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Attenuation Correction Synthesis for Hybrid PET-MR
Scanners: Application to Brain Studies
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Anna Barnes, Rebekah Ahmed, Colin J. Mahoney, Jonathan M. Schott, John S. Duncan, David Atkinson,

Simon R. Arridge, Brian F. Hutton, and Sébastien Ourselin

Abstract—Attenuation correction is an essential requirement
for quantification of positron emission tomography (PET) data. In
PET/CT acquisition systems, attenuation maps are derived from
computed tomography (CT) images. However, in hybrid PET/MR
scanners, magnetic resonance imaging (MRI) images do not
directly provide a patient-specific attenuation map. The aim of the
proposed work is to improve attenuation correction for PET/MR
scanners by generating synthetic CTs and attenuation maps. The
synthetic images are generated through a multi-atlas information
propagation scheme, locally matching the MRI-derived patient’s
morphology to a database of MRI/CT pairs, using a local image
similarity measure. Results show significant improvements in
CT synthesis and PET reconstruction accuracy when compared
to a segmentation method using an ultrashort-echo-time MRI
sequence and to a simplified atlas-based method.
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I. INTRODUCTION

P OSITRON emission tomography/magnetic resonance
imaging (PET/MR) scanners are expected to offer a

new range of applications in neuro-oncology, epilepsy and
neurodegenerative diseases such as Alzheimer’s disease [1]. To
quantify accurately the radionuclide uptake, PET data need to
be corrected for photon attenuation. The attenuation informa-
tion is usually obtained from a transmission scan in standalone
PET or derived from a computed tomography (CT) image in
combined PET/CT systems. Regarding PET/MR scanners,
the strong magnetic field and the limited bore diameter of the
MRI prevent the use of a transmission source. As MRI image
intensities do not reflect the electron densities, alternative
methods must be developed for PET/MR acquisitions. These
methods can be classified into three main categories: emission,
segmentation, and atlas-based approaches [2].
The first class of methods exploits information in the PET

emission data to estimate the attenuation maps. For instance,
recent work looked into joint reconstruction of emission and
attenuation, potentially regularized using anatomical informa-
tion from MRI images [3], [4]. It has been suggested that, for
certain tracers, inclusion of time-of-flight information improves
this type of approach [4], [5].
In segmentation-based methods, uniform linear attenuation

coefficients are assigned to tissue classes obtained by seg-
menting an MRI image. In the method from Martinez-Möller
et al. [6], the body is segmented into four classes: background,
lungs, fat, and soft-tissues. While the results obtained in
whole-body studies are satisfactory, the lack of bone infor-
mation has a significant impact on the quantification of the
radionuclide uptake in brain studies [7]. Catana et al. [8],
Keereman et al. [9], and more recently Aitken et al. [10],
used ultrashort-echo-time (UTE) MRI sequences to distinguish
cortical bone, air, and soft tissue, which improves the accu-
racy of the results. Berker et al. [11] developed a four-class
tissue segmentation technique applied to brain studies. Cor-
tical bone, air, fat, and soft-tissues are segmented using a
combined UTE/Dixon MRI sequence. Although the achieved
overall voxel classification accuracy is superior to the accu-
racy obtained without Dixon or UTE components, the bone
segmentation is still inaccurate in complex regions such as
nasal sinuses [11]. Recently, Yang et al. [12] proposed a skull
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segmentation method for T1-weighted MRI images via a mul-
tiscale bilateral filtering processing of MRI sinogram data in
the Radon domain. Even though generally robust and accurate,
this method encounters difficulties differentiating bone and air
in the sinuses.
In atlas-based methods, an anatomical model or dataset is de-

formed to match the patient’s anatomy in order to apply the
attenuation map from the model to the patient data. Schreib-
mann et al. [13] developed a multimodality optical flow de-
formable model that maps patientMRI images to a CT atlas. The
CT atlas is then warped with the deformation field obtained by
the registration to generate a simulated CT image that matches
the patient anatomy. Johansson et al. [14] described a Gaussian
mixture regression model that links the MRI intensity values to
the CT Hounsfield units (HU). Assuming a correspondence be-
tween MRI and CT intensities can lead to estimation errors as
several materials such as cerebrospinal fluid, air, and bone have
similar low intensities in a T1-weighted MRI image but distinct
values in a CT image. Considering spatial information may en-
hance the results of such techniques, but inaccuracies still re-
main at boundaries such as air and bone in the nasal sinuses
[15]. In the Hofmann et al. method [16], local information de-
rived from a pattern recognition technique and global informa-
tion obtained by an atlas registration are combined to predict a
pseudo-CT image from a given MRI image. Navalpakkam et al.
[17] used a CT image acquired with a PET/CT scanner and im-
ages of the same patient derived from 3-D Dixon-volume inter-
polated breath-hold examination and UTE MRI sequences ac-
quired with a PET/MR scanner to derive a pseudo CT using an
epsilon-insensitive support vector regression. These techniques
enable the synthesis of continuous valued attenuation maps.
Combining the segmentation of an MRI image and the use of

