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Abstract

Every population game defines a vector field on the set of strategy distributions X. The
projection dynamic maps each population game to a new vector field: namely, the one closest
to the payoff vector field among those that never point outward from X. We investigate the
geometric underpinnings of the projection dynamic, describe its basic game-theoretic properties,
and establish a number of close connections between the projection dynamic and the replicator
dynamic.

1 Introduction

Many strategic interactions that arise in applications involve large numbers of small anonymous
agents, each of whom plays one of a finite number of roles.1 Population games provide a simple
and general model for capturing interactions of this kind. In a population game, agents in the same
role choose from the same set of strategies, and each agent’s payoff to a given strategy is the same
function of the distribution of opponents’ behavior. Since large numbers of agents make equilibrium
assumptions especially suspect, population games are best analyzed using an explicitly dynamic
approach, with agents adjusting their choices in response to their current strategic environment.

We begin this paper by considering population games from a geometric point of view. By
seeing a population game as defined not by a collection of payoff functions, but by a vector field,
we can describe complicated strategic interactions entirely in pictures, allowing a game’s incentive
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structure to be digested at a glance. Moreover, the geometric approach provides a new perspec-
tive on standard game-theoretic concepts. By noting a simple geometric characterization of Nash
equilibrium, we can find a game’s Nash equilibria using pictures alone. By the same token, an
evolutionary dynamic can be viewed as a method of constructing “feasible distortions” of payoff
vector fields—that is, of mapping each payoff vector field to a new vector field that specifies a
feasible direction of motion from every strategy distribution.

Viewing evolutionary dynamics this way suggests the following question: can we find an evolu-
tionary dynamic that always minimizes the distortion imposed on the payoff vector field? We call
the dynamic described by this criterion the projection dynamic. This dynamic was first introduced
in the transportation science literature in the work of Nagurney and Zhang (1997). In this paper, we
study the projection dynamic’s geometric underpinnings, its basic game-theoretic properties, and
its many close connections with the replicator dynamic of Taylor and Jonker (1978), the original
dynamic of evolutionary game theory.

s we noted earlier, any population game can be represented as a vector field F on the space
X ⊂ Rn. of strategy distributions. Here n is the total number of strategies in the game; F : X →
Rn assigns each strategy distribution x ∈ Rn a payoff vector F (x) ∈ Rn, where component Fi(x)
represents the payoff to strategy i when the state is x. The projection dynamic for the game F is
defined by a new vector field V : X → Rn; the vector V (x) ∈ Rn is the best approximation of the
payoff vector F (x) by a feasible direction of motion through X from x. In formal terms, V (x) is
the closest point projection of F (x) onto TX(x), the tangent cone of the set X at point x.

An obvious technical difficulty with the projection dynamic is that it is discontinuous: V (x) can
change abruptly when the state x reaches the boundary of the state space. Fortunately, it follows
from general results of Henry (1973) and Aubin and Cellina (1984) (see also Dupuis and Ishii (1991)
and Dupuis and Nagurney (1993)) that solutions to the projection dynamic exist, are unique, and
are Lipschitz continuous in their initial conditions. Nevertheless, solutions to this dynamic have
some properties quite different from those of standard dynamics: its solutions can merge in finite
time, and can enter and exit the boundary of X repeatedly as time passes.

Since the projection dynamic respects payoffs to the greatest possible extent, it comes as no
surprise that it exhibits appealing game-theoretic properties: the rest points of the projection
dynamic are always identical to the Nash equilibria of the underlying game, and that the dynamic
converges to Nash equilibrium from every initial conditions in all potential games and all stable
games.

Still, while the projection dynamic is derived from a natural mathematical motivation, whether
it admits a similarly natural economic foundation is not obvious. Fortunately, we are able to
provide such a foundation by deriving the projection dynamic from an explicit model of individual
choice. In this model, agents occasionally receive opportunities to choose new strategies, with both
the timing of these opportunities and the probabilities of switches being described by a function of
payoffs and the population state called a revision protocol.2 We show that if agents follow certain

2This model of microfoundations for evolutionary dynamics is introduced in Sandholm (2006a), building on earlier
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revision protocols under which unpopular strategies are more likely to be abandoned than popular
ones, then their aggregate behavior is described by the projection dynamic.

In fact, these microfoundations provide the first connection between the projection dynamic and
the replicator dynamic of Taylor and Jonker (1978). If we take any of the protocols noted above
based on abandonment of unpopular strategies, and reformulate them to be driven by adoption
of popular strategies—in other words, by imitation—then aggregate behavior under these new
protocols is described by the replicator dynamic.

Unlike the revision protocols that underlie many other evolutionary dynamics,3 those that
generate the replicator and projection dynamics condition directly on the population state. The
exact form of this conditioning leads these dynamics to enjoy a property we call inflow-outflow
symmetry. This property is important because of its implications for dominated strategies: namely,
that dominated strategies must always be losing ground to their dominating strategies at interior
population states.4

It has been known since the work of Akin (1980) that the replicator dynamic eliminates strictly
dominated strategies so long as play begins at an interior initial condition. This result follows
easily from the invariance of the interior of X under the replicator dynamic, combined with inflow-
outflow symmetry. Since the projection dynamic also satisfies inflow-outflow symmetry, it is natural
to expect similar conclusions about dominated strategies to follow. This intuition turns out to be
wrong. Using the fact that solutions of the projection dynamic can enter and leave the boundary
of X, we construct an example in which a strictly dominated strategy appears and then disappears
from the population in perpetuity. Thus, the fact that the dominated strategy is losing ground to
the dominating strategy at almost all states is not enough to guarantee its elimination.

In the final section of the paper, we explore a striking connection between the replicator and
projection dynamics in potential games. To start, we note that on the interior of X, the projection
dynamic of a potential game is actually the gradient system generated by the game’s potential
function: in other words, the dynamic always follows the path that ascends potential in the most
direct fashion. The connection with the replicator dynamic then arises by way of a result of Akin
(1979): building on work of Kimura (1958) and Shahshahani (1979), Akin (1979) shows that in
potential games, the replicator dynamic of a potential game is also a gradient system defined by
the game’s potential function, but only after the state space has been transformed by a nonlinear
change of variable, one that attaches greater weight to changes in the use of rare strategies. We
conclude the paper with a direct proof of Akins (1979) result: unlike Akins (1979) original proof,
ours does not require the introduction of tools from differential geometry. This result and those
described above demonstrate the deep connections between two seemingly unrelated models of the
evolution of behavior in games.

work by Bjornerstedt and Weibull (1996), Benaim and Weibull (2003), and Sandholm (2003)
3For instance, the best response dynamic (Gilboa and Matsui (1991)), the logit dynamic (Fudenberg and Levine

(1998)), the Brown-von Neumann-Nash dynamic (Brown and von Neumann (1950)), and the pairwise difference
dynamic (Smith (1984)).

4This is in stark contrast with the work of Hofbauer and Sandholm (2006b), who construct a game with a strictly
dominated strategy under which a large class of evolutionary dynamics admit an interior attractor.
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2 Population Games

2.1 Definitions

Let P = {1, . . . , p} be a society consisting of p ≥ 1 populations of agents. Agents in population
p form a continuum of mass mp > 0. Agents in population p choose strategies from the set
Sp = {1, . . . , np}. The total number of strategies in all populations is n =

∑
p∈P np.

During play, each agent in population p selects a (pure) strategy from Sp. The set of population
states (or strategy distributions) for population p is Xp = {xp ∈ Rnp

+ :
∑

i∈Sp xp
i = mp}. The scalar

xp
i ∈ R+ represents the mass of players in population p choosing strategy i ∈ Sp. Elements of

X =
∏

p∈P Xp = {x = (x1, . . . , xp) : xp ∈ Xp}, the set of social states, describe behavior in all
P populations at once. When there is only one population, we omit the superscript p from our
notation and assume that the population’s mass is 1.

We generally take the sets of populations and strategies as fixed and identify a game with its
payoff function. A payoff function F : X → Rn is a Lipschitz continuous map that assigns each
social state a vector of payoffs, one for each strategy in each population. Observe that F defines a
vector field on Rn: it sends a “nice” subset of Rn into Rn itself. F p

i : X → R denotes the payoff
function for strategy i ∈ Sp, while F p : X → Rnp

denotes the payoff functions for all strategies in
Sp. Similar notational conventions are used throughout the paper.

Social state x ∈ X is a Nash equilibrium of F if all agents in all populations play best responses.
Formally, x ∈ NE(F ) if

xp
i > 0 =⇒ i ∈ argmax

j∈Sp
F p

j (x) for all i ∈ Sp and p ∈ P

.

2.2 Examples

Example 2.1 (Random matching in symmetric normal form games) An n-strategy sym-
metric normal form game is defined by a payoff matrix A ∈ Rn×n. Aij is the payoff a player
obtains when he chooses strategy i and his opponent chooses strategy j; this payoff does not depend
on whether the player in question is called player 1 or player 2. When a population of agents are
randomly matched to play this game, the (expected) payoff to strategy i at population state is x is
Fi(x) =

∑
j∈S Aijxj; hence, the population game associated with A is the linear game F (x) = Ax.

Example 2.2 (Congestion games) Congestion games provide a basic model of multilateral ex-
ternalities. For concreteness, we describe these games using the context of highway network con-
gestion. Consider a collection of towns is connected by a network of links L. For each ordered pair
p ∈ P of towns, there is a population of agents, each of whom needs to commute from the first town
in the pair (where he lives) to the second (where he works). To accomplish this, the agent must
choose a path: each path i ∈ Sp consists of a set of links Lp

i ⊆ L connecting the towns in pair p. An
agent’s payoff from choosing path i is the negation of the delay on this path. The delay on a path
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is the sum of the delays on its links, and the delay on link is a function of the number of agents
using that link. Formally,

F p
i (x) = −

∑
l∈Lp

i

cl(ul(x)), where ul(x) =
∑
p∈P

∑
i∈Sp: l∈Lp

i

xp
i .

