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Using one- and two-dimensional random arrays of coupled metallic nanowires as a generic example of
disordered plasmonic systems, we demonstrate that the structural disorder induces localization of light in these
nanostructures at a deep-subwavelength scale. The ab initio analysis is based on solving the complete set
of three-dimensional Maxwell equations. We find that random variations of the radius of coupled plasmonic
nanowires are sufficient to induce the Anderson localization (AL) of surface plasmon polaritons (SPPs), the size
of these trapped modes being significantly smaller than the optical wavelength. Remarkably, the optical-gain
coefficient, needed to compensate for losses in the plasmonic components of the system, is much smaller
than the loss coefficient of the metal, which is obviously beneficial for the realization of the AL in plasmonic
nanostructures. The dynamics of excitation and propagation of the Anderson-localized SPPs are addressed too.
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I. INTRODUCTION

When the size of photonic devices is reduced to the
subwavelength scale, the confinement and guiding of the
electromagnetic energy is severely hampered by the diffraction
of optical fields. This limitation represents the main roadblock
on the way to the integration of photonic circuits at the
nanoscale level [1,2]. An effective way to overcome this
limitation is to employ surface plasmon polariton (SPP)
waves [3–5], whose strong confinement at the metallic surface
and deep-subwavelength characteristic scale make it possible
to achieve a strong coupling between the optical fields and
nanosized photonic structures. In this context, one of major
goals of the work with SPP-based nanodevices is to develop
new techniques for precise beam steering, optical switching,
and field manipulations at the subwavelength scale. A very
promising approach toward this goal is to employ arrays of
metallic nanowires, also known as plasmonic crystals [6–12],
where the optical coupling of SPPs propagating in adjacent
nanowires is controlled by dielectric properties of the embed-
ding medium [13–15]. In particular, the use of periodic arrays
of nanowires makes it possible to engineer the effective optical
dispersion with an unprecedented degree of flexibility [9–12].

In this context, a natural question is to what extent structural
disorder, which is inevitably introduced by nanofabrication, or
purposely built into the system, affects the physical properties
of the plasmonic crystals and thus limits the functionality of
subwavelength plasmonic nanodevices. In particular, it is well
known that the structural disorder may profoundly affect the
spectrum of wave modes, with the Anderson localization (AL)
being, perhaps, the most spectacular effect of that kind. This
is a fundamental wave phenomenon, which was first predicted
in solid-state physics as the localization of electron wave
functions in disordered lattices [16]. It was later established
that the AL is a ubiquitous effect that occurs in a multitude
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of settings in which waves interact with disordered potentials,
including light [17–19], matter waves [20,21], and sound [22].
Disorder effects are expected to be particularly important at
the subwavelength scale, including plasmonic systems similar
to those investigated in this work, as the coupling between
the waves and the underlying disordered system is enhanced
at that scale. In this context, the AL of SPPs was predicted in
metal-dielectric percolation composites [23], and the effects of
randomly located scatters on SPPs guiding along the surface
of gold films were observed experimentally [24].

In this paper, we study the influence of the structural
disorder on the spatial distribution of the plasmonic field and its
propagation in one- and two-dimensional (1D and 2D) arrays
of coupled metallic nanowires. Solving the full system of the
corresponding Maxwell equations (MEs), we find that a ran-
dom distribution of radii of the nanowires leads to transverse
spatial localization of collective SPP excitations (plasmonic
supermodes of the array). The characteristic spatial confine-
ment of the plasmonic field may be significantly smaller than
the optical wavelength, λ, which demonstrates that plasmonic
structures can be employed to implement the subwavelength
AL of the electromagnetic field. To facilitate experimental
observation of such extreme localization of light, we also
study the feasibility of the compensation of optical losses
by means of embedded gain elements. Our analysis shows
that the deep-subwavelength Anderson-localized SPPs may be
maintained at extremely low gain levels, or even without gain.

II. PHYSICAL SYSTEM AND THEORETICAL MODEL

We start by considering 1D arrays of N coupled metallic
nanowires, which are oriented along the z axis, being equally
spaced (center-to-center) in the transverse direction, x, by
distance d; see Fig. 1(a). The structural disorder is introduced
by fixing radii of the nanowires in the array, with discrete
coordinate n, as an = a + δn, where a is the average radius (we
take a = 40 nm), and δn is a random deviation. We assume that
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FIG. 1. (Color online) (a) A disordered plasmonic array. (b) The
spectrum of supermodes of the array, averaged over an ensemble of
100 randomness realizations, produced by the CMT equations (1)
in the nearest-neighbor (dot-dashed line) and next-nearest-neighbor
(dashed line) approximations, as well as obtained from the full ME
set (solid line). The dotted line stands for the spectrum corresponding
to one particular realization of the randomness. Labels A–C indicate
the location of the ALMs in (c). (c) Generic examples of electric-field
intensity profiles of ALMs in the array. The logarithmic plot shows
the transverse profile of mode (A) at y = 0. In (b) and (c), the array’s
spacing is d = 8a, and the randomness strength is � = 10% (d). The
effective width of staggered ALMs vs �, as calculated with d = 4a

and 8a, for an ensemble of 200 randomly composed plasmonic arrays.
Other parameters in (b)–(d) are λ = 1.55 μm, a = 40 nm, and N =
100. Inset of (d) plots the effective width of ALMs at λ = 0.6328 μm.

