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Should Action be Awarded a Special Status in Learning? 
 

Abstract 
 

The role of action has been strongly emphasized, not only in cognitive 
research on learning and problem solving, but also in education and instructional 
psychology. The Constructivism tradition has long asserted that action plays a crucial 
role for learners in constructing their own knowledge. In an educational context, 
active engagement entails students examining their own ideas, considering alternative 
explanations for newly taught concepts, and evaluating competing perspectives. Some 
theorists (e.g., Anzai & Simon, 1979) propose that these processes are found when 
learning is by doing. However, a constructivist perspective implies that instructional 
formats enable self-monitoring (e.g., Covington, 2000; Pintrich & De Groot, 1990), 
which includes reflective activities such as describing, explaining, and evaluative 
thinking (e.g., Covington, 2000; Zimmerman, 1990), which are not exclusive to 
action. The present article discusses findings that concern two related and thus far, 
unexplored two questions: How affective is observation-based learning in a complex 
skill learning task that usually requires processes that involve active engagement with 
it? How does monitoring affect the transfer of problem solving ability in complex 
skill learning task?  

The first aim of the article is to introduce ways of using common educational 
tools like the self-observation technique, which involves re-exposing individuals to 
their own self-generated behaviors, in novel ways that can provides insight into how 
people use self-regulatory mechanisms like monitoring on internally represented 
behaviors. The second aim is provide support for the view that in the absence of 
active learning, learning indirectly (i.e. Observation-based learning) is a practical and 
in some cases necessary method of knowledge and skill acquisition, and does not in 
turn lead to decrements in acquired knowledge and skill. Finally, the article presents 
the argument that the degree of self-monitoring that takes place may be a mediating 
factor in preserving the view that action has a special status in knowledge acquisition. 



Should Action be Awarded a Special Status in Learning? 
 
Many believe that without actively engaging with a to-be-learned task we cannot fully 
learn the essentials of it. This claim seems to be particularly popular in explaining the 
effectiveness of the acquisition of highly practiced behaviours (e.g., car driving, 
operating electrical devices – e.g. mp3 players, mobile phones, DVD/video recorders, 
camcorders) in which a sequence of behaviours is needed to reach a specific outcome. 
However, there is growing psychological literature (e.g., Bird, Osman, Saggerson, & 
Heyes, 2005; Osman, in press; Osman, Bird & Heyes, 2005) that challenges the claim 
that direct active experience is essential, and that other forms of learning simply fail 
to extract the essential properties of a task. This chapter discusses findings that have 
sustained the view that active-based learning has a privileged status over observation-
based learning, with specific focus on research exploring learning in complex 
dynamic problem solving tasks. Next, this chapter introduces related research that has 
examined the effects on knowledge acquisition when learning is observation-based. 
The tension generated by these different approaches to knowledge acquisition is the 
basis for the empirical study that follows. The study aims to address the following 
questions: What are the differences between action-based and observation-based 
learning? Do people gain more from performing, or from observing their 
performance? In so doing, the empirical techniques used in the study, and the findings 
that are reported, aim to illuminate new ways of understanding some of the 
differences between action-based vs. observation-based learning. Finally, this chapter 
aims to provide a convincing challenge to the view that action should be awarded a 
special status in learning. 
 
1. Why is action important in learning? 
 
Several lines of research have proposed that learning-through-doing (i.e. procedural 
learning) is essential to the acquisition of knowledge. These include implicit 
perceptual-motor sequence learning (e.g., Kelly & Burton, 2001; Kelly, Burton, 
Riedel, & Lynch, 2003), memory (Goschke & Kuhl, 1993; Marsh, Hicks, & Bink, 
1998; Maylor, Chater, & Brown, 2001; Maylor, Darby, & Della Sala, 2000), causal 
structure learning (Lagnado & Sloman, 2004; Steyvers, Tenenbaum, & 
Wagenmakers, 2003; Waldman & Hagmayer, 2001), and developmental, educational 
and instructional psychology (Anderson, 1987; Resnick, 1983, 1987; Schauble, 1990; 
von Glasersfeld, 1989). In understanding why direct interaction with a task is crucial 
to successful learning, it is just as important to examine the kinds of learning 
environments for which active learning is thought to be necessary. In the following 
section I introduce a task (Complex dynamic control task) that has often been 
described as action-based (i.e. procedural), and that in turn is thought to require 
procedural learning in order for it to be successfully completed.  
 
1.1. Complex dynamic control tasks (CDC-Task) 
 
CDC-tasks have been a popular task environment for examining a host of phenomena 
including: motivational and affective processes in complex decision making (Earley, 
Connolly, & Ekegren, 1989; Locke & Latham, 2002; Vancouver, 1997), skill learning 
in naturalistic decision making (Brehmer, 1992; Kerstholt, 1996; Lipshitz, Klein, 
Orasanu, & Salas, 2001), memory and attentional processes in problem solving 
(Burns & Vollmeyer, 2002; Miller, et al.,1999; Vollmeyer et al., 1996), and implicit 



learning (Berry, 1991; Berry & Broadbent, 1988; Dienes & Fahey, 1995, 1998). Their 
popularity and range (e.g., car driving, computer programming, air traffic control, 
medical decision making, business management, mechanical engineering) makes 
them ideal for studying the acquisition and transfer of skill-based knowledge in a 
variety of complex interactive environments (Campbell, 1988; Cañas, Quesada, 
Antoli, & Fajardo, 2003; Funke, 2001). To illustrate, a typical CDC-task includes 
several inputs that are connected via a complex causal structure or rule to several 
outputs (See Figure 1). The CDC-task presented in Figure 1 is taken from Burns and 
Vollmeyer’s (2002) task, which was based on a water tank purification plant and will 
be used in the present study.  
 

