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Abstract

In this paper, a new numerical scheme based on the method of fundamental solu-
tions is proposed for the numerical solution of some inverse boundary value problems
associated with the Helmholtz equation, including the Cauchy problem. Since the
resulting matrix equation is badly ill-conditioned, a regularized solution is obtained
by employing truncated singular value decomposition, while the regularization pa-
rameter for the regularization method is provided by the L-curve method. Numerical
results are presented for problems on smooth and piecewise smooth domains with
both exact and noisy data, and the convergence and stability of the scheme are
investigated. These results show that the proposed scheme is highly accurate, com-
putationally efficient, stable with respect to the noise in the data and convergent
with respect to decreasing the amount of data noise and increasing the distance
between the physical and fictitious boundaries, and could be considered as a com-
petitive alternative to existing methods for these problems.
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1 Introduction

The Helmholtz equation arises naturally in many scientific and engineering
areas. It is frequently used for analyzing acoustics, wave propagation and
scattering [1], vibration of membranes and other structures, electromagnetic
field, and heat conduction in fins [2].

With boundary conditions specified on the entire boundary of the solution do-
main, this constitutes the forward problem for the Helmholtz equation, which
has been studied extensively in the past years. Unfortunately, in many sci-
entific and engineering contexts, the boundary conditions are not completely
known, due to technical difficulties associated with data acquisition. For ex-
ample, a part of the boundary is inaccessible to direct measurement, and the
presence of measuring devices, such as sensors, will disturb the process under
investigation, thus only incorrect data can be collected. To fully determine the
process, additional data must be supplied, either other boundary conditions
on the same accessible part of boundary or measurements at some internal
points in the domain. The task is to determine the boundary conditions on
the inaccessible part of the boundary with the assistance of the additionally
supplied data. These are examples of inverse problems, including the Cauchy
problem as a particular case, and it is well-known that they are ill-posed in
the sense that small perturbations in the data may result in an enormous de-
viation in the solution. Therefore an accurate and stable solution of inverse
problems is much more difficult to obtain than that of the forward problem.

Several numerical methods have been proposed for the Cauchy problem [3–8].
Roughly speaking, these methods can be classified into iterative and direct
methods. In iterative methods [7,8], one starts with an initial guess of the
boundary condition, and adjusts it iteratively by minimizing certain function-
als such as error between the calculated data and measured data. It could be
extremely time-consuming since a forward problem has to be solved at each
iteration step. In the direct methods, it takes much less computation time
since one has to discretize the problem only for one time, but it may suffer
from numerical instability.

In the present paper, we propose a new numerical scheme for solving the in-
verse problems for the Helmholtz equation directly. It is based on the method
of fundamental solutions, which is a truly meshless boundary-type technique
for the solution of partial differential equations. It should be mentioned that
similar ideas have been developed by Marin and Lesnic [9,10]. Several numer-
ical examples are given to demonstrate the efficiency of the proposed scheme.

The paper is organized in six sections. In Section 2, we formulate the problem
mathematically. The two sections following are devoted to the numerical algo-
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rithm. The method of fundamental solutions is described in Section 3, while
regularization techniques with rules for choosing an appropriate regularization
parameter are described in Section 4. In Section 5, we present results for five
numerical examples on domains with both smooth and non-smooth geometry.
Finally, concluding remarks are given in Section 6.

2 Mathematical formulation of the problem

Let Ω be an open bounded domain in Rd , where d is the dimensionality of
the space, and Γ = ∂Ω its boundary. Then the mathematical formulation of
the problem can be written as

(∆ + k2)u(x) = 0, x ∈ Ω, (1)

where ∆ is the Laplace operator, and k is a complex number known as a wave
number. For the case that k is purely imaginary, i.e., k = iλ, i =

√−1, the
equation is also known as the modified Helmholtz equation. It can be used to
model heat conduction in a fin [2]. To eliminate the imaginary unit, Eq. (1)
may be rewritten as

(∆− λ2)u(x) = 0, x ∈ Ω. (2)

In this paper, we consider only the cases that k is real and purely imaginary,
and for the ease of presentation, they are respectively denoted the Helmholtz
equation and modified Helmholtz equation hereafter.

Let n(x) be the unit outward normal vector on the boundary Γ, and φ(x) the
flux at a point x ∈ Γ

φ(x) =
∂u(x)

∂n
, x ∈ Γ. (3)

Now the boundary condition is not known on the complete boundary Γ but
only on a part of it

B1u(x) = f(x), x ∈ Γ1, (4)

where Γ1 is the accessible part of the boundary Γ, and B1 is a linear boundary
operator prescribing boundary conditions.

This problem is mathematically under-determined and additional data must
be supplied to fully determine it. According to the types of the additional
data, there are two possible formulations of the problem.