δn is uniformly distributed in the interval of [−δ,δ], with δ < a,
the level of the disorder being characterized by � ≡ δ/a.
The equal spacing between nanowires makes the present
setting different from fully random plasmonic structures, e.g.,
planar randomly distributed metallic scatterers with random
sizes [23,24]; actually, the nature of the disorder in the present
system is similar to that introduced by Anderson in his seminal
work [16].

Previous studies of the AL in systems of coupled waveg-
uides were based on the paraxial approximation for the
propagation of electromagnetic waves, chiefly because the
relative variation of the refractive index in such systems
is small, hence the characteristic scale of the AL of light
is much larger than λ. However, the paraxial approximation is
not valid for plasmonic systems, where the relative variation of
the refractive index is large by definition, allowing, as we show
below, the AL scale to be significantly smaller than λ. This fact
implies that the use of the full system of three-dimensional
(3D) MEs is necessary. Thus, our analysis starts ab initio,
solving the 3D ME system in the framework of the COMSOL

shell [25]. In the simulations, a predefined triangular fine

mesh with a maximum-size element of 10 nm was used. The
resulting face mesh sweeps along the propagation direction of
the nanowires with a step of 500 nm. Appropriate scattering
boundary conditions were used to mimic open boundaries. A
convergence analysis was conducted to ensure that the results
vary within tolerable errors.

We set the permittivity of the dielectric background
material to be εd = 12.25, which corresponds, e.g., to Si
or GaAs, and we use the Drude model to describe the
permittivity of the metal, εm = 1 − ω2

p/[ω(ω + iν)]. We as-
sume that the nanowires are made of silver, with plasmon
and damping frequencies ωp = 13.7 × 1015 rad s−1 and ν =
2.7 × 1014 rad s−1[26].

To gain better insight into the physics of the SPP localiza-
tion, we compared results produced by the ME system with
those obtained from the paraxial model for the propagation
of SPPs in the disordered plasmonic arrays, based on the
coupled-mode theory (CMT). A detailed derivation of the
CMT model [13,27,28] leads to the discrete Schrödinger
equation with a long-range coupling:

i
dφn

dz
+ bnφn +

∑
j�1

κj (φn−j + φn+j ) = 0, (1)

where bn is the propagation constant of the mode associated
with the nth nanowire. Apart from the z-dependent phase, the
nonvanishing field components of this mode, er , ez, and hφ ,
depend only on the radial coordinate, r⊥. In Eq. (1), κj is the
coupling coefficient between nanowires separated by discrete
distance j , which can be calculated using fields of the plasmon
mode of the nanowire, e(r⊥) and h(r⊥), and the distribution of
the dielectric constant in the plasmonic system, ε(r⊥) [13]. The
corresponding modal fields are E(r) = ∑

n en(r⊥)ei(βk0z−ωt)

and H(r) = ∑
n hn(r⊥)ei(βk0z−ωt), where β is the effective

refractive index of the plasmon mode, and k0 = ω/c is the
wave number in vacuum at carrier frequency ω.

III. RESULTS AND DISCUSSION

Results typical for the disordered plasmonic arrays are
shown in Figs. 1(b) and 1(c), where the spectrum of the
supermodes (the transmission band) and several representative
modal field profiles of AL modes (ALMs) are displayed,
respectively. Here we only show results for the first trans-
mission band, as higher-order ones do not support localized
eigenmodes. Our simulations, based on both the CMT and
full ME, reveal that, as expected, for small disorder (� � 5%)
all generic supermodes of the finite plasmonic array feature
extended profiles, i.e., the AL does not occur, as for such a
weak disorder, the localization length may be larger than the
system’s size (for some particular realizations of the disorder,
the AL does occur even if � is as small as 1%; however,
for the very weak disorder, the AL is not a generic feature
of the plasmonic field). When the disorder strength exceeds
� � 5%, two strongly localized modes emerge at edges of the
transmission band, as shown in Fig. 1(c). As may be naturally
expected, ALMs near the bottom of the band are unstaggered,
in the sense that the phase of the longitudinal component of the
electric field, Ez, is constant across the array, while the ALMs
at the top of the band are staggered (Ez in adjacent nanowires
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points in opposite directions). ALMs located in the central part
of the band feature a mixed structure, with parts of the mode
staggered and other parts unstaggered. When � increases
further, additional supermodes become more localized and
evolve into ALMs. For all values of � at which the AL occurs,
the ALMs at the edges of the band are, typically, localized
much stronger than near its center.

