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Abstract

We study the evolution of mixed strategies in population games. At any time, the distribution
of mixed strategies over agents in a population is described by a density function. A pair
of players is chosen randomly in each round of the game. After each round, players update
their mixed strategies using certain reinforcement driven rules. The distribution over mixed
strategies thus changes. In a continuous-time limit, this change is described by non-linear
continuity equations. The updating rules we use generate the replicator continuity equations,
and we provide the asymptotic solution for these equations for general 2 player asymmetric and
symmetric normal form games. We use these results to study in greater detail mixed strategy
evolution in 2× 2 symmetric and asymmetric games. A key finding is that, when agents carry
mixed strategies, distributional considerations in general cannot be subsumed under a classical
approach represented by the deterministic replicator dynamics.

1 Introduction

In this paper, we study the evolution of mixed strategies in population games. Evolutionary game
theory has largely focused on the the evolution of pure actions. It is assumed that there exist
populations of agents, with each population standing for a particular player role in the game.
Each agent is primed to play a pure action at a particular time which is retained until a revision
opportunity becomes available. The variables of interest are the proportions of agents playing a
particular action in each population. The change in these proportions is tracked using systems of
ordinary differential equations called evolutionary (or learning) dynamics.

This sole focus on pure actions introduces a sharp dichotomy between evolutionary game theory
and conventional game theory. Mixed strategies are central to the technical foundations of game
theory. Moreover, without mixed strategies, we impose a severe restriction both on the level
of rationality at which individual agents operate and their behavioural flexibility. Sceptics can
reasonably raise doubts about the ability of a theory to explain social behaviour if it imposes such
severe behavioural restrictions on individual agents. Instead, it might be argued, the theory is more
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suited to the study of biological evolution in which animals are genetically programmed to play
individual pure strategies.

Further, the neglect of mixed strategies has created a divide between the otherwise closely
related fields of evolutionary game theory and the theory of learning by individual agents. In
learning theory, individual agents are construed as exhibiting behavioural dispositions, which, in
the context of a particular role in a game, can be represented as mixed strategies. Players update
these strategies according to some protocol based on their past experience. Individual mixed
strategies then evolve according to some ordinary differential equations that are technically similar
to the ODEs of evolutionary theory, although the state variables of the two types of equations
have different interpretations.1 In terms of its behavioural foundations, however, learning theory
is closer to conventional game theory than to evolutionary game theory.

In this paper, we consider individual agents in population games who employ mixed strategies,
and study how the share of agents using a particular mixed strategy changes over time when
agents revise their mixed strategies in the light of experience. This is in the spirit of conventional
evolutionary game theory, but without the restriction to agents primed only with pure strategies.
The techniques we use are based on methods associated with what are called ‘continuity equations’,
a type of first-order partial differential equation (PDE) derived from physics.2 At a particular time,
we envisage the existence of a density function over the set of mixed strategies that an agent from
a particular population can employ. Intuitively, the density function describes the probability mass
of agents in the population using any mixed strategy. Over time, as agents revise and update their
strategies, the density functions for each population changes in continuous time. The continuity
equations we obtain are partial differential equations that track these changes. However, our
equations differ from classical versions encountered in physics in that they contain non-linearities.

We study two models of population games, asymmetric and symmetric. In the asymmetric
case, there are two populations of agents with one player from each population randomly matched
in each round to play a two-player asymmetric normal form game. Initially we model time as a
discrete variable. Players play the game by choosing pure actions using the mixed strategies which
they bring to the table. After the game, the players update these mixed strategies in light of their
experience using some learning protocol such as reinforcement learning.3 This updating changes
the distribution of mixed strategies over agents in their respective populations, and hence changes
the probability density functions over these mixed strategies, leading to a new probability density
function over the set of mixed strategies. If we let the time interval between each round of play

1As an example is the logit dynamic that is used in both learning theory (Fudenberg and Levine, 1998) and in
evolutionary game theory (Hofbauer and Sandholm, 2005). In learning theory, the state variable of the dynamic is
the history of play by opponents while in evolutionary game theory, the state variable is the current population state.
In both fields, the dynamic is generated by agents playing a perturbed best response to the relevant state variable.
The nature of the perturbation and the functional form of the dynamic is identical in both interpretations.

2In physics, continuity equations are used in the study of conserved quantities, such as bulk fluids. The continuity
equation is a linear partial differential equation that describes the rate of change in the mass of fluid in any part of
the medium through which the fluid is flowing. See, for example, Margenau and Murphy (1962).

3We note the difference between our situation and the situation in conventional evolutionary game theory and
learning theory. In conventional evolutionary game theory, players update their pure strategies when they receive a
new revision opportunity. In learning theory, players do update mixed strategies but in each round of the game, they
are matched with the same opponent. In our model, since there is random matching in each round, opponents would
be almost sure to vary in each round.
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go to zero, we obtain a coupled pair of continuity equations, one for each population, with each
population density function being functionally dependent on the mean of the density function of
the other population.

We also examine symmetric games in which players from the same population are matched
in pairs. In this case, we obtain a single (non-linear) continuity equation describing the change
in the density function which characterizes the distribution of mixed strategies over agents in the
population.

The general form of the continuity equations we derive depends on unspecified updating proto-
cols, by means of which individual agents update their mixed strategies after playing the game. We
proceed to consider one particular form of this general scenario—yielding the replicator continuity
equations. We provide microfoundations for these equations using two alternative strategy updating
rules. Both are based on the idea of reinforcement under which the currently used action becomes
more probable in the next round if its payoff is high. In the theory of learning, the expected change
in mixed strategy of an agent under both these rules is given by the classical replicator dynamic,
which leads to the name we adopt for the specific form of the continuity equations generated by
these rules.

We solve the replicator continuity equations using standard methods for solving continuity
equations based on Liouville’s formula.4 The solution thus obtained is presented in Proposition 6.2.
To characterize this solution explicitly requires us to derive an associated characteristic ODE system
whose solutions describe trajectories of certain aggregate quantities associated to the population
means. We call this ODE system the Distributional Replicator dynamics.5

We then use the distributional replicator dynamics to analyze the continuity equations for the
simplest normal form games: generic 2 × 2 symmetric games and 2 × 2 asymmetric games. For
2 × 2 symmetric games, the key conclusion is that the evolution of the mean population strategy
under the replicator continuity equation exhibits identical asymptotic behaviour to that of the pure
strategy distribution under the classical replicator dynamic, provided the initial point in the latter
case is identical to the initial mean strategy in the former case, though the time lines in the two
cases may differ. However, this conclusion does not hold for 2 × 2 asymmetric games where we
provide a counter-example in which the two dynamics converge to different pure equilibria. Since,
even allowing for the use of mixed strategies, it is only the mean population strategy that can be
the observed social state, this example illustrates our main finding: that expanding the behavioural
flexibility of agents to allow use of mixed strategies in evolutionary contexts has real consequences,
in that it can lead to radically different conclusions about the observed social state.

The literature on both evolutionary game theory and learning theory has grown to impressive
proportions.6 There have, however, been relatively few attempts to explore the link between the

4This formula expresses the time evolution of the probability density function as a function of the initial probability
density and the deterministic trajectories of the underlying ‘characteristic’ ODE system, which describes the motion
of individual agents in the population – see, sections 2 and 5 below. The classical Liouville formula describes the
change in volume along flow lines of an underlying dynamical system – see, for example, Hartman (1964). Related
versions are discussed in Weibull (1995) and Hofbauer and Sigmund (1998).

5The solution obtained through Liouville’s formula is a function of the aggregate payoff obtained up to the present
time by each strategy. The distributional replicator dynamics provide the solution trajectories of the aggregate payoff.

6See Weibull (1995), Hofbauer and Sigmund (1988, 1998), and Sandholm (2007) for book level studies of evolu-
tionary game theory. Young (2005) is an excellent summary of the theoretical advances in the learning literature.
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two fields and these have focused largely on the expected changes in players’ mixed strategies
under particular learning algorithms. For example, Börgers and Sarin (1997) and Hopkins (2002)
show that the expected motion under reinforcement learning in a learning environment is given by
the replicator dynamic.7 This paper, by applying learning algorithms to the evolution of mixed
strategies in population games, strengthens the link between these fields. In terms of methodology,
the paper to which our work is most closely related is Ramsza and Seymour (2007), which takes a
continuity equation approach to study the evolution of pure-strategy distributions in a population of
agents using a version of the fictitious play algorithm. Instead of mixed strategies, their continuity
equation tracks the evolution of a probability density over fictitious play updating weights.8 Their
equation is also much simpler than those considered in this paper, with a solution that can be
derived explicitly.9 The present paper establishes continuity equations on a rigorous foundation as
a more general tool in the arsenal of evolutionary game theory.

The remainder of this paper is organized as follows. In section 2, we present an elementary
discussion of continuity equations and their use adapted to a simple learning context. In section
3, we derive the general, non-linear continuity equations for 2 player asymmetric and symmetric
games. Section 4 presents two updating rules that generate continuity equations based on the
classical Replicator dynamics. In section 5, we introduce Liouville’s formula in a general context.
We use this formula to solve a generalized form of the Replicator continuity equation in section
6. In section 7, we introduce the Distributional Replicator dynamics, a system of ODEs whose
solutions determine solutions of the Replicator continuity equations. Sections 8 and 9 contain the
analysis of 2 × 2 symmetric and asymmetric games respectively. Section 10 contains a discussion
of the paper and concludes. Certain proofs and additional technical material are presented in the
appendix.

2 Continuity Equations: General Discussion

Continuity equations are used widely in physics to study various mechanisms, collectively known as
transport phenomenon, most simply of bulk materials such as fluids, and arise from an assumption
that mass is conserved over time (‘what goes in must come out’). To gain an understanding of these
equations and to provide intuition, we outline here the elementary ‘physics proof’ of the continuity
equation (e.g. Margenau and Murphy, 1962) adapted to a simple learning theory context.

Consider a population of agents who interact with a fixed environment E. At any time, the
environment can be in one of a number of states, 1, 2, . . . ,m. The state of the environment is
determined by a stationary probability distribution over these states, which is not accessible to

7Some other papers that have explored the analogy between learning and biological evolution are Binmore and
Samuelson (1997), Cabrales (2000), and Schlag (1998).

8As well as the first-order, continuity equation approximation, these authors also consider a higher order, diffusion
approximation to fictitious play.

9The actual learning process referred to in Ramsza and Seymour (2007) is, however, more complex than the
reinforcement type learning processes we use. In fictitious play, agents call on more substantial cognitive resources to
keep track of their opponents’ past moves, and then to construct a best reply. In this paper, we consider agents who
are boundedly rational in the sense that they respond only to their own current payoff information. Nevertheless, at
the level of learning dynamics, this can lead to more complex trajectories, such as those described by the classical
replicator dynamics.
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the agents, who experience only the ‘state of the world’ at any given time. In response to this
environment, agents can take one of a number of actions, 1, 2, . . . , n. These actions do not influence
the state of the environment, but provide the agents with feedback in the form of payoffs which
depend on both the agent’s action and the state of the world. An agent chooses her action only on
the basis of an individual mixed strategy which characterizes her likely behaviour. Adaptation to
the environment over time consists of adjustments to this mixed strategy in the light of experience,
according to some learning rule.

Mixed strategies are points in a simplex ∆ ⊂ IRn, and we assume that the population of
agents is characterized by a probability density function p(x) over ∆, with p(x)dV (x) denoting the
probability that an agent’s mixed strategy lies in the infinitesimal volume element dV (x) at x. We
can think of p(x)dV (x) as a ‘probability mass’, analogous to the fluid mass considered in a physics
interpretation.

Consider a connected open subset U ⊂ int∆, with closed, smooth boundary ∂U . The total
probability mass of agents using mixed strategies in U at time t is:

∫

U
p(x, t)dV (x). (1)

Hence, the rate of increase (which may be negative) of probability mass in U is given by

d

dt

∫

U
pdV =

∫

U

∂p

∂t
dV. (2)

Now consider the flow of probability mass into and out of U across the boundary ∂U . We assume
that the individual learning process in the population is represented (in a continuous time limit)
by a deterministic dynamics of the form ẋ = LE(x), where LE : IRn → IRn is a smooth vector field.
Thus, LE(x)δt represents the expected change in mixed strategy x in the small time interval δt in
response to an agent’s interaction with the environment E . The flow of probability mass out of U

is given by the vector field (LE · u)p on ∂U , where u is the outward pointing unit normal to ∂U .
Thus, the aggregate flow of probability mass into U across its boundary is

−
∫

∂U
(LE · u)pdA, (3)

where dA is the induced element of area on ∂U , and the negative sign indicates that the flow is
into U (i.e. −u is the inward pointing unit normal to ∂U).