Formulation 1. The additional data is another type of boundary condition
specified on the same accessible part of the boundary, but different from that
given by Eq. (4),

B2u(x) = g(x), x ∈ Γ1, (5)
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where B2 is a linear boundary operator different from B1. It may be available
only at a few points on Γ1.

Formulation 2. The additional data is measurements at some internal points

Du(xi) = h(xi), xi ∈ Ω, i = 1, 2, . . . , na, (6)

where D is a data functional dictating the measured quantities, and na is the
total number of internal measuring points.

In Formulation 1, the part of boundary Γ1 is over-specified since both types of
boundary conditions are specified, and in this case, the problem is also known
as the Cauchy problem for the Helmholtz equation, which is notorious for its
ill-posedness. In this paper, we give results only for Formulation 1, however,
similar results can be obtain for Formulation 2.

3 The method of fundamental solutions

In both iterative and direct methods, the governing differential equation must
be discretized. There are several ways to achieve this, notably the finite dif-
ference method (FDM), finite element method (FEM), finite volume method
(FVM), and boundary element method (BEM). The first three require a mesh
on the domain to support the solution process, however, generating a good
quality mesh for complicated geometry could be extremely time-consuming.
The BEM reduces the dimensionality of the problem by one, thus it alleviates
partly the difficulty, and it is popular in recent years. Despite its popularity,
there are still problems with it. It requires the evaluation of singular integrals
for using singular fundamental solutions, and generating a good quality mesh
for the boundary of complex geometry in higher dimensions is still nontrivial.
Meshless methods receive much attention from both scientific and engineer-
ing community in recent years due to their meshless characteristics. Amongst
meshless methods, there are element free-Galerkin method (EFGM) [11], H-p
cloud [12], reproducing kernel particle method (RKPM) [13], meshless local
Petrov-Galerkin (MLPG) method [14], Kansa’s method [15], the method of
fundamental solutions [16,17] etc. Here we use the method of fundamental
solutions to discretize the Helmholtz equation.

The method of fundamental solutions (MFS) is a truly meshless boundary-
type collocation technique for discretizing partial differential equations. It ap-
proximates the solution of a partial differential equation by a linear combina-
tion of fundamental solutions with singularities, also known as source points,
located on a fictitious boundary outside of the solution domain. For theoreti-
cal grounds of the method, we refer to the comprehensive surveys [16,17] and
references therein, and for recent developments, we refer to Refs. [18–20].
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The fundamental solution u∗(x) of the modified Helmholtz equation in Rd is
given by [21]

u∗(x) =





1
2π

K0(λr), x ∈ R2,

1
4πr

e−λr, x ∈ R3,
(7)

and for the Helmholtz equation, it is given by

u∗(x) =





1
2π

Y0(kr), x ∈ R2,

1
4πr

e−ikr, x ∈ R3,
(8)

where r = ‖x‖2, ‖ · ‖2 is the Euclidean norm on Rd, and K0 and Y0 denote
the modified Bessel and Bessel function of the second kind of order zero,
respectively. Note that the fundamental solution to the differential operator
is not unique. For the Helmholtz equation, we may take the Hankel function
as the fundamental solution, and similar results can be obtained.

In the MFS, we seek an approximate solution by

u(x) =
ns∑

j=1

ajGj(x), for x ∈ Ω, (9)

where Gj(x) = u∗(x − yj), {yj} are the source points located on a fictitious
boundary outside of the solution domain, ns is the number of source points,
and {aj} are the unknown coefficients to be determined.

Although the approximate solution u(x) satisfies the differential equation au-
tomatically, it does not necessarily satisfy the boundary conditions and the ad-
ditional data. The latter can be achieved by means of the collocation method.
Let {xi} be a set of points chosen on the accessible part of the boundary. By
collocating Eqs. (4) and (5) at {xi}, we arrive at following system of linear
algebraic equations

f(xi) =
ns∑

j=1

ajB1Gj(xi), i = 1, 2, . . . , nb, (10)

g(xi) =
ns∑

j=1

ajB2Gj(xi), i = nb + 1, . . . , nb + na, (11)

for Formulation 1, where nb and na are the number of collocation points on Γ1

for the boundary conditions defined by B1 and B2, respectively. In a similar
manner, analogous formulae can be obtained for Formulation 2.

In brevity, we have the following matrix equation for Formulation 1

Aa = b, (12)
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where A = (Aij) is an interpolation matrix, a = (a1, a2, . . . , ans)
T is a coeffi-

cient vector, n = nb+na, and b = (f(x1), f(x2), . . . , f(xnb
), g(xnb+1), . . . , g(xn))T

is a data vector. Moreover, the entries Aij of the interpolation matrix A are
defined by

Aij =




B1Gj(xi), i = 1, 2, . . . , nb, j = 1, 2, . . . , ns,

B2Gj(xi), i = nb + 1, . . . , n, j = 1, 2, . . . , ns.
(13)

The resulting matrix equation (12) is often severely ill-conditioned. Its accu-
rate and stable solution is very important for obtaining physically meaningful
numerical results, which will be discussed in further detail in the next section.