Surprisingly, the CMT equations provide a somewhat more
accurate description of the plasmonic supermodes when only
the nearest-neighbor coupling is kept in Eq. (1). Nevertheless,
a particularly large discrepancy between the predictions of the
CMT and 3D ME is observed for the modes at the edges of
the transmission band. The ME and CMT not only predict
significantly different values for the propagation constant of
the supermodes of the plasmonic array, but also the field
profiles of the supermodes produced by these two methods
are in poor agreement (not shown here). These finding clearly
demonstrate the necessity of the use of the 3D ME for modeling
strongly coupled, high-index-contrast systems, such as our
plasmonic arrays, as the CMT yields a coarse approximation
in this setting.

Figure 1(d) presents the effective width of the ALMs,
defined as

weff =
〈[∫ ∞

−∞ |E(x,y = 0)|2(x − x0)2dx∫ ∞
−∞ |E(x,y = 0)|2dx

] 1
2
〉
, (2)

where x0 ≡ ∫ +∞
−∞ |E(x,y = 0)|2x dx/

∫ +∞
−∞ |E(x,y = 0)|2dx

is the central coordinate of the mode, 〈〉 stands for averaging
over multiple realizations of the randomness with the same de-
gree of disorder, and the electric field is obtained by solving the
3D ME. Naturally, the width decreases with the increase of the
randomness strength, asymptotically reaching a constant value
for high disorder levels. When this minimum width is reached,
the plasmonic field is localized around a single nanowire.
It is worth noting that the width can become much smaller
than the wavelength even at rather low disorder levels. For a
given randomness strength, the modal width increases with
the decrease of the separation between the nanowires, because
smaller spacing leads to stronger coupling between them,
making stronger randomness necessary to induce the AL.

An important result inferred from Figs. 1(b) and 1(d) is that
statistical averaging over the ensemble of disordered arrays
converges rather fast, hence a relatively small number of arrays
with different realizations of the disorder need to be actually
considered, deviations between the results produced by partic-
ular realizations being small. This observation significantly
reduces the required computational time and thus greatly
simplifies the analysis. This result is explained by a weak
dependence of the mode’s propagation constant and coupling
strength on the radius of the nanowires. Equally important
is the potential implication of this result for the design of
AL-based plasmonic nanodevices, as one may expect that their
properties depend weakly on the particular realization of the
system randomness [29].

The Ohmic loss in metallic nanowires causes decay of
propagating ALMs, which can make their observation a
challenging task. A promising scheme to offset the loss is
to embed the array into a dielectric medium carrying optical
gain, provided, e.g., by pumped quantum dots or wells [30].

FIG. 2. (Color online) Left panel: the imaginary part of the
propagation constant, βi , vs the gain of the host dielectric material, α,
for staggered and unstaggered ALMs, averaged over 100 randomness
realizations. The permittivities of the host material and metal are,
respectively, εd = 12.25 + iα and εm = −125.46 − 2.84i (at λ =
1.55 μm). Right panels: the propagation of the staggered ALM at
three different values of the gain for a specific randomness realization
(the solid line in the left panel): α = 0 (a), α = αcr = 0.126
(b), and α = 0.25 (c). The parameters are d = 320 nm, N = 20,
and � = 15%.

Figure 2 summarizes results produced by solving the 3D ME
for the loss characteristics of ALMs in the present setting,
as well as their formation and propagation in the presence
of the gain. In the simulations, we assumed that the metal’s
permittivity is εm = −125.46 − 2.84i, which corresponds to
silver at 1550 nm, and the permittivity of the embedding
medium is εd = 12.25 + αi, where α is the gain coefficient.

The most relevant quantity in this context is the imaginary
part of the ensemble-averaged modal propagation constant,
βi , as it directly determines the loss. The dependence of βi

of the staggered and unstaggered ALMs on α is displayed in
Fig. 2. Two significant features are revealed by this figure.
First, dependence βi(α) is almost linear. The reason for this
is that the gain/loss part of the permittivity of the metal and
the gain medium is much smaller than the corresponding real
part (especially in the metal, as stated above), which means
that the field profile of the ALMs remains almost unchanged
as one varies α (our numerical results directly confirm a
weak dependence of the modal profile on α). As the effective
loss of the mode is given by a certain spatially weighted
average of the imaginary part of the permittivity over the
nearly constant modal field profile, this indeed implies that the
corresponding loss coefficient depends on the gain/loss almost
linearly. Second, the gain coefficient, αcr, at which the loss
is compensated, differs significantly from the loss coefficient
of the metal, being, quite surprisingly, much smaller. This is
explained by the fact that the mode does not distribute its field
evenly between the metallic (lossy) and gain regions. More
specifically, the simulations show that βi = 0 is achieved at
αcr = 0.126 � 2.84, which is more than 20 times smaller
than the loss coefficient. These findings are also illustrated
by the propagation patterns of ALMs, shown in the right panel
of Fig. 2 for three different values of the gain coefficient:
α = 0 < αcr, α = αcr, and α = 0.25 > αcr.

