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Pdr16p is considered a factor of clinical azole resistance in fungal pathogens. Themost distinct phenotype of yeast
cells lacking Pdr16p is their increased susceptibility to azole andmorpholine antifungals. Pdr16p (also known as
Sfh3p) of Saccharomyces cerevisiae belongs to the Sec14 family of phosphatidylinositol transfer proteins. It facil-
itates transfer of phosphatidylinositol (PI) between membrane compartments in in vitro systems. We generated
Pdr16pE235A, K267A mutant defective in PI binding. This PI binding deficient mutant is not able to fulfill the role of
Pdr16p in protection against azole and morpholine antifungals, providing evidence that PI binding is critical for
Pdr16 function in modulation of sterol metabolism in response to these two types of antifungal drugs. A novel
feature of Pdr16p, and especially of Pdr16pE235A, K267A mutant, to bind sterol molecules, is observed.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Azole antifungals are often the primary choice in treating fungal
infections. Yeast and fungi are able to develop resistance to counteract
the action of azoles. Four major mechanisms of resistance to azoles
have been described: (i) decreased drug concentration mostly by
upregulation of drug efflux pumps, (ii) alterations of the target enzyme,
lanosterol C14α-demethylase, (iii) upregulation of the target enzyme,
and (iv) changes in sterol biosynthesis compensating for the block in
the ergosterol biosynthetic pathway caused by azoles (reviewed in
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[1–3]). Pdr16p emerged recently as a factor of clinical azole resistance
in fungal pathogens of humans. The best documented case is Pdr16p
of Candida albicans [4,5]. In many azole resistant clinical isolates of
C. albicans the PDR16 gene was overexpressed in addition to multidrug
transporters [4]. Deletion of CaPDR16 in azole-resistant clinical iso-
lates decreased their resistance to azoles approximately two-fold
[4,5]. Overexpression of CaPDR16 resulted in yeast cells approxi-
mately two-fold more resistant to fluconazole compared to parental,
azole-susceptible cells. These results implicate Pdr16p in low-level
resistance of C. albicans to azoles [4]. In another clinically important
opportunistic yeast pathogen, Candida glabrata, pdr16Δ mutation
also increased the susceptibility of yeast cells to azole antifungals
and reduced cell surface hydrophobicity and biofilm production [6].
In addition, Saccharomyces cerevisiae Pdr16p is an important part of
the mechanism responsible for the development of evolutionary flu-
conazole resistance based on the observation that PDR16 deletion
strongly reduced the ability of yeast cells to develop this type of
azole resistance [7]. Taken together, Pdr16p could be considered as
one of the targets in preventing adverse azole resistance in fungi.

Pdr16p (also called Sfh3p) is a member of the yeast S. cerevisiae
Sec14-like phosphatidylinositol transfer protein (PITP) family [8,9].
The most pronounced phenotype of the pdr16Δ cells is their increased
susceptibility to all azoles tested [10–12]. This hypersensitivity of the
pdr16Δ cells is not a typical multidrug resistance phenomenon as
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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pdr16Δ cells do not display increased susceptibility towards any of the
other drugs tested, such as nystatin, cycloheximide, rhodamine-6G,
oligomycin, 4-nitroquinoline-N-oxide, antimycin A, ethidium bromide,
and crystal violet [12]. In the presence of azole antifungals, pdr16Δ
strain accumulated increased levels of the yeast sterol biosynthetic
pathway precursors, lanosterol and squalene, at the expense of the
final product, ergosterol, when compared to its parental wild-type
strain [11]. It was also shown that the increased susceptibility of the
pdr16Δ strain to azoles and the enhanced changes in sterol biosynthesis
upon exposure to azoles are not due to the increased intracellular con-
centrations of azoles in the pdr16Δ cells [11]. It remains to be
established, however, whether the role of Pdr16p in conferring resis-
tance to azole antifungals is direct or whether it is mediated via some
signaling role of the Pdr16p.

