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Goal: estimation of high dimensional information theoretical
guantities (entropy, mutual information, divergence).

e Problem: computation/estimation is quite slow.

e Consistent estimation is possible by nearest neigh-
bor (NN) methods [1] — pairwise distances of sample
points:

— expensive in high dimensions [2],

— approximate isometric embedding into low dimension
IS possible (Johnson-Lindenstrauss (JL) Lemma [3],
random projection (RP) [4]),

—Idea: estimation using the embedded low dimen-
sional samples.

Demo: estimation of multidimensional differential entropy
— Independent Subspace Analysis (ISA) task [5].

Cocktail party with independent groups of people.
ISA Equations:

e Observations x(t) € R” are linear mixtures of multidi-
mensional independent sources, components s"(t):

x(t) = As(t), (1)

where s(t) = [st(¢);...;sM(t)] e RP, s"(t) € R,
e Goal of ISA: estimate hidden source components (s'")
from observations x(t). ICA problem: Vd,,, = 1.
ISA Assumptions:

e Components are
—independent: I(s!,... sM) =0,
—1.1.d. (iIndependent identically distributed) in ¢,
—there is at most one Gaussian among s'’'s.

e The unknown A € RP*P mixing matrix is invertible.

ISA Ambiguities [6, 7]:
e permutation (components of equal dimension),
e invertible transformation within the subspaces.
ISA Performance Measure:
¢ |ISA ambiguities = G = W gpA Is Iideally a block-
permutation matrix.
e Its measure: Amari-index (r = r(G) € [0, 1])

—ICA: Amari-error [8] [—7L ISA ﬂ ISA, € [0, 1],

—r = (0 < perfect estimation, r = 1 < worst possible.

¢ ISA as entropy optimization on the orthogonal group: ISA
task < minimization of the mutual information between
the estimated components < [10]:

M
J(W) = m; H(y™) — angl) . (2)

Here, y = [yl:....yM] = Wx, y" € R%: given d,,s.
e ISA Separation Theorem ([5]-conjecture, [11]—proof for
certain distribution types):
ISA = ICA + clustering.
e Cost Estimation [H(v), v := ]2,
1. divide the T" samples {v(1),...,v(T)} into N groups
(index sets: Iy,...,Iy; |In]| = K, Vn),
2. for all fixed groups take the random projection of v:
v, Rp(t) = Rpv(t) (€ In;Vn; Ry, € R&m*dm),
3. average the estimated entropies [12] (parallelizable en-

semble aApproach) of the BP—ed groups to get the esti-
mation: H(v) =+ >, H(v, rp)-

Databases [11]:
e d-spherical: s € R were spherical random variables
(stochastic representation: v = pu, see Fig. 1(a)).
e d-geom: s € R?s were random variables uniformly
distributed on geometric forms (see Fig. 1(b)).

e all-k-independent: every k-element subset of
{s1",...,s}4} Is made of independent variables.
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Figure 1: (a): d-spherical (d = 2), (b): d-geom (d = 3). (a):
p on the left (right): exp(x = 1), (lognormal(i = 0, o = 1)).

Questions:

1. What dimensional reduction can be achieved in the en-
tropy estimation of the ISA problem by means of ran-
dom projections?

2. What speed-up can be gained with the RP dimension
reduction?

3. What are the advantages of our RP based approach in
global optimization?

lllustrations: In the test examples

e NnumMber of components: minimal (M = 2).

e performance measure:. Amari-index over 50 random
(A, s) runs.

e dimension of the components: d = d; = dy—used only
In the Amari-index.

e compared ISA cost functions:
— H: RADICAL [13], NN method [10],
— |: Kernel Canonical Correlation Analysis (KCCA) [14].

e Optimization method of J(P): greedy, global (CE) [15],
NCut [16],

e ICA step: fastiCA.

e RP group sizes: |I,| = 2,000 (and 5, 000 for d = 50).

e RP (R;): database-friendly projection P(r, ;; = +1) =
1/2; possible more general constructions [4].

Answers: quartiles (Q1, Q2, Q3),

1. d-spherical, d-geom databases: d = 2,10, 20, 50; ex-
treme RP case (d' = 1). Fig. 2(a)-(b):
e power law estimation error decrease:

r(T)xT ¢ (c>0). (3)

e estimation works up to about d = 50, Fig. 2(c): for
sample number 7" = 100, 000 5 and 9 outliers (outside

of interval |1 — 1.5(Q3 — Q1), Q3+ 1.5(Q3 — Q1)]) from
50 random runs < 90% and 82% accuracy.

Demo: in Fig. 3 (d = 2) and Fig. 4 (d = 50).

2. Comparison with NN; d = 20, RP dimensions d’ = 1, 5,
Fig. 2(e)-(f):
¢ similar performances,
e 8 to 30 times speed-up at 17" = 100, 000 for serial im-

plementations.

3. When MI-graph clustering fails, e.g., for the all-4-
Independent database: RP with CE provides accurate
estimations, see Fig. 2(d).
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Figure 2: Performance of the RP method. Notations: ‘RP
- method of cost estimation (method of optimization if not
greedy)’. (a), (b): accuracy for the d-spherical and the d-
geom databases, log-log scale. (c): notched boxed plots for
d = 50. (d): RP+global optimization vs. pairwise MI+NCut
on the all-4-independent dataset, log-log scale. (e)-(f): ac-
curacy, computation time comparisons with NN for the 20-
spherical and the 20-geom databases (on log-log scale).
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Figure 3: lllustration on the 2-geom test (7" = 100, 000). Left:
observed signals x(t); center: Hinton-diagram of G, ideally
block-permutation matrix with 2 x 2 blocks; right: estimated
components 8", recovered up to the ISA ambiguities.

Figure 4. Hinton-diagrams with average Amari-indices on
the 50-spherical (left) and the 50-geom (right) datasets.
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