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Abstract

Computers have transformed the design of everything from cars to coffee
cups. Now the food industry faces the same revolution, with intelligent com-
puter models being used in the design, production and marketing of food prod-
ucts.

The combined market capitalisation of the world’s biggest food, cosmetics,
tobacco, clothing and consumer electronics companies is $2 trillion, forming 16%
of the world’s 500 richest companies (Financial Times Survey 1999). Many of
these “fast-moving consumer goods” companies now apply intelligent computer
models to the design, production and marketing of their products. Manufac-
turers aim to develop and produce high-volumes of these commodities with
minimum costs, maximum consumer appeal, and of course, maximum profits.
Products have limited lifetimes following the fashions of the consumer-driven
marketplace. With food and drink, little is known about many of the underly-
ing characteristics and processes: why do some apples taste better than others?
How “crunchy” is the perfect apple? Product development and marketing must
therefore be rapid, flexible and use raw data alongside existing expert knowl-
edge.

Intelligent systems such as neural networks, fuzzy logic and genetic algo-
rithms, mimic human skills such as the ability to learn from incomplete infor-
mation, to adapt to changing circumstances, to explain their decisions and to
cope with novel situations. These systems are being used to tackle a growing
range of problems, from credit card fraud detection and stock market prediction
to medical diagnosis and weather forecasting.

This paper introduces intelligent systems and highlights their use in all as-
pects of the food and drink industry, from ingredient selection, through product
design and manufacture, to packaging design and marketing.
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1 Introduction

The fast-moving consumer goods (FMCG) sector is vast and growing. Intelligent
systems, including neural networks, genetic algorithms and fuzzy logic, have been
applied to a wide range of fields, from business and finance to medicine and pharma-
ceuticals (Goonatilake & Khebbal 1995). This paper aims to bring together these
two developing areas in a discussion the application of intelligent systems to typical
FMCG problems.

The usual definition of FMCG comprises food, drink, tobacco, cosmetics, cloth-
ing and consumer electronics. These are items purchased on an everyday basis by
a wide range of customers, with the minimum of effort. Because FMCG is such
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Inspection Control
Visual detection of damaged food
on a continuous production line.
Cameras are cheap, aseptic and
reliable.

Regulation of heat-sterilisation
treatment. This is made difficult
by variations in the food being
sterilised.

Design Sales and Marketing
Discovery of attributes that ef-
fect consumer preferences, and
how these attributes can be con-
trolled.

Consumer choice modelling. Dis-
covering which factors influ-
ence consumers as they make
purchase decisions. Also e-
commerce.

Table 1: Example food industry applications

a vast industry, this paper concentrates on the food and drink sector alone. The
mass-production of food and drink has been increasing for thousands of years. How-
ever, the recent globalisation of the marketplace and the concurrent introduction
of e-commerce has lead to greater competition between producers, forcing them to
rethink the entire field. Table 1 shows four broad areas of work in the food industry,
which are expanded in the hierarchy shown in Figure 1.

Computers are now used everywhere, from factories to supermarkets, generating
more and more data for statistical analysts. This makes the manual investigation
of data a daunting task, and suggests the need for some automation of analysis and
model building. A common definition of data mining is the transformation of data
into useful information (Fayyad, Piatetsky-Shapiro & Smyth 1996). This informa-
tion may be in the form of a forecasting model, or a model describing relationships
between variables, or else a way of summarising the data. A further aim may be data
exploration, where a visualisation tool is used interactively to aid understanding of
the data.

When choosing a modelling technique, several factors must be considered, in-
cluding: accuracy, readability, the ease and reliability of parameter discovery, and
any pre-processing requirements. There is a tendency in intelligent systems litera-
ture to emphasise the accuracy of one technique compared with another, and not
without good reason: an inaccurate model is of little use. However, the readability
(or transparency) of a model is also important, especially in design work. If a model
is comprehensible to an expert in the product field, it should be possible to verify
that the model is not unrealistic or likely to make implausible predictions, whether
or not it fits the data well. As much as 80% of the work done in many IT organi-
sations is the maintenance and support of existing systems. The more transparent
the system is, the easier this task should be. Comprehension by experts will also
guide further research work.

Table 2 lists several important characteristics of intelligent systems. Combining
these features with the specific requirements of the FMCG field, we can see that an
ideal analysis technique would:

• produce human-readable models;
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Flexibility

Speed

Ability to learn

Adaptability

Ability to deal with complexity

Explanatory power

Table 2: Features of Intelligent Systems

• cope well with large or small data sets;

• provide a confidence measure for its predictions;

• allow existing, expert knowledge to be included; and

• produce models that generalise accurately to novel data.