a CT image database, Marshall et al. [18] proposed a method
to correct for attenuation whole-body PET/MR scans. The sub-
ject’s MRI is compared to a database of CT images using a set
of 19 similarity metrics such as gender, age, and body, lung,
and bone geometries. The most similar CT image is nonrigidly
aligned to the subject’s MRI. Bones from the registered CT
image are then added to the MRI image previously segmented
into four tissue classes (air, lung, fat, and lean tissue).
The main weakness of the MRI-based attenuation correction

methods is the lack of accuracy of the bone delineation as both
bone and air have similar low intensities in MRI images. How-
ever, these inaccuracies lead to a strong spatial bias of the PET
activity as shown in [19] and [20]. The proposed method fol-
lows the principle of multi-atlas propagation to synthesize an
attenuation correction map from an MRI image. As an alterna-
tive to a one-to-one mapping from the observed MRI intensities
to CT-like intensities, one can exploit the concept of morpho-
logical similarity between subjects. When used in the context
of segmentation propagation [21], a set of segmented anatom-
ical atlases from several subjects are mapped to a target subject
and subsequently fused according to the morphological simi-
larity between the mapped and the target anatomical images.
This morphological similarity, normally interpreted as an image
similarity measure, is used to enforce the fact that the most mor-
phologically similar atlases should carry more weight during the
fusion process [22]. This work will exploit the same idea, but for
the propagation and fusion of continuous image intensities. The

developed algorithm makes use of a pre-acquired set of aligned
MRI/CT image pairs from multiple subjects to propagate, in a
voxel wise fashion, the CT intensities corresponding to similar
MRIs. The proposed approach relies on the concept of morpho-
logical similarity rather than the assumption of one-to-one in-
tensity mapping between the MRI and the CT. This enables the
synthesis of a patient-specific pseudo CT image, from which the
attenuation map is then generated. This paper is an extension of
preliminary work [23].

II. METHOD

In PET/CT imaging, the main technique to correct for atten-
uation is to derive the attenuation coefficients from a CT image.
In the case of a hybrid PET/MR scanner, the only anatomical
and structural information available areMRI images. A diagram
illustrating the proposed method in which a synthetic CT is ob-
tained from a given MRI is shown in Fig. 1.

A. MRI-CT Database Preprocessing and Inter-Subject
Mapping

The atlas database consisted of pairs of T1-weighted MRI
and CT brain images. T1 images were corrected for intensity
nonuniformity following a nonparametric nonuniform intensity
normalization method [24]. CT images were segmented to sep-
arate the head from the bed using thresholding and morpholog-
ical operators.
For each subject, the MRI was affinely aligned to the CT

using a symmetric approach [25] based on Ourselin et al. [26].
Even though this is an intra-subject alignment, a full affine reg-
istration was used to compensate for possible gradient drift and
calibration in the MRI scans.
In order to synthesize the CT from a given MRI, one first

needs to register all the MRIs from the atlas database to the
target MRI. This inter-subject coordinate mapping was ob-
tained using a symmetric global registration followed by a cubic
B-spline parametrized nonrigid registration, using normalized
mutual information as a measure of similarity [27]. All the CTs
in the atlas database were then mapped to the target subject
using the transformation that maps the subject’s corresponding
MRI in the atlas database to the target MRI. Through this
registration and resampling procedure, one obtains a series of
MRI/CT pairs aligned to the MRI of the target subject.

