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Department of Information Systems, Eötvös Loránd University, Budapest, Hungary

szzoli@cs.elte.hu, lorincz@inf.elte.hu

1. Introduction

Goal: estimation of high dimensional information theoretical
quantities (entropy, mutual information, divergence).

• Problem: computation/estimation is quite slow.
• Consistent estimation is possible by nearest neigh-

bor (NN) methods [1] → pairwise distances of sample
points:
– expensive in high dimensions [2],
– approximate isometric embedding into low dimension

is possible (Johnson-Lindenstrauss (JL) Lemma [3],
random projection (RP) [4]),

– idea: estimation using the embedded low dimen-
sional samples.

Demo: estimation of multidimensional differential entropy
→ Independent Subspace Analysis (ISA) task [5].

2. The ISA Model

Cocktail party with independent groups of people.
ISA Equations:

• Observations x(t) ∈ R
D are linear mixtures of multidi-

mensional independent sources, components sm(t):

x(t) = As(t), (1)

where s(t) = [s1(t); . . . ; sM(t)] ∈ R
D, sm(t) ∈ R

dm.
• Goal of ISA: estimate hidden source components (sm)

from observations x(t). ICA problem: ∀dm = 1.

ISA Assumptions:
• Components are

– independent: I(s1, . . . , sM) = 0,
– i.i.d. (independent identically distributed) in t,
– there is at most one Gaussian among sms.

• The unknown A ∈ R
D×D mixing matrix is invertible.

ISA Ambiguities [6, 7]:
• permutation (components of equal dimension),
• invertible transformation within the subspaces.

ISA Performance Measure:
• ISA ambiguities ⇒ G = WISAA is ideally a block-

permutation matrix.
• Its measure: Amari-index (r = r(G) ∈ [0, 1])

– ICA: Amari-error [8]
[7]
−−→ ISA

[9]
−−→ ISA, ∈ [0, 1],

– r = 0 ↔ perfect estimation, r = 1 ↔ worst possible.

3. Method

• ISA as entropy optimization on the orthogonal group: ISA
task ⇔ minimization of the mutual information between
the estimated components ⇔ [10]:

J(W) :=

M∑

m=1

H (ym) → min
W∈OD

. (2)

Here, y = [y1; . . . ;yM ] = Wx, ym ∈ R
dm; given dms.

• ISA Separation Theorem ([5]–conjecture, [11]–proof for
certain distribution types):

ISA = ICA + clustering.

• Cost Estimation [Ĥ(v), v := ŷm
ISA]:

1. divide the T samples {v(1), . . . ,v(T )} into N groups
(index sets: I1, . . . , IN ; |In| = K, ∀n),

2. for all fixed groups take the random projection of v:
vn,RP(t) := Rnv(t) (t ∈ In;∀n;Rn ∈ R

d′m×dm),
3. average the estimated entropies [12] (parallelizable en-

semble approach) of the RP-ed groups to get the esti-
mation: Ĥ(v) = 1

N

∑N
n=1 Ĥ(vn,RP).

4. Illustrations

Databases [11]:
• d-spherical : sm ∈ R

d were spherical random variables
(stochastic representation: v = ρu, see Fig. 1(a)).

• d-geom: sm ∈ R
ds were random variables uniformly

distributed on geometric forms (see Fig. 1(b)).
• all-k-independent : every k-element subset of
{sm

1 , . . . , sm
k+1} is made of independent variables.

(a) (b)

Figure 1: (a): d-spherical (d = 2), (b): d-geom (d = 3). (a):
ρ on the left (right): exp(µ = 1), (lognormal(µ = 0, σ = 1)).

Questions:
1. What dimensional reduction can be achieved in the en-

tropy estimation of the ISA problem by means of ran-
dom projections?

2. What speed-up can be gained with the RP dimension
reduction?

3. What are the advantages of our RP based approach in
global optimization?

Illustrations: In the test examples

• number of components: minimal (M = 2).
• performance measure: Amari-index over 50 random

(A, s) runs.
• dimension of the components: d = d1 = d2–used only

in the Amari-index.
• compared ISA cost functions:

– H: RADICAL [13], NN method [10],
– I: Kernel Canonical Correlation Analysis (KCCA) [14].

• optimization method of Ĵ(P): greedy, global (CE) [15],
NCut [16],

• ICA step: fastICA.
• RP group sizes: |In| = 2, 000 (and 5, 000 for d = 50).
• RP (Rn): database-friendly projection P (rn,ij = ±1) =

1/2; possible more general constructions [4].

Answers: quartiles (Q1, Q2, Q3),

1. d-spherical, d-geom databases: d = 2, 10, 20, 50; ex-
treme RP case (d′ = 1). Fig. 2(a)-(b):
• power law estimation error decrease:

r(T ) ∝ T−c (c > 0). (3)

• estimation works up to about d = 50, Fig. 2(c): for
sample number T = 100, 000 5 and 9 outliers (outside
of interval [Q1− 1.5(Q3−Q1), Q3 + 1.5(Q3−Q1)]) from
50 random runs ↔ 90% and 82% accuracy.

Demo: in Fig. 3 (d = 2) and Fig. 4 (d = 50).
2. Comparison with NN; d = 20, RP dimensions d′ = 1, 5,

Fig. 2(e)-(f):
• similar performances,
• 8 to 30 times speed-up at T = 100, 000 for serial im-

plementations.
3. When MI-graph clustering fails, e.g., for the all-4-

independent database: RP with CE provides accurate
estimations, see Fig. 2(d).
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Figure 2: Performance of the RP method. Notations: ‘RPd′

- method of cost estimation (method of optimization if not
greedy)’. (a), (b): accuracy for the d-spherical and the d-
geom databases, log-log scale. (c): notched boxed plots for
d = 50. (d): RP+global optimization vs. pairwise MI+NCut
on the all-4-independent dataset, log-log scale. (e)-(f): ac-
curacy, computation time comparisons with NN for the 20-
spherical and the 20-geom databases (on log-log scale).

Figure 3: Illustration on the 2-geom test (T = 100, 000). Left:
observed signals x(t); center: Hinton-diagram of G, ideally
block-permutation matrix with 2 × 2 blocks; right: estimated
components ŝm, recovered up to the ISA ambiguities.

Figure 4: Hinton-diagrams with average Amari-indices on
the 50-spherical (left) and the 50-geom (right) datasets.
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