When congestion games are used to model highway networks or other environments in which exter-
nalities are negative, the cost functions cl are increasing in the utilization levels ul. But one can
also use congestion games to capture positive externalities by assuming that the cost functions cl

are decreasing.

3 The Geometry of Population Games

3.1 Tangent Spaces and Orthogonal Projections for Population Games

3.1.1 Definitions

The tangent space of Xp, denoted TXp, is the smallest subspace of Rnp
that contains all vectors

describing motions between points in Xp. In other words, if xp, yp ∈ Xp, then yp − xp ∈ TXp,
and TXp is the span of all vectors of this form. Evidently, TXp contains exactly those vectors in
Rnp

whose components sum to zero: TXp = {zp ∈ Rnp
:
∑

i∈Sp zp
i = 0}. All directions of motion

between points in the set of social states X are contained in its tangent space, the product set
TX =

∏
p∈P TXp.

Projections—in particular, projections of payoff vectors onto sets of feasible directions of motion—
play a central role throughout this paper. When the target space of a projection is a linear subspace,
like the tangent spaces TXp and TX, the appropriate notion of projection is orthogonal projec-
tion. The geometric definition of orthogonal projection is well-known; algebraically, orthogonal
projections are the linear operations represented by symmetric idempotent matrices.

We represent the orthogonal projection onto the subspace TXp ⊂ Rnp
by the matrix Φ ∈

Rnp×np
, defined by Φ = I − 1

np 11′. Here 1 = (1, ..., 1)′ is the vector of ones, so 1
np 11′ is the matrix

whose entries are all 1
np .

The projection Φ has a simple interpretation. If vp is a payoff vector in Rnp
, the projection of

vp onto TXp is

Φvp = vp − 1
np

11′vp = vp − 1

(
1
np

∑
k∈Sp

vp
k

)
.

Thus, the ith component of the vector Φvp is the difference between the actual payoff to strategy i

and the unweighted average payoff of all strategies in Sp. Put differently Φvp discards information
about the absolute level of payoffs under vp while retaining information about relative payoffs. This
is interesting from a game-theoretic point of view, since incentives, and hence Nash equilibria, only
depend on payoff differences. Therefore, when incentives (as opposed to, e.g., efficiency) are our
main concern, the projected payoff vectors Φvp are sufficient statistics for the actual payoff vectors
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vp.
Since TX =

∏
p∈P TXp is a product set, the orthogonal projection onto TX is represented

by a block diagonal matrix, Φ = diag(Φ, . . . ,Φ) ∈ Rn×n. If we apply Φ to the payoff vector
v = (v1, . . ., vp), the resulting vector Φv = (Φv1, . . ., Φvp) lists the normalized payoffs in each
population.

3.1.2 Drawing Population Games

We noted earlier that the population game F : X → Rn can be viewed as a vector field. This
perspective enables us to present population games graphically. We begin by considering two
single-population, two-strategy games. The first is a coordination game, the second a Hawk-Dove
game:

F (x) =

(
1 0
0 2

)(
x1

x2

)
=

(
x1

2x2

)
and F (x) =

(
−1 2
0 1

)(
xH

xD

)
=

(
2xD − xH

xD

)
.

Figures 1(a) and 1(b) present these two games’ payoff vector fields, along with their projections,

ΦF (x) = Φ

(
x1

2x2

)
=

(
1
2x1 − x2

−1
2x1 + x2

)
and ΦF (x) = Φ

(
2xD − xH

xD

)
=

(
1
2(xD − xH)
1
2(xH − xD)

)
.

The figures are synchronized with the payoff matrix by using the vertical coordinate to represent
the mass on the first strategy and the horizontal coordinate to represent the mass on the second
strategy. At various states x, we draw (scaled down) versions of the corresponding payoff vectors
F (x) and projected payoff vectors ΦF (x).

Let us focus first on Figure 1(a), representing the coordination game. At the pure state e1 =
(1, 0), at which all agents play strategy 1, the payoffs to the two strategies are F1(e1) = 1 and
F2(e1) = 0, so the payoff vector F (e1) points directly upward. At the interior Nash equilibrium
x∗ = (x∗1, x

∗
2) = (2

3 , 1
3), each strategy earns a payoff of 2

3 ; the arrow representing payoff vector
F (x∗) = (2

3 , 2
3) is drawn at a right angle to the simplex, implying that the projected payoff vector

ΦF (x∗) = (0, 0) is null. Similar logic explains how the payoff vectors are drawn at other states,
and how Figure 1(b) is constructed as well.

These diagrams help us visualize the incentives faced by agents playing these games. In the
coordination game, the payoff vectors “push outward” toward the two axes, reflecting an incentive
structure that drives the population toward the two pure Nash equilibria. In contrast, payoff vectors
in the Hawk-Dove game “push inward”, away from the axes, reflecting forces leading the population
toward the interior Nash equilibrium x∗ = (1

2 , 1
2).

Representing three-strategy games in two-dimensional pictures requires more care. Figure 2
presents a “three-dimensional” picture of the simplex X situated in its ambient plane aff(X) =
{x ∈ R3 :

∑
i∈S xi = 1} in R3, known as the affine hull of X. When we draw the simplex on a

sheet of paper as an equilateral triangle, the paper represents this plane. Each payoff vector F (x)
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x

x1

2

(a) Coordination

x1

x2

(b) Hawk-Dove

Figure 1: The payoff vector field F (·) and its projection ΦF (·) in two two-strategy games.

in a three-strategy game is an element of R3, but the projected payoff vector ΦF (x) lies in the
two-dimensional tangent space TX. If the vector ΦF (x) is drawn as an arrow rooted at state x,
then by construction this arrow will lie in the plane aff(X) (see Figure 2).

In Figures 3(a) and 3(b), we use this approach to draw pictures of two single-population games
with three strategies: a coordination game and a standard Rock-Paper-Scissors game:

F (x) =

1 0 0
0 2 0
0 0 3


x1

x2

x3

 =

 x1

2x2

3x3

 and F (x) =

 0 −1 1
1 0 −1
−1 1 0


xR

xP

xS

 =

xS − xP

xR − xS

xP − xR

 .

Of course, these drawings are actually of the projected payoffs

ΦF (x) = Φ

 x1

2x2

3x3

 =


1
3(2x1 − 2x2 − 3x3)
1
3(−x1 + 4x2 − 3x3)
1
3(−x1 − 2x2 + 6x3)

 and ΦF (x) = Φ

xS − xP

xR − xS

xP − xR

 =

xS − xP

xR − xS

xP − xR

 .

But since standard RPS is symmetric zero-sum (i.e., since its payoff matrix is skew-symmetric),
the original and projected vector fields for this game are identical.

Much like Figure 1(a), Figure 3(a) shows that in the three-strategy coordination game, the
projected payoff vectors push outward toward the extreme points of the simplex. Figure 3(b)
exhibits a property that is only possible when there are three or more strategies: instead of heading
toward Nash equilibria, the vectors in this figure describe cycle around state x∗ = (1

3 , 1
3 , 1

3), the
unique Nash equilibrium of standard RPS
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e1

e2 e3

F(x)

x
ΦF(x)

Figure 2: The simplex X ⊂ R3 and its affine hull.

1

2 3

(a) Coordination

R

P S

(b) Standard Rock-Paper-Scissors

Figure 3: The projected payoff vector field ΦF (·) in two three-strategy games.
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3.2 Tangent Cones and Normal Cones for Convex Sets

All vectors z ∈ TX represent feasible motions from social states in the (relative) interior of X. To
represent a feasible motion from a boundary state, a vector cannot cause an unused strategy to
lose mass. To describe sets of such motions, we introduce the notion of a tangent cone to a convex
set; then, defining closest point projections onto these sets will enable us to define the projection
dynamic. For further background on these topics, see Hiriart-Urruty and Lemaréchal (2001).

3.2.1 Definitions

The set K ⊆ Rn is a cone if whenever it contains the vector z, it contains each vector αz with
α > 0. If K is a closed convex cone, its polar cone K◦ is a new closed convex cone:

K◦ = {y ∈ Rn : y′z ≤ 0 for all z ∈ K}.

In words, K◦ contains all vectors that form a weakly obtuse angle with each vector in K.
If the closed convex cone K is symmetric, in the sense that K = −K, then K is actually a

linear subspace of Rn; in this case, K◦ = K⊥, the orthogonal complement of K. More generally,
polarity defines an involution on the set of closed convex cones: that is, (K◦)◦ = K for any closed
convex cone K.

If C ⊂ Rn is a closed convex set, then the tangent cone of C at state x ∈ C, denoted TC(x),
is the closed convex cone

TC(x) = cl
(
{z ∈ Rn : z = α(y − x) for some y ∈ C and some α ≥ 0}

)
.

If C ⊂ Rn is a polytope (i.e., the convex hull of a finite number of points), then the closure operation
is redundant. In this case, TC(x) is the set of directions of motion from x that initially remain in
C; more generally, TC(x) also contains the limits of such directions. If x is in the (relative) interior
of C, then TC(x) is just TC, the tangent space of C; otherwise, TC(x) is a strict subset of TC.

The normal cone of C at x is the polar of the tangent cone of C at x: that is, NC(x) = TC(x)◦.
By definition, NC(x) is a closed convex cone, and it contains every vector that forms a weakly
obtuse angle with every feasible displacement vector at x.

3.2.2 Normal Cones and Nash Equilibria

When X is the set of social states of a population game, each tangent cone TX(x) contains the
feasible directions of motion from social state x ∈ X. In multipopulation cases TX(x) can be
decomposed population by population.5

In Figures 4(a) and 4(b), we sketch examples of tangent cones and normal cones when X is
the state space of a two-strategy game and of a three-strategy game. Since Figure 4(b) is two-

5That is: since X =
∏

p∈P Xp is a product set, TX(x) =
∏

p∈P TXp(xp) is a product set as well. Similarly, we
have that NX(x) =

∏
p∈P NXp(xp); this fact is used in the proof of Theorem 3.1 below.
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x

y

TX(x)

NX(x)

TX(y) NX(y)

(a) n = 2

x

v

TX(x)

TX(v)

y
TX(y)

Φ(NX(v))

Φ(NX(y))

Φ(NX(x)) = {0}

(b) n = 3

Figure 4: Tangent cones and (projected) normal cones in two- and three-strategy games.

dimensional, with the sheet of paper representing the plane aff(X), the figure actually displays the
projected normal cones ΦNX(x).