The divergence theorem allows us to express (3) as an integral over U . The ‘compressibility’ of
the probability mass flow at a point x ∈ U is measured by the divergence of the flow ∇ · (LEp).10

If the divergence at x is positive, then the flow expands from a small volume around x, whereas
if the divergence is negative, the flow contracts. The divergence theorem allows us to express the
net probability mass inflow in terms of the summed effects of all these infinitesimal expansions and

10Let f : Rn → Rn be a vector field. Then, the divergence of f is given by the scalar-valued function ∇ · f(x) =Pn
i=1

∂fi(x)
∂xi

.
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contractions, and states that (3) is equal to

−
∫

U
∇ · (LEp)dV, (4)

We assume that, on the relevant time scale, agents do not either enter or leave the population.
Thus, the total probability mass of agents is conserved, and hence probability mass inside U

can change only via transport across the boundary ∂U . It follows that, since (1) is the rate of
accumulation of probability mass inside U , for mass balance this must be equal to (3), and hence
to (4). That is, we obtain ∫

U

(
∂p

∂t
+∇ · (LEp)

)
dV = 0. (5)

Since (5) holds for any arbitrary U inside ∆, the integrand in (5) must be equal to zero at every
point in the interior of ∆. We therefore obtain the equation

∂p

∂t
+∇ · (LEp) = 0, (6)

which governs the evolution of the probability density function p(x), given the underlying deter-
ministic learning dynamics represented by the vector field LE(x). This equation has the form of
a classical continuity equation. It is a linear, first-order PDE in the density p. Given an initial
density p0(x) at time t = 0, it may be solved to obtain the time evolution of the density, p(x, t) for
all t ≥ 0.

This simple continuity equation arises because of the assumption that the environment E is
represented by a fixed stationary process. Agents then behave under the learning dynamic like
fluid particles, moving passively in parallel with each other, responding only to the environment.
However, in the more complex scenarios we shall consider below, agents interact not only with a
fixed environment, but with other agents, who are also learning. This latter fact leads to non-
linearity in the resulting continuity equations.

3 The General Continuity Equation for Population Games

We derive the continuity equations in the setting of population games. First, we consider the case
in which two players, each chosen from a separate population, are randomly matched to play an
asymmetric game.11 Next, we look separately at the case where two players chosen from the same
population are randomly matched to play a symmetric game.

3.1 Two-population Asymmetric Games

Consider a society consisting of the set of populations P = {1, 2}. We assume both populations
are of fixed probability mass 1. Let Sl be the strategy set and nl be the number of strategies of

11We confine ourselves to two-player asymmetric games merely for notational convenience. All the ideas involved
can be easily extended to multipopulation asymmetric games at the cost of more cumbersome notation.
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population l ∈ P. We denote by ∆l the simplex corresponding to population l. Thus,

∆l =




x ∈ IRnl
+ :

∑

i∈Sl

xi = 1




 . (7)

A mixed strategy used by a player in population l belongs to ∆l. We will use x and y to denote a
typical mixed strategy of a player in populations 1 and 2 respectively. Then ∆ = ∆1 ×∆2 is the
set of mixed strategies of pairs of players, one from each population.

Let p : ∆1 × IR+ → IR+ be the time track of the probability density function over the space of
mixed strategies for population 1. Let A ⊆ ∆1 be a measurable set. Then,

p(A, t) =
∫

A
p (x, t) dV (x) (8)

is the proportion of agents in population 1 playing mixed strategies in A at time t ≥ 0, where dV (x)
denotes the volume element at x ∈ ∆1. The mean strategy in population 1 at time t, 〈x〉t ∈ ∆1, is
given by

〈x〉t =
∫

∆1

xp (x, t) dV (x). (9)

Similarly, we define q(y, t) as the probability density function over the space of mixed strategies for
population 2. The mean strategy 〈y〉t ∈ ∆2 for population 2 is defined analogously to (9).

Two players, one from each population, are randomly matched to play an asymmetric normal
form game. We assume that players from population 1 play the role of the row player while those
from population 2 are column players. If the row player plays action i ∈ S1 and the column player
plays action j ∈ S2, the payoff to the row player is uij and to the column player is vji. The expected
payoff to i ∈ S1 against mixed strategy y ∈ ∆2 is (Uy)i, where U is the n1×n2 payoff matrix (uij).
Similarly, the payoff to j ∈ S2 against mixed strategy x ∈ ∆1 is (V x)j , where V is the n2 × n1

payoff matrix (vji). Thus

(Uy)i =
∑

j∈S2

uijyj , (10)

(V x)j =
∑

i∈S1

vjixi. (11)

Our objective is to track the evolution of the two density function p(x, t) and q(y, t) over time.
We derive the continuity equation for this purpose as follows.

Suppose the two chosen players use the mixed strategy profile (x, y) ∈ ∆. The probability that
they play the action profile (i, j) ∈ S = S1 × S2 is given by

πij(x, y) = xiyj . (12)

Of course,
∑

i,j πij(x, y) = 1 for all (x, y)12. After a play of the game, a player updates his mixed

12In what follows in this section we do not assume that πij(x, y) is necessarily given by the uncorrelated expression
(12). More generally, we could assume that πij(x, y) = π1

i (x, y)π2
j (x, y), where πl

r(x, y) is the probability that player-l
chooses action r, given that the players use mixed strategies x and y. This dependency on an opponent’s strategy
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strategy in the following manner. Given that the action profile (i, j) has been played, the row
player updates his strategy x ∈ ∆1 to x′ given by an updating rule of the form:

x′ = x + τfij (x, y) , (13)

where τ is a small time parameter representing the length of a round in which the game is played.
Similarly, the column player updates her strategy y ∈ ∆2 to y′ given by an updating rule of the
form:

y′ = y + τgij (x, y) . (14)

Thus, fij and gij are functions,13 fij : ∆→ IRn1
0 and gij : ∆→ IRn2

0 , where IRn
0 = {z ∈ IRn :

∑
i zi = 0}.

We call these the forward state change functions: they specify how the players’ states change going
forward in time and therefore are rules to update the mixed strategies x and y respectively.

The associated backward state change functions specify where current states came from, going
backward in time. Thus the backward state changes are functions bij : ∆→ IRn1

0 and cij : ∆→ IRn2
0

which satisfy:

(x, y) = (u + τfij (u, v) , v + τgij (u, v)) ⇐⇒ (u, v) = (x− τbij (x, y) , y − τcij (x, y)). (15)

Between times t and t+τ , the two density functions make the transition from p(x, t) and q(y, t)
to p(x, t + τ) and q(y, t + τ) respectively. The relationships between the density functions at the
two time periods are given by

p(x, t + τ)dV (x) =
∑

i,j∈S

∫

z∈∆2

[πij(·, z)p(·, t)dV (·)] (x− τbij(x, z)) q(z, t)dV (z), (16)

q(y, t + τ)dV (y) =
∑

i,j∈S

∫

w∈∆1

[πij(z, ·)q(·, t)dV (·)] (y − τcij(w, y)) p(w, t)dV (w). (17)

In order to derive the continuity equations, we multiply (16) and (17) by smooth ‘test functions’
φ(x) and ψ(y) respectively, and then integrate. We therefore obtain

〈φ〉t+τ =
∑

i,j∈S

∫

y∈∆2

∫

x∈∆1

φ(x) [πij(·, y)p(·, t)dV (·)] (x− τbij(x, y)) q(y, t)dV (y) (18)

〈ψ〉t+τ =
∑

i,j∈S

∫

x∈∆1

∫

y∈∆2

ψ(y) [πij(x, ·)q(·, t)dV (·)] (y − cij(x, y)) p(x, t)dV (x). (19)

We now focus on (18) to obtain the continuity equation for population 1. The equation for popu-
lation 2 may be derived analogously. Making the change of notation x − τbij(x, y) → x (for each

could arise, for example, if the players exchange pre-play signals that convey some information about the opponent’s
state.

13In this general discussion, we retain y as an argument of fij to account for the possibility that the row player
may have some pre-play information about the mixed strategy that will be used by his column player opponent - cf
footnote 12. The two forward state change vectors we cite in the next section are examples in which players do not
possess any such information about an opponent’s strategy. In these cases, fij is a function only of the player’s own
mixed strategy x. A similar point applies to gij .
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where we have written

F(x | qt) = 〈f̂(x, ·)〉t =
∫

∆2

f̂(x, y)q(y, t)dV (y) =
∑

i,j∈S

∫

∆2

fij(x, y)πij(x, y)q(y, t)dV (y). (23)

We therefore obtain
∫

∆1

φ (x)
{

∂p(x, t)
∂t

+∇ · [F(x | qt)p(x, t)]
}

dV (x) = 0.

Since this holds for all differentiable test functions φ(x) which vanish on ∂∆1, we obtain the
differential form of the continuity equation:

∂pt(x)
∂t

+∇ · [F(x | qt)pt(x)] = 0, x ∈ int∆1, t > 0, (24)

where we have now written pt(x) for p(x, t).
A similar derivation gives the continuity equation for q(y, t) in the form analogous to (22):

∫

y∈∆2

ψ(y)
∂q(y, t)

∂t
dV (y) =

∫

x∈∆1

∫

y∈∆2

∇ψ(y) · ĝ(x, y)p(x, t)q(y, t)dV (x)dV (y), (25)

where ĝ(x, y) is defined as in (21). We then obtain the form analogous to (24):

∂qt(y)
∂t

+∇ · [G(y | pt)qt(y)] = 0, y ∈ int∆2, t > 0, (26)

where

G(y | pt) = 〈ĝ(·, y)〉t =
∫

∆1

ĝ(x, y)p(x, t)dV (x) =
∑

i,j∈S

∫

∆1

gij(x, y)πij(x, y)p(x, t)dV (x). (27)

Note that, given qt, the form (24) is linear in pt, and given pt, the form (26) is linear in qt. However,
taken together, this pair of equations is a coupled non-linear system.

Equations (24) and (26) form the system of partial differential equations that describes the
evolution of the density functions pt(x) and qt(y). Intuitively, as in the discussion in section 2,
F(x | qt) represents the adaptation ‘velocity’ of mixed strategy x.15 That is, F(x | qt)τ is the
expected change in mixed strategy x in the small time interval τ in response to a play of the game.
Since the mass of x is represented by pt(x), F(x | qt)pt(x) gives the probability mass flow of x.
The divergence of F(x | qt)pt(x) therefore gives the rate at which the probability mass in a small
neighbourhood of x is expanding or contracting. Since ∂pt(x)

∂t is precisely the rate of change of the
probability mass of x, we are led to the continuity equation (24).

15In the next section, we provide two strategy updating rules in which this velocity is given by the replicator
dynamic.
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y) and using (15), we obtain

〈φ〉t+τ =
∑

i,j∈S

∫

x∈∆1

∫

y∈∆2

φ(x + τfij(x, y))πij (x, y) p (x, t) q(y, t)dV (x) dV (y).

Now Taylor expand the φ(·) term up to terms of order τ :

〈φ〉t+τ =
∑

i,j∈Σ

∫

x∈∆1

∫

y∈∆2

{φ(x) + τ∇φ(x) · fij(x, y))}πij(x, y)p (x, t) dV (x) q(y, t)dV (y).

Noting that
∑

i,j πij(x, y) = 1, and
∫
∆2

q(y, t)dV (y) = 1, this can be written in the form:

∫

x∈∆1

φ(x)
1
τ
{p(x, t + τ)− p(x, t)} dV (x)

=
∑

i,j∈S

∫

x∈∆1

∫

y∈∆2

∇φ(x) · fij(x, y)πij(x, y)p(x, t)q(y, t)dV (x)dV (y)

=
∫

x∈∆1

∫

y∈∆2

∇φ(x) · f̂(x, y)p(x, t)q(y, t)dV (x)dV (y), (20)

where we have written
f̂(x, y) =

∑

i,j∈S

fij(x, y)πij(x, y). (21)

This is the expected forward change of state vector for player 1, given that the players’ pre-play
states are (x, y).

Taking the limit as τ → 0 in (20) therefore gives:

∫

x∈∆1

φ(x)
∂p(x, t)

∂t
dV (x) =

∫

x∈∆1

∫

y∈∆2

∇φ(x) · f̂(x, y)p(x, t)q(y, t)dV (x)dV (y). (22)

Finally, assume that φ(x) = 0 for x ∈ ∂∆1, and integrate by parts on the right-hand side to
obtain14:

∫

x∈∆1

φ (x)
∂p(x, t)

∂t
dV (x) = −

∫

x∈∆1

∫

y∈∆2

φ (x)∇ · [f̂(x, y)p(x, t)]dV (x)q(y, t)dV (y)

= −
∫

∆1

φ (x)∇ · [F(x | qt)p(x, t)]dV (x),

14The formal argument has the following form. For X a vector field on the domain ∆, we use the identity
∇ · [φX] = φ∇ · X +∇φ · X to obtain

Z

∆

∇φ · XdV =

Z

∆

∇ · [φX] dV −
Z

∆

φ∇ · XdV

Now use the divergence theorem together with the assumption that φ = 0 on ∂∆ to obtain:
Z

∆

∇ · [φX] dV =

Z

∂∆

(u · X) φdA = 0.

