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Abstract. The estimation of relevant information theoretical quanti-
ties, such as entropy, mutual information, and various divergences is
computationally expensive in high dimensions. However, for this task,
one may apply pairwise Euclidean distances of sample points, which
suits random projection (RP) based low dimensional embeddings. The
Johnson-Lindenstrauss (JL) lemma gives theoretical bound on the di-
mension of the low dimensional embedding. We adapt the RP technique
for the estimation of information theoretical quantities. Intriguingly, we
find that embeddings into extremely small dimensions, far below the
bounds of the JL lemma, provide satisfactory estimates for the original
task. We illustrate this in the Independent Subspace Analysis (ISA) task;
we combine RP dimension reduction with a simple ensemble method. We
gain considerable speed-up with the potential of real-time parallel esti-
mation of high dimensional information theoretical quantities.
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1 Introduction

The take-off of information theory goes back to the forties [1]. Tremendous appli-
cations have been developed ever since. The computation/estimation of informa-
tion theoretical quantities (entropy, mutual information, divergence) is still slow.
However, consistent estimation of these quantities is possible by nearest neighbor
(NN) methods (see, e.g., [2]) that use the pairwise distances of sample points.
Although search for nearest neighbors can also be expensive in high dimensions
[3], low dimensional approximate isometric embedding of points of high dimen-
sional Euclidean space can be addressed by the Johnson-Lindenstrauss Lemma
[4] and the related random projection (RP) methods [5, 6]. The RP approach
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proved to be successful, e.g., in classification, clustering, search for approximate
NN (ANN), dimension estimation of manifolds, estimation of mixture of Gaus-
sian models, compressions, data stream computation (see, e.g., [7]). We note that
the RP approach is also related to compressed sensing [8].

In this paper we show a novel application of the RP technique: we estimate
information theoretical quantities using the ANN-preserving properties of the
RP technique. We illustrate the method on the estimation of Shannon’s mul-
tidimensional differential entropy for the Independent Subspace Analysis (ISA)
task [9]. The ISA problem extends Independent Component Analysis (ICA) [10]
by allowing multidimensional independent components: at a cocktail party, ICA
(ISA) is searching for (groups of) people talking independently. Another ap-
plication area is image registration, where (i) information-theoretical similarity
criterion can be advantageous, and (ii) high dimensional features should be han-
dled [11, 2] (work in progress). We note that RPs have been applied for ICA,
but the underlying considerations differ from ours: [12] picks out random sam-
ples using Bernoulli variables and decreases the computational load on ICA, [13]
uses RPs for preprocessing before principal component analysis.

The paper is structured as follows: Section 2 formulates the problem do-
main. In Section 3 the random projection technique is adapted to the estimation
of information theoretical quantities and we use it for the estimation of multi-
dimensional differential entropy. Section 4 contains the numerical illustrations.
Conclusions are drawn in Section 5.

2 The ISA Model

Let us define the ISA task. Let us assume the observations x(t) ∈ RD, t = 1, 2, . . .
are linear mixtures of multidimensional independent sources, components sm(t):

x(t) = As(t), (1)

where s(t) concatenates components sm(t) ∈ Rdm ; s(t) = [s1(t); . . . ; sM (t)] ∈ RD

(D =
∑M

m=1 dm). Our assumptions are the following:

1. components are (i) independent: I(s1, . . . , sM ) = 0, where I denotes the
mutual information, (ii) i.i.d. (independent identically distributed) in t, and
(iii) there is at most one Gaussian component among sms.

2. The unknown A ∈ RD×D mixing matrix is invertible.

In the ISA problem one estimates hidden source components (sm) from observa-
tions x(t) alone. (ICA problem: ∀dm = 1). The ISA problem has ambiguities [14,
15]: components of equal dimension can be determined up to permutation and
up to invertible transformation within the subspaces. Thus, for ISA demixing
matrix WISA we have that WISAA ∈ RD×D is a block-permutation (or block-
scaling [16]) matrix. The block-permutation property and the quality of the ISA
estimation can be measured by the ISA adapted and normalized Amari-error
[17], the Amari-index (r) [18], which is 0 for perfect estimation and can not
exceed 1.
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3 Method

We present our RP based approach through the ISA problem. The ISA task can
be viewed as the minimization of the mutual information between the estimated
components, or equivalently as the minimization of the sum of Shannon’s multi-
dimensional differential entropies of the estimated components on the orthogonal
group [19]:

J(W) :=
M∑

m=1

H (ym) → min
W∈OD

, (2)

where y = Wx, y =
[
y1; . . . ;yM

]
, ym ∈ Rdm and dms are given. It has been

conjectured that the solution of the ISA task can be reduced to ICA followed
by grouping of the non-independent ICA elements into ISA subspaces [9]. The
conjecture has been rigorously proven by the ISA Separation Theorem for some
distribution types [20]. It means that the demixing matrix assumes the form
WISA = PWICA (ŷISA = [ŷ1

ISA; . . . ; ŷM
ISA] = PŷICA, ŷm

ISA ∈ Rdm), where the
permutation matrix P ∈ RD×D is to be determined. Estimation of cost function
J involves multidimensional entropy estimation, which is computationally expen-
sive in high dimensions, but can be executed by NN methods consistently [21, 22].
It has been shown in [11] (in the field of image registration with high dimensional
features) that the computational load can be decreased somewhat by (i) divid-
ing the samples into groups and then (ii) computing the averages of the group
estimates. We will combine this parallelizable ensemble approach with the ANN-
preserving properties of RPs and get drastic savings. We suggest the following
entropy estimation method1, for each estimated ISA component v := ŷm

ISA: (i)
divide the T samples {v(1), . . . ,v(T )} into N groups indexed by sets I1, . . . , IN

so that each group contains K samples, (ii) for all fixed groups take the random
projection of v as vn,RP(t) := Rnv(t) (t ∈ In;n = 1, . . . , N ;Rn ∈ Rd′

m×dm),
(iii) average the estimated entropies of the RP-ed groups to get the estimation
Ĥ(v) = 1

N

∑N
n=1 Ĥ(vn,RP). Our particular choice for Rn is given in Section 4.2.

For the optimization of the estimated cost function Ĵ(P) one can apply (i) greedy
optimization (exchange of 2 coordinates if it decreases Ĵ), or (ii) global meth-
ods of higher computational burden, e.g., the cross-entropy (CE) method [23]
adapted to permutation searches, because the estimation of Ĵ is quick.

4 Illustrations

Here, we illustrate the efficiency of the proposed RP based entropy estimation.
Section 4.1 is about test cases. Numerical results are presented in Section 4.2.

1 The idea can be used for a number of information theoretical quantities, provided
that they can be estimated by means of pairwise Euclidean distances of the samples.
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4.1 Databases

We define three databases [20] to study our RP based ISA identification algo-
rithm. In the d-spherical test hidden sources sm were spherical random vari-
ables. Since spherical variables assume the form v = ρu, where u is uniformly
distributed on the d-dimensional unit sphere, and ρ is a non-negative scalar ran-
dom variable independent of u, they can be given by means of ρ (see Fig. 1(a)).
In the d-geom dataset sms were random variables uniformly distributed on
d-dimensional geometric forms (see Fig. 1(b)). In the all-k-independent database,
the d-dimensional hidden components v := sm were created as follows: coordi-
nates vi (i = 1, . . . , k) were independent uniform random variables on the set
{0,. . . ,k-1}, whereas vk+1 was set to mod(v1 + . . . + vk, k). In this construction,
every k-element subset of {v1, . . . , vk+1} is made of independent variables.

(a) (b)

Fig. 1: Illustration of the (a): d-spherical (d = 2), and (b): d-geom (d = 3) databases. ρ
of the stochastic representation on the left (right): exponential with parameter µ = 1
(lognormal with parameters µ = 0, σ = 1).

4.2 Simulations

Results on databases d-spherical, d-geom, and all-k-independent are provided
here. These experimental studies focused on the following issues:

1. What dimensional reduction can be achieved in the entropy estimation of
the ISA problem by means of random projections?

2. What speed-up can be gained with the RP dimension reduction?
3. What are the advantages of our RP based approach in global optimization?

In our experiments the number of components was minimal (M = 2). We used
the Amari-index to measure and compare the performance of the different meth-
ods. For each individual parameter, 50 random runs were averaged. Our parame-
ters included T , the sample number of observations x(t) and d, the dimension of
the components (d = d1 = d2

2). We also studied different estimations of the ISA

2 This constraint was used only for the evaluation of the performance (Amari-index)
of the algorithm.
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cost function: we used the RADICAL procedure3 [24] and the NN method [19]
for entropy estimation and the Kernel Canonical Correlation Analysis (KCCA)
[25] for mutual information estimation. The reduced dimension d′ in RP and the
optimization method (greedy, global (CE), NCut [26]) of the ISA cost were also
varied in different tests. Random run means random choice of quantities A and
s. The ICA step was performed by the well-known fastICA method. The size
of the randomly projected groups was set to |In| = 2, 000, except for the case
d = 50, when it was 5, 000. RP was realized by the database-friendly projection
technique, i.e., the rn,ij coordinates of Rn were drawn independently from dis-
tribution P (rn,ij = ±1) = 1/2, but more general constructions could also be
used [5, 6].

