
Multilayer Kerceptron∗

Zoltán Szabó, András Lőrincz

Department of Information Systems, Faculty of Informatics
Eötvös Loránd University
Pázmány Péter sétány 1/C
H-1117, Budapest, Hungary

e-mail: szzoli@cs.elte.hu, andras.lorincz@elte.hu

Abstract

Multilayer Perceptrons (MLP) are formulated within Support Vector
Machine (SVM) framework by constructing multilayer networks of SVMs.
The coupled approximation scheme can take advantage of generalization
capabilities of the SVM and the combinatory feature of the hidden layer
of MLP. The network, the Multilayer Kerceptron (MLK) assumes its own
backpropagation procedure that we shall derive here. Tuning rule will
be provided for quadratic cost function, with regularization capability as
well. A further appealing property of our approach is that by the aid of
the so called kernel trick the MLK computations can be performed in the
dual space.

1 Introduction

Multilayer Perceptrons (MLP) and Support Vector Machines (SVM) have been
extensively studied in the literature. For an excellent review, see [3, 2] and
references therein. Here we extend SVMs to multi-layer structures and provide
the backpropagation tuning rules for this system. By applying the so called
kernel-trick, we embed the problem into a space having scalar product. For
other approaches using the same trick, see, e.g., [4, 6, 7].

2 Network Architecture

2.1 Notations

Numbers (a), vectors (a), and matrices (A) are denoted by different letter types.
AT denotes the transpose of matrix A. Extension of vector a by component a is

∗Journal of Applied Mathematics, 24:209-222, 2007.

1



written as [a; a]. R stands for real numbers. ‖·‖2 indicates the L2 norm induced
by the scalar product 〈·, ·〉 of Euclidean space E, i.e., ‖e‖2 =

√
〈e, e〉 (e ∈ E).

2.2 Building Blocks

2.2.1 SVM

SVMs are popular approximation tools [9, 10, 8, 6, 5]. SVMs approximate
{x(t), d(t)}t=1..T sample pairs, where each x(t) input is in input space X and
d(t) ∈ R. The approximation is linear, but it occurs in feature space H. Inputs
x(t) are mapped to feature space by

ϕ : x ∈ X → H. (1)

One can interpret ϕ(x) as the representation of input x. The form of the SVM
approximation is

fw : x ∈ X 7→ 〈w, ϕ(x)〉H (w ∈ H). (2)

Formally, the SVM-task is defined as

min
w

H[w] := C ·
T∑

t=1

V [d(t), fw(x(t))] +
1
2
‖w‖2

H (C > 0), (3)

where V [·, ·] is the so called loss function, which can assume quadratic, ε-insensitive,
or other forms [4]. That is, SVMs are regularized linear approximators [2].

Instead of using the explicit ϕ mapping, feature space H can be exploited
through kernel k, that is H = H(k) [11], where ϕ(x) = k(·,x). Kernel k assumes
the reproducing property [1, 11]

〈f(·), k(·,x)〉H = f(x) (x ∈ X,∀f ∈ H), (4)

and H is called Reproducing Kernel Hilbert Space (RKHS). Scalar product of
any function with kernel k(·,x) evaluates the function at x in RKHS H. Scalar
product in feature space can be computed implicitly by means of the kernel

k(u,v) = 〈ϕ(u), ϕ(v)〉H (u,v ∈ X). (5)

In particular, for w =
N∑

j=1

αj · ϕ(zj) (αj ∈ R, zj ∈ X) we have

fw(x) = 〈w, ϕ(x)〉H =
N∑

j=1

αj · 〈ϕ(zj), ϕ(x)〉H =
N∑

j=1

αj · k(zj ,x). (6)

Thus, function fw can be evaluated by means of coefficients αj , samples zj and
the kernel k without explicit reference to representation ϕ(x). This is called the
kernel trick.

2



2.2.2 MLP

An MLP network has multiple layers, each performing non-linear mapping

x 7→ g(W · x). (7)

Here, g is a differentiable non-linear function. In the MLP task, we tune matrix
W for all layers so that the network approximates the sampled input-output
mapping given by input-output training pairs {x(t),d(t)}. That is, the objective
is to minimize the squared error

ε2(t) := ‖d(t) − y(t)‖2
2 → min

W1,W2,...
, (8)

where the output of the network at time t is y(t), for all times. The MLP task
is solved by the well-known backpropagation algorithm.

