
m=1


 ∑

j∈Gm

|Wi,j |2H (ej)





 (A.58)

=
M∑

m=1


 ∑

j∈Gm

(
De∑

i=1

|Wi,j |2
)

H (ej)


 (A.59)

=
De∑

j=1

H(ej). (A.60)

4. Having this proposition, now we prove the C-ISA Separation Theorem.

Proof XVII (of Theorem 10 on page 24) C-ICA minimizes the l.h.s. of Eq. (A.50),
that is, it minimizes

∑M
m=1

∑dm

i=1 H (ym
i ). The set of minima is invariant to permuta-

tions and to multiplication of the coordinates by numbers with unit absolute value, and
according to Proposition XV {em

i } (i.e., the coordinates of the C-ISA task) is among
the minima.
We can disregard multiplications with unit absolute values, because unitary ambiguity
within subspaces are present in the C-ISA task.

Proof XVIII (of Theorem 11 on page 24)

Complex spherical variables: For complex spherical variables, the distribution and thus
the entropy of these projections are independent of w ∈ Sdm

C , using that w̄ ∈ Sdm

C ⇔
w ∈ Sdm

C (conjugation preserves length). Because eH(wiui) = eH(ui)|wi|2 and w ∈ Sdm

C ,
the C-w-EPI is satis�ed with equality ∀w ∈ Sdm

C .

C-w-EPI: see Lemma XIII.

Proof XIX (of Theorem 12 on page 27) The statement follows from the inequality re-
lated to the multidimensional Shannon di�erential entropy H: Let v = [v1; . . . ;vM ] ∈ RDe

(vm ∈ Rdm) denote a random variable. Then

H
(
v1, . . . ,vM

) ≤
M∑

m=1

H (vm) , (A.61)

and equality holds i� vms are independent [60]. Hint: one can choose u as a normal random
variable with covariance Σ(f , T ) and insert the expression of the entropy of normal variables.
We have proven the following statement: Let Σ ∈ RDe×De be a positive semi-de�nite matrix,
let Σm,m ∈ Rdm×dm denote the mth block in the diagonal of matrix Σ, and let De =∑M

m=1 dm. Then the function

0 ≤ J(Σ) := −1
2

log

[
det(Σ)∏M

m=1 det(Σm,m)

]
(A.62)

is 0 i� Σ = blockdiag(Σ1,1, . . . ,ΣM,M ).
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Appendix B

Pseudocodes

Below, we provide the pseudocodes of the `R-uMA-IPA via TCC' (Section 4.2.2), the
`R-uARMA-IPA via LPA' (Section 4.2.3) and the JFD (Section 5.2) methods.

Table B.1: R-uMA-IPA via TCC: Pseudocode
Input of the algorithm

observation: {x(t)}t=1,...,T

Optimization
Apply temporal concatenation of length L′ [see (A.9)] to x: X
Reduce uISA to ISA (and whiten): X

′
= ŴPCAX

Apply ISA to X
′ : demixing matrix is ŴISA, estimated source is Ê = ŴISAX

′

Estimation
ŴR-uMA-IPA = ŴISAŴPCA
Ê = [ê1

1; . . . ; ê
1
K ; . . . ; êM

1 ; . . . ; êM
K ] = ŴR-uMA-IPAX (K = Le + L′)

Table B.2: R-uARMA-IPA via LPA: Pseudocode
Input of the algorithm

Observation: {x(t)}t=1,...,T

Optimization
AR �t: for observation x estimate ŴAR[z]
Estimate innovation: x̃ = ŴAR[z]x
Reduce uISA to ISA (and whiten): x̃

′
= ŴPCAx̃

Apply ISA to x̃
′ : demixing matrix is ŴISA

Estimation
ŴR-uARMA-IPA[z] = ŴISAŴPCAŴAR[z]

ê = ŴR-uARMA-IPA[z]x
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Table B.3: JFD Algorithm: Pseudocode
Input of the algorithm

observation: {x(t)}t=1,...,T

Optimizationa
Apply ICA to x: ICA demixing matrix is ŴICA,

estimated source is êICA = ŴICAx
Permutation search

P := I
repeat

sequentially for ∀p ∈ Gm1 , q ∈ Gm2 (m1 6= m2) :
if JJFD(PpqP;F, T ) < JJFD(P; F, T )

P := PpqP
end

until JJFD(·; F, T ) decreases in the sweep above
Estimation

ŴISA = PŴICA
êISA = ŴISAx = PêICA

aLet G1, . . . , GM denote the indices of the 1st, . . . , Mth subspaces, i.e., Gm := {PM−1
m=1 dm +

1, . . . ,
PM

m=1 dm} (d0 := 0), and permutation matrix Ppq exchanges coordinates p and q.
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Appendix C

Abbreviations

A summary of the abbreviations appears in the table below.

Abbreviation Meaning
APEX Adaptive Principal component EXtractor
AR AutoRegressive

ARIMA Integrated ARMA
ARMA AutoRegressive Moving Average
BSD Blind Source Deconvolution
BSSD Blind SubSpace Deconvolution
CE Cross-Entropy
CSA Colored Subspace Analysis
CVNN Complex-Valued Neural Network
ECG ElectroCardioGraphy
EASI Equivariant Adaptive Separation via Independence
EEG ElectroEncephaloGraphy
EPI Entropy Power Inequality
fMRI functional Magnetic Resonance Imaging
FIR Finite Impulse Response
ICA Independent Component Analysis
IFS Iterated Function System
IFSA Independent Feature Subspace Analysis
i.i.d independent identically distributed
IPA Independent Process Analysis
ISA Independent Subspace Analysis

JADE Joint Approximate Diagonalization of Eigen-matrices
JBD Joint Block Diagonalization
JFD Joint F-Decorrelation
KC Kernel Covariance
KGV Kernel Generalized Variance
LPA Linear Prediction Approximation
LQG Linear Quadratic Gaussian
LES Linear Equation System
MEG MagnetoEncephaloGraphy
MA Moving Average

64



MICA Multidimensional Independent Component Analysis
ML Maximum Likelihood
MPB Minimal Polynomial Basis

MSOBI Multidimensional SOBI
NGCA Non-Gaussian Component Analysis
PCA Principal Component Analysis
PNL Post NonLinear
PoT Product of Experts
QAM Quadrature Amplitude Modulated

RADICAL Robust, Accurate, Direct ICA aLgorithm
RNN Recurrent Neural Network
SOBI Second-Order Blind Identi�cation
SSA Stationary Subspace Analysis
SUT Strong-Uncorrelating Transform
TCC Temporal ConCatenation
TICA Topographic ICA
TSP Travelling Salesman Problem

VDCA Variance-Dependent Component Analysis
WSS Wide-Sense Stationary
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Short Summary (in English)

1. In my thesis, I formulated a uni�ed framework for the search of independent compo-
nents covering the classical assumptions of the literature (ICA, ISA, AR-IPA, BSD,
PNL-ICA). For the derived problem family, I proved separation principles: using these
principles the solution of the original problem can be decomposed and reduced to
simple(r) subproblems. Namely,

(a) I proved su�cient conditions for the ISA Separation Theorem (which makes it
possible to solve the ISA problem by clustering ICA elements): (i) spherical
symmetry, or (ii) in the case of 2-dimensional hidden components invariance to
90◦ rotation su�ces.