B. CT Synthesis

The proposed framework uses a local image similarity mea-
sure between the target MRI and the set of registered MRIs as a
metric of the underlying morphological similarity. Provided the
local image intensity is a good approximation of the local mor-
phological similarity between subjects, we assume that if two
MRIs are similar at a certain spatial location, the two CTs will
also be similar at this location.
1) Image/Morphological Similarity: The similarity measure

monitors the local quality of match between the MRI of the
target subject and each of the warped MRIs from the atlas data-
base. In this work, two similarity measures were tested: the
convolution-based fast local normalized correlation coefficient
(LNCC) proposed by Cachier et al. [28] and the local normal-
ized sum of square differences (NSSD). The LNCC evaluates
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Fig. 1. CT synthesis diagram for a given MRI image. All the MRIs in the atlas database are registered to the target MRI. The CTs in the atlas database are then
mapped using the same transformation to the target MRI. A local image similarity measure (LIS) between the mapped and target MRIs is converted to weights
(W) to reconstruct the target CT.

the quality of alignment between two images by calculating the
correlation between the signals, with a larger focus on high con-
trast regions, while the NSSD characterises the differences in
intensity between the two images, making it more susceptible
to contrast problems.
Let the target subject’s MRI be denoted by and its cor-

responding unknown CT be denoted by . For each of the
atlases in the database, let the mapped MRI and CT images of
atlas be denoted by and , respectively. The LNCC
between and at voxel is then given by

(1)

As in [28], the means and standard deviations at voxel were
calculated using a Gaussian kernel with standard deviation

through convolution

where denotes the convolution operator. High LNCC values
indicate a better local match between the two MRI images. The
NSSD is given by

(2)

where is a Gaussian kernel with standard deviation .
Low NSSD values indicate a better local match between the two
MRI images.
A ranking scheme similar to the one proposed by Yushkevich

et al. [29] was used to compensate for registration inaccuracies,
giving a larger weight to the images better registered to the target
image. The LNCC and NSSD at each voxel were ranked across

all atlas images, with the rank being denoted by . The ranks
were then converted to weights by applying an exponential

decay function

(3)

with being the weight associated with the th subject
image at voxel . With the ranking strategy, the sum and
separation of the weights for different voxels are the same at
every voxel location, which increases the algorithm’s ability to
discriminate between atlases in regions with low contrast and
leads to better results.
2) Intensity Fusion: Similarly to the label fusion framework

suggested by Cardoso et al. [30], an estimate of the target sub-
ject’s CT can be obtained by a spatially varying weighted aver-
aging. The weights were used to reconstruct the target CT
image at voxel as follows:

(4)

C. Attenuation Map

To obtain the attenuation map ( -map), the CT values ex-
pressed in HU were converted to linear attenuation coefficients
in cm by a piecewise linear transformation [31]

(5)

where and represent the attenuation coefficients at
the PET 511 keV energy for water and bone respectively and

and represent the attenuation coefficients at the
CT energy (120 keV), respectively. These values were set to

cm cm
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cm and cm . The synthetic CT image was
then smoothed using a Gaussian filter with a kernel standard
deviation of 2 voxels (1.172 1.172 2.5 mm ) to approxi-
mate the PET’s point spread function (PSF), and resampled to
the PET’s discretization grid. This method is widely accepted to
generate attenuation maps from CT images, as an alternative to
methods exploiting transmission scans, when the subject does
not present metal implants. The transformation accuracy can be
improved by adjusting the attenuation coefficient of water to the
scanner used [31], [32].

III. VALIDATION AND RESULTS
A. Data

Two distinct datasets were used in this work. The first
dataset is used for the optimization of the parameters and the
second dataset for the validation. Subjects from the first and
second datasets were part of an Alzheimer’s disease study and
an epilepsy study, respectively, and do not present unusual
anatomy.
1) Parameter Optimization: The dataset dedicated to the pa-

rameter optimization was composed of 18 brain T1-weighted
MRIs and CTs. The T1-weighted MRIs (3.0 T; TE/TR/TI, 2.9
ms/2200 ms/900 ms; flip angle 10 ; voxel size 1.1 1.1 1.1
mm ) were acquired on a Siemens Magnetom Trio scanner; the
CTs (voxel size 0.586 0.586 2.5 mm , 120 kVp, 300 mA)
on a GE Discovery ST PET/CT scanner.
2) Validation: The dataset used for the validation was

composed of 41 brain T1-weighted MRIs, CTs, UTE-based
-maps and reconstructed PETs, and one PET sinogram. The
T1-weighted MRIs (3.0 T; TE/TR/TI, 2.63 ms/1700 ms/900 ms;
flip angle 9 ; voxel size 0.53 0.53 1.1 mm ), UTE-based
-maps (voxel size 1.562 1.562 1.562 mm ) and PET
sinogram (radiopharmaceutical: FDG) were acquired on a
Siemens Biograph mMR hybrid PET/MR scanner; the CTs
(voxel size 0.586 0.586 1.25 mm , 120 kVp, 300 mA)
and reconstructed PETs (radiopharmaceutical: FDG; voxel size
1.953 1.953 3.27 mm ) on a GE Discovery ST PET/CT
scanner. 250 MBq of FDG were administered half an hour
before the 15-min PET/CT examination. The patients were
then transferred to the PET/MR scanner for a 15-min PET
acquisition.