Insert Figure 1 about here 
 
The process by which a problem solver learns about the system is revealed by the 
values of the inputs that they change and the strategy that they adopt (e.g., vary all 
inputs at once, vary one input on each trial, vary one input by one unit on each trial). 
Through this process, problem solvers acquire knowledge about the underlying 
structure of the system. That is, by manipulating the input values, problem solvers can 
then track the effects on the outputs, which enables them to reason from cause (input 
changes) to effect (output changes), via acquisition of the causal structure or the rule 
that relates inputs and outputs. To examine problem solvers’ knowledge of the 
system, two types of measures (direct tests, indirect tests) are used. In the learning 
phase, changes to the inputs are designed to discover the underlying structure of the 
system. The learning process (procedural learning) also involves learning how to 
operate and control a dynamic environment: i.e., it is changing as a consequence of 
the learner’s actions. The knowledge that is acquired is procedural, and represents 
“knowing how” to perform actions that are tied to specific goals. This is different 
from declarative knowledge, which is “knowing that” of particular facts about the 
underlying actions and structural knowledge concerned with the goal itself (e.g. 
Anderson, 1982). At test, indirect tests measure problem solvers’ procedural 
knowledge (i.e. how successful their changes to the inputs are in reaching specific 
output goals). In addition to this, direct test of knowledge examine the accuracy of 
problem solvers’ declarative knowledge (i.e. structural knowledge of the system).  
 
1.2. CDC-tasks, procedural tasks? 
 
CDC-tasks like the problem solving example above involve perceptual-motor 
behaviours that are designed to fulfil a set of constraints in order to achieve a goal. 
Dissociationists (Berry, 1991; Berry & Broadbent, 1988; Dienes & Berry, 1997; Lee, 
1995; Sun et al., 2001) propose that knowledge acquired in CDC-tasks and experience 
in controlling them is embedded within the interactions problem solvers have with the 
system. It is because of this that only learning through action can produce successful 
control behaviours; this involves storing individual instances or exemplars of specific 
condition-action states (i.e. the state of the system, the subsequent inputs changed and 
their corresponding outputs). Thus, mastering a control task requires successfully 
matching the goal and the current situation to previously encountered instances in 
order to determine the next appropriate response. Knowledge is conscious only to the 
extent that the response which is appropriate to a given situation can be stated, but 
what led them to make this response is unavailable to consciousness (Buchner et al, 
1995; Dienes & Berry, 1997; Dienes & Fahey, 1998).  



 
1.3. Evidence for procedural learning in CDC-tasks 
 
The empirical foundation of this position is the phenomenon showing that declarative 
knowledge is dissociated from procedural knowledge. For example, work carried out 
by Broadbent (e.g. Broadbent, 1977; Broadbent & Ashton, 1978) is one of the earliest 
examples exploring dissociations between procedural and declarative knowledge. 
Procedural knowledge, as demonstrated by good control performance, is 
unaccompanied by declarative knowledge of the task environment (Berry & 
Broadbent, 1984; Dienes & Berry, 1997; Dienes & Fahey, 1995), and unaccompanied 
by self-insight of the processes used to control it (Berry & Broadbent, 1984). In 
addition, practice can lead to further improvements in the controllability of the 
system, but not to similar increases in declarative knowledge (Berry & Broadbent, 
1988). Implicit learning theorists (Broadbent, Fitzgerald & Broadbent, 1986; Dienes 
& Berry, 1997; Dienes & Fahey, 1995; 1998) also claim that dissociations are found 
because the two systems operate over different types of knowledge. Typically in 
CDC-tasks, the input-output relations are non-salient and therefore difficult to 
acquire. Rather than abstracting the underlying structure of the system, exemplars (i.e. 
associations between specific actions and their consequences) are formed. Hence, 
dissociations between direct and indirect measures occur because similarity is used to 
match new goal states of a system with previously stored exemplars; this often leads 
to relevant procedural knowledge facilitating good control performance, but with no 
accompanying structural knowledge of the system (Broadbent, et al, 1986; Dienes & 
Fahey, 1995; 1998). Consistent with this, studies contrasting observation-based and 
procedural-based learning show that on indirect and direct measures, performance 
was poorer for observation-based learners (Berry, 1991; Lee, 1995). The strong 
implications of this are that there is an advantage of action over observation because 
CDC-tasks are proceduralized tasks in which learning is incidental and results from 
direct interactions with the system (Berry, 1991; Berry & Broadbent, 1988; Stanley, 
Mathews, Buss, & Kotler-Cope, 1989; Sun, Merrill, & Peterson, 2001).  
 
2. Observation-based learning 
 
Often, active learning is contrasted with passive or “observation-based learning”, in 
which the learner acquires knowledge indirectly, usually by watching another perform 
the to-be-learned task. For example, in a science class, pupils will watch a teacher 
demonstrate a sequence of procedures that will help them to understanding how the 
rate of a chemical reaction could be measured. Or in a training course, such as speech 
therapy training, students learn from video tapped sessions of experts and trainee non-
experts interacting with clients (e.g., Cox, McKendree, Tobin, Lee & Mayes, 1999).  
 
Many theorists (e.g., Berry, 1991, Kelly & Burton, 2001; Kelly et al, 2003; Lee, 1995) 
have claimed that without direct manipulation of the variables in a procedural task, 
the learner has an uphill struggle, both in dealing with the added memory load that is 
incurred through observation-based learning, and the added inferential processing that 
is needed to determine what aspects of the task are relevant. However, recent work 
(e.g., Dandurand, Bowen, & Shultz, 2004; Gonzales, 2005; Osman, in press) suggests 
that it is far from clear that contrasting observation with procedural learning is a 
successful method for uncovering dissociations between declarative and procedural 
knowledge. There is evidence showing that, through instruction, observational 



learning can involve hypothesis testing and self-evaluative thinking, which when 
attenuated lead to poorer control performance and structural knowledge of a CDC-
task. This evidence suggests that in problem solving contexts, observation-based 
learners are sensitive to instructions that affect cognitive activities in the same way as 
procedural-based learners. To add to this, observation in combination with active 
learning can improve control performance in CDC-tasks and interactive game 
problems above and beyond simply physical practice alone – (e.g., Gonzales, 2005; 
Kohl & Fisicaro, 1996; Shea, Wright, Wulf, & Whitacre, 2000). Additionally, in some 
cases observational learning can lead to performance that exceeds procedural based 
learning in problem solving contexts (Dandurand, et al, 2004).  
 