To implement the method, there remains one thing to be determined, i.e., the
placement of the source points. There are two approaches to determine the
source points: static and dynamic. In the static approach, the source points
are pre-assigned and kept fixed through the solution process, while in the
dynamic approach source points are determined simultaneously with the co-
efficients during the solution process [17]. The dynamic approach results in a
system of nonlinear equations, which may be solve using minimization meth-
ods. However, the discretized problem is highly ill-posed. In other words, the
dynamic approach transforms the problem into a more difficult nonlinear ill-
posed problem. Thus from a computational point of view, the dynamic ap-
proach may not be appropriate, and this is especially true for inverse problems
with noisy data. Recently, Mitic and Rashed [22] show that the distribution
of source points is not important under minor conditions. Thus the dynamic
approach for determining the optimal location of the source points might be
unnecessary, and we employ the static approach in our computations.

4 Regularization techniques

One difficulty with the MFS is that the condition number of the interpola-
tion matrix is extremely large, as observed by Kitagawa [23,24], Golberg and
Chen [16]. The MFS can be regarded as a Fredholm integral equation of the
first kind [16], which is severely ill-posed according to the theory of integral
equations [25]. Consequently, as an approximation to the integral operator,
the interpolation matrix is highly ill-conditioned. For the solution of forward
problems, this does not pose great challenges, since the known data are exact.
Standard methods, such as the Gauss elimination, the LU factorization and
the least squares method, could yield accurate results.

However, for inverse problems, the situation is delicate. Inverse problems are
usually ill-posed, and the ill-posedness carries over to the discrete ones – the
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resulting matrix equations. Undoubtedly this will make the matrix equations
more ill-conditioned. The thing that really complicates the situation is that the
available data for inverse problems is measured and inevitably contaminated
by measurement errors. Thus the bad conditioning with the interpolation ma-
trix can be disastrous. Standard methods may fail to yield satisfactory results
due to the ill-conditioning with A and the presence of data noise.

Regularization methods are powerful and efficient tools for accurately and
stably solving ill-posed problems. In our computations we use the truncated
singular value decomposition (TSVD) [26] to solve the matrix equation arising
from the MFS. Other regularization methods [27], such as the Tikhonov reg-
ularization method, could be considered, and similar results can be obtained,
but these will not be further pursued in this paper.

In the singular value decomposition (SVD), a matrix A ∈ Rm×n(m ≥ n) is
decomposed into

A = UΣVT , (14)

where U = [u1,u2, . . . ,um] and V = [v1,v2, . . . ,vn] are column orthonormal
matrices, with column vectors called left and right singular vectors, respec-
tively, T denotes the matrix transposition, and Σ = diag(σ1, σ2, . . . , σn) is a
diagonal matrix with nonnegative diagonal elements in non-increasing order,
which are the singular values of A.

A convenient measure of the conditioning of the interpolation matrix A is the
condition number Cond defined as bellow

Cond =
σ1

σn

. (15)

By means of the SVD, the solution a0 to Eq. (12) can be succinctly written
as a linear combination of right singular vectors

a0 =
k∑

i=0

uT
i b

σi

vi, (16)

where k is the rank of A. For a rectangular matrix, the solution given by Eq.
(16) is the least squares solution. For an ill-conditioned matrix equation, there
are small singular values, the least squares solution is dominated by the contri-
butions from small singular values, and therefore it becomes unbounded and
oscillatory. One simple remedy to the difficulty is to leave out small singular
values, i.e., by considering an approximate solution, ap, defined by

ap =
p∑

i=1

uT
i b

σi

vi, (17)

where p ≤ k is the regularization parameter, which determines when one
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starts to leave out small singular values. Note that if p = k, the approximate
solution is the exact solution. This method is known as truncated singular
value decomposition [26] in the inverse problem community.

The SVD has been used to analyze the MFS for the Laplace equation with
exact data [28] and the Laplace and biharmonic equations subjected to noisy
boundary data [29]. It was established that the accuracy of numerical solutions
is relatively independent of the location of the source points when using the
TSVD to solve matrix equations arising from the MFS.

The performance of regularization methods depends to a great deal on suitable
choice of regularization parameter. If a reliable estimate of the amount of data
noise is available, deterministic approaches such as the discrepancy principle
can work effectively. In case of no a priori information, heuristic approaches,
such as L-curve method [30,31] and generalized cross validation [32], are more
preferable. In this paper, we employ the L-curve method to determine the
regularization parameter for the TSVD. The L-curve method was first used
by Lawson and Hansen [33], and later popularized by Hansen et al [30,31].