[cf. equation (3).]
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3.2 Symmetric Games

We now consider a symmetric game with players chosen from a single population.16 We denote
by S = {1, 2, · · · , n} the set of actions in the game. The set of mixed strategies is the n-simplex
∆ = {x ∈ IRn

+ :
∑

i∈S xi = 1}. The derivation of the continuity equation for a one population
symmetric game now proceeds analogously to the asymmetric case. The only difference is that
instead of two probability densities, we need only track the evolution of a single density. The
microfoundations of the continuity equation are the same as in the asymmetric case. Players are
matched in pairs at each time interval to play the game, although in this case, both players in a
pair are from the same population. The event that player 1 uses mixed strategy x and player 2 uses
mixed strategy y occurs with probability p(x, t)p(y, t)dV (x)dV (y), where p(x, t) is the probability
density of players using x in the population at time t. Thus, given that the chosen players use
strategies x, y ∈ ∆, the probability, πij(x, y), that they play the pair of pure strategies i, j ∈ S is
given by (12). As in the asymmetric case, players update their mixed strategies using a rule of the
form (13).

The updating equation corresponding to (16) is:

p(x, t + τ)dV (x) =
∑

i,j∈S

∫

y∈∆
[πij(·)p(·, t)dV (·)] (x− τbij(x, y)) p(y, t)dV (y). (28)

The difference between (16) and (28) is that the q(y, t) term in (16) is replaced by p(y, t). The
derivation now proceeds as in the asymmetric case to obtain the symmetric form corresponding to
(22): ∫

x∈∆
φ(x)

∂p(x, t)
∂t

dV (x) =
∫

x∈∆

∫

y∈∆
∇φ(x) · f̂(x, y)p(x, t)p(y, t)dV (x)dV (y), (29)

with φ(x) a smooth test function, and f̂(x, y) given by (21). From this, we derive the symmetric
analogue of (24):

∂pt(x)
∂t

+∇ · [F(x | pt)pt(x)] = 0, x ∈ int∆, t > 0, (30)

where now

F(x | pt) = 〈f̂(x, ·)〉t =
∫

∆
f̂(x, y)p(y, t)dV (y) =

∑

i,j∈S

∫

∆
fij(x, y)πij(x, y)p(y, t)dV (y). (31)

Note that the form (30) is non-linear in pt.

4 Replicator Continuity Equations

Equations (24) and (26) give the general form of the continuity equations for 2-population, asym-
metric games. In this section, we derive a particular form of the continuity equations—the replicator
continuity equations. We first introduce two alternative forward state change rules fij(x) and gij(y).

16To describe the symmetric case, we adopt the notation of population 1 of the asymmetric case but drop the
population subscript.

11



Both these rules are based on the idea of reinforcement. We then show that these updating rules
lead to the replicator continuity equations. These updating rules therefore provide the microfoun-
dations to the replicator continuity dynamic.

Reinforcement models have been widely studied in the learning literature. A group of players,
one in each role in the game, employ mixed strategies in each round of a game. Reinforcement
models are based on the idea that if the action currently employed obtains a high payoff, then the
probability assigned to it increases in the next round of play. Reinforcement models are therefore
extremely naive models of learning. Agents mechanically respond to stimuli from their environment
without seeking to create any model of the situation or strategically evaluate how they are doing.
Hence, they do not seek to exploit the pattern of opponents’ past play and predict the future
behaviour of their opponents.17 In this sense, agents are boundedly rational.

The two forward state change rules we consider are described below. We consider a player in
a 2-player game who employs strategy x ∈ ∆, uses action i and encounters an opponent who uses
action j in the current round. The player then updates her strategy to x′ according to an updating
rule fij(x), as in (13). For brevity, we present only the rules for population 1. For population 2,
the updated strategy y′ and the updating vector gij(y) take analogous forms, as in (14).

In enumerating the two rules, we need to assume that all payoffs are positive for Rule 1 and
negative for Rule 2 in order to ensure that all probabilities x′r are less than 1.18 Since it is always
possible to rescale payoffs to make them all positive or negative without affecting incentives, we do
not consider this a severe restriction.

1. This rule is from Börgers and Sarin (1997) and is a special case of a general class of reinforce-
ment rules introduced in Börgers and Sarin (2000). Under this rule, the mixed strategy x′

and the forward state change vector take the form

x′r = δiruijτ + (1− uijτ)xr, (32)

fij,r(x) = (δir − xr)uij . (33)

For τ small enough, a sufficient condition for (32) to represent an updating rule is uij > 0,
for all i, j ∈ S.

The general class of rules in Börgers and Sarin (2000) is based on the idea of aspiration. To
explain this rule, let us momentarily set τ = 1. Suppose that at round t of play, a player aspires
to a payoff of at. The probability of playing a strategy r -= i is then x′r = xr + (at − uij)xr

19.
Hence, if uij > at, then action i gets reinforced. By setting at identically equal to zero, we
obtain (32). Note that in this case, the current action i is always reinforced.

17Börgers and Sarin (1997) provide some justification of why agents respond to very limited information in these
models–only their own payoffs. They argue that the acquisition or processing of new information may be too costly
relative to benefits. Hence, they say, reinforcement models may be more plausible if agents’ behaviour is habitual
rather than the result of careful reflection.

18For large τ , we would also need to assume that the payoffs are less than 1 (more than −1) for Rule 1 (Rule 2)
to ensure that the probabilities are positive. Since we are primarily concerned with the case where τ is arbitrarily
small, we dispense with this restriction.

19For the moment, we are ignoring the requirement of imposing restrictions on at and uij such that the probability
x′r actually makes sense
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2. We now consider a revision rule which applies when all payoffs uij are negative. The updated
strategy and the state change rule we consider is

x′r = xr + τurjxr, for r -= i, (34)

fij,r(x) = urjxr, for r -= i, (35)

with the residual probability being alloted to i. For small τ , it is sufficient to assume that
urj is negative for x′ to be a probability distribution.

Revision rule (34) has a similar interpretation to (32). We interpret the negative payoffs as
costs that the consumer incurs. Suppose at is the maximum (non-negative) cost that the
consumer is willing to incur in period t. The probability of playing r -= i in the next round
is given by20 x′r = xr + (urj − at)xr. Action i is therefore reinforced if urj < at, for all r -= i.
By setting at identically equal to zero, we obtain (34) and ensure that the current action i is
always reinforced when all payoffs are negative.

In the present context, we may use the form (12) to write (23) and (27) as

F(x | q) =
∑

i,j∈S

xifij(x)〈yj〉, (36)

G(y | p) =
∑

i,j∈S

〈xi〉gij(y)yj , (37)

where 〈xi〉 is the expected value of xi with respect to p(x), and 〈yj〉 is the expected value of yj

with respect to q(y).
Recalling the notation of (10) and (11), we introduce the following operators

R1
i (x) y = xi {(Uy)i − x · Uy} , (38)

R2
j (y) x = yj

{
(V x)j − y · V x

}
. (39)

Clearly, the vector field generated by the bimatrix replicator dynamic on ∆ = ∆1 × ∆2 at (x, y)
is identical to the vector field generated by the two operators in (38) and(39). Hence, we call the
n1×n2 matrix operator R1(x) and the n2×n1 matrix operator R2(y), the Replicator operators for
the two populations.

We now establish that the two updating rules described above generate the replicator operators
for the two populations.

Lemma 4.1 For each of the updating protocols enumerated earlier in this section, F(x | q) =
R1(x)〈y〉 and G(y | p) = R2(y)〈x〉.

Proof. We prove the result only for Rule 1 for population 1. The proof for Rule 2 is similar.
20We once again momentarily set τ = 1 and ignore any restriction we need to put on at for x′ to be a probability

distribution. We also temporarily drop the assumption that the urj are negative.
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We show that for fij(x) given by (33), Fr(x | q) = R1
r(x)〈y〉, for r ∈ S1. From (36) we have

Fr (x | q) =
∑

i,j∈S

xifij,r(x)〈yj〉

=
∑

i,j∈S

xi〈yj〉 (δir − xr) uij

= xr




∑

j∈S2

urj〈yj〉 −
∑

i,j∈S

xiuij〈yj〉





= xr {(U〈y〉)r − x · U〈y〉}

= R1
r(x)〈y〉.

The proof for population 2 and G(y | p) is similar. !

The following proposition is now immediate.

Proposition 4.2 Under the forward state change rules (33) and (35), the continuity equations
(24) and (26) are given by

∂pt(x)
∂t

+∇ · [pt(x)R1(x) 〈y〉t] = 0, (40)

∂qt(y)
∂t

+∇ · [qt(y)R2(y) 〈x〉t] = 0, (41)

where 〈x〉t =
∫
∆1

xp(x, t)dV (x) and 〈y〉t =
∫
∆2

yq(y, t)dV (y).

We call (40) and (41) the Replicator continuity equations.
In a similar way, we obtain the Replicator continuity equation for a single population, symmetric

game. Let fij(x) be the mixed strategy rule in a symmetric game where fij(x) can take the form
in (33) or (35). We write R = R1, as in (38), for the Replicator operator in the symmetric case.

Corollary 4.3 Let p(x, t) be the density function over mixed strategies in a symmetric game. Then,
under each of the updating protocols (33)-(35), the continuity equation (30) is given by

∂pt(x)
∂t

+∇ · [pt(x)R(x) 〈x〉t] = 0, (42)

where 〈x〉t =
∫
∆ xp(x, t)dV (x).

5 Solution of the general continuity equation: Liouville’s Formula

Our approach to solving the non-linear continuity equations we have constructed is to begin by
solving a different, but related problem. Thus, instead of confronting the non-linearities directly, we
first consider a linear continuity equation, but one defined by an explicitly time-dependent vector
field. We will later show how a solution of the non-linear continuity equations of interest can be
constructed from explicit solutions of linear continuity equations of this type.
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5.1 Liouville’s formula

Let X = X(x, t) ∈ IRn be a (possibly time-dependent) smooth vector field defined for x in a state
space Ω ⊂ IRn (a connected, open domain with piecewise smooth boundary), and suppose that
p(x, t) is a probability density on Ω satisfying the linear continuity equation

∂p(x, t)
∂t

+∇ · [pX] (x, t) = 0, with p(x, 0) = p0(x), (43)

where p0(x) is a specified initial density. The solution to this initial-value problem is well-known,
and given by Liouville’s formula, which may be described as follows.

We first introduce some notation to describe the solution trajectories to the (non-autonomous)
differential equation defined by X,

dx

dt
= X(x, t). (44)

Let xt0,t(x), t ∈ IR, denote the solution trajectory to (44) that passes through the point x at time
t0. Thus, the trajectory that passes through x at time t starts at the point x−t(x) = xt,0(x)
when t = 021. After time s ≥ 0, this trajectory has reached the point xt,s(x) = x0,s (xt,0(x)). In
particular, xt,t(x) = x0,t (xt,0(x)) = x, and by definition xt,0 (x0,t(x)) = x.

We can now write down the solution to the initial value problem (43):

p(x, t) = p0 (xt,0(x)) exp
{
−

∫ t

0
[∇ · X] (xt,s(x), s) ds

}
. (45)

This is Liouville’s formula. A proof is given in Appendix A.1.

5.2 Expected values

Liouville’s formula for the density p(x, t) allows us to calculate expected values of associated vari-
ables in terms of the initial density p0(x) and solutions of the characteristic system (44). Thus,
for a function φ ∈ L2(Ω), define its expected value with respect to the probability density p(x, t)
satisfying (43) by:

〈φ〉t =
∫

Ω
φ(x)p(x, t)dV (x). (46)

Then we have:

Proposition 5.1 The expected value 〈φ〉t may be expressed in the form:

〈φ〉t =
∫

Ω
φ (x0,t(x)) p0(x)dV (x). (47)

A proof is given in Appendix A.2.
As an example of the use of (47), the following Corollary shows that the trajectories of the

underlying characteristic dynamics (44) may be recovered as solutions of the continuity equation
(43) for initial conditions which are mass points.

21Note that the situation for a non-autonomous vector field is more complicated than for the more familiar au-
tonomous case. This is because the explicit time dependence of X(x, t) imposes an absolute, rather than a relative,
time-scale on the dynamics. In particular, the initial time t = 0 is exogenously determined.
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Corollary 5.2 Suppose p0(x) = δ(x − x0) for some x0 ∈ Ω. Then p(x, t) = δ (x− x0,t(x0)) for
all t ≥ 0, where x0,t(x0) is the solution trajectory of the characteristic equations ẋ = X(x, t) with
initial condition x0.

Proof. If p0(x) = δ(x− x0) in (43), it follows from (47) that 〈φ〉t = φ (x0,t(x0)). Since this is true
for any continuous function φ(x), it follows from (46) that p(x, t) = δ (x− x0,t(x0)). !

6 Solution of the Replicator Continuity Equation

In this section, we use Liouville’s formula (45) to lay the foundations for a solution to the pair
of coupled continuity equations (40) and (41). To do this, we first “freeze” population 2 in the
following sense. Suppose that mixed strategies are distributed over agents in population 2 by a
fixed, time dependent probability density q(y, t) that is independent of any process in population
1. This density determines a mean history, y(t) = 〈y〉t ∈ ∆2, which determines the evolution of
the density function p(x, t) for population 1 via the continuity equation (40). In effect, this is a
generalization of the scenario considered in section 2, in the sense that it replaces the population 2 of
responsive agents by a non-stationary environment with which agents in population 1 interact, and
whose behaviour is determined by the fixed, but now non-stationary process q(y, t). To reclaim a
version of the situation described in section 2, we need only assume that q(y, t) = q(y) is stationary.