The founding member of the PITP family in the yeast S. cerevisiae,
Sec14p, is required for transport of secretory proteins from the Golgi
complex and is essential for cell viability [13,14]. Trafficking and proper
localization of lipid raft proteins were suggested as a major function of
Sec14p [15]. Sec14p facilitates the transfer of PI and phosphatidylcho-
line (PC) between donor and acceptor membranes in in vitro assays [9,
16]. Pdr16p differs significantly from Sec14p: (i) it is able to transfer PI
and not PC in in vitro systems [9], (ii) it localizes to lipid particles and
the cell periphery, compared to the predominantly cytosolic localization
of Sec14p [17], (iii) its overexpression does not rescue sec14ts mutant
lethality at non-permissive temperature [9,17]. Recently the solved
crystal structure of Pdr16p points to another major difference between
Sec14p and Pdr16p. Apo-Pdr16p forms a dimer through the hydropho-
bic interactions of gating helices [18,19] while two other members of
the Sec14-like family of yeast PITPs for which the crystal structure is
known, Sec14p [20] and Sfh1p [21], crystallize in monomeric forms.
Binding of PI by Pdr16p leads to dissociation of the dimer into mono-
mers which are considered to be the physiologically-active form of
Pdr16p [18,19].

To address the question to which extent the PI binding ability of
Pdr16p is relevant to its function in relation to azole resistance, we gen-
erated Pdr16pE235A, K267A mutant defective in PI binding. We show that
this PI binding-deficientmutant is not able to fulfill the role of Pdr16p in
providing protection against azole antifungals, establishing thus PI
binding as an essential feature of Pdr16p.

2. Materials and methods

2.1. Media and chemicals

Media components were obtained from Becton-Dickinson (USA)
or BioLife (Italy). Miconazole was from MP Biomedicals (USA),
terbinafine and amorolfine were from Sigma-Aldrich (USA). [1-14C]
acetic acid was purchased from American Radiolabeled Chemicals
(UK). Fine chemicals were mostly from Sigma-Aldrich (USA) or MP
Biomedicals (USA).

2.2. Strains and culture conditions

Wild-type S. cerevisiae strain FY1679-28c and from its derived
pdr16Δ strain originally from A. Goffeau laboratory (Catholic University
Louvain, Belgium) [12] were kindly provided by G. Daum (Technical
University, Graz, Austria). Episomal plasmid containing PDR16 under
its own promoter was constructed on the basis of a 2 μm plasmid
YEplac181 [22]. Details of its construction are described in [17]. To
create a PDR16 allele encoding a protein defective in PI binding, plasmid
YEplac181-PDR16wasmodified using in vitro site-directedmutagenesis
protocol based on Agilent Site-Directed Mutagenesis Kit (Agilent, USA)
with minor modifications. Briefly, PCR primers containing desired
mutations (E235A, 5′-CTCATTATCCAGCAAGACTAGGAAAAGCAC-3′
and K267A, 5′-GTTCATCAAAAACTAGCGCTTCACGGGTC-3′, changes
underlined) were used to generate a DNA fragment (126 bp) using
plasmid YEplac181-PDR16 as template. This DNA fragment served as a
primer in the whole plasmid PCR extension creating mutated plasmid
YEplac181-PDR16E235A, K267A. Parental non-mutated methylated DNA
was cleaved with DpnI restriction enzyme. The PCR product was subse-
quently transformed into E. coli, mutated plasmid was isolated and
correct insertion of desired nucleotide changes confirmed by DNA
sequencing. To create plasmids for recombinant protein production
in E. coli ORFs PDR16 and PDR16E235A, K267A were amplified from
plasmids YEplac181-PDR16 and YEplac181-PDR16E235A, K267A using the
following primers: 5′-TGTACCATATGTTCAAGAGATTTAGCAAAAAG-3′
and 5′-GACGTCTCGAGGCGGCCGCCACGGTACTGCTTTCCGA-3′, NdeI
and NotI sites are underlined. Amplified ORFs were cut with NdeI and
NotI restriction enzymes and inserted into the corresponding sites of
pET26 vector (Merck, USA) to create plasmids pET26-PDR16-6xHis
and pET26-PDR16E235A, K267A-6xHis. All constructs containing PCR
amplified DNA fragmentswere checked byDNA sequencing. Escherichia
coli Rosetta strain (F-ompT hsdSB (rB-mB

- ) gal dcm (DE3) pRARE (CamR)
was from Merck.

Yeast strains were grown on yeast extract/peptone/dextrose (YEPD;
2% glucose) media unless otherwise stated. Yeast strains containing
episomal plasmids were maintained and pre-grown on standard syn-
thetic minimal medium (0.67% YNB without amino acids, 2% glucose)
supplemented with essential amino acids and bases as required for
plasmid maintenance.