No single technique satisfies all these criteria. For example, there tends to be a
trade-off between simplicity and accuracy, and between accuracy and the flexibility
to solve different problems. Every technique matches different subsets of these fac-
tors to differing degrees. One solution to this problem to develop hybrid intelligent
systems, where two or more complementary techniques are combined to produce
more accurate and reliable results.

Goonatilake & Khebbal (1995) give several reasons for using hybrid intelligent
systems, including technique enhancement and multiplicity of tasks. Technique en-
hancement recognises that every intelligent system has its own strengths and weak-
nesses, and by combining two or more, the weaknesses may be overcome and the
strengths enhanced. For example, a neuro-fuzzy system combines the learning abil-
ity of neural networks (Section 3.1) with the transparency of fuzzy systems (Section
3.2). Also, subtasks within the main problem may be best solved with different tech-
niques. For example, neural networks may be used for pattern recognition within a
rule-based expert system.

Comparing the essential features of hybrid intelligent systems with the require-
ments of food and drink systems, a match can be seen: intelligent systems can
provide the flexibility, the learning ability and the explanatory power required by
the FMCG industry.

The rest of this paper is organised as follows. The next section describes a
range of problems within the FMCG industry, and how they have been solved using
intelligent systems. A hierarchy of such problems is included. Section 3 describes
these and other intelligent systems, and includes a hierarchy of solutions. The paper
concludes in Section 4 with a discussion of how intelligent systems can be used in
food design.

2 Case Studies

This section describes several applications of intelligent systems to the design, pro-
duction and marketing of food and drink commodities. More details of the intelli-
gent systems used are given in Section 3. These case studies are by necessity only an
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Figure 1: A hierarchy of FMCG applications

overview of the field, yet even these few examples display certain common features
and groupings. In order to systematically solve such problems, it is necessary to
understand how they relate to each other. Figure 1 shows an attempt to define a
hierarchy of FMCG work. If this hierarchy is combined with the intelligent systems
hierarchy (Figure 4), then links between problems and solutions become clearer.

2.1 Cheese and Tomato Preference Modelling

Customers’ decisions to buy products are based largely on their personal preferences.
It seems logical then, to analyse these preferences and manufacture foods that more
closely match them. Van Gennert, Wolters & Maarse (1990) describe a generic
three-stage plan to develop more appealing, and hence more profitable, food:

1. Discover which food attributes affect consumer preferences and to what degree;

2. Find the chemical and physical properties of the product related to these
attributes; and

3. Adjust these properties to develop more appealing products.

However, Van Gennert et al. (1990) report only on the first of these three stages,
leaving the others for future work. In common with many food design experiments,
two complimentary panels were used. The first was a trained sensory panel, who were
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given various tomatoes, and asked to define and use a series of sensory attributes
(such as colour, flavour, texture, etc.) to describe each tomato. The second was
an untrained preference panel, who simply express a preference for each tomato.
Preference panellists tend to suffer from “taste-fatigue” if presented with too many
products, so such experiments are very limited.

The sensory and preference data sets were then analysed using principal com-
ponents analysis (PCA) (Gnanadesikan 1997) to rank the sensory attributes in or-
der of importance when predicting preference. For the whole tomatoes, the first
few attributes were size, curvature and soundness, while for the sliced tomatoes, a
spicy/sweet flavour and fibrous flesh were most important. This stage of the work is
relatively straightforward. Although training a descriptive panel can be expensive,
it is a widely used process, as is analysing consumer panel results (Stone & Sidel
1993).

The second and third stages of food design present more of a problem, which
is largely unsolved to date. A recent attempt at tackling stage two is outlined by
Schonkopf, Naes, Baardseth & Risberg-Ellekjaer (1996), who analysed the design
of cheese and other dairy products. They used analysis of variance (ANOVA) to
design a series of experiments in which several factors in the production of cheese
were varied. Then both ANOVA and PCA were used to analyse these results, with
the aim of discovering which factors had the maximum influence on various key
attributes of the food, such as taste, texture, juiciness and graininess. This work is
shown in the hierarchy (Figure 1) under “design / food product”.

