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ABSTRACT

Diffusion magnetic resonance imaging (dMRI) has become increasingly relevant in clinical research and neuro-
science. It is commonly carried out using the ultra-fast MRI acquisition technique Echo-Planar Imaging (EPI).
While offering crucial reduction of acquisition times, two limitations of EPI are distortions due to varying mag-
netic susceptibilities of the object being imaged and its limited spatial resolution. In the recent years progress has
been made both for susceptibility artefact correction and increasing of spatial resolution using image processing
and reconstruction methods. However, so far, the interplay between both problems has not been studied and
super-resolution techniques could only be applied along one axis, the slice-select direction, limiting the potential
gain in spatial resolution. In this work we describe a new method for joint susceptibility artefact correction
and super-resolution in EPI-MRI that can be used to increase resolution in all three spatial dimensions and in
particular increase in-plane resolutions. The key idea is to reconstruct a distortion-free, high-resolution image
from a number of low-resolution EPI data that are deformed in different directions. Numerical results on dMRI
data of a human brain indicate that this technique has the potential to provide for the first time in-vivo dMRI at
mesoscopic spatial resolution (i.e. 500 µm); a spatial resolution that could bridge the gap between white-matter
information from ex-vivo histology (≈ 1 µm) and in-vivo dMRI (≈ 2000 µm).
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1. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is a powerful technique that provides important biomarkers for
clinical diagnoses and neurological research.1 dMRI is based on diffusion-weighted images that are made sensitive
to the microscopic movement of water molecules as they diffuse through tissue along different directions. The
diffusion-sensitization, however, makes the images also extremely sensitive to any other form of movement that
may be present such as subject motion. To reduce motion-sensitivity in dMRI, Echo-Planar Imaging (EPI), an
ultra-fast MRI technique,2 is mostly used.

While offering crucial reduction of acquisition times, a well-known drawback of EPI is its high sensitivity
to local perturbations of the magnetic field that are largely present in the living human brain.3 In particular,
strong magnetic field perturbations can be caused by changes in the magnetic susceptibility at the interface of
two materials with different magnetic properties. Consequently, EPI data suffers from nonlinear geometrical
deformations and intensity modulations commonly referred to as susceptibility artefacts. Susceptibility artefacts
complicate a voxel-by-voxel combination of diffusion information, obtained using EPI, with anatomical, images
that are unaffected by distortion. Over recent years, many susceptibility artefact correction techniques evolved;
see4 and references therein. A particular class of correction techniques are reversed gradient approaches.5 Noting
that, in EPI, displacements are most prominent along the phase-encoding direction the idea is to estimate the
field inhomogeneity based on two datasets acquired with reversed phase-encoding direction that show opposite
distortion patterns. Subsequently, both images are corrected using automatic post-processing tools like HySCO.6

Although distortions can be reduced considerably, using reverse gradient approaches in general yields two ap-
proximately, but not identical, corrected images from which the user may pick one or average both to improve
the signal-to-noise ratio.

A second crucial limitation of dMRI is its spatial resolution. On clinical scanners, resolutions above (2mm)3

are standard while the thickness of white matter compartments (e.g. axons) are in the range of micro meters.
Even using improved scanning hardware (e.g. Heinemann et al.7 at 7T) spatial resolution is limited to about 1000
µm, making super-resolution techniques not only a cheap alternative but even mandatory for meso-scale, in-vivo
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dMRI. The basic idea of super-resolution techniques is to reconstruct one high-resolution image from multiple
shifted, low-resolution images.8 Recently, there were promising super-resolution schemes in dMRI that are based
on sub-voxel shifts in slice-selection direction which is not Fourier encoded.9–11 Due to the translational invariance
of the Fourier transform, simple shifts of the whole object cannot be used to increase the in-plane resolution in
slice-wise MRI acquisitions.12 Consequently, a common drawback of current super-resolution approaches is that
they are effective in one direction only and that susceptibility artefacts are neglected, limiting their potentials
for increasing spatial resolution above 1000 µm.