2.3 The MLK Architecture

The mapping of a general MLP layer (i.e., Eq. (7)) can be written as

x 7→ g




...
〈wi,x〉

...


 , (9)

where wT
i denotes the ith row of matrix W. The SVM can also be inserted into

the MLP: Let a general layer of the network assume the form1

x 7→ g


 〈w1, ϕ(x)〉H

...
〈wN , ϕ(x)〉H


 . (10)

A network made of such layers, see Fig. 1, will be called Multilayer Kerceptron
(MLK). The input (xl) of each layer is the output of the preceding layer (yl−1).
The external world is the 0th layer providing input to the first layer of the MLK.
xl = yl−1 ∈ RN l

I , where N l
I is the dimension of the lth layer. Inputs xl to layer

l are mapped by features ϕl and are multiplied by the weights wl
i. This two-

step process can be accomplished implicitly by making use of kernel kl and the
expansion property for wl

is. The result is vector sl ∈ RN l
S , which undergoes

non-linear processing gl, where function gl is differentiable. The output of this
non-linear function is the input to the next layer, i.e., layer xl+1. The output
of the last layer (layer L, the output of the network) will be referred to as y.
Given that yl = xl+1 ∈ RN l

o , the output dimension of layer l is N l
o.

Below, we show that (i) a backpropagation rule can be derived for MLKs,
which (ii) requires the kernels only, so computations can be accomplished in
dual space.

1 For the sake of simplicity let us choose sample space X as finite dimensional Euclidean
space, i.e., Rn.

3



.
.
.

.
.
.

y =x
l-1 l

i.

g
l

<w ,.>
l

i

y=x
l l+1

s
l

j
l l
(x)

j
l

H
l

Figure 1: The lth layer of the MLK, l = 1, 2, . . . L. The input (xl) of each layer
is the output of the preceding layer (yl−1). The external world is the 0th layer
providing input to the first layer of the MLK. Inputs xl to layer l are mapped
by features mapping ϕl undergo scalar multiplication by the weights (wl

i) of
the layer in RKHS Hl = Hl(kl). The result is vector sl, which undergoes non-
linear processing gl, with a differentiable function. The output of this non-linear
function is the input to the next layer, layer xl+1. The output of the network
is the output of the last layer.

3 MLK Backpropagation

A slightly more general task, which incorporates regularizing terms, too, is
formalized below:

c(t) := ε2(t) + r(t) −→ min
{Hl3wl

i: l=1,...,L; i=1,...,N l
S}

, (11)

where ε2(t) = ‖d(t) − y(t)‖2
2 and r(t) =

L∑
l=1

N l
S∑

i=1

λl
i ·

∥∥wl
i(t)

∥∥2

Hl (λl
i ≥ 0) are the

approximation and the regularization terms of the cost function, respectively,
and y(t) denotes the output of the network for the tth input. Parameters λl

i

control the trade-off between approximation and regularization. For λl
i = 0 the

best approximation is searched like in the MLP task (Eq. (8)). Increasing the
λl

i values, the smoothness of the approximation will increase.
With the notations introduced above, the following statements can be proven.

Theorem 1 (explicit case). Let us suppose that the x 7→
〈
w, ϕl(x)

〉
Hl and the

gl functions are all differentiable (l = 1, . . . , L). Then, backpropagation rule can
be derived for MLK if the cost function has the form

c(t) = ε2(t) +
L∑

l=1

N l
S∑

i=1

λl
i ·

∥∥wl
i(t)

∥∥2

Hl (λl
i ≥ 0). (12)

Theorem 2 (implicit case). Assume that the following holds

4



1. Constraint on differentiability: Kernels kl are differentiable with respect
to both arguments, functions gl are also differentiable (l = 1, . . . , L).

2. Expansion property: The initial weights wl
i(1) of the network can be ex-

pressed in the dual representation, i.e.,

Hl 3 wl
i(1) =

N l
i (1)∑

j=1

αl
i,j(1) · ϕl(zl

i,j(1)) (l = 1, . . . , L; i = 1, . . . , N l
S).