Define the following curve

L =
{(

log(‖ai‖2), log(‖Aai − b‖2)
)
, i = 1, 2, . . . , k

}
. (18)

The curve is known as L-curve since it is typically of L-shape. The regular-
ization parameter corresponding to the corner of the L-curve is taken as a
final regularization parameter, since at the corner a good tradeoff between
the residual and solution norm is achieved. The L-curve is robust and stable
with respect to both uncorrelated and highly correlated noise, and it usu-
ally works effectively with practical problems. However, there are theoretical
results disfavor the L-curve, and for the details we refer to Refs. [34,35].

5 Numerical experiments

In this section we present the numerical results obtained by the general nu-
merical scheme described in previous sections, namely the MFS in conjunction
with the TSVD. The effect of regularization is discussed, and the convergence
and stability with respect to data noise are investigated. All computations are
carried out on a PC with 1.8GHz CPU and 512MB RAM.
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5.1 Numerical examples

The domains under consideration are a circular domain Ω = {(x1, x2)|x2
1+x2

2 <
1}, an annular domain Ω̃ = {(x1, x2)|0.25 < x2

1+x2
2 < 1}, and a domain Ω̂ with

a complicated geometry as schematically shown in Fig. 2(a). The boundary
of each domain is divided into two disjointed parts, i.e., the accessible part
Γ1 and the inaccessible part Γ2. For Ω, Γ1 = {(r, θ)|r = 1, 0 ≤ θ < π} and
Γ2 = {(r, θ)|r = 1, π ≤ θ < 2π}, where (r, θ) is the plane polar coordinate.
For Ω̃, Γ1 = {(x1, x2)|x2

1 + x2
2 = 1} and Γ2 = {(x1, x2)|x2

1 + x2
2 = 0.25}. For

Ω̂, these two parts of boundary are shown in Fig. 2(b). For the convenience of
comparison and illustration of accuracy of the method, we consider following
analytical solutions.

Example 1. This example is the modified Helmholtz equation on Ω, with λ = 1.
The analytical solution u(x) is taken to be

u(x) = exp

(
1

2
x1 +

√
3

2
x2

)
, x = (x1, x2) ∈ Ω.

Example 2. This example is the Helmholtz equation on Ω, with k = 1. The
analytical solution u(x) is taken to be

u(x) = sin(x1) + cos(x2), x = (x1, x2) ∈ Ω.

Example 3. This example is the modified Helmholtz equation on Ω̂, with λ =√
2. The analytical solution u(x) is taken as

u(x) = exp (x1 + x2) , x = (x1, x2) ∈ Ω̂.

Example 4. This example is the Helmholtz equation on Ω̂, with k = 1. The
analytical solution u(x) is taken to be

u(x) = sin(
√

2x1) sinh(x2) + cos(x2), x = (x1, x2) ∈ Ω̂.

Example 5. This example is the modified Helmholtz equation on the doubly
connected domain Ω̃, with λ = 2. The analytical solution u(x) is taken as

u(x) = exp
(
x1 −

√
3x2

)
,x = (x1, x2) ∈ Ω̃.

Example 1 is taken from Marin et al. [7], with slight modifications indicated
below. Examples 1 and 2 are adopted to illustrate the efficiency of the scheme
for smooth geometry, while Examples 3 and 4 for nonsmooth geometry. Note
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that Ω̂ involves sharp notches and corners, which is deliberately designed to
verify the robustness, efficiency and effectiveness of the proposed scheme when
dealing with problems with arbitrarily complicated geometry. Example 5 is
adopted to illustrate the difficulty with the scheme for multi-connected do-
mains.

In this paper, we consider only Formulation 1, i.e., the Cauchy problem. With-
out loss of generality, the boundary conditions defined by B1 and B2 are re-
spectively taken to be the Dirichlet and Neumann boundary conditions unless
otherwise specified. For the results presented below, the source points are dis-
tributed evenly on a circle surrounding the solution domain, and the radius
of the circles is taken to be 3. Such placement is optimal for a circular do-
main [36]. The number of source points is 20 unless otherwise specified. The
number of collocation points on the accessible part of boundary Γ1 is 20 for Ω
and Ω̃, and is 24 for Ω̂. The collocation points on Γ1 are used for both types
of boundary conditions. The diagrams of the boundary, boundary collocation
points and source points for the Ω and Ω̃ are schematically shown in Fig. 1(a)
and 1(b), respectively, while for Ω̂ it is shown in Fig. 2(b).

For practical problems, the available data is usually contaminated by measure-
ment errors, and the stability of the numerical method is of vital importance
for obtaining physically meaningful results. In order to investigate the sta-
bility of the scheme with respect to data noise, we use simulated noisy data
generated by the following formula

b̃i = bi(1 + εζ), i = 1, 2, . . . , n, (19)

where ζ is a normally distributed random variable with zero mean and unit
standard deviation, and ε is the level of data noise. In our computations, the
random variable ζ is realized by using Matlab function randn().