The outcome of this “freezing” process is that we can consider the population 1 continuity
equation (40) as decoupled from (41). In the next section, we shall recover this coupling by
considering a simultaneous “freezing” procedure for both populations.

We have defined the Replicator operators R1(x) : ∆2 → IRn1 in (38). Suppose given a specified
history y(t) ∈ ∆2, as described above. We associate a pseudo Replicator dynamics to this trajectory,
whose solutions specify the time-development of row-player responses to this history. This takes
the form of the explicitly time-dependent dynamical system

ẋi = R1
i (x)y(t) = xi(e1

i − x) · Uy(t), (48)

where e1
i ∈ IRn1 is the i-th standard basis vector. This is an explicitly time-dependent dynamical

system, which we consider as the characteristic ODE (44) for a general continuity equation (43).
To solve this continuity equation, we begin by solving the characteristic system (48). We can then
find the solution of any associated initial value problem of the form (43) by means of Liouville’s
formula (45).

6.1 Solution of the pseudo Replicator dynamics

Write c(t) = Uy(t) ∈ IRn1 , a time-dependent vector-payoff stream to row players. Then the pseudo-
Replicator equations (48) can be written as:

dxi

dt
= xi

(
e1
i − x

)
· c(t). (49)
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Write

C(t) =
∫ t

0
c(s)ds. (50)

Then we can express the solutions of (49) as follows.

Proposition 6.1 The solution trajectory of the pseudo-Replicator dynamics (49) passing through
x ∈ ∆1 at time t = t0 is:

xt0,t(x)i =
xieCi(t,t0)

x · eC(t,t0)
, (51)

where C(t, t0) = C(t)− C(t0). In particular:

x0,t(x)i =
xieCi(t)

x · eC(t)
, and xt,0(x)i =

xie−Ci(t)

x · e−C(t)
. (52)

Proof. With xt0,t(x) given by (51), we have:

d

dt
[xt0,t(x)i] =

xici(t)eCi(t,t0)

x · eC(t,t0)
− xieCi(t,t0)

(
x · eC(t,t0)

)2

n∑

j=1

xjcj(t)eCj(t,t0)

= xt0,t(x)ici(t)− xt0,t(x)i

n∑

j=1

cj(t)
xjeCj(t,t0)

x · eC(t,t0)

= xt0,t(x)i




ci(t)−
n∑

j=1

cj(t)xt0,t(x)j






= xt0,t(x)i {ei − xt0,t(x)} · c(t),

which shows that xt0,t(x) is a solution of (49). Since C(t0, t0) = 0, it follows from the definition
(51) that xt0,t0(x) = x, as required. !

6.2 Solution of the Replicator continuity equation

We now use Liouville’s formula (45), together with Proposition 6.1, to compute the solution to the
Replicator continuity equation associated with a pseudo-Replicator vector field of the form (49).
This is given in the following proposition, proved in Appendix A.3.

Proposition 6.2 The solution of the initial value problem (43) associated to the characteristic
vector field (49) is:

p(x, t) = p0

(
xe−C(t)

x · e−C(t)

)(
1

x · e−C(t)

)n1

exp
{
−e1 · C(t)

}
, (53)

where C(t) ∈ IRn1 is given by (50).
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We may also obtain the expected value of a function φ ∈ L2(∆1) from (47) and (52):

〈φ〉t =
∫

∆1

φ

(
ξeC(t)

ξ · eC(t)

)
p0(ξ)dV (ξ). (54)

Corollary 6.3 Suppose there exists an i such that [Ci(t) − Cj(t)] → ∞ as t → ∞ for all j -= i,
and that the i-th face, ∂∆(i)

1 = {x ∈ ∆1 : xi = 0}, has measure zero with respect to p0(x). Then
p(x, t)→ δ(x− e1

i ) as t→∞.

Proof. For ξ ∈ ∆1 \ ∂∆(i)
1 , we have ξi > 0. Thus:

ξieCi(t)

ξ · eC(t)
=

ξieCi(t)

ξieCi(t) +
∑

j %=i ξjeCj(t)
=

ξi

ξi +
∑

j %=i ξje−[Ci(t)−Cj(t)]
→ ξi

ξi
= 1 as t→∞.

For k -= i, we have:

ξkeCk(t)

ξ · eC(t)
=

ξkeCk(t)

ξieCi(t) +
∑

j %=i ξjeCj(t)
=

ξke−[Ci(t)−Ck(t)]

ξi +
∑

j %=i ξje−[Ci(t)−Cj(t)]
→ 0

ξi
= 0 as t→∞.

Hence,
ξeC(t)

ξ · eC(t)
→ e1

i as t→∞, for any ξ ∈ ∆1 \ ∂∆(i)
1 .

Since ∂∆(i)
1 has zero probability mass with respect to p0, we have:

〈φ〉t =
∫

∆1\∂∆
(i)
1

φ

(
ξeC(t)

ξ · eC(t)

)
p0(ξ)dV (ξ)→ φ(e1

i )
∫

∆1

p0(ξ)dV (ξ) = φ(e1
i ) as t→∞,

for any continuous function φ(x). It follows that p(x, t)→ δ(x− e1
i ) as t→∞. !

Corollary 6.4 Suppose the n1 × n2 payoff matrix U has a strictly dominant strategy i for the
row player, and that ∂∆(i)

1 has zero probability mass with respect to p0(x). Then the distributional
dynamics for the row player associated with any mixed strategy time path y : IR → ∆2 for the
column player, satisfies p(x, t)→ δ(x− e1

i ) as t→∞.

Proof. If i is a strictly dominant strategy, then uir > ujr for all j -= i and all column-player
strategies r. Thus, for any path of mixed strategies y(t) used by the column player, we have
ci(t) = [Uy(t)]i =

∑
r uiryr(t) >

∑
r ujryr(t) = cj(t) for all j -= i. Let u∗ = minj %=i,r{uir − ujr}.

Then u∗ > 0 and ci(t) − cj(t) > u∗ for all j -= i. Thus, from (50), [Ci(t) − Cj(t)] > u∗t → ∞ as
t→∞. The result therefore follows from Corollary 6.3 . !

7 Distributional Replicator Dynamics

In this section we show how, in the asymmetric case, a solution to the pair of coupled continuity
equations (40) and (41), or, in the symmetric case, to the corresponding single continuity equation
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(42), can be obtained from the “frozen” solution (53) for population 1, and an analogous frozen
solution for population 2. The coupling of these solutions is then tracked by solutions of an
associated ODE system, which we term the Distributional Replicator Dynamics.

7.1 Asymmetric Games

Consider solutions to equations (40) and (41). From (49) and (50), these equations can be con-
strued in the first instance as independent (“frozen”) continuity equations associated with the
time-dependent vectors (one for each population):

c(t) =
dC(t)

dt
= U〈y〉t ∈ IRn1 , (55)

d(t) =
dD(t)

dt
= V 〈x〉t ∈ IRn2 . (56)

Thus, (54) gives:

〈x〉t =
∫

∆1

(
ξeC(t)

ξ · eC(t)

)
p0(ξ)dV (ξ), (57)

〈y〉t =
∫

∆2

(
ζeD(t)

ζ · eD(t)

)
q0(ζ)dV (ζ). (58)

We therefore obtain the system of n1 + n2 differential equations in the variables C1, . . . , Cn1 and
D1, . . . , Dn2 :

dCi

dt
=

m∑

k=1

uik

∫

∆2

(
ζkeDk

ζ · eD

)
q0(ζ)dV (ζ), Ci(0) = 0, 1 ≤ i ≤ n1, (59)

dDj

dt
=

n∑

l=1

vjl

∫

∆1

(
ξleCl

ξ · eC

)
p0(ξ)dV (ξ), Dj(0) = 0, 1 ≤ j ≤ n2. (60)

We call these equations the asymmetric Distributional Replicator Dynamics associated with the
pair of initial densities p0(x) and q0(y). The solutions of these equations with the given initial
conditions define trajectories C(t) and D(t), in terms of which the continuity dynamics can be
completely specified as in (53) and (54), with analogous formulae for population 2.

Note that at most n1 − 1 of the Ci’s and at most n2 − 1 of the Dj ’s are independent.22 For
example, setting Ai = Ci − Cn1 and Bj = Dj −Dn2 , equations (59) and (60) can be reduced to:

dAi

dt
=

m∑

k=1

(uik − un1k)
∫

Ω2

(
ζkeBk

ζ · eB

)
q0(ζ)dV (ζ), Ai(0) = 0, 1 ≤ i ≤ n1 − 1, (61)

dBj

dt
=

n∑

l=1

(vjl − vn2l)
∫

Ω1

(
ξleAl

ξ · eA

)
p0(ξ)dV (ξ), Bj(0) = 0, 1 ≤ j ≤ n2 − 1, (62)

where Ω1 and Ω2 are the projections of ∆1 and ∆2 onto IRn1−1 and IRn2−1, respectively, given
by xn1 = 1 −

∑n1−1
i=1 xi and yn2 =

∑n2−1
j=1 yj (see definition (94) of Appendix A.3). Of course,

22Because of the constraints
P

j〈yj〉t =
P

i〈xi〉t = 1.
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An1 = Bn2 = 0.

7.2 Symmetric Games

We consider the continuity equation (42) associated with a 2-player, n-strategy symmetric game
having n × n payoff matrix U . In terms of the theory of section 6, this is the continuity equation
associated to the time-dependent mixed strategy profile y : IR → ∆ given by y(t) = 〈x〉t. That is,
c(t) = U〈x〉t. Thus, from (50) we have

c(t) =
dC(t)

dt
= U〈x〉t, (63)

and by (54),

〈xj〉t =
∫

∆

(
ξjeCj(t)

ξ · eC(t)

)
p0(ξ)dV (ξ).

We therefore obtain the system of n differential equations in the variables C1, . . . , Cn:

dCi

dt
=

n∑

j=1

uij

∫

∆

(
ξjeCj

ξ · eC

)
p0(ξ)dV (ξ), Ci(0) = 0, 1 ≤ i ≤ n. (64)

Following section 7.1, we call equations (64) the symmetric Distributional Replicator Dynamics
associated with the initial density p0(x). The solutions of these equations with the given initial
conditions define trajectories C(t), in terms of which the continuity dynamics can be completely
specified as in (53) and (54).

Again, at most n − 1 of equations (64) are independent. For example, setting Ai = Ci − Cn,
equations (64) can be reduced to

dAi

dt
=

n∑

j=1

(uij − unj)
∫

Ω

(
ξjeAj

ξ · eA

)
p0(ξ)dV (ξ), Ai(0) = 0, 1 ≤ i ≤ n− 1, (65)

where Ω ⊂ IRn−1 is the projection of ∆ onto IRn−1 obtained by setting xn = 1 −
∑n−1

i=1 xi. Of
course An = 0. Note that the formulae (53) and (54) can be expressed in terms of the Ai’s.

8 Application: 2× 2 symmetric games

8.1 The Replicator Dynamic

We use the ideas introduced in Section 7 to study the dynamics of mixed strategies in the simplest
form of games, namely 2× 2 symmetric games. We consider the game with payoff matrix

U =

(
u11 u12

u21 u22

)
. (66)

Players play a mixed strategy (x1, x2) ∈ ∆. Write x = x1 and 1− x = x2. We are interested in the
case in which there are three symmetric Nash equilibria, two pure strategies at x = 0 and x = 1,
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and a mixed strategy at
x̄ =

u22 − u12

(u22 − u12) + (u11 − u21)
. (67)

This is an allowable mixed strategy provided 0 < x̄ < 1; i.e. provided the payoff differences
(u22 − u12) and (u11 − u21) are non-zero and have the same sign.

Set
λU = (u22 − u12) + (u11 − u21). (68)

The Replicator dynamics associated with the game (66) reduce to the 1-dimensional system defined
for x ∈ [0, 1]

ẋ = λUx(1− x)(x− x̄). (69)

If λU > 0, x = 0 and x = 1 are locally asymptotically stable, and x̄ is unstable. This is the case
of most interest since there is then an equilibrium selection problem. Thus, if the initial condition
x0 ∈ (0, x̄), then x = 0 is attracting under the Replicator dynamic (69), and if x0 ∈ (x̄, 1), then
x = 1 is attracting.

Our objective is to compare evolution under the standard replicator dynamic (69) with evolution
under the replicator continuity equation (42). In the replicator dynamic, the state space is ∆ and
the variable of interest in the proportion of players playing each strategy. We can compare the
evolution of this variable under the replicator dynamic with the evolution of the mean of mixed
strategies under the replicator continuity dynamic. In this section, we shall show that for the simple
case of 2 × 2 games, there is a very close relationship between the two types of evolution. Thus,
suppose that from an initial point x0 ∈ (0, 1), the replicator dynamic converges to a particular Nash
equilibrium x∗. Then from an initial density function p0(x) with mean 〈x〉0 = x0, the replicator
continuity equation converges to a point-mass probability measure concentrated at x∗.