(b) I formulated a common extension of the ISA and BSD task, the MA-IPA problem
(Moving Average Independent Process Analysis). I justi�ed that in the under-
complete case the MA-IPA problem can be solved by ISA after (i) temporal
concatenation, or (ii) linear prediction of the observation.

(c) I uni�ed and extended the MA-IPA and AR-IPA problems to non-stationary
direction, this is the ARIMA-IPA (Integrated AutoRegressive Moving Average
Independent Process Analysis) problem. I proved, that in the undercomplete
case (uARIMA-IPA) its solution can be reduced to ISA by applying temporal
di�erentiating and AR identi�cation.

(d) I proved the complex ISA Separation Theorem, and justi�ed that it holds, e.g., for
complex spherical variables. I showed an alternative solution by real techniques
for the complex uARIMA-IPA problem family, provided that there is at least one
Gaussian among the associated components.

(e) I de�ned and provided a solution (reduction) method for the common extension
of the PNL-ICA and ISA tasks, the PNL-ISA problem.

2. Making use of the former separation principles I derived e�cient solution/approximation
procedures. Namely,

(a) For �nding the optimal permutation of the ICA elements to solve ISA (see the
ISA Separation Theorem), I adapted the `global' Cross Entropy optimization
technique.

(b) I constructed the JFD (Joint F-Decorrelation) ISA method, which can cope with
ISA problems in dimension a magnitude larger, than former state-of-the-art ISA
techniques.

(c) I showed a non-combinatorial approximation scheme for ISA-reducible problems,
not requiring the a priori knowledge of the component dimensions.
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Short Summary (in Hungarian)

1. Disszertációmban a független komponens keresés klasszikus irányait (ICA, ISA, AR-
IPA, BSD, PNL-ICA) egységes keretbe foglaltam. A megfogalmazott feladatokra
dekompozíciós elveket származtattam, amikkel megoldásuk egyszer¶síthet®, már is-
mert feladatokra vezethet®:

(a) Beláttam, hogy az ISA szeparációs tétel � mely segítségével az ISA feladat ICA-
ra, és az ICA elemek csoportosítására vezethet® � teljesüléséhez elégséges: (i)
szférikus szimmetria, s®t (ii) 2-dimenziós rejtett komponensek esetén 90◦ fokos
elforgatásra való invariancia is.

(b) Az ISA és BSD feladatok közös kiterjesztéseként de�niáltam az MA-IPA (Mov-
ing Average Independent Process Analysis) feladatot. Igazoltam, hogy under-
complete esetben ez: (i) id®beli konkatenáció, avagy (ii) lineáris predikció segít-
ségével megoldható, és ezt a két megközelítést közös FIR sz¶r®s megfogalmazásba
illesztettem.

(c) Az MA-IPA és AR-IPA feladatokat egységesítettem, és kiterjesztettem nem-stacionárius
irányban, ez az ARIMA-IPA probléma. Igazoltam, hogy a kapott általánosítás
undercomplete esetben (uARIMA-IPA) id®beli di�erenciálás és AR identi�káció
segítségével ISA-ra redukálható.

(d) A komplex változós ISA feladatra beláttam egy komplex ISA szeparációs tételt,
és igazoltam, hogy komplex szférikusan szimmetrikus változók eleget tesznek
feltételrendszerének. Emellett bebizonyítottam, hogy komplex uARIMA-IPA prob-
lémacsalád valós technikákkal is megoldható � amennyiben az asszociált kompo-
nensek közt legfeljebb egy Gauss változó van.

(e) De�niáltam és megoldási módszert, visszavezetési elvet adtam a PNL-ICA és ISA
feladatok közös kiterjesztésére a PNL-ISA problémára.

2. Ezen visszavezetési elvekre építve hatékony közelítési eljárásokat származtattam. Nevezete-
sen:

(a) Az ISA szeparációs tétel optimális permutációjának kereséséhez a CE (cross en-
tropy) �globális� optimalizálási módszert adaptáltam.

(b) Egy együttes nem-lineáris dekorrelációra (Joint F-Decorrelation, JFD) épít®, ko-
rábbi irodalombeli módszerekkel összevetve egy nagyságrenddel nagyobb felada-
tok megoldására képes ISA módszert adtam.

(c) A rejtett források ismeretét nem-igényl® (nem-kombinatorikus) közelítést mutat-
tam a fenti, ISA-ra redukálható feladatokra.

67



Own References
[1] András L®rincz and Zoltán Szabó. Neurally plausible, non-combinatorial iterative

independent process analysis. Neurocomputing - Letters, 70(7-9):1569�1573, 2007.

[2] Barnabás Póczos, Zoltán Szabó, Melinda Kiszlinger, and András L®rincz. Indepen-
dent process analysis without a priori dimensional information. In Mike E. Davies,
Christopher J. James, Samer A. Abdallah, and Mark D. Plumbley, editors, Indepen-
dent Component Analysis and Blind Signal Separation (ICA 2007), volume 4666 of
Lecture Notes in Computer Science, pages 252�259, Berlin Heidelberg, 9-12 Septem-
ber 2007. Springer-Verlag.

[3] Zoltán Szabó and András L®rincz. Real and complex independent subspace analysis
by generalized variance. In ICA Research Network International Workshop (ICARN
2006), pages 85�88, 18-19 September 2006.

[4] Zoltán Szabó and András L®rincz. Independent subspace analysis can cope with the
�curse of dimensionality�. Acta Cybernetica (+Symposium of Intelligent Systems 2006),
18:213�221, 2007.

[5] Zoltán Szabó and András L®rincz. Complex independent process analysis. Acta Cy-
bernetica, 19:177�190, 2009.

[6] Zoltán Szabó, Barnabás Póczos, and András L®rincz. Cross-entropy optimization for
independent process analysis. In Justinian Rosca, Deniz Erdogmus, José C. Príncipe,
and Simon Haykin, editors, Independent Component Analysis and Blind Signal Sepa-
ration (ICA 2006), volume 3889 of Lecture Notes in Computer Science, pages 909�916.
Springer, 5-8 March 2006.

[7] Zoltán Szabó, Barnabás Póczos, and András L®rincz. Separation theorem for K-
independent subspace analysis with su�cient conditions. Technical report, Eötvös
Loránd University, Budapest, 2006. http://arxiv.org/abs/math.ST/0608100.

[8] Zoltán Szabó, Barnabás Póczos, and András L®rincz. Auto-regressive independent
process analysis without combinatorial e�orts. Pattern Analysis and Applications,
2007. (accepted).

[9] Zoltán Szabó, Barnabás Póczos, and András L®rincz. Undercomplete blind subspace
deconvolution. Journal of Machine Learning Research, 8:1063�1095, 2007.

[10] Zoltán Szabó, Barnabás Póczos, and András L®rincz. Undercomplete blind subspace
deconvolution via linear prediction. In Joost N. Kok, Jacek Koronacki, Ramon Lopez
de Mantaras, Stan Matwin, Dunja Mladeni£, and Andrzej Skowron, editors, Euro-
pean Conference on Machine Learning (ECML 2007), volume 4701 of Lecture Notes
in Arti�cial Intelligence, pages 740�747, Berlin Heidelberg, 17-21 September 2007.
Springer-Verlag.