B. Parameter Optimization

The morphological similarity between the target MRI and
each of the registered MRIs from the atlas database was as-
sessed using a local image similarity measure. For both the
LNCC andNSSDmetrics, two parameters were optimized using
a leave-one-out cross validation on the 18 subjects from the first
dataset: the standard deviation of the Gaussian kernels used in
(1) and (2) ( , expressed in voxels)

and from (3) whose value influences the repartition of the
weights

The weighted sum tends to the mean when is small.

Fig. 2. Average MAE between the ground truth CT and the pseudo CT gener-
ated using the LNCC and NSSD as similarity metrics for varying values of
and . Best parameters are obtained for the LNCC, with and ,
giving an average MAE of 113 HU for the full head and 240 HU for the skull
region of interest.

Using only the MRI image of the subject, a pseudo CT image
was generated using the proposed method. This

synthetic CT was then compared to the ground truth CT
. The metric employed to measure the synthesis error

was the mean absolute error, defined as

(6)

where is the number of voxels in the region of interest. This
cost function was estimated between the ground truth CT and
the pseudo CT for every subject in the optimization dataset. The
average values of MAE over all subjects are shown in Fig. 2.
The optimization focused on two regions: the full head and the
skull region, obtained setting a threshold at 100 HU. The skull
region is important as bones have the highest attenuation coef-
ficients and can induce large errors.
Results: For both the full head and the skull region, the

LNCC with voxels gives the smallest error.
is the skull optimum and guarantees smoother images. With
these parameters, the average MAE is 113 HU for the full head
and 240 HU for the skull region. A large range of parameters
was tested in the optimization, all showing small differences
in the results. The existence of a plateau in terms of accuracy
in the parameter space means that small changes in parameters
result in a very similar pseudo CT and indicates that the method
is robust to the choice of parameters. For this reason, and to
avoid being influenced by other factors, we chose to optimize
the parameters using the CT synthesis accuracy rather than the
PET reconstruction accuracy.

C. Validation Scheme

In order to validate the algorithm with the previously op-
timized parameters, but on a completely independent dataset,
the performance of the proposed synthesis algorithm was ran
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against ground truth data for 41 subjects. We also compared it
to two other methods: a UTE-based method obtained through
MRI segmentation and a simplified atlas-based method.
The UTE-based method uses the segmentation of a UTE

MRI sequence which enables the differentiation of three tissue
classes (bone, air, and soft tissue). A prototype version of this
method, only made available to early users of the Siemens
Biograph mMR hybrid PET/MR scanners, was used in this
work. In the following, when the values assigned to the classes
are expressed in HU, the image is referred to as UTE CT, and
when the values correspond to linear attenuation coefficients in
cm , the image is called UTE -map and matches the PET’s
PSF and voxel size.
The second method is based on atlases. As in the proposed

method, the database of MRI and CT pairs is nonrigidly regis-
tered to the targetMRI. A global similarity measure, the normal-
ized cross-correlation (NCC), is computed over the full image
field of view between each warped MRI and the target MRI to
select the most similar atlas to the target. The NCC is defined as

(7)

where is the mean and the standard deviation of image I.
The CT corresponding to the selected MRI, called best-atlas CT
(baCT), is then converted into attenuation map (baCT -map),
as in the proposed method.
The quantitative validation consisted of three steps.
1) A pseudo CT was synthesised from each subject’s MRI
following the proposed method. The pseudo CT (pCT),
baCT, and UTE CT were compared to the subject’s ground
truth CT image at the original resolution, validating the
accuracy of the CT synthesis.

2) The pCT, baCT, and UTE CT were converted to attenua-
tion maps using (5), smoothed to approximate the PET’s
PSF and resampled to the PET’s discretization grid, to val-
idate how accurate the synthetic CT was at the resolution
relevant for PET reconstruction.