2.3. Drugs susceptibility testing

Drug susceptibility was determined by a spot assay. Yeast cultures
were pre-grown overnight in YNB-LEU media, diluted and spotted
as 10-fold dilutions onto YEPD solid media containing miconazole,
terbinafine, or amorolfine. The following concentrations of drugs were
used: miconazole 2, 5, 10, 20, 40, 60, 80 ng/ml, terbinafine 0.5, 1, 2, 5,
10, 30 μg/ml, amorolfine 0.5, 1, 2, 5, 8, 10 ng/ml. Drugs were added to
the growth media before plate pouring from 1000× stock solution in
DMSO. The growth was scored after 2 days of incubation at 28 °C.
Minimal inhibitory concentration (MIC) was determined as the lowest
concentration of a drug that inhibited the visible growth of the last
two dilutions on YEPD plates after 2 days of incubation at 28 °C.

2.4. Protein expression and purification

His6 C-terminally tagged Pdr16p proteins were purified from E. coli
(Rosetta strain, Merck) transformed with plasmids pET26-PDR16-
6xHis and pET26-PDR16E235A, K267A-6xHis, respectively. Expression of
recombinant proteins was induced with 1 mM IPTG. Bacterial lysates
in 50mM phosphate buffer pH 8.0 containing 300 mMNaCl were load-
ed onto Ni-NTA agarose columns (Qiagen) and washed repeatedly with
50 mM imidazole in 50 mM phosphate buffer, 300 mM NaCl, pH 8.0.
His-tagged proteins were eluted with 200 mM imidazole in 50 mM
phosphate buffer, 300 mM NaCl, pH 8.0 [23].

2.5. Size exclusion chromatography

Purified recombinant Pdr16proteinswere subjected to size exclusion
chromatography on a Superose™12 10/300 GL column (GE Healthcare)
equilibratedwith 20mMPIPES pH 6.8, 250mMNaCl, 2.7mMKCl buffer.
Proteins were monitored at 280 nm. The flow rate was 0.4 ml/min.

2.6. Lipid–protein overlay assay

Echelon PIP 6001 strips with phospholipids immobilized on nitro-
cellulose membranes were first incubated for 1 h in 3% (wt/vol) fatty
acid-free BSA (Sigma-Aldrich) in TBST (50 mM Tris–HCl, pH 7.5,
150mMNaCl, and 0.1% (vol/vol) Tween 20) to block unspecific interac-
tions. They were then incubated overnight at 4 °C with 4 ml of TBS
buffer containing 0.1 μg/ml of recombinant purified Pdr16-His and
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Pdr16E235A, K267A-His proteins, respectively. Membranes were then
incubated for 2 h with 1:1000 dilution of anti-His antibody (Qiagen)
followed by 2 h incubation with 1:20,000 dilution of secondary alkaline
phosphatase conjugated anti-mouse IgG (Sigma-Aldrich). Repeated
washing steps with TBS containing 0.05% Tween 20 were inserted
between all incubation steps.

2.7. Binding of cellular lipids

Association of eukaryotic cellular lipids with the PITPs was ana-
lyzed as described previously [23,24]. In brief, HL60 cells were
labeled with 1 μCi/ml [14C] acetate in RPMI 1640 medium for 48 h.
The cells were permeabilized with streptolysin O, and the leaked
cytosol was removed by centrifugation. Permeabilized cells (~107 cells)
were incubated with 120 μg of the respective recombinant protein
(100 μl) for 20 min at 37 °C in the presence of 2 mM Mg2+-ATP and
100 nM Ca2+ buffered with 3 mM EGTA. A sample of the protein was
saved and run on 12% SDS-PAGE. At the end of the incubation, the
cells were removed by centrifugation, and the recombinant proteins
in the supernatant were captured on nickel beads. An aliquot of the
recovered proteins was run on SDS-PAGE to assess their recovery,
and the rest of the sample was used for lipid extraction. The lipids
were resolved by thin layer chromatography using a Whatman silica
gel 60 TLC plate using chloroform/methanol/acetic acid/water
(75:45:3:1, vol/vol) as the mobile phase. Lipids extracted from
the permeabilized HL60 cells (approximately 100,000 dpm) were
analyzed alongside for comparison. The TLC plates were exposed to
Fuji phosphorimaging screens and analyzed using a Fuji BAS1000
phosphorimaging system. Both the SDS-PAGE and TLC images
were analyzed using AIDA software. Control recombinant Sec14p
was kindly provided by V. Bankaitis (Texas A&M Health Science
Center, Texas, USA), and recombinant PITPα was prepared as de-
scribed previously [25].