2.2 On-line Beer Tasting

During the fermentation of beer, numerous chemical compounds are formed and bro-
ken down, their levels varying over time. In particular, certain diacetyl compounds
are found only in mature beer and not in its precursors, so that accurate detec-
tion allows the fermenting process to be controlled precisely. Stopping the process
too late will waste time and money, as the beer will have to be discarded. Prema-
ture stopping may allow the process to be restarted, but will still lead to inefficient
production.

Traditional approaches to this type of monitoring and control problem are dis-
cussed by Bimbenet & Trystram (1992). They include time-based process control
(where each stage is of fixed duration) and off-line monitoring (where samples from
the ongoing process are repeatedly removed and analysed, which provides feedback
to determine when a process is complete). A third option is on-line monitoring,
where sensors are placed within the production line, and must therefore be sterile.

Gardner, Pearce, Friel, Bartlett & Blair (1994) describe a system which monitors
the concentration of certain chemicals found in beer during fermentation. An array
of chemoresistive sensors was used, each designed to produce distinct responses to
a range of chemicals. The outputs from the sensor array were then fed into a
multi-layer perceptron, which is a widely used type of neural network (Section 3.1),
running on a standard PC. The array was placed in a beer-fermenting tank, and a
variety of gases were passed over it. The neural network was then trained to detect
trace quantities of diacetyl in the presence of other chemicals, such as ethanol. After
training on a number of samples, the system was tested with some novel samples.
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Overall, the new system was found to outperform the traditional chemometric
fingerprinting. The sensor array/neural network system correctly classified the so-
lutions 93% of the time, whereas the previous system only scored 87%. This allows
fine control over the fermentation process, minimising wastage.

2.3 Detecting Damaged Food Products

Although a broken biscuit may taste the same as a whole one, customers are reluctant
to buy such damaged goods. It is therefore in the interest of the manufacturer to
ensure that the goods leave the plant at as high a standard as possible, even at
the cosmetic level. Using people to visually inspect large numbers of items on a
production line is very expensive as well as unreliable, due to finite attention spans
and limited visual acuity. Non-visual inspection, such feeling the edge of the product,
may damage delicate foodstuffs, as well as introducing bacteria. A non-intrusive
camera is, of course, completely aseptic.

Gunasekaran & Ding (1994) describe an automated product inspection system,
based on a camera connected to a neural network. The neural network was initially
trained to distinguish between whole and broken crackers, and performed very well.
However, this task is relatively easy, because all the crackers on the production line
were (supposed to be) the same size and shape, so that only a simple template-
matching operation was required.

A more challenging task was also described, which involved detecting damaged
almonds, again on a continuous production line. Because even undamaged almonds
vary considerably in size and shape, the new neural network had to perform a more
sophisticated task. Nevertheless, the system still performed well, demonstrating the
flexibility of these models. Such systems can detect features invisible to the human
eye, and although these features may not be apparent to customers, they may still
affect the taste of the product, or its shelf life. Similar systems are used widely to
detect flaws in glass, wood veneer, and silicon wafer production (Rosandich 1997).

2.4 Coffee blend classification

Electronic “noses” have been developed to detect and characterise odours. Singh,
Hines & Gardner (1996) describe a combination of fuzzy and neural techniques used
to classify the odours measured by such a device. They developed a system capable
of discriminating accurately between three blends of coffee, and between six types
of “smelly” (i.e. tainted) water.

An electronic nose consists of a set of odour sensors, often made from semicon-
ducting polymers. These sensors measure and record as digital patterns fragrances,
odours and mixtures of volatiles, based on changes in resistance caused by the chem-
icals. The sensors are selected to give overlapping responses across the sensor array.
One odour constituent may interact with certain individual sensors, but not with
others. This selective interaction produces a pattern of resistance changes, known
as the “fingerprint.” These fingerprints can then be recognised by a trained neural
network. In the work described by Singh et al. (1996), 12 sensor elements were used
to successfully distinguish among three coffee blends, and four sensors were used to
distinguish between fresh and tainted water samples.
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2.5 Consumer choice modelling

Even the best designed and produced commodity will not sell if no customers choose
to buy it. It is therefore vital to consider the marketplace throughout the design and
production process. Greene & Smith (1987) describe a system which models how
and why consumers make purchasing decisions, by using genetic algorithms (Section
3.3) to derive decision rules.

This works by evolving a set of rules describing the decision process of an indi-
vidual consumer, or a group of similar consumers. Greene & Smith (1987) give the
example of deciding whether or not to rent a particular residential property, with
rules such as:

IF (Rent < $400) AND (Commute < 2 miles) AND (Heating included)
THEN (Purchase)

These rules will initially be random, and therefore very poor, but the genetic
algorithm will gradually improve their quality, through natural selection, taking into
account the individual consumer’s historic purchase decisions as well as the current
situation. The same modelling process could be used to model food purchasing
decisions, which could produce rules such as:

If (Price < £1.50) AND (Icing Colour is White) THEN (Purchase Cake).

