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Abstract

It has been shown recently that the identi�cation of mixed hidden independent auto-
regressive processes (Independent Process Analysis, IPA), under certain conditions,
can be free from combinatorial explosion. The key is that IPA can be reduced (i) to
Independent Subspace Analysis and then, via a novel decomposition technique called
Separation Theorem, (ii) to Independent Component Analysis. Here, we introduce
an iterative scheme and its neural network representation that takes advantage of the
reduction method and can accomplish the IPA task. Computer simulation illustrates
the working of the algorithm.

Key words: independent process analysis, neural network implementation

1 Introduction

Independent Component Analysis (ICA) (see, e.g., [7] and references therein)
aims to recover mixed independent hidden sources. There is a broad range
of applications for ICA, e.g., blind source separation and deconvolution [1],
feature extraction [2], and denoising [6]. ICA algorithms are 1-dimensional: all
sources are assumed to be independent real valued random variables. How-
ever, applications where not all, but only certain groups of the sources are
independent may have high relevance in practice. In this case, independent
sources can be multidimensional. For example, consider the generalization of
the cocktail-party problem, where independent groups of people are talking
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about independent topics, or that more than one group of musicians are play-
ing at the party. The separation task requires an extension of ICA, which can
be called Independent Subspace Analysis (ISA), see, e.g., [13].

Most practical problems exhibit considerable temporal correlations. In such
cases, one may take advantage of Independent Process Analysis (IPA)
[5,3,10,4,11], a generalization of ISA for auto-regressive (AR) processes: 1-
dimensional sources are assumed in [5], extensions to AR-mixture of Gaus-
sians are presented in [3,4], and multi-dimensional sources are considered in
[10,11]. The IPA task can be rewritten as the identi�cation of Linear Dynam-
ical Systems (LDS) with state space formalization. Further, the identi�cation
task can be reduced to the ISA task using linear prediction and the concept
of innovations. Typical ISA solutions might need the minimization of mutual
information between the estimated processes and the search for (i) the optimal
number and (ii) the dimensions of the processes [10]. However, such estima-
tions can be computationally intensive and the dimension search is subject
to combinatorial explosion. Recently, a two-phase algorithm that avoided the
combinatorial explosion under certain conditions has been introduced for IPA
[9]. Here, an iterative scheme that enables neural interpretation is put forth
after reviewing the IPA problem. Illustrative numerical simulations are also
provided.

2 The IPA Model

Suppose that we have d pieces of mi-dimensional (i = 1, . . . , d) �rst order
auto-regressive (AR) processes

si(t + 1) = Fisi(t) + νi(t), (1)

where Fi ∈ Rmi×mi , si(t) ∈ Rmi , and νi(t) ∈ Rmi are non-Gaussian, spatially
independent (i.e., νi is independent from νj if i 6= j) and temporally indepen-
dent and identically distributed (i.i.d.) noises. From now on, all the mi are set
equal (mi = m ∀i), but all results concern the general case.

Sources si are the hidden processes of the external world. Only their mixture,

x(t) =As(t), (2)

where s(t) = [s1(t); . . . ; sd(t)] ∈ Rdm is the concatenated form of the sources
and A ∈ Rmd×md is the mixing matrix, is available for observation. Equa-
tions (1)-(2), together, form an LDS. Estimations of LDS parameters exist
for Gaussian noise ν(t) = [ν1(t); . . . ; νd(t)] ∈ Rdm [8], but here noise ν is non-
Gaussian. We assume that the matrix A is invertible. Then it su�ces to solve
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the Independent Subspace Analysis (ISA) problem [10], where Fi = 0,∀i (see
later). Note that ICA is recovered if Fi = 0 for all i and if m = 1.

Let F ∈ Rmd×md denote the block-diagonal matrix constructed from matrices
F1, . . .Fd, i.e., F = blockdiag(F1, . . . ,Fd). Then the goal of IPA is to identify
the system, that is, to estimate F,A and s(t) related as

s(t + 1) =Fs(t) + ν(t), (3)

x(t) =As(t). (4)

Like ICA, IPA has undercomplete, complete, and overcomplete cases that cor-
respond to dim(x) > dim(s), dim(x) = dim(s) dim(x) < dim(s), respectively.
We treat the complete IPA task. The extension to undercomplete IPA may
use principal component analysis. The overcomplete IPA task is challenging
and it is not yet solved.