[11] Zoltán Szabó, Barnabás Póczos, Gábor Szirtes, and András L®rincz. Post nonlin-
ear independent subspace analysis. In Joaquim Marques de Sá, Luís A. Alexandre,
Wlodzislaw Duch, and Danilo P. Mandic, editors, International Conference on Ar-
ti�cial Neural Networks (ICANN 2007), volume 4668 of Lecture Notes in Computer
Science - Part I, pages 677�686, Berlin Heidelberg, 9-13 September 2007. Springer-
Verlag.

68



External References
[12] Karim Abed-Meraim and Adel Belouchrani. Algorithms for joint block diagonalization.

In European Signal Processing Conference (EUSIPCO 2004), pages 209�212, 2004.

[13] Karim Abed-Meraim, Philippe Loubaton, and Eric Moulines. A subspace algorithm
for certain blind identi�cation problems. IEEE Transactions on Information Theory,
43(2):693�696, March 1997.

[14] Sophie Achard and Christian Jutten. Identi�ability of post nonlinear mixtures. IEEE
Signal Processing Letters, 12(5):423� 426, May 2005.

[15] Shotaro Akaho, Yasuhiko Kiuchi, and Shinji Umeyama. MICA: Multimodal inde-
pendent component analysis. In International Joint Conference on Neural Networks
(IJCNN '99), volume 2, pages 927�932, 1999.

[16] Ian F. Akyildiz, WellJan Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. Wireless
sensor networks: a survey. Computer Networks, 38(4):393�422, March 2002.

[17] Miguel Almeida and Ricardo Vigário. Source separation of phase-locked subspaces.
In Tülay Adali, Christian Jutten, João Marcos T. Romano, and Allan Kardec Barros,
editors, Independent Component Analysis and Signal Separation (ICA 2009), volume
5441 of Lecture Notes in Computer Science, pages 203�210, Berlin Heidelberg, 15-
18 March 2009. Springer-Verlag.

[18] Shun-ichi Amari, Andrzej Cichocki, and Howard H. Yang. Recurrent neural networks
for blind separation of sources. In International Symposium on Nonlinear Theory and
its Applications NOLTA (NOLTA'95), pages 37�42, Bruges, Belgium, 18-21 October
1995.

[19] Shun-ichi Amari, Andrzej Cichocki, and Howard H. Yang. A new learning algorithm for
blind signal separation. Advances in Neural Information Processing Systems, 8:757�
763, 1996.

[20] Jörn Anemüller. Second-order separation of multidimensional sources with constrained
mixing system. In Justinian Rosca, Deniz Erdogmus, José C. Príncipe, and Simon
Haykin, editors, Independent Component Analysis and Blind Signal Separation (ICA
2006), volume 3889 of LNCS, pages 16�23. Springer, 5-8 March 2006.

[21] Jörn Anemüller, Jeng-Ren Duann, Terrence J. Sejnowski, and Scott Makeig. Spatio-
temporal dynamics in fMRI recordings revealed with complex independent component
analysis. Neurocomputing, 69(13-15):1502�1512, 2006.

[22] Jörn Anemüller, Terrence J. Sejnowski, and Scott Makeig. Complex independent com-
ponent analysis of frequency-domain electroencephalographic data. Neural Networks,
16:1311�1323, 2003.

[23] Shoko Araki, Shoji Makino, Ryo Mukai, Tsuyoki Nishikawa, and Hiroshi Saruwatari.
Fundamental limitation of frequency domain blind source separation for convolved
mixture of speech. IEEE Transactions on Speech and Audio Processing, 11(2):109�
116, March 2003.

[24] Francis R. Bach and Michael I. Jordan. Kernel independent component analysis.
Journal of Machine Learning Research, 3:1�48, 2002.

69



[25] Francis R. Bach and Michael I. Jordan. Beyond independent components: Trees and
clusters. Journal of Machine Learning Research, 4:1205�1233, 2003.

[26] Andrew D. Back and Ah Chung Tsoi. Blind deconvolution of signals using a complex
recurrent network. In Neural Networks for Signal Processing, pages 565�574. IEEE
Press, 1994.

[27] Marian Stewart Bartlett, Javier R. Movellan, and Terrence J. Sejnowski. Face recog-
nition by independent component analysis. IEEE Transactions on Neural Networks,
13(6):1450�1464, 2002.

[28] Michael Basin and Dario Calderon-Alvarez. Optimal LQG controller for linear stochas-
tic systems with unknown parameters. Journal of the Franklin Institute, 345:293�302,
2008.

[29] Michael V. Basin and Irma R. Valadez Guzman. Optimal control in unobservable
integral Volterra systems. Journal of the Franklin Institute, 339(1):13�27, 2002.

[30] Anthony J. Bell and Terrence J. Sejnowski. The `independent components' of natural
scenes are edge �lters. Vision Research, 37:3327�3338, 1997.

[31] Adel Belouchrani, Karim Abed-Meraim, Jean-François Cardoso, and Eric Moulines.
A blind source separation technique using second-order statistics. IEEE Transactions
on Signal Processing, 45:434�444, 1997.

[32] Alain Bensoussan. On the separation principle for distributed parameter systems. In
IFAC Conference on Control for Distributed Parameter Systems, Ban�, Canada, 1971.

[33] Alain Bensoussan and M. Viot. Optimal control of stochastic linear distributed pa-
rameter systems. SIAM Journal on Control and Optimization, 13:904�926, 1975.

[34] Ella Bingham and Aapo Hyvärinen. A fast �xed-point algorithm for independent com-
ponent analysis of complex-valued signals. International Journal of Neural Systems,
10(1):1�8, 2000.

[35] Gilles Blanchard, Motoaki Kawanabe, Masashi Sugiyama, Vladimir Spokoiny, and
Klaus-Robert Müller. In search of non-Gaussian components of a high-dimensional
distribution. Journal of Machine Learning Research, 7:247�282, February 2006.

[36] Franco Blanchini, Stefano Miani, and Fouad Mesquine. A separation principle for lin-
ear switching systems and parametrization of all stabilizing controllers. 2008. (submit-
ted), http://users.dimi.uniud.it/~franco.blanchini/Blanchini_switch.pdf.

[37] Hamid Bounit and H. Hammouri. A separation principle for distributed dissipative
bilinear systems. IEEE Transactions on Automatic Control, 48(3):479� 483, 2003.

[38] Luc Bouten and Ramon van Handel. On the separation principle of quantum control.
Technical report, 2006. http://arxiv.org/abs/math-ph/0511021.

[39] Luc Bouten, Ramon van Handel, and Matthew James. An introduction to quantum
�ltering. SIAM Journal on Control and Optimization, 46:2199�2241, 2007.

[40] Vince D. Calhoun and Tülay Adali. Complex infomax: Convergence and approxima-
tion of infomax with complex nonlinearities. In Neural Networks for Signal Processing,
2002.

70



[41] Vince D. Calhoun and Tülay Adali. Complex infomax: Convergence and approxi-
mation of infomax with complex nonlinearities. VLSI Signal Processing Systems for
Signal, Image, and Video Technology, 44(1/2):173�190, 2006.

[42] Jean-François Cardoso. Multidimensional independent component analysis. In In-
ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP '98),
volume 4, pages 1941�1944, 1998.