At first glance, normal cones might appear to be less relevant to game theory than tangent cones.
Theorem 3.1 shows that this impression is false, and provides us with a simple geometric description
of Nash equilibria of population games. Versions of this result can be found in the literature on
variational inequalities—see Harker and Pang (1990) and Nagurney and Zhang (1996).

Theorem 3.1 Let F be a population game. Then x ∈ NE(F ) if and only if F (x) ∈ NX(x).

Proof. x ∈ NE(F ) ⇔ [xp
i > 0 ⇒ F p

i (x) ≥ F p
j (x) for all i, j ∈ Sp, p ∈ P]

⇔ (xp)′F p(x) ≥ (yp)′F p(x) for all yp ∈ Xp, p ∈ P

⇔ (yp − xp)′F p(x) ≤ 0 for all yp ∈ Xp, p ∈ P

⇔ (zp)′F p(x) ≤ 0 for all zp ∈ TXp(x), p ∈ P

⇔ F p(x) ∈ NXp(xp) for all p ∈ P

⇔ F (x) ∈ NX(x). �

In the figures above, Nash equilibria are marked with dots. In the two-strategy games (Figures
1(a) and 1(b)), the Nash equilibria are those states x at which the payoff vector F (x) lies in the
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normal cone NX(x), as Theorem 3.1 shows. In the three-strategy games, the Nash equilibria
are those states x at which the projected payoff vector ΦF (x) lies in the projected normal cone
ΦNX(x); this is an easy corollary of Theorem 3.1. Even if the dots were left out of these figures,
we could locate the Nash equilibria by examining the arrows alone.

3.3 Closest Point Projections onto Convex Cones

3.3.1 Definition and Characterization

To define the projection dynamic on the boundary of X, we need to introduce projections onto
convex cones. If K ⊂ Rn is a closed convex cone, then the closest point projection ΠK : Rn → K

is defined by
ΠK(v) = argmin

z∈K
|z − v|.

If K is a subspace of Rn (i.e., if K = −K), then the closest point projection onto K is simply the
orthogonal projection onto K.

The fundamental result about projections onto closed convex cones is the Moreau Decomposition
Theorem, which generalizes the notion of orthogonal decomposition to the “one-sided” world of
convex cones. In words, this theorem tells us that the projections of the vector v onto K and K◦

are the unique vectors in K and K◦ that are orthogonal to one another and that sum to v. For a
proof, see Hirriat-Uruty and Lemaréchal (2001).

Theorem 3.2 (The Moreau Decomposition Theorem) Let K ⊆ Rn and K◦ ⊆ Rn be a
closed convex cone and its polar cone, and let v ∈ Rn. Then the following are equivalent:

(i) vK = ΠK(v) and vK◦ = ΠK◦(v).
(ii) vK ∈ K, vK◦ ∈ K◦, (vK)′vK◦ = 0, and v = vK + vK◦.

3.3.2 Projecting Payoff Vectors onto Tangent Cones of X

In Figures 5(a) and 5(b), we draw the projected vector fields V (·) = ΠTX(·)F (·) for our two three-
strategy games. In these figures, each payoff vector F (x) is represented by ΠTX(x)(F (x)), the
best approximation by a feasible direction of motion from x. Evidently, the states x at which the
projected payoff vector is null are precisely the Nash equilibria of the underlying game. That this
is true in general is an immediate consequence of Theorems 3.1 and 3.2:

Corollary 3.3 Let F be a population game. Then x ∈ NE(F ) if and only if ΠTX(x)(F (x)) = 0.

3.3.3 An Explicit Formula for ΠTX(x)(v)

In general, explicitly computing a closest point projection onto a convex cone requires solving a
quadratic program. The next result, Theorem 3.4, shows that the projection onto TXp(xp) admits
a simple explicit description. Since the projection onto TX(x) can be decomposed population by
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1

2 3

(a) Coordination

R

P S

(b) Standard Rock-Paper-Scissors

Figure 5: Vector fields V (·) = ΠTX(·)F (·) obtained by projecting payoffs onto tangent cones.

population, this formula is sufficient to determine ΠTX(x)(v).6 This formula underlies much of
the analysis to follow: in addition to providing us with an explicit expression for the projection
dynamic, it provides the key to establishing microfoundations for this dynamic, and it undergirds
our proof that dominated strategies can survive.

Theorem 3.4 The projection ΠTXp(xp)(vp) can be expressed as follows:

(ΠTXp(xp)(v
p))i =

vp
i −

1
#Sp(vp,xp)

∑
j∈Sp(vp,xp) vp

j if i ∈ Sp(vp, xp),

0 otherwise.

Here, the set Sp(vp, xp) ⊆ Sp contains all strategies in support(xp), along with any subset of
Sp − support(xp) that maximizes the average 1

#Sp(vp,xp)

∑
j∈Sp(vp,xp) vp

j .

The proof of Theorem 3.4 can be found in Appendix A.
To explain Theorem 3.4, let us avoid superscripts by focusing on the single population case.

Imagine that v ∈ Rn is the vector of payoffs earned by strategies in S = {1, . . . , n} at state x ∈ X.
When x is in the interior of X, the tangent cone TX(x) is the just the subspace TX; therefore, the
closest point projection onto TX(x) is the orthogonal projection Φ = I − 1

n11′ from Section 3.1,
which subtracts the average payoff under v from each component of v:

(ΠTX(x)(v))i = (Φv)i = vi −
1
n

∑
j∈S

vj . (1)

6More explicitly: since TX(x) = TX1(x1) × · · · × TXp(xp) is a product set, we have that ΠTX(x)(v) =
ΠTX1(x1)(v

1)× · · · ×ΠTXp(xp)(v
p).
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If instead there is exactly one unused strategy at state x, say strategy n, then the tangent cone
TX(x) consists of vectors in TX whose nth component is nonnegative. In this case, if strategy
n earns an above average payoff, then (Φv)n ≥ 0, and Theorem 3.4 tells us that formula (1) still
applies. But if strategy n earns a below average payoff, then (Φv)n < 0, so ΠTX(x)(v) cannot
equal Φv. Instead, according to Theorem 3.4, the nth component of ΠTX(x)(v) is set to 0, while the
remaining components of ΠTX(x)(v) are obtained from those of v by subtracting 1

n−1(v1+. . .+vn−1)
from each. More generally, the components of ΠTX(x)(v) corresponding to “bad” unused strategies
are set to 0, while the remaining components are obtained from v by normalizing away the average
of these components only.

4 The Projection Dynamic

4.1 Definition

An evolutionary dynamic is a map that assigns each population game F a dynamical system
on the set of social states X. Typically, this dynamical system is described by a differential
equation ẋ = V (x). To define the projection dynamic, we suppose that the vector V (x) is the best
approximation of the payoff vector F (x) by a feasible direction of motion from x. As we noted in
the Introduction, this dynamic first appears in the transportation science literature in the work of
Nagurney and Zhang (1997) (see also Nagurney and Zhang (1996, Ch. 8)).

Definition 4.1 The projection dynamic assigns each population game F the differential equation

ẋ = ΠTX(x)(F (x)). (P)

When x ∈ int(X), the tangent cone TX(x) is just the subspace TX, so the explicit formula for
(P) is simply ẋ = ΦF (x). When x ∈ bd(X), the explicit formula for (P) is given by Theorem 3.4.

When F is generated by random matching to play the normal form game A (i.e., when F takes
the linear form F (x) = Ax), the dynamic (P) is especially simple. On int(X), the dynamic is
described by the linear equation ẋ = ΦAx. On bd(X), Theorem 3.4 tells us that

(ΠTX(x)(Ax))i =

(Ax)i − 1
#S(Ax,x)

∑
j∈S(Ax,x)(Ax)j if i ∈ S(Ax, x),

0 otherwise.
(2)

Notice that once the set of strategies S(Ax, x) is fixed, this expression is a linear function of x.
Thus, under single population random matching, the projection dynamic is piecewise linear. This
observation is crucial to our proof of Theorem 5.2 on the survival of dominated strategies under
(P).7

7A relative of the projection dynamic from the economics literature is the linear dynamic of Friedman (1991, p.
643 and 661). Like the projection dynamic, the linear dynamic is defined by ẋ = ΦF (x) on the interior of X. But at
boundary states, the linear dynamic posits that all unused strategies have growth rates of zero, making the boundary
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4.2 Basic Properties

4.2.1 Existence, Uniqueness, and Continuity of Forward Solutions

Since the projection dynamic (P) is discontinuous at the boundary of X, standard results on
the existence of solutions to differential equations do not apply to it. Indeed, the appropriate
notion of solution for this equation must allow for kinks at boundary states: we call the trajectory
{xt}t≥0 ⊂ X a (Carathéodory) solution to (P) if it is absolutely continuous and satisfies equation
(P) at almost every t ≥ 0. Theorem 4.2 shows that despite these inconveniences, forward-time
solutions to (P) exist, are unique, and are Lipschitz continuous in their initial conditions.

Theorem 4.2 Let a Lipschitz continuous population game F and an initial condition ξ ∈ X be
given. Then there exists a unique solution {xt}t≥0 to the projection dynamic (P) with x0 = ξ.
Solutions to (P) are Lipschitz continuous in their initial conditions: if {xt}t≥0 and {yt}t≥0 are
solutions to (P), then |yt − xt| ≤ |y0 − x0| eKt for all t ≥ 0, where K is the Lipschitz coefficient for
F .

The existence result in Theorem 4.2 follows from more general existence results proved by Henry
(1973) and Aubin and Cellina (1984, Sec. 5.6), and later rediscovered by Dupuis and Ishii (1991)
and Dupuis and Nagurney (1993). In Appendix B, we briefly present a proof of Theorem 4.2 based
on the Viability Theorem for differential inclusions.