2.1. Specific examples of Observation-based learning in CDC-tasks 
 
Gonzales (2005) presented learners with an opportunity to learn about a CDC-task 
from their own mistakes in three ways. After generating each learning trial, the self-
exemplar condition were replayed their own trial again, but without any feedback, 
whereas the feedback-exemplar condition received detailed outcome feedback after 
being replayed each trial. However in the expert-feedback condition, after each trial 
they had generated themselves, they were played the trial of a highly skilled 
participant. Gonzales (2005) found that in later tests of control performance, the 
expert-feedback condition out performed both others. Similar findings were reported 
by Dandurand, et al (2004) using a different kind of problem solving task. They 
presented participants with a mathematical ball-weighing problem solving task in 
which they were required decided how many counters on each side of a balance 
would be needed to find the lighter counterfeit one. There were three types of training 
conditions. During learning participants watched variants of the problem being solved 
by an expert, or were given instructions that described the strategies that the observer 
group were watching being implemented, or were given feedback on their 
performance. Participants were then presented with new versions, from that of the 
training problems, to solve. Dandurand et al (2004) found that the observer group’s 
performance exceeded the other active learners, despite the other participants having 
interacted with the task. In both these studies, the findings suggest that rather than 
simply reproducing the observed expert behaviour, learners were extracting the 
relevant strategies from the experts to scaffold their own knowledge of the task.  
 
The implications of the findings from studies examining the acquisition of knowledge 
via observation, is that observation-based and procedural-based learning engage 
similar cognitive processes responsible for planning and control of complex skills. 
  
2.2. Why might observation-based learning be important? 
 
Observation based learning is an important technique used for teaching and training of 
many skills (e.g., piano playing, syntax parsing, speech therapy techniques, statistical 
skills). It is practical, not only because the learning situation might incur a degree of 
danger, or injury requires that certain skills be relearned, but also because it helps to 
reduce the amount of physical practice needed to reach proficiency (Newell, 1981; 
Schmidt, 1988). Clearly, such examples show that observation based learning is a 
successful method by which declarative knowledge is acquired, and used to perform 
procedural based skills. Much of the research on acquisition of motor skills also 
suggests that both procedural and declarative representations are activated during 



observation-based learning. This may also explain why it is that in many of these 
studies an association between these types of knowledge is reported (e.g., Dandurand, 
et al, 2004; Gonzales, 2005; Osman, in press). Moreover, studies of observational 
learning suggests that, people are likely to employ self-evaluative behaviours that 
enable them to track their own knowledge, and this can in turn lead to the successful 
uptake of relevant task knowledge. 
 
Bandura’s (1986, 1988) Social cognitive theory places at the heart of human cognition 
self evaluative processes that regulate motivation and actions. Pursuing a goal is 
guided by selectively attending to qualitative and quantitative aspects of ongoing 
behaviour, which enables people to evaluate the status of their behaviour in relation to 
a goal (Bandura & Locke, 2003; Karoly, 1993). In this way, monitoring or self-
regulatory mechanisms track goal-relevant information, modulate motivation, and 
trigger self-reflective judgments. One of the mechanisms that occupy a central role in 
the regulation of motivation and action is that of perceived self-efficacy. This refers to 
people’s beliefs in their ability to exercise control over environmental events, and 
with this people regulate motivational (e.g., Litt, 1988), affective, (e.g., Bandura & 
Cervone, 1986; DeShon & Alexander, 1996; Elliot & Dweck, 1988) and decisional 
processes (e.g. Earley, Connolly & Ekegren, 1989; Kanfer, et al., 1994; Tversky & 
Kahneman, 1974). For instance, perceived self-efficacy is shown to mediate problem 
solving in such a way that it produces poor performance irrespective of people’s 
actual capabilities (Bandura & Wood, 1989; Bouffard-bouchard, 1990; Wood & 
Bandura, 1989). As compelling is evidence showing that increasing people’s belief in 
their self-efficacy guides attentional and cognitive processes so that, in problem 
solving tasks, peoples accuracy in analyzing their solutions to problems can be 
radically improved (e.g., Bouffard-bouchard, 1990). Studies of expertise show that 
self-regulatory systems (Bandura, 1991) are critical in the acquisition of complex 
behaviours; ranging from athletic and musical performance, to managerial decision 
making and stock-broking, (Bandura, 1991; Bandura & Locke, 2003; Ericsson & 
Lehman, 1996; Karoly, 1993; Rapoport, 1966; Rossano, 2003; Stanovich, 2004). 
Selecting relevant information that bears on a solution depends on keeping an internal 
status check of ongoing performance through error detection and correction (Bandura, 
1991; Bandura & Locke, 2003; Karoly, 1993; Lehmann & Ericsson, 1997; Rossano, 
2003). Additionally, through judgments of self-efficacy experts advance their 
behaviour towards achieving increasingly more and more difficult goals, thus 
extending their knowledge and experience (e.g., Bandura & Wood, 1989; Bouffard-
bouchard, 1990; Wood & Bandura, 1989).  
 
2.3. Self-monitoring in Education 
 
Not only is monitoring relevant in studies of expertise, this kind of self-regulatory 
mechanism has been implicated in the achievement of goals in school performance 
(Covington, 2000; Dweck, 1986; Pintrich & De Groot, 1990; Zimmerman, 1990). In 
classroom settings, self regulatory mechanisms are revealed in a number of ways: 1) 
active engagement in their own learning, 2) analyzing the achievements of their 
school assignments, 3) planning for and marshalling their resources to meet these 
demands, 4) monitoring their progress towards completion of those assignments (e.g., 
Pintrich, 1999; Zimmerman, 1990). In the latter case, accurate monitoring facilitates 
accurate self-evaluation by enabling students to periodically check the status of their 
behaviours relative to the goals they plan on achieving, and modify their behaviours 



accordingly (Baker, 1989; Jacobs & Paris, 1987). What this implies is that, one’s 
achievement goals are thought to influence the quality, timing, and appropriateness of 
cognitive strategies that, in turn, control the quality of one’s achievements. Research 
supporting this conclusion (e.g., Cross & Paris, 1988; Brown & Palincsar, 1989) 
shows that self-regulatory mechanisms improve performance in a number of ways: 1) 
increasing the allocation of attentional resources more appropriately, 2) increasing the 
use of existing strategies, 3) increasing awareness of comprehension breakdowns. 
Taken together, there are good grounds for claim that high level executive functions, 
such as monitoring, are necessary in tracking the consequences of our behaviours, and 
a means of enabling us to regulate our actions in order to progress and learn. 
 