[43] Jean-François Cardoso. High-order contrasts for independent component analysis.
Neural Computation, 11(1):157�192, 1999.

[44] Jean-François Cardoso and Tülay Adali. The maximum likelihood approach to com-
plex ICA. In IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP 2006), volume 5, Toulouse, France, 14-19 March 2006.

[45] Jean-François Cardoso and Beate Laheld. Equivariant adaptive source separation.
IEEE Transactions on Signal Processing, 1996.

[46] Jean-François Cardoso and Maude Martin. A �exible component model for pre-
cision ICA. In Mike E. Davies, Christopher J. James, Samer A. Abdallah, and
Mark D. Plumbley, editors, Independent Component Analysis and Signal Separation
(ICA 2007), volume 4666 of LNCS, pages 1�8, Heidelberg, 2007. Springer.

[47] Jean-François Cardoso and Antoine Souloumiac. Blind beamforming for non-gaussian
signals. IEE-Proceedings-F, 140(6):362�370, 1993.

[48] Michael A. Casey and Alex Westner. Separation of mixed audio sources by independent
subspace analysis. In International Computer Music Conference (ICMC 2000), Berlin,
August 2000. http://www.merl.com/papers/TR2001-31/.

[49] Marc Castella and Pierre Comon. Blind separation of instantaneous mixtures of de-
pendent sources. In Mike E. Davies, Christopher J. James, Samer A. Abdallah, and
Mark D. Plumbley, editors, Independent Component Analysis and Signal Separation
(ICA 2007), volume 4666 of LNCS, pages 9�16, Heidelberg, 2007. Springer.

[50] Yiu-ming Cheung and Lei Xu. Dual multivariate auto-regressive modeling in
state space for temporal signal separation. IEEE Transaction on Systems, Man,
Cybernetics�Part B, 33:386�398, 2003.

[51] Silvia Chiappa and David Barber. Generative temporal ICA for classi�cation in asyn-
chronous BCI systems. In IEEE EMBS Conference On Neural Engineering, pages
514�517, Arlington, VA, 16-19 March 2005.

[52] Heeyoul Choi and Seungjin Choi. Relative gradient learning for independent subspace
analysis. In International Joint Conference on Neural Networks (IJCNN 2006), pages
3919� 3924, Vancouver, Canada, 16-21 July 2006.

[53] Seungjin Choi. Di�erential learning algorithms for decorrelation and independent
component analysis. Neural Networks, 19(10):1558�1567, December 2006.

[54] Seungjin Choi and Andrzej Cichocki. Blind signal deconvolution by spatio-temporal
decorrelation and demixing. Neural Networks for Signal Processing, 7:426�435, 1997.

71



[55] Seungjin Choi, Andrzej Cichocki, Hyung-Min Park, and Soo-Yound Lee. Blind source
separation and independent component analysis. Neural Information Processing -
Letters and Reviews, 6:1�57, 2005.

[56] Andrzej Cichocki and Shun-ichi Amari. Adaptive blind signal and image processing.
John Wiley & Sons, 2002.

[57] Pierre Comon. Independent component analysis, a new concept? Signal Processing,
36(3):287�314, 1994.

[58] Oswaldo L.V. Costa and Marcelo D. Fragoso. A separation principle for the H2-control
of continuous-time in�nite Markov jump linear systems with partial observations.
Journal on Mathematical Analysis and Applications, 331:97�120, 2007.

[59] Oswaldo L.V. Costa and Esteban F. Tuesta. H2-control and the separation principle
for discrete-time Markovian jump linear systems. Mathematics of Control, Signals and
Systems, 16:320�350, 2004.

[60] Thomas M. Cover and Joy A. Thomas. Elements of information theory. John Wiley
and Sons, New York, USA, 1991.

[61] Sergio Cruces, Auxiliadora Sarmiento, and Iván Durán. The complex version of the
minimum support criterion. In Mike E. Davies, Christopher J. James, Samer A. Ab-
dallah, and Mark D. Plumbley, editors, Independent Component Analysis and Signal
Separation (ICA 2007), volume 4666 of LNCS, pages 17�24. Springer, Heidelberg,
2007.

[62] Nathalie Delfosse and Philippe Loubaton. Adaptive blind separation of convolutive
mixtures. In International Conference on Acoustics, Speech and Signal Processing
(ICASSP '96), pages 2940�2943, 1996.

[63] Fani Deligianni, Benny Lo, and Guang-Zhong Yang. Source recovery for body sen-
sor network. In International Workshop on Wearable and Implantable Body Sensor
Networks 2006 (BSN 2006), pages 199�202, April 2006.

[64] Scott C. Douglas. Fixed-point algorithms for the blind separation of arbitrary complex-
valued non-gaussian signal mixtures. EURASIP Journal on Applied Signal Processing,
2007(1), January 2007. Article ID 36525, 15 pages, doi:10.1155/2007/36525.

[65] Scott C. Douglas, Jan Eriksson, and Visa Koivunen. Equivariant algorithms for esti-
mating the strong-uncorrelating transform in complex independent component anal-
ysis. In Justinian Rosca, Deniz Erdogmus, José C. Príncipe, and Simon Haykin,
editors, Independent Component Analysis and Blind Signal Separation (ICA 2006),
volume 3889 of Lecture Notes in Computer Science, pages 57�65, 5-8 March 2006.

[66] Scott C. Douglas, Jan Eriksson, and Visa Koivunen. Fixed-point complex ICA algo-
rithms for the blind separation of sources using their real or imaginary components.
In Justinian Rosca, Deniz Erdogmus, José C. Príncipe, and Simon Haykin, editors,
Independent Component Analysis and Blind Signal Separation (ICA 2006), volume
3889 of Lecture Notes in Computer Science, pages 343�351, 5-8 March 2006.

[67] Scott C. Douglas, Hiroshi Sawada, and Shoji Makino. Natural gradient multichannel
blind deconvolution and speech separation using causal FIR �lters. IEEE Transactions
on Speech and Audio Processing, 13(1):92�104, January 2005.

72



[68] Mads Dyrholm, Scott Makeig, and Lars Kai Hansen. Model selection for convolutive
ICA with an application to spatio-temporal analysis of EEG. Neural Computation,
April 2007.

[69] Alan Edelman, Tomas Arias, and Steven T. Smith. The geometry of algorithms
with orthogonality constraints. SIAM Journal on Matrix Analysis and Applications,
20(2):303�353, 1998.

[70] Jan Eriksson. Complex random vectors and ICA models: Identi�ability, uniqueness
and separability. IEEE Transactions on Information Theory, 52(3), 2006.

[71] Jan Eriksson and Visa Koivunen. Complex-valued ICA using second order statis-
tics. In Proceedings of the 14th IEEE Signal Processing Society Workshop on Machine
Learning for Signal Processing, pages 183� 192, 2004.

[72] Kai-Tai Fang, Samuel Kotz, and Kai Wang Ng. Symmetric multivariate and related
distributions. Chapman and Hall, 1990.

[73] Cédric Févotte and Christian Doncarli. A uni�ed presentation of blind source separa-
tion for convolutive mixtures using block-diagonalization. In Independent Component
Analysis and Blind Signal Separation (ICA 2003), pages 349�354, 2003.