2.8. Lipid extraction and analysis

Non-saponifiable lipids for sterol analysis by HPLC were isolated
by the modified procedure of Breivik and Owades [26]. Briefly, 1 ×
109 cells, broken by homogenization with glass beads, were
incubated in 3 ml of 60% KOH (wt/vol) in 50% methanol (vol/vol)
for 2 h at 70 °C. Non-saponifiable lipids were extracted twice with
3 ml of n-hexane and combined extracts were dried under a stream
of nitrogen. The lipid residue was dissolved in acetone and
analyzed by reverse phase HPLC on Agilent 1100 instrument
equipped with Eclipse XDB-C8 column (Agilent Technologies, USA),
diode array detector (Agilent Technologies, USA) and Corona
charged aerosol detector (ESA Inc., USA). Sterols were eluted at
40 °C with 95% methanol at flow rate 1 ml/min. Peak identity was
determined from the retention times of standards — ergosterol,
lanosterol (Serva, Germany) and squalene (Sigma-Aldrich, USA)
and from their characteristic spectra. Sterol quantity was calculated
from calibration curves constructed for individual standards.
Fig. 1. Alignment of the Sec14 group of yeast proteins. Highly homologous C-terminal regi
(http://www.ebi.ac.uk/). Asterisks (⁎) indicate conserved residues, colons (:) and peri
indicate amino acid residues of respective proteins. Conserved amino acids E235 and K26
Note that in databases another SFH1 (ORF YLR321c) is referred. In this study the name S
3. Results

3.1. Generation of the Pdr16pE235A, K267A mutant

Pdr16p was shown to stimulate transfer of PI between membrane
compartments in an in vitro system [9]. To investigate the importance
of PI binding of Pdr16p in its function to provide protection against
azole antifungals we mutated two amino acids, glutamic acid 235 and
lysine 267 of Pdr16p to alanine. E235 and K267 of Pdr16p are conserved
residues in all yeast Sec14 homologues (Fig. 1). They correspond to
amino acids E207 and K239 of Sec14p that were shown previously to
be essential for in vitro PI transfer activity of Sec14p [27]. A similar
approach was used to explore the importance of PI binding/transfer
for function of Sfh5p in delivering the exocytic signal [28]. Recently
published structures of Pdr16p (Sfh3p) indicate that both these two
amino acids, E235 and K267, line the lipid binding cavity of Pdr16p
and their side chains protrude into the cavity. Importantly, amino acid
K267 in all published structures interacts with the molecule of PI that
resides inside the lipid binding cavity [18,19,29].

3.2. Pdr16pE235A, K267A mutant is defective in PI binding and displays
increased ability to bind sterol molecules

To test whether the mutated version of Pdr16p, Pdr16pE235A, K267A,
is able to bind PI we used lipid binding assay using permeabilized
HL60 cells [23,24]. The advantage of thismethod is that the lipid binding
protein can choose from the selection of lipids that are available in
permeabilized eukaryotic cells. Radiolabeled permeabilized HL60 cells
were co-incubated with recombinant wild-type Pdr16p, with
Pdr16pE235A, K267A mutant or with control recombinant Sec14p and/or
PITPα. Following co-incubation the respective proteins were re-
purified on Ni-NTA affinity columns using C-terminal His-tag, the
bound lipids were extracted and analyzed using TLC (see Materials
and methods section for details). This lipid binding assay shows that
wild-type recombinant Pdr16p binds preferentially PI and cholesterol
(Fig. 2). Some radiolabeled PC was also extracted from re-purified
Pdr16p. However, it represents only 2–3% of recovered lipid associated
radioactivity in case of Pdr16p compared to close to 80% in case of
Sec14p control. It remains to be determinedwhether this small amount
of PC associated with Pdr16p represents lipid inside the lipid binding
cavity of Pdr16p or whether it represents lipid unspecifically associated
with the protein. Mutant Pdr16pE235A, K267A binds almost exclusively
cholesterol (95–96% of recovered lipid associated radioactivity)
with very little PI and PC present. The surprising ability of Pdr16p and
especially of its mutant defective in PI binding, Pdr16pE235A, K267A to
bind cholesterol in the in vitro lipid binding assay substantiate further
study as it represents the first example of a phospholipid binding
protein to effectively bind a sterol molecule. Nevertheless, the in vitro
lipid binding assay demonstrated that mutant Pdr16pE235A, K267A is
unable to bind PI effectively and can be used to test whether PI binding
is an essential feature of this protein to provide protection against azole
antifungals.
ons of Sec14p and its 5 yeast homologues were aligned using the ClustalW2 program
ods (.) indicate strongly and loosely homologous residues, respectively. Numbers
7 (in bold) were changed to alanine to create Pdr16 mutant defective in PI binding.