3) The PET image was reconstructed from a simulated sino-
gram using the pCT -map generated using the proposed
method, the baCT -map and the UTE -map, and com-
pared with the gold standard PET reconstructed using the
CT-based -map, validating the accuracy of the PET at-
tenuation correction.

The field of view of the MRI images contained the head and
neck of the subject while in the CT field of view, only the head
was visible. After alignment of the two modalities, the analysis
was limited to a mask defined where both image modalities pro-
vide information. All quantitative assessments were performed
using a leave-one-out cross-validation scheme.

D. Results

1) Pseudo CT Accuracy: Following the proposed method,
a pseudo CT was generated using only the MRI image of the
subject, and then compared to the ground truth CT. The MAE,
as defined in (6), and the mean error (ME) defined as

(8)

Fig. 3. For subject 1, from left to right: the acquired CT, the pCT generated
by the proposed method, the baCT, and the UTE CT (top); the acquired T1, the
difference between the pCT and the CT, the difference between the baCT and
the CT, and the difference between the UTE CT and the CT (bottom).

were calculated between the ground truth CT and the pseudo CT
for every subject in the validation dataset. Contrary to theMAE,
which provides information about reconstruction error and de-
viations from the expected values, the ME provides information
about an inherent bias in the methodology. The MAE and ME
were also computed between the best-atlas CT and the ground
truth CT, and between the UTECT and the ground truth CT. The
average standard deviation (SD) MAEs and MEs, measured
in Hounsfield units, across all the subjects in the database are
presented in Table I. The average absolute error obtained
with the pseudo CT method ( HU) is 1.4 times smaller
than the error obtained with the best-atlas method (
HU) and 1.7 times smaller than the error obtained with the UTE
method ( HU). A paired t-test was used to confirm that
the improvement is statistically significant when
the proposed method was employed instead of the best-atlas and
UTE-based methods. Examples of ground truth CT, pseudo CT,
best-atlas CT, UTE CT and difference images are presented in
Fig. 3 for a representative subject (subject 1) whose results were
close to the average results.
2) Attenuation Map Accuracy: The relative mean absolute

error between the ground truth -map - and
the pseudo CT -map - , defined as

(9)

and the relative mean error, defined as

(10)

were used to assess the attenuation map synthesis accuracy.
The rMAE and rME were also computed between the best-atlas
CT -map and the ground truth CT -map, and between the
UTE -map and the ground truth CT -map. The average
rMAEs and rMEs, measured in percentages, across all the sub-
jects in the database are presented in Table I. The average
absolute error obtained with the pseudo CTmethod %
is 1.4 times smaller than the error obtained with the best-atlas
method % and half of the error obtained with the UTE
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TABLE I
FOR 41 SUBJECTS: AVERAGE AND SD OF THE MAE AND ME BETWEEN THE GROUND TRUTH CT AND BOTH THE PSEUDO CT, BEST-ATLAS CT, AND UTE CT;
AVERAGE AND SD OF THE RMAE AND RME BETWEEN THE GROUND TRUTH CT -MAP AND BOTH THE PSEUDO CT, BEST-ATLAS CT, AND UTE -MAPS;
AVERAGE AND SD OF THE RMAE AND RME BETWEEN THE GOLD STANDARD CT PET AND BOTH THE PSEUDO CT, BEST-ATLAS CT, AND UTE PETS,

BEFORE AND AFTER NORMALIZATION, FOR THE BRAIN AND GREY MATTER (GM) REGIONS

Fig. 4. For subject 1, from left to right: CT -map, pCT -map generated by the
proposed method, baCT -map and UTE -map (top); T1, difference between
the pCT and CT -maps, difference between the baCT and CT -maps, and
difference between the UTE and CT -maps (bottom).