2.3. Self-observation based learning 
 
Our capacity to learn vicariously (Bandura, 1986, 2002) also means that self-
regulatory mechanisms can modulate behaviours learnt from observed as well as 
active experience. The self-observation technique involves re-exposing individuals to 
their own self-generated behaviours: In so doing, the technique enables a comparison 
of subjective experiences with objective representations of them. Usually this 
involves showing individuals past generated behaviours through a host of media (e.g., 
video recordings, photographic stills, point light displays [videos of people making 
movements are reduced to lights on the joints]). For example, developmental studies 
(Fireman & Kose, 1991, 2002; Fireman, Kose, & Solomon, 2003; Fosnot et al., 1988) 
report improvements in children’s ability to solve the Tower of Hanoi (TOH) task 
through video-tapped presentations of their previous solutions. In Fireman et al 2003 
study, children completed the TOH task and were then shown their own moves, or 
another child’s previous inefficient moves, or another child’s correct completion of 
the task. Following this, they were then presented with another TOH task. Children 
benefited most from observing their previous inefficient problem solving strategies 
than the behaviours of other children.  
 
The technique works because self-correcting procedures allow individuals to detect 
and improve on previously generated behaviours (e.g., decision making, meta-
perception; motor learning). This is also why it is used as an educational tool (e.g., 
Covington, 2000; Pintrich & De Groot, 1990; Zimmerman, 1990), and as a 
therapeutic aid in clinical environments (e.g., Bailey & Sowder, 1970; Dowrick, 1983; 
Giesler, et al, 1996; Hung & Rosenthal, 1978). One problem with studies using the 
self-observation technique is that they have focused on the accuracy of detecting self 
generated behaviours and the improvements that might follow. They show self–
regulatory mechanisms operating over veridical representations, but this provides 
little insight into how people use these mechanisms on internally represented 
behaviours. To shed light on this, the present study examines self-regulatory 
mechanisms and their effects on later transfer of skilled control behaviours by re-
exposing problem solvers to products of their own strategic thinking (e.g., decision-
making and hypothesis testing behaviour) rather than actual visual (i.e. video) 
presentations of their actual selves performing. In this way it is possible to empirically 
control the information that people’s self-regulatory mechanisms are operating on, as 
well as examine how this later impacts on the transfer of their control behaviours.  
 
3. Present Study 
 



The first objective of the study is to examine the effects on performance in CDC-tasks 
when learning was action-based or observation-based. The second objective was to 
adapt the self-observation technique so that participants would be able to re-
experience prior self-generated learning behaviours. To this end it would be possible 
to compare whether participants would benefit from their past learning experiences 
when being exposed to them again via observation, or re-experiencing them again 
first hand by re-enacting them. In the following study participants performed two 
CDC problem solving tasks each of which was composed of a learning phase and 
control test phase. All participants solved the first problem in the same way. The 
critical manipulations concerned the contents of the learning phase in the second 
problem, participants either observed the learning phase in the second task (Observe-
self, Observe-other), or they actively interacted with the task (Act-on-self, Act-on-
other). The adaptation of the self-observation technique is as follows. In ‘self’ labelled 
conditions participants were exposed to their own learning phase from the first 
problem again in the second problem. In addition, the study included a further 
elaboration of the self-observation technique. In ‘other’ labelled conditions 
participants were yoked to a participant in the corresponding ‘self’ condition, and so 
where exposed to that individuals learning phase in the second problem.  

 
If procedural learning is necessary for good performance in control tasks, then the 
performance of observation-based learning conditions would be compromised 
compared to the performance of action-based learning conditions. If however, 
participants are sensitive to the content of the learning phase, and engage in evaluative 
thinking whilst learning procedurally as well as observationally, then performance for 
both action-based and observation-based conditions should be equivalent. If self-
evaluative and monitoring behaviours are involved, then, during the learning phase, 
people will be sensitive to the kind of information presented (i.e., the source of the 
second learning phase), not its presentation format (observation-based, action-based). 
In this case, participants will demonstrate knowledge of the difference in the source of 
the second learning phase.  

 
Method 
 
Participants  
 
Forty-eight students from University College London volunteered to take part in the 
study and were paid £6 for their involvement. They were randomly allocated to one of 
the four conditions (Observe-self, Observe-other, Act-on-self, Act-on-other) with 
twelve in each. Participants were tested individually. The order of presentation of the 
two dynamic control tasks (i.e. the Water tank system, Ghost hunting task) was 
randomized for each participant.  
 

Design and Materials  
 
The present study used a mixed design that included two between subject variables 
comparing re-exposure to self-generated learning instances vs. exposure to other-
generated learning instances (i.e. Self vs Other), and the effects of learning format on 
transfer of control performance(Observation, action). There were also two within 
subject variables, one examining the transfer of control performance between two 



CDCTs in two tests of transfer (Control Test 1, Control Test 2), and one examining 
the transfer of causal structural knowledge between two CDCTs in four tests 
(Structure Test 1, Structure Test 2, Structure Test 3, Structure Test 4). Each 
participant was required to solve two CDCT problems, and the order of presentation 
of the two problems was randomized for each participant. For each problem, there 
was a learning phase, consisting of 12 trials in which participants were given an 
opportunity to learn about the control system. After the 6th and 12th trials, participants 
were presented with a direct test (Structure Tests 1, Structure Test 2) of their 
knowledge of the underlying structure of the system. Participants were then presented 
with two indirect tests (Control Test 1, Control Test 2) which measured their ability to 
control the system to specific criteria. Control Test 1 consisted of 6 trials, followed by 
another structure test (Structure Test 3). Control Test 2 consisted of 6 trials, followed 
by another structure test (Structure Test 4).  

 
The critical manipulation was the contents of the learning phase that participants 
received in the second problem. All participants generated their own learning 
experiences in the learning phase of the first problem, but, in the second, half of the 
participants re-experienced their original learning phase (observe-self, act-on-self), 
and the other half experienced a different learning phase to the one they had generated 
(observe-other, act-on-other).  
 