FH1 is used for ORF YKL091c.
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Fig. 2.Analysis of the lipid binding specificity of Pdr16p and Pdr16p E235A, K267A. A.Wild-type Pdr16p, Pdr16p E235A, K267A, Sec14p, and PITPα (all at 120 μg— input) were incubated
with permeabilized HL60 cells prelabeled with 14C-acetate for 48 h. HL60 cells were then removed by centrifugation and His-tagged proteins in the supernatant were re-isolated
using nickel beads (output). The lipids bound to the protein were extracted and separated by TLC. “Total” represents portion of lipids extracted from HL60 cells prelabeled with
14C-acetate. In “control” no protein was added to HL60 cells. B. Quantification of the lipid bound to lipid transfer proteins expressed as a percentage of total lipid binding (total
recovered radioactivity in PC + PI + CHOL) to each protein. Data represent mean ± S.E.M. value from three independent experiments for Pdr16 and Pdr16p E235A, K267A and two
independent experiments for PITPα. Sec14p was assayed once. Abbreviations: PC, Phosphatidylcholine; PI, Phosphatidylinositol; CHOL, Cholesterol. C. To monitor capture of the
respective protein by the nickel beads, a sample of the protein (2% of total) was analyzed by SDS-PAGE and stained with Coomassie Blue. A representative figure is shown. Note,
that in every independent experiment relatively less Pdr16p E235A, K267A was recovered compared to Pdr16p.
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The following experiments indicate that themutant Pdr16pE235A, K267A

maintains the overall structure similar to wild-type Pdr16p: (i) both pro-
teins can be stably expressed and purified from bacteria (Fig. 3A) and
yeast; (ii) like wild-type Pdr16p, recombinant mutant Pdr16pE235A, K267A

purifies from E. coli as a dimer (Fig. 3B); (iii) both wild-type and mutant
Pdr16pE235A, K267A preferentially associate with the same phospholipids,
PI4P and PA, in protein-phospholipid overlay assays (Fig. 3C). We
would like to point out that the lipid overlay assay monitors a different
property of the protein compared to the lipid binding assay using HL60
cells. When using permeabilized HL60 cells the lipid is extracted from
the membrane and inserted into the lipid binding pocket of Pdr16p. In
the lipid overlay assay we assessed the ability of the external protein
surface to interact with the lipids. Mutations (E235A and K267A)
were made that affect the ligand binding pocket. Taken together, our
results show that in the mutant protein only the lipid binding in the
hydrophobic cavity is disrupted (Fig. 2) but not the surface properties
of the protein (Fig. 3C).

3.3. Pdr16pE235A, K267A mutant defective in PI binding is not able to provide
protection against azole antimycotics

To test whether mutant Pdr16pE235A, K267A is able to provide protec-
tion against azole antimycotics similar to wild-type Pdr16p we inserted
PDR16 and mutated pdr16 E235A, K267A allele into an episomal multicopy
plasmid. Expression of PDR16 and its mutant allele, defective in PI bind-
ingwere regulated by native PDR16 promoter. These plasmids, together
with the empty cloning vector were transformed into yeast strain
containing deletion of the chromosomal copy of the PDR16 gene. The
resulting yeast strains were challenged with the presence of azole
antimycotic, miconazole (Fig. 4). The experiment confirmed the
increased susceptibility of the pdr16Δ strain towards miconazole
compared to wild-type cells [11,12]. Re-introduction of the wild-type
PDR16 allele on a plasmid provides protection to the pdr16Δ strain
towards miconazole that is similar to the level of protection provided
by the chromosomal copy of PDR16. However, overexpression of the
pdr16 E235A, K267A mutant allele provides no protection against micona-
zole to the pdr16Δ cells. Minimal inhibitory concentration (MIC) for
wild-type and the pdr16Δ strain containing PDR16 on a multicopy plas-
mid was 20 ng/ml of miconazole, whereas MIC for the pdr16Δ strains
containing the empty cloning vector or the mutated pdr16 E235A, K267A