Figure 1 shows this work under “Sales/Forecasting”.

2.6 Other Studies

Many foods are heat-treated to kill bacteria, but the varying attributes of the food
make controlling the temperature of sterilisation units very difficult. Singh & Ou-
Yang (1994) describe a process plant where a simple PID (proportional-integrative-
derivative) controller had been used to control the sterilisation unit. They developed
a fuzzy logic controller that out-performed the PID controller. The fuzzy rules (Sec-
tion 3.2) used were derived from the (human) operator’s intuition, with membership
functions derived by trial and error. A typical fuzzy rule used by the system was:
“If the holding tube inlet temperature is slightly above the set point temperature
and the holding tube inlet temperature is rising slowly then slightly close the steam
valve.” Fuzzy logic (unlike the inherently linear PIDs) can deal successfully with
complex, non-linear systems. The fuzzy controller consisted of a relatively small
number of simple rules, and this simplicity led to faster response times. Zhang &
Litchfield (1991) provide further discussion of fuzzy control in FMCG production.

Food packaging should be cheap, lightweight and robust, to aid mass production
and transportation. Packaging must also provide a barrier to oxygen, to prevent
the food from spoiling. Rigid plastic packaging consists of multiple layers of resin,
some providing structure and others providing the oxygen barrier. Each resin has
different characteristics, constraining the combinations allowable. For example, if
the melting point of one resin is above the vaporisation point of another, then they
cannot be used together. Topolski & Reece (1989) developed an expert system
to aid the design of rigid plastic food containers for DuPont. Their “Packaging
Advisor” system consists of a user-friendly front-end, a rule set, and a database of
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resin characteristics. The user specifies various requirements of the packaging being
designed, such as desired shelf life, optical properties and usage temperature limits.
The system then uses its internal rule set to reformulate these requirements in terms
of necessary resin properties. A search of the resin database is then performed, and
a list of various suitable resin designs is presented to the designer.

A key aim of forecasting food sales by supermarkets is to predict trends in cus-
tomers’ purchases, which then guides stock control, marketing decisions, staffing
levels, etc. Thiesing & Vornberger (1997) describe a study to analyse and predict
weekly sales of a range of products sold in a German supermarket. They used a
standard multi-layer perceptron neural network, with inputs such as the previous
few weeks’ sales levels, national holidays during the week, product promotions and
price changes. The predictions made by the network were better than several alter-
native models, such as moving averages or a static model. One advantage of neural
networks over conventional statistics is their ability to cope with chaotic time series
predictions. Conventional time-series models, such as ARMA and ARIMA (autore-
gressive (integrated) moving average), are effective with non-chaotic series, but fail
on the more complex, non-stationary series that characterise sales levels.

3 Intelligent Systems

This section describes in more detail the intelligent systems techniques used in the
work described in Section 2, and other systems not yet widely used in the FMCG
industry. In each case, a brief description of the technique is followed by some ad-
vantages and disadvantages. This is not meant to be an exhaustive list of techniques,
nor is the discussion of each one in any sense complete. Nonetheless, by showing
some of the similarities and differences, and the strengths and weaknesses of each
technique, we can come to a better understanding of how they may be applied. Fig-
ure 4 shows a hierarchy of these (and other) techniques; a further discussion of the
hierarchy is given in Section 3.9.

3.1 Neural Networks

Artificial neural networks (ANNs) are statistical models based on an extremely sim-
plified model of the brain, and consist of networks of nodes with weighted connec-
tions. In common with many intelligent systems approaches, ANNs must initially
be trained, using a subset of the available data to optimise the free parameters (e.g.
the connection weights). Two of the most common types of neural network are
multi-layer perceptrons (MLPs) and radial basis function (RBF) networks, which
use networks of sigmoid and Gaussian functions respectively. RBF networks have
the advantage of faster optimisation techniques, such as combining clustering and
linear optimisation, rather than the MLPs often inefficient back-propagation. See
Bishop (1995) for more details.