method % . The paired t-test shows a statistically sig-
nificant improvement with the proposed method.
Examples of ground truth CT -map, pseudo CT -map, best-
atlas CT -map, UTE -map, and difference images are pre-
sented in Fig. 4.
3) PET Accuracy: A hardware -map containing the bed

visible in the PET/CT scans, previously extracted from the
original CT -map, was added to the human -maps (CT, pCT,
baCT, and UTE -maps). Due to the unavailability of the raw
PET data, we made use of the PET reconstruction provided
by the PET/CT scanner. To reconstruct the PET image with
the different -maps, we followed a projection/reconstruction
technique similar to Hofmann et al. [16]. The original PET
image and the CT -map were projected to obtain simulated
sinograms. The scatter sinogram was estimated using a Single
Scatter Simulation algorithm [33]. The attenuation and scatter
corrections were subsequently removed from the original sim-
ulated PET sinogram producing a noncorrected PET sinogram.
The noncorrected PET sinogram was then reconstructed using
the CT, pCT, baCT, or UTE -map to correct for attenuation
and scatter. The PET image reconstructed using the CT -map
was considered as the gold standard PET. The iterative recon-
struction and scatter estimation were performed using STIR
[34]. An ordered subsets expectation maximization (OSEM)
algorithm with three iterations of 21 subsets was used. Effects
of PSF and randoms were not included and post-reconstruction
smoothing was not applied.

Fig. 5. For subject 1, from left to right: the gold standard FDG PET, the pCT
PET, the baCT PET, and the UTE PET (top); the noncorrected PET, the differ-
ence between the pCT and CT PETs, the difference between the baCT and CT
PETs, and the difference between the UTE and CT PETs (bottom).

Results of PET reconstructions using different attenuation
maps and difference images are displayed in Fig. 5. The rMAE
was computed between the gold standard PET and the pCT,
baCT, and UTE PETs for the brain region. Results are shown in
Table I. The average rMAE obtained using the pCT -map

% is 1.5 times smaller than the error obtained using
the baCT -map % and 4 times smaller than the
error obtained using the UTE -map % , which
represents a statically significant improvement in
reconstruction error.
A common practice in the neuro-imaging community is to

normalize PET images using a reference region [35], [36]. For
our application, we used the mean PET value in the pons, man-
ually segmented from the T1 image, to normalize the PET im-
ages of each subject, allowing for a comparable range of values.
The average rMAE obtained for the brain region using
the pCT -map % is 1.6 times smaller than the
error obtained using the baCT -map % and 2.6
times smaller than the error obtained using the UTE -map

% , which represents a statically significant im-
provement . The boxplots in Fig. 7 show that the
proposed method is less prone to produce outlier results com-
pared to the best-atlas and UTEmethods. We note that while the
results obtained for the proposed and best-atlas methods do not
vary significantly depending on the normalization of the PET
images, the mean absolute error obtained with the UTE method
decreases when the PET images are normalized.
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Fig. 6. From left to right: the acquired T1-weighted MRI, CT, and gold standard FDG PET, the pCT, and PET generated by the proposed method, the baCT and
PET, and the UTE CT and PET, for the subjects whose pCT PET obtained the lowest (top row), average (middle row), and highest (bottom row) rMAE.

Fig. 7. For 41 subjects: boxplots displaying the median, the lower and upper
quartiles and the minimum and maximum of the rMAE calculated between the
gold standard CT PET and both the pseudo CT, best-atlas CT, and UTE PETs in
the brain after normalization. Similar results were obtained in the grey matter
region.

In order to assess the performance of the proposed method
in areas close to the skull, we also analyzed results in the grey
matter region, which was segmented from the T1 image and
propagated to the PET images [37]. The average rMAE
obtained using the pCT -map % is significantly
smaller than the error obtained using the baCT
-map % and the UTE -map % .
These results are similar to the ones obtained in the brain region.
Examples of T1, CT, pseudo CT, best-atlas CT, UTE CT, and

reconstructed PET images are displayed in Fig. 6 for subjects
whose pCT PET obtained the lowest, the average and the highest
rMAE.
4) PET Bias Analysis: The main goal when correcting for

attenuation is to be able to perform an accurate quantitative
analysis of PET data. In order to analyze the bias introduced
by the different attenuation correction methods in the PET im-
ages, the rME was computed between the gold standard PET
and the pCT, baCT, and UTE PETs for the brain region. The
rME results indicate a reduced bias when the proposed method
is used % compared to the best-atlas