CDCTs 
 
The design and underlying structure of the two CDCTs (Water-tank control system, 
Ghost hunting control system) that were used were based on the Water tank system 
(as shown in Figure 1). The only differences between the two problems were the 
visual layout of each system as presented on screen and the cover story (See appendix 
for cover stories and details). In the Water-tank control system participants were told 
that they were a worker from the water purification plant and that it was their job to 
inspect the new system that was being used. The system worked by varying the 
different levels of salt, carbon and lime (inputs), and this in turn changed oxygenation, 
temperature and chlorine concentrations (outputs) which are indicators of how pure 
the water is. In the Ghost hunting control system participants were told that they were 
newly recruited ghost hunters, and that they had returned from a field experiment. It 
was their job to learn the relationship between three pieces of equipment that had been 
used in the field, and the phenomena that each machine detected. The three machines 
(i.e., GGH Meter, Anemometer, Trifield Meter) represented the three inputs, and the 
three phenomena that were detected (Electro Magnetic Waves, Radio Waves, Air 
Pressure) represented the three outputs. The control element of the task was to modify 
the levels of the readouts of the phenomena by manipulating the dials on each 
machine.   
 
For each problem at the start of the learning phase, and at the beginning of each 
control test, the input values were set to 0, and the output levels were set as follows: 
Output 1 (Water tank= Oxygenation, Ghost hunting= Radio Waves) = 100; Output 2 
(Water tank = Chlorine concentration, Ghost hunting = Electro Magnetic Waves) = 
500; Output 3 (Water tank = Temperature, Ghost hunting = Air Pressure) = 1000.  
 



Procedure 
 
Participants were told that they would be taking part in a problem solving task. On 
completion of the first problem, participants were then told that they would be 
required to solve a second problem, but at no stage were they informed that the two 
problems were structurally the same.  
 
First Problem: Learning phase. In the first problem, in the learning phase, 
participants were presented with a computer display (see Figure 2) with three input 
variables and three output variables. The underlying structure that connects the inputs 
and outputs is presented in Figure 1.  

 
Insert Figure 2 about here 

 
The learning phase comprised 12 trials, which were divided into two blocks of 6 
trials. Each trial consisted of participants changing the value of any number of inputs, 
by using the slider corresponding to each. Each slider ranged on a scale from -100 to 
100 units. When participants were satisfied with their changes to the inputs, they 
clicked on a button labeled “output readings,” which revealed the values of all three 
outputs. When they were ready to start the next trial, they clicked a button “next trial,” 
which hid the output values from view. On the next trial, participants made their 
changes to the inputs, and these affected the output values from the previous trial: 
thus, the effects on the outputs were cumulative from one trial to the next. After the 
first block of 6 trials, participants were presented with a structure test that was 
designed to index knowledge of the causal structure of the control system. A diagram 
of the system was shown on screen, and participants were asked simply to indicate 
which input was connected to which output. The direction of the input-output 
connection was implicit in the way that participants interacted with the CDCT, and 
was also indicated in the instructions to the task, and so it was not necessary to 
examine the directionality of the input-output relations, only which connections 
existed. After this, they began the next set of 6 trials, followed by a second structure 
test: at the beginning of the first trial of the second block, the input values were set to 
0 and the outputs were also reset to their respective starting values.  

 
Second Problem Observation-based learning phase: In the second problem, for half 
of the participants the learning phase was observation-based. With the exception that 
participants themselves could not manipulate input values during the learning phase, 
but were instead replayed their learning phase from the first problem or yoked to the 
learning phase of a participant in the Observe-self condition, the observation-based 
and action-based versions of the learning phase were identical. Observers began by 
clicking a button to reveal the input values generated by the model for the first trial. 
(No time limit was imposed on the time spent studying the input values or output 
values on each trial.) For example, if the model changed the input Salt by 50 units on 
Trial 1, this would in turn change the output value of Chlorine Concentration to 556 
(i.e., Chlorine Concentration starting value = 500 units, + Salt value change = 50 
units, + constant added noise on input-output connection = 6 units). The observer 
would also see the input Salt change by 50 units. Then, when they were ready, 
participants clicked a second button to reveal the corresponding output values for that 
trial: in this case, the starting values of the outputs Temperature and Oxygen remained 
the same, but the corresponding output Chlorine Concentration changed to 556 units. 



As soon as they were ready, participants clicked a button to indicate that they were 
proceeding to the next trial: the button hid the output values from view. Participants 
then repeated the process of seeing the input values, and then the corresponding 
changes to the output values. As in the action-based version, after Trial 6, and after 
Trial 12, participants were presented with a Structure test. 

 
Second Problem Action-based learning phase: For the remaining participants the 
learning phase of the second problem was action-based. In the Act-on-self condition, 
participants’ learning phase from the first problem was logged: This included a trial 
history of the inputs that were changed, and the values that they were changed by. At 
the start of the learning phase participants were instructed to change the system by 
following the trial history sheet. This indicated which inputs to change and the 
corresponding values they should be changed by. The Act-on-self condition were 
presented with a trial history which was of their own learning phase from problem 
one, and the Act-on-other condition were presented with the trial history of a 
participant from the Act-on-self condition.  

 
Control Test 1. After the learning phase and Structure Tests 1 and 2, participants were 
tested on their ability to control the system. In this phase, all participants were 
required to change the input values in order to achieve, and then maintain, set output 
values. In the first and second problems, the criterion values they had to achieve were 
the same, and only the labels of the outputs were different: Output 1 (Water tank = 
Oxygenation, Ghost hunt = Radio Waves) = 50; Output 2 (Water tank= Chlorine 
concentration, Ghost hunt = Electro Magnetic Waves) = 700; Output 3 (Water tank = 
Temperature, Ghost hunt = Air Pressure) = 900, for the course of 6 trials. On 
completion of this phase, participants were presented with a structure test (i.e., 
Structure Test 3). Control Test 2. In this phase, all participants were required to 
change the input values, in order to achieve and then maintain a different set of output 
values to Control Test 1. In first and second problems, the criterion values they had to 
achieve were the same, and only the labels of the outputs were different: Output 1 
(Water tank = Oxygenation, Ghost hunt = Radio Waves) = 250; Output 2 (Water tank 
= Chlorine concentration, Ghost hunt = Electro Magnetic Waves) = 350; Output 3 
(Water tank = Temperature, Ghost hunt = Air Pressure) = 1100, for the course of 6 
trials.  On completion of this phase, participants were presented with a structure test 
(i.e., Structure Test 4). 