(13)

Then backpropagation applies for MLK if the cost function has the form

c(t) = ε2(t) +
L∑

l=1

N l
S∑

i=1

λl
i ·

∥∥wl
i(t)

∥∥2

Hl (λl
i ≥ 0). (14)

This procedure spares the expansion property (13), which then remains valid for
the tuned network. The algorithm is implicit in the sense that it can be realized
in the dual space.

The pseudo codes of the MLK backpropagation algorithms are provided in
Table 1 and Table 2, respectively. Derivations of these algorithms, both for the
explicit and for the implicit forms, are provided in the next subsection.

MLK-backpropagation can be envisioned as follows (see Table 1 and 2 si-
multaneously):

1. backpropagated error δl(t) starts from δL(t) and is computed by a back-
ward recursion via the differential expression d[sl+1(t)]

d[sl(t)]
.

2. expression d[sl+1(t)]
d[sl(t)]

can be determined by means of feature mapping ϕl+1,
or, in an implicit fashion, through kernels kl+1.

3. two components play roles in the tuning of ws:

(a) forgetting is accomplished by scaling the weights wl
i with multiplier(

1 − 2µl
i(t) · λl

i

)
, where λl

i is the regularization coefficient.
(b) adaptation occurs through the backpropagated error. Weights at

layer l are tuned by feature space representation of xl(t), the actual
input arriving at layer l. Tuning is weighted by the backpropagated
error.

3.1 Derivation of the Backpropagation Algorithm for MLKs

Gradient d[c(t)]

d[wl
i(t)]

is derived first. Then it is embedded into steepest descent

tuning.2 The c(t) error has two terms, the approximation and the regularization
2 Steepest descent is used to illustrate the concepts. Other types of gradient optimizations

beyond steepest descent may be utilized. For example, different versions of the momentum
method or the conjugate gradient procedure could have their respective advantages.

5



Table 1: Pseudocode of the explicit MLK backpropagation algorithm
Inputs

sample points: {x(t),d(t)}t=1,...,T ,T
cost function: λl

i ≥ 0 (l = 1, . . . , L; i = 1, . . . , N l
S)

learning rates: µl
i(t) > 0 (l = 1, . . . , L; i = 1, . . . , N l

S; t = 1, . . . , T )
Network initialization

size: L (number of layers), N l
I , N l

S, N l
o (l = 1, . . . , L)

parameters: wl
i(1) (l = 1, . . . , L; i = 1, . . . , N l

S)
Start computation

Choose sample x(t)
Feedforward computation

xl(t) (l = 2, . . . , L + 1), sl(t) (l = 2, . . . , L)a

Backpropagation of error
l = L
while l ≥ 1

if (l = L)

δL(t) = 2 · [y(t) − d(t)]T ·
(
gL

)′

(sL(t))
else

d[sl+1(t)]
d[sl(t)]

=


...

d[〈wl+1
i (t),ϕl+1(u)〉

Hl+1 ]
d[u]

∣∣∣∣
u=xl+1(t)

...

 ·
[(

gl
)′ (sl(t))

]
b

δl(t) = δl+1(t) · d[sl+1(t)]
d[sl(t)]

Weight update
for all i: 1 ≤ i ≤ N l

S

wl
i(t + 1) = (1 − 2µl

i(t) · λl
i) · wl

i(t) − µl
i(t) · δl

i(t) · ϕl(xl(t))
l = l − 1

End computation

a The output of the network, i.e., y(t) = xL+1(t) is also computed.
b Here: i = 1, . . . , N l+1

S .

6



Table 2: Pseudocode of the implicit MLK backpropagation algorithm
Inputs

sample points: {x(t),d(t)}t=1,...,T ,T
cost function: λl

i ≥ 0 (l = 1, . . . , L; i = 1, . . . , N l
S)

learning rates: µl
i(t) > 0 (l = 1, . . . , L; i = 1, . . . , N l

S; t = 1, . . . , T )
Network initialization

size: L (number of layers), N l
I , N l

S, N l
o (l = 1, . . . , L)

parameters: wl
i(1)-expansions (l = 1, . . . , L; i = 1, . . . , N l

S)
coefficients: αl

i(1) ∈ RN l
i (1)

ancestors: zl
i,j(1), where j = 1, . . . , N l

i (1)
Start computation

Choose sample x(t)
Feedforward computation

xl(t) (l = 2, . . . , L + 1), sl(t) (l = 2, . . . , L)a

Backpropagation of error
l = L
while l ≥ 1

if (l = L)

δL(t) = 2 · [y(t) − d(t)]T ·
(
gL

)′

(sL(t))
else

d[sl+1(t)]
d[sl(t)]

=


...