In order to measure the accuracy of the numerical approximation f̃ with re-
spect to the exact solution f , we use the relative error rel(f) defined by

rel(f) =

√∑N
i=1(f̃i − fi)2

√∑N
i=1 f 2

i

(20)

where f̃i and fi are the numerical and exact solutions evaluated at a point
xi ∈ Γ2, respectively. Here N is the total number of collocation points on Γ2

at which the solutions are evaluated, and it is taken to be 40 for the results
presented below.
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5.2 Effect of regularization

Before proceeding to the numerical results by regularization methods, it is
worth studying how the regularization method improves the accuracy of the
numerical results. To do this, we consider Example 1 with 1% data noise. The
condition number of the interpolation matrix A for this example is 5.79×106,
which is large compared with the size of A, i.e., 40× 20.

The results obtained by the least squares method are shown in Fig. 3(a), where
the solid and dotted curves represent the analytical and numerical solutions,
respectively. The least squares solution is highly oscillatory, and it could not be
used as an approximate solution at all. It’s noted that the Gaussian elimination
and the LU factorization yield similar results in case of square interpolation
matrices. Thus standard methods could not yield accurate results for noisy
data.

The trouble with the least squares method is that the solution is dominated
by the contributions from small singular values. There are a lot of small sin-
gular values in the singular value spectrum of A, which is shown in Fig. 4(a).
Furthermore, the singular values decay gradually to zero without any obvious
gap, and eventually cluster at zero. This is typical for matrices arising from
Fredholm integral equations of the first kind [30,31], to which the MFS is
mathematically equivalent.

The L-curve for Example 1 with 1% noise is shown in Fig. 4(b). The curve
approximately consists of two parts: horizontal and vertical, which correspond
to under-regularization and over-regularization, respectively. At the corner of
the curve, a good tradeoff between the solution and residual norms is achieved,
and we take the regularization parameter corresponding to the corner as the
final regularization parameter. For the present example, the regularization
parameter given by the L-curve method is p = 9.

The numerical results by the TSVD are shown in Fig. 3(b). From the figure,
the TSVD could yield very accurate results for noisy data. Therefore, the
regularization method is indispensable to guarantee the stability and accuracy
of the proposed scheme for noisy data. The regularization method restores the
stability by filtering out the contributions from data noise effectively without
losing too much information. The numerical results also indicate that the L-
curve method provides an appropriate regularization parameter for the TSVD.
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5.3 Convergence analysis

It is well-known that the accuracy of the MFS depends to a great deal on the
distance between the physical and fictitious boundary outside of the solution
domain. For forward problems with exact data, it’s generally advised taking
the fictitious boundary as far away from the physical domain as possible, as
much as the machine accuracy allows. Ramachandran [28] showed that the
singular value decomposition can mitigate the critical dependence, which is
also the case for forward problems with noisy data [29]. In the sequel, we
investigate the convergence of method with respect to increasing the radius R
of the circle where the source points are distributed.

In Fig. 5, we give the results for Example 1 with the source points distributed
evenly on a circle with various values of the radius R, where rel(u) and rel(φ)
are the relative error for the retrieved Dirichlet and Neumann boundary con-
ditions, respectively. The regularization parameter is 13 for R = 1.5, 16 for
the radius R between 2.0 and 4.5, 17 for the radius R between 5.0 and 8.5,
and 19 for the rest. The condition number increases steadily with the increase
of the source radius. The accuracy of the numerical results improves as the
radius R increases, however, it then tends to level off. Although not presented
in the Fig. 5, it is reported that the least squares method fails to work for
small values of the radius R, e.g. R = 1.5, while the TSVD yields very ac-
curate numerical results even in this case. For large values of the radius R,
the improvement in accuracy is not so impressive. A very large value of the
radius R is generally not advised due to the severe ill-conditioning and the
presence of rounding errors inherent to all numerical computations, which will
eventually take effect.

For noisy data, we present only the results by the TSVD. The results for
Example 1 with 1% noise using various values of the radius R are shown in
Fig. 6(a), where the regularization parameter p is 9 for all values of the radius
R. The accuracy of the numerical results is practically the same for the radius
R from 3 to 40, and it’s relatively independent of R. It has been established
for forward problems subjected to noisy boundary data [29].

Next we investigate the convergence of the numerical results with respect to
the number of source points ns. The results for Example 1 using various num-
ber of source points are shown in Fig. 7, where the regularization parameter
p for the TSVD is taken to be 4, 8, 16, 20, 22, 28 and 28, respectively. The
accuracy of numerical results improves as ns increases, and the TSVD can
improve the accuracy by several orders in magnitude. The method is expo-
nentially convergent with respect to increasing ns. The results for Example 1
with noisy data are shown in Fig. 6(b). The regularization parameter p is 4
for ns = 5, 8 for ns = 10, and 9 for other ns. It is found that the accuracy of
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the numerical results is practically the same for ns from 10 to 40.