 
Post-test question. After completing the second problem, participants were informed 
that the experiment they had taken part in consisted of one key manipulation in the 
learning phase of the second problem which was described to them (i.e., exposure to 
self-generated learning, or exposure to other-generated learning). They were then 
asked which of the two manipulations they had experienced. This question served as 
an index of self-insight, and examined whether participants could accurately detect 
whether the learning phase, which they had experienced in the first problem, was the 
same as or different to their own learning phase in the second problem. 
 

Scoring 
 
Structure scores. The scoring scheme used to score performance on structure Tests 1-
4 involved computing the proportion of input-output links correctly identified for each 



test. A correction for guessing was incorporated, and was based on the same 
procedure used by Vollmeyer et al. (1996), which was simply correct responses (i.e., 
the number of correct links included, and incorrect links avoided) – incorrect 
responses (i.e., the number of incorrect links included, and correct links avoided)/ N 
(the total number of links that can be made). The maximum value for each structure 
score was 1.  

 
Control Tests 1 and 2. Control performance was measured as errors scores in Control 
Tests 1 and 2. Error scores were based on calculating the difference between each 
target’s output value (i.e., the criterion according to the control test) and the actual 
output value produced by the participant for each trial of the transfer test. A log 
transformation (base 10) was applied to the error scores of each individual participant 
for each trial, to minimize the skewedness of the distribution of scores. All analyses of 
error scores for Control Test 1 were based on participants’ mean error, averaged over 
all 6 trials across all three output variables. The error scores for Control Test 2 were 
calculated in the same way. Success in control performance on transfer tasks is 
indexed by the difference between the achieved and target output values, and 
therefore the lower error scores indicate better performance.  

 
Results 
 

This section first analyzes initial differences between conditions, then control 
performance, then structural knowledge in each CDC-task. Correlation analyses 
examine the potential association between control performance and structural 
knowledge. Finally, responses to the post-test question are analyzed.  

 
The control performance of the four conditions in the first problem was initially 
compared, to rule out any possibility of initial group differences influencing any later 
main effects. A 2x4 ANOVA with control test (Control Test 1, Control Test 2) as a 
within subject variable, and condition (Observe-self, Observe-other, Act-on-self, Act-
on-other) as a between subject variable, was conducted on mean error scores. The 
analysis did not reveal significant findings suggesting that there were no initial 
differences between the different conditions.   
 
Control test scores 
 
Figure 3 shows that overall error scores in Control Test 1 appear to be lower than 
error scores in Control Test 2. Figure 3 also indicates that for Control test 1 and 
Control test 2 the error scores of the Observe-self and Act-on-self appear to have 
decreased in Problem 2 compared to Problem 1. In contrast, the error scores of the 
Observe-other and Act-on-other conditions appear to be stable across Problem 1 and 
2.  To examine the possible interaction between the diversity of learning experiences 
and control performance across Problem 1 and 2 the following analyses were 
conducted.  
 

Insert Figure 3 about here 
 

The following analyses were conducted on the mean error scores calculated for each 
participant. A 2x2x2x2 ANOVA was carried out with Control Test (Control Test 1, 
Control Test 2) and Problem (1st Problem, 2nd Problem) as the within subject factors, 



and learning phase (Self, Other) and learning format (action, observation) as between 
subject factors. The analysis revealed a significant main effect of Control Test, F(1, 
44) = 11.561, MSE = 0.39, p < 0.002. There was also a significant main effect of 
learning phase on error scores F(1, 44) = 7.06, MSE = 0.72, p < 0.05, and a significant 
Learning phase x Problem interaction F(1, 44) = 21.08, MSE = 1.14, p < 0.0005. No 
other analyses were significant. To locate the source of the interaction, tests of simple 
main effects were carried out. Because learning format was not found to have a 
significant effect on error scores, error scores were collapsed across Observe-self and 
Act-on-self conditions, and across Observe-other and Act-on-other conditions. The 
significant decrease in performance across problems for the experience self conditions 
was confirmed by planned comparisons of error scores in Control Test 1 t(23) = -
23.23, p< 0.0005, and Control Test 2 t(23) = -17.77, p< 0.0005. The increase in 
performance across problems for the other conditions was not statistically confirmed 
by planned comparisons of error scores in Control Test 1 t(23) =1.91, p= 0.067, and 
Control Test 2 t(23) =1.98, p< 0.061, although both tests approached significance. 
Thus, the evidence suggests that the difference in the patterns of transfer of control 
performance across both problems was the result of the content of the second learning 
phase, and not its presentation format. There was negative transfer of procedural 
knowledge in the Observe-self and Act-on-self conditions, and a positive transfer in 
the Observe-other and Act-on-other conditions. 
 
Structure test scores 
 
For each participant, the scores from Structure Tests 1-4 were averaged across the 
first problem, and again for the second problem. The averages of these scores from 
each of the four conditions are presented in Figure 4, which indicates that, for the 
Observe-self and Act-on-self conditions, performance decreased in the second 
problem.  
 

Insert Figure 4 about here 
 
The reverse trend is indicated for the Observe-other and Act-on-other conditions. This 
was analyzed using a 2x2x2 ANOVA over averaged structure test scores, using 
problem (1st Problem, 2nd Problem) as a within subject variable, and condition (self, 
other) and format (observation, action) as the between subject variables. There was a 
significant Condition x Problem interaction, F(1, 44) = 13.70, MSE =56.16, p < 
0.001. No other analyses were significant. Because learning format was not found to 
have a significant effect on error scores, error scores were collapsed across Observe-
self and Act-on-self conditions, and across Observe-other and Act-on-other 
conditions. The significant decrease in performance across problems for the self 
conditions was confirmed by planned comparisons of structure scores between 
Problem 1 and Problem 2 t(23) = 3.67, p< 0.001. The increase in performance for the 
other conditions across problems indicated in Figure 4 was also confirmed t(23) = -
3.33, p= 0.005. Thus, the evidence suggests negative transfer of declarative 
knowledge in the Observe-self and Act-on-self conditions, and a positive transfer in 
the Observe-other and Act-on-other conditions. 
 