While the projection dynamic admits a unique solution from every initial condition, these
solutions differ from solutions to standard Lipschitz differential equations in a number of important
respects, as the following examples illustrate.

Example 4.3 (A three-strategy coordination game) In Figure 6, we present the phase dia-
gram for the projection dynamic in the three-strategy coordination game

A =

1 0 0
0 2 0
0 0 3

 .

This phase diagram provides the solution trajectories generated by the vector field pictured in Figure
5(a). In both Figure 6 and Figure 7, the background color represents the speed of motion: regions
where motion is fastest are red, while regions where motion is slowest are blue. (Since the dynamic
changes discontinuously at the boundary of X, the colors are only guaranteed to represent speeds at
interior states.)

As one travels away from the completely mixed equilibrium, the speed of motion increases until
the boundary of the state space is reached; thus, bd(X) is reached in finite time. At this point, the

forward invariant, while the growth rate of each strategy in use is the difference between its payoff and the average
payoff of the strategies in use. By Theorem 3.4, the linear dynamic is identical to the projection dynamic if and only
if at each state x ∈ bd(X) and in all populations p ∈ P, every unused strategy earns a payoff no greater than the
average payoff of the strategies in use.
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2 3

Figure 6: Phase diagram of (P) for a coordination game. Colors represent speeds.

solution changes direction, merging with a solution that travels along the boundary of the simplex,
implying that backward-time solutions from boundary states are not unique. All solutions reach one
of the seven symmetric Nash equilibria of A in finite time, with solutions from almost all initial
conditions leading to one of the three strict equilibria.

Example 4.4 (Rock-Paper-Scissors games) Consider the payoff matrix

A =

 0 −l w

w 0 −l

−l w 0

 .

with w, l > 0. A is a good RPS game if w > l (that is, if the winner’s profit is higher than the
loser’s loss). A is a standard RPS game if w = l, and A is a bad RPS game if w < l. In all cases,
the unique symmetric Nash equilibrium of A is x∗ = (1

3 , 1
3 , 1

3).
Figure 7 presents phase diagrams for the projection dynamic in good RPS (w = 3, l = 2),

standard RPS (w = l = 1), and bad RPS (w = 2, l = 3). In all three games, solutions spiral around
the Nash equilibrium in a counterclockwise direction. In good RPS (Figure 7(a)), all solutions
converge to the Nash equilibrium. Solutions that start at an interior state close to a vertex first hit
and then travel along the boundary of X; they then reenter int(X) and spiral inward toward x∗. In
standard RPS (Figure 7(b)), all solutions enter closed orbits at a fixed distance from x∗. Solutions
starting at distance 1√

6
or greater from x∗ (i.e., all solutions at least as far from x∗ as the state
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P S

(a) Good RPS (w = 3, l = 2).

R

P S

(b) Standard RPS (w = l = 1).

R

P S

(c) Bad RPS (w = 2, l = 3).

Figure 7: Phase diagrams of (P) for three Rock-Paper-Scissors games. Colors represent speeds.
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(0, 1
2 ,

1
2)) merge with the closed orbit at distance 1√

6
from x∗; other solutions maintain their initial

distance from x∗ forever. In bad RPS (Figure 7(c)), all solutions other than the one starting at x∗

enter the same closed orbit. This orbit alternates between segments through the interior of X and
segments that traverse the boundaries of X. This game is the starting point for our analysis of the
survival of dominated strategies in Section 5.2.

In all three versions of RPS, there are solution trajectories starting in int(X) that reach bd(X)
in finite time. By Theorem 3.4, solutions leave bd(X) at the point where the unused strategy’s
payoff exceeds the average payoff of the two strategies in use.

4.2.2 Nash Stationarity and Positive Correlation

Next, we first establish two basic game-theoretic properties of the projection dynamic. To state
these properties, suppose that F is a population game and ẋ = V (x) an evolutionary dynamic for
this game. Define RP (V ) = {x ∈ X : V (x) = 0} to be the set of rest points of V .

(NS) Nash stationarity RP (V ) = NE(F ).
(PC) Positive correlation [V p(x) 6= 0 =⇒ V p(x)′F p(x) > 0] for all p ∈ P.

Nash stationarity (NS) requires that the Nash equilibria of the game F and the rest points of
the dynamic V coincide. Dynamics satisfying this condition provide the strongest support for the
fundamental solution concept of noncooperative game theory. Positive correlation (PC) imposes
restrictions on disequilibrium dynamics. It requires that whenever population p ∈ P is not at rest,
there is a positive correlation between the growth rates and payoffs of strategies in Sp. In geometric
terms, (PC) demands that the direction of motion V p(x) and the payoff vector F p(x) form acute
angles with one another whenever V p(x) is not null. This property, versions of which have been
studied by Friedman (1991), Swinkels (1993), and Sandholm (2001), is an important ingredient in
establishing global convergence results—see Section 4.2.3 below.

Both (NS) and (PC) are simple consequences of the developments in Section 3.

Proposition 4.5 The projection dynamic satisfies Nash stationarity (NS) and positive correlation
(PC).

Proof. Property (NS) is a restatement of Corollary 3.3. To prove property (PC), we take the
Moreau decomposition of the payoff vector F p(x):

V p(x)′F p(x) = ΠTXp(xp)(F
p(x))′

(
ΠTXp(xp)(F

p(x)) + ΠNXp(xp)(F
p(x))

)
=
∣∣ΠTXp(xp)(F

p(x))
∣∣2

≥ 0.

The inequality is strict if and only if ΠTXp(xp)(F p(x)) = V p(x) 6= 0. �
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4.2.3 Global Convergence in Potential Games

To conclude this section, we show that the projection dynamic converges to Nash equilibrium from
all initial conditions in two important classes of games: potential games (Monderer and Shapley
(1996), Sandholm (2001, 2006c)) and stable games (Hofbauer and Sandholm (2006a)).

In a potential game, information about all strategies’ payoffs is encoded in a single scalar-
valued function on the state space X. Following Sandholm (2006c), we call the population game
F : X → Rn a potential game if it admits a potential function f : X → R satisfying

∇f(x) = ΦF (x) for all x ∈ X. (PG)

Since the domain of f is X, the gradient vector∇f(x) is the unique vector in TX that represents
the derivative of f at X, in the sense that f(y) = f(x) + ∇f(x)′(y − x) + o(|y − x|) for all y ∈
X. Definition (PG) requires that this gradient vector always equal the projected payoff vector
ΦF (x). Common interest games, congestion games, and games defined by variable externality
pricing schemes are all potential games.

In potential games, all limit points of the projection dynamic are Nash equilibria.

Theorem 4.6 Let F be a potential game with potential function f . Then f is a strict Lyapunov
function for the projection dynamic (P) on X. Therefore, each solution to (P) converges to a
connected set of Nash equilibria of F .

Proof. Property (PC) and the fact that V (x) ∈ TX imply that

ḟ(x) = ∇f(x)′ẋ = (ΦF (x))′V (x) = F (x)′V (x) =
∑
p∈P

F p(x)′V p(x) ≥ 0,

and that ḟ(x) = 0 if and only if V (x) = 0. Therefore, standard results (e.g., Theorem 7.6 of
Hofbauer and Sigmund (1988)) imply that every solution of (P) converges to a connected set of
rest points of V . By Nash stationarity, these rest points are all Nash equilibria. �

The three strategy coordination game from Example 4.3 is a potential game with potential
function f(x) = 1

2((x1)2 + 2(x2)2 + 3(x3)2). In Figure 8, we present another phase diagram of
the projection dynamic for this game, this time over a contour plot of the potential function f .
Theorem 4.6 tells us that all solutions of (P) ascend this function.

In fact, we can see in the figure that on the interior of X, the solutions cross the level sets of f

orthogonally. This reflects the fact that the projection dynamic is actually the gradient system for
f on int(X): in other words,

ẋ = ∇f(x) on int(X), (3)

as follows immediately from equations (1), (P), and (PG). This observation is the source of one of
the many connections between the projection and replicator dynamics that we explore in Section
5.
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2 3

Figure 8: Phase diagram of (P) for a coordination game. Colors represent the value of potential.

4.2.4 Global Convergence and Cycling in Stable Games

The population game F is a stable game (Hofbauer and Sandholm (2006a)) if

(y − x)′(F (y)− F (x)) ≤ 0 for all x, y ∈ X. (SG)

If inequality (SG) is strict whenever y 6= x, then F is a strictly stable game; if (SG) is always
satisfied with equality, then F is a null stable game. The set of Nash equilibria of any stable game
is convex; if F is strictly stable, then NE(F ) is a singleton. Games with an interior ESS, wars of
attrition, and congestion games in which congestion is a bad are all stable games, while zero-sum
games are null stable games.

Let
Ex∗(x) = |x− x∗|2,

the squared Euclidean distance from the Nash equilibrium x∗. Nagurney and Zhang (1997) show
that Ex∗ is a Lyapunov function in any stable game. The analysis to follow includes a streamlined
proof of their result.

Theorem 4.7 Let x∗ be a Nash equilibrium of F .
(i) If F is a stable game, then Ex∗ is a Lyapunov function for (P), so x∗ is Lyapunov stable

under (P).
(ii) If F is a strictly stable game, then Ex∗ is a strict Lyapunov function for (P), so NE(F ) = x∗

is globally asymptotically stable under (P).
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(iii) If F is a null stable game and x∗ ∈ int(X), then Ex∗ defines a constant of motion for (P)
on int(X).