8.2 The Replicator Continuity Equation

We use the reduced form (65) of the Distributional Replicator dynamics to analyze the evolution
of mixed strategies in a 2 × 2 symmetric games. Since there are only two strategies, there is only
one such independent variable, which we write as A(t). The Distributional Replicator dynamic
associated with an initial probability dynamic p0(x) is therefore

Ȧ = (u11 − u21)
∫ 1

0

(
ξeA

1− ξ + ξeA

)
p0(ξ)dξ + (u12 − u22)

∫ 1

0

(
1− ξ

1− ξ + ξeA

)
p0(ξ)dξ

= −(u22 − u12) + {(u22 − u12) + (u11 − u21)}
∫ 1

0

(
ξeA

1− ξ + ξeA

)
p0(ξ)dξ,

which can be written as

Ȧ = λU

{
−x̄ +

∫ 1

0

(
ξeA

1− ξ + ξeA

)
p0(ξ)dξ

}
, A(0) = 0. (70)

21



For a variable k ≥ 0, and a probability density p(x) on [0, 1], define a function

F (k | p) =
∫ 1

0

z

z + k(1− z)
p(z)dz. (71)

Then we can write (70) as

Ȧ = λU
{
−x̄ + F

(
e−A | p0

)}
, A(0) = 0. (72)

The function F (k | p) is monotonically decreasing in k with F (0 | p) = 1 and, provided p(x) has
no mass point at x = 1, F (k | p) → 0 as k → ∞. In addition, F (1 | p) = 〈x〉, the mean of x

with respect to p. Hence, F
(
e−A | p0

)
is monotonically increasing in A with F

(
e−A | p0

)
→ 0 as

A→ −∞ and F
(
e−A | p0

)
→ 1 as A→∞.

The following lemma relates the asymptotic behaviour of A(t) to the initial density function.

Lemma 8.1 Let 〈x〉0 be the mean with respect to the initial density function p0(x).

1. If 〈x〉0 < x̄, then A(t) is monotonically decreasing in t, and A(t)→ −∞ as t→∞.

2. If 〈x〉0 > x̄, then A(t) is monotonically increasing in t, and A(t)→∞ as t→∞.

Proof. From (72), we have Ȧ(0) = λU (−x̄ + 〈x〉0). Since λU > 0, Ȧ(0) > 0 if 〈x〉0 > x̄ and
Ȧ(0) < 0 if 〈x〉0 < x̄. Moreover, the monotonicity properties of F

(
e−A | p0

)
imply that the initial

conditions are self-reinforcing as t increases. Hence, if 〈x〉0 > x̄, then Ȧ(t) > 0, if 〈x〉0 < x̄, then
Ȧ(t) < 0, for all t > 0. !

We now use Corollary 6.3 and Lemma 8.1 to derive the following proposition.

Proposition 8.2 Consider a 2 × 2 symmetric game. Let 〈x〉t be the mean with respect to the
density p(x, t). If 〈x〉0 > x̄, then p(x, t) → δ(x − 1), and hence 〈x〉t → 1, and if 〈x〉0 < x̄, then
p(x, t)→ δ(x), and hence 〈x〉t → 0 as t→∞.

Proposition 8.2 implies in the type of 2 × 2 symmetric games we are considering, there is
no difference at the observational level between evolution of pure strategies under the replicator
dynamic and the evolution of mixed strategies under the replicator continuity equation. Even
if agents are updating mixed strategies and the relevant evolutionary dynamic is the replicator
continuity equation, an outside observer will only be able to see the proportion of agents using
each particular pure strategy. This is just the mean of the mixed strategies currently in use in the
population. Since the convergence of the mean over time replicates the dynamic of the social state
under the replicator dynamic (possibly with a time lag), it is impossible to distinguish over the
long run whether agents actually play only pure strategies or they employ mixed strategies. An
example of trajectories obtained from these two dynamics is shown in Fig 1.

This is, however, not a general result, and does not hold for n × n symmetric games with
n > 2. We shall not show this, but instead, in the next section we present an example of a 2× 2
asymmetric game in which the long run social state differs radically under the replicator dynamics
and the replicator continuity dynamics.
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Figure 1: Trajectories of the classical replicator dynamic (69) (thin curve) starting from initial
condition x0, and of the mean 〈x〉t under the dynamic (72) (thick curve), starting from an initial
condition with mean, 〈x〉0 = x0. These trajectories converge to the Nash equilibrium x = 1, but
with different time lines. In this example, the Distributional Replicator dynamics has uniform
initial density p0(x) = 1. Other parameters are x̄ = 0.4 and λU = 1.
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9 Application: 2× 2 Asymmetric Games

9.1 The Replicator Dynamics

As in the last section, we use the distributional replicator dynamics for asymmetric games to
analyze the dynamics of the densities over mixed strategies for 2×2 asymmetric games. The payoff
matrices to the row and column players are

U =

(
u11 u12

u21 u22

)
, V =

(
v11 v21

v12 v22

)
. (73)

Since each player has only two strategies, we denote a mixed strategy for population 1 as (x, 1−x) ∈
∆1, and a mixed strategy for population 2 by (y, 1− y) ∈ ∆2. The standard Replicator dynamics
is then

ẋ = λUx(1− x)(y − ȳ), (74)

ẏ = λV y(1− y)(x− x̄), (75)

where

λU = (u11 − u21) + (u22 − u12), ȳ =
u22 − u12

(u11 − u21) + (u22 − u12)
, (76)

λV = (v11 − v21) + (v22 − v12), x̄ =
v22 − v12

(v11 − v21) + (v22 − v12)
. (77)

The dynamics (74), (75) have equilibria at (x, y) = (0, 0), (0, 1), (1, 1), (1, 0) and (x̄, ȳ). The
latter lies in the interior the state space 0 ≤ x, y ≤ 1 provided the payoff differences (u11−u21) and
(u22 − u12) are non-zero and have the same sign, and similarly for (v11 − v21) and (v22 − v12). In
particular, if these signs are all positive, then λU and λV are both positive, and in this case (0, 0) and
(1, 1) are locally asymptotically stable Nash Equilibria, with all other equilibria unstable. There is
therefore an equilibrium selection problem in this case. Which of the two stable Nash equilibria is
the asymptotic outcome of a Replicator dynamic trajectory depends on the initial condition.

9.2 The Distributional Replicator Dynamics

The reduced Distributional Replicator dynamics (61) and (62) is 2-dimensional, with variables
A = A1 and B = A2. We can therefore write these dynamics as

Ȧ = − (u22 − u12) + {(u22 − u12) + (u11 − u21)}
∫ 1

0

(
ζeB

1− ζ + ζeB

)
q0 (ζ) dζ,

Ḃ = − (v22 − v12) + {(v22 − v12) + (v11 − v21)}
∫ 1

0

(
ξeA

1− ξ + ξeA

)
p0 (ξ) dξ, .
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with initial condition A(0) = B(0) = 0. Using the notation (71) these equations can be written in
the form

Ȧ = λU
{
−ȳ + F

(
e−B | q0

)}
, (78)

Ḃ = λV
{
−x̄ + F

(
e−A | p0

)}
. (79)

Equations (78) and (79) therefore constitute an ODE system in IR2. In Appendix A.4 we
provide a detailed analysis of the solution trajectories of these two equations. We show that as
t → ∞, either |A(t)|, |B(t)| →∞ or the solution trajectories exhibit periodic orbits. Given these
properties of A(t) and B(t), we can state the following proposition.

Proposition 9.1 Let p0(x) and q0(y) be the initial density functions for populations 1 and 2 re-
spectively. Then,

1. Either: Both p(x, t) and q(y, t) converge to mass points on 0 or 1 as t → ∞. That is,
p(x, t)→ δ(x− 1) or δ(x), and q(y, t)→ δ(y − 1) or δ(y).

2. Or: The trajectories of p(x, t) and q(y, t) are periodic.

Proof. In Appendix A.4, we show that under the dynamics (78), (79), (|A(t)| , |B(t)|) → (∞,∞),
or the trajectories A(t) and B(t) describe a closed orbit in the (A,B)-plane. By Corollary 6.3, if
A(t) → ∞, p(x, t) → δ(x − 1) and if A(t) → −∞, p(x, t) → δ(x). Similarly, q(y, t) → δ(y − 1) if
B(t)→∞ or δ(y) if B(t)→ −∞.

On the other hand, if A(t) and B(t) exhibit periodic motion, it follows from (53) that the
trajectories of p(x, t) and q(y, t) are periodic. !

Proposition 9.1 implies that p(x, t) and q(y, t) will never converge to probability measures whose
means are the mixed strategy Nash equilibrium. This conclusion evokes the well known result that
in 2× 2 asymmetric games, a mixed strategy Nash equilibrium is never stable under the replicator
dynamics (Selten, 1980). However, unlike in 2× 2 symmetric games, the convergence behaviour of
the means under the Replicator continuity equation does not necessarily replicate the convergence
behaviour of the state variables under the Replicator dynamics (74), (75). We present an example
that establishes this fact. Thus, we shall construct a game in which the Replicator dynamic
converges to the Nash equilibrium (1, 1) from given initial conditions (x0, y0). However, under the
replicator continuity equation, and with appropriate initial distributions satisfying (〈x〉0, 〈y〉0) =
(x0, y0), the density functions over mixed strategies, (p(x, t), q(y, t)), converge to (δ(x), δ(y)). Hence,
for means, (〈x〉t, 〈y〉t)→ (0, 0).

9.3 A class of examples

As discussed in section 9.1, we assume that all payoff differences are positive, so that 0 < x̄, ȳ < 1
and λU and λV are both positive.

We assume population 2 is initially homogeneous, in the sense that all agents use a common
mixed strategy y0 with y0 -= 0, 1, ȳ. However, we assume that population 1 consists initially of two
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types, agents who use a mixed strategy a0, with 0 < a0 < x̄, and agents who use a mixed strategy
a1, with x̄ < a1 < 1. The population proportions of these agents are 1− α and α, with 0 < α < 1.
Thus, the initial distributions of the two populations are p0(x) = (1−α)δ(x− a0) + αδ(x− a1) for
population 1, and q0(y) = δ(y− y0) for population 2. The initial means of the two populations are
therefore

x0 = 〈x〉0 = (1− α)a0 + αa1, (80)

y0 = 〈y〉0. (81)

Note that x0 = x̄ when α = α∗, where

α∗ =
x̄− a0

a1 − a0
, (82)

and that x0 < x̄ for α < α∗, and x0 > x̄ for α > α∗.
The Distributional Replicator dynamics associated to these initial densities are:

Ȧ = λU

{
−ȳ +

y0eB

1− y0 + y0eB

}
, (83)

Ḃ = λV

{
−x̄ + (1− α)

a0eA

1− a0 + a0eA
+ α

a1eA

1− a1 + a1eA

}
. (84)

We wish to compare these dynamics to those associated with the Replicator dynamics having initial
condition (x0, y0). From Corolloary 5.2, this is equivalent to the Distributional Replicator dynamics
associated to the initial densities (δx0 , δy0). That is:

Ȧ = λU

{
−ȳ +

y0eB

1− y0 + y0eB

}
, (85)

Ḃ = λV

{
−x̄ +

x0eA

1− x0 + x0eA

}
. (86)

Initial conditions for both sets of dynamics are A(0) = B(0) = 0.
We aim to show that there are situations in which the means of the distributions determined by

these dynamics exhibit radically different asymptotic behaviours. A general method of constructing
such examples is described in Appendix A.5. We show that, for fixed (x̄, ȳ) ∈ (0, 1), α ∈ (0, α∗)
and y0 ∈ (ȳ, 1), positive constants λU and λV can be chosen so that the means of the trajectories
of the two dynamics converge to different Nash equilibria.

Here we refer to the numerical example illustrated in Figure 2, which shows a trajectory of the
Replicator dynamics (74)-(75) that converges to the Nash equilibrium (1, 1), and a trajectory of
the means associated to the Distributional Replicator dynamics (83)-(84), starting from the same
initial condition, which converges to the Nash equilibrium (0, 0).
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Figure 2: Trajectories of the means (〈x〉t, 〈y〉t), starting from a common initial condition,
(〈x〉0, 〈y〉0) = (x0, y0), for the two dynamics (83)-(84) (thick curve) and (85)-(86) (thin curve).
These trajectories converge to the Nash equilibria (0, 0) and (1, 1), respectively. Parameters are:
(x̄, ȳ) = (0.6, 0.3), a0 = 0.2, a1 = 0.8, y0 = 0.5, α = 1

2α∗ = 0.33, with corresponding x0 = 0.4, and
λV = 100, λU = 120.
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10 Discussion and Conclusion

The motivation behind this paper was to study the evolution of mixed strategies in population
games. Traditional ODE techniques can handle only the evolution of finite dimensional variables,
whereas the state variables in the problems we consider here are probability density functions.
Hence, it was necessary to introduce evolutionary dynamics that are partial differential equations
and develop methods for solving these equations. In order for these equations to be meaningful as
a description of social behaviour, we required them to be generated by some plausible individual
behavioural rules. Finally, to justify this effort, our analysis needed to provide insights into social
behaviour that contrasted with those obtained from a more conventional analysis of pure strategy
evolution.