Correlation between control performance and structural knowledge 
 



A correlation analysis was carried out on control error scores (averaged across 
Control Tests 1-2), and structure test scores (averaged across Structure Tests 1-4) 
from the first and second problems. A significant negative relationship was found 
between structure test scores and control test error scores in the first problem, r(48) = 
-0.47, p < 0.001, and in the second problem, r(48) = -0.48, p < 0.001. These findings 
strongly indicate that, for both types of learning phase (observation-based, procedural-
based), there is a relationship between control performance and structural knowledge. 
 
Post-test question 
 
Ninety-two percent of participants in the Observe-self condition and 67% in the Act-
on-self condition reported accurately which of the two conditions they were in. 
Seventy-five percent of participants in the Observe-other condition and 83% in the 
Act-on-other condition answered correctly. Pearson’s chi-squared analysis revealed 
no significant difference in correct and incorrect response by condition 

 
Discussion 

 
The aim of the study was to offer insights into the following questions: What are the 
differences between action-based and observation-based learning? Do people gain 
more from performing, or from observing their performance?  
 
In response to the first question, the evidence from the study suggests that successful 
transfer of control performance was found to be independent of the format of the 
learning phases of each problem. Structural knowledge and control performance were 
also found to be associated in both problems. This further suggests that the uptake of 
knowledge is not impeded when learning is observation-based compared to action-
based, and that in both modes of learning, associations, rather than dissociations are 
found. In addition, participants’ accurate self-insight enabled them to correctly 
identify the source of the second learning phase. In response to the second question, 
there was positive transfer of structural knowledge and control performance in 
Observe-other and Act-on-other conditions, and negative transfer in Observe-self and 
Act-on-self conditions. Taken together, the evidence indicates that procedural 
knowledge and declarative knowledge in CDC-tasks are associated.  
 
Although inconsistent with dissociationists’ claims, the findings indicate that 
monitoring mediates the transfer of control behaviors. For both theories, monitoring 
serves a regulatory function, because it tracks and selects out relevant information 
bearing on a desired outcome. This is through evaluation of either skilled behaviors 
(Bandura, 1986), or of the hypothesis testing strategies developed during learning 
(Burns & Vollmeyer, 2002). The study also revealed that monitoring mediated the 
transferability of control behaviors, and this was based on the content of the second 
learning phase. The usefulness of this was retrospectively evaluated from participants’ 
control performance in the control test phase of the first problem. Both self conditions 
appear to have judged negatively their own learning phase, and so, assuming it to be 
less effective, failed to transfer relevant knowledge that would have enabled them to 
successfully control the system in the second problem. Both other conditions, in 
contrast, appeared to have judged the learning phase of the second problem positively. 
These evaluations may have been the result of having identified the learning phase as 
not their own, and thus assuming that it provided a new opportunity to learn. 



Consequently, they transferred relevant knowledge gained from the first problem to 
the second, thus facilitating positive transfer of control skills. 
 
Action-based vs. Observation-based learning 

 
The prevailing view, that of Dissociationists, is that control skills in CDC-tasks are 
procedural, and their transferability is limited because procedural knowledge is 
perceptually bound and inflexible (e.g., Berry, 1991; Berry & Broadbent, 1988; 
Dienes & Berry, 1997; Lee, 1995; Sun et al., 2001). This claim is supported by 
findings that control skills are transferred only if the transfer task itself is perceptually 
and structurally similar to the original (Berry & Broadbent, 1988), and that if learning 
in both is procedural-based (Berry, 1991; Berry & Broadbent, 1988). Moreover, the 
transfer effect is eliminated when information that hints at the similarity of the 
transfer task to the original is presented (Berry & Broadbent, 1988). The strong 
implication from these and other studies of dissociations (Berry & Broadbent, 1984; 
Dienes & Berry, 1997; Dienes & Fahey, 1995) is that, when invoked during the 
acquisition, application, and transfer of control skills, declarative knowledge leads to 
decrements in measures of procedural knowledge. 
 
To explain the disparity between the dissociationist position and evidence from the 
present study, the following discussion considers the issues in terms of Bandura’s 
Social Cognitive theory. Common to studies that reveal dissociations in a CDC-task is 
that hypothesis testing behaviours are prevented during learning (e.g., Berry, 1991; 
Berry & Broadbent, 1984, 1987, 1988; Broadbent et al., 1986; Dienes & Fahey, 1995, 
1998; Marescaux et al., 1989; Stanley et al., 1989). Another common pattern is that 
dissociations are found when measures of declarative knowledge are taken after, 
rather than during, learning (e.g., Berry, 1991; Berry & Broadbent, 1984, 1987, 1988; 
Dienes & Fahey, 1995, 1998; Marescaux et al., 1989). Taking multiple measurements 
of declarative knowledge during learning prompts participants to keep track of their 
knowledge whilst updating it. Moreover, the knowledge tapped at this stage is more 
accurate because it coincides with the time at which it was acquired (Burns & 
Vollmeyer, 2002; Sanderson, 1989; Sanderson & Vicente, 1986; Voss, Wiley & 
Carretero, 1995). 

 
Common to studies of CDC-tasks that encourage hypothesis testing is evidence of 
associations between declarative knowledge and procedural knowledge (e.g., Burns & 
Vollmeyer, 2002; Gonzalez et al., 2003; Gonzales & Quesada, 2003; Sweller, 1988). 
Hypothesis testing focuses the learners’ attention on both relevant properties of the 
CDC-task: i.e., the rule and instance space. This is because it involves exploration of 
the system, which is refined as the learner develops systematic ways of generating and 
testing hypotheses. As long as learners can explore the system in this way, they will 
develop insights into the structure of CDC-task (declarative). Correspondingly, they 
will also have an understanding of the procedures needed to control the task 
(procedural), and conscious access to these different forms of knowledge (self-
insight). Importantly, the Social Cognitive theory asserts that monitoring enables 
learners to track their hypothesis testing strategies, and continually update their 
knowledge of the input-output relations of the CDC-task. This provides a means of 
relating their understanding of the structure of the system to their experiences of how 
it operates. Monitoring serves a regulatory function, because it tracks and selects out 
relevant information bearing on a desired outcome. In the present study, the 



conditions for learning were ideal for hypothesis testing. By monitoring their 
knowledge of the system whilst hypothesis testing, learners in the present study were 
able to transfer their knowledge across perceptually similar and different CDC-tasks, 
demonstrate associations between declarative and procedural knowledge, acquire 
skilled knowledge under both observation and procedural-based learning conditions, 
and demonstrate self-insight. 