N l+1
i (t)∑
j=1

αl+1
ij (t) · [kl+1]′y(zl+1

ij (t),xl+1(t))

...

 ·
[(

gl
)′ (sl(t))

]
b

δl(t) = δl+1(t) · d[sl+1(t)]
d[sl(t)]

Weight update
for all i: 1 ≤ i ≤ N l

S

N l
i (t + 1) = N l

i (t) + 1
αl

i(t + 1) =
[(

1 − 2µl
i(t) · λl

i

)
· αl

i(t);−µl
i(t) · δl

i(t)
]

zl
i,j(t + 1) = zl

i,j(t) (j = 1, . . . , N l
i (t))

zl
i,j(t + 1) = xl(t) (j = N l

i (t + 1))
l = l − 1

End computation

a The output of the network, i.e., y(t) = xL+1(t) is also computed.
b i = 1, . . . , N l+1

S . Note also that (kl)′y denotes the derivative of kernel kl according to its
second argument.

7



terms:
c(t) = ε2(t) + r(t). (15)

3.1.1 Gradient of the Approximation Term

First, we list basic relations, involved by the MLK structure. For the case of
simplicity, below, index t shall be dropped [precise form: xl = xl(t), yl = yl(t),
sl = sl(t),wl

i = wl
i(t)].

xl = yl−1 ∈ RN l
I (l = 1, . . . , L + 1) (16)

xl+1 = gl(sl) (l = 1, . . . , L) (17)

sl =


〈
wl

1, ϕ
l(xl)

〉
Hl

...〈
wl

i, ϕ
l(xl)

〉
Hl

...

 (l = 1, . . . , L; i = 1, . . . , N l
S) (18)

=


〈
wl

1, ϕ
l(gl−1(sl−1))

〉
Hl

...〈
wl

i, ϕ
l(gl−1(sl−1))

〉
Hl

...

 (l = 2, . . . , L; i = 1, . . . , N l
S) (19)

sl+1 =


〈
wl+1

1 , ϕl+1(gl(sl))
〉

Hl+1

...〈
wl+1

i , ϕl+1(gl(sl))
〉

Hl+1

...

 (20)

(l = 1, . . . , L − 1; i = 1, . . . , N l+1
S )

Let the backpropagated error for layer l be defined as

δl(t) :=
d[ε2(t)]
d[sl(t)]

(l = 1, . . . , L). (21)

The special case of the last layer is as follows:

δL(t) =
d[ε2(t)]
d[sL(t)]

=
d

[∥∥d(t) − gL(sL(t))
∥∥2

2

]
d[sL(t)]

(22)

= 2 ·
[
gL

(
sL(t)

)
− d(t)

]T ·
(
gL

)′ (
sL(t)

)
(23)

= 2 · [y(t) − d(t)]T ·
(
gL

)′

(sL(t)). (24)

Here we used the chain rule and made use of the rule valid for vectors

d[‖d − y‖2
2]

dy
= 2(y − d)T , (25)

8



and inserted the relation
y(t) = gL

(
sL(t)

)
, (26)

imposed by the MLK architecture.
Expression

d[sl+1(t)]
d[sl(t)]

(l = 1, . . . , L − 1) (27)

can be computed by using Eq. (20). It is sufficient to consider terms like

d[〈w,ϕ(g(s))〉H]
d[s]

(28)

and then to ‘compile’ the full derivative from them. The value of (28) is com-
puted by means of the following lemma.

Lemma 1. Let w ∈ H = H(k) be a point in the RKHS. Let us assume the
following

1. Let kernel k be differentiable w.r.t. both arguments and let k′
y denote the

derivative of the kernel according to its second argument.