To meet these objectives, we introduced the general (non-linear) continuity equations for popula-
tion games as the PDE system required for our purpose (section 3). These equations are applicable
for any plausible mixed strategy updating rule. By showing that reinforcement based learning
rules can be extended from learning theory and thereby generate the replicator continuity equa-
tions, we have been able to provide credible microfoundations to our evolutionary dynamics (section
4). Although the resulting equations cannot be solved explicitly (any more than can the classical
replicator dynamics), we have proposed a general solution method using Liouville’s formula and
an associated finite-dimensional ODE system that we call ‘distributional dynamics’, which can be
applied to all finite normal form games. Finally, in our application of these techniques to 2 × 2
asymmetric games, we have constructed a class of examples for asymmetric games in which the
replicator continuity equations lead to very different predictions about the observed social state
from that of the classical replicator dynamics.23

This class of examples for 2 × 2 asymmetric games illustrates the importance of the levels of
sophistication we assign to agents in our evolutionary models of learning in games for the conclusions
we obtain from these models. Conventionally, at each time step each agent is assumed to be
primed to play only a particular pure strategy. Which pure strategy gets played is then merely a
function of which agent from the population gets chosen to play. While these assumptions may be
perfectly justified in biological models of evolution, they seem excessively naive in models of human
interaction. One possible justification for such assumptions is that they lead to relatively simple,
analytically tractable models, which, by stripping away the extraneous complexities of special-case
scenarios, can be used to gain valuable intuitive insight into generic aspects of social learning. In
this light, such models are not meant to be construed as descriptions of specific realities, and in
particular cannot be used predictively.24

Nevertheless, that agent’s play mixed strategies does not necessarily assume a high degree of
cognitive sophistication. In particular, we do suppose that agents consciously use randomizing
devices as part of a rational calculation. We can assume instead that agents make their decisions

23The possibility of the divergence in behaviour under the classical replicator dynamics and the replicator continuity
dynamics also holds for 2-player symmetric games with more than two strategies. We have been able to construct
examples for 2-player, 3-strategy symmetric games in which convergence under the two dynamics is to different
equilibria. However, we do not present such examples here.

24A similar perspective on the function and value of models has been forcefully argued by Rubinstein – e.g.
Rubinstein (2001, 2006).
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within a stochastic environment (which may be stationary, as in section 2) that offers them “cues”
that they use to condition their choice of action in the game. How this conditioning takes place
depends on the agent’s behavioural disposition, conceived simply as a function that converts en-
vironmental cues into actions. Thus, it is the stochastic environment that acts as a randomizing
device, and this, together with the agent’s disposition, generates a (pre-play) mixed strategy that
characterizes her response to whatever is the state of the world when she is called upon to play. It is
this disposition that is updated by reinforcement in response to payoff information (see section 4).
In this interpretation, agents are of very limited cognitive capacity, and respond automatically to
whatever “instruction” the environment provides. Of course, though many of the cues that condi-
tion the agents action may be processed subconsciously, she may nevertheless tell herself elaborate
stories about why her action is the only “rational” response to the situation in which she finds
herself.

It may be argued that even if we allow agents to play mixed strategies, the law of large numbers
ensures that the mean of the mixed strategy distribution over the population will be identical to
the proportion of agents playing different pure strategies. Since it is only the mean strategy that
can be observed, allowing for mixed strategies has no observational consequences at an aggregate
level. Our class of examples for 2× 2 asymmetric games invalidates this argument. We have been
able to show unambiguously that it is possible for all agents to play one pure strategy equilibrium
in the long run by using only pure strategies under the classical replicator dynamic but to converge
to another pure equilibria by playing mixed strategies under the replicator continuity dynamics.
In order, therefore, to decide which particular approach—pure or mixed strategy— would be more
relevant to model any particular situation, it is necessary to make appropriate assumptions about
the nature of behavioural flexibility that agents may exhibit in that situation.

It should be possible to use the continuity equation approach to analyze mixed strategy evolution
in other types of player-matching schemes than the simple pairwise-matching scheme discussed here.
In this paper, a player interacts with a potentially different partner in each round of the game.
However, the theory has a straightforward extension to the case in which some fixed proportion of
agents are matched in each round. Alternatively, one may fix the population into matched pairs of
players at the beginning, and allow these pairs to interact repeatedly using some learning protocol.
The change in the distribution of mixed strategies in the populations can then be studied using
a continuity equation.25 Or one can study a more realistic scenario of a combination of the two
matching schemes—where players play with a fixed partner for a certain number of periods and
then change partners. Such problems can form a substantial research agenda for the future.

In this paper we have analyzed generic 2×2 asymmetric games (i.e. games with simple, isolated
Nash equilibria— see section 9 and appendix A.4–A.5). An important future application area of
the mixed strategy approach will be to non-generic games. For example, the ‘mini ultimatum game’
analyzed in Binmore, Gale and Samuelson (1995), is a non-generic 2×2 asymmetric game in which
there exists both an isolated Nash equilibrium (the subgame perfect equilibrium) and a connected
component of Nash equilibria. Given initial distributions over mixed strategies in the proposer
and responder populations, the continuity dynamics would be expected to lead to an asymptotic

25In fact, for a two population, 2 × 2 asymmetric game in which one member of each pair is chosen from each
population, the associated continuity equation is of classical, linear form — cf. section 2.
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probability weight on the subgame perfect equilibrium, together with a conditional distribution over
the connected component. It would then be possible to make a prediction about the probability of
any particular Nash equilibrium in the connected component in the long run. This can therefore act
as a selection mechanism within the Nash equilibrium component. How the form of this asymptotic
distribution depends on the initial distribution is a substantial question for the future, both in this
and similar contexts.

A Appendix

A.1 Proof of Liouville’s formula

We prove the formula (45) giving the unique solution to the initial value problem specified by (43).
Proof. We begin by writing the continuity equation as

∂p

∂t
+∇p · X + p∇ · X = 0. (87)

Consider a pure-time function of the form h(t) = p(x(t), t)z(t), where p(x, t) is a solution of (87).
Then,

dh

dt
= z(t)

∂p

∂t
+ z∇p · dx

dt
+ p

dz

dt
= z

{
∂p

∂t
+∇p · dx

dt
+ p

1
z

dz

dt

}
.

Thus, h(t) = constant defines a solution of the continuity equation (87) provided:

dx(t)
dt

= X (x(t), t) ,
1

z(t)
dz(t)
dt

= [∇ · X] (x(t), t).

That is, x(t) is a solution of the dynamical system (44) and

z(t) = z0 exp
{∫ t

0
[∇ · X] (x(s), s)ds

}
.

The required solution p(x, t) therefore satisfies:

p (x(t), t) = h0 exp
{
−

∫ t

0
[∇ · X] (x(s), s)ds

}
. (88)

for some constant h0. When t = 0, we require p(x, 0) = p0(x). Hence,

p(x(0), 0) = p0(x(0)) = h0. (89)

For fixed t ≥ 0 and any 0 ≤ s ≤ t, we take x(s) = xt,s(x), the solution of the characteristic ODE
(44) that passes through x at time t. Then x(t) = xt,t(x) = x, and substituting in (88) and (89)
we obtain the required solution to the initial value problem (43):

p(x, t) = p0 (xt,0(x)) exp
{
−

∫ t

0
[∇ · X] (xt,s(x), y(s), s) ds

}
. (90)

This proves Liouville’s formula. !
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A.2 Proof of Proposition 5.1

Proof. Make the change of variable:
ξ = xt,0(x). (91)

This has inverse
x = x0,t(ξ). (92)

Thus dV (ξ) = |Jt(ξ;x)|dV (x), where the Jacobian is:

Jt(ξ;x) = det
(

∂ξi
∂xj

)
.

Now generalize this to define:
Jt,s(x) = det

(
∂xt,s(x)i

∂xj

)
.

Then Jt(ξ;x) = Jt,0(x), and Jt,t(x) = 1. Next, observe that, by definition of the trajectories xt,s(x),
we have

d

ds

[
∂xt,s(x)i

∂xj

]
=

∂

∂xj

[
dxt,s(x)i

ds

]
=

∂

∂xj
[Xi (xt,s(x), s)] =

n∑

k=1

∂Xi

∂xk
(xt,s(x), s)

∂xt,s(x)k

∂xj
. (93)

Let J (i)
t,s (x) be the determinant of the matrix obtained from Jt,s(x) by taking the time derivatives

with respect to s of the entries in the i-th row, as in (93), but leaving the other rows unchanged.
Let [Jt,s(x)]i,j be the ij-th minor of Jt,s(x).26 Then:

dJt,s(ξ;x)
ds

=
n∑

i=1

J (i)
t,s (x)

=
n∑

i=1

n∑

j=1

(−1)i+j d

ds

[
∂xt,s(x)i

∂xj

]
[Jt,s(x)]i,j expanding J (i)

t,s (x) by the i-th row

=
n∑

i=1

n∑

j=1

n∑

k=1

(−1)i+j ∂Xi

∂xk
(xt,s(x), s)

∂xt,s(x)k

∂xj
[Jt,s(x)]i,j using (93)

=
n∑

i=1

n∑

k=1

(−1)i+k ∂Xi

∂xk
(xt,s(x), s)






n∑

j=1

(−1)k+j ∂xt,s(x)k

∂xj
[Jt,s(x)]i,j






=
n∑

i=1

n∑

k=1

(−1)i+k ∂Xi

∂xk
(xt,s(x), s) δikJt,s(x).

The last equality holds because, for k -= i, the expression in {} is the determinant of an n × n

matrix whose i-th and k-th rows are identical, and hence this determinant is zero. We therefore
have:

dJt,s(x)
ds

= Jt,s(x)
n∑

i=1

∂Xi

∂xi
(xt,s(x), s) = Jt,s(x) [∇ · X] (xt,s(x), s) .

26That is, the determinant of the (n− 1)× (n− 1)-matrix obtained from Jt,s(x) by deleting the i-th row and the
j-th column.
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Integrating this from s = 0 to s = t and recalling that Jt,t(x) = 1 and Jt,0(x) = Jt(ξ;x), gives:

− ln |Jt(ξ;x)| =
∫ t

0
[∇ · X] (xt,s(x), s) ds,

and hence:

|Jt(ξ;x)| = exp
{
−

∫ t

0
[∇ · X] (xt,s(x), s) ds

}
.

Finally, since dV (ξ) = |Jt(ξ;x)| dV (x), substitution of (91) and (92) into (45) and (46) yields the
required formula (47). !

A.3 Proof of Proposition 6.2

For the pseudo-Replicator vector field X(x, t) = R1(x)y(t) on the simplex ∆1 ⊂ IRn1 , we have
∑n1

i=1 xi = 1 and
∑n1

i=1 Xi = 0. Hence, the independent components are xi and Xi for 1 ≤ i ≤ n1−1.
We therefore take the state space to be the projection of ∆1 into IRn1−1 defined by:

Ω1 =

{
(x1, . . . , xn1−1) ∈ IRn1−1 : 0 ≤ xi ≤

n1−1∑

i=1

xi ≤ 1

}
. (94)

Then, if (x1, . . . , xn1−1) ∈ Ω1, the associated point x ∈ ∆1 is x = (x1, . . . , xn1−1, xn1) with xn1 =
1 −

∑n1−1
i=1 xi. Generally x denotes a point in ∆1, but relevant operations often involve only the

independent components, i.e. the associated point in Ω1.
Let Lij(x) = xi(δij − xj). Then, from (49) we can write the divergence of X on Ω1 as:

∇ · X(x, t) =
n1−1∑

i=1

{
∂

∂xi
− ∂

∂xn1

}
Xi(x, t) x ∈ ∆1

=
n1−1∑

i=1

{
∂

∂xi
− ∂

∂xn1

} 




n1∑

j=1

Lij(x)cj(t)






=
n1∑

j=1

{
n1−1∑

i=1

{
∂

∂xi
− ∂

∂xn1

}
Lij(x)

}
cj(t)

Also:

∂

∂xi
[Lij(x)] = (1− xi)δij − xj , 1 ≤ j ≤ n1 − 1,

∂

∂xn1

[Lij(x)] = 0, 1 ≤ j ≤ n1 − 1,

∂

∂xi
[Lin1(x)] = −xn1 ,

∂

∂xn1

[Lin1(x)] = −xi.
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Hence,

∇ · X(x, t) =
n1−1∑

i,j=1

{(1− xi)δij − xj} cj(t) +
n1−1∑

i=1

(xi − xn1)cn1(t)

=
n1−1∑

i=1

(1− xi)ci(t)− (n1 − 1)
n1−1∑

j=1

xjcj(t) +

(
n1−1∑

i=1

xi

)
cn1(t)− (n1 − 1)xn1cn1(t)

=
n1−1∑

i=1

ci(t)− n1

n1−1∑

j=1

xjcj(t) +

(
n1−1∑

i=1

xi

)
cn1(t) + xn1cn1(t)− n1xn1cn1(t)

=
n1−1∑

i=1

ci(t)− n1

n1∑

i=1

xici(t) +

(
n1∑

i=1

xi

)
cn1(t)

=
n1−1∑

i=1

ci(t)− n1

n1∑

i=1

xici(t) + cn1(t)

=
n1∑

i=1

ci(t)− n1

n1∑

i=1

xici(t)

=
{
e1 − n1x

}
· c(t),

where e1 =
∑n1

i=1 e1
i ∈ IRn1 is the vector all of whose entries are 1. That is:

∇ · X(x, t) = ∇ · [L(x)c(t)] =
(
e1 − n1x

)
· c(t).