[74] Simone Fiori. Blind separation of circularly distributed sources by neural extended
APEX algorithm. Neurocomputing Letters, 34:239�252, 2000.

[75] Simone Fiori. Complex-weighted one-unit 'rigid-bodies' learning rule for independent
component analysis. Neural Processing Letters, 15(3):275�282, 2002.

[76] Gary H. Glover. Deconvolution of impulse response in event-related BOLD fMRI.
NeuroImage, 9:416�429, 1999.

[77] Alexei Gorokhov and Philippe Loubaton. Multiple-input multiple-output ARMA sys-
tems: Second order blind identi�cation for signal extractions. In IEEE Signal Pro-
cessing Workshop on Statistical Signal and Array Processing (SSAP '96), pages 348 �
351, Washington, DC, USA, June 1996. IEEE Computer Society.

[78] Alexei Gorokhov and Philippe Loubaton. Subspace-based techniques for blind separa-
tion of convolutive mixtures with temporally correlated sources. IEEE Transactions
on Circuits and Systems�I Fundamental Theory and Applications, 44(9):813 � 820,
September 1997.

[79] Alexei Gorokhov and Philippe Loubaton. Blind identi�cation of MIMO-FIR systems:
A generalized linear prediction approach. Signal Processing, 73:105�124, 1999.

[80] Arthur Gretton, Alexander Smola, Olivier Bousquet, and Bernhard Schölkopf. Kernel
methods for measuring independence. Journal of Machine Learning Research, 6:2075�
2129, December 2005.

[81] Michael J. Grimble. Stochastic control of discrete systems: A separation princi-
ple for Wiener and polynomial systems. IEEE Transactions on Automatic Control,
44(11):2125�2130, 1999.

73



[82] Peter Gruber, Harold W. Gutch, and Fabian J. Theis. Hierarchical extraction of
independent subspaces of unknown dimensions. In Tülay Adali, Christian Jutten,
João Marcos T. Romano, and Allan Kardec Barros, editors, Independent Component
Analysis and Signal Separation (ICA 2009), volume 5441 of Lecture Notes in Computer
Science, pages 259�266, Berlin Heidelberg, 15-18 March 2009. Springer-Verlag.

[83] Duan Guang-Ren, S. Thompson, and Liu Guo-Ping. Separation principle for robust
pole assignment � an advantage of full-order state observers. In Proceedings of the
38th IEEE Conference on Decision and Control, volume 1, pages 76�78, 1999.

[84] T.L. Gunckel and G.F. Francklin. A general solution for linear sampled data control.
Journal of Basic Engineering 85-D, pages 197�201, 1963.

[85] Godfrey H. Hardy and Srinivasa I. Ramanujan. Asymptotic formulae in combinatory
analysis. Proceedings of the London Mathematical Society, 17(1):75�115, 1918.

[86] John B. Hedgepeth, Vincent F. Gallucci, F. O'Sullivan, and Richard E. Thorne. An
expectation maximization and smoothing approach for indirect acoustic estimation of
�sh size and density. ICES Journal of Marine Science, 56(1):36�50, 1999.

[87] Kenneth E. Hild, Hagai T. Attias, and Srikantan S. Nagarajan. An EM method for
spatio-temporal blind source separation using an AR-MOG source model. In Justinian
Rosca, Deniz Erdogmus, José C. Príncipe, and Simon Haykin, editors, Independent
Component Analysis and Blind Signal Separation (ICA 2006), volume 3889 of LNCS,
pages 98�105. Springer, 5-8 March 2006.

[88] Akira Hirose. Complex-Valued Neural Networks: Theories and Applications, volume 5
of Series on Innovative Intelligence. World Scienti�c Publishing Co. Pte. Ltd., 2004.

[89] Aapo Hyvärinen. Independent component analysis for time-dependent stochastic pro-
cesses. In International Conference on Arti�cial Neural Networks (ICANN '98), pages
541�546, Berlin, 1998. Springer-Verlag.

[90] Aapo Hyvärinen. Sparse code shrinkage: Denoising of nongaussian data by maximum
likelihood estimation. Neural Computation, 11:1739�1768, 1999.

[91] Aapo Hyvärinen and Patrik O. Hoyer. Emergence of phase and shift invariant fea-
tures by decomposition of natural images into independent feature subspaces. Neural
Computation, 12:1705�1720, 2000.

[92] Aapo Hyvärinen and Jarmo Hurri. Blind separation of sources that have spatiotem-
poral variance dependencies. Signal Processing, 84:247�254, 2004.

[93] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent Component Analysis.
John Wiley & Sons, 2001.

[94] Aapo Hyvärinen and Urs Köster. FastISA: A fast �xed-point algorithm for independent
subspace analysis. In European Symposium on Arti�cial Neural Networks (ESANN
2006), pages 371�376, Evere, Belgium, 2006. d-side.

[95] Aapo Hyvärinen and Erkki Oja. A fast �xed-point algorithm for independent compo-
nent analysis. Neural Computation, 9(7):1483�1492, 1997.

74



[96] Aapo Hyvärinen and Shohei Shimizu. A quasi-stochastic gradient algorithm for
variance-dependent component analysis. In International Conference on Arti�cial
Neural Networks (ICANN 2006), pages 211�220, Athens, Greece, 2006.

[97] S. Icart and R. Gautier. Blind separation of convolutive mixtures using second and
fourth order moments. In International Conference on Acoustics, Speech and Signal
Processing (ICASSP '96), volume 5, pages 3018�3021, 1996.

[98] Alexander Ilin. Independent dynamics subspace analysis. In European Symposium on
Arti�cial Neural Networks (ESANN 2006), pages 345�350, April 2006.

[99] P.D. Joseph and J.T. Tou. On linear control theory. AIEE Transactions, Applications
and Industry, 30:193�196, 1961.

[100] Tzyy-Ping Jung, Scott Makeig, Te-Won Lee, Martin J. McKeown, Glen Brown, An-
thony J. Bell, and Terrence J. Sejnowski. Independent component analysis of biomedi-
cal signals. In International Workshop on Independent Component Analysis and Signal
Separation (ICA 2000), pages 633�644, June 2000.

[101] Christian Jutten and Jeanny Hérault. Blind separation of sources: An adaptive algo-
rithm based on neuromimetic architecture. Signal Processing, 24:1�10, 1991.

[102] Christian Jutten and Juha Karhunen. Advances in blind source separation (BSS) and
independent component analysis (ICA) for nonlinear systems. International Journal
of Neural Systems, 14(5):267�292, 2004.

[103] R.E. Kalman and R.W. Koepecke. Optimal synthesis of linear sampling control sys-
tems using generalized performance indexes. Transactions of the ASME, pages 1820�
1826, 1958.

[104] Yan Karklin and Michael S. Lewicki. A hierarchical Bayesian model for learning
nonlinear statistical regularities in nonstationary natural signals. Neural Computation,
17(2):397 � 423, 2005.

[105] Hakan Karsl�. Further improvement of temporal resolution of seismic data by au-
toregressive (AR) spectral extrapolation. Journal of Applied Geophysics, 59:324�336,
2006.

[106] Motoaki Kawanabe and Klaus-Robert Müller. Estimating functions for blind separa-
tion when sources have variance dependencies. Journal of Machine Learning Research,
6:453�482, 2005.