2. In the implicit case we also assume that w is within the image space of
the feature space representation of a finite number of points zi. That is

w ∈ Im (ϕ(z1), ϕ(z2), . . . ,ϕ(zN )) ⊆ H. (29)

Let this expansion be w =
N∑

j=1

αj · ϕ(zj), where αj ∈ R.

Then we have two cases:

1. Explicit case:

d[〈w,ϕ(g(s))〉H]
d[s]

=
d [〈w,ϕ(u)〉H]

d[u]

∣∣∣∣
u=g(s)

· g′(s) (30)

2. Implicit case:

d[〈w,ϕ(g(s))〉H]
d[s]

=
N∑

j=1

αj · k′
y(zj ,g(s)) · g′(s) (31)

Proof.

1. Explicit case: the statement follows from the chain rule.

9



2. Implicit case:

d[〈w, ϕ(g(s))〉H]
d[s]

=
d

[〈∑
j αj · ϕ(zj),ϕ(g(s))

〉
H

]
d[s]

(32)

=
d

[∑
j αj · 〈ϕ(zj), ϕ(g(s))〉H

]
d[s]

(33)

=
d

[∑
j αj · k (zj ,g(s))

]
d[s]

(34)

=
∑

j

αj · k′
y(zj ,g(s)) · g′(s). (35)

The first equation has the expansion of w and the linear property of the
scalar product was utilized. Then, the relation

k(u,v) = 〈ϕ(u), ϕ(v)〉H (36)

between feature mapping and the kernel was applied. The last step follows
from the chain rule.

Let us turn back to the computation of Eq. (27):

1. Explicit case: According to the lemma we have

d[sl+1(t)]
d[sl(t)]

=


...

d[〈wl+1
i (t),ϕl+1(u)〉

Hl+1 ]
d[u]

∣∣∣∣
u=gl(sl(t))

·
(
gl

)′ (sl(t))

...

(37)

=


...

d[〈wl+1
i (t),ϕl+1(u)〉

Hl+1 ]
d[u]

∣∣∣∣
u=xl+1(t)

...

 ·
[(

gl
)′

(sl(t))
]
(38)

(l = 1, . . . , L − 1; i = 1, . . . , N l+1
S ).

In the second equation (i) we used identity (17) and (ii) pulled out the
term

(
gl

)′ (
sl(t)

)
according to the matrix multiplication rules.

2. Implicit case: For terms wl+1
i (t) we have the expansion property expressed

by Eq. (13). This was our starting assumption. In subsection 3.1.3, we
shall see that this feature is ‘inherited’ from time to time. Thus,

wl+1
i (t) =

N l+1
i (t)∑
j=1

αl+1
ij (t)·ϕl+1(zl+1

ij (t)) (l = 1, . . . , L−1; i = 1, . . . , N l+1
S )

(39)

10



and the derivative (27) we need assumes the form

d[sl+1(t)]
d[sl(t)]

=

=


...

N l+1
i (t)∑
j=1

αl+1
ij (t) · [kl+1]′y(zl+1

ij (t),gl(sl(t))) ·
(
gl

)′ (sl(t))

...

 (40)

=


...

N l+1
i (t)∑
j=1

αl+1
ij (t) · [kl+1]′y(zl+1

ij (t),xl+1(t))

...

 ·
[(

gl
)′

(sl(t))
]
(41)

(l = 1, . . . , L − 1; i = 1, . . . , N l+1
S ).

Here, the second equation is based on identity (17). Matrix term
(
gl

)′ (
sl(t)

)
was pulled out according to the matrix multiplication rules.

Applying the chain rule and the definition of δl+1(t), we have

δl(t) =
d[ε2(t)]
d[sl(t)]

=
d[ε2(t)]

d[sl+1(t)]
· d[sl+1(t)]

d[sl(t)]
= δl+1(t)· d[sl+1(t)]

d[sl(t)]
(l = 1, . . . , L−1).

(42)
One can apply the chain rule once again and can make use the definitions of
δl(t) and sl(t) to show that

d[ε2(t)]
d[wl

i(t)]
=

d[ε2(t)]
d[sl

i(t)]
· d[sl

i(t)]
d[wl

i(t)]
= δl

i(t) · ϕl(xl(t)) (l = 1, . . . , L; i = 1, . . . , N l
S),

(43)
which is the desired derivative. Note that the derivative can be expressed by
using number δl

i(t) and by the feature representation of the input xl(t) arriving
to the lth layer, i.e., by ϕl(xl(t)).