Advantages: ANNs have been widely used in industry as well as academia for
many years, and are well understood. They are flexible enough to model any system
accurately (in theory, if given enough suitable data), and cope well with data that is
noisy, non-linear and high dimensional. There is a variety of fast heuristic training
algorithms available.
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Disadvantages: ANNs are essentially black boxes, as a trained network is rep-
resented as just a (often large) matrix of parameters. There is also a strong risk
of over-fitting, where the system models noise in the data, rather than just the
underlying function as desired. This can be overcome to some extent by regularisa-
tion (which penalises complexity) or by applying Bayesian techniques (Section 3.5).
ANNs generally need large data sets to learn the parameters correctly. Because the
parameter search is a point-to-point iterative optimisation, there is also a risk of
becoming trapped in local optima, and therefore failing to find the globally optimal
model. There are no reliable rules for determining the ideal number of nodes in the
network; this is often estimated after laborious cross-validation.

3.2 Fuzzy Logic

Fuzzy logic captures the human experience of making complex decisions based on
uncertain or incomplete information, and produces exact results from imprecise data.
In conventional set theory, sets are “crisp”, which means that for any given set, every
element is either in the set or not. While this simplifies notions of set union and
intersection, it does not correspond with our experience of the real world. For
example, there is no hard division between the set of foods that taste good and the
set of those that do not, although undoubtedly some food is good, and some food is
not. (This is irrespective of personal preferences: even for a single consumer, there
are no crisp divisions.) Fuzzy logic is based on the notion of fuzzy set membership,
where the degree to which an element belongs to a set ranges from zero to one, as
defined by the set’s membership function. Because the sets overlap, each item can
belong to two (or more) sets simultaneously.

Once the fuzzy sets have been defined for each variable, rules are defined that link
fuzzy sets together. Usually, an initial set of rules is created by an expert because of
the difficulty of learning fuzzy rules from data. Several hybrid fuzzy systems have
been developed to perform automatic knowledge acquisition, such as neuro-fuzzy
approaches (Nauck 1994) and inductive learning of fuzzy rules (Kacprzyk & Iwanski
1992).

Advantages: Because fuzzy rules are very close in format to experts’ knowledge,
representing this knowledge is relatively straightforward. Fuzzy systems also tend to
produce fewer rules, and therefore simpler systems, than other rule-based systems.
This simplicity means that they are easier to understand and maintain, and often
generalise well. As with other rule-based systems, several rules may be triggered at
once, leading to robust predictions.

Disadvantages: One of the biggest drawbacks to fuzzy systems, as with conven-
tional expert systems, is that the rules must be created by hand. This introduces an
information bottleneck, although this can be eased by the hybrid systems mentioned
above. In multi-dimensional problems, the total number of fuzzy sets becomes very
large, so that large data sets may be required to discover the rules.

3.3 Genetic Classifiers

Genetic classifiers are an extension of genetic algorithms, and both are inspired by
Darwinian notions of evolution through inheritance, variation and survival of the
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fittest. Genetic classifiers work by creating a population of sets of simple random
production rules in the form: IF <condition> THEN <action>. These sets of rules
undergo evolution, so that “useful” (i.e. accurate) rules tend to be developed. Pairs
of rules are selected as parents, and used to produce offspring that are similar to,
but not identical to the parents. The likelihood of becoming a parent (and therefore
of genetically surviving), depends on the relative accuracy of the rules.

Each rule has a weight associated with it, so that if the conditions of more than
one rule are met, selection between them can be made: the one with the strongest
weight will be activated. The resultant rule sets will have a similar form to a decision
tree (Section 3.6) or propositional rule set (e.g. CN2 rule induction (Clark & Boswell
1991)), but because they are derived by a different technique, they will tend to cope
with noise in a different way, producing distinct results. See Goldberg (1989) for an
introduction.

Advantages: Genetic classifiers carry out a population-based search, like all
evolutionary systems, reducing the risk of getting stuck in poor local optima. They
are faster than some alternatives because they do not attempt an exhaustive search
of the hypothesis space, and unlike decision trees, they can represent complex, mul-
tivariate conditions straightforwardly. Genetic classifiers produce human-readable
results.

Disadvantages: Genetic classifiers work best on discrete-variable problems.
The evolutionary process includes a significant random element, so that multiple
runs of the algorithm may be required to produce reliable results. The underlying
theory of exactly how genetic algorithms and genetic classifiers find solutions, is still
incomplete (Thornton 1997).

3.4 Support Vector Machines

Support vector machines (SVMs) (Burges 1998) are a novel class of learning algo-
rithms that have been applied to a range of problems including 3D object recognition
(Roobaert & Hulle 1999) and customer modelling (Wu & Auslender 1998). This lat-
ter example builds decision trees (Section 3.6) using SVMs, to distinguish between
“good” and “bad” customers, such as late payers.