Proof. The proof of Theorem 3.1 shows that x∗ is a Nash equilibrium if and only if

(x− x∗)′F (x∗) ≤ 0 for all x ∈ X. (4)

By adding this inequality to inequality (SG), Hofbauer and Sandholm (2006a) show that if F is a
stable game, then x∗ ∈ NE(F ) if and only if x∗ is a globally neutrally stable state of F :

(x− x∗)′F (x) ≤ 0 for all x ∈ X; (5)

while if F is a strictly stable game, then its unique Nash equilibrium x∗ is also its unique globally
evolutionarily stable state:

(x− x∗)′F (x) < 0 for all x ∈ X − x∗. (6)

Now suppose that F is stable. Using the Moreau decomposition, equation (5), and the fact that
x∗ − x ∈ TX(x), we compute the time derivative of Ex∗ over a solution to (P):

Ėx∗(x) = ∇Ex∗(x)′ẋ (7)

= 2(x− x∗)′ΠTX(x)(F (x))

= 2(x− x∗)′F (x) + 2(x∗ − x)′ΠNX(x)(F (x))

≤ 2(x∗ − x)′ΠNX(x)(F (x))

≤ 0.

Thus, Ex∗ is a Lyapunov function for (P), which implies that x∗ is Lyapunov stable. If F is strictly
stable, then equation (6) implies that the first inequality in (7) is strict; thus, Ex∗ is a strict
Lyapunov function for (P), and so x∗ is globally asymptotically stable.

Finally, suppose that F is null stable and that x∗ is an interior Nash equilibrium. The first of
these assumptions tells us that equation (SG) always holds with equality, while the second implies
that all pure strategies are optimal, and hence that equation (4) always holds with equality. Adding
these two equalities shows that equation (5), and hence the first inequality in (7), always holds with
equality. If x ∈ int(X), then NX(x) and TX(x) are orthogonal, so the the second inequality in
(7) holds with equality as well. Therefore, Ėx∗(x) = 0 on int(x), and so Ex∗ defines a constant of
motion for (P) on this set. �

To conclude this section, we show that at interior states, the squared speed of motion under (P)
also serves as a Lyapunov function for (P). Unlike that of the distance function Ex∗ , the definition
of this function does not directly incorporate the Nash equilibrium x∗.
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Theorem 4.8 Let F be continuously differentiable. If F is a stable game, then L(x) = |ΦF (x)2| is
a Lyapunov function for (P) on int(X). If F is a null stable, then L defines a constant of motion
for (P) on int(X).

Proof. Since F is C1, the Fundamental Theorem of Calculus implies that F is stable if and only
if

z′DF (x)z ≤ 0 for all z ∈ TX and x ∈ X, (8)

and that F is null stable game if and only if inequality (8) always binds.
When x ∈ int(x), the projection dynamic is given by ẋ = ΦF (x). Therefore, since DΦF (x) =

ΦDF (x) and Φ2 = Φ, we find that

L̇(x) = ∇L(x)′ẋ = 2(ΦF (x))′DΦF (x)(ΦF (x)) = 2(ΦF (x))′DF (x)(ΦF (x)).

Of course, ΦF (x) ∈ TX. Therefore, if F is stable, then L̇(x) ≤ 0 on int(X), and if F is null stable,
then L̇(x) = 0 on int(X). �

The results in this section are illustrated by our phase diagrams for the projection dynamic
in RPS games (Example 4.4). Good RPS defines a strictly stable population game. In its phase
diagram (Figure 7(a)), we see that distance from the equilibrium x∗ = (1

3 , 1
3 , 1

3) falls over time,
and that the speed of motion falls over time on int(X). Standard RPS is a zero-sum game, and so
defines a null stable population game. In this game’s phase diagram (Figure 7(b)), both distance
from equilibrium and the speed of motion remain fixed over time on int(X).

5 The Projection Dynamic and the Replicator Dynamic

In this final section of the paper, we explore the many close connections between the projection
dynamic and the replicator dynamic. To simplify notation, we restrict attention to the single
population setting; however, all of the results to follow continue to hold when there are multiple
populations. The replicator dynamic was introduced in the mathematical biology literature by
Taylor and Jonker (1978), who use it to model natural selection driven by differences in birth and
death rates. In economic contexts, the replicator dynamics describes the changes in the strat-
egy distribution as agents imitates successful opponents (Björnerstedt and Weibull (1996), Schlag
(1998)).

In the single population setting, the replicator dynamic for the population game F is defined
by

ẋi = xi

(
Fi(x)−

∑
k∈S xkFk(x)

)
. (R)

In words: the percentage growth rate of strategy i equals the difference between the payoff to
strategy i and the weighted average payoff under F at x (that is, the average payoff obtained by
members of the population).
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For the sake of comparison, recall that the projection dynamic takes the form

ẋi =

Fi(x)− 1
#S(F (x),x)

∑
j∈S(F (x),x) Fj(x) if i ∈ S(F (x), x),

0 otherwise,
(P)

Since S(F (x), x) = S on int(X), we see that at interior states, (P) specifies that the absolute growth
rate in population (P) equals the difference between the payoff to strategy i and the unweighted
average payoff. At boundary states, some poorly performing unused strategies (namely, those not
in S(F (x), x)) are ignored, while the absolute growth rates of the remaining strategies are defined
as before.

Thus, we see that both the replicator and projection dynamics convert payoff vector fields in
differential equations in similar fashions, the key difference being that the replicator dynamic uses
relative definitions, while the projection dynamic employs the corresponding absolute definitions.
In the remainder of the paper, we explore the game-theoretic ramifications of this link.

5.1 Microfoundations

To provide an explicit link between individual choices and aggregate behavior, we need to derive
deterministic dynamics like (R) from explicit models of individual choice. We derive deterministic
dynamics on X from a model of individual choice, using revision protocols ρ : Rn × X → Rn×n

+ ,
which describes the process through which individual agents make decisions. As time passes, agents
are chosen at random from the population and granted opportunities to switch strategies. When
an i player receives such an opportunity, he switches to strategy j with probability proportional to
the conditional switch rate ρij(F (x), x). Aggregate behavior in the game F is then described by
the mean dynamic

ẋi = Vi(x) =
∑
j∈S

xjρji(F (x), x)− xi

∑
j∈S

ρij(F (x), x). (M)

The first term in equation (M) captures the inflow of agents into strategy i from other strategies,
while the second term captures the outflow of agents from strategy i to other strategies.

As examples, consider the following three pairs of revision protocols:

ρij = xj [Fj(x)− Fi(x)]+, ρij =
1

nxi
[Fj(x)− Fi(x)]+,

ρij = xj(K − Fi(x)), ρij =
1

nxi
(K − Fi(x)),

ρij = xj(Fj(x) + K), ρij =
1

nxi
(Fj(x) + K).

The protocols in the first column are all based on imitation, as reflected in the initial xj term. For
instance, to implement the first protocol, an agent whose clock rings picks an opponent from his
population at random; he then imitates this opponent only if the opponents’ payoff is higher, doing
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so with probability proportional to the payoff difference.8 Each of these protocols generates the
replicator dynamic as its mean dynamic. For the first protocol, we have that

ẋi =
∑

j
xjρji − xi

∑
j
ρij =

∑
j
xjxi[Fi(x)− Fj(x)]+ − xi

∑
j
xj [Fj(x)− Fi(x)]+

= xi

∑
j
xj(Fi(x)− Fj(x)) = xi

(
Fi(x)−

∑
j
xjFj(x)

)
.

The derivations for the other two protocols are similar.
The protocols in the second column are obtained from those in the first by replacing xj with

1
nxi

. Thus, while in each of the imitative protocols, ρij is proportional to the mass of agents playing
the candidate strategy j, in the abandonment protocols, ρij inversely proportional to the mass of
agents playing the current strategy i: in other words, agents are more likely to abandon strategies
that are currently unpopular.9 It is easy to check that each of the latter protocols generates the
projection dynamic as its mean dynamic on the interior of the state space X: for the first protocol,
we have that

ẋi =
∑

j
xjρji − xi

∑
j
ρij =

∑
j
xj

[Fi(x)−Fj(x)]+
nxj

− xi

∑
j

[Fj(x)−Fi(x)]+
nxi

= 1
n

∑
j
(Fi(x)− Fj(x)) = Fi(x)− 1

n

∑
j
Fj(x)

However, it is easy to check that these protocols do not generate (P) on the boundary of X, where
some strategies are not in use.

We now present a new pair of protocols which aggregate to (R) and (P) on the entire state
space X. For each state x ∈ X, let

F̂i(x) = Fi(x)−
∑

k∈S
xkFk(x)

denote the difference between strategy i’s payoff and the weighted average payoff, and let

F̃S
i (x) = Fi(x)− 1

#S(F (x),x)

∑
k∈S(F (x),x)

Fk(x)

denote the difference between strategy i’s payoff and the unweighted average payoff of strategies in
S(F (x), x). Consider the following two revision protocols:

ρij =


[F̂i(x)]− ·

xj [F̂j(x)]+∑
k∈S xk [F̂k(x)]+

if
∑
k∈S

xk [F̂k(x)]+ > 0,

0 otherwise.

(9)

8This protocol is the proportional imitation protocol of [?]. The second protocol in the first column is the imitation
driven by dissatisfaction protocol of [?].

9This protocol can be implemented in the following way: Suppose that at every moment in time, each agent
chooses members of his population at random until he draws someone playing his own strategy, and then considers
switching strategies at a rate proportional to the number of draws. As this number of draws has a geometric(xi)
distribution, the expected number of draws is 1

xi
.
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ρij =


[F̃S

i (x)]−
xi

·
[F̃S

j (x)]
+∑

k∈S(F (x),x) [F̃S
k (x)]

+

if
∑

k∈S(F (x),x)

xi [F̃S
k (x)]+ > 0,

0 otherwise.

(10)

In both protocols, the first term describes the rate at which an i player who receives a revision
opportunity considers revising strategies. In both cases, the player only revises when i’s payoff is
below average (where the meaning of “average” is different in (9) and (10)), and the rate depends
linearly on how far below average; in (10), the rate is also inversely proportional to xi. The second
term describes the probability with which an agent who opts to revise chooses strategy j. In
both cases, only “above average” strategies are chosen, with strategies further above average being
chosen more often; in (9), the choice probability is also weighted by the popularity of strategy j.

Theorem 5.1 verifies that these two protocols have the desired mean dynamics throughout the
state space X. Its proof is presented in Appendix C.