3.1.2 Regularization Term

This term is relatively simple:

d[r(t)]
d[wl

i(t)]
=

d

[
L∑

l=1

N l
S∑

i=1

λl
i ·

∥∥wl
i(t)

∥∥2

Hl

]
d[wl

i(t)]
= 2λl

i·wl
i(t) (l = 1, . . . , L; i = 1, . . . , N l

S).

(44)
Note that the respective terms of the derivative are scaled actual weights [wl

i(t)].
This form enables our implicit tuning.

11



3.1.3 Cost Term

Using identity

d[c(t)]
d[wl

i(t)]
=

d[ε2(t)]
d[wl

i(t)]
+

d[r(t)]
d[wl

i(t)]
(l = 1, . . . , L; i = 1, . . . , N l

S) (45)

as well as our results on the approximation and the regularization terms [i.e.,
Eqs. (43), and (44)], we arrive to the steepest descent form

wl
i(t + 1) = wl

i(t) − µl
i(t) ·

d[c(t)]
d[wl

i(t)]
(l = 1, . . . , L; i = 1, . . . , N l

S). (46)

So we have

wl
i(t + 1) = wl

i(t) − µl
i(t) ·

(
δl
i(t) · ϕl(xl(t)) + 2λl

i · wl
i(t)

)
(47)

= (1 − 2µl
i(t) · λl

i) · wl
i(t) − µl

i(t) · δl
i(t) · ϕl(xl(t)) (48)

(l = 1, . . . , L; i = 1, . . . , N l
S).

The same in dual form is as follows

αl
i(t+1) = [

(
1 − 2µl

i(t) · λl
i

)
·αl

i(t);−µl
i(t) · δl

i(t)] (l = 1, . . . , L; i = 1, . . . , N l
S).

(49)
In turn, the expansion property of the weight vectors of the network [i.e.,
Eq. (13)] is inherited from time to time. In particular, the expansion is valid
for parameter set wl

i received at the end of the computation. In summing up,
MLK can be tuned by the backpropagation procedure. The derived explicit and
implicit procedures are summarized in Table 1 and Table 2, respectively.

4 Conclusions

Theoretical description of a novel multilayer model, the Multilayer Kerceptron
was provided. This network unifies the advantages of Multilayer Perceptrons
and Support Vector Machines: (i) It learns the weights and learning is subject to
regularization. (ii) MLK allows for feature representations. (iii) MLK computes
the output quickly through learned weights. (iv) MLK can have hidden layers,
and thus, it can combine SVM partitionings. Advantages and disadvantages of
the approach for different databases remain to be seen.

References

[1] N. Aronszajn. Theory of Reproducing Kernels. Trans. of Am. Math. Soc.,
68:337–404, 1950.

[2] T. Evgeniou, M. Pontil, and T. Poggio. Regularization Networks and Sup-
port Vector Machines. Advances in Computational Mathematics, 13(1):1–
50, 2000.

12



[3] S. Haykin. Neural Networks. Prentice Hall, New Jersey, USA, 1999.

[4] R. Herbrich. Learning Kernel Classifiers. MIT Press, 2002.

[5] K.-R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and
V. Vapnik. Predicting Time Series with Support Vector Machines. In
Advances in Kernel Methods, pages 243–254. MIT Press, 1999.

[6] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, Cam-
bridge, MA, 2002.

[7] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[8] V. Vapnik, S. Golowich, and A. Smola. Support Vector Method for Function
Estimation, Regression Estimation and Signal Processing, volume Vol. 9.
MIT Press, Cambridge, MA, neural information processing systems edition,
1997.

[9] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag
New York, Inc., 1995.

[10] V.N. Vapnik. Statistical Learning Theory. Wiley, Chichester, GB, 1998.

[11] G. Wahba. Support Vector Machines, Reproducing Kernel Hilbert Spaces,
and Randomized GACV. In Advances in Kernel Methods, pages 69–88.
MIT Press, 1999.

13