5.4 Numerical results and discussions

In this part, we discuss the results for the numerical examples, for both exact
and noisy data. One numerically difficult case is also considered.

For exact data, the method could be extremely accurate. To illustrate this
point, we give the error between the numerical solution by the TSVD with p =
16 and analytical solution for Example 1 with exact data, which is shown in
Fig. 8. The maximum error for the retrieved Dirichlet and Neumann boundary
conditions is less than 6× 10−7 and 2× 10−6, respectively.

The striking accuracy is due to the spectral convergence property of the MFS
[16,36]. Thus a few collocation points are sufficient to yield accurate results,
and the size of resulting system of linear equations is quite small. Therefore
the method is computationally very efficient. To achieve the same accuracy
by the FEM, FDM or BEM, the corresponding mesh used must be very fine,
which undoubtedly would increase the computation time considerably.

The numerical results for Example 1 with various levels of data noise are
presented in Fig. 9. Even with a large amount of noise (ε = 2%) incorporated
in the data, the results still agree quite well with the analytical solution, and
the numerical solution converges to the analytical solution as the amount of
data noise decreases. The observation could also be drawn from the numerical
results for Example 2, which are shown in Fig. 10. The accuracy for these
two examples with 2% noise is shown in Table 1, where p is the regularization
parameter given by the L-curve method.

Example 1 has been solved by Marin et al. [7] using a BEM implementation of
the alternating iterative method due to Kozlov et al. [37], which reduces the
problem to solving a sequence of well-posed forward boundary value problems.
However, the accessible part boundary Γ1 considered there is larger than that
in the present study. Since Marin et al. [7] did not give the formula used to
generate simulated noisy data, we could not compare the results thoroughly.
However, a preliminary comparison with the results of Marin et al. [7] shows
that the results presented here seem to be more accurate for both exact and
noisy data. Furthermore, the alternating iterative algorithm requires many
iterations to achieve an acceptable accuracy, and at each iteration, a forward
problem must be solved, hence it is computationally more expensive compared
with the proposed scheme.

The scheme works equally well for problems with non-smooth geometry. To
illustrate this point, we consider examples with complex geometry, i.e., Exam-
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ples 3 and 4. The numerical results for Examples 3 and 4 with various levels
of data noise are presented in Fig. 11 and 12, respectively. From Table 1, the
accuracy achieved for these two examples is comparable with that for smooth
geometry. This shows clearly the facility of the method for problems with
complicated geometry, which is especially important for higher-dimensional
problems, since generating a good quality mesh for complicated geometry in
higher dimensions could be extremely time-consuming.

For problems with informal boundary conditions, such as the oblique bound-
ary condition, it is generally difficult to deal with using traditional methods,
such as the FEM and BEM. However, no additional difficulty would arise
for the proposed scheme. As an example, we consider Example 3 again with
one slight modification, i.e., the Neumann condition on the parts of boundary
non-parallel to axes (Γ3 and Γ4 in Fig. 2(a)) is replaced by

∂u(x)

∂τ
= h(x),

where τ is a unit vector, which may vary in terms of position. In the present
study, τ is taken to be

(√
2

2
,
√

2
2

)
on Γ3, and

(√
2

2
,−

√
2

2

)
on Γ4, respectively.

The numerical results for the modified version of Example 3 are presented in
Fig. 13. The accuracy of the numerical results is the same as that for Example
3. This shows clearly the facility of the proposed scheme for problems with
complicated boundary conditions.

It is especially stressed that the coding effort for these more complicated cases
makes no difference for the proposed scheme. Note that for problems with
more complicated geometry or boundary conditions, the analytical solution is
smooth. For the case that the solution is non-smooth, it could be far more
involved, and it is beyond the scope of present study.

Till now we have considered only singly connected domains. We now turn to
multi-connected case, i.e., Example 5. For multi-connected domain, the source
points can be placed outside and inside the hole, and they can also be placed as
singly connected domain [38]. In this paper, we investigate both approaches.
The results for exact data are shown in Table 2, where no and ni are the
numbers of source points evenly distributed on circles outside with R = 3 and
inside the hole with R = 0.2, respectively. From Table 2, the placement of
source points has significant effect on the accuracy of the numerical results.
When ns is fixed at 20, the accuracy of the numerical results deteriorates as
the number of source points inside the hole increases. In fact, when ni increases
to 10, the numerical results fail to converge. On the other hand, when no is
fixed at 20, the accuracy of the numerical results deteriorates as ni increases.
Therefore the most accurate numerical results were obtained when all the
source points are place outside of the domain.
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For noisy data, the results are shown in Table 3. From the table, the place-
ment of source points has a more severe effect in the presence of data noise.
As ni exceeds a certain number, the MFS coupled with TSVD fails to yield
satisfactory results. It is observed that increasing the number of source point
inside the hole would deteriorate the accuracy of the numerical results. Thus
the placement of the source points could be quite tricky for multi-connected
domains, and an inappropriate placement will lead to erroneous results. We
present the numerical results for Example 5 using only 20 source points out-
side the solution domain in Fig. 14. With up to 2% noise in the data, the
retrieved Dirichlet and Neumann boundary conditions are both in excellent
agreement with the exact ones.