3 Estimation of the IPA Model

Here, we introduce a novel method that (i) can solve the IPA identi�cation
problem without combinatorial e�orts, and (ii) has a neural implementation.
Note that stochastic process {x(t)} is also an AR process (see Eqs. (3)-(4)):

x(t + 1) = As(t + 1) =AFs(t) + Aν(t) = AFA−1x(t) + Aν(t). (5)

Let E denote the expectation operator. The innovation e(t) of the {x(t + 1)}
process is e(t) = x(t + 1) − E[x(t + 1)|x(t),x(t − 1), . . .]. It holds that process
e(t) is equal to the noise of the AR process x(t), i.e., to Aν(t) and that
E[x(t + 1)|x(t),x(t − 1), . . .] = Mx(t) with M = AFA−1, where matrix M is
the `predictive matrix' of the AR process. However, e(t) = Aν(t) is i.i.d, and
thus the IPA problem is reduced to an ISA problem, which works on e(t).

It has been observed that ICA can estimate components of the subspaces of
many ISA tasks [10]. The ISA separation theorem provides su�cient conditions
for this peculiar property. The proof can be found in [12].

When the separation theorem holds, we can take advantage of the hidden
AR processes to uncover the unknown permutations of the coordinates of
source s. The dimensions of the subspaces can be revealed by the estimation
of matrix F [9]. In [9], (a) matrix M was estimated, (b) the innovations were
computed, (c) ICA was used to estimate matrix W = A−1, and (d) matrix F
was approximated by observing that s(t + 1) = A−1MAs(t) + A−1(Aν(t)).
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According to the ISA separation theorem, matrix WMW−1 equals to the
block-diagonal matrix F up to permutation and the sign of the components.
Thus, F couples coordinates of source s and couplings form blocks in matrix
F. In practice, matrix F̂, the estimation of F, is only nearly block-diagonal
(apart from permutation). The coupled components can be found by the fol-
lowing procedure. We say that two coordinates i and j are F̂-`connected' if
max(|F̂ij|, |F̂ji|) > ε, where ε ≥ 0 and in the ideal case ε = 0. Then we group

the F̂-`connected' coordinates into separate subspaces as follows: (1) Choose
an arbitrary coordinate i and group all j 6= i coordinates to it which are
F̂-`connected' with it. (2) Choose an arbitrary and not yet grouped coordi-
nate. Find its connected coordinates. Group them together. (3) Continue until
all components are grouped. This is the gathering procedure and it is fast. In
the worst case, it is quadratic in the number of the coordinates.

Our gathering procedure may fail if one of the matrices
(
Wd

ICA

)
Fd

(
Wd

ICA

)T

is itself a block-diagonal matrix made of more than 1 block, or if it becomes
block-diagonal during the estimation process (degenerate case). Here, Wd

ICA

denotes the component of separation matrix WICA that corresponds to the
dth sub-process. In our simulations, degenerate cases did appear, but we found
that they became non-degenerate if the sample number was increased.

In the IPA identi�cation problem, the estimation of F̂ and Ŵ can be ac-
complished step-by-step. Now, we provide our novel two-phase iterative IPA
identi�cation method. Neural implementation is detailed afterwards.

Initialization: random F̂, random orthogonal Ŵ, Â := Ŵ−1(= ŴT )
Repeat

Phase I:

Compute new estimations of Ŵ and Â by using ICA on estimated

innovations of x(t), that is, on ê(t) = x(t + 1) − ÂF̂Ŵx(t).
Phase II:

Improve AR �t on the estimated sources ŝ(t) := Ŵx̂(t) ⇒ F̂
Source estimation (ν̂(t)) at any iteration step:

ν̂(t) = permutation of Ŵ(x(t + 1) − ÂF̂Ŵx(t))

according to F̂-`connectedness',

The individual steps of the two-phase process, i.e., ICA, the estimation of the
predictive matrix of the AR process, and matrix inversion become neural in
the autoassociative reconstruction network depicted in Fig. 1(a). The neural
network has two layers. The lower layer receives input x(t), the so called recon-

structed input x̂(t) = Âŝ(t) and computes the di�erence, the reconstruction

error ê(t) = x(t) − x̂(t) = x(t) − Âŝ(t). Thus, the reconstruction error esti-
mates the innovation of the x(t) process. The upper layer holds the hidden
representation ŝ(t). There are three matrices: the bottom-up estimation of the
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separation matrix Ŵ, the estimated predictive matrix F̂ of the upper layer,
and the top-down estimation of the mixing matrix Â.

The two-phase learning process can be implemented in neural networks:

Phase I: Matrix Ŵ receives the reconstruction error and is tuned by ICA
to separate. Rule ∆Ŵ(t) = α(t)

[
I − 2f(Ŵ(t)ê(t))(Ŵ(t)ê(t))T

]
Ŵ(t), where

α(t) denotes the time dependent learning rate, is neural [7] and could be used.