In the first study we were interested in the limits of the RP dimension re-
duction. We increased dimension d of the subspaces for the d-spherical and the
d-geom databases (d = 2, 10, 20, 50) and studied the extreme case, the RP di-
mension d′ was set to 1. Results are summarized in Fig. 2(a)-(b) with quartiles
(Q1, Q2, Q3). We found that the estimation error decreases with sample number
according to a power law [r(T ) ∝ T−c (c > 0)] and the estimation works up to
about d = 50. For the d = 50 case we present notched boxed plots (Fig. 2(c)).
We show the quartiles and depict the outliers, i.e., those that fall outside of in-
terval [Q1−1.5(Q3−Q1), Q3 +1.5(Q3−Q1)] by circles. According to the figure,
the error of estimation drops for sample number T = 100, 000 for both types of
datasets: for databases 50-geom and 50-spherical, respectively, we have 5 and 9
outliers from 50 random runs and thus with probability 90% and 82%, the esti-
mation is accurate. As for question two, we compared the efficiency (Q1, Q2, Q3)
of our method for d = 20 with the NN methods by RP-ing into d′ = 1 and d′ = 5
dimensions. Results are shown in Fig. 2(e)-(f).4 The figure demonstrates that
for database 20-geom performances are similar, but for database 20-spherical
our method has smaller standard deviation for T = 20, 000. At the same time
our method offers 8 to 30 times speed-up at T = 100, 000 for serial implementa-
tions. Figure 3 presents the components estimated by our method for dimensions
d = 2 and d = 50, respectively. With regard to our third question, the ISA prob-
lem can often be solved by grouping the estimated ICA coordinates based on
their mutual information. However, this method, as illustrated by (Q1, Q2, Q3)
in Fig. 2(d), does not work for our all-4-independent database. Inserting the
RP based technique into global optimization procedure, we get accurate estima-
tion for this case, too. CE optimization was used here. Results are presented in
Fig. 2(d).

3 We chose RADICAL, because it is consistent, asymptotically efficient, converges
rapidly, and it is computationally efficient.

4 We note that for d = 20 and without dimension reduction the NN methods are very
slow for the ISA tasks.
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Fig. 2: Performance of the RP method. Notations: ‘RPd′ - method of cost estimation
(method of optimization if not greedy)’. (a), (b): accuracy of the estimation versus the
number of samples for the d-spherical and the d-geom databases on log-log scale. (c):
notched boxed plots for d = 50, (d): Performance comparison on the all-4-independent
database between the RP method using global optimization and the NCut based group-
ing of coordinates using the pairwise mutual information graph (on log-log scale). (e)-
(f): Accuracy and computation time comparisons with the NN based method for the
20-spherical and the 20-geom databases (on log-log scale).
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(a) (b) (c)

(d) (e)

Fig. 3: Estimated components and Hinton-diagrams. Number of samples: T = 100, 000.
Databases 2-geom: (a)-(c), 50-spherical : (d), 50-geom: (e). (a): observed signals x(t),
(b): Hinton-diagram: the product of the mixing matrix of the ISA task and the esti-
mated demixing matrix is approximately a block-permutation matrix with 2×2 blocks,
(c): estimated components ŝm, recovered up to the ISA ambiguities, (d)-(e): Hinton-
diagrams of the 50-spherical and the 50-geom tests, respectively. Hinton-diagrams have
average Amari-indices: for (b) 0.2%, for (d) 1%, for (e) 12%.

5 Conclusions

In this paper we have shown that random projections (RP) can be used for the
estimation of information theoretical quantities. The underlying thought of our
approach is that RP approximately preserves the Euclidean distances between
sample points and that a number of information theoretical quantities can be
estimated from the pairwise distances of sample points. The proposed technique
has been demonstrated on the estimation of Shannon’s multidimensional differ-
ential entropy for the solution of the Independent Subspace Analysis task. The
promise of this work is a considerable speed-up that results from the RP tech-
nique and the parallel nature of the ensemble method that we applied. Promising
applications emerge – among many others – in the field of image registration.
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