It now follows that, if xt,s(x) are the solution trajectories of the pseudo-Replicator equations (51),
then we obtain

[∇ · X] (xt,s(x), s) =
{
e1 − n1xt,s(x)

}
· c(s) = e1 · c(s)− n1

n1∑

i=1

xici(s)eCi(s,t)

x · eC(s,t)
.

Thus

∫ t

0
[∇ · X] (xt,s(x), s) ds = e1 ·

∫ t

0
c(s)ds− n1

n1∑

i=1

∫ t

0

xieCi(s,t)

x · eC(s,t)
ci(s)ds

= e1 · C(t)− n1

∫ t

0

d

ds

[
ln

(
x · eC(s,t)

)]
ds

= e1 · C(t)− n1 ln
[
x · eC(t,t)

]
+ n1 ln

[
x · eC(0,t)

]

= e1 · C(t) + n1 ln
[
x · e−C(t)

]
,

because C(t, t) = 0, C(s, t) = C(s)− C(t) and e1 · x = 1. We therefore have:

exp
{
−

∫ t

0
[∇ · X] (xt,s(x), s) ds

}
=

(
1

x · e−C(t)

)n1

exp
{
−e1 · C(t)

}
.

Substituting in Liouville’s formula (45), it now follows that the solution of the continuity equation
associated to a pseudo-Replicator vector field (49) is given by (53). !
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A.4 Dynamics of A(t) and B(t) in 2× 2 asymmetric games

We analyze the Distributional Replicator dynamics (78) and (79). These dynamics are:

Ȧ = λU
{
−ȳ + F

(
e−B | q0

)}
, A(0) = 0, (95)

Ḃ = λV
{
−x̄ + F

(
e−A | p0

)}
, B(0) = 0. (96)

Our objective is to show that under this dynamics, either |A(t)|, |B(t)| → ∞ as t→∞ or A(t) and
B(t) exhibit cyclical motion around a rest point. This will complete the proof of Proposition 9.1.

Recall from the definition (71) that F
(
e−A | p0

)
is monotonically increasing in A with F

(
e−A | p0

)
→

0 as A→ −∞ and F
(
e−A | p0

)
→ 1 as A→∞. Moreover, for A = 0, F

(
e−A | p0

)
= 〈x〉0.

We first consider the case where x̄ or ȳ does not lie between 0 and 1. Suppose ȳ > 1. The
monotonicity properties of the F function imply that sign Ȧ = − signλU , which implies A(t) →
− sign(λU )∞ as t → ∞. Similarly, if ȳ < 0, then A(t) → sign(λU )∞. As A(t) → ∞, B(t) →
sign (λV (1− x̄))∞, and as A(t) → −∞, B(t) → − sign (λV x̄)∞. The roles of A(t) and B(t) are
reversed if either x̄ < 0 or x̄ > 1.

In sum, if either x̄ or ȳ lies outside the interval [0, 1], then |A(t)|, |B(t)| → ∞. For the generic
games we are considering, the only other possible outcomes occur when 0 < x̄, ȳ < 1. In this case,
(x̄, ȳ) is the mixed strategy Nash equilibrium.

If 0 < ȳ < 1, then −ȳ + F (e−B | q0) has indeterminate sign, and there is a unique, finite B̄

such that −ȳ + F (e−B̄ | q0) = 0. Similarly, if 0 < x̄ < 1, there is a unique, finite Ā such that
−x̄ + F (e−Ā | p0) = 0. That is, there is a unique equilibrium (Ā, B̄) of the system (95), (96)
determined by,

F
(
e−Ā | p0

)
= x̄, (97)

F
(
e−B̄ | q0

)
= ȳ. (98)

In order to analyze the local stability properties of the rest point, we linearize the system around
the rest point. The Jacobean matrix at equilibrium is

J(Ā, B̄) =

(
∂Ȧ
∂A

∂Ȧ
∂B

∂Ḃ
∂A

∂Ḃ
∂B

)
=




0 −λUF ′

(
e−B̄|q0

)
e−B̄

−λV F ′
(
e−Ā|p0

)
e−Ā 0



 . (99)

Since TraceJ = 0, this equilibrium can only be neutrally stable. Since F ′(k | p) < 0, it follows that
Det J > 0 if λU and λV have opposite signs. The eigenvalues are then purely imaginary. In this
case, (Ā, B̄) is a centre, and trajectories are closed orbits around it. Since the initial conditions
for (95) and (96) are A(0) = B(0) = 0, it follows that (A(t), B(t)) maps out a bounded, closed
trajectory in the (A,B)-plane passing through (0, 0).

The case where λU and λV have the same sign deserves more consideration. In this case,
Det J < 0, and the eigenvalues are real but of opposite sign. Hence, (Ā, B̄) is an unstable saddle
node. It suffices to consider the case λU , λV > 0. If λU , λV < 0 then the roles of A and B are
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interchanged. We can have four (generic) cases.

i) 〈x〉0 > x̄, 〈y〉0 > ȳ,

ii) 〈x〉0 > x̄, 〈y〉0 ≤ ȳ,

iii) 〈x〉0 ≤ x̄, 〈y〉0 > ȳ,

iv) 〈x〉0 < x̄, 〈y〉0 < ȳ.

We will show that, under mild assumptions, |A(t)|, |B(t)| → ∞ as t → ∞ in each of these cases.
This is straightforward for cases (i) and (iv). Indeed, following the argument in the proof of lemma
8.1, we have

Ȧ (0) = λU (−ȳ + 〈y〉0)

Ḃ (0) = λV (−x̄ + 〈x〉0) .

Consider case (i). If 〈x〉0 > x̄ and 〈y〉0 > ȳ, then Ȧ(0) > 0 and Ḃ(0) > 0. The monotonicity
properties of F (e−A | p0) and F (e−B | q0) then imply that these initial conditions are reinforced as
t increases. Hence, both A(t) and B(t)→∞. Similarly, in case (iv), both A(t) and B(t)→ −∞.

Cases (ii) and (iii) are more complex and a proof is given in subsection A.4.2. First, we require
a more in depth analysis of the Distributional dynamics. This analysis will also be required in
Appendix A.5 to construct the class of examples discussed in section 9.3.

A.4.1 Analysis of Distributional dynamics

The system (95)-(96) may be represented in Hamiltonian form:

Ȧ =
∂H

∂B
, Ḃ = −∂H

∂A
,

where

H(A,B) = −λU ȳB + λU

∫ B

0
F

(
e−r | q0

)
dr + λV x̄A− λV

∫ A

0
F

(
e−s | p0

)
ds. (100)

Thus, the solution trajectory of the system (95)-(96) with general initial conditions (A0, B0) at
t = 0 is the curve in the (A,B)-plane given by H(A,B) = H(A0, B0).

Now note that, from the definition (71) of F ,

∫ X

0
F

(
e−r | p

)
dr =

∫ 1

0

[∫ X

0

z

z + (1− z)e−r
dr

]
p(z)dz =

∫ 1

0
ln

(
1− z + zeX

)
p(z)dz

We can therefore write H(A,B) in the form:

H(A,B) = λV y1(A | p0)− λUy2(B | q0), (101)
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where

yi(X | p) = w̄iX −
∫ 1

0
ln

(
1− z + zeX

)
p(z)dz (102)

= −(1− w̄i)X −
∫ 1

0
ln

(
z + (1− z)e−X

)
p(z)dz, (103)

for i = 1, 2, with w̄1 = x̄ and w̄2 = ȳ.
We are concerned with the trajectory with initial conditions (A0, B0) = (0, 0). This trajectory

is H(A,B) = H(0, 0) = 0. The required solution trajectory of (95)-(96) is therefore:

λV y1(A | p0) = λUy2(B | q0). (104)

To analyze the case in which λU and λV have the same sign, and (Ā, B̄) is an unstable saddle
node, first consider the eigenvalue problem for a 2 × 2 matrix of the general form as (99). An
eigenvalue µ with eigenvector (v, w)T satisfies

(
−µ R

S −µ

)(
v

w

)
=

(
−µv + Rw

Sv − µw

)
=

(
0
0

)
.

Thus, w = αµ and v = αR, and v = βµ, w = βS, and hence

v

w
=

R

µ
=

µ

S
,

which gives µ2 = RS, the required characteristic equation for the eigenvalues. The two eigenvalues
are µ = ±

√
RS, and the corresponding eigenvectors are:

v± = α

(
R

±µ

)
= β

(
±µ

S

)
.

The eigenvector defining the unstable manifold passing through (Ā, B̄) is v+, and that defining the
stable manifold is v−. For the matrix (99), we have

µ =
√

λUλV F ′
(
e−Ā | p0

)
F ′

(
e−B̄ | q0

)
e−(Ā+B̄), v± =

(
λU

∣∣∣F ′
(
e−B̄ | q0

)∣∣∣ e−B̄

±µ

)
. (105)

Note that, when λU > 0, v+ points into the positive quadrant of the (A,B)-plane centred at (Ā, B̄).
See Fig 3.

The seperatrices. These are the trajectories defining the stable and unstable manifolds, meeting at
the equilibrium (Ā, B̄), with v− and v+ defining tangents at (Ā, B̄). The seperatrices are defined
by the solution trajectories of (95)-(96) given by H(A,B) = H̄, with H̄ = H(Ā, B̄). These curves
are illustrated in Fig 3.
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Figure 3: The separatrices defined by H(A,B) = H̄. These meet at the equilibrium point (Ā, B̄).
The unstable manifold is tangent at (Ā, B̄) to the eigenvector v+, given by (105), and the stable
manifold is tangent at (Ā, B̄) to the eigenvector v−. These define the directions of motion of the
solutions of (95)-(96) along these curves. The regions H(A,B) > H̄ and H(A,B) < H̄ are indicated.
This example has p0(x) = q0(y) = 1, both defining uniform distributions. Other parameters are:
(x̄, ȳ) = (0.6, 0.2), λU = 1, λV = 0.8.

From (100), we have:

∂H

∂A
= λV x̄− λV

∫ 1

0

zeA

1− z + zeA
p0(z)dz,

∂H

∂B
= −λU ȳ + λU

∫ 1

0

zeB

1− z + zeB
q0(z)dz,

∂2H

∂A2
= −λV

∫ 1

0

z(1− z)eA

(1− z + zeA)2
p0(z)dz,

∂2H

∂B2
= λU

∫ 1

0

z(1− z)eB

(1− z + zeB)2
q0(z)dz,

and ∂2H
/
∂A∂B = 0. It follows that (Ā, B̄) is a saddle point for the surface H(A,B) when λU , λV

have the same sign. Thus, if λU , λV > 0, then (Ā, B̄) is a local maximum with respect to variation in
A and a local minimum with respect to variation in B. The regions of the (A,B)-plane satisfying
H < H̄ and H > H̄ are separated by the separatrices (along which H(A,B) = H̄), with H

increasing from H̄ in the B-direction, and H decreasing from H̄ in the A-direction. The situation
is illustrated in Fig 3.

The solution trajectory of of (95)-(96) we are interested is H(A,B) = H(0, 0) = 0. How this
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trajectory behaves depends on which region of the (A,B)-plane contains the origin (0, 0). Thus, if
H̄ < 0, then (0, 0) lies in one of the two regions H > H̄, and if H̄ > 0, it lies in one of the two
regions H < H̄ (Fig 3). There are several (generic) cases27

i) 〈x〉0 > x̄, 〈y〉0 > ȳ, ⇒ Ā < 0, B̄ < 0,

ii) 〈x〉0 > x̄, 〈y〉0 ≤ ȳ, ⇒ Ā < 0, B̄ ≥ 0,

iii) 〈x〉0 ≤ x̄, 〈y〉0 > ȳ, ⇒ Ā ≥ 0, B̄ < 0,

iv) 〈x〉0 < x̄, 〈y〉0 < ȳ, ⇒ Ā > 0, B̄ > 0. (106)

Cases (i) and (iv) have already been considered. For cases (ii) and (iii), Ā and B̄ have opposite
signs, and four possible subcases can arise, depending on which region of the (A,B)-plane the origin
lies (see Fig 3):

i) Ā > 0, B̄ < 0 with H̄ < 0 ⇒ (A(t), B(t))→ (∞,∞),

ii) Ā > 0, B̄ < 0 with H̄ > 0 ⇒ (A(t), B(t))→ (−∞,−∞),

iii) Ā < 0, B̄ > 0 with H̄ > 0 ⇒ (A(t), B(t))→ (∞,∞),

iv) Ā < 0, B̄ > 0 with H̄ > 0 ⇒ (A(t), B(t))→ (−∞,−∞). (107)

We prove these asymptotic properties in the next subsection.