Negative Transfer Effects 
 
Although rare, demonstrations of negative transfer in studies of problem solving and 
rule learning do exist (e.g., Chen & Daehler, 1989; Lee & Vakoch, 1996; Luchins, 
1942; Novick, 1988; Woltz, Bell, Kyllonen, & Gardner, 1996; Woltz, Gardner, & 
Bell, 2000). In many of these studies, negative transfer of skilled learning is taken as 
an indication of expertise. The studies show that well rehearsed memories, for 
sequences of operations, make it difficult for people to prevent transfer to contexts 
similar to conditions in which they were acquired. For example, in studies of rule 
learning (Luchins, 1942; Woltz, Bell, Kyllonen, & Gardner  1996; Woltz, Gardner, & 
Bell, 2000), participants trained in the discovery and application of rules to specific 
tasks tend to over-generalization to novel instances in which they are not applicable. 
Additionally, as expertise in the use of rules increases, or as exposure to the learning 
environment in which they were acquired increases, so too does the inability to detect 
and self-correct the errors made, and the ability to discover new solutions (Lee & 
Vakoch, 1996; Woltz, Bell, Kyllonen, & Gardner, 1996; Woltz, Gardner, & Bell, 
2000).  
 
Whether transfer errors reflect retrieval of prior problem solutions that guide solutions 
of similar problems, or the application of skilled memory representations, both are 
shown to be examples in which prior experience inhibits the search for alternative 
solutions to those previously acquired. The findings from the present study are the 
antithesis of this, because negative transfer reflects a failure to capitalize on prior 
learning experience, and this then prompts the search for alternative solutions. This 
disparity can be explained by the fact that, in previous studies, participants were 
sufficiently skilled in problem solving or rule learning, whereas in the present study 
there was little opportunity for participants to develop highly skilled control 
behaviour. For this reason, in previous studies, transfer is an index of strong memory 
of prior learnt instances, whereas in the present study transfer is an index of the 
effects of re-exposure to actual or believed self-generated learning instances.  
 

Self Observation 
 
Developmental studies (Fireman & Kose, 1991, 2002; Fireman, Kose, & Solomon, 
2003; Fosnot et al., 1988) of problem solving have reported improvements in the 
performance of children’s ability to solve the tower of Hanoi task through video-
tapped presentations of their earlier solution strategies. One reason why the present 
study was unable to find similar benefits is that assisted improvements in performance 
via self-observation may be dependent on actual visual presentation of earlier problem 
solving behaviour. In addition, the tower of Hanoi task is an example of a task that is 
solved by means-end analysis, and does not involve hypothesis testing behaviour. 
Since it is a simpler task to perform than the CDC-task used in the present study, it 



may be that self-observation is effective only in simpler tasks. Taken together, these 
differences may have interfered with the kinds of beneficial effects of self-observation 
reported in previous developmental studies of problem solving. 
 
However, the negative transfer effect reported in the present study is compatible with 
findings from clinical studies using the self-observation technique. Early examples 
(Bailey & Sowder, 1970; Hung & Rosenthal, 1978) show that patients suffering from 
depression negatively distorted self-related information, and applied the same 
interpretive bias to presentations of their own behaviour. Conway, Singer, and Tagini 
(2004) suggest that autobiographical memory is mediated by later evaluation of self-
generated behaviours, and clinical studies provide examples in which the mediation 
can become distorted by biased and inaccurate self-assessments (e.g., Giesler, 
Josephs, & Swann, 1996). Similarly, Dowrick (1983) claims that the self-observation 
technique can make people aware of their past failings, and inhibit their ability to 
accurately adjust their behaviours accordingly. Consistent with this, in the present 
study it has been argued that the evidence shows biased self-assessments of the 
effectiveness of previous learning experiences, and this leads to selective hypothesis 
testing behaviour.  
  

Conclusion 
 

Consistent with many fields of research, Educational and instructional 
psychology (i.e., the methods and conditions under which instruction facilitates 
human learning and development) asserts that action plays a crucial role for learners 
in constructing their own knowledge (Anderson, 1987; Resnick, 1983, 1987; 
Schauble, 1990; von Glasersfeld, 1989). This follows from the learning by doing 
tradition (e.g., Anzai & Simon, 1979). Studies of CDCTS also show that comparing 
one’s own learning to that of another individual during the acquisition phase of a 
complex problem has facilitative affects on performance (Gonzales, 2005; Sengupta 
& Abdel-Hamid, 1993). However, this involves learning from an expert. The present 
study suggests that there are facilitative affects if one is comparing one’s own 
behavior to that of a peer, and that these affects are transferable. In addition, the 
evidence shows that action does not have a special status over observation in the 
acquisition of skilled control behaviors (Osman, in press; Osman & Heyes, 2005). 
Even within the learning by doing tradition expertise develops as a result of self-
monitoring (e.g., Covington, 2000; Pintrich & De Groot, 1990), which includes 
reflective activities such as describing, explaining, and evaluative thinking (e.g., 
Covington, 2000; Zimmerman, 1990), and these need not occur through action.  
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Figure Captions. 

 

Figure 1. Water tank system with inputs (salt, carbon, lime) and outputs (oxygenation, 

chlorine concentration, temperature).  

Figure 2. Screen Shot of Water-Tank and Ghost-hunting Control Problems 

Figure 3. Mean Error scores (±SE) at Control Test 1 and Control Test 1 for each 

condition 

Figure 4. Structure scores (±SE) averaged across Structure Test 1, 2, 3, and 4 for each 

condition  



 

Figure 1. Water tank system with inputs (salt, carbon, lime) and outputs (oxygenation, 
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Figure 2. Screen Shot of Water-Tank and Ghost-Hunting Control Problems 
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Figure 3. Mean Error scores (±SE) at Control Test 1 and Control Test 1 for each 

condition  
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Figure 4. Structure test scores (±SE) averaged across Structure Test 1, 2, 3, and 4 for 

each condition in Experiment 1 

 

1

2

3

4

5

6

7

8

9

10

Act-on-Self Observe-Self Act-on-Other Observe-Other
Conditions

St
ru

ct
ur

e 
Te

st
 P

er
fo

rm
an

ce

Problem 1 Structure Tests

Problem 2 Structure Tests

 
 

 

 

 