This paper describes a new method for joint susceptibility artefact correction and increasing in-plane reso-
lution in EPI-MRI. Our method uses susceptibility related distortions in a number of low-resolution EPI data
obtained with different phase-encoding directions to reconstruct one distortion free image with higher resolution.
Because our approach uses nonlinear deformations, the argument of12 against Fourier-encoded super-resolution
does not apply. Results on dMRI data of a human brain indicate the potential of the proposed method to provide
for the first time in-vivo dMRI at mesoscopic spatial resolution (i.e. 500 µm); a spatial resolution that could
bridge the gap between white-matter information from histology (≈ 1 µm) and dMRI (≈ 2000 µm).

2. METHODS

The relation between a distorted EPI acquisition IEPI and the accurate image I by a physical distortion model
has been established in.5 Assuming continuos images and a known field inhomogeneity B : Ω→ R, where Ω ⊂ R3

is a domain, both images satisfy

I(x) = IEPI(x+ B(x)v) (1 + ∂vB(x)) for each x ∈ Ω, (1)

where in EPI v ∈ R3 corresponds to the phase-encoding direction. The distortion thus consists of a geometric
displacement, limited in direction v, and an intensity modulation ensuring mass-conservation. In other words,
due to perturbed field, signal originating from point x is wrongly localized at point x + B(x)v but the total
amount of signal is conserved.

Considering a super-resolution problem, we assume that EPI data are given on a regular coarse grid with N
cells of size H = [H1, H2, H3], and the undistorted image and the unknown inhomogeneity is to be reconstructed
on a regular fine grid with n cells of size h = [h1, h2, h3] and hi ≤ Hi for i = 1, 2, 3.

The forward model, that is the simulation of distorted low-resolution EPI data given high-resolution data
I ∈ Rn and B, is realized using a Particle-In-Cell (PIC) method.13 PIC methods are widely used in fluid dynamics
for solving hyperbolic conservation laws with compressible flows. We place particles in each cell-centres xj of
the fine mesh and attach to them a mass given by the integral of I over the cell denoted by Ij for j = 1, . . . , n.
A continuous image model is then derived from a linear combination of basis functions, where we use linear
hat functions centred at the particles’ position of width ε = [ε1, ε2, ε3] that are scaled in height such that their
integral equals one

I(x) =

n∑
i=1

Ii Φε(x− xj), where Φε(x) =

3∏
d=1

1

εd
φ

(
xd
εd

)
and φ(x) =

{
1− |x| , x ∈ [−1, 1]

0 , else
. (2)

Due to the field-inhomogeneity the particles are shifted to the non-grid point xi +Biv according to (1). Finally,
the image is resampled on the coarse mesh. To this end the mass of the particles is distributed between the
adjacent cells of the coarse mesh. The weights are summarized in the push-forward matrix

T [B, v] ∈ RN×n, where (T [B, v])i,j =

∫
ΩH

i

Φε(x− (xj +Bjv))dx, (3)

where ΩHi denotes the ith voxel of the coarse mesh. Note that by design of the basis functions each column in
T sums to one and thus the total mass is conserved. Overall the forward model summarizes to IEPI ≈ T [B, v]I.

Given discrete EPI data IEPI
1 , . . . , IEPI

K ∈ RN acquired with phase-encoding directions v1, . . . , vK , the inverse
problem of estimating the field-inhomogeneity B and the particle weights I ∈ Rn on the fine mesh is formulated
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distorted initial data, H = 1.2 × 1.2 × 1.3mm3 reconstruction result, h = 0.6 × 0.6 × 1.3mm3
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Figure 1. Results of joint 3D super-resolution and susceptibility artefact correction for dMRI data of a human brain.
Slice projections of the low-resolution, distorted EPI data with different phase-encoding directions are visualized for one
baseline image in a),b),e) and f). Distortion effects are most notable in the posterior region. In c) the reference image,
obtained by standard susceptibility artefact correction,6 averaging and interpolation is shown and in d) the fractional
anisotropy (FA) computed from all reference images. The final result of the proposed super-resolution method is visualized
in g) and h) by slice projections of the baseline and the radial diffusivity image. To allow comparison, the colormap is
identical in all sub-plots. Note that the colormap is inverted in d) and h) to improve visibility.