[107] Motoaki Kawanabe, Masashi Sugiyama, Gilles Blanchard, and Klaus-Robert Müller.
A new algorithm of non-Gaussian component analysis with radial kernel functions.
Annals of the Institute of Statistical Mathematics, 59(1):57�75, March 2007.

[108] Motoaki Kawanabe and Fabian J. Theis. Estimating non-Gaussian subspaces by char-
acteristic functions. In Justinian Rosca, Deniz Erdogmus, José C. Príncipe, and Simon
Haykin, editors, Independent Component Analysis and Blind Signal Separation (ICA
2006), volume 3889 of Lecture Notes in Computer Science, pages 157�164. Springer,
5-8 March 2006.

[109] Motoaki Kawanabe and Fabian J. Theis. Joint low-rank approximation for extracting
non-Gaussian subspaces. Signal Processing, 87(8):1890�1903, August 2007.

75



[110] Heyjin Kim and Seungjin Choi. Independent subspaces of gene expression data. In
IASTED International Conference on Arti�cial Intelligence and Applications, Inns-
bruck, Austria, 14-16 February 2005.

[111] Heyjin Kim, Seungjin Choi, and Sung-Yang Bang. Membership scoring via inde-
pendent feature subspace analysis for grouping co-expressed genes. In International
Joint Conference on Neural Networks (IJCNN 2003), volume 3, pages 1690 � 1695,
20-24 July 2003.

[112] Jong Kyoung Kim and Seungjin Choi. Tree-dependent components of gene expression
data for clustering. In International Conference on Arti�cial Neural Networks (ICANN
2006), volume 4132 of Lecture Notes in Computer Science, pages 837�846. Springer
Berlin / Heidelberg, 2006.

[113] Sergey Kirshner and Barnabás Póczos. ICA and ISA using Schweizer-Wol� measure of
dependence. In Andrew McCallum and Sam Roweis, editors, International Conference
on Machine Learning (ICML 2008), pages 464�471. Omnipress, 2008.

[114] Kimmo Kiviluoto and Erkki Oja. Independent component analysis for parallel �nancial
time series. In International Conference on Neural Information Processing (ICONIP
'98), volume 2, pages 895�898, Amsterdam, 1998. IOS Press.

[115] Marina L. Kleptsyna, Alain Le Breton, and Michel Viot. Separation principle in
the fractional Gaussian linear-quadratic regulator problem with partial observation.
ESAIM & PS, 12:94�126, 2008.

[116] Florian Kohl, Gerd Wübbeler, Dorothea Kolossa, Clemens Elster, Markus Bär, and
Reinhold Orglmeister. Non-independent BSS: A model for evoked MEG signals with
controllable dependencies. In Tülay Adali, Christian Jutten, João Marcos T. Romano,
and Allan Kardec Barros, editors, Independent Component Analysis and Signal Sepa-
ration (ICA 2009), volume 5441 of Lecture Notes in Computer Science, pages 443�450,
Berlin Heidelberg, 15-18 March 2009. Springer-Verlag.

[117] Urs Köster and Aapo Hyvärinen. A two-layer ICA-like model estimated by score
matching. In Joaquim Marques de Sá, Luís A. Alexandre, Wªodzisªaw Duch,
and Danilo Mandic, editors, International Conference on Arti�cial Neural Networks
(ICANN 2007), volume 4669 of LNCS, pages 798�807. Springer, Heidelberg, 2007.

[118] Tuvia Kotzer, Nir Cohen, and Joseph Shamir. Generalized projection algorithms with
applications to optics and signal restoration. Optics Communications, 156(1):77�91,
1998.

[119] P. Krishnaiah and Jugan Lin. Complex elliptically symmetric distributions. Commu-
nications in Statistics, 15(12):3693�3718, 1986.

[120] Dana Lahat, Jean-François Cardoso, and Hagit Messer. Optimal performance of
second-order multidimensional ICA. In Tülay Adali, Christian Jutten, João Mar-
cos T. Romano, and Allan Kardec Barros, editors, Independent Component Analysis
and Signal Separation (ICA 2009), volume 5441 of Lecture Notes in Computer Science,
pages 50�57, Berlin Heidelberg, 15-18 March 2009. Springer-Verlag.

[121] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. Fetal electrocardiogram
extraction by blind source subspace separation. IEEE Transactions on biomedical
engineering, 47(5), 2000.

76



[122] Erik G. Learned-Miller and John W. Fisher III. ICA using spacings estimates of
entropy. Journal of Machine Learning Research, 4:1271�1295, 2003.

[123] Intae Lee and Te-Won Lee. Nonparametric independent component analysis for cir-
cular complex variables. In International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2007), volume 2, pages 665�668, Honolulu, Hawaii, USA, 15-
20 April 2007.

[124] David N. Levin. Using state space di�erential geometry for nonlinear blind source sep-
aration. In Mike E. Davies, Christopher J. James, Samer A. Abdallah, and Mark D.
Plumbley, editors, Independent Component Analysis and Blind Signal Separation (ICA
2007), volume 4666 of Lecture Notes in Computer Science, pages 65�72, Berlin Hei-
delberg, 9-12 September 2007. Springer-Verlag.

[125] David N. Levin. Using state space di�erential geometry for nonlinear blind source
separation. Journal of Applied Physics, 103, 2008. art. no. 044906.

[126] David N. Levin. Using signal invariants to perform nonlinear blind source separa-
tion. In Tülay Adali, Christian Jutten, João Marcos T. Romano, and Allan Kardec
Barros, editors, Independent Component Analysis and Signal Separation (ICA 2009),
volume 5441 of Lecture Notes in Computer Science, pages 58�65, Berlin Heidelberg,
15-18 March 2009. Springer-Verlag.

[127] Stan Z. Li, XiaoGuang Lv, and HongJiang Zhang. View-based clustering of object
appearances based on independent subspace analysis. In International Conference on
Computer Vision (ICCV'01), volume 2, pages 295�300, Vancouver, BC, Canada, 2001.

[128] Stan Z. Li, XiaoGuang Lv, and HongJiang Zhang. View-subspace analysis of multi-
view face patterns. In IEEE ICCV Workshop on Recognition, Analysis, and Tracking
of Faces and Gestures in Real-Time Systems (RATFG-RTS'01), pages 125�132, Van-
couver, BC, Canada, 2001.

[129] Andrew E. B. Lim, John B. Moore, and Leonid Faybusovich. Separation theorem for
linearly constrained LQG optimal control. Systems & Control Letters, 28(4):227�235,
1996.

[130] Andrew E. B. Lim, John B. Moore, and Leonid Faybusovich. Separation theorem for
linearly constrained LQG optimal control - continuous time case. In Proceedings of the
35th IEEE Conference on Decision and Control, volume 4, pages 4152�4157, 1996.

[131] Ross A. Lippert. Nonlinear Eigenvalue Problems. PhD thesis, Massachusetts Institute
of Technology, 1998.

[132] David G. Luenberger. An introduction to observers. IEEE Transactions on Automatic
Control AC-16, pages 596�602, 1971.

[133] Christophe De Luigi and Eric Moreau. Optimal joint diagonalization of complex sym-
metric third-order tensors. Application to separation of non circular signals. In Mike E.
Davies, Christopher J. James, Samer A. Abdallah, and Mark D. Plumbley, editors,
Independent Component Analysis and Signal Separation (ICA 2007), volume 4666 of
LNCS, pages 25�32. Springer, Heidelberg, 2007.