From Table 1, the accuracy achieved for all the examples is comparable, which
demonstrates the efficacy of the scheme consistently. Note that the errors in the
Neumann boundary condition are larger than that in the Dirichlet boundary
condition, usually by one order in magnitude. This is not out of expectation,
since the latter involves the derivative of the solution.

From the numerical verification demonstrated above, it could be concluded
that the proposed scheme is highly accurate, computationally efficient, stable
with respect to data noise, convergent with respect to decreasing the amount
of data noise and increase the distance between the physical and fictitious
boundaries, and versatile for problems on singly-connected domains with com-
plicated geometry or (and) complicated boundary conditions. Furthermore,
the approximation of the solution and its derivative on the entire solution
domain is readily available by simple and direct function evaluation. In com-
parison with existing methods for this problem, the proposed scheme could be
a competitive alternative.

6 Conclusions

In the paper, an efficient and stable numerical scheme for some inverse prob-
lems associated with the Helmholtz equation is proposed. The scheme is based
on the method of fundamental solutions in combination with a popular regular-
ization method – truncated singular value decomposition. Moreover, the selec-
tion of an appropriate regularization parameter has been discussed. Numerical
results for examples with both smooth geometry and non-smooth geometry,
as well as singly connected and multi-connected domains, are presented, and
comparisons are made with results reported in the literature. The results show
that the proposed scheme can be a competitive alternative to existing methods
for the problems.

There are several potential extensions of the proposed scheme, which is cur-
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rently under investigation in our group. Firstly, although this paper considers
only problems in the two-dimensional space, the scheme is readily extended
to problems in higher dimensions. Secondly, the proposed scheme applies also
to ill-posed Cauchy problems associated with other elliptic partial differential
equations, as long as the fundamental solution of the differential operator is
known. Thirdly, combined with the now mature numerical technique – the
dual reciprocity method [39] and radial basis functions, we can extend the
scheme to a much wide class of non-homogeneous problems.

For large-scale problems, the general numerical scheme, namely the MFS in
conjunction with the TSVD, is of limited use, since computing singular value
decomposition for large-scale matrices is prohibitive to use. A promising alter-
native is to use iterative regularization methods, such as conjugate gradient
type methods and GMRES [40], where the computation-intensive step at each
iteration, namely matrix-vector multiplication, could be greatly accelerated
using the fast multipole method [41].
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Birkháuser, Boston, 1996.

[22] P. Mitic, Y.F. Rashed, Convergence and stability of the method of meshless
fundamental solutions using an array of randomly distributed source, Engrg.
Anal. Bound. Elem. 28(2004) 143-153.

[23] T. Kitagawa, On the numerical stability of the method of fundamental solutions
applied to the Dirichlet problem, Jpn. J. Appl. Math. 35(1988) 507-518.

[24] T. Kitagawa, Asymptotical stability of the fundamental solution method, J.
Comput. Appl. Math. 38(1991) 263-269.

[25] R. Kress, Linear Integral Equations, Springer-Verlag, Berlin, 1989.

[26] P.C. Hansen, The truncated SVD as a method for regularization, BIT 27(1987)
534-553.

[27] H.W. Engl, Regularization methods for the stable solution of inverse problems,
Surv. Math. Ind. 3(1993) 71-142.

[28] P.A. Ramachandran, Method of fundamental solutions: singular value
decomposition analysis, Comm. Numer. Meth. Engrg. 18(2002) 789-801.

[29] B. Jin, A meshless method for the Laplace and biharmonic equations subjected
to noisy boundary data, CMES-Comput. Model. Engrg. Sci. 6(2004) 253-261.

[30] P.C. Hansen, Analysis of discrete ill-posed problems by means of the Lcurve,
SIAM Rev. 34(1992) 561-580.

[31] P.C. Hansen, D.P. O’Leary, The use of the L-curve in the regularization of
discrete ill-posed problems, SIAM J. Sci. Comput. 14(1993) 1487-1503.

[32] G. Golub, M. Heath, G. Wahba, Generalized cross-validation as a method for
choosing a good ridge parameter, Technometrics 21(1979) 215-223.

[33] C.L. Lawson, R.J. Hanson, Solving Least Squares Problems, Prentice-Hall,
Englewood Cliff, 1974.