Conventional modelling techniques (including those in described in Sections 3.1–
3.3) perform empirical risk minimisation: they attempt to find a set of parameters
that minimises the error observed on the training data. In contrast to this, SVMs
approximate structural risk minimisation, which minimises a bound on the expected
error on unseen data. This is related to regularisation techniques, which penalise
complexity.

Consider the linearly-separable two-class classification problem shown in Fig-
ure 2: the aim is to discover a hyperplane that separates the two classes (dots and
crosses in the figure). The SVM finds a subset of the data known as the support
vectors (ringed in Figure 2). These are the points immediately adjacent to the sep-
arating hyperplane, i.e. those points on the edge of each class. These points (and
their parameters) uniquely determine a hyperplane which optimally separates the
classes, in the sense of finding a hyperplane that is as distant as possible from the
data on either side. This distance is known as the margin, and hence SVMs are
large-margin classifiers, as are boosting and bagging (Section 3.7). For a given em-
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Support VectorsDecison Bounday

Figure 2: A support vector classifier. The decision boundary separates the two
classes (dots and crosses) while maximising the margin.

pirical error rate, a larger margin improves generalisation to novel cases. In contrast,
a neural network uses its weights to define a similar hyperplane, and the learning
algorithms used move this hyperplane until the training error is zero, i.e. until the
classes are separated completely. This may touch some data points, and so will not
be an optimal decision plane.

In more complicated, realistic problems, the data may not be linearly separable.
In these cases, the data are mapped into a higher dimensional space using kernel
functions, such as the radial basis functions used in RBF networks (Section 3.1). In
the higher-dimensional space, the classes become linearly separable. Slack variables
may also be introduced to allow points to remain on the “wrong” side of the decision
boundary, to allow a relatively simple model to fit noisy data.

Advantages: Numerous studies have found that SVMs tend to generalise bet-
ter than comparable classifiers (Schölkopf, Sung, Burges, Girosi, Niyogi, Poggio &
Vapnik 1997). The support vectors themselves define the smallest subset of the data
that still completely defines the optimal solution, so can be used as a data summary.
The parameters are found by solving a convex linear programming problem, which
has a single global solution. This compares favourably with iterative optimisation
techniques (such as typical neural networks learning algorithms), which often only
find local optima.

Disadvantages: As in the case of neural networks, the results are often hard
to interpret: a linear solution in high dimensional space is very non-linear in low
dimensional space. Results are sensitive to parameter selection, which must be
performed by the analyst before use, such as choosing the nature of the kernel.

3.5 Bayesian Learning

Bayesian learning has been applied to a wide range of problems, from robot con-
trol to fraud detection. Bayesian belief networks are graphical models that encode
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Figure 3: A Bayesian belief network

probabilistic relationships between variables of interest. They have become increas-
ingly popular within the intelligent systems community since their inception in the
late 1980s (Pearl 1988), due to their ability to represent and reason with uncertain
knowledge. Figure 3 is a typical Bayesian belief network, showing how certain at-
tributes combine to influence the consumers’ preferences. A recent paper by the
author (Corney 2000) discusses Bayesian belief networks in some detail, and de-
scribes their application to a typical food design problem. The paper shows how the
design profile of a hypothetical “ideal” product can be derived from limited data.

Bayesian pattern recognition is a mathematically rigorous technique used to dis-
cover the free parameters of a statistical model given the data. Non-Bayesian ma-
chine learning techniques have an unfortunate tendency to over-fit the data, leading
to poor performance when presented with new, unseen cases. Rather than providing
only a single “best estimate” of the parameter values, Bayesian techniques produce
the probability distribution of each parameter, thus producing a confidence measure
as well as the parameter itself.

Many intelligent systems (including those discussed in Sections 3.1–3.4) will al-
ways produce an output, with no indication of confidence. If a model is trained using
data drawn from one particular space, and then used to make predictions about data
from a different space, the output will be very unreliable. Essentially, the higher
the density of the training data in a particular region, the more reliable the model
will be in that region. This reliability is captured by the probability distributions
produced by Bayesian models.

Advantages: Bayesian techniques inherently include regularisation (to prevent
over-fitting the data), give confidence values, and can form committees, all of which
have to be added as extras to non-Bayesian methods. Bayesian methods also allow
the explicit inclusion of prior knowledge. All available data can be used to build
the model, so no cross-validation is required. The underlying theory is based in a
well-established field of mathematics.