Phase II:Matrix F̂ in the hidden layer learns to predict by minimizing objec-
tive J1(F̂) = 1

2
‖ŝ(t+1)− F̂ŝ(t)‖2. Top-down matrix Â learns to invert matrix

Ŵ by minimizing objective J2(Â) = 1
2
‖x(t + 1) − Âŝ(t + 1)‖2. Taking the

gradients of J1 and J2, local Hebbian learning rules emerge:

∆Â(t) = β(t)∇ÂJ1[Â(t)] = β(t)ê(t)ŝT (t + 1), (6)

∆F̂(t) = γ(t)∇F̂J2[F̂(t)] = γ(t)ν̂(t)ŝT (t). (7)

However, we note that the gathering procedure is not in a neural form, yet.

4 Results

We shall demonstrate the working of the algorithm. The task was to identify
the hidden processes from the mixed AR signals without using our knowledge
about the number and the dimensions of the hidden processes. The hidden
AR components were de�ned by their driving noises νi (Eq. (1)), and two test
were carried out. In the �rst case, the conditions of the separation theorem
were satis�ed: 3 pieces of 4-dimensional noise sources with spherical distri-
butions were chosen; this is the 4-spherical database, total dimension is 12.
In the other case, noise sources were constructed from images of tale �gures.
These images were considered as density functions and νis were generated by
sampling 2-dimensional coordinates proportional to the corresponding pixel
intensities. This is the tale database. The Fi predictive matrices of the si AR
processes were chosen randomly under the constraint that the AR processes
were stable. Mixing matrix A was chosen randomly from the orthogonal group.
The two-phase algorithm was applied for the mixed data in batch learning that
avoids parameter dependencies for α(t), β(t), and γ(t). For speed, FastICA was
applied [7]. Coordinates of matrix F̂ were initialized with independent, uni-
formly distributed random variables over [0, 1]. The normalized Amari-error
was used to measure the precision of the estimation. This error takes values in
interval [0,1]; 0 (1) means perfect (worst possible) estimation. 50 independent
runs were averaged, sample number T changed between 1, 000 and 20, 000.
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The quality of the gathering procedure depends on parameter ε. We have
studied (i) the Amari-error for a suitable ε as a function of the sample and
iteration numbers, and (ii) the dynamic range, i.e., the ratio of the highest and
lowest `good ε values': We divided interval [0, Fm] (Fm = maxi,j |F̂ij|) into 200
equal parts. For di�erent sample and iteration numbers in both databases
and at each division point we used the gathering procedure to group the ICA
elements. For each of the 50 random trials we have computed the Amari-errors
separately. For the smallest Amari-error, we collected the corresponding set
of ε's, these are the `good ε values'. Then we took the ratio of the largest and
smallest ε values in this set and averaged the ratios over the 50 runs. The
average is called the dynamic range.

Figure 1 summarizes our �ndings for the tale and the 4-spherical tasks. Ac-
cording to the �gure, there are good ε parameters for the F̂-`connectedness'
already for 1,000-2,000 samples: our neural method can �nd the hidden com-
ponents with high precision. Increasing the sample number the Amari-error
decreases, it is 1.54% for the tale and 0.85% for the 4-spherical databases, at
20, 000 samples on the average. Two iterations were satisfactory for the opti-
mization, further iterations did not improve the results. The dynamic range is
better by a factor about 2.5 for the 4-spherical database that satis�es the con-
ditions of the separation theorem. Using 20, 000 samples, the dynamic range
was about 10 for the tale database. These results demonstrate the robustness
of the neural approach.

5 Summary

Recently, it has been shown that for hidden and mixed AR processes, which
are driven by non-Gaussian noises, ICA is satisfactory for the estimation of
the independent directions, provided that innovations satisfy certain techni-
cal conditions. It then followed that combinatorial searches for the hidden
processes can be lessened or fully avoided except for degenerate cases. Here,
we have introduced an iterative approach and its neural network architecture
that iterates in two-phases and enables the �nding and the grouping of the
hidden components. In one phase, the network makes use of non-linear Heb-
bian learning rule that estimates the ICA components. In the other phase,
Delta-rules tune the predictive matrix of the hidden process and the inverse of
the ICA matrix that improves the ICA estimation of the iterative procedure.
Numerical studies indicate the robustness of the neural algorithm.
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Fig. 1. Neural network implementation and computer study. (a): neural network
and its two-phase operation. Gray matrix: not trained, gray vector: not used in
the respective phases. (b): noise sources, sample number 20000. (c): 2-dimensional
projections of the observed mixed signal, (d): estimated noise sources (êi). (e)-(f)-(g):
F̂ in 0th, 1st, and 2nd iterations, (h): like (g), but after the gathering procedure. (i):
Amari-error as a function of iterations and sample number for the tale (black lines
with circles) and the 4-spherical (gray lines with squares) databases, (j): dynamic
range vs. number of samples for the two databases after the second iteration.
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