Theorem 5.1

(i) Revision protocol (9) generates the replicator dynamic (R) as its mean dynamic.
(ii) Revision protocol (10) generates the projection dynamic (P) as its mean dynamic.

5.2 Inflow-Outflow Symmetry and Dominated Strategies

It is natural to expect evolutionary dynamics to eliminate dominated strategies. The first posi-
tive result on this question was proved by Akin (1980), who showed that the replicator dynamic
eliminates strictly dominated strategies so long as the initial state is interior. This result was ex-
tended to broader classes of imitative dynamics by Samuelson and Zhang (1992) and Hofbauer and
Weibull (1996). But while these results seem encouraging, they are actually quite special: Hofbauer
and Sandholm (2006b) show continuous evolutionary dynamics that are not based exclusively on
imitation do not eliminate strictly dominated strategies in all games.

In this section, we show that the projection dynamic shares with the replicator dynamic a
property called inflow-outflow symmetry, and we show why this property leads to selection against
dominated strategies under both of these dynamics on the interior of X. Despite this common
property, the long run prospects for dominated strategies under the two dynamics are quite different:
we show that because solutions to the projection dynamic can enter and exit the boundary of X,
inflow-ouflow symmetry is not enough to ensure that dominated strategies are eliminated.

In our revision protocol model from the previous section, agents are occasionally selected at ran-
dom and provided with revision opportunities; the recipients of these opportunities switch strategies
at frequencies determined by the conditional switch rates ρij = ρij(F (x), x). The evolution of the
population state is then described by the mean dynamic (M).

ẋi =
∑
j∈S

xjρji − xi

∑
j∈S

ρij . (M)

Notice that xi, representing the mass of players choosing strategy i, appears in this expression
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for ẋi asymmetrically. Since in order for an agent to switch away from strategy i, he must first
be selected at random, xi appears in the (negative) outflow term. But since agents switching to
strategy i were previously playing other strategies, xi does not appear in the inflow term.

We say that an evolutionary dynamic satisfies inflow-outflow symmetry if this asymmetry in
equation (M) is eliminated by the dependence of the revision protocol ρ on the population state
x. Under the replicator dynamic and other imitative dynamics, ρji is proportional to xi, making
both the inflow and outflow terms in (M) proportional to xi; thus, these dynamics exhibit inflow-
outflow symmetry. Similarly, under the projection dynamic, which is based on abandonment, ρij is
inversely proportional to xi whenever xi is positive. As a result, neither the inflow nor the outflow
term in equation (M) depends directly on xi, yielding inflow-ouflow symmetry on int(X).

Importantly, inflow-outflow symmetry can make it possible to show that a dominated strategy
i will lose ground to the strategy j that dominates it. In the case of the replicator dynamic (R),
the ratio xi/xj falls over time throughout int(X):

d

dt

(
xi

xj

)
=

ẋixj − ẋjxi

x2
j

=
xi

(
Fi(x)−

∑
k∈S

xkFk(x)
)
· xj − xj

(
Fj(x)−

∑
k∈S

xkFk(x)
)
· xi

x2
j

(11)

=
xi

xj
(Fi(x)− Fj(x)) < 0 on int(X).

Under the the projection dynamic (P), the difference xi − xj falls instead:

d

dt
(xi − xj) =

(
Fi(x)− 1

n

∑
k∈S

Fk(x)

)
−

(
Fj(x)− 1

n

∑
k∈S

Fk(x)

)
(12)

= Fi(x)− Fj(x) < 0 on int(X).

By combining equation (11) with the fact that int(X) is invariant under (R), it is easy to prove
that the replicator dynamic eliminates strictly dominated strategies along solutions in int(X). But
because solutions of the projection dynamic can enter and leave int(X), the analogous argument
based on equation (12) does not go through: while i will lose ground to j in int(X), it might gain
ground back on bd(X), leaving open the possibility of survival.

To pursue this idea, we consider the following game due to Berger and Hofbauer (2006):

F (x) = Ax =


0 −3 2 2
2 0 −3 −3
−3 2 0 0

−3− c 2− c −c −c




xR

xP

xS

xT

 . (13)

The game defined by the first three strategies is bad RPS with w = 2 and l = 3. Figure 7(c),
which presents the phase diagram for (P) in this game, shows that solutions other than the one at
the Nash equilibrium (1

3 , 1
3 , 1

3) enter a closed orbit, an orbit that enters and exits the three edges
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Figure 9: A solution to (P) in Rock-Paper-Scissors-Twin.

of the simplex. The fourth strategy of game (13), Twin, is a duplicate of Scissors, except that its
payoff is always c ≥ 0 lower than that of Scissors. When c = 0, the set of Nash equilibria of game
(13) is the line segment L between x∗ = (1

3 , 1
3 , 1

3 , 0) and (1
3 , 1

3 , 0, 1
3). If c > 0, then Twin is strictly

dominated, and the game’s unique Nash equilibrium is x∗.
Figure 9 presents the solution to (P) from initial condition ( 97

300 , 103
300 , 1

100 , 97
300) when c = 1

10 .
At first, the trajectory spirals down line segment L, as agents switch from Rock to Paper to
Scissors/Twin to Rock, with Scissors replacing Twin as time passes (since ẋT − ẋS = − 1

10 on
int(X)). When Twin is eliminated, both it and Scissors earn less than the average of the payoffs
to Rock, Paper, and Scissors; therefore, xS falls while xT stays fixed at 0, and so xT − xS rises.
Soon the solution enters int(X), and so ẋT − ẋS = − 1

10 once again. When the solution reenters
face RPS, it does so at a state further away from the Nash equilibrium x∗ than the initial point
of contact. Eventually, the trajectory appears to enter a closed orbit on which the mass on Twin
varies between 0 and roughly .36.

The existence and stability of this closed orbit is established rigorously in Theorem 5.2, whose
proof can be found in Appendix D.

Theorem 5.2 In game (13) with c = 1
10 , the projection dynamic (P) has an asymptotically stable

closed orbit γ that absorbs all solutions from nearby states in finite time. This orbit, pictured
in Figure 10, combines eight segments of solutions to linear differential equations as described in
equation (2); the approximate endpoints and exit times of these segments are presented in Table 1.
Along the orbit, the value of xT varies between 0 and approximately .359116.
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Figure 10: The closed orbit of (P) in Rock-Paper-Scissors-Twin.

Segment Support = S(Ax, x) Exit point Exit time
(initial state) RP (.466667, .533333, 0, 0) 0

1 RPS (.446354, .552864, .000782, 0) .015678
2 RPST (0, .564668, .227024, .208308) .324883
3 PST (0, .413636, .307144, .279219) .416973
4 RPST (.256155 ,0, .395751, .348094) .656509
5 RST (.473913, 0, .288747, .237340) .793914
6 RPST (.709788, .244655, .045576, 0) 1.028310
7 RPS (.693072, .306928, 0, 0) 1.065574
8 RP (.466667, .533333, 0, 0) 1.252812

Table 1: Approximate transition points and transition times of the closed orbit γ.
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Recall that in piecewise linear games like game (13), the projection dynamic is piecewise linear.
On the interior of X, the dynamic is described by ẋ = ΦAx. On the boundary of X, it is described
by equation (2). Thus, when the only unused strategy is strategy i, there are two possibilities for
ẋ: if Fi(x) does not exceed the average payoff of the other three strategies, then ẋi = 0, so the
solution travels along the face of X where strategy i is absent; if instead Fi(x) is greater than this
average payoff, then the solution from x immediately enters int(X). We illustrate these regions in
Figure 10, where we shade the portions of the faces of X to which solutions “stick”.

Similar considerations determine the behavior of (P) on the edges of the simplex. For instance,
solutions starting at vertex R travel along edge RP until reaching state ξ = ( 7

15 , 8
15 , 0, 0), at which

point they enter face RPS.10

The proof of Theorem 5.2 takes advantage of the piecewise linearity of the dynamic, the Lips-
chitz continuity of its solutions in their initial conditions, and the fact that solutions to the dynamic
can merge in finite time. Because of piecewise linearity, we can obtain analytic solutions to the
(P) within each region where (P) is linear. The point where a solution leaves one of these regions
generally cannot be expressed analytically, but it can be approximated numerically to an arbitrary
degree of precision. This approximation introduces a small error; however, the Lipschitz conti-
nuity of solutions places a tight bound on how quickly this error can propagate. Ultimately, our
approximate solution starting from state ξ returns to edge RP . Since solutions cycle outward (cf
Figure 7(c)), edge RP is reached between ξ and vertex R. While the point of contact we compute
is only approximate, solutions from all states between vertex R and state ξ pass through state ξ.
Therefore, since our total approximation error is very small, our calculations prove that the true
solution must return to state ξ.

5.3 “Distance” from Equilibrium in Stable Games

Theorem 4.7 showed that in any stable game, distance from equilibrium serves as a Lyapunov
function for the projection dynamic. Almost exact analogues of all of the statements in Theorem
4.7 can be proved for the replicator dynamic by replacing the distance function Ex∗ with the
distance-like function11

Hx∗(x) =
∑

i: x∗i >0

x∗i log
x∗i
xi

,

This Lyapunov function for (R) for stable games was introduced by Hofbauer et al. (1979) and
Zeeman (1980); see Hofbauer and Sigmund (1988) and Hofbauer and Sandholm (2006a) for further
details.

Figure 11 presents a phase diagram of the replicator dynamic in standard RPS, drawn on top
of a contour plot of the function Hx∗ . Evidently, interior solutions to (R) lie on the level sets of
Hx∗ . Compare this picture to Figure 7(c), which performs the same illustration for the projection

10State ξ lies between the vertices on edge RP of the “sticky” regions in faces RPT and RPS. These vertices lie
at states ( 71

150
, 79

150
, 0, 0) and ( 67

150
, 83

150
, 0, 0), respectively.