A.4.2 Asymptotic properties of the trajectories A(t), B(t)

It remains to show that, under mild assumptions, |A(t)|, |B(t)| → ∞ as t→∞ under the dynamics
(95)-(96). Specifically, we require that p0(x) has no mass points at x = 0 or x = 1, and similarly
for q0(y).

Suppose that p0(x) has no mass point at x = 0. More precisely, suppose that:

lim
ε→0

∫ ε

0
ln(z)p0(z)dz = 0.

In this case, it follows that
∫ 1
0 ln

(
z + (1− z)e−A

)
p0(z)dz is negative and decreasing in A, with

∫ 1

0
ln

(
z + (1− z)e−A

)
p0(z)dz → −L0(p0) as A→∞,

where L0(p0) = −
∫ 1
0 ln(z)p0(z)dz is a finite, positive constant.

Similarly, suppose that p0(x) has no mass point at x = 1. More precisely, suppose that

lim
ε→0

∫ 1

1−ε
ln(1− z)p0(z)dz = 0.

27These implications follow from the definitions of Ā, B̄ in (97) and (98), together with the fact that F (e−X | p) is
increasing in X from 0 when X = −∞ to 1 when X = ∞, and that F (1 | p) = 〈z〉, the mean of z with respect to the
density p(z).
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In this case, it follows that
∫ 1
0 ln

(
1− z + zeA

)
p0(z)dz is negative and decreasing in −A, with

∫ 1

0
ln

(
1− z + zeA

)
p0(z)dz → −L1(p0) as A→ −∞,

where L1(p0) = −
∫ 1
0 ln(1− z)p0(z)dz is a finite, positive constant.

For example, if p0(x) is the density of a beta distribution, p0(x) = β(a, b)−1xa−1(1−x)b−1 with
a, b > 0, then

L0(p0) =
Γ′(a + b)
Γ(a + b)

− Γ′(a)
Γ(a)

,

L1(p0) =
Γ′(a + b)
Γ(a + b)

− Γ′(b)
Γ(b)

.

In general, we have shown that the following boundedness conditions hold:

−L0(p0) <

∫ 1

0
ln

(
z + (1− z)e−A

)
p0(z)dz ≤ 0 for all A ≥ 0, (108)

−L1(p0) <

∫ 1

0
ln

(
1− z + zeA

)
p0(z)dz ≤ 0 for all A ≤ 0. (109)

Similar bounds can be obtained under similar assumptions for q0(y).
Now consider the case discussed in subsection A.4.1 in which λU , λV > 0 and the equilibrium

(Ā, B̄), given by (97) and (98), is an unstable saddle node - see Fig 3. We show that all trajectories
are asymptotic to straight lines as t→∞.

From (101), (102) and (103), we have:

y1(A | p0) = x̄A−
∫ 1

0
ln

(
1− z + zeA

)
p0(z)dz

= −(1− x̄)A−
∫ 1

0
ln

(
z + (1− z)e−A

)
p0(z)dz.

Then the above discussion implies that y1(A | p0) ∼ −(1−x̄)A+L0(p0) as A→∞, and y1(A | p0) ∼
x̄A + L1(p0) as A → −∞. It follows that, for 0 < x̄ < 1, we have y1(A | p0) → −∞ as |A| →∞ .
Similarly, 0 < ȳ < 1 implies that y2(B | q0) is asymptotic to a straight line, with y2(B | q0)→ −∞
as |B| → ∞.

Now consider a trajectory of the form

H(A,B) = λV y1(A | p0)− λUy2(B | q0) = H0,

with λU , λV > 0 and H0 a constant. Then λUy2(B | q0) = λV y1(A | p0)−H0 → −∞ as |A| → ∞.
Thus, y2(B | q0)→ −∞ as |A| → ∞, from which it follows that |B| → ∞ as |A| → ∞. This implies
that the trajectory H(A,B) = H0 is asymptotic to a straight line of the form:

CUB − CV A = D,
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for CU , CV non-zero constants, as A,B → ±∞. The parameters of these asymptotic lines are given
by:

CU CV D

i) (A,B)→ (+∞,+∞) : λU (1− ȳ) λV (1− x̄) H0 − λV L0(p0) + λUL0(q0)

ii) (A,B)→ (−∞,+∞) : λU (1− ȳ) λV x̄ H0 + λV L1(p0) + λUL0(q0)

iii) (A,B)→ (+∞,−∞) : λU ȳ λV (1− x̄) H0 − λV L0(p0)− λUL1(q0)

iv) (A,B)→ (−∞,−∞) : λU ȳ λV x̄ H0 + λV L1(p0)− λUL1(q0) (110)

This analysis completes the justification of the asymptotic properties stated in (107).

A.5 A class of examples for 2× 2 asymmetric games

For the initial densities p0(x) = (1− α)δ(x− a0) + αδ(x− a1) and q0(y) = δ(y − y0), as discussed
in section 9.3, it follows from (102) that

y1 (A | p0) = x̄A−
{
(1− α) ln

(
1− a0 + a0e

A
)

+ α ln
(
1− a1 + a1e

A
)}

, (111)

y2 (B | q0) = ȳB − ln
(
1− y0 + y0e

B
)
. (112)

The equilibrium B̄0 of (83) is given by:

B̄0 = ln
[
(1− y0)ȳ
(1− ȳ)y0

]
, (113)

and

y2
(
B̄0 | δy0

)
= ln

[(
ȳ

y0

)ȳ (
1− ȳ

1− y0

)1−ȳ
]

. (114)

Note that this is always positive for y0 -= ȳ. Similarly, the equilibrium Ā0 associated with the initial
density δ(x− x0) is

Ā0 = ln
[
(1− x0)x̄
(1− x̄)x0

]
. (115)

Observe that this is positive for x0 < x̄. As in (101), we can define

H̄0 = H
(
Ā0, B̄0

)
= λV y1

(
Ā0 | δx0

)
− λUy2

(
B̄0 | δy0

)
. (116)

This is the difference of two positive constants, and can therefore be either positive or negative. In
particular, with all other parameters fixed, we can choose λU > 0 so that H̄0 is negative.

The equilibrium Ā for (84) is given by a solution of

(1− α)
a0eA

1− a0 + a0eA
+ α

a1eA

1− a1 + a1eA
= x̄, (117)

The left hand side is a monotonically increasing function of A, equal to 0 when A = −∞, and equal
to 1 when A =∞. There is therefore a unique solution Ā = Ā(α) of (117). Note that Ā = 0 if and
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only if α = α∗, and Ā(α) > 0 for α < α∗, and Ā(α) < 0 for α > α∗.
Now define

H̄ = H
(
Ā, B̄0

)
= λV y1

(
Ā | p0

)
− λUy2

(
B̄0 | δy0

)
. (118)

We wish to consider the relationship between H̄ and H̄0. To this end, note that

y1 (A | p0)− y1 (A | δx0) = ln
(
1− x0 + x0e

A
)
−

{
(1− α) ln

(
1− a0 + a0e

A
)

+ α ln
(
1− a1 + a1e

A
)}

is strictly positive for 0 < α < 1, since ln(·) is a strictly concave function. Thus, we can write

H̄ − H̄0 = λV
{
y1

(
Ā | p0

)
− y1

(
Ā0 | δx0

)}

= λV
{
y1

(
Ā | p0

)
− y1

(
Ā0 | p0

)}
+ λV

{
y1

(
Ā0 | p0

)
− y1

(
Ā0 | δx0

)}

> λV
{
y1

(
Ā | p0

)
− y1

(
Ā0 | p0

)}
(119)

for 0 < α < 1. We shall show that this is strictly positive for 0 < α < α∗.
Given this claim, it now follows from (119) that H̄ > H̄0 for any α in the range 0 < α < α∗.

Given such an α, and fixed λV > 0 and (x̄, ȳ), it follows from (116) and (118), and the fact that
y2

(
B̄0 | δy0

)
is a positive constant, that we can choose λU > 0 so that H̄0 < 0 and H̄ > 0. For

α in the given range we have 〈x〉0 = x0 < x̄. If, in addition, we choose y0 > ȳ, then it follows
from (106) (iii) that Ā0, Ā > 0 and B̄0 < 0. Hence, since H̄0 < 0, it follows from (107) (i) that
(A0(t), B0(t))→ (∞,∞), and since H̄ > 0, it follows from (107) (ii) that (A(t), B(t))→ (−∞,−∞)
as t → ∞. Thus, the two trajectories, the first associated with the Replicator dynamics, and
the second with the Distributional Replicator dynamics, converge to opposite equilibria. This
establishes the claims of section 9.3.

Proof of Claim. Consider

∂y1

∂A
(A | p0) = x̄− (1− α)

a0eA

1− a0 + a0eA
− α

a1eA

1− a1 + a1eA

∂2y1

∂A2
(A | p0) = −(1− α)

a0(1− a0)eA

(1− a0 + a0eA)2
− α

a1(1− a1)eA

(1− a1 + a1eA)2

Clearly, ∂2y1
∂A2 (A | p0) < 0 for all A. Since, by definition, ∂y1

∂A (Ā | p0) = 0, it follows that A = Ā is
a non-degenerate global maximum of y1(A | p0). Also, ∂y1

∂A (A | p0) decreases monotonically from x̄

to −(1− x̄) as A increases from when −∞ to ∞.
Since Ā is a global maximum for y1(A | p0), we need only show that Ā0(α) -= Ā(α) for any α

in the range 0 < α < α∗. It then follows that y1(Ā | p0)− y1(Ā0 | p0) > 0, as claimed. To this end,
it suffices to show that ∂y1

∂A (Ā0 | p0) -= 0. Consider

∂y1

∂A

(
Ā0 | p0

)
= x̄− (1− α)

a0

a0 + (1− a0)e−Ā0
− α

a1

a1 + (1− a1)e−Ā0

= x̄− (1− α)
a0(1− x0)x̄

a0(1− x0)x̄ + (1− a0)x0(1− x̄)
− α

a1(1− x0)x̄
a1(1− x0)x̄ + (1− a1)x0(1− x̄)

= x̄

{
1− (1− α)a0(1− x0)

a0(1− x0)x̄ + (1− a0)x0(1− x̄)
− αa1(1− x0)

a1(1− x0)x̄ + (1− a1)x0(1− x̄)

}
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To evaluate the expression in {}, consider

N = (1− α)a0 {a1(1− x0)x̄ + (1− a1)x0(1− x̄)} + αa1 {a0(1− x0)x̄ + (1− a0)x0(1− x̄)}

= a0a1(1− x0)x̄ + {(1− α)a0(1− a1) + αa1(1− a0)}x0(1− x̄)

= a0a1(1− x0)x̄ + (x0 − a0a1)x0(1− x̄) using (80)

= a0a1 {(1− x0)x̄− x0(1− x̄)} + x2
0(1− x̄)

= a0a1(x̄− x0) + x2
0(1− x̄).

which is positive for α < α∗ – see (82). Now consider

M = {a1(1− x0)x̄ + (1− a1)x0(1− x̄)} {a0(1− x0)x̄ + (1− a0)x0(1− x̄)}

= a0a1(1− x0)2x̄2 + (1− a0)(1− a1)x2
0(1− x̄)2 + {a1(1− a0) + a0(1− a1)}x0(1− x0)x̄(1− x̄)

= a0a1
{
(1− x0)2x̄2 + x2

0(1− x̄)2 − 2x0(1− x0)x̄(1− x̄)
}

−(a0 + a1)
{
x2

0(1− x̄)2 − x0(1− x0)x̄(1− x̄)
}

+ x2
0(1− x̄)2

= a0a1 {(1− x0)x̄− x0(1− x̄)}2 + (a0 + a1)x0(1− x̄) {(1− x0)x̄− x0(1− x̄)} + x2
0(1− x̄)2

= a0a1(x̄− x0)2 + (a0 + a1)x0(1− x̄)(x̄− x0) + x2
0(1− x̄)2

Hence, setting L = M −N(1− x0), we have

L(α) = −
{
a0a1 − (a0 + a1)x0 + x2

0

}
(1− x̄)(x̄− x0)

= (a1 − x0)(x0 − a0)(1− x̄)(x̄− x0)

Thus L(0) = L(α∗) = 0, and L(α) > 0 for 0 < α < α∗. It therefore follows that

∂y1

∂A

(
Ā0 | p0

)
= x̄

L(α)
M

> 0, for 0 < α < α∗.

This shows that Ā0(α) < Ā(α) for 0 < α < α∗, as required. !
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