[34] H.W. Engl, W. Orever, Using the L-curve for determining optimal regularization
parameters, Numer. Math. 69(1994) 25-31.

[35] C.R. Vogel, Non-convergence of the L-curve regularization parameter selection
method, Inv. Prob. 12(1996) 535-547.

[36] A. Bogomolny, Fundamental solutions method for elliptic boundary value
problems, SIAM J. Numer. Anal. 22(1985) 644-669.

[37] V.A. Kozlov, V.G. Maz̀ya, A.V. Fomin, An iterative method for solving the
Cauchy problem for elliptic equations, USSR Comput. Math. Math. Phys.
31(1992):45-52.

18



[38] R.T. Fenner, Source field superposition analysis of two-dimensional potential
problems, Int. J. Numer. Meth. Engrg. 32(1991) 1079–1091.

[39] D. Nardini, C.A. Brebbia, A new approach for free vibration analysis using
boundary elements, in: C.A. Brebbia (Ed.), Boundary Element Methods in
Engineering, Springer, Berlin, 1982, 312-326.

[40] M. Hanke, P.C. Hansen, Regularization methods for large-scale problems, Surv.
Math. Ind. 3(1993) 253-315.

[41] I. Saavedra, H. Power, Multipole fast algorithm for the least squares approach of
the method of fundamental solutions for three-dimensional harmonic problems,
Numer. Meth. Part. Diff. Eq. 19(2003) 828-845.

19



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

(a) 
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x
1

x 2

(b) 

Fig. 1. Schematic illustration of the boundary ∂Ω, distribution of boundary collo-
cation points (dot) and source points (circle) for Ω and Ω̃.
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Fig. 2. Schematic illustration of the configuration of the complicated geometry Ω̂,
and distribution of boundary collocation points (dot) and source points (circle).
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Fig. 3. The retrieved u(x) for Example 1 with 1% noise by (a) the least squares
method and (b) the TSVD.
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Fig. 4. The singular value spectrum of A for Example 1 and the L-curve.
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Fig. 5. The accuracy variation of the numerical results with R for Example 1.
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Fig. 6. The accuracy variation of the numerical results with respect to (a) R and
(b) ns for Example 1 with 1% noise.
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Fig. 7. The accuracy variation of the numerical results with respect to ns for Ex-
ample 1 with exact data.
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Fig. 8. Errors between the numerical and analytical solutions of Example 1 with
exact data.
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Fig. 9. The retrieved u(x) and φ(x) for Example 1 with various levels of data noise.
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Fig. 10. The retrieved u(x) and φ(x) for Example 2 with various levels of data noise.
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Fig. 11. The retrieved u(x) and φ(x) for Example 3 with various levels of data noise.
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Fig. 12. The retrieved u(x) and φ(x) for Example 4 with various levels of data noise.
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Fig. 13. The retrieved u(x) and φ(x) for the modified version of Example 3 with
various levels of data noise.
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Fig. 14. The retrieved u(x) and φ(x) for Example 5 with various levels of data noise.

Table 1
The results for examples with 2% data noise, where 3∗ stands for the modified
version of Example 3.

Example Cond p rel(u) rel(φ)

1 5.79× 106 9 1.28× 10−2 6.66× 10−2

2 2.50× 107 9 1.23× 10−2 2.91× 10−2

3 3.80× 107 9 9.22× 10−3 2.46× 10−2

3* 3.63× 107 9 8.22× 10−3 2.71× 10−2

4 7.13× 108 10 6.30× 10−3 4.98× 10−2

5 6.61× 102 15 4.84× 10−2 8.04× 10−2
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Table 2
The results for Example 5 with exact data using various sets of source points.

ni + no Cond rel(u) rel(φ)

10+10 4.61× 103 Diverge Diverge

8+12 1.02× 103 1.62× 10−3 8.23× 10−3

4+16 4.10× 103 3.28× 10−7 1.59× 10−6

0+20 6.61× 102 6.28× 10−8 1.93× 10−7

2+20 1.35× 104 1.14× 10−7 3.01× 10−7

4+20 1.91× 104 2.78× 10−7 8.17× 10−7

8+20 2.70× 104 1.70× 10−6 8.00× 10−6

12+20 3.31× 105 1.17× 10−5 8.44× 10−5

16+20 8.02× 105 2.23× 10−5 1.94× 10−4

20+20 1.71× 107 3.30× 10−5 3.23× 10−4

Table 3
The results for Example 5 with 1% noise using various sets of source points.

ni + no p rel(u) rel(φ)

8+12 19 5.49× 10−2 Diverge

4+16 15 1.10× 10−2 2.38× 10−2

0+20 15 2.42× 10−3 4.02× 10−3

2+20 15 3.79× 10−3 5.85× 10−2

4+20 18 1.09× 10−2 2.37× 10−2

8+20 20 Diverge Diverge
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