11Hx∗(x) is the relative entropy of x∗ with respect to x. While H(·)(·) is not a true distance, Hx∗(·) is strictly
concave, nonegative, and equal to 0 only when its argument x equals x∗.
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P S

Figure 11: Phase diagram of the replicator dynamic in standard RPS. Colors represent the value
of the Lyapunov function Hx∗ .

dynamic and the function Ex∗ .

5.4 Gradient Systems for Potential Games

In Section 4.2.3, we saw that the if F : X → Rn is a potential game, then on the interior of X, the
projection dynamic for F is actually the gradient system defined by for F ’s potential function f .
Interestingly, it is possible to view the replicator dynamic for F as a gradient system for f as well.

Shahshahani (1979), building on the early work of Kimura (1958), showed that the replicator
dynamic for a potential game is a gradient dynamic after a “change in geometry”—in particular,
after the introduction of an appropriate Riemannian metric on int(X). Subsequently, Akin (1979)
(see also Akin (1990)) showed that Shahshahanis (1979) Riemannian manifold is isometric to the
set X = {x ∈ Rn

+ :
∑

i∈S x2
i = 4}, the portion of the raidus 2 sphere lying in the positive orthant,

endowed with the usual Euclidean metric. It follows that if we use Akin’s (1979) isometry to
transport the replicator dynamic for the potential game F to the set X , this transported dynamic
is a gradient system in the usual Euclidean sense. To conclude the paper, we provide a direct proof
of this striking fact, a proof that does not require intermediate steps through differential geometry.

Akin’s (1979) transformation, which we denote by H : int(Rn
+) → int(Rn

+), is defined by
Hi(x) = 2

√
xi. As we noted earlier, H is a diffeomorphism that maps the simplex X onto the set

X . We wish to prove
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Theorem 5.3 Let F : X → Rn be a potential game with potential function f : X → R. Suppose
we transport the replicator dynamic for F on int(X) to the set int(X ) using the transformation
H. Then the resulting dynamic is the (Euclidean) gradient dynamic for the transported potential
function φ = f ◦H−1.

Since Hi(x) = 2
√

xi, the transformation H makes changes in component xi look large when xi

itself is small. Therefore, Theorem 5.3 tells us that the replicator dynamic is a gradient dynamic
on int(X) after a change of variable that makes changes in the use of rare strategies look important
relative to changes in the use of common ones. Intuitively, this reweighting accounts for the fact that
under imitative dynamics, both increases and decreases in the use of rare strategies are necessarily
slow.

Proof. We prove Theorem 5.3 in two steps: first, we derive the transported version of the
replicator dynamic; then we derive the gradient system for the transported version of the potential
function, and show that it is the same dynamic on X . The following notation will simplify our
calculations: when y ∈ Rn and a ∈ R, we let [ya] ∈ Rn be the vector whose ith component is (yi)a.

We can express the replicator dynamic on X as

ẋ = R(x) = diag(x)
(
F (x)− 1x′F (x)

)
=
(
diag (x)− xx′

)
F (x).

The transported version of this dynamic can be computed as

ẋ = R (x ) = DH(H−1(x ))R(H−1(x )).

In words: given a state x ∈ X , we first find the corresponding state x = H−1(x ) ∈ X and direction
of motion R(x). Since R(x) represents a displacement from state x, we transport it to X by
premultiplying it by DH(x), the derivative of H evaluated at x.

Since x = H(x) = 2 [x1/2], the derivative of H at x is given by DH(x) = diag([x−1/2]) Using
this fact, we derive a primitive expression for R (x ) in terms of x = H−1(x ) = 1

4 [x 2]:

ẋ = R (x ) (14)

= DH(x)R(x)

= diag([x−1/2])(diag(x)− xx′)F (x)

=
(
diag([x1/2])− [x1/2]x′

)
F (x).

Now, we derive the gradient system on X generated by φ = f ◦H−1. To compute ∇φ(x ), we
need to define an extension of φ to all of Rn

+, compute its gradient, and then project the result onto
the tangent space of X at x . The easiest way to proceed is to let f̃ : int(Rn

+) → R be an arbitrary
C1 extension of f , and to define the extension φ̃ : int(Rn

+) → R by φ̃ = f̃ ◦H−1.
Since X is a portion of a sphere centered at the origin, the tangent space of X at x is the

subspace Tx X = {z ∈ Rn : x ′z = 0}. The orthogonal projection onto this set is represented by the
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n× n matrix
PTx X = I − 1

x ′x
xx ′ = I − 1

4
xx ′ = I − [x1/2][x1/2]′.

Also, since ∇f(x) = Φ∇f̃(x) by construction, it follows that ∇f̃(x) = ∇f(x) + c(x)1 for some
scalar-valued function c : X → R. Therefore, the gradient system on X generated by φ is

ẋ = ∇φ(x )

= PTx X∇φ̃(x )

= PTx X DH−1(x )′∇f̃(x)

= PTx X (DH(x)−1)′ (∇f(x) + c(x)1)

=
(
I − [x1/2][x1/2]′

)
diag([x1/2]) (F (x) + c(x)1)

=
(
diag([x1/2])− [x1/2]x′

)
(F (x) + c(x)1)

=
(
diag([x1/2])− [x1/2]x′

)
F (x).

This agrees with equation (14), completing the proof of the theorem. �

In Figure 12, we illustrate Theorem 5.3 with phase diagrams of the transported replicator
dynamic ẋ = R (x ) for the three-strategy coordination game from Example 4.3. These phase
diagrams on X are drawn atop contour plots of the transported potential function φ(x ) = (f ◦
H−1)(x ) = 1

32((x1)4 + 2(x2)4 + 3(x3)4). According to Theorem 5.3, the solution trajectories of R

should cross the level sets of φ orthogonally.
Looking at Figure 12(a), we find that the crossings look orthogonal at the center of the figure,

but not by the boundaries. This is an artifact of our drawing a portion of the sphere in R3 by
projecting it orthogonally onto a sheet of paper.12 To check whether the crossings near a given
state x ∈ X are truly orthogonal, we must minimize the distortion of angles near x by making x

the origin of the projection.13 In the phase diagrams in Figure 12, we mark the projection origins
with pink dots. Evidently, the crossings are orthogonal near these points.

Appendix

A The Proof of Theorem 3.4

In this section, we derive the formula for the projection map ΠTXp(xp)(vp) stated in Theorem 3.4.
To eliminate superscripts, we suppose that p = 1. Then Theorem 3.4 is an immediate consequence
of the two propositions to follow.

12For exactly the same reason, latitude and longitude lines in an orthographic projection of the Earth only appear
to cross at right angles in the center of the projection, not on the left and right sides.

13The origin of the projection, o ∈ X , is the point where the sphere touches the sheet of paper. If we view the
projection from any point on the ray that exits the sheet of paper orthogonally from o, then the center of the sphere
is directly behind o.
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Figure 12: The phase diagram of the transported replicator dynamic ẋ = R (x ) for a coordination
game. The pink dots represent the positions of the projection origins.
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Proposition A.1 The vector z∗ = ΠTX(x)(v) is defined by

z∗i =

{
vi − µ if xi > 0, or if xi = 0 and vi > µ,

0 if xi = 0 and vi ≤ µ
(15)

for some µ = µ(v, x).

Proof. Let Y = {i ∈ S : xi > 0} and N = {i ∈ S : xi = 0} denote the sets of strategies that are
used and unused at x. Then z∗ is the solution to the following quadratic program:

min
z∈Rn

1
2

∑
i∈S

(zi − vi)
2 s.t.

∑
i∈S

zi = 0

and zi ≥ 0 for all i ∈ N.

The Lagrangian for this program is

L (z, µ, γ) = −1
2

∑
i∈S

(zi − vi)2 − µ
∑
i∈S

zi +
∑
j∈N

λjzj ,

so the Kuhn-Tucker first order conditions are

z∗i = vi − µ for all i ∈ Y, (16)

z∗j = vj − µ + λj for all j ∈ N, (17)

λj ≥ 0 for all j ∈ N, and (18)

λjz
∗
j = 0 for all j ∈ N. (19)

If we let N+ = {i ∈ N : z∗i > 0} and N0 = {j ∈ N : z∗j = 0} we can rewrite the Kuhn-Tucker
conditions (16-19) as

z∗i = vi − µ > 0 for all i ∈ Y ∪N+, (20)

v∗j = zj − µ + λj = 0 for all j ∈ N0, and (21)

λj ≥ 0 for all j ∈ N0. (22)

It follows immediately from equations (20-22) that

N+ = {i ∈ N : vi > µ} and N0 = {i ∈ N : vi ≤ µ}. (23)

Equations (20-22) and (23) together yield equation (15). �

To complete our description of z∗ = ΠTX(x)(v), and hence of the projection dynamic (P), we
need to determine the value of µ = µ(x, v). To accomplish this, we permute the names of the
strategies in S so that strategies 1 through nY = #Y are in Y and strategies nY + 1 through n are
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in N , with the latter strategies ordered so that vnY +1 ≥ vnY +2 ≥ · · · ≥ vn. For k ∈ {1, . . . , n}, let

µk =
1
k

k∑
i=1

vi

be the average of the first k components of v. Throughout the analysis, we make use of the recursion

µk+1 =
1

k + 1
vk+1 +

k

k + 1
µk,

which tells us that µk+1 and vk+1 deviate from µk in the same direction. Finally, to simplify the
statement of the result to follow, we set µn+1 = −∞.

Proposition A.2 The Lagrange multiplier µ is equal to µk∗, where

k∗ = min{k ∈ {nY , . . . , n} : µk+1 ≤ µk}.

Therefore, the set of unused strategies with positive components in z∗ is N+ = {nY + 1, . . . , k∗}.

Proof. To prove the proposition, it is enough to show that µk∗ satisfies

vi > µk∗ for all i ∈ N+, and

µk∗ ≥ vj for all j ∈ N0.

Therefore, by our ordering assumption, we need only show that

if k∗ > nY , then vk∗ > µk∗ , and (24)

if k∗ < n, then µk∗ ≥ vk∗+1. (25)

We divide the analysis into four cases. If nY = n, then k∗ = n as well, and conditions (24)
and (25) are vacuous. (In this case, we obtain µ = µn = 1

n

∑n
i=1 vi and z∗ = Φv, as expected.)