as a discrete optimization problem

J(B, I) =
prod(H)

2K

K∑
k=1

∥∥T [B, vk]I − IEPI
k

∥∥2
+

prod(h)

2
(α1‖∇(B−Bref)‖2+α2‖∇I‖2+α3‖I−Iref‖2)

!
= min, (4)

where α ∈ R3 is a regularization parameter and Bref and Iref are used to incorporate prior knowledge into
the optimization. The first term measures the difference between the simulated image and the actual data,
while the remaining terms are regularization functionals that ensure smoothness of image and inhomogeneity
and deviations from the reference image. For solving (4) we follow the coupled approach outlined in.8 Noting
that for given B the optimality condition for I is linear, we use variable projection, express the high-resolution
image in terms of the field-inhomogeneity and solve the reduced minimization problem for B using a standard
Gauss-Newton method in Matlab.

3. RESULTS

A diffusion-tensor dataset of a brain of a healthy volunteer was acquired on a TIM Trio 3T scanner (Siemens
Healthcare, Erlangen, Germany). The acquisition protocol provided four dMRI datasets each consisting of mea-
surements along 100 diffusion directions and 11 baseline images without diffusion weighting. For the acquisition
of the first two datasets the phase-encoding direction was reversed along the left-right direction yielding an image
matrix of 64× 128 and 34 slices. For measuring the third and fourth dataset, the phase-encoding direction was
reversed along the anterior-posterior axis and the image matrix is 128 × 64 and 34 slices. For all datasets the
voxel size was 1.2× 1.2× 1.3mm3.

As preprocessing and to provide starting guess and reference models for the optimization problem (4), we
corrected each dMRI dataset by using HySCO6 pair-wise with empirically tuned regularization parameters
(α = 400, β = 30). The estimated inhomogeneity and the initial and corrected image data were cropped to
the overlapping domain. Both estimates of the inhomogeneity and the four corrected images were averaged and
interpolated to the fine mesh, yielding Bref and Iref, respectively.
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The super-resolution images were estimated from (4) using the starting guesses Bref and Iref obtained in
the preprocessing step. This procedure was done sequentially for all 100 diffusion weighted image volumes and
11 baseline images with empirically tuned parameter α = (0.006, 0.1) and ε = [1.5

√
h1, 1.5

√
h2, h3/2]. Figure 1

shows a selected slice of one baseline volume. The coarse initial data, the reference guess and the final result
with a voxel-size of 0.6 × 0.6 × 1.3mm3 are shown. Finally, diffusion tensors were reconstructed from both the
reference images and the results of the proposed super-resolution method. As our method is expected to be most
beneficial in the cortex, we visualize radial diffusivity as a marker of neurite microstructure in Figure 1.

4. NEW OR BREAKTHROUGH WORK TO BE PRESENTED

To the best of our knowledge our work combines susceptibility artefact correction and super-resolution in EPI-
MRI for the first time. Our method is based on nonlinear deformations and constitutes the first in-plane
super-resolution technique in dMRI after Scheffler’s critique.12 Numerical results indicate the unique potential
of our technique to provide for the first time in-vivo dMRI at mesoscopic spatial resolution, an essential step
towards in-vivo histology.

5. CONCLUSION

In this work we introduce a new method that for the first time allows to jointly correct susceptibility artefacts
and increase the in-plane resolution of EPI-MRI. The scheme reconstructs an undistorted, high-resolution image
given multiple distorted, low-resolution measurements that are deformed in different directions. In this work, we
did not increase the through-slice resolution, however, we note that the phase-encoding direction can be chosen
arbitrarily in our setting. Thus, future work will investigate acquisition schemes with phase-encoding gradients
in z-direction to provide images of isotropic super-resolution.
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