allele was 2 ng/ml ofmiconazole. In addition tomiconazolewe assessed
susceptibility of the above mentioned yeast strains to terbinafine and
amorolfine, two drugs that inhibit yeast ergosterol biosynthetic
pathway at different steps than azoles. Terbinafine is an allylamine
derivative that specifically inhibits fungal squalene epoxidases (Erg1p
in S. cerevisiae) converting squalene to 2,3-oxidosqualene [30,31].
Morpholine fungicide amorolfine affects two targets in the ergosterol
pathway: delta 14 reductase (Erg24p) and delta 8–delta 7 isomerase
(Erg2p) [32,33]. Our results show that pdr16Δ strain and also pdr16Δ
strain containing pdr16 E235A, K267A allele defective in PI binding are
more susceptible to amorolfine but not terbinafine compared to their
parental wild-type strain FY 1679-28c. These results indicate that
yeast cells without the functional Pdr16p are more susceptible to
drugs that specifically affect relatively later steps of the ergosterol
biosynthetic pathway.

Next, we measured the relative amounts of ergosterol and lanosterol
in the following strains challenged by sub-inhibitory concentration of
miconazole: (a) wild-type; (b) pdr16Δ; (c) pdr16Δ expressing wild-type
PDR16 gene from a multicopy plasmid; (d) pdr16Δ expressing mutant
pdr16 E235A, K267A allele from a multicopy plasmid. The results show that

image of Fig.�2


Fig. 3. Comparison of Pdr16p and itsmutant defective in PI binding, Pdr16p E235A, K267A. A: Pdr16p and Pdr16p E235A, K267A can be stably expressed in E. coli and purified using Ni-NTA beads.
SDS-PAGE gel of indicated amounts of purified recombinant Pdr16 and Pdr16 E235A, K267A proteinswas stained with Coomassie blue. B: Both, Pdr16p and Pdr16p E235A, K267A are present as
homodimers in E. coli extracts. The purified recombinant Pdr16 proteins were subjected to size exclusion chromatography on a Superose™ 12 10/300 GL column, using bovine serum
albumin (BSA) and ovalbumin as protein molecular weight standards. Both Pdr16 proteins elute with an apparent molecular mass of approximately 90 kDa. Predicted molecular mass
of Pdr16p monomer is 40.7 kDa. C: Lipid–protein overlays using wild-type Pdr16p and Pdr16p E235A, K267A, respectively, showed the preferred affinity of both proteins to PA and PI4P
immobilized on the nitrocellulose membranes. Abbreviations: LPA, Lysophosphatidic acid; LPC, Lysophosphocholine; PI, Phosphatidylinositol; PI4P, Phosphatidylinositol (4) phosphate;
PI3P, Phosphatidylinositol (3) phosphate; PI5P, Phosphatidylinositol (5) phosphate; PE, Phosphatidylethanolamine; PC, Phosphatidylcholine; S1P, Sphingosine 1-Phosphate; PI3,4P2,
Phosphatidylinositol (3,4) bisphosphate; PI3,5P2, Phosphatidylinositol (3,5) bisphosphate; PI4,5P2, Phosphatidylinositol (4,5) bisphosphate; PI3,4,5P3, Phosphatidylinositol (3,4,5)
trisphosphate; PA, Phosphatidic acid; PS, Phosphatidylserine; Blank, no lipid spotted.
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in the absence of miconazole the relative amounts of ergosterol and
lanosterol were the same in all four strains (Fig. 5A). In the presence of
sub-inhibitory concentrations of miconazole, the pdr16Δ cells displayed
increased accumulation of lanosterol at the expense of the final product
of the sterol biosynthetic pathway, ergosterol (Fig. 5B). Accumulation of
lanosterol, an early sterol precursor in the ergosterol biosynthetic path-
way that is substrate for lanosterol 14α-demethylase, the major target
of azole antifungals [34,35] serves as an indicator of the functionality of
ergosterol biosynthetic pathway. Introduction of the PDR16 gene on a
multicopy plasmid into the pdr16Δ cells resulted in reversion of the sterol
profile of the pdr16Δ strain to that of a parental wild-type. On the other
side, introduction of the PI binding defective Pdr16p E235A, K267A resulted
in no change in neutral lipids profile compared to pdr16Δ cells (Fig. 5B).