% and UTE-based % methods. The Kol-
mogorov–Smirnov test was used to determine if the bias in-
troduced by the different attenuation correction methods came

from a normal distribution with 0 mean, thus assessing if the
mean error was significantly different from 0. Furthermore, as
the relative mean errors were Gaussian distributed (according
to the Kolmogorov–Smirnov test), the F test was used to deter-
mine if the variance of the bias differs between methods. All
tests were performed at 0.1% significance level.
In contrast with the baCT and UTE -maps, where the rME

was found to differ significantly from zero, the rME is not sig-
nificantly different from zero when the pCT -map is used to
correct for attenuation. The variances of the three methods are
not significantly different.
When normalized, regardless of the -map used to correct

for attenuation, the bias % is significantly different from
zero. However, the variance of the rME is significantly lower
when the proposed method is employed instead of the best-atlas
or UTE method.
We also performed a linear regression with the expression

where corresponds to the gold standard, nonnor-
malized, PET and to either the noncorrected, pCT, baCT, or
UTE PET. The averages and SDs of the regression coefficients
and , and the coefficient of determination , are presented

in Table II. values show a better fit to the gold standard PET
when the pCT -map is used to correct for attenuation instead of
the baCT or the UTE -maps. Fig. 8 shows the joint histograms,
averaged across 41 subjects, of the pCT, baCT, UTE, and non-
corrected PETs against the gold standard PET. We note that the
pseudo CT method outperforms the UTE method and that the
variance is reduced when the PET is corrected by the pCT in-
stead of the baCT -map.
Finally, the PET images from the 41 subjects were mapped

to a common space via a CT-based groupwise registration [38].
The average and standard deviation of the difference maps com-
puted between the normalized gold standard PETs and the nor-
malized PETs reconstructed with the pseudo CT, best-atlas and
UTE -maps, across all the subjects, are presented in Fig. 9. We
note that, while the average of the difference between the gold
standard and both the pCT PETs and baCT PETs is similar, the
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Fig. 8. Joint histograms in the brain area, averaged across 41 subjects, between
the CT and pCT PETs (top left), the CT and baCT PETs (top right), the CT
and UTE PETs (bottom left), and the CT and noncorrected PETs (bottom right).
Images aremin/max scaled between 0 and 1. Note the reduced variance when the
PET is corrected using the proposed method compared to the best-atlas method.

TABLE II
FOR 41 SUBJECTS: AVERAGE SD OF THE REGRESSION COEFFICIENTS AND

VALUES COMPUTED IN THE BRAIN AREA FOR THE PROPOSED (PCT),
BEST-ATLAS (BACT), AND UTE-BASED (UTE) METHODS, AND WITHOUT
CORRECTION (NO AC). NOTE THE INCREASE IN WITH THE PROPOSED

APPROACH WHEN COMPARED TO OTHER METHODS

standard deviation of the difference between the gold standard
and pCT PETs (2.36%) is lower than between the gold standard
and baCT PETs (3.97%).
5) Example of PET Reconstruction From Sinogram Data:

As a final test for the performance of the method, we used
an offline version of the Siemens Healthcare reconstruction
software (made available for this project) on PET/MR data for
one subject from the validation dataset. The default settings for
OSEM (21 iterations of three subsets, Gaussian post-filtering)
were used. We reconstructed PET images using the CT, pCT,
baCT, and the UTE -maps to correct for attenuation. Results
are shown in Fig. 10. The UTE-based method underestimates
the quantity of bone which leads to a global underestimation
of the activity in the PET image. Compared to the proposed
method, the best-atlas method sometimes fails to accurately de-
lineate the bone, such as in the skull (yellow arrows) and sinus
areas (green arrow), which results in a local underestimation of
the PET activity. The rMAE, computed for the full head, is of
5.0% between the pCT and CT PETs, 5.6% between the baCT
and CT PETs, and 12.2% between the UTE and CT PETs.

Fig. 9. Average over 41 subjects (top) and standard deviation (bottom) of the
difference between the normalized gold standard PET and the normalized PETs
reconstructed with the pseudo CT, best-atlas and UTE -maps.

Fig. 10. From left to right: The CT -map, the pCT -map generated by the
proposed method, the baCT -map and the UTE -map (top row). Gold stan-
dard FDG PET, pCT PET, baCT PET, and UTE PET reconstructed with the
offline Siemens Healthcare software (middle row). The T1, the difference be-
tween the pCT and CT PETs, the baCT and CT PETs, and the UTE and CT PETs
(bottom row).