Disadvantages: Bayesian models are mathematically complicated, as they pro-
duce distributions, rather than single values for the parameters. This means that
modelling is slower, and that the final results may be harder to understand.
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3.6 Decision Trees

Decision trees are classification tools that sort instances of data down a tree from
the root to a leaf, with the terminal leaf specifying the classification of the instance.
Every internal (non-leaf) node in the tree tests the instances against a particular
attribute, with each branch descending from the node representing one possible value
of this attribute. Each path from root to leaf is a conjunction of attribute tests, so
the entire tree is a disjunction of conjunctions. This means that the tree can be
re-written as a set of discrete rules, making it easy to understand. Of the various
algorithms for building trees, one of the more widely used is ID3 (Quinlan 1986).
This iteratively selects the attribute that best separates the classes, and uses this to
split the data at each node. This algorithm is a precursor to Quinlan’s proprietary
C5.0 algorithm, which introduces pruning and boosting (Section 3.7) to improve
generalisation performance (Quinlan 1993).

Advantages: Decision trees are clear models, in the sense that it is easy for
a non-expert to understand what a tree is showing (provided it is not too large).
Decision trees are widely used and well understood, and are reasonably robust to
noisy and incomplete data.

Disadvantages: The basic algorithm only models discrete-valued functions, so
continuous data has to be divided into bins or clusters first. This division loses
information from the data, because the scales the data are measured on are trans-
formed from interval (or possibly ratio) scales into ranked ordinal scales. The rules
captured by the tree divide the data space into (hyper-)rectangles, which may be an
unjustified bias.

3.7 Combining Classifiers

It is always easier to build a poor model than a strong one. Fortunately, this can
be put to good use by combining a number of weak learners into a committee. A
committee tends to outperform the average of its constituent members if the errors
of the members are sufficiently uncorrelated (Perrone & Cooper 1993), which will be
true if they have been trained using different (possibly overlapping) sets of training
data. Bishop (1995) describes forming committees of neural networks.

Freund & Schapire (1996) describe a boosting algorithm, which creates a series
of weak learners and combines them to form a committee. Each learner is trained on
the entire training data set, and each point in the set is assigned a weight. During
learning, data points that tend to be modelled inaccurately are given increasingly
large weights, which forces future learners to model them more accurately. Thus
when the committee of learners is formed, all of the data points should be modelled
accurately by at least one weak learner, and therefore the committee’s final vote
should be accurate over the entire problem space.

Quinlan (1996) compares this boosting technique with bagging, where new sets
of the training data are repeatedly created by selecting points (with replacement)
from the main training set. This tends to produce distinct data sets, and hence
different models, which between them cover the entire problem space.

Advantages: These techniques are simple to implement, and results show that
they can produce considerable improvements in accuracy. One known problem with
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modelling consumer preferences is that models tend to reflect the negative dislikes
of certain products more accurately than they model the positive likes of other
products. A version of boosting could be used to overcome this by biasing the
models towards or away from certain “problem” data points.

Disadvantages: Each committee member has to be trained separately, so these
techniques can be slow. Perhaps counter-intuitively, boosting and related techniques
work best when the basic algorithm is weak, such as a decision tree. Boosting very
sophisticated models tends to produce marginal improvements at best.

3.8 Cluster Analysis

Cluster analysis aims to discover distinct groups of similar points within a set of
data, with applications ranging from biological taxonomy to market research. Green,
Frank & Robinson (1967) describe the division of American cities into groups based
on various socio-economic indicators, to select suitable sites for test marketing. A
related application is consumer preference modelling, where the aim is to find groups
of consumers with similar likes and dislikes. One form of this is collaborative filtering
(Ungar & Forster 1998), which is increasingly popular in e-commerce. Consumers
are grouped together based on past purchases, so new purchase suggestions can then
be made. Wooding (1999) describes using self-organising maps as a visualisation tool
to investigate properties of food and their impact on consumer preferences.

The techniques described earlier are examples of supervised learning, where the
aim is to learn some function given labelled instances of data. Clustering is an
example of unsupervised learning, where the data set is unlabelled (i.e. each record
does not have a known target class or value). Such data can be viewed as having
been generated by a series of clusters, but where the information about which cluster
generated which data point is missing. The aim of cluster analysis is to rediscover
this missing information, and therefore discover where the clusters are, how big
they are, what shape they are, and so on. Everitt (1993) provides a comprehensive
introduction to the field.