4. Discussion

S. cerevisiae Sec14 homologues form a diverse group of proteins
with distinct subcellular localizations [17] and diverse functions related
to lipid metabolism, membrane trafficking and phosphoinositide medi-
ated signaling (reviewed in [8,36]). The unified feature of these proteins
is their ability to transfer PI between membranes in in vitro systems.
Therefore, they are classified as PI transfer proteins [9]. One of these
proteins is Pdr16p (also known as Sfh3p). Pdr16p is required for resis-
tance of yeast cells to all azole antifungals tested [9–11]. To understand
the role of Pdr16p in providing protection to azole antifungals we
generated mutant protein defective in PI binding. To demonstrate that
this mutant Pdr16p E235A, K267A is unable to bind PI we employed
in vitro lipid binding assay in which purified lipid transfer protein is
co-incubated with radiolabeled permeabilized HL60 cells. The results
(Fig. 2) show that the mutant Pdr16p E235A, K267A binds very little
PI compared to the wild-type Pdr16p. Otherwise, Pdr16p E235A, K267A

behaves similarly to wild-type Pdr16p in conformation studies
(Fig. 3B) and protein-lipid overlay (Fig. 3C) studies. Thus, it can be
considered that Pdr16pE235A, K267A still retains the overall structural
features of wild-type Pdr16p. This PI binding defective mutant
Pdr16p E235A, K267A was unable to provide protection against azole

image of Fig.�3


Fig. 4. Susceptibility of yeast strains overexpressing wild-type Pdr16p and PI binding deficient Pdr16p E235A, K267A to ergosterol biosynthesis inhibitors. Wild-type (WT) FY1679-28c strain
and pdr16Δ strain transformed with empty cloning vector YEplac181 (vector only) and vector overexpressing PDR16 or pdr16 E235A, K267A were pre-grown on YNB-LEU media overnight,
diluted serially 10 times and plated on YEPDmedia containing indicated concentrations of sterol biosynthesis inhibitorsmiconazole, terbinafine, and amorolfine. Plates were incubated at
28 °C and assayed after 2 days.
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antifungal, miconazole (Fig. 4). Upon miconazole treatment increased
amounts of lanosterol, the substrate for miconazole target enzyme,
lanosterol-14α-demethylase, can be seen in pdr16Δ cells compared to
Fig. 5. Sterol composition of the pdr16Δ strain overexpressing wild-type Pdr16p and PI binding
vector YEplac181, the wild-type PDR16 allele in YEplac181 plasmid or mutant pdr16 E235A, K267A

pre-grown in synthetic yeast mediawithout leucine as required for plasmid selection. Subseque
sub-inhibitory concentration of miconazole (5 ng/ml) (B). Following extraction non-saponifi
represent ergosterol and its precursors including lanosterol, and squalene. Data represent mea
wild-type cells. Expression of the PDR16 gene in pdr16Δ cells reversed
lanosterol/ergosterol ratio to that of wild-type cells. However, overex-
pression of PI binding deficient mutant PDR16 E235A, K267A did not
deficient Pdr16p E235A, K267A. pdr16Δ strain containing either the empty multicopy cloning
allele in YEplac181 plasmid together with the parental wild-type strain FY1679-28c were
ntly, theywere grown for 6 hours at 28 °C in YEPDmediawithoutmiconazole (A) or with
able lipids were analyzed by HPLC as described in Materials and methods. Total sterols
n ± S.E.M. from three experiments.
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image of Fig.�5


1489R. Holič et al. / Biochimica et Biophysica Acta 1841 (2014) 1483–1490
lower the high levels of lanosterol in pdr16Δ cells (Fig. 5). Thus, we con-
clude that in vitro observed PI binding by Pdr16p [9,29] is essential for
its in vivo function in modulating sterol homeostasis in yeast.

The HL60 binding assay demonstrated an unexpected characteristic
of Pdr16p and Pdr16p E235A, K267Amutant, the ability to bind cholesterol.
It is the first example, to our knowledge, when a phosphatidylinositol
binding protein strongly associates with sterol molecules. It remains
to be established, however, whether sterol can be taken into the lipid
cavity of Pdr16p. The difference between the lipid binding pocket of
Pdr16p and other members of the Sec14 group of yeast PITPs for
which the structure is known, Sec14p and Sfh1p, supports such a possi-
bility. Upon solving the structure of Pdr16p, Yuan et al. [19] entertained
the hypothesis that themuch larger lipid pocket of Pdr16p compared to
Sec14p or Sfh1p may accommodate some new substrates in addition to
PI or PC. Recently,Maeda et al. [37] tested allmembers of the Sec14 fam-
ily of yeast PITPs as well as all yeast Osh (oxysterol-binding homology)
proteins for their ability to bind lipids in vivo using an integrated ap-
proach combining protein fractionation and lipidomics. Unfortunately,
they were not able to produce any data on Pdr16p lipid binding due to
an inefficient recovery of TAP tagged Pdr16p from yeast cell lysates.