Therefore, for the remainder of the proof we can suppose that nY < n.
If k∗ = nY , then condition (24) is vacuous. Since µk∗+1 ≤ µk∗ by the definition of k∗, it follows

from the recursion that vk∗+1 ≤ µk∗ , which is condition (25).
If k∗ ∈ {nY , . . . , n− 1}, then the definition of k∗ tells us that µk∗ > µk∗−1. It then follows from

the recursion that vk∗ > µk∗−1, and hence that

vk∗ >
1
k∗

vk∗ +
k∗ − 1

k∗
µk∗−1 = µk∗ ,

which is condition (24). The definition of k∗ also tells us that µk∗+1 ≤ µk∗ ; the recursion then
reveals that vk∗+1 ≤ µk∗ , which is condition (25).

Finally, if nY < n and k∗ = n, then condition (25) is vacuous, and repeating the corresponding
proof from the previous case gives us condition (24). �
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B The Proof of Theorem 4.2

We first sketch a proof of existence of solutions to (P) due to Aubin and Cellina (1984). Define the
multivalued map V : X → Rn by

V (x) =
⋂
ε>0

cl

conv

 ⋃
y∈X:|y−x|≤ε

ΠTX(y)(F (y))

 .

In words, V (x) is the closed convex hull of all values of ΠTX(y)(F (y)) that obtain at points y

arbitrarily close to x. It is easy to check that V is upper hemicontinuous with closed convex values.
Moreover, V (x) ∩ TX(x), the set of feasible directions of motion from x contained in V (x), is
always equal to {ΠTX(x)(F (x))}, and so in particular is nonempty. Because V (x) ∩ TX(x) 6= ∅,
the Viability Theorem for differential inclusions ((Aubin and Cellina (1984, Theorem 4.2.1) implies
that for each ξ ∈ X, a Carathéodory solution {xt}t≥0 to ẋ ∈ V (x) exists. But since V (x)∩TX(x) =
{ΠTX(x)(F (x))}, this solution must also solve the original equation (P).

Our proof of uniqueness and Lipschitz continuity of solutions to (P) follows Cojocaru and Jonker
(2004). Let {xt} and {yt} be solutions to (P). Using the chain rule, Theorem 3.2, and the Lipschitz
continuity of F , we see that

d
dt |yt − xt|2 = 2(yt − xt)

′(ΠTX(yt)(F (yt))−ΠTX(xt)(F (xt)))

= 2(yt − xt)
′(F (yt)− F (xt))− 2(yt − xt)

′(ΠNX(yt)(F (yt))−ΠNX(xt)(F (xt)))

= 2(yt − xt)
′(F (yt)− F (xt)) + 2(xt − yt)

′ΠNX(yt)(F (yt))

+ 2(yt − xt)
′ΠNX(xt)(F (xt))

≤ 2(yt − xt)
′(F (yt)− F (xt))

≤ 2K |yt − xt|2 ,

and hence that

|yt − xt|2 ≤ |y0 − x0|2 +
∫ t

0
2K |ys − xs| ds.

Gronwall’s inequality then implies that

|yt − xt|2 ≤ |y0 − x0|2 e2Kt.

Taking square roots yields the inequality stated in the theorem. �
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C The Proof of Theorem 5.1

We begin with the proof of part (i). Observe that the weighted average of the components of the
excess payoff vector F̂ (x) is 0:

∑
k∈S

xkF̂k(x) =
∑
k∈S

xk

(
Fk(x)−

∑
l∈S

xlFl(x)

)
=
∑
k∈S

xkFk(x)−
∑
l∈S

xlFl(x) = 0.

It follows directly that ∑
k∈S

xk[F̂k(x)]+ =
∑
k∈S

xk[F̂k(x)]−. (26)

Now fix a state x ∈ X. If both sides of equation (26) equal 0 at x, then the mean dynamic
generated by protocol (9) has a rest point at x; but since in this case xkF̂k(x) = 0 for all k ∈ S,
the dynamic (R) has a rest point at x as well. On the other hand, if both sides of equality (26) are
positive at state x, we can use this equality to compute as follows:

ẋi =
∑
j∈S

xjρji − xi

∑
j∈S

ρij

=
∑
j∈S

xj

(
[F̂j(x)]−

xi[F̂i(x)]+∑
k∈S xk[F̂k(x)]+

)
− xi

∑
j∈S

(
[F̂i(x)]−

xj [F̂j(x)]+∑
k∈S xk[F̂k(x)]+

)
= xi[F̂i(x)]+ − xi[F̂i(x)]−

= xiF̂ (x),

This too agrees with equation (R), completing the proof of part (i).
We now prove part (ii). Write S for S(F (x), x). Since

∑
k∈S

F̃ S
k (x) =

∑
k∈S

(
F S

k (x)− 1
#S

∑
l∈S

F S
l (x)

)
= 0,

we see that ∑
k∈S

[F̃ S
k (x)]+ =

∑
k∈S

[F̃ S
k (x)]−. (27)

Also, we note these two implications of Theorem 3.4:

if j ∈ S and xj = 0, then [F̃ S
j (x)]− = 0; (28)

if j /∈ S , then [F̃ S
j (x)]+ = 0. (29)

Fix a state x ∈ X. If both sides of equation (27) equal 0 at x, then the mean dynamic generated
by protocol (10) has a rest point at x; but since in this case F̃ S

k (x) = 0 for all k ∈ S , the dynamic
(P) has a rest point at x as well.

Suppose instead that both sides of equation (27) are positive at state x. If xi > 0, we can use
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equations (28), (29), and (27) to compute as follows:

ẋi =
∑
j∈S

xjρji − xi

∑
j∈S

ρij

=
∑

j: xj>0

xj

(
[F̃ S

j (x)]−
xj

·
[F̃ S

i (x)]+∑
k∈S [F̃

S
k (x)]+

)
− xi

∑
j∈S

(
[F̃ S

i (x)]−
xi

·
[F̃ S

j (x)]+∑
k∈S [F̃ S

k (x)]+

)

=


∑

j: xj>0
[F̃ S

j (x)]−∑
k∈S

[F̃ S
k (x)]+

 [F̃ S
i (x)]+ −


∑
j∈S

[F̃ S
j (x)]+∑

k∈S
[F̃ S

k (x)]+

 [F̃ S
i (x)]−

=


∑
j∈S

[F̃ S
j (x)]−∑

k∈S
[F̃ S

k (x)]+

 [F̃ S
i (x)]+ −


∑
j∈S

[F̃ S
j (x)]+∑

k∈S
[F̃ S

k (x)]+

 [F̃ S
i (x)]−

= [F̃ S
i (x)]+ − [F̃ S

i (x)]−

= F̃ S (x).

This agrees with equation (P). If xi = 0, then the second term in the previous calculation drops
out immediately, and the calculation of the first term shows that ẋi = [F̃ S

i (x)]+, again in agreement
with equation (P). This completes the proof of the theorem. �

D The Proof of Theorem 5.2

The method used to construct the approximate closed orbit of (P) is described in the text after
the statement of the theorem. Here, we verify that this approximation implies the existence of an
exact closed orbit of (P). A minor modification of our argument shows that this orbit absorbs all
nearby trajectories in finite time.

Let us review the construction the approximate closed orbit. We begin by choosing the initial
state ξ0 = ξ = ( 7

15 , 8
15 , 0, 0). The (exact) solution to (P) from ξ initially travels through face RPS

in a fashion described by the linear differential equation (2), and so be computed analytically. The
solution exits face RPS into the interior of X when it hits the line on which the payoff to T equals
the average of the payoffs to R, P , and S. The exit point cannot be determined analytically, but it
can be approximated to any desired degree of accuracy. We call this approximate exit point, which
we compute to 16 decimal places, ξ1 ≈ (.446354, .552864, .000782, 0), and we call the time that the
solution to (P) reaches this point t1 ≈ .015678.

Next, we consider the (exact) solution to (P) from starting from state ξ1. This solution travels
through int(X) until it reaches face PST . We again compute an approximate exit point ξ2, and
we let t2 be the total time expended during the first two solution segments. Continuing in this
fashion, we compute the approximate exit points ξ3, . . . , ξ7, and the transition times t3, . . . , t7.

Now for each state ξk, let {xk
t }t≥tk be the solution to (P) that starts from state ξk at time tk.
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Because solutions to (P) are Lipschitz continuous in their initial conditions (Theorem 4.2), we can
bound the distance between state x0

t7 , which is the location of the solution to (P) from state ξ0 = ξ

at time t7, and state x7
t7 = ξ7, as follows:

|x0
t7 − x7

t7 | ≤
7∑

k=1

|xk−1
t7

− xk
t7 | ≤

7∑
k=1

eK(t7−tk).

Here, K is the Lipschitz coefficient for the payoff vector field F , and ε is an upper bound on the
roundoff error introduced when we compute the approximate exit point ξk for the solution to (P)
from state ξk−1.

Since F (x) = Ax is linear, its Lipschitz coefficient is the spectral norm of the payoff matrix
A: that is, the square root of the largest eigenvalue of A′A (see Horn and Johnson (1985)). A
computation reveals that the spectral norm of A is approximately 5.718145. Since we compute our
approximate exit points to 16 decimal places, our roundoff errors are no greater than 5 × 10−17.
Thus, since t7− t1 = 1.049900, we obtain the following bound on the distance between x0

t7 and x7
t7 :

|x0
t7 − x7

t7 | ≤ 7
(
eK(t7−tk)ε

)
≈ 7

(
e(5.718145)(1.049900) × (5× 10−17)

)
≈ 1.416920× 10−13.

It is easy to verify that any solution to (P) that starts within this distance of state ξ7 ≈ (.693072, .306928, 0, 0)
will hit edge RP between vertex R and state ξ, and so continue on to ξ. We therefore conclude that
{x0

t }t≥0, the exact solution to (P) starting from state ξ, must return to state ξ. This completes the
proof of the theorem. �
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