Advantages: Rather than treating all consumers the same, if distinct groups
of consumers with similar preferences can be found, then different products can be
manufactured and marketed for each group. These will match consumer preferences
more closely.

Disadvantages: One of the major open problems in the field is in determining
the number of clusters that exist within a set of data. Many heuristics have been
suggested, but no rule works reliably. There is a very wide range of clustering
techniques, each with different properties, and no clear way to select an appropriate
method.

3.9 A Machine Learning Hierarchy

Sections 3.1–3.8 form an overview of some of the many intelligent systems techniques
that are available, each with its own strengths and weaknesses. This leaves open
the question of which method should be used to solve each particular problem.
Given that a data-mining problem is defined primarily by the data, it seems sensible
to choose a technique based on the features of the data at hand. Figure 4 is an
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Figure 4: A hierarchy of intelligent systems techniques

attempt to show some of the relationships between these techniques, based on the
characteristics of the data (as well as characteristics of the solution).

There are (at least) two caveats regarding this particular hierarchical classi-
fication. Firstly, it is incomplete: it shows less than 20 techniques, missing out
case-based reasoning, factor analysis, and linear discriminants, to name but three.
Even the techniques it does show often represent a group of related methods, such
as the numerous genetic classifier algorithms, or the limitless regression models.

Secondly, the same list of techniques could have been grouped into many equally
justifiable hierarchies, suggesting quite different relationships between them. This
hierarchy must be enhanced and expanded, as must the FMCG hierarchy introduced
earlier (Figure 1). Ultimately, it is hoped, these two trees can be merged into a single
chart, showing how each problem can best be solved with particular machine learning
techniques.

Some terms used in the diagram need to be clarified:

Discrete vs. continuous If a variable is discrete, it can only take on values drawn
from a finite set. A continuous variable can take on any value, usually within
a finite range. Several techniques outlined above require discrete data, such as
decision trees and rule induction. Susmaga (1997) describes one technique for
breaking continuous variables into discrete sets.
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Crisp vs. Fuzzy A crisp division has a clear, well-defined boundary, whereas a
fuzzy division has overlaps between each division. The gender of a consumer
would be defined using crisp divisions, but typical food data sets consist of
fuzzy divisions. For example, there is no clear boundary between good and
bad food. This dichotomy only applies to discrete data.

Deterministic vs. non-deterministic Certain modelling techniques will always
produce the same model, given a fixed set of data, whereas others rely on ini-
tially random parameters or on random processes, and so will tend to produce
different models each time they are executed. Examples of the former are sup-
port vector machines and least-squares regression; examples of the latter are
neural networks and genetic classifiers.

Supervised vs. unsupervised If data points have a specific output target, then
supervised learning can be used to predict the target value from the input
variables. Most of the listed techniques require targets, and perform super-
vised learning only. If there is no known, specified target, then unsupervised
learning, such as clustering, can still be carried out.

4 The Future: Food Design

Returning to the case studies of applications of intelligent data analysis to FMCG
problems (Section 2), we can see more clearly how they relate to the central problem
of food design:

Cheese and Tomato Preference Modelling This is obviously closely related to
the general problem of food design. Although this is a statistical method,
rather than an intelligent system, the use of PCA and ANOVA at least provides
a benchmark for evaluating alternative techniques.

On-line Beer Tasting In order to predict consumer preferences from product taste,
one must have a way of measuring that taste reliably. Enhancing or replacing
the expensive sensory panels with cheaper instruments applies equally to taste
and to appearance.

Detecting Damaged Food Again, using instrumental image data is cheaper (and
potentially more accurate) than sensory panels, and detecting damage can be
seen as analogous to detecting low product quality, with quality defined by
consumer preferences.

Coffee-blend Classification Using instruments to measure odours is applicable
to many foodstuffs. Preferences for many foods, such as wine, cheese and
fruit, are based largely on odour.

Other Studies The other three applications described (food sterilisation, package
design and food sales forecasting) move beyond product design, but are firmly
within the same industrial area.
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Following from Corney (2000), related work is continuing to combine market
segmentation and product design. One approach being considered is combining k-
means clustering (to group consumers) with Bayesian belief networks (to model each
group’s preferences).

This paper has discussed current and future applications of intelligent systems
to a wide range of food and drink issues, and has highlighted food design as a
fruitful area of further work. Proposals have been made for hierarchical orderings of
both problems and solutions, with the hope of combining such hierarchies to match
existing problems with appropriate techniques.
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