While preparing this manuscript, PI binding property of Pdr16p
(Sfh3p) was identified as an essential feature for function of Pdr16p as
a modulator of lipid droplet neutral lipid utilization [29]. Authors pro-
posed that themodulation of neutral lipid utilization from lipid droplets
by Pdr16p is also behind the observed azole susceptibility phenotypes
associated with pdr16Δ mutants [11,12]. We do not see such a direct
correlation between observed modulation of neutral lipids utilization
[29] and enhanced azole susceptibility of pdr16Δ cells for the following
reasons: (i) there is also decreased biosynthesis of ergosterol in pdr16Δ
cells compared to wild-type cells when challenged with azoles [11];
(ii) over-expression of the PDR17 gene can complement the enhanced
azole susceptibility of pdr16Δ cells [11] contrary to the observed fact
Fig. 6.Amodel for Pdr16p as a sensor ofmembrane lipid composition. A. Pdr16p senses the cha
result in PI binding,monomerization of Pdr16p and relaying the information to the signaling pat
signal is generated and the cells aremore sensitive to azole antimycotics. C. Pdr16p E235A, K267Am
composition changes to the signaling pathway. As a result the cells are hypersensitive to azole
that no yeast Sec14-like PITP, including Pdr17p, can fulfill the Pdr16p
role in control of lipid droplet utilization [29]. Thus, we think that
Pdr16p has a much broader role in ergosterol homeostasis than just
modulation of neutral lipid utilization.

Nile et al. [38] successfully explored nitrophenyl(4-(2-
methoxyphenyl)piperazin-1yl)methanones (NPPMs) as small mol-
ecule inhibitors of the major yeast PITP, Sec14p. Their data indicated
that NPPMs load into the Sec14p hydrophobic pocket during the
phospholipid exchange cycle. Their work established PITPs as phar-
macological targets to modify PIP signaling in eukaryotic cells. Our
finding that PI binding deficient Pdr16 mutant is ineffective in
providing protection against azole antifungals opens the possibility
for chemical intervention to modify Pdr16p mediated azole resis-
tance in yeast.

Based on our recent results (this paper and [11]) we propose two
mechanisms for the function of Pdr16p in providing protection
against azole antifungals. Firstly, Pdr16p could be required for effec-
tive functioning of the ergosterol biosynthetic pathway by helping to
shuttle sterols or their intermediates via intermembrane contact
sites or alternatively, between biosynthetic enzymes or complexes.
This hypothetical function of Pdr16p is based mostly on the ability
of Pdr17p, a known component of intermembrane contact sites for
transfer of PS [39,40], to substitute for Pdr16p in providing protec-
tion against azole antifungals [11]. Interestingly, another identified
essential component of the well studied intermembrane contact
site protein complex required for PS transport from ER to endosomes
is Stt4 phosphatidylinositol-4-kinase [41,42]. Current thoughts on
the function of Sec14-like PITPs consider these as PI presentation
proteins to PI kinases [43,44]. Thus, the fact that PI binding deficient
mutant does not provide protection against azole antifungals fits nice-
ly into this scenario. Secondly, we could consider Pdr16p to be a hypo-
thetical sensor of membrane sterol composition (Fig. 6). It could sense
nges inmembrane lipid composition caused by the presence of miconazole. These changes
hway tomodify sterol metabolism to protect the cells against azoles. B.Without Pdr16p no
utant is defective in PI binding and thus unable to relay the information ofmembrane lipid
s.
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the changes inmembrane lipid compositionuponazole treatment and re-
lays this information via presentation of PI to a PI kinase to activate a sig-
naling cascade leading tomodification of sterolmetabolism.Whether any
of these scenarios represent the real mechanism how Pdr16p functions
remains to be experimentally verified. We believe that at least some as-
pects of these models can be tested in the near future.

5. Conclusions

We generated a Pdr16pE235A, K267A mutant defective in PI binding.
Using an in vitro lipid binding assay based on presentation of
radiolabeled lipids in permeabilized HL60 cells to the lipid transfer pro-
teinswe have shown that Pdr16p is able to bind sterols in addition to PI.
Mutant Pdr16pE235A, K267A is defective in PI binding; it binds almost ex-
clusively cholesterol instead. PI binding deficient Pdr16pE235A, K267A is
not able to fulfill the role of Pdr16p in protection against azole antifun-
gals, providing evidence that PI binding of Pdr16p is critical for its func-
tion in modulation of sterol metabolism in response to the presence of
azoles.
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