In addition to the gain compensation, the excitation of
ALMs, provided by an appropriate input coupled into the
system, is also an issue of critical significance. Essential
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FIG. 3. (Color online) The propagation of a modulated Gaussian
with optimized parameters, defined by the following input: Ex (x,y) =
sin[2π (x − x0)/d] exp[−(x − x0)2/w2] exp(−y2/w2), which im-
plies the excitation of a staggered ALM. Panels (a) and (b) correspond
to the periodic arrays, whereas (c) and (d) pertain to the randomized
ones. Metallic loss is not incorporated in (a) and (c), but is included in
(b) and (d). The parameters are λ = 1.55 μm, d = 320 nm, x0 = d/2,
w = d/2, N = 20, and � = 15%.

findings pertaining to this issue are summarized in Fig. 3,
which displays the excitation of ALMs by a modulated
Gaussian beam, whose initial width and input location in the
array are optimized using the field profile of the eigenmode
provided by the above analysis. The objective is to achieve
the shortest ALM formation length, defined as the distance
required for the input beam to reshape itself into an ALM. For
the ALM to be observable in the setup in which the loss is
not compensated by the gain, the formation length should be
shorter than the characteristic modal decay length. Simulations
presented in Figs. 3(c) and 3(d) clearly demonstrate that the
Gaussian, coupled into the disordered plasmonic array, evolves
into an ALM after passing just a few microns, a part of the input
energy being shed off in the form of radiation waves. In the
course of the evolution, the beam preserves its width, although
its intensity exhibits an overall decrease if realistic loss is in-
cluded; see Fig. 3(d). By contrast, significant beam diffraction
is observed, over the entire propagation distance, in arrays
with vanishing randomness, as seen in Figs. 3(a) and 3(b).
Thus, ALMs may be observed even in the absence of the
compensating gain, provided that the input profile is properly
adjusted. On the other hand, if the input deviates significantly
from the optimized shape, one should add the gain to make the
ALM formation length smaller than the modal decay length.

The localization of SPPs is also possible in 2D disor-
dered nanowire arrays. The main features of the respective
phenomenology are similar to those reported above for the
1D setting, therefore we only briefly present them here. Two
representative examples of 2D ALMs are shown in Fig. 4,
where deep subwavelength confinement of the plasmonic
field, in both transverse directions, is clearly observed. In
one case, the ALM is formed inside the array, therefore
we name it a bulk mode, whereas the other one is located
at the boundary of the array, and may be considered as a
surface ALM. In both cases, two ALMs formed under different
randomness realizations are displayed, which again shows that

FIG. 4. (Color online) Examples of ALMs formed in a 2D dis-
ordered plasmonic array. (a) and (b) Intensity of the electric field in
bulk and surface ALMs, respectively. In each panel, two modes are
displayed, corresponding to different realizations of the randomness.
Parameters are d = 320 nm, � = 15%, and λ = 1.55 μm.

the characteristics of AL in our disordered system depend
weakly on the particular realization. In particular, it is observed
that, even for a relatively weak disorder, the field is almost
entirely confined around a single nanowire. Our computations
of the propagation constant of the supermodes show that the
predictions of the CMT are still less accurate in two dimensions
than in one dimension.

IV. CONCLUSIONS

In conclusion, by solving the complete set of the 3D
Maxwell equations, we have demonstrated that the AL of SPPs
can be achieved in 1D and 2D arrays of metallic nanowires with
a varying degree of the structural disorder. The characteristic
localization length of these plasmonic ALMs may be much
smaller than the optical wavelength. We have investigated the
influence of the metallic loss and gain of the host medium on
the plasmonic ALMs, concluding that the loss is compensated
by the gain whose strength is much smaller than the loss rate of
the metallic component of the plasmonic array. These results
suggest that experimental observation of the ALMs is possible
with the currently available nanofabrication and experimental
techniques.

It is worth noting that the proposed settings can be readily
extended to the midinfrared and THz spectral regions by
using other plasmonic systems, such as arrays of graphene
ribbons [31–33]. We also point out that our approach, based
on the full ME system, may be applied as well to the subwave-
length localization of atomic excitations, a phenomenon that
has been recently observed experimentally [34].
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