[134] Adam MacDonald and Stephen Cain. Derivation and application of an anisoplanatic
optical transfer function for blind deconvolution of laser radar imagery. Unconventional
Imaging, 5896:9�20, 2005.

77



[135] Manfredi Maggiore and Kevin Passino. A separation principle for a class of non-UCO
systems. IEEE Transactions on Automatic Control, 48(7):1122�1133, July 2003.

[136] Scott Makeig, Anthony J. Bell, Tzyy-Ping Jung, and Terrence J. Sejnowski. Inde-
pendent component analysis of electroencephalographic data. In Neural Information
Processing Systems (NIPS '96), volume 8, pages 145�151, 1996.

[137] Anke Meyer-Bäse, Peter Gruber, Fabian J. Theis, and Simon Foo. Blind source sepa-
ration based on self-organizing neural network. Engineering Applications of Arti�cial
Intelligence, 19:305�311, 2006.

[138] Terence C. Mills. Time Series Techniques for Economists. Cambridge University
Press, Cambridge, 1990.

[139] Nikolaos Mitianoudis and Michael E. Davies. Audio source separation of convolu-
tive mixtures. IEEE Transactions on Speech and Audio Processing, 11(5):489�497,
September 2003.

[140] Eric Moreau. An any order generalization of JADE for complex source signals. In
International Conference on Acoustics, Speech and Signal Processing (ICASSP 2001),
volume 5, pages 2805�2808, May 2001.

[141] Gou Nakura and Akira Ichikawa. Stabilization of a nonlinear jump system. Systems
& Control Letters, 47:79�85, 2002.

[142] Arnold Neumaier and Tapio Schneider. Estimation of parameters and eigenmodes
of multivariate autoregressive models. ACM Transactions on Mathematical Software,
27(1):27�57, 2001.

[143] Yasunori Nishimori, Shotaro Akaho, Samer A. Abdallah, and Mark D. Plumbley.
Flag manifolds for subspace ICA problems. In International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2007), volume 4, pages 1417�1420, Honolulu,
Hawaii, USA, 15-20 April 2007.

[144] Yasunori Nishimori, Shotaro Akaho, and Mark D. Plumbley. Riemannian optimization
method on the �ag manifold for independent subspace analysis. In Justinian Rosca,
Deniz Erdogmus, José C. Príncipe, and Simon Haykin, editors, Independent Compo-
nent Analysis and Blind Signal Separation (ICA 2006), volume 3889 of LNCS, pages
295�302. Springer, 5-8 March 2006.

[145] Yasunori Nishimori, Shotaro Akaho, and Mark D. Plumbley. Riemannian optimization
method on the generalized �ag manifold for complex and subspace ICA. In MaxEnt
2006: International Workshop on Bayesian Inference and Maximum Entropy Methods
in Science and Engineering, CNRS, Paris, France, 8-13 July 2006.

[146] Yasunori Nishimori, Shotaro Akaho, and Mark D. Plumbley. Natural conjugate
gradient on complex �ag manifolds for complex independent subspace analysis. In
V. K·rková et al., editor, International Conference on Arti�cial Neural Networks
(ICANN 2008), volume 5163 of Lecture Notes in Computer Science - Part I, pages
165�174, Berlin Heidelberg, 2008. Springer-Verlag.

[147] Guido Nolte, Frank C. Meinecke, Andreas Ziehe, and Klaus-Robert Müller. Identifying
interactions in mixed and noisy complex systems. Physical Review E, 73(051913), 2006.

78



[148] Michael Novey and Tülay Adali. Adaptable nonlinearity for complex maximization of
nongaussianity and a �xed-point algorithm. In IEEE Workshop on Machine Learning
for Signal Processing (MLSP 2006), pages 79�84, Maynooth, Ireland, September 2006.

[149] Michael Novey and Tülay Adali. Complex �xed-point ICA algorithm for separation of
QAM sources using gaussian mixture model. In International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2007), volume 2, pages 445�448, Honolulu,
Hawaii, USA, 15-20 April 2007.

[150] Simon Osindero, Max Welling, and Geo�rey E. Hinton. Topographic product models
applied to natural scene statistics. Neural Computation, 18(2):381 � 414, 2006.

[151] Barak A. Pearlmutter and Lucas C. Parra. Maximum likelihood blind source sepa-
ration: A context-sensitive generalization of ICA. In M.C. Mozer, M.I. Jordan, and
T. Petsche, editors, Advances in Neural Information Processing Systems (NIPS '97),
volume 9, pages 613�619. MIT press, 1997.

[152] Michael S. Pedersen, Jan Larsen, Ulrik Kjems, and Lucas C. Parra. A survey of con-
volutive blind source separation methods. In Springer Handbook of Speech Processing.
Springer Press, November 2007.

[153] V.V. Petrov. Central limit theorem for m-dependent variables. In Proceedings of the
All-Union Conference on Probability Theory and Mathematical Statistics, pages 38�44,
1958.

[154] Mark D. Plumbley. Lie group methods for optimization with orthogonality constraints.
In Carlos García Puntonet and Alberto Prieto, editors, Independent Component Anal-
ysis and Blind Signal Separation (ICA 2004), volume 3195 of LNCS, pages 1245�1252.
Springer, 2004.

[155] Barnabás Póczos and András L®rincz. Independent subspace analysis using geodesic
spanning trees. In International Conference on Machine Learning (ICML 2005), vol-
ume 119, pages 673�680, New York, NY, USA, 2005. ACM Press.

[156] Barnabás Póczos and András L®rincz. Independent subspace analysis using k-nearest
neighborhood distances. Arti�cial Neural Networks: Formal Models and their Appli-
cations (ICANN 2005), 3697:163�168, 2005.

[157] Barnabás Póczos and András L®rincz. Non-combinatorial estimation of independent
autoregressive sources. Neurocomputing Letters, 69:2416�2419, 2006.

[158] Barnabás Póczos, Bálint Takács, and András L®rincz. Independent subspace analysis
on innovations. In European Conference on Machine Learning (ECML 2005), volume
3720 of LNAI, pages 698�706. Springer-Verlag, 2005.

[159] Nicolas Quinquis, Isao Yamada, and Kohichi Sakaniwa. E�cient dual Cayley
parametrization technique for ICA with orthogonality constraints. In ICA Research
Network International Workshop (ICARN 2006), pages 123�126, Liverpool, U.K., 18-
19 September 2006.

[160] Ravikiran Rajagopal and Lee C. Potter. Multivariate MIMO FIR inverses. IEEE
Transactions on Image Processing, 12:458 � 465, 2003.

[161] Raymond Rishel. A strong separation principle for stochastic control systems driven
by a hidden markov model. SIAM Journal on Control and Optimization, 32(4), 1994.

79



[162] Michael J. Roan, Mark R. Gramann, Josh G. Erling, and Leon H. Sibul. Blind de-
convolution applied to acoustical systems identi�cation with supporting experimental
results. The Journal of the Acoustical Society of America, 114(4):1988�1996, October
2003.

[163] Reuven Y. Rubinstein and Dirk P. Kroese. The Cross-Entropy Method. Springer, 2004.