IV. DISCUSSION

Following the principle of multi-atlas information propaga-
tion, the proposed method synthesizes a CT from anMRI image
which is then processed to obtain an attenuation map used in the
PET reconstruction.
Two separate datasets were used for the optimization and the

validation of the method to reduce bias. We compared our so-
lution to a simpler atlas-based method and to a prototype ver-
sion of a UTE-based method made available to early users of
the Siemens Biograph mMR hybrid PET/MR scanners. The re-
sults presented in Table I demonstrate that the absolute error
estimated between the pseudo CT and the original CT is sig-
nificantly smaller compared to the other methods. Difference
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images in Fig. 3 reveal that errors are concentrated at the skull/
soft-tissue, skull/air, and soft-tissue/air boundaries, and that the
amount of bone is underestimated when the UTE-based method
is used. We also notice in Fig. 3 that the synthetic CT images
are not as sharp as the ground-truth subject’s CT at the orig-
inal resolution. However, this problem is greatly reduced at the
voxel size and PSF of the PET image as shown in Fig. 4. At
this resolution, the results show a significant improvement when
our method is used compared to the best-atlas and UTE-based
methods. Difference images of reconstructed PET images from
simulated data in Fig. 5 show that the UTE-based correction un-
derestimates the radionuclide uptake, even for the soft-tissues.
This systematic underestimation is confirmed by the joint his-
togram Fig. 8 and the linear regression coefficients in Table II.
When the PET is corrected with the pseudo CT or best-atlas
-map, the error is globally lower and mostly affects the skull
and sinus areas. Finally, the error is significantly smaller with
the pseudo CT method compared to the best-atlas CT method
and the bias lower. After normalization, the error obtained with
the UTE-based method is reduced while it remains alike for the
proposed and best-atlas methods. All correction methods intro-
duce a bias but the variance of the bias is significantly lower
when the pseudo CT method is used instead of the best-atlas or
UTE method, as shown in Table I and Fig. 9.
The use of the Siemens offline reconstruction software is still

at an early stage but already demonstrates that the proposed
method improves the results when applied in a clinical context
compared to the method currently in use, as shown in Fig. 10.
In a T1-weighted MRI image of the head, cerebrospinal fluid,

air, and bone have similar intensities but distinct values in a CT
image which impedes a one-to-one mapping from the observed
MRI intensities to CT-like intensities. Exploiting the concept of
morphological similarity between subjects, as an alternative to
the one-to-one intensity mapping, improves the synthesis accu-
racy in boundary areas such as air and bone in the nasal sinuses.
The low intensities of bone and air also make the segmentation
of MRI images challenging [6]–[12], even after correction of
several artefacts [10]. The proposed method does not require
any segmentation of MRI images and thus allows the synthesis
of a continuous valued attenuation map and avoids large mis-
classifications.
However, atlas-based methods also have limitations as re-

lying on a database implies the need of a representative popula-
tion. But, even if morphological variabilities of the skull are lim-
ited, in the case where the target subject presents abnormalities,
the nonrigid registration should be able to capture them. Further
experiments with subjects presenting abnormal anatomies are
required to validate this expectation. Although large number of
registrations can leave room for errors to confound the mapping
in a single atlas method, the proposed multi-atlas strategy can
compensate for most registration problems by combining the
local atlas selection and consensus estimation steps. The more
accurate results reached when the proposed method is used,
compared to the best-atlas method, demonstrate the advantages
of synthesizing CTs at a local scale instead of a global scale.
Current limitations of the method are due to the limited

anatomical information of CT and T1-weighted MRI images.
A database with multimodal data including T1-weighted,

T2-weighted, and UTE sequences would improve the regis-
tration and the image similarity estimates, and could provide
additional information, such as bone density. Clinical informa-
tion (patient’s gender, age, weight, or ethnicity) could also be
used to specify the bone density more accurately [18].
This paper is focused on brain applications and further exper-

iments are required to validate the method in other regions of the
body. The technique could, in theory, be applied to other body
parts as long as the morphological variability is represented in
the database and the registration between MRI pairs is suffi-
ciently accurate.
The software implementing the proposed method will be

made available online at the time of publication.

V. CONCLUSION

This paper presents a CT and attenuation map synthesis algo-
rithm based on a multi-atlas information propagation scheme.
Compared to state-of-the-art image synthesis techniques, the
proposed technique does not assume any explicit mapping be-
tween the intensities of the image pairs, as it relies only on their
correct pre-alignment. While the sharpness of the synthetic CT
images is lower than the ground-truth subject’s CT at the orig-
inal resolution, this problem is greatly reduced at the resolu-
tion the PET image. Overall, the proposed algorithm provides a
significant improvement in PET reconstruction accuracy when
compared to a simplified atlas-based or UTE-based correction.
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