[164] Carlos Silva Santos, João Eduardo Kögler Jr., and Emílio Del Moral Hernandez. Us-
ing independent subspace analysis for selecting �lters used in texture processing. In
International Conference on Image Processing (ICIP 2005), volume 1, pages 465�468,
11-14 September 2005.

[165] Tapio Schneider and Arnold Neumaier. Algorithm 808: AR�t - a matlab package for
the estimation of parameters and eigenmodes of multivariate autoregressive models.
ACM Transactions on Mathematical Software, 27(1):58�65, 2001.

[166] Alok Sharma and Kuldip K. Paliwal. Subspace independent component analysis using
vector kurtosis. Pattern Recognition, 39:2227�2232, 2006.

[167] Hao Shen and Knut Hüper. Generalised FastICA for independent subspace analysis. In
International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2007),
volume 4, pages 1409�1412, Honolulu, Hawaii, USA, 15-20 April 2007.

[168] Hao Shen, Knut Hüper, and Martin Kleinsteuber. Block-Jacobi-type methods for log-
likelihood based linear independent subspace analysis. In IEEE International Work-
shop on Machine Learning (IEEE MLSP07), pages 133�138, Thessaloniki, Greece,
27-29 August 2007.

[169] Herbert A. Simon. Dynamic programming under uncertainty with a quadratic criterion
function. Econometrica, 24:74�81, 1956.

[170] Paris Smaragdis. Blind separation of convolved mixtures in the frequency domain.
Neurocomputing, 22:21�34, 1998.

[171] Jordi Solé-Casals, Christian Jutten, and Dinh Tuan Pham. Fast approximation of
nonlinearities for improving inversion algorithms of PNL mixtures andWiener systems.
Signal Processing, 85:1780�1786, 2005.

[172] Harald Stögbauer, Alexander Kraskov, Sergey A. Astakhov, and Peter Grassberger.
Least dependent component analysis based on mutual information. Physical Review
E - Statistical, Nonlinear, and Soft Matter Physics, 70(066123), December 2004.

[173] V. Sundarapandian. A separation theorem for robust pole placement of discrete-
time linear control systems with full-order observers. Mathematical and Computer
Modelling, 43:42�48, 2006.

[174] Ananthram Swami, Georgios Giannakis, and Sanyogita Shamsunder. Multichannel
arma processes. IEEE Transactions on Signal Processing, 42(4):898�913, April 1994.

[175] Seiji Takano. The inequalities of Fisher information and entropy power for dependent
variables. In Proceedings of the 7th Japan-Russia Symposium on Probability Theory
and Mathematical Statistics, July 1995.

[176] Anisse Taleb and Christian Jutten. Source separation in post-nonlinear mixtures.
IEEE Transactions on Signal Processing, 10(47):2807�2820, October 1999.

80



[177] Inder Jeet Taneja. Generalized Information Measures and Their Applications. on-line
book: www.mtm.ufsc.br/~taneja/book/book.html, 2001.

[178] Henri Theil. A note on certainty equivalence in dynamic planning. Econometrica,
25:346�349, 1957.

[179] Fabian J. Theis. A new concept for separability problems in source separation. Neural
Computation, 16:1827�1850, 2004.

[180] Fabian J. Theis. Uniqueness of complex and multidimensional independent component
analysis. Signal Processing, 84(5):951�956, 2004.

[181] Fabian J. Theis. Blind signal separation into groups of dependent signals using joint
block diagonalization. In International Society for Computer Aided Surgery (ISCAS
2005), volume 6, pages 5878�5881, 2005.

[182] Fabian J. Theis. Multidimensional independent component analysis using character-
istic functions. In European Signal Processing Conference (EUSIPCO 2005), 2005.

[183] Fabian J. Theis. Towards a general independent subspace analysis. In Neural Infor-
mation Processing Systems (NIPS 2006), volume 19, 2007.

[184] Fabian J. Theis and Motoaki Kawanabe. Uniqueness of non-gaussian subspace analy-
sis. In Justinian Rosca, Deniz Erdogmus, José C. Príncipe, and Simon Haykin, editors,
Independent Component Analysis and Blind Signal Separation (ICA 2006), volume
3889 of Lecture Notes in Computer Science, pages 917�925. Springer, 5-8 March 2006.

[185] Fabian J. Theis and Motoaki Kawanabe. Colored subspace analysis. In Mike E.
Davies, Christopher J. James, Samer A. Abdallah, and Mark D. Plumbley, editors,
Independent Component Analysis and Signal Separation (ICA 2007), volume 4666 of
LNCS, pages 121�128. Springer, Heidelberg, 2007.

[186] Alexander Samarov Alexandre Tsybakov. Nonparametric independent component
analysis. Bernoulli, 10(4):565�582, 2004.

[187] James V. Uspensky. Asymptotic formulae for numerical functions which occur in the
theory of partitions. Bulletin of the Russian Academy of Sciences, 14(6):199�218,
1920.

[188] Ricardo Vigário, Veikko Jousmäki, Matti Hämäläinen, Riitta Hari, and Erkki Oja.
Independent component analysis for identi�cation of artifacts in magnetoencephalo-
graphic recordings. In Neural Information Processing Systems (NIPS '97), volume 10,
pages 229�235, Cambridge, MA, 1997.

[189] Roland Vollgraf and Klaus Obermayer. Multi-dimensional ICA to separate correlated
sources. In Neural Information Processing Systems (NIPS 2001), volume 14, pages
993�1000, Cambridge, MA, 2001. MIT Press.

[190] Paul von Bünau, Frank C. Meinecke, and Klaus-Robert Müller. Stationary subspace
analysis. In Tülay Adali, Christian Jutten, João Marcos T. Romano, and Allan Kardec
Barros, editors, Independent Component Analysis and Signal Separation (ICA 2009),
volume 5441 of Lecture Notes in Computer Science, pages 1�8, Berlin Heidelberg,
15-18 March 2009. Springer-Verlag.

81



[191] Cabir Vural and William A. Sethares. Blind image deconvolution via dispersion min-
imization. Digital Signal Processing, 16:137�148, 2006.

[192] W.M. Wonham. On the separation theorem of stochastic control. SIAM Journal on
Control, 6(2):312�326, 1968.

[193] Jian-Wu Xu, Deniz Erdogmus, Yadunandana N. Rao, and José Carlos Príncipe. Min-
imax mutual information approach for ICA of complex-valued linear mixtures. In
Independent Component Analysis and Blind Signal Separation (ICA 2004), volume
3195 of LNCS, pages 311�318, 22-24 September 2004.

[194] Arie Yeredor. Blind separation of gaussian sources via second-order statistics with
asymptotically optimal weighting. IEEE Signal Processing Letters, 7(7), 2000.

[195] Stella X. Yu and Jianbo Shi. Multiclass spectral clustering. In International Conference
on Computer Vision (ICCV 2003), volume 1, pages 313�319. IEEE Computer Society,
October 2003.

[196] Andreas Ziehe, Motoaki Kawanabe, Stefan Harmeling, and Klaus-Robert Müller.
Blind separation of post-nonlinear mixtures using linearizing transformations and tem-
poral decorrelation. Journal of Machine Learning Research, 4(7-8):1319�1338, 2004.

82


